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Abstract 37 

1. Soil microbes provide multiple ecosystem functions such as nutrient cycling, decomposition and 38 

climate regulation. However, we lack a quantitative understanding of the relative importance of 39 

microbial richness and composition in controlling multifunctionality. This knowledge gap limits 40 

our capacity to understand the influence of biotic attributes in the provision of services and 41 

functions on which humans depend

2. We used two independent approaches (i.e. experimental and observational), and applied 43 

statistical modeling to identify the role and relative 

.  42 

3. Microbial richness and the relative abundance of γ-Proteobacteria, Actinobacteria and 51 

Bacteroidetes were positively related to multifunctionality in both the observational and 52 

experimental approaches; however, only Bacteroidetes was consistently selected as a key 53 

predictor of multifunctionality across all experimental approaches and statistical models used 54 

here. Moreover, our results, from two different approaches, provide evidence that microbial 55 

richness and composition are both important, yet independent, drivers of multiple ecosystem 56 

functions.  57 

importance of bacterial richness and 44 

composition in driving multifunctionality (here defined as seven measures of respiration and 45 

enzyme activities). In the observational study we measured soil microbial communities and 46 

functions in both tree- and bare soil-dominated microsites at 22 locations across a 1200 km 47 

transect in southeastern Australia. In the experimental study we used soils from two of those 48 

locations and developed gradients of bacterial diversity and composition through inoculation of 49 

sterilized soils. 50 

4. Overall, our findings advance our understanding of the mechanisms underpinning relationships 58 

between microbial diversity and ecosystem functionality in terrestrial ecosystems, and further 59 

suggest that information on microbial richness and composition needs to be considered when 60 
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formulating sustainable management and conservation policies, and when predicting the effects 61 

of global change on ecosystem functions.  62 

 63 

Key words: Bacteria, Enzyme activities, BEF relationship, Nutrient cycling, Terrestrial ecosystems 64 

 65 

 66 

 67 

Introduction  68 

The status of Earth’s biodiversity is in decline (Dirzo et al. 2014). The loss of species has global 69 

consequences because biodiversity promotes ecosystem functions and services that are essential for 70 

human well-being (Hooper et al. 2005; Cardinale et al. 2012). These services include food production, 71 

nutrient cycling and climate regulation; and have been valued at trillions of U.S. dollars per year 72 

(Costanza et al. 1997). The importance of biodiversity for ecosystem functions and services has been 73 

shown (Cardinale et al. 2011; Tilman et al. 2014), however, biodiversity is extremely complex, and 74 

involves different components including, but not limited to, species richness (number of taxa) and 75 

composition (i.e. identity of the different organisms comprising a community expressed in terms of 76 

their relative abundance; Díaz et al. 2001). Both taxa richness and composition have been reported to 77 

influence one or several ecosystem functions (Díaz et al. 2001; Hooper et al. 2005; Flynn et al. 2011; 78 

Isbell et al. 2011; Allan et al. 2013; Dooley et al. 2015; Lefcheck & Duffy 2015). Variation in 79 

composition can act in synergy or opposition to effects of richness in natural (rather than randomly 80 

assembled experiments) systems, and thus, the role of different aspects of diversity (composition, 81 

richness, identity) remains unclear (Wardle et al. 1999; Leps et al. 2001; 2004). Moreover, the relative 82 

importance of these two biodiversity metrics for increasing the provision of several ecosystem 83 

processes simultaneously (multifunctionality) remains largely unexplored (Isbell et al. 2011; Byrnes et 84 

al. 2014a,b; Dooley et al. 2015). Both species richness and composition are likely to change markedly 85 

under future climatic scenarios or more intense land uses (Díaz et al. 2001; Hooper et al. 2005

Unlike plants or animals (

). 86 

Therefore, it is critical that we quantify the relative importance of these biodiversity components for 87 

multifunctionality so that we can formulate appropriate management and conservation policies and 88 

predict the likely changes in ecosystem functioning under changing environments.  89 

Hooper et al. 2005; Lefcheck et al. 2015), we have only a limited 90 

understanding of the relationships between microbial diversity and composition, and ecosystem 91 
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functioning, particularly in terrestrial environments (Bardgett & van der Putten 2014). Microbes are 92 

considered by far the most abundant and diverse life forms on Earth (Singh et al. 2009), and play 93 

essential roles in maintaining multiple ecosystem functions including litter decomposition, primary 94 

production, soil fertility and gaseous emissions (He et al. 2009; Peter et al. 2011; Jing et al. 2015; 95 

Delgado-Baquerizo et al. 2016). 

A

Global environmental drivers such as land use change, nitrogen 96 

enrichment and climate change are impacting upon both soil microbial diversity and composition (Wall 97 

et al. 2010; Gans et al. 2005; Maestre et al. 2015). In order to evaluate the global consequences of 98 

shifting microbial diversity on multifunctionality, it is critical that we account for the independent 99 

effects of species richness and composition on multiple ecosystems functions (Downing & Leibold 100 

2002; Hooper et al. 2005). 101 

 growing body of experimental and observational studies suggests that microbial diversity 102 

promotes ecosystem multifunctionality in terrestrial and aquatic ecosystems (He et al. 2009; Peter et al. 103 

2011; Jing et al. 2015; Delgado-Baquerizo et al. 2016). For example, Peter et al. (2011) provided 104 

experimental evidence for a link between microbial richness and ecosystem multifunctionality in 105 

bacterial aquatic biofilms. Moreover, using field surveys, He et al. (2009), Jing et al. (2015) and 106 

Delgado-Baquerizo et al. (2016) found strong positive relationships between microbial alpha diversity 107 

and multifunctionality from local to global scales. Much less is known, however, of the role of 108 

microbial composition in driving multifunctionality. Recently, whole genome sequencing (Trivedi et al. 109 

2013) has provided evidence that dominant bacterial groups such as Actinobacteria phyla and 110 

Proteobacteria classes (e.g. γ-Proteobacteria) can potentially play different roles in supporting critical 111 

ecosystem processes such as decomposition and nutrient cycling. However, despite these findings, we 112 

still lack empirical evidence from either observational or manipulative studies of the roles of these 113 

microbial taxa in supporting multifunctionality in terrestrial ecosystems. Only recently, studies based 114 

on plant communities have started explicitly considering the simultaneous effects of both plant 115 

composition and diversity in driving multifunctionality (Isbell et al. 2011; Dooley et al. 2015; Lefcheck 116 

