

1
2 Article Type: Standard Paper
3 Handling Editor: Alison Bennett
4 Section: Ecosystems Ecology

5
6 **Title:** Microbial richness and composition independently drive soil multifunctionality
7 .

8 **Running title:** Microbial drivers of soil multifunctionality.
9

10 Manuel Delgado-Baquerizo^{1,2*}, Pankaj Trivedi^{1,3}, Chanda Trivedi¹, David J. Eldridge⁴, Peter B.
11 Reich^{1,5}, Thomas C. Jeffries¹, Brajesh K. Singh^{1,6}.
12

13 1. Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, New South
14 Wales, Australia.

15 2. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO
16 80309.

17 3. Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort
18 Collins, CO 80523 USA.

19 4. School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney,
20 New South Wales 2052, Australia.

21 5. Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA.

22 6. Global Centre for Land-Based Innovation, Western Sydney University, Penrith South DC, NSW
23 2751, Australia.

24 ***Authors for correspondence:**

25 Manuel Delgado-Baquerizo. Hawkesbury Institute for the Environment, Western Sydney University,
26 Penrith, 2751, New South Wales, Australia. E-mail: M.DelgadoBaquerizo@uws.edu.au
27
28

29 This is the author manuscript accepted for publication and has undergone full peer review but has not
been through the copyediting, typesetting, pagination and proofreading process, which may lead to
differences between this version and the [Version of Record](#). Please cite this article as [doi:10.1111/1365-
2435.12924](https://doi.org/10.1111/1365-2435.12924)

30

31

32

33

34

35

36

37 **Abstract**

38 1. Soil microbes provide multiple ecosystem functions such as nutrient cycling, decomposition and
39 climate regulation. However, we lack a quantitative understanding of the relative importance of
40 microbial richness and composition in controlling multifunctionality. This knowledge gap limits
41 our capacity to understand the influence of biotic attributes in the provision of services and
42 functions on which humans depend.

43 2. We used two independent approaches (i.e. experimental and observational), and applied
44 statistical modeling to identify the role and relative importance of bacterial richness and
45 composition in driving multifunctionality (here defined as seven measures of respiration and
46 enzyme activities). In the observational study we measured soil microbial communities and
47 functions in both tree- and bare soil-dominated microsites at 22 locations across a 1200 km
48 transect in southeastern Australia. In the experimental study we used soils from two of those
49 locations and developed gradients of bacterial diversity and composition through inoculation of
50 sterilized soils.

51 3. Microbial richness and the relative abundance of γ -Proteobacteria, Actinobacteria and
52 Bacteroidetes were positively related to multifunctionality in both the observational and
53 experimental approaches; however, only Bacteroidetes was consistently selected as a key
54 predictor of multifunctionality across all experimental approaches and statistical models used
55 here. Moreover, our results, from two different approaches, provide evidence that microbial
56 richness and composition are both important, yet independent, drivers of multiple ecosystem
57 functions.

58 4. Overall, our findings advance our understanding of the mechanisms underpinning relationships
59 between microbial diversity and ecosystem functionality in terrestrial ecosystems, and further
60 suggest that information on microbial richness and composition needs to be considered when

61 formulating sustainable management and conservation policies, and when predicting the effects
62 of global change on ecosystem functions.

63

64 **Key words:** Bacteria, Enzyme activities, BEF relationship, Nutrient cycling, Terrestrial ecosystems

65

66

67

68 **Introduction**

69 The status of Earth's biodiversity is in decline (Dirzo *et al.* 2014). The loss of species has global
70 consequences because biodiversity promotes ecosystem functions and services that are essential for
71 human well-being (Hooper *et al.* 2005; Cardinale *et al.* 2012). These services include food production,
72 nutrient cycling and climate regulation; and have been valued at trillions of U.S. dollars per year
73 (Costanza *et al.* 1997). The importance of biodiversity for ecosystem functions and services has been
74 shown (Cardinale *et al.* 2011; Tilman *et al.* 2014), however, biodiversity is extremely complex, and
75 involves different components including, but not limited to, species richness (number of taxa) and
76 composition (i.e. identity of the different organisms comprising a community expressed in terms of
77 their relative abundance; Díaz *et al.* 2001). Both taxa richness and composition have been reported to
78 influence one or several ecosystem functions (Díaz *et al.* 2001; Hooper *et al.* 2005; Flynn *et al.* 2011;
79 Isbell *et al.* 2011; Allan *et al.* 2013; Dooley *et al.* 2015; Lefcheck & Duffy 2015). Variation in
80 composition can act in synergy or opposition to effects of richness in natural (rather than randomly
81 assembled experiments) systems, and thus, the role of different aspects of diversity (composition,
82 richness, identity) remains unclear (Wardle *et al.* 1999; Leps *et al.* 2001; 2004). Moreover, the relative
83 importance of these two biodiversity metrics for increasing the provision of several ecosystem
84 processes simultaneously (multifunctionality) remains largely unexplored (Isbell *et al.* 2011; Byrnes *et*
85 *al.* 2014a,b; Dooley *et al.* 2015). Both species richness and composition are likely to change markedly
86 under future climatic scenarios or more intense land uses (Díaz *et al.* 2001; Hooper *et al.* 2005).
87 Therefore, it is critical that we quantify the relative importance of these biodiversity components for
88 multifunctionality so that we can formulate appropriate management and conservation policies and
89 predict the likely changes in ecosystem functioning under changing environments.

90 Unlike plants or animals (Hooper *et al.* 2005; Lefcheck *et al.* 2015), we have only a limited
91 understanding of the relationships between microbial diversity and composition, and ecosystem

92 functioning, particularly in terrestrial environments (Bardgett & van der Putten 2014). Microbes are
93 considered by far the most abundant and diverse life forms on Earth (Singh *et al.* 2009), and play
94 essential roles in maintaining multiple ecosystem functions including litter decomposition, primary
95 production, soil fertility and gaseous emissions (He *et al.* 2009; Peter *et al.* 2011; Jing *et al.* 2015;
96 Delgado-Baquerizo *et al.* 2016). Global environmental drivers such as land use change, nitrogen
97 enrichment and climate change are impacting upon both soil microbial diversity and composition (Wall
98 *et al.* 2010; Gans *et al.* 2005; Maestre *et al.* 2015). In order to evaluate the global consequences of
99 shifting microbial diversity on multifunctionality, it is critical that we account for the independent
100 effects of species richness and composition on multiple ecosystems functions (Downing & Leibold
101 2002; Hooper *et al.* 2005).

102 A growing body of experimental and observational studies suggests that microbial diversity
103 promotes ecosystem multifunctionality in terrestrial and aquatic ecosystems (He *et al.* 2009; Peter *et al.*
104 2011; Jing *et al.* 2015; Delgado-Baquerizo *et al.* 2016). For example, Peter *et al.* (2011) provided
105 experimental evidence for a link between microbial richness and ecosystem multifunctionality in
106 bacterial aquatic biofilms. Moreover, using field surveys, He *et al.* (2009), Jing *et al.* (2015) and
107 Delgado-Baquerizo *et al.* (2016) found strong positive relationships between microbial alpha diversity
108 and multifunctionality from local to global scales. Much less is known, however, of the role of
109 microbial composition in driving multifunctionality. Recently, whole genome sequencing (Trivedi *et al.*
110 2013) has provided evidence that dominant bacterial groups such as Actinobacteria phyla and
111 Proteobacteria classes (e.g. γ -Proteobacteria) can potentially play different roles in supporting critical
112 ecosystem processes such as decomposition and nutrient cycling. However, despite these findings, we
113 still lack empirical evidence from either observational or manipulative studies of the roles of these
114 microbial taxa in supporting multifunctionality in terrestrial ecosystems. Only recently, studies based
115 on plant communities have started explicitly considering the simultaneous effects of both plant
116 composition and diversity in driving multifunctionality (Isbell *et al.* 2011; Dooley *et al.* 2015; Lefcheck
117 & Duffy 2015) Conversely, to the best of our knowledge, no study has statistically evaluated the
118 relative importance of soil microbial richness and composition (i.e. relative abundance of main phyla
119 and classes) in controlling multifunctionality. Assessing the relative importance of microbial diversity
120 and composition in driving multifunctionality is critical to include microbial communities and
121 processes in ecosystem and earth system simulation models, and to consider their status when making
122 policy or management decisions.

123 Herein, we combined a regional field survey and a microcosm experiment manipulating the
124 diversity of bacteria in two soils to identify the role and relative importance of microbial richness and
125 composition in predicting multifunctionality. We hypothesized that microbial richness and composition
126 are both important, but operate independently, as drivers of terrestrial multifunctionality. Our rationale
127 is that microbial richness and composition represent two different mechanisms controlling
128 multifunctionality. First, for microbial interaction (complementarity effects; Loreau & Hector 2001):
129 theoretical frameworks (Schimel *et al.* 2005) predict that complex processes such as chitin degradation
130 (Beier & Bertilsson 2013), require a large and diverse group of microbes. Second, regarding microbial
131 identity: whole genome sequencing information indicates that different microbial groups can potentially
132 play idiosyncratic roles in ecosystem processes such as organic matter decomposition and nutrient
133 cycling, which may potentially affect the rates in which these processes are being produced (Floudas *et*
134 *al.* 2012; Trivedi *et al.* 2013).

