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Microbial responses to warming enhance soil carbon loss following

translocation across a tropical forest elevation gradient

Running head: microbial responses enhance soil carbon loss
Andrew T. Nottingham'- 2, Jeanette Whitaker3, Nick J. Ostle*, Richard D. Bardgett’, Niall P. McNamara’,

Noah Fierer®, Norma Salinas’, Adan J. Q. Ccahuana?®, Benjamin L. Turner? & Patrick Meir!?

School of Geosciences, University of Edinburgh, Crew Building, Kings Buildings, Edinburgh EH9 3FF, UK
2Smithsonian TrepicaliResearch Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
3Centre for Ecology.&Hydrology, Lancaster Environment Centre, Lancaster LA1 4AP, UK

“Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster LA1 4YQ, UK

>School of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester,
Oxford Road, Manchester M13 9PT, UK

®Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental
Sciences, Univetsity of Colorado, Boulder, CO, USA

’Seccion Quimica, Pontificia Universidad Catdlica del Peru, Lima, Peru

8Facultad de Biologia, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru

9Research School of Biology, Australian National University, Canberra, ACT 2601, Australia

*To whom correspondence should be addressed: Andrew Nottingham, School of Geosciences, University of
Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK. email: andrew.nottingham@ed.ac.uk. Tel:
+44 (0) 31 651 4314 ; Fax: +44 (0) 131 650 2524

Key words: carbon-use-efficiency, climate feedback, climate warming, elevation gradient, lowland
tropical forest, montane tropical forest, O, soil carbon cycle, translocation

Author contributions: ATN and PM conceived the study, with help in design and analysis from JW,
BLT, NJO, RDBy#INPM, NS and NF. ATN performed the study and analysed the data. AJQC assisted
with fieldworkeATN, NF, JW and BLT performed the laboratory analyses. ATN wrote the paper,
with primary imnputftom PM and BLT, and further input from all authors.

Data accessibility statement: The data that support the findings of this study are available in
Figshare at doi.org/10.6084/m9.figshare.8956481.v1.

This is the author manuscript accepted for publication and has undergone full peer review but has not
been through the copyediting, typesetting, pagination and proofreading process, which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1111/ELE.13379

This article is protected by copyright. All rights reserved


https://doi.org/10.1111/ELE.13379
https://doi.org/10.1111/ELE.13379
https://doi.org/10.1111/ELE.13379
mailto:andrew.nottingham@ed.ac.uk

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

ABSTRACT

Tropical soils contain huge carbon stocks, which climate warming is projected to reduce by
stimulating organic matter decomposition, creating a positive feedback that will promote further
warming. Models'predict that the loss of carbon from warming soils will be mediated by microbial
physiology, but no empirical data are available on the response of soil carbon and microbial
physiology to warming in tropical forests, which dominate the terrestrial carbon cycle. Here we show
that warming caused a considerable loss of soil carbon that was enhanced by associated changes in
microbial physiology. By translocating soils across a 3000 m elevation gradient in tropical forest,
equivalent to a'temperature change of £15°C, we found that soil carbon declined over 5 years by 4%
in response to gach 19C increase in temperature. The total loss of carbon was related to its quantity
and lability, and was enhanced by changes in microbial physiology including increased microbial
carbon-use-efficiency, shifts in community composition towards microbial taxa associated with
warmer temperatures, and increased activity of hydrolytic enzymes. These findings suggest that
microbial feedbacks will cause considerable loss of carbon from tropical forest soils in response to

predicted climatieswarming this century.

INTRODUCTION

The response of soil organic matter decomposition to increasing temperature is predicted to
contribute a significant positive feedback to climate change (Davidson & Janssens 2006; Crowther et
al. 2016; Melillo et al. 2017). This positive feedback is expected because biochemical reaction rates
increase exponentially with temperature, and because the global soil carbon (C) stock is of sufficient
magnitude that even small fractional increases in organic matter decomposition will cause large
corresponding CO, emissions, increasing the concentration of atmospheric CO, (Davidson &
Janssens 2006)..However, the nature of this feedback in different ecosystems remains uncertain
because organitmattér decomposition is mediated by complex biological and physicochemical
interactions, inéluding microbial metabolism, enzymatic catabolism, and effects of substrate quality
and nutrient availability. In particular, this positive feedback has been hypothesized to be strongly
regulated by mierobial responses to warming, which could either enhance or reduce the expected
increases in CO, emissions following increased biochemical reaction rates (Frey et al. 2013; Wieder
et al. 2013; Hagerty et al. 2014).