& Duffy 2015) Conversely, to the best of our knowledge, no study has statistically evaluated the 117 

relative importance of soil microbial richness and composition (i.e. relative abundance of main phyla 118 

and classes) in controlling multifunctionality. Assessing the relative importance of microbial diversity 119 

and composition in driving multifunctionality is critical to include microbial communities and 120 

processes in ecosystem and earth system simulation models, and to consider their status when making 121 

policy or management decisions. 122 
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Herein, we combined a regional field survey and a microcosm experiment manipulating the 123 

diversity of bacteria in two soils to identify the role and relative importance of microbial richness and 124 

composition in predicting multifunctionality. We hypothesized that microbial richness and composition 125 

are both important, but operate independently, as drivers of terrestrial multifunctionality. Our rationale 126 

is that microbial richness and composition represent two different mechanisms controlling 127 

multifunctionality. First, for microbial interaction (complementarity effects; Loreau & Hector 2001): 128 

theoretical frameworks (Schimel et al. 2005) predict that complex processes such as chitin degradation 129 

(Beier & Bertilsson 2013), require a large and diverse group of microbes. Second, regarding microbial 130 

identity: whole genome sequencing information indicates that different 

 135 

microbial groups can potentially 131 

play idiosyncratic roles in ecosystem processes such as organic matter decomposition and nutrient 132 

cycling, which may potentially affect the rates in which these processes are being produced (Floudas et 133 

al. 2012; Trivedi et al. 2013).  134 

Material and Methods  136 

We used two independent but complementary approaches to evaluate the role and relative importance 138 

of microbial richness and composition in supporting multifunctionality: an observational study that 139 

utilized a broad regional soil survey (Field survey), and an experimental microcosm approach 140 

(Microcosm study). Note it is not our intention to directly compare results between experimental 141 

approaches. Rather, our goal is to address our research question by using two very different, but 142 

complementary, approaches (experimental and observational studies) and thus provide further rigorous 143 

scientific support to our findings. We define microbial richness as the number of taxa (microbial 144 

phyla/classes) and microbial composition as the identity of the different microbial taxa comprising the 145 

soil community (in an environmental soil sample or microcosm), expressed in terms of relative 146 

abundance.   147 

Study sites and soil sampling.  137 

Observational data (e.g. changes along a broad environmental gradient) provide useful information on 150 

how bacterial diversity and composition relate to multifunctionality under “real world” scenarios. 151 

However, because of the observational nature of this approach, results are correlative and potentially 152 

non-causative. Conversely, using an experimental, laboratory-based microcosm with cultures provides a 153 

Rationale of the use of observational and experimental approaches to identify the role of microbial 148 

richness and composition in controlling multifunctionality.  149 A
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unique opportunity to manipulate both bacterial richness and composition, generating multiple 154 

combinations of these two biotic features. The use of cultures alone, however, is usually considered 155 

unrealistic because the majority of bacterial taxa are unculturable and there are difficulties in 156 

assembling bacterial communities de novo (Hooper et al. 2005; Bell et al. 2005). Culturing is useful 157 

however for comparing the results with other ecological studies (Loreau & Hector 2001; Hooper et al. 158 

2005). Using both observational and microcosm experimental studies gives us a unique opportunity to 159 

separate the differential effects of taxa richness and composition on multiple ecosystem functions. 160 

Field survey (observational approach).  161 

Our observational study was carried out in 22 sites from eastern Australia across a gradient of about 162 

1200 km (Fig. S1; Table S1). Locations were intentionally chosen to represent a wide range of climatic 163 

and soil property conditions. Mean annual precipitation ranged from 280 mm to 1167 mm and 164 

temperature from 12.8º C to 17.5ºC. Soil organic carbon (soil carbon) and pH ranged from 0.8 to 12.3% 165 

and from 4.8 to 9.0, respectively (Table S1). Soil sampling was carried out in March 2014. At each site, 166 

three soil cores (0-5 cm depth) were collected from two microsites: under trees (Eucalyptus spp.) and in 167 

open (bare soil) -dominated sites. Soil cores were then mixed to obtain a composite sample for each 168 

microsite at each site. A total of 44 soil samples (22 sites x 2 microsites) were analysed in this study. 169 

Following field sampling, the soil was sieved (<2 mm mesh). A portion of the soil was immediately 170 

frozen at -20ºC for characterizing bacterial abundance, composition and diversity. The other fraction 171 

was air-dried and stored before functional analyses. This storage approach is well established and 172 

commonly used when analyzing soil variables such as those evaluated here in large-scale surveys 173 

(Maestre et al. 2012; Tedersoo et al. 2014). 174 

Soil DNA was extracted from 0.25 g of defrosted soil samples using the Powersoil® DNA 175 

Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA). We quantified the abundance of total bacteria 176 

in all soil samples (Field and Microcosm studies) using 96-well plates on a CFX96 Touch™ Real-Time 177 

PCR Detection System (Foster city, California, USA). Bacterial 16S rRNA gene was amplified with the 178 

Eub 338-Eub 518 (Lane 1991) primer set as described in Maestre et al. (2015). We characterized 179 

bacterial diversity and composition in the soil surface (top 5 cm) along our observational gradient by 180 

using the Illumina Miseq profiling of ribosomal genes (Illumina Inc.) and the 341F/805R (Herlemann 181 

et al. 2011) primer set (see details in Appendix S1).  182 

Microcosm study (Experimental approach).  183 
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In parallel with the sampling protocol described above, we collected a greater mass of soil (~5kg) from 184 

two sites of contrasting aridity and total soil carbon (Soils A and B; Fig. S1; JM072-TREE and Site 1-185 

TREE in Table S1). Soil A had a lower soil carbon than Soil B (3.03% vs. 8.45%). In addition, Soil A 186 

had a higher pH than Soil B (6.36 vs. 5.63; Table S1). In both cases, soil samples were collected from 187 

under tree canopies. Following field sampling, the soil was sieved (<2 mm mesh), one part stored 188 

immediately at 4ºC (non-sterile soil used for the microbial inoculums), and the other sterilized using 189 

gamma radiation (50kGy; Appendix S1).  190 

The richness treatment consisted of one, two, four and six bacterial taxa per microcosm. For 191 

each of these richness levels, we prepared all the possible equally distributed taxa combinations. A total 192 

of 37 (6+15+15+1 combinations corresponding to richness levels one, two, four and six) treatments 193 

were prepared per soil. We duplicated the level “six” of diversity to improve the balance of this 194 

treatment and to ensure the success of this important level of diversity (6+15+15+2). In addition, and to 195 

reduce the correlation between diversity and composition in our experiment, we also prepared 196 

additional microcosms with diversity ‘two’ but with 75/25% and 25/75% of bacterial composition to 197 

reduce correlation between taxa richness and composition. This is a critical point, as most previous 198 

biodiversity research has not adequately separated composition effects from richness effects due to 199 

experimental design constraints (Huston, 1997; Allison, 1999; Hooper et al. 2005). This provided 30 200 

new treatments per soil (Table S2). A total of 67+1 combinations were used in this study (a complete 201 

list of combinations is shown in Table S2). To ensure the success of our inocula, we established three 202 

microcosms for each combination (68 x 3), resulting in a total of 204 microcosms per soil (Soils A and 203 