135

136 **Material and Methods**

137 Study sites and soil sampling.

138 We used two independent but complementary approaches to evaluate the role and relative importance
139 of microbial richness and composition in supporting multifunctionality: an observational study that
140 utilized a broad regional soil survey (Field survey), and an experimental microcosm approach
141 (Microcosm study). Note it is not our intention to directly compare results between experimental
142 approaches. Rather, our goal is to address our research question by using two very different, but
143 complementary, approaches (experimental and observational studies) and thus provide further rigorous
144 scientific support to our findings. We define microbial richness as the number of taxa (microbial
145 phyla/classes) and microbial composition as the identity of the different microbial taxa comprising the
146 soil community (in an environmental soil sample or microcosm), expressed in terms of relative
147 abundance.

148 Rationale of the use of observational and experimental approaches to identify the role of microbial 149 richness and composition in controlling multifunctionality.

150 Observational data (e.g. changes along a broad environmental gradient) provide useful information on
151 how bacterial diversity and composition relate to multifunctionality under “real world” scenarios.
152 However, because of the observational nature of this approach, results are correlative and potentially
153 non-causative. Conversely, using an experimental, laboratory-based microcosm with cultures provides a

154 unique opportunity to manipulate both bacterial richness and composition, generating multiple
155 combinations of these two biotic features. The use of cultures alone, however, is usually considered
156 unrealistic because the majority of bacterial taxa are unculturable and there are difficulties in
157 assembling bacterial communities *de novo* (Hooper *et al.* 2005; Bell *et al.* 2005). Culturing is useful
158 however for comparing the results with other ecological studies (Loreau & Hector 2001; Hooper *et al.*
159 2005). Using both observational and microcosm experimental studies gives us a unique opportunity to
160 separate the differential effects of taxa richness and composition on multiple ecosystem functions.

161 *Field survey (observational approach).*

162 Our observational study was carried out in 22 sites from eastern Australia across a gradient of about
163 1200 km (Fig. S1; Table S1). Locations were intentionally chosen to represent a wide range of climatic
164 and soil property conditions. Mean annual precipitation ranged from 280 mm to 1167 mm and
165 temperature from 12.8° C to 17.5°C. Soil organic carbon (soil carbon) and pH ranged from 0.8 to 12.3%
166 and from 4.8 to 9.0, respectively (Table S1). Soil sampling was carried out in March 2014. At each site,
167 three soil cores (0-5 cm depth) were collected from two microsites: under trees (*Eucalyptus* spp.) and in
168 open (bare soil) -dominated sites. Soil cores were then mixed to obtain a composite sample for each
169 microsite at each site. A total of 44 soil samples (22 sites x 2 microsites) were analysed in this study.
170 Following field sampling, the soil was sieved (<2 mm mesh). A portion of the soil was immediately
171 frozen at -20°C for characterizing bacterial abundance, composition and diversity. The other fraction
172 was air-dried and stored before functional analyses. This storage approach is well established and
173 commonly used when analyzing soil variables such as those evaluated here in large-scale surveys
174 (Maestre *et al.* 2012; Tedersoo *et al.* 2014).

175 Soil DNA was extracted from 0.25 g of defrosted soil samples using the Powersoil® DNA
176 Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA). We quantified the abundance of total bacteria
177 in all soil samples (Field and Microcosm studies) using 96-well plates on a CFX96 Touch™ Real-Time
178 PCR Detection System (Foster city, California, USA). Bacterial 16S rRNA gene was amplified with the
179 Eub 338-Eub 518 (Lane 1991) primer set as described in Maestre *et al.* (2015). We characterized
180 bacterial diversity and composition in the soil surface (top 5 cm) along our observational gradient by
181 using the Illumina Miseq profiling of ribosomal genes (Illumina Inc.) and the 341F/805R (Herlemann
182 *et al.* 2011) primer set (see details in Appendix S1).

183 *Microcosm study (Experimental approach).*

184 In parallel with the sampling protocol described above, we collected a greater mass of soil (~5kg) from
185 two sites of contrasting aridity and total soil carbon (Soils A and B; Fig. S1; JM072-TREE and Site 1-
186 TREE in Table S1). Soil A had a lower soil carbon than Soil B (3.03% vs. 8.45%). In addition, Soil A
187 had a higher pH than Soil B (6.36 vs. 5.63; Table S1). In both cases, soil samples were collected from
188 under tree canopies. Following field sampling, the soil was sieved (<2 mm mesh), one part stored
189 immediately at 4°C (non-sterile soil used for the microbial inoculums), and the other sterilized using
190 gamma radiation (50kGy; Appendix S1).

191 The richness treatment consisted of one, two, four and six bacterial taxa per microcosm. For
192 each of these richness levels, we prepared all the possible equally distributed taxa combinations. A total
193 of 37 (6+15+15+1 combinations corresponding to richness levels one, two, four and six) treatments
194 were prepared per soil. We duplicated the level “six” of diversity to improve the balance of this
195 treatment and to ensure the success of this important level of diversity (6+15+15+2). In addition, and to
196 reduce the correlation between diversity and composition in our experiment, we also prepared
197 additional microcosms with diversity ‘two’ but with 75/25% and 25/75% of bacterial composition to
198 reduce correlation between taxa richness and composition. This is a critical point, as most previous
199 biodiversity research has not adequately separated composition effects from richness effects due to
200 experimental design constraints (Huston, 1997; Allison, 1999; Hooper *et al.* 2005). This provided 30
201 new treatments per soil (Table S2). A total of 67+1 combinations were used in this study (a complete
202 list of combinations is shown in Table S2). To ensure the success of our inocula, we established three
203 microcosms for each combination (68 x 3), resulting in a total of 204 microcosms per soil (Soils A and
204 B).

205 Bacterial strains from six terrestrial dominant phylogenetic taxa belonged to phylum
206 Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria classes α -Proteobacteria, β -
207 Proteobacteria, and γ -Proteobacteria (Fig. S2), were isolated across both Soils A and B (Appendix S1
208 for isolation details and rationale of the selection of these phyla/classes).

209 Sterile soil samples (10 g) were placed in hermetic containers. Soil samples were inoculated to
210 achieve a total amount of 10^8 cells per microcosm. Thus, the final cell densities in all microcosms were
211 the same, that is, the six-taxa assemblage had the same number of cells (1/6 of each strain) as those in
212 the single taxon assemblage. These microcosms were positioned in a laminar flow cabinet to avoid
213 contamination. Microcosms were incubated in the darkness at 50% soil water content (SWC) and 25°C
214 for 8 weeks under sterile conditions. Soils were opened to the air every 5 days in a laminar flow cabinet

215 to prevent the samples becoming anaerobic. After incubation, a portion of the soil was immediately
216 frozen at -20 °C, and the abundance of different bacterial taxa determined using quantitative PCR
217 (qPCR). This step is critical as it provided us with information on the degree to which the original
218 microbial combinations were maintained in our microcosms. The other fraction was used to assess
219 multiple ecosystems functions as described below. Soil DNA extraction and bacterial 16S rRNA gene
220 quantification were done as explained above (i.e., Field survey).

221 To check whether the original composition assigned to the different microcosms was maintained
222 by the end of the experiment and take into account changes in bacterial abundance in our microcosms,
223 we quantified the abundance of each of Actinobacteria, Bacteroidetes and α -, β - and γ -Proteobacteria
224 and Firmicutes using qPCR (Appendix S1). Both original assigned (when microcosms were constructed)
225 and corrected (after qPCR analyses) relative abundances of bacteria were highly related (Spearman ρ
226 >0.935; P <0.001 in all cases) so we used the corrected values in further analyses.

227 Rationale for the selection of high bacterial taxonomic ranks: phyla/classes.

228 Our decision to use high bacterial taxonomic ranks to explore the role of microbial richness and
229 composition in controlling multifunctionality (i.e. Microcosm study) is based on three main reasons: (1)
230 the main phyla/classes are globally distributed and common across samples (e.g. Ramirez *et al.* 2012);
231 (2) The use of high bacterial taxonomic ranks (phyla and classes) has been highly recommended to
232 predict patterns in ecosystem functioning (Philippot *et al.* 2010; Trivedi *et al.* 2013); (3) functional
233 information has become increasingly available at this taxonomic level (Fierer *et al.* 2007; Bastian *et al.*
234 2009; Trivedi *et al.* 2013). This is critical, as understanding how changes in taxa richness and
235 composition influence ecosystem functions requires an understanding of the functional characteristics
236 of the taxa involved (Hooper *et al.* 2005).

237 Rationale for the selected phyla/classes.

238 We selected *Actinobacteria*, *Bacteroidetes*, *Firmicutes* and α -, β - and γ -*Proteobacteria* for three main
239 reasons: (1) All of these bacterial taxa are globally distributed and dominant in many terrestrial
240 ecosystems worldwide (Fierer *et al.* 2009; Maestre *et al.* 2005); 2) the selected taxa are all easy to
241 culture under laboratory conditions (see *Microbial isolation* below); and 3) quantitative PCR (qPCR)
242 specific primer sets are available for all these bacterial taxa (i.e. see Microcosm study below).

