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Abstract—Sea ice, crucial to the Arctic and Earth’s climate,
requires consistent monitoring and high-resolution mapping. Man-
ual sea ice mapping, however, is time-consuming and subjective,
prompting the need for automated deep learning-based classifica-
tion approaches. However, training these algorithms is challenging
because expert-generated ice charts, commonly used as training
data, do not map single ice types but instead map polygons with
multiple ice types. Moreover, the distribution of various ice types
in these charts is frequently imbalanced, resulting in a performance
bias toward the dominant class. In this article, we present a novel
GeoAl approach to training sea ice classification by formalizing it
as a partial label learning task with explicit confidence scores to
address multiple labels and class imbalance. We treat the polygon-
level labels as candidate partial labels, assign the corresponding
ice concentrations as confidence scores to each candidate label,
and integrate them with focal loss to train a convolutional neural
network. Our proposed approach leads to enhanced performance
for sea ice classification in Sentinel-1 dual-polarized SAR images,
improving classification accuracy (from 87 % to 92 %) and weighted
average F-1 score (from 90 % to 93 %) compared to the conventional
training approach of using one-hot encoded labels and categorical
cross-entropy loss. It also improves the F-1 score in four out of the
six sea ice classes.

Index Terms—Artificial intelligence, convolution,

classification, losses, machine vision, sea ice.
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I. INTRODUCTION

EA ice is a layer of frozen seawater that forms when the
temperature of the surface of the water reaches its freezing
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point. Due to the low temperatures required for this process to
occur, it is usually found in polar and subpolar oceans and seas,
although, in winter, it can extend equator-ward to 40°-50° lati-
tudes [1]. Arctic sea ice plays a crucial role in regulating global
climate. It reflects solar radiation, helping maintain Earth’s heat
balance. Changes in ice coverage contribute significantly to
global warming via the ice-albedo feedback loop. Furthermore,
sea ice acts as a barrier, modulating heat, moisture, and gas
exchanges between the ocean and the atmosphere. Therefore,
Arctic sea ice changes have profound implications for ecosys-
tems, atmospheric circulation, and global weather patterns [2].
Monitoring sea ice conditions and mapping their properties, such
as type, extent, and concentration, are important for climate
monitoring as well as marine navigation and near- or off-shore
operations [1].

Ice packs with older stages of development (SoDs) are thicker
and pose a greater hazard risk for marine navigation (based on
the type of vessel) [3]. Thus, high-quality, high-resolution, and
timely sea ice type maps play a crucial role in ensuring safe
marine navigation and in reducing the environmental footprint
(and risk) of vessels [4]. Ideally, navigators (vessels) require
ice charts at high temporal and spatial resolutions (300 m or
higher) to navigate safely [5].

The need for high-resolution and scalable mapping has led to
several efforts to automate sea ice mapping. This, however, is a
challenging task due to:

1) the dynamic nature of sea ice;

2) ambiguous and similar signatures for different ice types

(particularly in synthetic aperture radar (SAR) imagery);

3) the effects of wind and weather on remotely sensed prod-

ucts;

4) the effects of surface roughness and volume scattering on

ice emissivity [6], [7], [8], [9], [10].

Therefore, sea ice charting is still primarily performed man-
ually by sea ice analysts at national organizations, such as the
United States National Ice Center, the Canadian Ice Service, and
the Norwegian Meteorological Institute by visually analyzing
different data sources, including remotely-sensed optical, pas-
sive microwave, and SAR images, climatological model outputs,
and in-situ measurements [6].

The increasing demand for sea ice products, the amount
of labor required to generate ice charts, and the impressive
performance of deep convolutional neural networks (CNNs)in
general-purpose image classification tasks [11], [12] have led
to growing interest in the GeoAl community for developing au-
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tomated sea ice classification algorithms from remotely sensed
images [13], [14], [15], [16], [17], [18], [19], [20], [21].

In remote sensing imagery analysis, deep learning (DL) sig-
nificantly enhances both classification and segmentation tasks
through its efficient neural architectures. Leveraging multilay-
ered neural networks (NNs), DL models are adept at extracting
patterns and features from satellite imagery and have been
instrumental in tasks, such as land cover/land use classification
[22], [23], [24], object detection [25], and change detection [26].
Models such as CNNs [12] and recurrent NNs [27], including
long short-term memory networks [28], excel in extracting
complex spatial and temporal patterns for classification. For
segmentation, architectures such as U-net [29] and DeepLab
[30] stand out by delineating precise object boundaries within
imagery, enabling detailed environmental monitoring. By au-
tomating feature extraction and learning, these DL approaches
offer unparalleled accuracy in mapping sea ice in satellite im-
agery [20], [31], [32].