B).  204 

Bacterial strains from six terrestrial dominant phylogenetic taxa belonged to phylum 205 

Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria classes α-Proteobacteria, β-206 

Proteobacteria, and γ-Proteobacteria (Fig. S2), were isolated across both Soils A and B (Appendix S1 207 

for isolation details and rationale of the selection of these phyla/classes).  208 

Sterile soil samples (10 g) were placed in hermetic containers. Soil samples were inoculated to 209 

achieve a total amount of 108 cells per microcosm. Thus, the final cell densities in all microcosms were 210 

the same, that is, the six-taxa assemblage had the same number of cells (1/6 of each strain) as those in 211 

the single taxon assemblage. These microcosms were positioned in a laminar flow cabinet to avoid 212 

contamination. Microcosms were incubated in the darkness at 50% soil water content (SWC) and 25ºC 213 

for 8 weeks under sterile conditions. Soils were opened to the air every 5 days in a laminar flow cabinet 214 
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to prevent the samples becoming anaerobic. After incubation, a portion of the soil was immediately 215 

frozen at -20 ºC, and the abundance of different bacterial taxa determined using quantitative PCR 216 

(qPCR). This step is critical as it provided us with information on the degree to which the original 217 

microbial combinations were maintained in our microcosms. The other fraction was used to assess 218 

multiple ecosystems functions as described below. Soil DNA extraction and bacterial 16S rRNA gene 219 

quantification were done as explained above (i.e., Field survey).  220 

To check whether the original composition assigned to the different microcosms was maintained 221 

by the end of the experiment and take into account changes in bacterial abundance in our microcosms, 222 

we quantified the abundance of each of Actinobacteria, Bacteroidetes and α-, β- and γ-Proteobacteria 223 

and Fimicutes using qPCR (Appendix S1). Both original assigned (when microcosms were constructed) 224 

and corrected (after qPCR analyses) relative abundances of bacteria were highly related (Spearman ρ 225 

>0.935; P<0.001 in all cases) so we used the corrected values in further analyses. 226 

Our decision to use high bacterial taxonomic ranks to explore the role of microbial richness and 228 

composition in controlling multifunctionality (i.e. Microcosm study) is based on three main reasons: (1) 229 

the main phyla/classes are globally distributed and common across samples (e.g. Ramirez et al. 2012); 230 

(2) The use of high bacterial taxonomic ranks (phyla and classes) has been highly recommended to 231 

predict patterns in ecosystem functioning (Philippot et al. 2010; Trivedi et al. 2013); (3) functional 232 

information has become increasingly available at this taxonomic level (Fierer et al. 2007; Bastian et al. 233 

2009; Trivedi et al. 2013). This is critical, as understanding how changes in taxa richness and 234 

composition influence ecosystem functions requires an understanding of the functional characteristics 235 

of the taxa involved (Hooper et al. 2005). 236 

Rationale for the selection of high bacterial taxonomic ranks: phyla/classes.  227 

We selected Actinobacteria, Bacteroidetes, Firmicutes and α-,β- and γ-Proteobacteria for three main 238 

reasons: (1) All of these bacterial taxa are globally distributed and dominant in many terrestrial 239 

ecosystems worldwide (Fierer et al. 2009; Maestre et al. 2005); 2) the selected taxa are all easy to 240 

culture under laboratory conditions (see Microbial isolation below); and 3) quantitative PCR (qPCR) 241 

specific primer sets are available for all these bacterial taxa (i.e. see Microcosm study below). 242 

Rationale for the selected phyla/classes.  237 

In all soil samples, we measured seven variables (hereafter functions): activity of β-glucosidase (starch 244 

degradation), cellobiosidase (cellulose degradation), N-Acetylglucosaminidase (chitin degradation), 245 

Measurement of individual ecosystem functions. 243 
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phosphatase (phosphorus mineralization), basal respiration and glucose and lignin induced respiration. 246 

Extracellular soil enzyme activities: β-glucosidase, cellobiosidase, N-Acetylglucosaminidase and 247 

phosphatase were measured from 1g of soil by fluorometry as described in Bell et al. (2013). In 248 

addition, we used the Microresp® approach from Campbell et al. (2003) to measure basal respiration 249 

and glucose and lignin-induced respiration. For the Field study, soil samples were pre-incubated at 50% 250 

SWC and 20ºC during five days prior to MicroResp® analyses (Garcia-Palacios et al. 2011). Samples 251 

with (glucose and lignin) and without (basal respiration) substrates were incubated for 6 h and read at 252 

570 nm. Substrate induced respiration of glucose and lignin are calculated as respiration in glucose or 253 

lignin less the basal respiration. Altogether, the selected soil variables (hereafter functions) constitute a 254 

good proxy of nutrient cycling, organic matter decomposition, biological productivity, and buildup of 255 

nutrient pools (Campbell et al. 2003; Schade & Hobbie 2005; Perroni-Ventura et al. 2009; Jax 2010; 256 

Maestre et al. 2012; Bell et al. 2013; Bradford et al. 2014; Jing et al. 2015). Extracellular enzymes such 257 

as β-glucosidase, cellobiosidase, N-Acetylglucosaminidase and phosphatase are produced by soil 258 

microbes, and are involved in the processing, stabilization, and destabilization of soil organic matter 259 

and nutrient cycling in terrestrial ecosystems (Bell et al. 2013). They are also considered a good 260 

indicator of nutrient demand by soil microorganisms (Bell et al. 2013). In addition, basal respiration 261 

and glucose induced respiration have been used as a proxy of microbial activity in soil, while lignin 262 

degradation provides a metric of the capacity of a particular microbial community to degrade 263 

recalcitrant carbon (Campbell et al. 2003).  264 

We used three complementary approaches to evaluate the role of microbial diversity and composition in 266 

driving multifunctionality: averaging multifunctionality, 

Assessing multifunctionality. 265 

multiple-threshold method of Byrnes et al. 267 

(2014a) and multiple single functions. These multifunctionality indexes were independently obtained 268 

for the soils in Field and Microcosm studies and also for the Soils A and B in the Microcosm study. It is 269 

important to clarify that our intention is not to merge these two soils included in the Microcosm study, 270 

but to ensure that our hypotheses are valid after using different experimental approaches and two soils 271 

with different soil properties. To obtain an averaging multifunctionality index for each sample, we first 272 

normalized (log-transformed when needed) and standardized each of our seven ecosystem functions 273 

using the Z-score transformation as described in Maestre et al. (2012). Following this, the standardized 274 

ecosystem functions were averaged to obtain a multifunctionality index (Maestre et al. 2012). 275 