243 Measurement of individual ecosystem functions.

244 In all soil samples, we measured seven variables (hereafter functions): activity of β -glucosidase (starch
245 degradation), cellobiosidase (cellulose degradation), N-Acetylglucosaminidase (chitin degradation),

246 phosphatase (phosphorus mineralization), basal respiration and glucose and lignin induced respiration.
247 Extracellular soil enzyme activities: β -glucosidase, cellobiosidase, N-Acetylglucosaminidase and
248 phosphatase were measured from 1g of soil by fluorometry as described in Bell *et al.* (2013). In
249 addition, we used the Microresp® approach from Campbell *et al.* (2003) to measure basal respiration
250 and glucose and lignin-induced respiration. For the Field study, soil samples were pre-incubated at 50%
251 SWC and 20°C during five days prior to MicroResp® analyses (Garcia-Palacios *et al.* 2011). Samples
252 with (glucose and lignin) and without (basal respiration) substrates were incubated for 6 h and read at
253 570 nm. Substrate induced respiration of glucose and lignin are calculated as respiration in glucose or
254 lignin less the basal respiration. Altogether, the selected soil variables (hereafter functions) constitute a
255 good proxy of nutrient cycling, organic matter decomposition, biological productivity, and buildup of
256 nutrient pools (Campbell *et al.* 2003; Schade & Hobbie 2005; Perroni-Ventura *et al.* 2009; Jax 2010;
257 Maestre *et al.* 2012; Bell *et al.* 2013; Bradford *et al.* 2014; Jing *et al.* 2015). Extracellular enzymes such
258 as β -glucosidase, cellobiosidase, N-Acetylglucosaminidase and phosphatase are produced by soil
259 microbes, and are involved in the processing, stabilization, and destabilization of soil organic matter
260 and nutrient cycling in terrestrial ecosystems (Bell *et al.* 2013). They are also considered a good
261 indicator of nutrient demand by soil microorganisms (Bell *et al.* 2013). In addition, basal respiration
262 and glucose induced respiration have been used as a proxy of microbial activity in soil, while lignin
263 degradation provides a metric of the capacity of a particular microbial community to degrade
264 recalcitrant carbon (Campbell *et al.* 2003).

265 Assessing multifunctionality.

266 We used three complementary approaches to evaluate the role of microbial diversity and composition in
267 driving multifunctionality: averaging multifunctionality, multiple-threshold method of Byrnes *et al.*
268 (2014a) and multiple single functions. These multifunctionality indexes were independently obtained
269 for the soils in Field and Microcosm studies and also for the Soils A and B in the Microcosm study. It is
270 important to clarify that our intention is not to merge these two soils included in the Microcosm study,
271 but to ensure that our hypotheses are valid after using different experimental approaches and two soils
272 with different soil properties. To obtain an averaging multifunctionality index for each sample, we first
273 normalized (log-transformed when needed) and standardized each of our seven ecosystem functions
274 using the Z-score transformation as described in Maestre *et al.* (2012). Following this, the standardized
275 ecosystem functions were averaged to obtain a multifunctionality index (Maestre *et al.* 2012).
276 Averaging multifunctionality is widely used in the multifunctionality literature and provides a

277 straightforward and easy-to-interpret measure of the ability of different communities to sustain multiple
278 functions simultaneously (Maestre *et al.* 2012; Wagg *et al.* 2014; Bradford *et al.* 2014; Jing *et al.* 2015).
279 However, we stress that the averaging multifunctionality approach explained above also has some
280 limitations. For example, the averaging approach cannot distinguish between (1) two functions having
281 similar values and (2) one function having high values compensating for a second function with low
282 values (Byrnes *et al.* 2014a). To overcome these limitations, we also estimated multifunctionality using
283 the multiple-threshold method of Byrnes *et al.* (2014a), which evaluates the number of functions that
284 simultaneously exceeds multiple critical thresholds. In brief, this approach calculates the maximum
285 value of each measured function and counts the number of functions that exceed a pre-established
286 threshold. For our analyses, we used predetermined thresholds (Byrnes *et al.* 2014a; Bradford *et al.*
287 2014). Here, we selected three thresholds (25, 50 and 75%) that cover the whole spectrum. This method
288 provides information about the threshold in which our variable maximizes the effect on the number of
289 functions beyond that threshold. In our case, these thresholds inform about the functional level in which
290 more functions are maximized with richness increments and shifts in composition. Our averaging
291 multifunctionality index was highly related to the number of functions at or above 25, 50 and 75%
292 thresholds of the maximum observed function, supporting the appropriateness of our approach
293 ($P<0.001$; Table S4). Thus, for simplicity, we conducted the main analyses in this study using the
294 multifunctionality averaging approach.

295 Statistical analyses.

296 *Exploring the relationship between bacterial diversity/composition and multifunctionality.*

297 For the Field survey (non-replicated approach), we first explored the relationship between bacterial
298 richness and composition (α -, β - and γ -Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria)
299 with multifunctionality and each single function by fitting linear multiple regressions. In addition, we
300 conducted partial correlations between bacterial richness and composition with multifunctionality
301 accounting for latitude/longitude and total bacterial abundance (qPCR) to take into account any bias
302 derived from these important factors. Bacterial diversity was χ^2 -transformed to improve normality
303 before these analyses.

304 For the Microcosm study (replicated approach), we examined the effects of diversity on
305 multifunctionality by conducting a nested ANOVA, with diversity as a fixed factor and bacterial
306 combination (Table S1) as a random factor nested within diversity (Quinn & Keough 2002). We
307 repeated these analyses using bacterial abundance as a covariate (ANCOVA) to account for any bias

308 derived from a potential shift of bacterial yield in our microcosms. We then used Spearman's
309 correlations to explore the relationship between the relative abundance of the main bacterial
310 phyla/classes with single functions, averaging multifunctionality and with the number of functions at or
311 above 25, 50 and 75% thresholds of the maximum observed function. Finally, we evaluated the effects
312 of each bacterial phyla/classes identity in supporting multifunctionality in both mono- and mixed
313 cultures (i.e. presence or absence of each taxon across all microcosms) by conducting ANOVA
314 analyses.

315

316 *Distance-based multimodel inference*

317 To identify the relative importance of richness and composition of bacteria (α -, β -, γ -Proteobacteria,
318 Actinobacteria, Bacteroidetes and Fimicutes) as drivers of multifunctionality, we used a multi-model
319 inference approach based on information theory and non-parametric distance-based linear regressions
320 (DISTLM; McArdle and Anderson 2001). We did these analyses using the PERMANOVA+ for
321 PRIMER statistical package (PRIMER-E Ltd., Plymouth Marine Laboratory, UK). The Euclidean
322 distance was used as the measure of multifunctionality dissimilarity between pairs of samples. Bacterial
323 richness represents the number of inoculated phylotypes in the case of our Microcosm study, and the
324 number of OTUs (species) of all bacteria in the case of our Field survey. In the Microcosm study, the
325 composition of bacteria represents the relative abundance of the six inoculated taxa. In the case of the
326 Field survey we used two approaches to represent the composition of bacteria including: (1) relative
327 abundance of the six selected taxa (those in our experimental approach) accounting for 28-74%
328 (average 53%) of the relative abundance of all bacteria. Thus our aim was to directly compare results
329 from our field and experimental approaches; and (2) a representation of the composition of the entire
330 community of bacteria (100% of species) (using the axes from a NMDS). To obtain a metric of
331 community composition at the lowest taxonomic rank, we used a non-metric multidimensional
332 ordination (NMDS) on the matrix of bacterial composition at the OTU level (i.e. species level). Given a
333 low stress in these analyses (0.05), the axes of a NMDS are considered a good representation of the
334 variation in the composition of entire bacterial communities across samples. We kept the three-
335 dimensional NMDS solution for further analyses. We conducted NMDS ordinations with the package
336 Vegan from R (Oksanen *et al.* 2015) using the Bray-Curtis distance. Including a representation of the
337 entire community composition of bacteria in our models is needed to clarify the relative importance of

338 bacterial composition and diversity in driving multifunctionality in the Field survey (i.e., real world)
339 where multiple bacterial species co-exist together.

340 In addition to these analyses, for the Field survey we repeated our model including richness and
341 composition of bacteria, spatial variables (latitude and longitude) and soil properties (soil carbon and
342 pH). Finally, for the Field survey, we also repeated our analyses including spatial influence, soil
343 properties, bacterial richness, and composition at the OTU level (using the axes from a NMDS) instead
344 of only including selected microbial taxa in this study (α -, β -, γ -Proteobacteria, Actinobacteria,
345 Bacteroidetes and Fimicutes).

346 We ranked all the models that could be generated with our independent variables according to
347 the second-order Akaike information criterion (AICc). Here, we consider a $\Delta\text{AICc} > 2$ threshold to
348 differentiate between two substantially different models and then select the best of those models
349 (Burnham and Anderson 2002; Burnham *et al.* 2011). Then, we compared the AICc of the best model
350 including both taxa richness and composition to that of the corresponding model with only composition
351 or richness. Differences < 2 in AICc between alternative models indicate that they are approximately
352 equivalent in explanatory power (Burnham and Anderson 2002). Finally, we calculated the relative
353 importance of bacterial richness and composition (relative abundance of six selected taxa) as predictors
354 of multifunctionality as the sum of the Akaike weights of all models that included the predictor of
355 interest, taking into account the number of models in which each predictor appears (Burnham and
356 Anderson, 2002; Maestre *et al.* 2012). It is important to note that, in general, our analyses were not
357 influenced by high collinearity between richness and composition, as only weak relationships were
358 found between bacterial richness and composition for both Field and Microcosm studies (Table S3).