Supervised DL classification algorithms rely on high volumes
of high-quality labeled training samples to perform well, and
their performance is limited by the quality of the training data
[33]. This presents a challenge in many real-world GeoAl and
remote sensing applications, including sea ice classification,
where the process of generating accurately labeled training
samples from satellite images requires expert knowledge, and
is therefore expensive and labor-intensive [12], [13].

Remotely-sensed images (mostly SAR) have been used in
traditional machine learning algorithms, such as random forest
and support vector machines (SVM), as well as supervised
and weakly supervised DL algorithms in multiple applications
such as ice-water classification or ice-type classification [8],
[18], [19], [20], [21], [36], [37], [38], concentration and/or
thickness estimation [14], [29], [39], [40], [41], and sea ice
motion prediction [42]. Conventional (non-DL) machine learn-
ing algorithms, such as random forests and SVM, as well as
supervised and weakly supervised NN-based algorithms, have
been widely used for sea ice classification in remote sensing
imagery [6]. More recently though, CNN-based models have
been used more frequently due to their ability to capture spatial
context and the resulting high performance in general-purpose
image classification tasks. With respect to the number of classes
for seaice classification, these studies can be grouped into binary
ice-water classification [20], [31], [43], [44], and multiclass
ice-type classification [18], [19], [21], [36], [44], [45], [46], [47].

To generate labels from operational sea ice charts, existing
sea ice classification studies approximate pixel- or patch-level
labels by encoding SoD as one-hot vectors, either based on the
oldest SoD, e.g., in [36] and [46], or based on the SoD with
the highest partial concentration, e.g., in [47]. Label smoothing,
which transforms a one-hot encoded vector of “hard” targets
into a vector of soft targets using a uniform distribution [48], is
an alternative to one-hot encoding and is shown to improve sea
ice classification performance in a multiclass setting [49].

Regardless of the specific approach, one-hot encoding of the
labels leads to the loss of valuable information about other SoDs
that might be present in a polygon and could potentially lead
to incorrectly labeled samples in the cases where the oldest
SoD does not necessarily have the highest partial concentration.
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Furthermore, to the best of our knowledge, CNN-based sea ice
classification studies do not incorporate partial concentration
values for classifying sea ice type.

To address the issues related to mixed ice-type polygons, one
approach is to only consider pure polygons, i.e., polygons that
contain only one ice type or only water [50]. However, even
pure polygons may suffer from uncertainties such as containing
unintended ice types, which would lead to representativeness
errors. Tamber et al. [51] proposed three different approaches for
dealing with uncertainties in the ice chart labels when predicting
ice concentrations, namely perturbing the concentration label,
augmenting it using SAR data, and using a mean-split loss
function. While this is an interesting approach especially for ice
concentration, applying it to a multiclass ice-type classification
problem is not straightforward. Furthermore, given the limited
number of pure polygons, this approach leads to a significant
loss of potentially useful training samples.

With regard to the loss function, all CNN-based sea ice
classification studies mentioned above use a variation of cross
entropy loss (binary or categorical, depending on the number
of classes) for optimizing the model. Focal loss (FL), however,
has been shown to perform generally better than cross-entropy
(CE) loss in imbalanced classification settings [52]. While FL
has been used in sea ice research, it has largely been used in ap-
plications other than classification. For instance, Gongalves and
Lynch [53] used it in a weakly supervised sea ice segmentation
model, Andersson et al. [54] used it for sea ice forecasting with
probabilistic DL based on a U-net architecture [55], and Kucik
and Stokholm [56] used it for sea ice concentration charting.

When manually classifying sea ice in remotely-sensed im-
agery, analysts first identify polygons of seemingly homoge-
neous ice based on the likelihood of the presence of older SoDs
(and therefore, thicker ice) within them. Next, they assign up to
three different ice types, along with the corresponding partial
concentration to each polygon. Partial ice concentration, mea-
sured as a percentage, is defined as the relative amount of area
(within the polygon) covered by each ice type and determines
how much of a polygon is covered by a certain ice type (SoD).

While being more time-efficient, this has some notable draw-
backs. First, for practical reasons, such polygons are often large
(compared to the spatial resolution of the image) and can contain
thousands of pixels [13]. Second, an expert might wish, or need
to, assign more than one label to a polygon, potentially because
of semantic hierarchical categorizations of classes in the domain
or the presence of more than one feature type in the polygon.
Finally, the assigned attributes do not determine where exactly
in the polygon each ice type resides. The presence of different
ice types with different partial concentrations inside a polygon
and the fact that it is not possible to pinpoint the location of
individual ice types within the polygon pose great challenges
for training conventional supervised sea ice classifiers.