Averaging multifunctionality is widely used in the multifunctionality literature and provides a 276 
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straightforward and easy-to-interpret measure of the ability of different communities to sustain multiple 277 

functions simultaneously (Maestre et al. 2012; Wagg et al. 2014; Bradford et al. 2014; Jing et al. 2015). 278 

However, we stress that the averaging multifunctionality approach explained above also has some 279 

limitations. For example, the averaging approach cannot distinguish between (1) two functions having 280 

similar values and (2) one function having high values compensating for a second function with low 281 

values (Byrnes et al. 2014a). To overcome these limitations, we also estimated multifunctionality using 282 

the multiple-threshold method of Byrnes et al. (2014a), which evaluates the number of functions that 283 

simultaneously exceeds multiple critical thresholds. In brief, this approach calculates the maximum 284 

value of each measured function and counts the number of functions that exceed a pre-established 285 

threshold. For our analyses, we used predetermined thresholds (Byrnes et al. 2014a; Bradford et al. 286 

2014). Here, we selected three thresholds (25, 50 and 75%) that cover the whole spectrum. This method 287 

provides information about the threshold in which our variable maximizes the effect on the number of 288 

functions beyond that threshold. In our case, these thresholds inform about the functional level in which 289 

more functions are maximized with richness increments and shifts in composition. Our averaging 290 

multifunctionality index was highly related to the number of functions at or above 25, 50 and 75% 291 

thresholds of the maximum observed function, supporting the appropriateness of our approach 292 

(P<0.001; Table S4). Thus, for simplicity, we conducted the main analyses in this study using the 293 

multifunctionality averaging approach. 294 

Statistical analyses.

Exploring the relationship between bacterial diversity/composition and multifunctionality.  296 

   295 

For the Field survey (non-replicated approach), we first explored the relationship between bacterial 297 

richness and composition (α-, β- and γ-Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria) 298 

with multifunctionality and each single function by fitting linear multiple regressions. In addition, we 299 

conducted partial correlations between bacterial richness and composition with multifunctionality 300 

accounting for latitude/longitude and total bacterial abundance (qPCR) to take into account any bias 301 

derived from these important factors. Bacterial diversity was x2

For the Microcosm study (replicated approach), we examined the effects of diversity on 304 

multifunctionality by conducting a nested ANOVA, with diversity as a fixed factor and bacterial 305 

combination (Table S1) as a random factor nested within diversity (Quinn & Keough 2002). We 306 

repeated these analyses using bacterial abundance as a covariate (ANCOVA) to account for any bias 307 

-transformed to improve normality 302 

before these analyses. 303 A
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derived from a potential shift of bacterial yield in our microcosms. We then used Spearman’s 308 

correlations to explore the relationship between the relative abundance of the main bacterial 309 

phyla/classes with single functions, averaging multifunctionality and with the number of functions at or 310 

above 25, 50 and 75% thresholds of the maximum observed function. Finally, we evaluated the effects 311 

of each bacterial phyla/classes identity in supporting multifunctionality in both mono- and mixed 312 

cultures (i.e. presence or absence of each taxon across all microcosms) by conducting ANOVA 313 

analyses. 314 

 315 

Distance-based multimodel inference 316 

To identify the relative importance of richness and composition of bacteria (α-, β-, γ-Proteobacteria, 317 

Actinobacteria, Bacteroidetes and Fimicutes) as drivers of multifunctionality, we used a multi-model 318 

inference approach based on information theory and non-parametric distance-based linear regressions 319 

(DISTLM; McArdle and Anderson 2001). We did these analyses using the PERMANOVA+ for 320 

PRIMER statistical package (PRIMER-E Ltd., Plymounth Marine Laboratory, UK). The Euclidean 321 

distance was used as the measure of multifunctionality dissimilarity between pairs of samples. Bacterial 322 

richness represents the number of inoculated phylotypes in the case of our Microcosm study, and the 323 

number of OTUs (species) of all bacteria in the case of our Field survey. In the Microcosm study, the 324 

composition of bacteria represents the relative abundance of the six inoculated taxa. In the case of the 325 

Field survey we used two approaches to represent the composition of bacteria including: (1) relative 326 

abundance of the six selected taxa (those in our experimental approach) accounting for 28-74% 327 

(average 53%) of the relative abundance of all bacteria. Thus our aim was to directly compare results 328 

from our field and experimental approaches; and (2) a representation of the composition of the entire 329 

community of bacteria (100% of species) (using the axes from a NMDS). To obtain a metric of 330 

community composition at the lowest taxonomic rank, we used a non-metric multidimensional 331 

ordination (NMDS) on the matrix of bacterial composition at the OTU level (i.e. species level). Given a 332 

low stress in these analyses (0.05), the axes of a NMDS are considered a good representation of the 333 

variation in the composition of entire bacterial communities across samples. We kept the three-334 

dimensional NMDS solution for further analyses. We conducted NMDS ordinations with the package 335 

Vegan from R (Oksanen et al. 2015) using the Bray-Curtis distance. Including a representation of the 336 

entire community composition of bacteria in our models is needed to clarify the relative importance of 337 
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bacterial composition and diversity in driving multifunctionality in the Field survey (i.e., real world) 338 

where multiple bacterial species co-exist together.  339 

In addition to these analyses, for the Field survey we repeated our model including richness and 340 

composition of bacteria, spatial variables (latitude and longitude) and soil properties (soil carbon and 341 

pH). Finally, for the Field survey, we also repeated our analyses including spatial influence, soil 342 

properties, bacterial richness, and composition at the OTU level (using the axes from a NMDS) instead 343 

of only including selected microbial taxa in this study (α-, β-, γ-Proteobacteria, Actinobacteria, 344 

Bacteroidetes and Fimicutes).  345 

We ranked all the models that could be generated with our independent variables according to 346 

the second-order Akaike information criterion (AICc). Here, we consider a ΔAICc > 2 threshold to 347 

differentiate between two substantially different models and then select the best of those models 348 