Despite the importance of the response of soil C and microbial physiology to warming, this
has not been assessed empirically in tropical forests. This knowledge gap is significant because

tropical forests represent 42% of forested global land area (Pan et al. 2011) and their soils contain a
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third of global soil C (Jobbagy & Jackson 2000). As a consequence, understanding the potential for
feedbacks between climate and soil carbon in tropical forests is urgently needed to improve the
parameterization of Earth system models used to predict future atmospheric CO, and climate
(Cavaleri et al. 2015; Koven et al. 2015; Luo et al. 2016). The temperature response of soil organic
matter decomposition is likely to differ between the tropics and higher-latitudes due to differences in
nutrient availability, biodiversity, species composition, and in the temperature optima of the biota
(Wood et al. 2019). The large stocks of relatively labile soil C in tropical montane ecosystems
(Zimmermann et al. 2012), where thermal niches are often narrow and climate warming projections
are steep (Loomis et.al. 2017; Russell et al. 2017; Fadrique et al. 2018), are especially vulnerable to
warming and could cteate a globally large soil-climate feedback (Nottingham et al. 2015b). Indeed,
the response to/watming in the tropics remains one of the major gaps in our understanding of
terrestrial ecosystem responses to climate change in Earth system models (Huntingford et al. 2009;
Cavaleri et al. 2015; Koven et al. 2015), and the size of the soil C-climate feedback is a dominant
component of this uncertainty.

Soil warming experiments in the field, which have so far been conducted only in mid- to
high-latitude ecesysteéms, have shown that warming generates a considerable short-term soil C loss
(Lu et al. 20135 Romero-Olivares et al. 2017). This loss declines over time (e.g. >2 years) (Romero-
Olivares et al..2017), although there is evidence that it can continue for longer (e.g. >20 years)
(Melillo et al. 2017)-The short-term decline in soil C loss with warming has been explained by a
limited availability of C-substrates and nutrients to heterotrophs (Knorr ef al. 2005; Romero-Olivares
et al. 2017), and an overall decline in microbial C-use efficiency (CUE) (Manzoni et al. 2012;
Melillo et al. 2017). Microbial CUE, defined as the fraction of C incorporated for growth over
respiratory losses, generally decreases when greater metabolic C-demand at higher temperatures
reduces microbial biomass and enzyme synthesis (termed ‘thermal compensation’) (Manzoni et al.
2012; Bradford et al. 2019). However, a longer-term response of increased CUE under warming has
been reported. for.specific substrates, resulting in sustained or increased microbial biomass and
enzyme synthesis(Ftey et al. 2013), which could have a longer-term negative impact on soil C
stocks (i.e. an ‘emhancing’ CUE response) (Wieder et al. 2013). The underlying mechanisms for
these CUE responses remain unclear, but might include physiological changes within species, shifts
in microbial commuaity composition (Oliverio et al. 2017), or changes in the temperature sensitivity
of enzyme activity (Wallenstein et al. 2011; Allison et al. 2018).

The wide range of microbial feedbacks hypothesized in models reflects limited understanding
of this important climate response, and has confounded attempts to model the change in soil C under

warming, leading to hugely divergent modelling outcomes (Wieder et al. 2013; Hagerty et al. 2018).
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For example, depending on the attributed temperature response of microbial CUE, global soil C
losses by 2100 have been predicted to range from negligible (decreased CUE with warming) to 300
Pg C (=20% of global soil C stocks; i.e. with increased CUE with warming) (Wieder et al. 2013).
Reducing this uncertainty requires understanding of how the temperature sensitivity of soil C
responds to resoureeravailability and microbial feedbacks in tropical ecosystems.

Here we report the results of a five-year soil translocation experiment along a 3000 m elevation
gradient (15°C range in mean annual temperature; MAT) in tropical forests between western lowland
Amazonia andithe Peruvian Andes (Nottingham ef al. 2015b) (Fig. S1, Table 1). To isolate the effect
of temperature, our principal experimental manipulation, we controlled rainfall inputs to represent an
average at the site oforigin. We tested the hypotheses that: i) five years of temperature manipulation
would systematically change soil C stocks across sites (increased loss with warming/reduced loss
with cooling); i) changes in soil C would be determined by soil chemistry, whereby C loss would be
positively correlated with the relative abundance of labile compounds; and iii) microbial CUE would
increase over five years of warming, indicating an enhancing effect of microbial physiology and/or

community composition changes on soil C loss.

MATERIALS AND METHODS

We translocated soil among four tropical forest sites along the elevation gradient. Soil was
translocated as intaet cores, 10 cm diameter x 50 cm depth (4000 cm?). Three undisturbed soil cores
were re-installed at the same site (‘control”), and the other cores were translocated to the three other
elevations to achieve both warming and cooling (downslope = ‘warmed’, upslope = ‘cooled’)
(Zimmermann ef al. 2012), an approach similar to laboratory-based studies of thermal-responses of
microbial activity (Karhu ez al. 2014). To assess changes in soil C and thermal-responses of
microbial communities and their physiology after five years in a new temperature regime, we
quantified the cencentration and composition of soil C (using solid-state '*C-NMR spectroscopy),
nutrient concentrations, microbial community characteristics (using 16S and ITS rRNA gene
sequencing and"phoespholipid fatty acid, PLFA, biomarkers), and metrics of soil microbial
physiology (CUEgimstantaneous respiration temperature-sensitivity RQ1o, and enzyme activities, Qi
of Vinax). Changes'in these metrics of soil microbial physiology with temperature may occur through
different mechanisms, including acclimation (physiological responses of individuals), adaptation
(genetic changes within species) and ecological responses (shifts in community composition).
Therefore, rather than refer to acclimation or adaptation, we use the terms ‘CUE response’ and
‘enzyme Qo response’. We evaluated the relationships between relative log-response ratios (RR) for

all properties and elevation shifts (to normalize responses among different soil types), while the
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determinants of changes in soil C and RQ,, were evaluated with mixed-effects models. To determine
whether soil properties changed in response to temperature manipulation, the respective factors ‘soil-
destination’ (effect of new temperature regime) and ‘soil-origin’ (effect of intrinsic soil properties)

were included in the models.