Another common challenge in developing GeoAl models for
sea ice classification, and more generally, environmental remote
sensing, is that training datasets are often imbalanced meaning
that the proportion of training samples in one or more classes is
considerably lower compared to other classes. This is a reflection
of the uneven distribution of the classes of interest in the real
world [57], [58], [59], [60], [61]. When the training dataset is
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imbalanced, DL classifiers tend to perform well on the more
frequent class(es) and underperform on the less frequent—but
potentially more important—class(es).

To address the aforementioned challenges, in this article,
we present a novel approach for training sea ice classification
algorithms using remotely sensed images that are labeled with
polygons containing multiple ice types. We frame this task as
a partial label learning (PLL) problem and allow each training
sample to have multiple candidate labels (i.e., ice types), only
one of which is the true label. We encode the partial concentra-
tion of each ice type as a confidence score associated with the
corresponding candidate label. This confidence score can also be
understood as the probability of that ice type occurring within the
polygon. Finally, we integrate these confidence scores within the
FL function to handle both partial labels and class imbalance.'

Using this approach, we train a CNN for sea ice classification
using dual-polarized Sentinel-1 SAR images in extra-wide (EW)
swath mode. We optimize and evaluate FL hyperparameters
for sea ice classification, and compare the performance of our
approach to a more conventional single-label learning approach.
By improving the accuracy of automated sea ice classification,
through the model we propose, we hope to address some of the
aforementioned concerns regarding automated sea ice classifi-
cation approaches. The contributions of this work are as follows.

1) A novel framework for training DL algorithms on re-
motely sensed images with patch-level multicandidate and
imbalanced labels by incorporating PLL with FL.

2) A more efficient DL method for sea ice classification based
on Sentinel-1 SAR images that improve the performance
of the existing methods by incorporating all ice types and
partial concentrations from training samples.

3) Sensitivity analysis and tuning of hyperparameters of the
FL function (« and 7).

The rest of this article is organized as follows. Section II
reviews the related work in the context of PLL and presents
our proposed approach and its mathematical formulation as well
as the experimental evaluation setup. In Section III, we present
our results, and in Section IV, we discuss our findings. Finally,
Section V presents our conclusions and directions for future
work.

II. MATERIALS AND METHODS

A. Partial Label Learning

In this section, we describe our proposed formulation for
defining sea ice classification as a PLL problem. PLL is a
learning paradigm in which each training sample is associated
with a set of candidate labels, among which only one is assumed
to be the true label [62]. PLL is also known as ambiguous-label
learning and superset-label learning [63].

The main goal of PLL is to train a model that identifies
the singular true label among a set of candidate labels for an
input sample. There are two groups of strategies for doing so:
the average-based strategy and the identification-based strategy.

'Tt is important to note that the word partial in PLL is not related to the use
of partial ice concentration.
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In the average-based strategy, all candidate labels are treated
equally in the training phase and then the model outputs of
all the candidates (which are in the form of probabilities) are
averaged for the final prediction [64]. This strategy is simple but
has a drawback in that it cannot take the difference between the
candidate labels into account and treat them equally. This could
be suboptimal in sea ice classification as the candidate labels
(different ice types present in a polygon) have different partial
concentrations and, thus, different likelihoods of being the true
label.

In the identification-based strategy, the true label is considered
a latent variable, and we assume a parametric model based on
which the true label can be identified. For example, the label that
achieves the highest probability in the final prediction could
be considered the ground-truth label [65], [66]. As such, this
strategy covers the gap mentioned for the average-based strategy
and is the strategy that we build on in this work.

An important step in leveraging identification-based PLL is
to derive the confidence score for each candidate label. Mul-
tiple methods have been proposed to estimate and update the
confidence scores, for instance, using the information extracted
from the feature space to update the label distribution [67] or
using norm regularization via self-training [68]. The common
characteristic in all of the existing work is that the confidence
score is not known a priori and, thus, has to be estimated and
updated.

PLL is a branch of weakly supervised learning (WSL). Even
though WSL has been used extensively in remote sensing ap-
plications, for instance for object detection [69], [70], [71] and
semantic segmentation [72], [73], our work is the first study
based on PLL in remote sensing applications to the best of our
knowledge.

We formalize sea ice classification as a single-label classifi-
cation problem and use the partial ice concentration associated
with each candidate label as an explicit measure of confidence
(or the probability of occurrence of the ice type within the
polygon). Partial ice concentrations represent the estimated dis-
tribution of different ice types within a polygon (as interpreted
by the ice analyst). We use a similar approach as in [74], but
further, integrate our approach with FL and show that it results
in improved performance.

For each training sample, we first generate a binary candidate
label vector using the ice types present in the sample (extracted
from the containing polygon) and then multiply that vector by
a vector of confidence scores elementwise, derived from the
partial ice concentration of each type.