(Burnham and Anderson 2002; Burnham et al. 2011). Then, we compared the AICc of the best model 349 

including both taxa richness and composition to that of the corresponding model with only composition 350 

or richness. Differences < 2 in AICc between alternative models indicate that they are approximately 351 

equivalent in explanatory power (Burnham and Anderson 2002). Finally, we calculated the relative 352 

importance of bacterial richness and composition (relative abundance of six selected taxa) as predictors 353 

of multifunctionality as the sum of the Akaike weights of all models that included the predictor of 354 

interest, taking into account the number of models in which each predictor appears (Burnham and 355 

Anderson, 2002; Maestre et al. 2012). It is important to note that, in general, our analyses were not 356 

influenced by high collinearity between richness and composition, as only weak relationships were 357 

found between bacterial richness and composition for both Field and Microcosm studies (Table S3).  358 

Partial correlation 359 

We conducted partial correlation analyses to thoroughly check whether the relationship between 360 

bacterial richness or composition was still maintained after controlling for the rest of microbial 361 

attributed selected in the best model. 362 

Random Forest 363 

To further clarify the relative importance of bacterial richness and composition in predicting 364 

multifunctionality, we conducted a classification Random Forest analysis (Breiman 2001), as done in 365 

Delgado-Baquerizo et al. (2015). Random Forest analysis for the field study includes as predictors: 366 

bacterial richness, composition and total abundance, as well as latitude, longitude, soil carbon and pH. 367 

Random Forest analyses for the experimental soils A and B include as predictors: bacterial richness, 368 
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composition and total abundance. This technique is a novel machine-learning algorithm that extends 369 

standard classification and regression tree (CART) methods by creating a collection of classification 370 

trees with binary divisions. Unlike traditional CART analyses, the fit of each tree is assessed using 371 

randomly selected cases (1/3 of the data), which are withheld during its construction (out-of-bag or 372 

OOB cases). The importance of each predictor variable is determined by evaluating the decrease in 373 

prediction accuracy (i.e. increase in the mean square error between observations and OOB predictions) 374 

when the data for that predictor is randomly permuted. This decrease is averaged over all trees to 375 

produce the final measure of importance. 

 378 

These analyses were conducted using the rfPermute package 376 

(Archer et al. 2016) of the R statistical software (http://cran.r-project.org/). 377 

Results  379 

Field survey  380 

Our distance-based multi-modeling approach 

Our results remained unchanged even when we additionally included spatial (latitude and 395 

longitude) and soil properties (soil carbon and pH; Table S5). Most importantly, our main result, that 396 

bacterial richness and composition perform independently to drive multifunctionality, was maintained 397 

after including in our model spatial influence, soil properties, bacterial richness, and bacterial 398 

composition at the OTU level (three axes of a non-metric multidimensional scaling analysis [NMDS]) 399 

indicated that bacterial richness and composition (relative 381 

abundance of β-Proteobacteria, γ-Proteobacteria, Bacteroidetes and Actinobacteria) provided 382 

independent and complementary information to predict multifunctionality (Table 1). The best-fitting 383 

model accounted for over 60% of the variation in multifunctionality; and always included both bacterial 384 

richness and composition as predictor variables (Table 1). Model fit declined substantially when we 385 

removed either bacterial richness or composition as a predictor variable (Table 1; ΔAICc >2 threshold), 386 

suggesting that both microbial components are important predictors of ecosystem multifunctionality. 387 

Specifically, the same models with composition but without bacterial richness had a significantly but 388 

modestly higher AICc than the best models including taxa richness and composition (ΔAICc of +2.23). 389 

Models including only bacterial richness had a markedly higher ΔAICc (+23.11) than the best-fitting 390 

model (Table 1). We then calculated the relative importance of all microbial attributes in predicting 391 

multifunctionality using weighted information from all models. Bacterial richness was the fourth most 392 

important predictor of multifunctionality after the relative abundance of Actinobacteria, 393 

Gammaproteobacteria and Bacteroidetes (Fig. 1).   394 
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(Table S6). Note that the 3D solution of this NMDS had a very low stress (0.05) indicating that the 400 

three axes of our NMDS were a good representation of the entire soil bacterial community in our Field 401 

survey. Random Forest analyses provided further evidence that bacterial richness and composition were 402 

significant predictors of multifunctionality after accounting for multiple multifunctionality drivers. Soil 403 

C and pH were the major predictors of multifunctionality followed by microbial composition and 404 

richness (Fig. S3).  405 

Bacterial richness was positively related to multifunctionality (Fig. 2a), a result which remains 406 

consistent after controlling for latitude and longitude (Table S7), total bacterial abundance (Table S8) 407 

and the relative abundance of selected taxa in the best model (Table S9). These results were also 408 

maintained when we explored the relationship between bacterial richness and the number of functions 409 

at or above 25, 50 and 75% thresholds of the maximum observed function (Table S10). Moreover, we 410 

found positive effects of 

Together, the selected bacterial phyla/classes Actinobacteria, Bacteroidetes, α-, β-, γ-417 

Proteobacteria and Fimicutes accounted for 28-74% (average 53%) of the relative abundance of 418 

bacteria from all sites. The relative abundance of Actinobacteria, Bacteroidetes, β-Proteobacteria and γ-419 

Protobacteria were positively related to multifunctionality (Table 3). Regarding single functions, γ-420 

Proteobacteria was strongly related to phosphatase activity and basal respiration (Tables 2 and S11). 421 

Conversely, Bacteroidetes, β-Proteobacteria and γ-Proteobacteria were positively related to most soil 422 

functions in our Field survey. 423 

bacterial richness on some individual functions (enzyme activities and carbon 411 

degradation assays; Tables 2 and S11). For example, we found positive correlations (Spearman) 412 

between bacterial richness and β-glucosidase (P=0.01), N-Acetylglucosaminidase (P=0.08) and SIR 413 

Glucose (P<0.01) (Tables 2 and S11). Similar results were obtained when we evaluated the linear 414 

relationships among bacterial richness and single functions, with cellobiosidase, but not N-415 

Acetylglucosaminidase, being positively related to bacterial richness in these analyses (Fig. S4).  416 

Microcosm study (Experimental approach) 424 

Supporting the results from our Field survey, our distance-based multi-modeling approach indicated 425 

that bacterial richness and composition (relative abundance of Bacteroidetes and Actinobacteria for Soil 426 

A and γ-Proteobacteria for Soil B) provided independent and complementary information to predict 427 

multifunctionality (Table 1). The best-fitting models accounted for significant but modest (8% for soil 428 

A) and substantial (43% for Soil B) percentages of the variation in multifunctionality for the two soils; 429 

and always included both bacterial richness and composition as predictor variables (Table 1). Also, 430 
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similar to the results found for our Field survey, model fit declined substantially when we removed 431 

either bacterial richness or composition as a predictor variable (Table 1; ΔAICc > 2 threshold), 432 

providing evidence that both microbial components are important predictors of ecosystem 433 

multifunctionality. Specifically, the same models with composition but without bacterial richness had a 434 

higher AICc than the best models including taxa richness and composition for Soil A (+26.69) and Soil 435 