Study sites

To investigate the effect of temperature on soil C dynamics and soil microbial communities, soil
cores were reciprocally translocated among four sites along an elevation gradient of tropical forest in
Peru. The sites ranged from lowland rainforest (210 m asl; above sea level), pre-montane rainforest
(1000 m asl), lower montane cloud forest (1500 m asl) and upper montane cloud forest (3030 m asl).
Site mean annual témperature (MAT) was determined over a 5-year period (2005-2010) and varied
from 26°C to 11°C with increasing elevation (Table 1). Dominant tree families ranged from
Clusiaceae and Cunoniceae at 3030 m asl, to Clethraceae at 1500 m asl, to Elaeocarpaceae and
Fabaceae at 1000.m asl, and Moraceae and Fabaceae at 200 m asl. The sampling sites were adjacent
to 1 ha permanent ecological inventory plots (Nottingham et al. 2015b). The upper three sites are
situated predominantly on Paleozoic (~450 Ma) meta-sedimentary mudstones (Sandia formation)
and the lowland\forest site is on Pleistocene sediments, consisting of typical terra firma clay
substrates. Soils are Haplic Cambisols (Inceptisols) at 210 m asl; Cambisols (Inceptisols) at 1000 m
asl and 1500 m aslyzand Umbrisols (Inceptisols) at 3030 m asl (according to FAO, with USDA Soil
Taxonomy in parentheses). Further descriptions of soil, climate and floristic composition of these
sites are reported elsewhere (Girardin et al. 2010; Rapp ef al. 2012; Whitaker et al. 2014;
Nottingham et al. 2015b).

Soil translocation

At each site, we.excavated twelve 50 cm deep, 10 cm diameter cores of intact mineral soil. Three of
these cores were.re-installed at the same site (hereafter referred to as ‘control’), and the other cores
translocated to the'three other elevations (hereafter referred to as ‘warmed’ if translocated down the
gradient, or ‘coeled’™if translocated up the gradient) (Zimmermann et al. 2009). The length of 50 cm
was chosen beeauise this was the total depth of the mineral horizon at the highest elevation,
shallowest soil profile, sampling site. To maintain the same rainfall per m? as at the site of origin,
translocated tubes were capped with reduction collars or expansion funnels, which maintained a
similar moisture content in translocated soil compared to soil at the site of origin (Zimmermann et al.
2010). Temperature was, therefore, our principal experimental manipulation although we

acknowledge that under future climate scenarios changes in temperature and rainfall regimes
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together will be important determinants of the overall tropical forest C cycle (Meir ef al. 2015). New
litter input was excluded and root ingrowth prevented by installing a 63 um nylon mesh at the base
of the tubes. A detailed description of the experimental setup is given in Zimmermann et al. (2009).
Soil cores were translocated in 2008 and, exactly five years later in 2013, mineral soil was sampled
from each core using'an auger to 20 cm depth. Soil samples were stored for < 14 days at <4 °C until
DNA extractiofl, respiration assays, and determination of nutrient content and enzyme activities; this
method has been shown to have negligible effects on soil microbial and enzymatic properties
(Lauber et al. 2010; Turner & Romero 2010). Soil samples were freeze-dried and stored for <3

months prior to PLEA extraction.

Soil analyses

Soil characteristics: We determined the following edaphic variables: total carbon (C), total
nitrogen (N), total phosphorus (P), organic P, resin-extractable P (resin P), cation exchange capacity
(ECEC) and exchangeable cations (Al, Ca, Cl, Fe, K, Mn, Mg, Na), soil pH, bulk density and
moisture content. The C composition of soils was analysed by solid-state cross polarization magic
angle spinning (EP/MAS) 3C NMR spectroscopy.

Enzymeactivities and Qyy of enzyme activities: Soil enzyme activity (Vp,,) and the
temperature'sensitivity of enzyme activity (Q;o of Vinax) Was determined for seven enzymes involved
in carbon and nuteient cycling, We used microplate fluorimetric assays with 100 uM
methylumbelliferone (MU)-linked substrates to measure activity of B-glucosidase (degradation of 3 -
bonds in glucose), cellobiohydrolase (degradation of cellulose), N-acetyl B-glucosaminidase
(degradation of N-glycosidic bonds), phosphomonoesterase (degradation of monoester-linked simple
organic phosphates), sulfatase (degradation of ester sulfates), and B-xylanase (degradation of
hemicellulose). Phenol oxidase (degradation of phenolic compounds) was measured using S mM L-
dihydroxyphenyalanine (L-DOPA) as substrate. Further information on protocols for enzyme
analyses is repdrted.elsewhere (Nottingham ef al. 2015a). For each soil sample, five replicate micro-
plates were preparediand incubated at 2°C, 10°C, 22°C, 30°C and 40°C respectively, for calculation
of Oy of Vinax (seesbelow).