359 *Partial correlation*

360 We conducted partial correlation analyses to thoroughly check whether the relationship between
361 bacterial richness or composition was still maintained after controlling for the rest of microbial
362 attributed selected in the best model.

363 *Random Forest*

364 To further clarify the relative importance of bacterial richness and composition in predicting
365 multifunctionality, we conducted a classification Random Forest analysis (Breiman 2001), as done in
366 Delgado-Baquerizo *et al.* (2015). Random Forest analysis for the field study includes as predictors:
367 bacterial richness, composition and total abundance, as well as latitude, longitude, soil carbon and pH.
368 Random Forest analyses for the experimental soils A and B include as predictors: bacterial richness,

369 composition and total abundance. This technique is a novel machine-learning algorithm that extends
370 standard classification and regression tree (CART) methods by creating a collection of classification
371 trees with binary divisions. Unlike traditional CART analyses, the fit of each tree is assessed using
372 randomly selected cases (1/3 of the data), which are withheld during its construction (out-of-bag or
373 OOB cases). The importance of each predictor variable is determined by evaluating the decrease in
374 prediction accuracy (i.e. increase in the mean square error between observations and OOB predictions)
375 when the data for that predictor is randomly permuted. This decrease is averaged over all trees to
376 produce the final measure of importance. These analyses were conducted using the rfPermute package
377 (Archer et al. 2016) of the R statistical software (<http://cran.r-project.org/>).

378

379 **Results**

380 *Field survey*

381 Our distance-based multi-modeling approach indicated that bacterial richness and composition (relative
382 abundance of β -Proteobacteria, γ -Proteobacteria, Bacteroidetes and Actinobacteria) provided
383 independent and complementary information to predict multifunctionality (Table 1). The best-fitting
384 model accounted for over 60% of the variation in multifunctionality; and always included both bacterial
385 richness and composition as predictor variables (Table 1). Model fit declined substantially when we
386 removed either bacterial richness or composition as a predictor variable (Table 1; $\Delta\text{AICc} > 2$ threshold),
387 suggesting that both microbial components are important predictors of ecosystem multifunctionality.
388 Specifically, the same models with composition but without bacterial richness had a significantly but
389 modestly higher AICc than the best models including taxa richness and composition (ΔAICc of +2.23).
390 Models including only bacterial richness had a markedly higher ΔAICc (+23.11) than the best-fitting
391 model (Table 1). We then calculated the relative importance of all microbial attributes in predicting
392 multifunctionality using weighted information from all models. Bacterial richness was the fourth most
393 important predictor of multifunctionality after the relative abundance of Actinobacteria,
394 Gammaproteobacteria and Bacteroidetes (Fig. 1).

395 Our results remained unchanged even when we additionally included spatial (latitude and
396 longitude) and soil properties (soil carbon and pH; Table S5). Most importantly, our main result, that
397 bacterial richness and composition perform independently to drive multifunctionality, was maintained
398 after including in our model spatial influence, soil properties, bacterial richness, and bacterial
399 composition at the OTU level (three axes of a non-metric multidimensional scaling analysis [NMDS])

400 (Table S6). Note that the 3D solution of this NMDS had a very low stress (0.05) indicating that the
401 three axes of our NMDS were a good representation of the entire soil bacterial community in our Field
402 survey. Random Forest analyses provided further evidence that bacterial richness and composition were
403 significant predictors of multifunctionality after accounting for multiple multifunctionality drivers. Soil
404 C and pH were the major predictors of multifunctionality followed by microbial composition and
405 richness (Fig. S3).

406 Bacterial richness was positively related to multifunctionality (Fig. 2a), a result which remains
407 consistent after controlling for latitude and longitude (Table S7), total bacterial abundance (Table S8)
408 and the relative abundance of selected taxa in the best model (Table S9). These results were also
409 maintained when we explored the relationship between bacterial richness and the number of functions
410 at or above 25, 50 and 75% thresholds of the maximum observed function (Table S10). Moreover, we
411 found positive effects of bacterial richness on some individual functions (enzyme activities and carbon
412 degradation assays; Tables 2 and S11). For example, we found positive correlations (Spearman)
413 between bacterial richness and β -glucosidase ($P=0.01$), N-Acetylglucosaminidase ($P=0.08$) and SIR
414 Glucose ($P<0.01$) (Tables 2 and S11). Similar results were obtained when we evaluated the linear
415 relationships among bacterial richness and single functions, with cellobiosidase, but not N-
416 Acetylglucosaminidase, being positively related to bacterial richness in these analyses (Fig. S4).

417 Together, the selected bacterial phyla/classes Actinobacteria, Bacteroidetes, α -, β -, γ -
418 Proteobacteria and Firmicutes accounted for 28-74% (average 53%) of the relative abundance of
419 bacteria from all sites. The relative abundance of Actinobacteria, Bacteroidetes, β -Proteobacteria and γ -
420 Protobacteria were positively related to multifunctionality (Table 3). Regarding single functions, γ -
421 Proteobacteria was strongly related to phosphatase activity and basal respiration (Tables 2 and S11).
422 Conversely, Bacteroidetes, β -Proteobacteria and γ -Proteobacteria were positively related to most soil
423 functions in our Field survey.

424 *Microcosm study (Experimental approach)*

425 Supporting the results from our Field survey, our distance-based multi-modeling approach indicated
426 that bacterial richness and composition (relative abundance of Bacteroidetes and Actinobacteria for Soil
427 A and γ -Proteobacteria for Soil B) provided independent and complementary information to predict
428 multifunctionality (Table 1). The best-fitting models accounted for significant but modest (8% for soil
429 A) and substantial (43% for Soil B) percentages of the variation in multifunctionality for the two soils;
430 and always included both bacterial richness and composition as predictor variables (Table 1). Also,

similar to the results found for our Field survey, model fit declined substantially when we removed either bacterial richness or composition as a predictor variable (Table 1; $\Delta\text{AICc} > 2$ threshold), providing evidence that both microbial components are important predictors of ecosystem multifunctionality. Specifically, the same models with composition but without bacterial richness had a higher AICc than the best models including taxa richness and composition for Soil A (+26.69) and Soil B (+12.84). Similarly, models including only bacterial richness had a higher ΔAICc for Soil A (+67.35) and Soil B (+3.10). Mean values for multifunctionality in each of the 68 experimental microbial combinations for soils A and B are available in Fig. S5.

Although models including both bacterial richness and composition always improved multifunctionality predictions (vs. those models lacking one of these components; Table 1), our results for the Microcosm study also suggested that the relative importance of bacterial richness compared with composition is soil-dependent. Thus, richness was more important than composition in Soil B, while the opposite pattern was observed for Soil A (Table 1). Similar results are found when we calculated the relative importance of bacterial richness and composition using weighted information from all models (Fig. 1). Alternatively, our Random Forest model indicated that bacterial richness was the most important predictor of multifunctionality, but only after the relative abundance of Actinobacteria for soil A and Gammaproteobacteria for soil B (Fig. S3).

Moreover, our Microcosm study provided evidence that the identity of the most relevant microbial taxa is also soil-dependent. Thus, while Bacteroidetes and Actinobacteria were the strongest predictors for Soil A (Table 1; Fig. 1), γ -Proteobacteria was the main predictor of multifunctionality in Soil B (Table 1; Fig. 1). Interestingly, observational data from these two samples were consistent with what we observed in our Microcosm study. Thus, the models based on the Field survey included the main bacterial taxa in both soils from the Microcosm study and included β -Proteobacteria, γ -Proteobacteria, Bacteroidetes and Actinobacteria in the best models (Table 1).

We found the highest multifunctionality in the soil microcosms with the highest bacterial richness in both Soils A and B (Figs. 2b and c; $P < 0.01$). These results remained consistent after statistically controlling for total bacterial abundance (Tables S8 and S12; Fig. S6). In addition, the positive effect of bacterial richness on multifunctionality was maintained after we removed key taxa from the analyses, demonstrating that this effect was not just due to key taxa (sampling effect) (Fig. S7). These results were also maintained when we explored the relationship between bacterial richness and the number of functions at or above 25, 50 and 75% thresholds of the maximum observed function

462 (Table S10) and also after controlling for the relative abundance of selected taxa in the best model
463 (Table S9). For single functions, bacterial richness was positively related to N-Acetylglucosaminidase
464 and phosphatase activities in both soils from our Microcosm study and to β -glucosidase and
465 cellobiosidase activities in Soil A ($P < 0.05$; Tables 2 and S11 and Figs. S8 and S9).

466 In the Microcosm study, bacterial composition effects on multifunctionality were soil dependent
467 (see Fig. S10 for original bacterial composition in “soils A and B”), with a positive correlation between
468 multifunctionality and Actinobacteria and Bacteroidetes and a negative correlation with β -
469 Proteobacteria in soil A (Table 3), while in Soil B there was a positive correlation of multifunctionality
470 and γ -Proteobacteria. Similar results were found when we explored the relationship between bacterial
471 composition and the number of functions at or above 25, 50 and 75% thresholds of the maximum
472 observed function (Table S10). Consistent with these findings, the highest multifunctionality in the
473 diverse communities and the monocultures (i.e. bacterial taxa identity effects based on
474 presence/absence analyses) was found for Actinobacteria and Bacteroidetes in Soil A and
475 Proteobacteria classes in Soil B (Fig. 3; $P < 0.01$).