B (+12.84). Similarly, models including only bacterial richness had a higher ΔAICc for Soil A (+67.35) 436 

and Soil B (+3.10). Mean values for multifunctionality in each of the 68 experimental microbial 437 

combinations for soils A and B are available in Fig. S5.  438 

Although models including both bacterial richness and composition always improved 439 

multifunctionality predictions (vs. those models lacking one of these components; Table 1), our results 440 

for the Microcosm study also suggested that the relative importance of bacterial richness compared 441 

with composition is soil-dependent. Thus, richness was more important than composition in Soil B, 442 

while the opposite pattern was observed for Soil A (Table 1). Similar results are found when we 443 

calculated the relative importance of bacterial richness and composition using weighted information 444 

from all models (Fig. 1). Alternatively, our Random Forest model indicated that bacterial richness was 445 

the most important predictor of multifunctionality, but only after the relative abundance of 446 

Actinobacteria for soil A and Gammaproteobacteria for soil B (Fig. S3).   447 

Moreover, our Microcosm study provided evidence that the identity of the most relevant 448 

microbial taxa is also soil-dependent. Thus, while Bacteroidetes and Actinobacteria were the strongest 449 

predictors for Soil A (Table 1; Fig. 1), γ-Proteobacteria was the main predictor of multifunctionality in 450 

Soil B (Table 1; Fig. 1). Interestingly, observational data from these two samples were consistent with 451 

what we observed in our Microcosm study. Thus, the models based on the Field survey included the 452 

main bacterial taxa in both soils from the Microcosm study and included β-Proteobacteria, γ-453 

Proteobacteria, Bacteroidetes and Actinobacteria in the best models (Table 1). 454 

We found the highest multifunctionality in the soil microcosms with the highest bacterial 455 

richness in both Soils A and B (Figs. 2b and c; P < 0.01). These results remained consistent after 456 

statistically controlling for total bacterial abundance (Tables S8 and S12; Fig. S6). In addition, the 457 

positive effect of bacterial richness on multifunctionality was maintained after we removed key taxa 458 

from the analyses, demonstrating that this effect was not just due to key taxa (sampling effect) (Fig. 459 

S7). These results were also maintained when we explored the relationship between bacterial richness 460 

and the number of functions at or above 25, 50 and 75% thresholds of the maximum observed function 461 
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(Table S10) and also after controlling for the relative abundance of selected taxa in the best model 462 

(Table S9). For single functions, b

In the Microcosm study, bacterial composition effects on multifunctionality were soil dependent 466 

(see Fig. S10 for original bacterial composition in “soils A and B”), with a positive correlation between 467 

multifunctionality and Actinobacteria and Bacteroidetes and a negative correlation with β-468 

Proteobacteria in soil A (Table 3), while in Soil B there was a positive correlation of multifunctionality 469 

and γ-Proteobacteria. Similar results were found when we explored the relationship between bacterial 470 

composition and the number of functions at or above 25, 50 and 75% thresholds of the maximum 471 

observed function (Table S10). Consistent with these findings, the highest multifunctionality in the 472 

diverse communities and the monocultures (i.e. bacterial taxa identity effects based on 473 

presence/absence analyses) was found for Actinobacteria and Bacteroidetes in Soil A and 474 

Proteobacteria classes in Soil B (Fig. 3; P < 0.01).  475 

acterial richness was positively related to N-Acetylglucosaminidase 463 

and phosphatase activities in both soils from our Microcosm study and to β-glucosidase and 464 

cellobiosidase activities in Soil A (P < 0.05; Tables 2 and S11 and Figs. S8 and S9).  465 

Moreover, the effects of bacterial composition on individual functions were also soil dependent 476 

(Tables 2 and S11). For example, γ-Proteobacteria, which was strongly related to phosphatase activity 477 

and basal respiration in Field survey (Tables 2 and S11), had a predominant positive effect on soil 478 

functions from Soil B including N-Acetylglucosaminidase, basal respiration and SIR glucose and lignin 479 

(Tables 2 and S11). Conversely, Actinobacteria and Bacteroidetes, which were positively related to a 480 

wide array of functions in the Field survey, showed predominantly positive effects on functions in Soil 481 

A including β-glucosidase, cellobiosidase and N-Acetylglucosaminidase, but also phosphatase and SIR 482 

Lignin in particular case of the isolated bacteria from the phylum Actinobacteria (Tables 2 and S11). 483 

 484 

Discussion  485 

Despite the growing body of literature providing evidence that microbial diversity promotes ecosystem 486 

functioning in terrestrial ecosystems (Jing et al. 2015; Delgado-Baquerizo et al. 2016), most studies 487 

have tended to focus on a particular component of diversity (richness or composition), and no previous 488 

study, to the best of our knowledge, has empirically and statistically examined the relative importance 489 

of both bacterial richness and composition in supporting multiple functions in terrestrial ecosystems. 490 

Using observational and experimental data, we provide evidence that both bacterial richness and 491 

composition are key drivers of multiple ecosystems functions in terrestrial ecosystems. Most 492 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

importantly, our multi-model approach indicates that these two microbial diversity components provide 493 

independent and complementary information on the role of bacteria in ecosystem processes. These 494 

results provide strong support for the hypothesis that the effects of bacterial biodiversity on ecosystem 495 

functioning are due to the combined effects of bacterial richness and identity of key taxa within a 496 

community. Ours is, to our knowledge, the first attempt to evaluate the relative importance of both 497 

diversity and composition of bacteria, the most diverse and abundant organisms on Earth, in driving 498 

multifunctionality. However, future studies exploring the relative importance of microbial drivers of 499 

multifunctionality should be encouraged to include diversity and composition of fungi to obtain a 500 

broader picture of the role of microbial diversity and composition in driving multifunctionality. 501 

Both our field survey and microcosm study provide evidence that bacterial richness is strongly 502 

positively related to multifunctionality. Our results were maintained after controlling for spatial 503 

structure (in observational data) and microbial abundance using partial correlations and ANCOVA 504 

analyses, and provided experimental support to previous observational studies showing positive 505 

relationships between soil microbial diversity and multiple soil functions, such as those used here (He 506 

et al. 2009; Jing et al. 2015; Delgado-Baquerizo et al. 2016). The mechanisms behind the positive 507 

effects of bacterial richness on multifunctionality could include an increase in the interactions among 508 

microbial taxa (complementarity effects; Loreau & Hector 2001) and the so-called “sampling effect” 509 