DNA sequencing and phospholipid fatty acid (PLFA biomarkers): Soil microbial
community composition, including the relative abundances of bacterial and fungal groups, was
determined using phospholipid fatty acid (PLFA) biomarkers (Whitaker ez al. 2014). Further
assessment of the relative abundances of specific bacterial and fungal phylotypes was made using
high-throughput sequencing to characterise the variation in marker gene sequences (Leff ez al. 2015).

For bacterial community composition, the 16S rRNA gene was amplified in triplicate PCR reactions
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using the 515f and 806r primers for bacterial and archaeal taxa. For fungal community composition,
the first internal transcribed spacer region (ITS1) of the rRNA gene was amplified using the ITS1-F
and ITS2 primer pair. For each soil sample, DNA was extracted using the MoBio PowerSoil DNA
isolation kit (MoBio Laboratories, Carlsbad, CA) following manufacturer instructions. Primers were
modified to i€orporate 12 bp error-correcting barcodes, and 16S rRNA amplicons and ITS
amplicons wer¢ pooled separately prior to sequencing with two separate runs on an Illumina MiSeq
instrument at the University of Colorado at Boulder. Raw sequence data were processed using the
QIIME v1.7 pipeline, where sequences were de-multiplexed using their unique barcode specific to
individual samples and assigned to phylotypes (operational taxonomic units, OTUs, at 97%
similarity) using.the 'open reference' clustering approach recommended in the pipeline (Caporaso et
al. 2012). Taxoftomy was determined for each phylotype using the RDP classifier (Wang et al. 2007)
trained on the Greengenes (McDonald ez al. 2012) and UNITE (Abarenkov et al. 2010) databases for
bacterial and fungal sequences. Relatively abundant phylotypes were checked using BLAST and
comparison against sequences contained within GenBank.

Temperature sensitivity of microbial respiration (RQ;q): Soil samples (8 g) from each soil
core (n = 3) weresdneubated in bottles at 5 temperatures (5, 12, 19, 26, 33°C), selected to span the
range of site mean annual temperatures (48 soil core samples at 5 temperatures, yielding 240 soil
incubations in total). All soils were adjusted to 80% water holding capacity. Soils were pre-incubated
at 20°C for 24 h and'then the temperature was adjusted to specified incubation temperatures.
Following an initial incubation period of 2 h, bottle headspace was flushed with compressed air and
sealed. Soil incubations lasted for 48 h; air samples (5 ml) from bottle headspace was taken at 24 h

and 48 h for CO, analyses.

Calculations
Determination of Qygvalues: We determined Q) of enzyme activities (Qo of Vnax) and
microbial respitation(RQ;) according to:

Qio=exp (10 x k) (equation 1)

In (a)
t

and k =

(equation 2)
Where k is the exponential rate at which activity (a) increases with temperature (t) (Nottingham et al.
2016). To calculate k(and thus Q;() we used linear regression of In(activity)/temperature, for n =5
temperatures and n = 3 replicates per temperature.

Determination of carbon and nutrient use efficiencies: Microbial CUE is defined as the

fraction of C incorporated for growth over respiratory losses. However, it is acknowledged as an
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emergent property of growth and allocation processes that can vary with the method used for its
estimation (Hagerty et al. 2018) (see Appendix S1 in Supporting Information). We determined
microbial carbon, nitrogen and phosphorus use efficiencies (CUE, NUE and PUE), using a widely-
accepted stoichiometric method, whereby the CUE/NUE/PUE of an organism is a function of the
difference between"its elemental requirements for growth (C, N or P in biomass and enzymatic
investment for @cquisition) and the abundance of environmental substrate (C, N, P in soil organic
matter) (Sinsabaugh et al. 2016). Following this approach, NUE and PUE are inversely related to
CUEc.n or CUEcp (CUE calculated relative to enzymatic investment for N or P acquisition,
respectively). Therefore, we present NUE and PUE results but focus our hypotheses and discussion
on the responses,of CUE. While acknowledging the assumptions and limitations of this approach
(see Appendix S1 in Supporting Information), this method is considered particularly useful for
parameterization and testing of models because it quantifies CUE in terms of the underlying
microbial processes (Hagerty ef al. 2018). This approach assumes that enzyme activities scale with
microbial production and organic matter concentration, and that microbial communities exhibit
optimum resource allocation with respect to enzyme expression and environmental resources; these
assumptions aresempifically supported by Michaelis-Menten kinetics and metabolic control analysis
(Sinsabaugh ef'al. 2016). Based on this underlying assumption, CUE is therefore calculated as

follows:

CUEc.x= CUEMax [Scx /(Sc:x + Kx)], where Sc.x = (I/EEAc.x)(Bex /Lex) (equation 3)

Where Sc.x is a scalar that represents the extent to which the allocation of enzyme activities offsets
the disparity betweenithe elemental composition of available resources and the composition of
microbial biomass; K, and CUEy\ax are constants: half-saturation constant (K,) = 0.5; and the upper
limit for microbial growth efficiency based on thermodynamic constraints, CUEyax = 0.6. EEA is
extracellular gnzyme activity (nmol g'! h'!); EEAc.n was calculated as BG/NAG, where BG = B-
glucosidase and"NAG = N-acetyl B-glucosaminidase; and EEA.p was calculated as BG/P, where BG
= B-glucosidaserand"P = phosphomonoesterase. Molar ratios of soil organic C : total N : total P were
used as estimates’of L.y or Lc.p. Microbial biomass (B¢.x) C:N and C:P were also calculated as
molar ratios.

Nutrient use efficiencies (NUE and PUE), which are inversely related to CUE, were

calculated according to:

XUEx.c = XUEmax [Sx.c /(Sx.c T K¢)], where Sx.c = (1/EEAx.c)(Bx.c /Lx.c) (equation 4)
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Where X represents N or P, K- = 0.5, and XUEyax = 1.0 (Sinsabaugh et al. 2016).

Statistical analyses

Our first hypothesisythat 5 years of temperature perturbation resulted in consistent changes in soil
organic matter €ycling and soil C storage across sites (relative decreases under warming and relative
increases under cooling), was tested using ANOVA and by evaluating the relationships between the
translocation treatment and the relative response ratios of soil C parameters (total soil C and its
chemical fractions by '3C-NMR). Our second hypothesis, that changes in soil C were determined by
specific soil physicaly chemical or biological properties, was tested by using mixed effects models
with the relativé response ratio of soil C as the response variable and the relative response ratios of
environmental and soil properties as explanatory variables. Our third hypothesis, that microbial
responses to temperature affected soil C change was tested by measuring: 1) microbial community
composition, by determining the relative responses of individual bacterial and fungal phylotypes to
the elevation-shift treatment; and ii) microbial function, by determining the relative responses of Qg
of Vinax for 7 soilkenzymes to the elevation-shift treatment; by determining the relative responses of
substrate use efficiency parameters (CUEc.n, CUEc.p, NUE and PUE) to the elevation-shift
treatment; and by using mixed effects models with the relative response ratio of RQ as the response
variable and the relative response ratios of environmental and soil properties, including the Q;¢ of
Vmax for 7 soil enzymes, as explanatory variables. Relative response ratios were determined by: RR
of X=In [(X(i=1-3) at destination/ X(mean) at origin)], where n = 3. Further details on these
approaches are provided in Supporting Information (Appendix S1). All statistical analyses were

performed in R (version 3.5.2).

RESULTS

The translocation of soil upslope (cooling) and downslope (warming) consistently increased
and decreased §oil"Cifespectively compared to controls. The change in soil C was equivalent to a
3.86% decline foreach 1°C increase in temperature (Fig. 1; p <0.001). Beyond temperature, the soil
properties thatwere most strongly related to the magnitude of this change were the concentration and
chemical compositien of the initial soil organic matter (i.e. significant effects of soil-origin,
microbial biomass and alkyl:O-alkyl ratios; Table 2A). Across all soil properties, warming decreased
organic matter content (total C; O-alkyl and di-alkyl groups), acidified the soil, and increased the
availability of base cations (K, Na), potential toxins (extractable Al), microbial biomass (microbial C

and total PLFA), specific microbial groups (gram-positive bacteria) and enzyme activities (-
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glucosidase, N-acetyl B-glucosaminidase, phosphomonoesterase); and vice versa for cooling (Fig. 2).
These findings were supported by the overall effect of temperature on soil properties: warming
increased alkyl:O-alkyl ratios (an index of the degree of organic matter decomposition) and
microbial C:N and C:P ratios, and decreased available soil P and the temperature sensitivity of
phenol oxidase activity (o of V. ‘destination’ effects; Tables S1-S2).

Microbial community composition and physiology responded to temperature manipulation.
Microbial community composition varied naturally along the gradient (Nottingham et al. 2018), but
a consistent subset of taxa within each community responded to temperature change across soil
types. The temperature response analysis (RR) of common microbial taxa revealed 30 warm-
responsive and 18 cold- responsive taxa (Fig. 3D, Figs. S2-S3), although the majority of taxa were
unaffected by the temperature change or were influenced by intrinsic soil properties (effect of soil
origin; Table S2).