476 Moreover, the effects of bacterial composition on individual functions were also soil dependent
477 (Tables 2 and S11). For example, γ -Proteobacteria, which was strongly related to phosphatase activity
478 and basal respiration in Field survey (Tables 2 and S11), had a predominant positive effect on soil
479 functions from Soil B including N-Acetylglucosaminidase, basal respiration and SIR glucose and lignin
480 (Tables 2 and S11). Conversely, Actinobacteria and Bacteroidetes, which were positively related to a
481 wide array of functions in the Field survey, showed predominantly positive effects on functions in Soil
482 A including β -glucosidase, cellobiosidase and N-Acetylglucosaminidase, but also phosphatase and SIR
483 Lignin in particular case of the isolated bacteria from the phylum Actinobacteria (Tables 2 and S11).

484

485 **Discussion**

486 Despite the growing body of literature providing evidence that microbial diversity promotes ecosystem
487 functioning in terrestrial ecosystems (Jing *et al.* 2015; Delgado-Baquerizo *et al.* 2016), most studies
488 have tended to focus on a particular component of diversity (richness or composition), and no previous
489 study, to the best of our knowledge, has empirically and statistically examined the relative importance
490 of both bacterial richness and composition in supporting multiple functions in terrestrial ecosystems.
491 Using observational and experimental data, we provide evidence that both bacterial richness and
492 composition are key drivers of multiple ecosystems functions in terrestrial ecosystems. Most

493 importantly, our multi-model approach indicates that these two microbial diversity components provide
494 independent and complementary information on the role of bacteria in ecosystem processes. These
495 results provide strong support for the hypothesis that the effects of bacterial biodiversity on ecosystem
496 functioning are due to the combined effects of bacterial richness and identity of key taxa within a
497 community. Ours is, to our knowledge, the first attempt to evaluate the relative importance of both
498 diversity and composition of bacteria, the most diverse and abundant organisms on Earth, in driving
499 multifunctionality. However, future studies exploring the relative importance of microbial drivers of
500 multifunctionality should be encouraged to include diversity and composition of fungi to obtain a
501 broader picture of the role of microbial diversity and composition in driving multifunctionality.

502 Both our field survey and microcosm study provide evidence that bacterial richness is strongly
503 positively related to multifunctionality. Our results were maintained after controlling for spatial
504 structure (in observational data) and microbial abundance using partial correlations and ANCOVA
505 analyses, and provided experimental support to previous observational studies showing positive
506 relationships between soil microbial diversity and multiple soil functions, such as those used here (He
507 *et al.* 2009; Jing *et al.* 2015; Delgado-Baquerizo *et al.* 2016). The mechanisms behind the positive
508 effects of bacterial richness on multifunctionality could include an increase in the interactions among
509 microbial taxa (complementarity effects; Loreau & Hector 2001) and the so-called “sampling effect”
510 (i.e. increasing taxa richness increases the likelihood that key taxa would be present; Hooper *et al.*
511 2005). Species interactions are especially important for microbial communities that rely heavily on
512 aggregated processes (Schimel *et al.* 2005) such as organic matter decomposition as an energy source.
513 These aggregated processes involve many metabolic routes and require the cooperation of large and
514 diverse groups of microbes to break down complex and recalcitrant polymers into simpler, more labile
515 monomers, which are rapidly consumed and largely respired (Schimel *et al.* 2005). Thus, losses in
516 bacterial richness may inactivate critical functions (e.g. chitin degradation), but also can reduce the
517 rates in which multiple ecosystems functions are being produced, as supported by our observational and
518 experimental data. Bacterial richness also showed similar positive trends with each of the single
519 functions studied. Of particular interest was the fact that bacterial richness showed a strong and positive
520 effect on N-Acetylglucosaminidase (chitinase) in all the experimental approaches used here. Chitin is
521 an extremely complex compound, is a structural component of many organisms, and is widespread in
522 nature (Beier & Bertilsson 2013). Bacteria are believed to be major mediators of chitin degradation, a
523 complex process that involves several metabolic reactions with important implications for carbon and

524 nitrogen cycling (Beier & Bertilsson 2013). This result further supports the notion that complex
525 processes such as organic matter decomposition are favored by the existence of a diverse collection of
526 microbes all contributing to the overall process to promote the highest degradation rates (Schimel *et al.*
527 2005). Our Microcosm study also showed that a “sampling effect” may be, at least in part, responsible
528 for driving multifunctionality, as microcosms including certain key taxa tended to have the greatest
529 multifunctionality. Interestingly, bacterial richness had a positive effect on multifunctionality even after
530 the effects of key species were accounted for (removing them) in our analyses (Fig. S6; Appendix S1).
531 Consistent with the results reported by Hooper *et al.* (2005) for plant communities, we suggest that
532 microbial taxa interaction and sampling effects are not mutually exclusive.

533 Bacterial composition was also a strong predictor of multifunctionality in both Field and
534 Microcosm studies. However, unlike bacterial richness, the effects of bacterial composition on
535 multifunctionality varied with both soil properties and ecological characteristics of the specific bacterial
536 taxa, especially under the Microcosm study. For example, for Soil B (high soil carbon), γ -
537 Proteobacteria enhanced multifunctionality in both single and mixed cultures. Similarly, γ -
538 Proteobacteria, which was positively related to soil carbon (Table S13), also showed a positive
539 relationship with multifunctionality across the Field survey. Class γ -Proteobacteria tend to exhibit
540 copiotrophic life histories (Fierer *et al.* 2007; Trivedi *et al.* 2013), preferring environments that are rich
541 in carbon, promoting the greatest multifunctionality and supporting critical processes such as complex
542 and labile carbon decomposition. Thus, this Proteobacteria class may be critical for supporting
543 multifunctionality in carbon-rich soils. Conversely, for Soil A (lowest soil carbon) in the Microcosm
544 study, we found a predominant effect of Actinobacteria in supporting multifunctionality. Actinobacteria
545 are defined as oligotrophs (Bastian *et al.* 2009; Trivedi *et al.* 2013), and are more competitive in soils
546 with low levels of carbon such as those from drylands (Maestre *et al.* 2015). In Soil A, Actinobacteria
547 was also strongly positively related to extracellular enzyme activity and lignin degradation content. Our
548 findings are supported by the results of previous studies suggesting that Actinobacteria contains a broad
549 array of genes that allow the breakdown and utilization of recalcitrant organic compounds such as
550 lignin, chitin and cellulose that can be used under stressful soil conditions (low carbon; Bastian *et al.*
551 2009; Trivedi *et al.* 2013).

552 Interestingly, only the relative abundance of Bacteroidetes was consistently selected as a major
553 predictor of multifunctionality in all experimental approaches and statistical models used here. In
554 general, the relative abundance of Bacteroidetes, defined as copiotrophic organism by Fierer *et al.*

555 (2007), promoted high rates of multifunctionality, enzyme activities and/or respiration rates in all
556 experimental approaches (Table 2). More specifically, the relative abundance of Bacteroidetes always
557 promoted the activity of chitin degradation in all soils. These results are in agreement with a previous
558 study highlighting their potential to break down chitin and cellulose in terrestrial ecosystems (Trivedi *et*
559 *al.* 2013); and further highlight the importance of this taxa in regulating organic matter decomposition
560 and C cycling in soil.

561 An important finding of our study is that although both components of biodiversity are
562 important drivers of multiple ecosystem processes related to organic matter decomposition and nutrient
563 cycling, the relative importance of richness compared with composition in controlling
564 multifunctionality is soil-dependent, as supported by our Microcosm study (Soil A vs. B). In particular,
565 we found that richness is more important than composition in Soil B, with the higher soil organic
566 matter, while the opposite pattern occurred in Soil A. Although we cannot extrapolate from only two
567 soils, if these results were generally true, they would suggest that bacterial richness might play a
568 predominant role in organic soils, where the interaction among multiple microbial communities is
569 needed to break down complex and recalcitrant polymers into simpler and more labile monomers
570 (organic matter degradation; Schimel *et al.* 2005). Conversely, species identity (Bacteroidetes and
571 Actinobacteria in Soil A) may play a major role in mineral soils. For instance, Actinobacteria have been
572 shown to possess important adaptations that enable them to resist environmental harshness (ability to
573 survive desiccation and low nutrient availability conditions; Battistuzzi & Hedges 2009). Thus, these
574 results support the notion that both microbial richness and composition are needed to accurately
575 estimate the consequences of losses in microbial diversity (from global environmental changes such as
576 climate change and land use intensification) on ecosystem functioning.

577 Interestingly, observational data were consistent with what we observed in our Microcosm
578 study, providing insights into the main microbial pattern controlling multifunctionality in terrestrial
579 ecosystems, and demonstrating the value of using each of these approaches. For example, in both the
580 field and microcosm studies, an increase in taxa richness was positively related to multifunctionality.
581 Of particular novelty, the Field data provided a comprehensive view of the main taxa controlling
582 multifunctionality in Soils A and B and suggest that Actinobacteria, Bacteroidetes and γ -Proteobacteria
583 are the main drivers of multifunctionality in terrestrial ecosystems at a large scale. All of these bacterial
584 taxa are globally distributed and dominant in many terrestrial ecosystems worldwide (Fierer *et al.* 2009;
585 Maestre *et al.* 2015). This result suggests that observational data can be useful for predicting microbial

586 community shifts and their consequences for ecosystem functioning under global change, but also that
587 this observational data will be useful in developing generic algorithms to be included in global
588 biogeochemical models.