(i.e. increasing taxa richness increases the likelihood that key taxa would be present; Hooper et al. 510 

2005). Species interactions are especially important for microbial communities that rely heavily on 511 

aggregated processes (Schimel et al. 2005) such as organic matter decomposition as an energy source. 512 

These aggregated processes involve many metabolic routes and require the cooperation of large and 513 

diverse groups of microbes to break down complex and recalcitrant polymers into simpler, more labile 514 

monomers, which are rapidly consumed and largely respired (Schimel et al. 2005). Thus, losses in 515 

bacterial richness may inactivate critical functions (e.g. chitin degradation), but also can reduce the 516 

rates in which multiple ecosystems functions are being produced, as supported by our observational and 517 

experimental data. Bacterial richness also showed similar positive trends with each of the single 518 

functions studied. Of particular interest was the fact that bacterial richness showed a strong and positive 519 

effect on N-Acetylglucosaminidase (chitinase) in all the experimental approaches used here. Chitin is 520 

an extremely complex compound, is a structural component of many organisms, and is widespread in 521 

nature (Beier & Bertilsson 2013). Bacteria are believed to be major mediators of chitin degradation, a 522 

complex process that involves several metabolic reactions with important implications for carbon and 523 
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nitrogen cycling (Beier & Bertilsson 2013). This result further supports the notion that complex 524 

processes such as organic matter decomposition are favored by the existence of a diverse collection of 525 

microbes all contributing to the overall process to promote the highest degradation rates (Schimel et al. 526 

2005). Our Microcosm study also showed that a “sampling effect” may be, at least in part, responsible 527 

for driving multifunctionality, as microcosms including certain key taxa tended to have the greatest 528 

multifunctionality. Interestingly, bacterial richness had a positive effect on multifunctionality even after 529 

the effects of key species were accounted for (removing them) in our analyses (Fig. S6; Appendix S1). 530 

Consistent with the results reported by Hooper et al. (2005) for plant communities, we suggest that 531 

microbial taxa interaction and sampling effects are not mutually exclusive.  532 

Bacterial composition was also a strong predictor of multifunctionality in both Field and 533 

Microcosm studies. However, unlike bacterial richness, the effects of bacterial composition on 534 

multifunctionality varied with both soil properties and ecological characteristics of the specific bacterial 535 

taxa, especially under the Microcosm study. For example, for Soil B (high soil carbon), γ-536 

Proteobacteria enhanced multifunctionality in both single and mixed cultures. Similarly, γ-537 

Proteobacteria, which was positively related to soil carbon (Table S13), also showed a positive 538 

relationship with multifunctionality across the Field survey. Class γ-Proteobacteria tend to exhibit 539 

copiotrophic life histories (Fierer et al. 2007; Trivedi et al. 2013), preferring environments that are rich 540 

in carbon, promoting the greatest multifunctionality and supporting critical processes such as complex 541 

and labile carbon decomposition. Thus, this Proteobacteria class may be critical for supporting 542 

multifunctionality in carbon-rich soils. Conversely, for Soil A (lowest soil carbon) in the Microcosm 543 

study, we found a predominant effect of Actinobacteria in supporting multifunctionality. Actinobacteria 544 

are defined as oligotrophs (Bastian et al. 2009; Trivedi et al. 2013), and are more competitive in soils 545 

with low levels of carbon such as those from drylands (Maestre et al. 2015). In Soil A, Actinobacteria 546 

was also strongly positively related to extracellular enzyme activity and lignin degradation content. Our 547 

findings are supported by the results of previous studies suggesting that Actinobacteria contains a broad 548 

array of genes that allow the breakdown and utilization of recalcitrant organic compounds such as 549 

lignin, chitin and cellulose that can be used under stressful soil conditions (low carbon; Bastian et al. 550 

2009; Trivedi et al. 2013).  551 

Interestingly, only the relative abundance of Bacteroidetes was consistently selected as a major 552 

predictor of multifunctionality in all experimental approaches and statistical models used here. In 553 

general, the relative abundance of Bacteroidetes, defined as copiotrophic organism by Fierer et al. 554 
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(2007), promoted high rates of multifunctionality, enzyme activities and/or respiration rates in all 555 

experimental approaches (Table 2). More specifically, the relative abundance of Bacteroidetes always 556 

promoted the activity of chitin degradation in all soils. These results are in agreement with a previous 557 

study highlighting their potential to break down chitin and cellulose in terrestrial ecosystems (Trivedi et 558 

al. 2013); and further highlight the importance of this taxa in regulating organic matter decomposition 559 

and C cycling in soil.   560 

An important finding of our study is that although both components of biodiversity are 561 

important drivers of multiple ecosystem processes related to organic matter decomposition and nutrient 562 

cycling, the relative importance of richness compared with composition in controlling 563 

multifunctionality is soil-dependent, as supported by our Microcosm study (Soil  A vs. B). In particular, 564 

we found that richness is more important than composition in Soil B, with the higher soil organic 565 

matter, while the opposite pattern occurred in Soil A. Although we cannot extrapolate from only two 566 

soils, if these results were generally true, they would suggest that bacterial richness might play a 567 

predominant role in organic soils, where the interaction among multiple microbial communities is 568 

needed to break down complex and recalcitrant polymers into simpler and more labile monomers 569 

(organic matter degradation; Schimel et al. 2005). Conversely, species identity (Bacteroidetes and 570 

Actinobacteria in Soil A) may play a major role in mineral soils. For instance, Actinobacteria have been 571 

shown to possess important adaptations that enable them to resist environmental harshness (ability to 572 

survive desiccation and low nutrient availability conditions; Battistuzzi & Hedges 2009). Thus, these 573 

results support the notion that

Interestingly, observational data were consistent with what we observed in our Microcosm 577 

study, providing insights into the main microbial pattern controlling multifunctionality in terrestrial 578 

ecosystems, and demonstrating the value of using each of these approaches. For example, in both the 579 

field and microcosm studies, an increase in taxa richness was positively related to multifunctionality. 580 

Of particular novelty, the Field data provided a comprehensive view of the main taxa controlling 581 

multifunctionality in Soils A and B and suggest that Actinobacteria, Bacteroidetes and γ-Proteobacteria 582 

are the main drivers of multifunctionality in terrestrial ecosystems at a large scale. All of these bacterial 583 

taxa are globally distributed and dominant in many terrestrial ecosystems worldwide (Fierer et al. 2009; 584 