Microbial physiology also responded to temperature. There were positive relationships
between temperature and the RR of CUE¢.y and CUE(.p and a negative relationship for the RR of
NUE (Fig. 3A-3B), while microbial CUE was significantly affected by soil destination (i.e. the new
temperature regime)@nd not soil origin (Table S3). The instantaneous temperature-response of
respiration (RQjp) atthe microbial community-level (Karhu et al. 2014), was primarily determined
by soil destination (i.e. the new temperature regime; Table 2B), also consistent with the temperature

response being thesresult of a physiological or compositional change in microbial communities.

DISCUSSION

Across the range of tropical lowland-to-montane forests studied here, the change in soil C
with temperature was primarily determined by the size and chemical composition of soil C stocks.
Importantly, this change in soil C with temperature manipulation occurred alongside physiological
and compositional changes in soil microbial communities, in a manner consistent with the prediction
of enhanced s0il.C.lo§s with warming (Wieder et al. (2013); see below). Scaling the observed 3.86%
change in total s6il"Cper 1°C (Fig. 1) with the projected warming in these ecosystems over the next
century (Russellretal. 2017) yields a 16-32% decline in soil C with a 4-8°C warming. This loss in
soil C is greatenthan reported from field-based warming experiments in non-tropical ecosystems (Lu
et al. 2013; Crowther et al. 2016; Romero-Olivares et al. 2017), including a 17% decline in soil C
following 26 years of 5°C warming in a temperate forest (i.e., for comparison 0.7% loss per 1°C
warming per 5 year interval) (Melillo et al. 2017), and an average 1% decline calculated in meta-
analyses of soil warming experiments, based predominantly on data from temperate soils and

experiments that only warm the soil surface (Lu et al. 2013; Romero-Olivares et al. 2017). Our

This article is protected by copyright. All rights reserved



339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

extrapolation assumes that C loss (3.86% C per 1°C warming) would linearly scale over a 4-8°C
range and would not have increased if our study continued beyond 5 years and the specified amount
of warming. These assumptions may have yielded an underestimation of actual C loss over a longer
time period, given that sustained C loss occurred following 26 years of warming in temperate forest
(Melillo et al=2017Y:

The soil C losses primarily originated from labile C pools, because the alkyl:O-alkyl ratio
explained most variation in soil C change with temperature manipulation (Table 1A). Specifically,
alkyl:O-alkyl and aryl:O-alkyl ratios increased with warming (Fig. 2; Table S3), indicating an
increased chemical gecalcitrance of the residual soil C. Increases in these ratios with warming were
also detected two years after translocation (Zimmermann et al. 2012) and were related to a decrease
in O-alkyl groups (Fig. 2; Table S3), which are relatively labile and comprise a major component of
carbohydrates in plant debris. Thus, although more chemically recalcitrant compounds have a higher
intrinsic temperature sensitivity (Davidson & Janssens 2006), we demonstrate that labile compounds
in the montane forests studied here give a high apparent temperature sensitivity because of their
availability andiabundance (total stocks of 11.8 kg C m2at 0-10 cm depth) (Zimmermann et al.
2012). This studysdesc€ribes one of the largest soil C stocks represented in any soil warming study; in
recent meta-analyses/only four out of 143 warming studies had >11 kg C m? and three of those
reported large C loss with warming (Crowther et al. 2016; van Gestel et al. 2018), although there
was no relationshipsbetween C loss and a broader range of soil C stocks (van Gestel et al. 2018). Our
findings provide a key advance on results reported from global analyses of soil warming
experiments, which remain limited in their ability to make global predictions due to the lack of
information for tropical systems (van Gestel et al. 2018).

The large changes in soil C observed as a result of temperature manipulation occurred
alongside changes in the composition and physiology of microbial communities (Fig. 3C-D). A
previous short-term laboratory incubation study using soil from the same tropical elevation gradient
showed that microbial responses to warming would result in increased growth, potentially decreasing
soil C (Nottinghamrer al. 2019). Results from this five year field-translocation study provide long-
term data consistentwith this, and show that warming changed microbial physiology by increasing
CUE, with a cencomitant decrease in soil C. Temperature-responsive change in microbial CUE was
demonstrated by the,positive correlation of the RR of CUE with temperature (Fig. 3A) and because
CUE was determined by soil-destination (i.e. new temperature; Table S3). In contrast to reports of
short-term decreases in CUE with warming (Tucker et al. 2013; Sinsabaugh et al. 2016), a longer-
term increase in CUE may occur following physiological or community-wide changes through

evolutionary processes (Wieder et al. 2013). For example, in a 5°C soil warming manipulation in
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temperate forest, CUE decreased after five years, but increased after 18 years for more recalcitrant
substrates (Frey et al. 2013). The increased CUE in our study (Fig. 3A) occurred alongside increased
microbial biomass and enzyme activities (Fig. 2), contrary to the hypothesis of reduced biomass and
activity through thermal compensation (Manzoni et al. 2012). Similarly, in a global study following
90 days of laboratory incubation, no evidence was found for thermal-compensation of respiration for
samples from the same Peru forest sites (Karhu ez al. 2014). although Karhu et al. (2014) did find
some geographical variation in this process.. This global variability has been reflected in extra-
tropical warming experiments (Melillo et al. 2017; Romero-Olivares et al. 2017), although some of
the variability among studies may also result from the different methods and scales by which CUE
and thermal compensation has been defined (Geyer et al. 2016; Hagerty et al. 2018). While the
underlying mechanisms invite further investigation, our results suggest that the experimental
warming imposed here induced changes in microbial physiology and community composition that
accelerated soil C loss, with no thermal compensation of microbial activity, consistent with model
predictions of increased CUE under warming accelerating soil C loss (Wieder et al. 2013).