589 In conclusion, our findings provide strong evidence, from two independent approaches, that
590 bacterial richness and composition are important, yet independent drivers of multiple ecosystem
591 functions related to organic matter decomposition and nutrient cycling. Greater microbial richness and
592 globally-dominant bacterial taxa such as γ -Proteobacteria, Actinobacteria and Bacteroidetes were
593 critical drivers of multifunctionality in both our field and microcosm studies. Information on both
594 microbial richness and composition therefore need to be considered when formulating sustainable
595 management and conservation policies, and when predicting the effects of global change on ecosystem
596 functions. These findings advance our understanding of the mechanisms underpinning relationships
597 between biodiversity and ecosystem functionality in terrestrial ecosystems, and reinforce the need to
598 develop approaches and policies to protect soil microbial diversity and their positive effects for
599 multiple ecosystems functions.

600 **Conflict of Interest**

601 The authors declare no competing financial interests.

602 **Author's contributions**

603 M.D-B. conceived the idea of this study and designed experiments in consultation with B.K.S., P.B.R.
604 and P.T. Soil sampling was conducted by M.D-B. and D.J.E. Laboratory analyses were done by M.D-
605 B., P.T. and C.T. Bioinformatics analyses were done by T.C.J. Statistical modeling was conducted by
606 M.D-B. The manuscript was written by M.D-B with contributions from all co-authors.

607 **Acknowledgments**

608 This research is supported by the Australian Research Council (project DP13010484). We thank
609 Santiago Soliveres and Jeff R. Powell for revising a previous version of this manuscript. We also thank
610 James Val for his help with soil sampling, Jasmine Grinyer for her help with microbial isolation, and
611 Melissa S. Martín for revising the English of this manuscript. M.D-B. acknowledge support from the
612 Marie Skłodowska-Curie Actions of the Horizon 2020 Framework Programme H2020-MSCA-IF-2016
613 under REA grant agreement n° 702057.

614 **Data accessibility.**

615 The primary data used in this study is available in the Dryad Digital Repository.
616 <http://dx.doi.org/10.5061/dryad.h5q34>

617 **References:**

618 Allan, E et al. 2013. A comparison of the strength of biodiversity effects across multiple functions.

619 *Oecologia* 173, 223-237.

620 Allison GW. 1999. The implications of experimental design for biodiversity manipulations. *Am. Nat.*

621 153, 26–45.

622 Archer, E., (2016). *Estimate permutation p-values for importance metrics*. R package version 2.1.5.

623 Bardgett RD, van der Putten WH. 2014. Belowground biodiversity and ecosystem functioning. *Nature*

624 515, 505–511.

625 Bastian F et al. 2009. Impact of wheat straw decomposition on successional patterns of soil microbial

626 community structure. *Soil Biol. Biochem.* 41, 262–275.

627 Battistuzzi FU, Hedges SB. 2009. Major clade of prokaryotes with ancient adaptations to life on land.

628 *Mol Biol Evol* 26, 335-43.

629 Beier S, Bertilsson S. 2013. Bacterial chitin degradation—mechanisms and ecophysiological strategies.

630 *Front. Microbiol.* 4, 149.

631 Bell T. et al. 2005. The contribution of species richness and composition to bacterial services. *Nature*

632 436, 1157-1160.

633 Bradford M. et al. 2014. Discontinuity in the responses of ecosystem processes and multifunctionality

634 to altered soil community composition. *Proc. Natl. Acad. Sci. U.S.A.* 111, 14478–14483.

635 Burnham KP, Anderson DR. 2002. *Model Selection and Multimodel Inference. A Practical Information-*

636 *Theoretical Approach*. Springer, Heidelberg.

637 Burnham KP, Anderson DR, Huyvaert KP. 2011. AICc model selection in the ecological and

638 behavioral sciences, some background, observations and comparisons. *Behav Ecol Sociobiol*

639 65, 23–35.

640 Byrnes JEK. et al. 2014a. Investigating the relationship between biodiversity and ecosystem

641 multifunctionality, challenges and solutions. *Methods Ecol Evol* 5, 111

642 Byrnes J, Lefcheck JS, Gamfeldt L, Griffin JN, Isbell F, Hector A. 2014b. Multifunctionality does not

643 imply that all functions are positively correlated. *Proc Natl Acad Sci U S A.* 23, 5490.

644 Cardinale BJ. et al. 2011. The Functional Role Of Producer Diversity In Ecosystems. *Am J Bot* 98, 572

645 Cardinale BJ et al. 2012. Biodiversity loss and its impact on humanity. *Nature* 486, 59–67.

646 Costanza R, et al. 1997. The value of the world’s ecosystem services and natural capital. *Nature* 387,

647 253–260.

648 De Vries F. et al. 2012. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial
649 communities. *Ecol Lett* 15, 1230-1239.

650 De Vries FT. et al. 2013. Soil food web properties explain ecosystem services across European land use
651 systems *Proc Natl Acad Sci USA*. 110, 14296-14301.

652 Delgado-Baquerizo M et al. 2016. Microbial diversity drives multifunctionality in terrestrial
653 ecosystems. *Nat Commun* 7, 10541.

654 Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge D, Reich P, Jeffries T, Singh B. Data from:
655 Microbial richness and composition independently drive soil multifunctionality. Dryad Digital
656 Repository. <http://dx.doi.org/10.5061/dryad.h5q34>

657 Diaz S, Cabido, M 2001. Vive la difference, plant functional diversity matters to ecosystem
658 processes. *Trends Ecol Evolut* 16, 646-655.

659 Díaz, S et al. 2007. Incorporating plant functional diversity effects in ecosystem service assessments.
660 *Proc Natl Acad Sci USA* 104, 20684-20689.

661 Dirzo R. et al. 2014. Defaunation in the Anthropocene *Science* 345, 401-406.

662 Dooley A et al. (2015) Testing the effects of diversity on ecosystem multifunctionality using a
663 multivariate model *Ecology Letters* 18, 1242-1251.

664 Downing AL, Leibold, M. 2002. Ecosystem consequences of species richness and composition in pond
665 food webs. *Nature* 416, 837-41.

666 Fierer, N, Bradford, MA, Jackson, RB. 2007. Toward an ecological classification of soil bacteria
667 *Ecology* 88, 1354-1364.

668 Fierer, N et al. 2009. Global patterns in belowground communities. *Ecol Lett* 12, 1238–1249.

669 Floudas, D et al. 2012 The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31
670 fungal genomes. *Science* 336, 1715–1719.

671 Flynn DFB. et al. 2011 Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-
672 function relationships. *Ecology* 92, 1573–1581.

673 Gans, J et al. 2005. Computational improvements reveal great bacterial diversity and high metal
674 toxicity in soil. *Science* 309, 1387–1390.

675 García-Palacios, P. et al. 2011. Early-successional vegetation changes after roadside prairie restoration
676 modify processes related with soil functioning by changing microbial functional diversity. *Soil*
677 *Biol. Biochem.* 43, 1245-1253.

678 He J-Z, Ge Y, Xu Z, Chen C (2009). Linking soil bacterial diversity to ecosystem multifunctionality
679 using backward-elimination boosted trees analysis. *J. Soils Sediments* 9, 547-554.

680 Herlemann, DP et al. 2011. Transitions in bacterial communities along the 2000km salinity gradient of
681 the Baltic Sea. *ISME J* 5, 1571–1579.

682 Hooper, DU. et al. 2005 Effects of Biodiversity on Ecosystem Functioning, A Consensus of Current
683 Knowledge *Ecol Monogr* 75, 3–35.

684 Huston MA. 1997. Hidden treatments in ecological experiments, re-evaluating the ecosystem function
685 of biodiversity. *Oecologia* 110, 449–60.

686 Isbell F. et al. 2011 High plant diversity is needed to maintain ecosystem services. *Nature* 477, 199–
687 202.

688 Jing X et al. 2015. The links between ecosystem multifunctionality and above- and belowground
689 biodiversity are mediated by climate. *Nat Commun* 6, 8159.

690 Lane D. 1991 16S/23S rRNA sequencing *Nucleic acid techniques in bacterial systematic* John Wiley,
691 New York.

692 Lefcheck JS, Duffy JE (2015) Multitrophic functional diversity predicts ecosystem functioning in
693 experimental assemblages of estuarine consumers. *Ecology* 96, 2973-2983.

694 Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JH, Eisenhauer N, Hensel MJH, Hector A,
695 Cardinale BJ, Duffy JE (2015) Biodiversity enhances ecosystem multifunctionality across
696 trophic levels and habitats. *Nature Communications* 6: 6936.

697 Leps J. et al. 2001 Separating the chance effect from other diversity effects in the functioning of plant
698 communities. *Oikos* 92, 123–134.

699 Leps J. 2004 What do the biodiversity experiments tell us about consequences of plant species loss in
700 the real world. *Basic Appl Ecol* 5, 529–534.

701 Loreau M, Hector A 2001 Partitioning selection and complementarity in biodiversity experiments.
702 *Nature* 412, 72-76

703 Maestre FT et al. 2012 Plant Species Richness and Ecosystem Multifunctionality in Global Drylands.
704 *Science* 335, 214-218.