Maestre et al. 2015). This result suggests that observational data can be useful for predicting microbial 585 

 both microbial richness and composition are needed to accurately 574 

estimate the consequences of losses in microbial diversity (from global environmental changes such as 575 

climate change and land use intensification) on ecosystem functioning.  576 
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community shifts and their consequences for ecosystem functioning under global change, but also that 586 

this observational data will be useful in developing generic algorithms to be included in global 587 

biogeochemical models. 588 

In conclusion, our findings provide strong evidence, from two independent approaches, that 589 

bacterial richness and composition are important, yet independent drivers of multiple ecosystem 590 

functions related to organic matter decomposition and nutrient cycling. Greater microbial richness and 591 

globally-dominant bacterial taxa such as γ-Proteobacteria, Actinobacteria and Bacteroidetes were 592 

critical drivers of multifunctionality in both our field and microcosm studies. Information on both 593 

microbial richness and composition therefore need to be considered when formulating sustainable 594 

management and conservation policies, and when predicting the effects of global change on ecosystem 595 

functions. These findings advance our understanding of the mechanisms underpinning relationships 596 

between biodiversity and ecosystem functionality in terrestrial ecosystems, and reinforce the need to 597 

develop approaches and policies to protect soil microbial diversity and their positive effects for 598 

multiple ecosystems functions. 599 
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Figure legends  734 

Figure 1. Relative importance of bacterial richness and composition in models of multifunctionality for 735 

the field (a) and experimental studies (b-c). The height of each bar is the sum of the Akaike weights of 736 

all models that included the predictor of interest, taking into account the number of models in which 737 

each predictor appears. 738 
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Figure 2. Effects of bacterial richness on multifunctionality for Field (a) and Microcosm (b and c) 739 

studies. Bacterial diversity in Field survey is calculated as the number of OTUs (97% similarity; x2

Figure 3. Mean (±SE) values for multifunctionality across different bacterial taxa for mono- (a and c) 745 

and mixed cultures (b and d) of bacteria in the experimental approach. Different letters in panels a) and 746 

c) indicate significant differences in multifunctionality among bacterial taxa (P < 0.05) as tested using 747 

post-hoc tests after one-way ANOVA. Panels b) and d) represent averaging multifunctionality index in 748 

mixed cultures including (presence) or excluding (ausence) each bacterial phylum/class. In these panels 749 

significance levels are as follows: ** P < 0.01, *** P < 0.001.  750 

-740 

transformed). Bacterial diversity in the Microcosm study (“soil A and B”) is the number of bacterial 741 

phyla/classes.  The solid lines in figure a represents the fitted linear regression. Data in Fig b (Soil A) 742 

and c (Soil B) represent means ± SE. Different letters in panels b) and c) indicate significant differences 743 

between richness levels (P<005) in multifunctionality index (post-hoc tests after one-way ANOVA). 744 
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Table 1. Best-fitting model (including microbial richness and composition) and the same model with 1 

either bacterial richness or composition (but not both) included as predictors of multifunctionality for 2 

the Field and Microcosm (“soils A and B”) studies. Shaded cells indicate that the variable has been 3 

included in the model. Models are ranked by AICc. AICc measures the relative goodness of fit of a 4 

given model; the lower its value, the more likely the model to be correct. ΔAICc is the difference 5 

between the AICc of each model and that of the best model. ΔAICc indicates substantially different 6 

models. A = α-Proteobacteria; B = ȕ-Proteobacteria; C = Ȗ-Proteobacteria; D = Firmicutes; E = 7 

Bacteroidetes; F = Actinobacteria.  8 

 9 

Approach Diversity Composition R2 AICc ΔAICc 

I (Field study) Richness Ȗ-Proteobacteria + Firmicutes + Bacteroidetes+ Actinobacteria 0.599 -53.75 0.00 

 Excluded Ȗ-Proteobacteria + Firmicutes + Bacteroidetes+ Actinobacteria 0.551 -51.52 2.23 

 Richness Excluded 0.134 -30.64 23.11 

      II (Soil A) Richness Bacteroidetes+ Actinobacteria 0.429 -445.74 0.00 

 Excluded Bacteroidetes+ Actinobacteria 0.344 -419.05 26.69 

 Richness Excluded 0.190 -378.39 67.35 

      II (Soil B) Richness Ȗ-Proteobacteria 0.084 -276.88 0.00 

 Excluded Ȗ-Proteobacteria 0.014 -264.04 12.84 
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Table 2. Summary of the effects of microbial composition on the multiple ecosystems functions in this study for the field and 1 

microcosm (soils A and B) studies. Microbial composition effects are based on Spearman correlations available in Table S7. Symbols 2 

+ and - indicate positive and negative interactions.  3 

Study Functions Richness 

α-

Proteobacteria 

ȕ-

Proteobacteria 

Ȗ- 

Proteobacteria Firmicutes Bacteroidetes Actinobacteria 

Field β-Glucosidase +  + +  + + 

 Cellobiosidase   + +  +  

 N-Acetylglucosaminidase +  + +  +  

 Phosphatase  + + +    

 Basal Respiration  + + +  + + 

 SIR Glucose +  +   + + 

 SIR Lignin   + +  +  

Microcosm (Soil A) β-Glucosidase +  - -  + + 

 Cellobiosidase +     + + 

 N-Acetylglucosaminidase +  - -  + + 

 Phosphatase +      + 

 Basal Respiration -  - +    

 SIR Glucose   +     

 SIR Lignin  -  - +  + 

Microcosm  (Soil B) β-Glucosidase        

 Cellobiosidase        

 N-Acetylglucosaminidase +   + + +  

 Phosphatase +      + 

 Basal Respiration   - + -   

 SIR Glucose    + -   
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Table 3. Correlations (Spearman) between main bacteria taxa and multifunctionality for field and M 1 

microcosm (soils A and B) studies (n = 204).  P-values are in brackets.  2 

 3 

Study 

α-

Proteobacteria 

β-

Proteobacteria 

Ȗ-

Proteobacteria Firmicutes Bacteroidetes Actinobacteria 

Field 0.111 (0.480) 0.570 (<0.001) 0.566 (<0.001) -0.007 (0.963) 0.637 (<0.001) 0.291 (0.058) 

Microcosm (Soil A) -0.036 (0.612) -0.153 (0.029) -0.108 (0.124) -0.080 (0.257) 0.297 (<0.001) 0.532 (<0.001) 

Microcosm (Soil B) -0.003 (0.964) 0.074 (0.294) 0.223 (0.001) -0.050 (0.474) 0.021 (0.764) 0.082 (0.244) 

 4 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



fec_12924_f1.jpg
This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



fec_12924_f2.jpg

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



fec_12924_f3.jpg

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t