The changes in CUE in response to temperature occurred alongside changes in microbial
community compesition. Although we cannot rule out dispersal as a factor affecting these microbial
community shifts (i.e. migration of microbes via aerial dispersal from the surrounding destination
site; see SI), which could only have been controlled for using an in situ soil warming experiment, a
dominant role for.temperature shifts in driving these changes is suggested by the consistency
between our results and a recent global study of temperature-responsive bacterial taxa (Oliverio et al.
2017). The responsive taxa in our study overlapped with those identified in the global study, with
members of the Actinobacteria and Rhizobiales being more abundant in warmed soils (together, 75%
consistent with Oliverio et al., 2017) and Acidobacteria becoming more abundant in colder soils
(71% consistent with Oliverio et al., 2017), with the latter associated with oligotrophic N-limited
conditions suchias those found in cooler montane ecosystems (Oliverio ef al. 2017). Thus, microbial
taxa responded to.temiperature manipulation in a manner consistent with their previously-observed
thermal responsesTacross global ecosystems.

Temperature adaptation of enzyme function across natural temperature gradients has been
associated withsdifferences in the temperature sensitivity (Q;oresponse) of activity (Vp.x), with
decreased Qo of ¥maxat higher temperature ranges (Brzostek & Finzi 2012; Nottingham et al. 2016),
although there is also evidence for the insensitivity of Qo of V.« for soil enzymes across natural
temperature gradients (Allison et al. 2018). This pattern of long-term temperature response of
enzyme activity was supported for only one out of seven measured enzymes (phenol oxidase)

following the five years of temperature manipulation. This finding implies that the temperature
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sensitivity of phenolic oxidation, and the decomposition rate of recalcitrant C compounds, decreases
under warming. Several mechanisms might underlie this response, including changes in the
abundances of iso-enzymes with different temperature optima (Wallenstein ez al. 2011), shifts in the
relative abundance of microbial taxa with different functional capabilities (Fig. 3D) and
physiologicalyrand/or evolutionary changes in microbial function (e.g. increased selective pressure
for lignin-degrading microbial groups or capability). The response could also arise from abiotic
factors. For instance, soil acidification with warming (Fig. 2), which can reduce potential enzyme
activity (Burnsg& Staunton 2013), may have played a role. The response could further be related to a
change in the abundance of metal oxides (Mn, Fe, and Al), which contribute to humification
reactions by providing electron acceptors that catalyze the formation of reactive species from
phenols (Keiluweit efal. 2015). However, although amorphous manganese (Mn) oxide concentration
was positively correlated with phenol oxidase activity, it was not affected by translocation and was
not related to differences in the O of activity (Fig. S6). Overall, despite the result for phenol
oxidase, the Q1 0f Vi, for the remaining six enzymes was not affected by warming (Figs. S4-S5),
consistent with'a recent global study showing an insensitivity of Qo of Vi.x to temperature for the
majority of enzymesy(Allison et al. 2018). These results indicate that the dominant effect of
enzymatic responsesto warming on soil C result from changes in V},,x, whether reduced (by thermal
compensation) or increased as shown here (Fig. 2).

Because oursstudy is a soil translocation rather than an in sifu warming experiment, it has
associated caveats. First, plants and hence plant-inputs to soil were absent from the translocated soil
monoliths, which could offset the change in soil C (Koven ef al. (2015); see S1). Second, the
translocation design did not allow a test of the response of lowland tropical forest soils to novel
warm temperature regimes predicted this century (Cavaleri ef al. 2015; Wood ef al. 2019), and has a
principal focus on temperature responses between 11 and 26°C. However, because the translocation
approach tests the common soil and microbial responses that are shared among different soil types
(Table 1), it do€s.enable generalisation across tropical forest soils. Notwithstanding these caveats,
our results cleafly*demonstrate the potential vulnerability of tropical forest soil C to warming, and
reveal the microbialfesponses that may be associated with this loss, especially where soil C stocks
are large and relatively labile.

In summaryywe provide new evidence that long-term (five-year) warming induced
fundamental changes in microbial community physiology in tropical forest soils through increased
CUE, leading to reduced soil C stocks. This occurred alongside an underlying change in microbial
community composition and with no compensatory effect for the majority of soil enzymes. Our

findings provide field-based evidence for tropical forests to link changes in soil C under warming to
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441  changes in microbial physiology and communities, resulting in increased CUE. This is a complex
442  process that has been conceptualized in models and shown to result in very large differences in the
443  potential impact on the future terrestrial carbon cycle depending on the nature of the response

444  (Wieder et al. 2013), and has not previously been studied in the tropics (Cavaleri et al. 2015). By
445  accounting fortheresponse of microbial community physiology to temperature change, we: (i) show
446  that tropical fofest soil C stocks are highly sensitive to short-term warming, imposing a positive
447  feedback on climatic warming; and (ii) demonstrate the fundamental need to account for microbial
448  responses in order to understand climate-induced changes in the tropical forest C cycle.