705 Maestre FT et al. 2015. Increasing aridity reduces soil microbial diversity and abundance in global
706 drylands. *Proc Natl Acad Sci USA* 112, 15684–15689.

707 McArdle BH, Anderson MJ. 2001. Fitting multivariate models to community data, a comment on
708 distance-based redundancy analysis. *Ecology* 82, 290–297.

709 Oksanen J et al. 2015. vegan, Community Ecology Package R package version 23-0.

710 Peter H, Ylla I, Gudasz C, Romaní AM, Sabater S, Tranvik LJ (2011) Multifunctionality and Diversity
711 in Bacterial Biofilms. PLoS ONE 6, e23225.

712 Philippot, L. et al. 2010. The ecological coherence of high bacterial taxonomic ranks. Nature Reviews
713 Microbiol. 8, 523-529.

714 Quinn G, Keough K. 2002. Experimental Design and Data Analysis for Biologists Cambridge
715 University Press, New York, USA

716 Ramirez, K.S., Craine, J.M., Fierer. N. 2012. Consistent effects of nitrogen amendments on soil
717 microbial communities and processes across biomes. Glob. Chang. Biol. 18, 1918–1927.

718 Schade, J.D. & Hobbie, S.E. 2005. Spatial and temporal variation in islands of fertility in the Sonoran
719 Desert. Biogeochemistry 73, 541–553.

720 Schimel JP, Bennett J, Fierer N. 2005 Biological diversity and function in soils Cambridge University
721 Press, Cambridge, UK

722 Singh, BK et al. 2009 'Soil genomics is the way forward'. Nature Rev Microbiol 7, 756-757

723 Tedersoo L et al. 2014 Fungal biogeography Global diversity and geography of soil fungi. Science 28,
724 346.

725 Trivedi P, Anderson IC, Singh BK. 2013. Microbial modulators of soil carbon storage, integrating
726 genomic and metabolic knowledge for global prediction. Trends in Microbiol 21, 641–651

727 Tilman D, Isbell F, Cowles JM 2014. Biodiversity and Ecosystem Functioning Annu Rev Ecol Evol
728 Syst 45, 471-493.

729 Wall DH, Bardgett RD, Kelly EF. 2010. Biodiversity in the dark Nature Geosci 3, 297-298.

730 Wardle DA. et al. 1999. Plant removals in perennial grassland, vegetation dynamics, decomposers, soil
731 biodiversity and ecosystem properties. Ecol Monogr 69, 535-568.

732 Wagg, C et al. 2014. Soil biodiversity and soil community composition determine ecosystem
733 multifunctionality Proc Natl Acad Sci USA 111, 14.

734 **Figure legends**

735 **Figure 1.** Relative importance of bacterial richness and composition in models of multifunctionality for
736 the field (a) and experimental studies (b-c). The height of each bar is the sum of the Akaike weights of
737 all models that included the predictor of interest, taking into account the number of models in which
738 each predictor appears.

739 **Figure 2.** Effects of bacterial richness on multifunctionality for Field (a) and Microcosm (b and c)
740 studies. Bacterial diversity in Field survey is calculated as the number of OTUs (97% similarity; χ^2 -
741 transformed). Bacterial diversity in the Microcosm study (“soil A and B”) is the number of bacterial
742 phyla/classes. The solid lines in figure a represents the fitted linear regression. Data in Fig b (Soil A)
743 and c (Soil B) represent means \pm SE. Different letters in panels b) and c) indicate significant differences
744 between richness levels ($P < 0.05$) in multifunctionality index (*post-hoc* tests after one-way ANOVA).
745
746 **Figure 3.** Mean (\pm SE) values for multifunctionality across different bacterial taxa for mono- (a and c)
747 and mixed cultures (b and d) of bacteria in the experimental approach. Different letters in panels a) and
748 c) indicate significant differences in multifunctionality among bacterial taxa ($P < 0.05$) as tested using
749 post-hoc tests after one-way ANOVA. Panels b) and d) represent averaging multifunctionality index in
750 mixed cultures including (presence) or excluding (ausence) each bacterial phylum/class. In these panels
significance levels are as follows: ** $P < 0.01$, *** $P < 0.001$.

1 **Table 1.** Best-fitting model (including microbial richness and composition) and the same model with
 2 either bacterial richness or composition (but not both) included as predictors of multifunctionality for
 3 the Field and Microcosm (“soils A and B”) studies. Shaded cells indicate that the variable has been
 4 included in the model. Models are ranked by AICc. AICc measures the relative goodness of fit of a
 5 given model; the lower its value, the more likely the model to be correct. ΔAICc is the difference
 6 between the AICc of each model and that of the best model. ΔAICc indicates substantially different
 7 models. A = α -Proteobacteria; B = β -Proteobacteria; C = γ -Proteobacteria; D = Firmicutes; E =
 8 Bacteroidetes; F = Actinobacteria.

9

Approach	Diversity	Composition	R ²	AICc	ΔAICc
I (Field study)	Richness	γ -Proteobacteria + Firmicutes + Bacteroidetes+ Actinobacteria	0.599	-53.75	0.00
	Excluded	γ -Proteobacteria + Firmicutes + Bacteroidetes+ Actinobacteria	0.551	-51.52	2.23
	Richness	Excluded	0.134	-30.64	23.11
II (Soil A)	Richness	Bacteroidetes+ Actinobacteria	0.429	-445.74	0.00
	Excluded	Bacteroidetes+ Actinobacteria	0.344	-419.05	26.69
	Richness	Excluded	0.190	-378.39	67.35
II (Soil B)	Richness	γ -Proteobacteria	0.084	-276.88	0.00
	Excluded	γ -Proteobacteria	0.014	-264.04	12.84

10

1 **Table 2.** Summary of the effects of microbial composition on the multiple ecosystems functions in this study for the field and
 2 microcosm (soils A and B) studies. Microbial composition effects are based on Spearman correlations available in Table S7. Symbols
 3 + and - indicate positive and negative interactions.

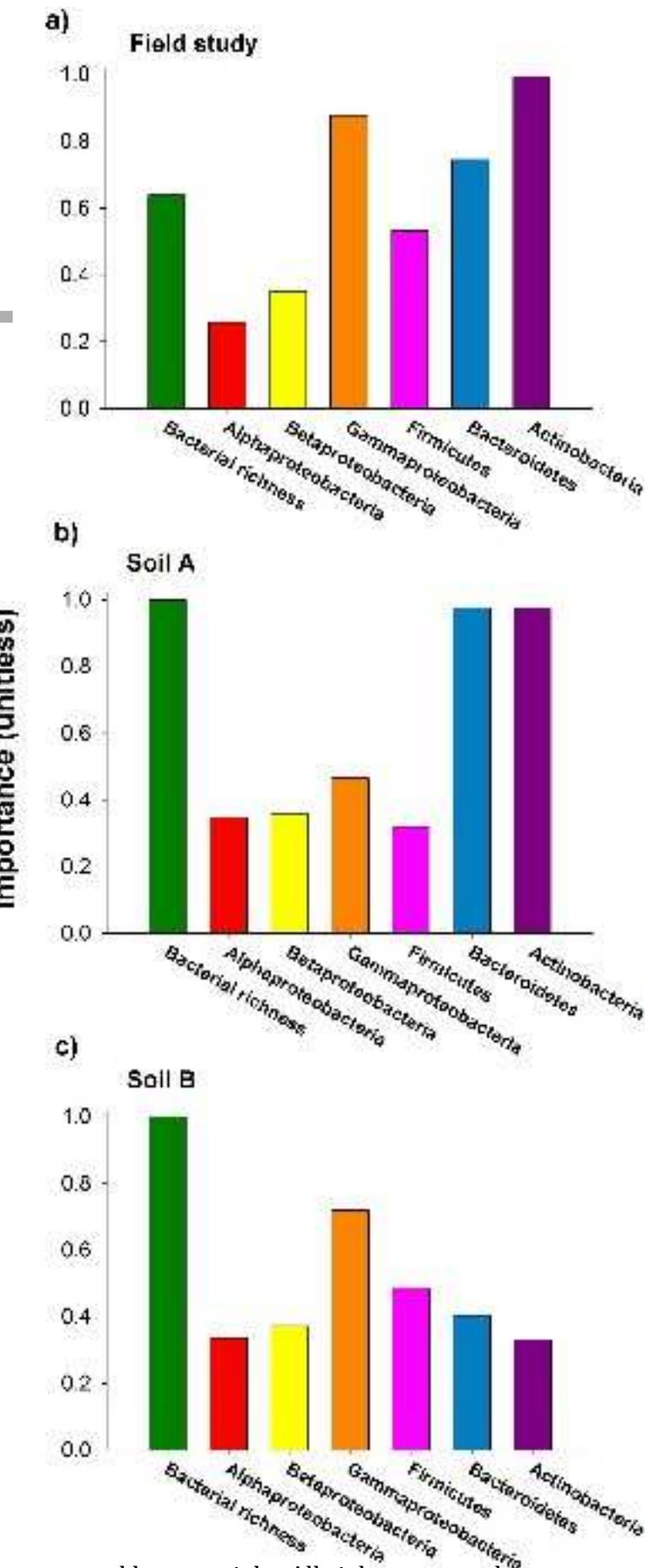
Study	Functions	Richness	α -Proteobacteria	β -Proteobacteria	γ -Proteobacteria	Firmicutes	Bacteroidetes	Actinobacteria
Field	β -Glucosidase	+		+	+		+	+
	Celllobiosidase			+	+		+	
	N-Acetylglucosaminidase	+		+	+		+	
	Phosphatase		+	+	+			
	Basal Respiration		+	+	+		+	+
	SIR Glucose	+		+			+	+
Microcosm (Soil A)	β -Glucosidase	+		-	-		+	+
	Celllobiosidase	+					+	+
	N-Acetylglucosaminidase	+		-	-		+	+
	Phosphatase	+						+
	Basal Respiration	-		-	+			
	SIR Glucose			+				
Microcosm (Soil B)	β -Glucosidase							
	Celllobiosidase							
	N-Acetylglucosaminidase	+			+	+	+	
	Phosphatase	+						+
	Basal Respiration			-	+	-		
	SIR Glucose				+	-		