449
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Figure legends:

Figure 1. The relative change in total soil C (%) in mineral soils following five years of
translocation. Translocation represented an elevation shift of up to £3000 m, which was equivalent
to a warming or cooling treatment of up to £15°C. Calculations for log response ratio of soil C (RR
of %C) and description of the translocation design are provided in Supplementary Materials. The
linear relationship, % C RR = 0.00703 + (0.0000824 * elevation shift), equates to 0.021 %C RR for
every 1°C (or 170 i elevation), or 3.86% decrease in total soil C per 1°C increase in temperature (R?

=0.23; p < 0.001).

Figure 2. The effects of elevation shift (warming/cooling) on the log response ratios (RR) of soil
and microbial properties following 5 years of translocation. For each soil and microbial property
(Extended DataFable'1), RR values were calculated (see SI) and regressions between RR value and
elevation shift (m) were determined. A negative relationship represents an increase in RR with
warming (or decrease in RR with cooling) and a positive relationship represents a decrease in RR
with warming (ordnerease in RR with cooling). Significant relationships are highlighted by asterisks

(p < 0.05).

Figure 3. Temperature adaptive responses of microbial communities and physiology following
five years of translocation: carbon-use-efficiency (CUE) (A) nutrient-use-efficiency (B), phenol
oxidase activity (C) and community composition (D). For A-B, CUE was calculated according to
microbial stoichiometry with respect to N (CUEc.y) and P (CUEc.p), according to equation 3.
Nitrogen (NUE).and phosphorus (PUE) use efficiencies were calculated according to equation 4 (ref.
30). For C, the'temperature response of Qj¢ of V.« for phenol oxidase, we calculated the Qg of Viax
by determining=#gzrat 2°C, 10°C, 20°C, 30°C, 40°C and fitting a O, function (equations 1-2). The
temperature responses of all 7 enzymes are shown in Figure S3 and the O, values of V.« are
summarized in Extended Data Figure 4. For D, ‘Warm-adapted’ taxa significantly increased in their
relative abundance when soil was translocated downslope or decreased when translocated upslope
(phylotype responses are in Extended Data Figure 2). The temperature responses for all response
variables were estimated using linear regression of RR against the elevation shift (p < 0.05; error

bars are 1 standard error).
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721  Table 1: Summary of site characteristics along the elevation gradient. Mean annual temperature
722 and mean annual precipitation were determined over the period 2005-2010.

723

Site name Elevation Lat Long Mean Mean Parent material Soil classification
(masl) annual annual

temp (°C)  precipitation

(mm yr)
Explorer’s 210 -12.830  -69.271 26 3199 Pleistocene Inceptisol
Inn plot 3 alluvial terrace
(TP3)
Tono 1000 -12.866  -71.401 21 3100 Paleozoic shales- Inceptisol
slates
San Pedro 2 1500 -13.049  -71.537 17 5302 Plutonic intrusion  Inceptisol
(granite)
Wayqecha 3025 -13.190  -71.587 11 1706 Paleozoic shales- Inceptisol
slates
724
725
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Table 2. The effect of soil and environmental properties on the relative response of total soil C
(A) and on the instantaneous temperature sensitivity of microbial respiration (B). Mixed-effects
models were fittedausing maximum likelihood, by beginning with full model (70 variables) and step-
wise parameter removal. The final model was determined by lowest AIC value. The significance of
fixed effects was determined by AIC likelihood ratio tests comparing the full model against the

model without the specified term.

A) Relative response of total soil C

Paramete SE P-value X2 test
r
Fixed effects
Total PLFA 0.00498 0.00264 0.0680 0.0311 *
Alkyl:O-Alkyl -0.69858 0.30904 0.0311 0.0323 *
Random effects
Soil Origin 0.40469 0.27731 0.1545
AIC value 11
R? 0.631

B) Relative response of RQ,

Paramete SE P-value X2 test
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Fixed effects

Al 2.60e-04 7.79¢-04 0.7406 0.7392
Microbial C:P 2.38e-03 8.42¢-04 0.0071 0.0219 *
Bacteria PLFA 9.82¢-03 5.66¢-03 0.0901 0.6106
Alkyl:O-AlkyH 1.02¢-01 6.29¢-02 0.1133 0.1112
Phenol Oxidas2.67e-02 4.45¢-02 0.5517 0.5493
B-Glucosidase Oio Vina 7.80e-02 3.53e-02 0.0325 0.0315 *
Random effects =

Soil DestinationL 7.26e-01 1.12e-01 7.38e-08

AIC value -125
R? 0.277
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