1 **Table 3.** Correlations (Spearman) between main bacteria taxa and multifunctionality for field and M
2 microcosm (soils A and B) studies (n = 204). P-values are in brackets.
3

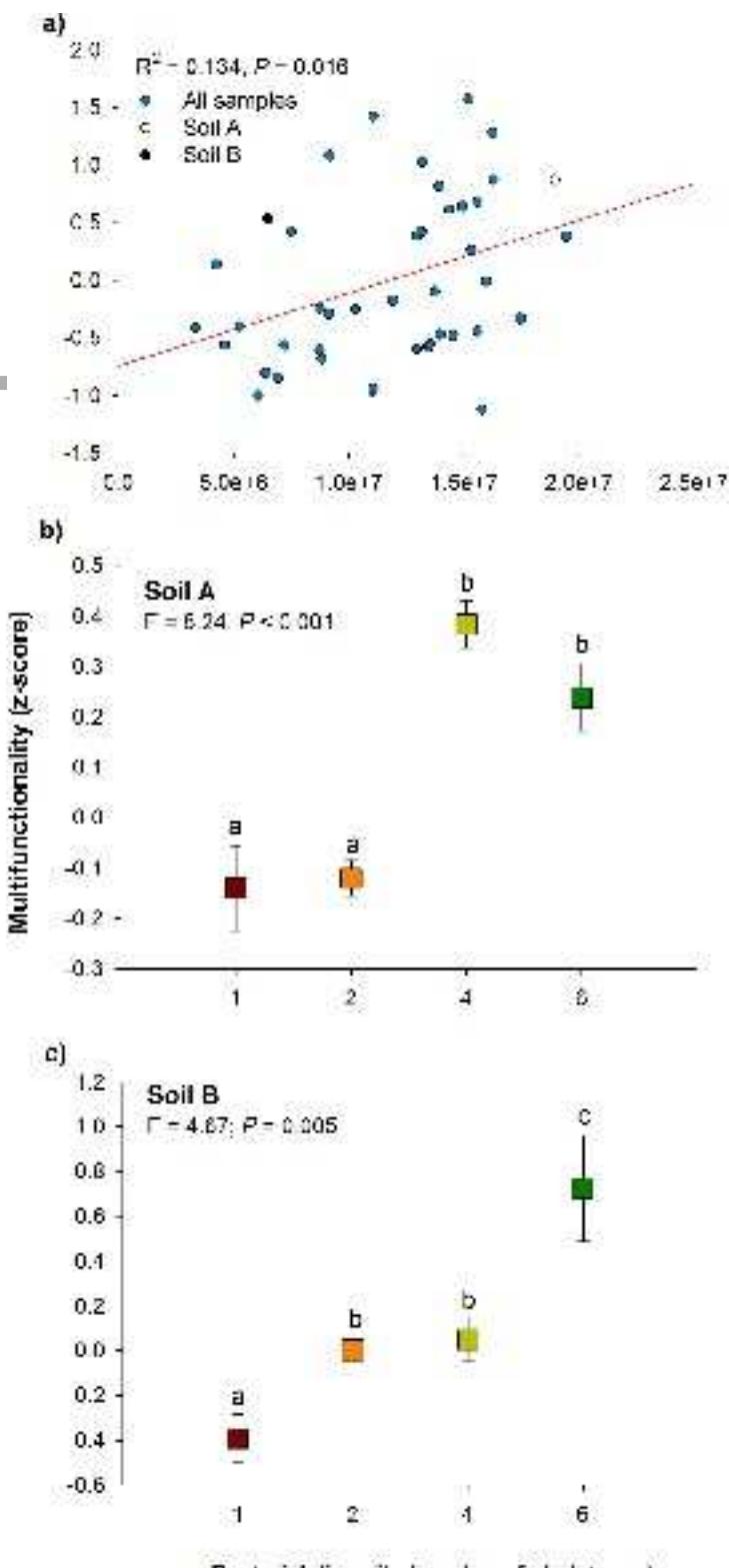
Study	α -	β -	γ -			
	Proteobacteria	Proteobacteria	Proteobacteria	Firmicutes	Bacteroidetes	Actinobacteria
Field	0.111 (0.480)	0.570 (<0.001)	0.566 (<0.001)	-0.007 (0.963)	0.637 (<0.001)	0.291 (0.058)
Microcosm (Soil A)	-0.036 (0.612)	-0.153 (0.029)	-0.108 (0.124)	-0.080 (0.257)	0.297 (<0.001)	0.532 (<0.001)
Microcosm (Soil B)	-0.003 (0.964)	0.074 (0.294)	0.223 (0.001)	-0.050 (0.474)	0.021 (0.764)	0.082 (0.244)

4

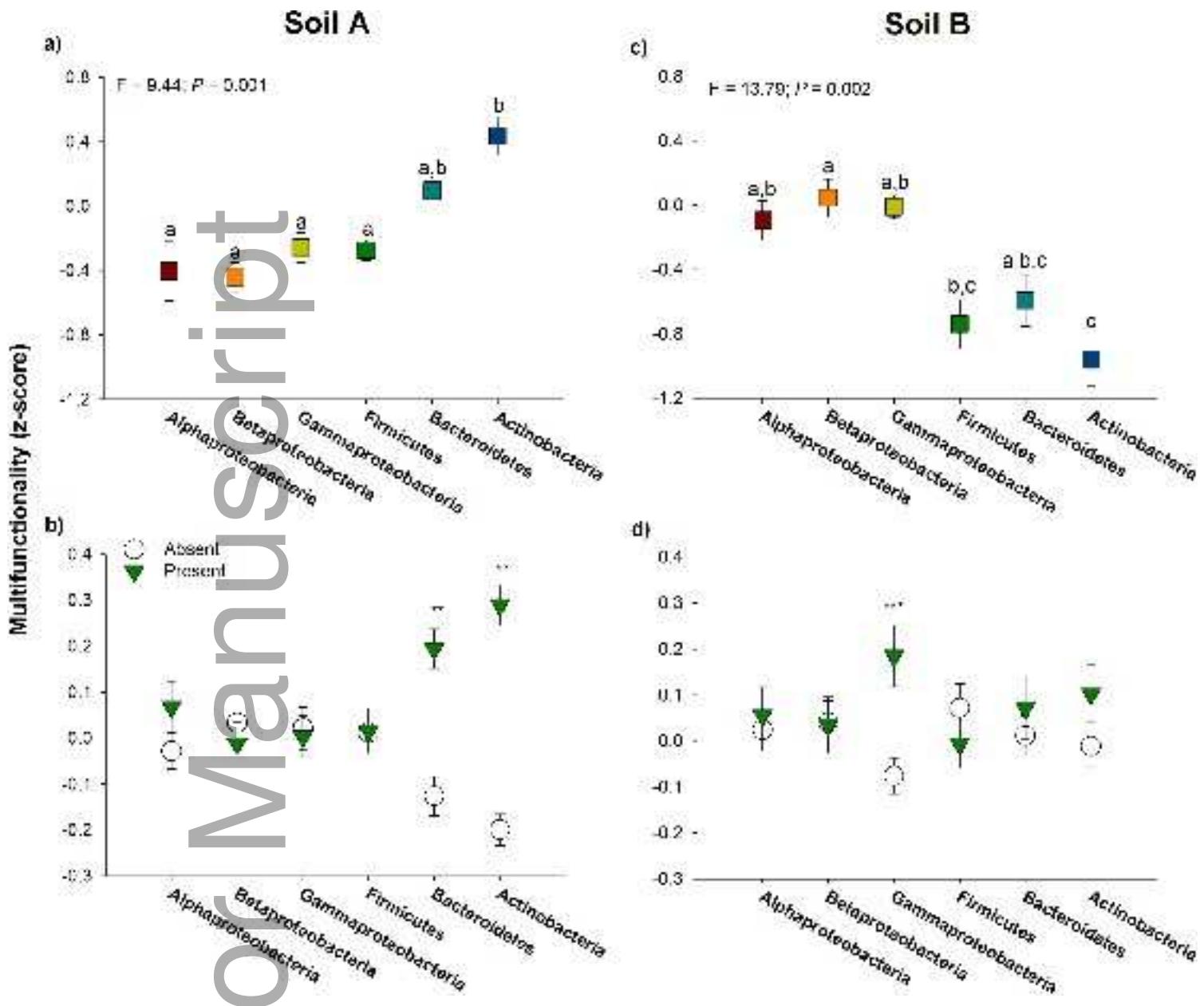
Author Manuscript



Author Manuscript



fec_12924_f2.jpg



fec_12924_f3.jpg