We denote X,,«,, as the sample (instance) matrix, where # is
the number of training samples and m is the number of features
in each sample (i.e., the number of channels in an image). The ith
individual training sample is, therefore, X; = [x1, 2, ..., 2] -

We then denote the label matrix as Y,,»; € {0, 1} such that
row Y; is the label vector corresponding to the ith instance (X;),
where [ is the number of classes. In a one-hot encoding labeling
scheme (widely used in sea ice classification), the ground-truth
label for instance i is represented by 1 in column j and zero in all
other columns (i.e., for instance, 7 : Zé —1 Yij = 1).InaPLL
scheme, however, this is relaxed slightly to allow for multiple
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FID 59

id 60

CA 79 Partial concentration of the oldest ice type
SA 86 SoD of the oldest ice type

Form (floe) of the oldest ice type

Partial concentration of the youngest ice type
SB 83 SoD of the youngest ice type
FB 3

T 92
poly_type |

area 931.449609

Form (floe) of the youngest ice type
Total concentration (CA+CB)

Encoding

[NLN,YLFYLOLW]
Yo=1[0,0,0,1,0,0]
Yp=[0,0,1,1,0,0]

Ypc = [0, 0, 0.25,0.75, 0, 0]

One-hot encoding:
Partial encoding:
Our approach:

Ice chart generated for the January 16, 2018 image (listed in Table I of Supplementary Material) in the ExtremeEarth dataset with one of its polygons

highlighted. Three different encodings of the ice types present in this polygon are demonstrated. Ice type abbreviations: NI: New Ice; N: Nilas; YI: Young Ice;

FYI: First-Year Ice; OI: Old Ice; W: Water.

candidate labels such that, for instance, 7 : 1 < Zé —1Yij <L
Consequently, a partial label for instance 7 has 1 in all columns
Jj that are candidate labels and O in all columns k that are
noncandidate labels.

The identification-based strategy in PLL extends this to incor-
porate a confidence score associated with each candidate label,
that is, for instance, i and candidate label j, y;; € [0, 1], where a
value closer to 1 represents greater confidence in that label being
the true label.

We derive the confidence scores from the partial ice concen-
tration associated with each type of ice in operational sea ice
charts. Part of the novelty of our approach is that we assign the
partial concentration of an ice type to its probability of being
the ground-truth label in a PLL framework (and then integrate
it with the FL for sea ice classification). After incorporating
partial ice concentration as the confidence score, our label matrix
Y. € [0,1]™! will be of the form

Y11 Y2 0 Yu
Y21 Y22 ... Y2
Yo=Y ®C =
Ym1l Ym2 Ymi
Ci1 Ci2 - Cu Yper
C21  C22 ... C9] Ype
® | . = )
Cm1 Cm2 Cml Ypepm,

where Y is the binary label matrix, C is the confidence matrix
(sea ice concentrations for each instance), and y,,, is the partial

label vector of length /, for instance i (yp.,, € [0, 1]).> This is
similar to the concept of a membership matrix used in [75] but
is different in that the values in our vectors represent confidence
scores rather than direct membership degrees.

We have demonstrated this in Fig. 1. In the highlighted poly-
gon, which is labeled with two ice types, the oldest ice type or
SoD (denoted by SA) is first-year ice (FYI), which has a partial
concentration code 79, representing 70%—90% ice (denoted by
CA), and the second oldest ice type is young ice (YI) (denoted
by SB), which has a partial concentration code 24, representing
20%—40% ice (denoted by CB). If we sort the ice types by their
numeric SA code so that the columns correspond to [NY, N, Y
I, FY 1, OI, W], the label vector for this polygon that a one-hot
encoding would derive would be o = [0, 0, 0, 1, 0, 0]. In this
vector, the value corresponding to the oldest ice type is 1, and
the values of all other ice types are zero. The label vector that
a binary (conventional) partial labeling would derive is yp =
[0, 0, 1, 1, 0, 0], where the label is 1 for all ice types present in
the polygon and 0, otherwise. With our formulation, the derived
label vector would be ipc = [0, 0, 0.3, 0.8, 0, 0], where the
value of each ice type (class) is the mean of the encoded partial
concentration range of that type in the ice charts, as estimated
by the expert ice analyst (see Fig. 1).

In manually generated ice charts, the sum of partial ice con-
centrations for a given polygon may not add up to 100% or even
exceed 100% (as seen in this example). To generate partially
encoded label vectors in the latter case, we subtract half of the
surplus (over 100) from the partial concentrations of each of

2We use capital letters for denoting matrices and small letters to denote vectors
throughout the article.
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the two labels. Thus, /p¢ in the example mentioned above will
become ypc = [0, 0,0.25,0.75, 0, 0]. It is important to note that
we performed this process only during training and not testing
(inference). Also, the maximum possible sum of concentrations
in our dataset was 110% and only happened when two ice types
were present in a polygon.

B. Focal Loss for Class Imbalance

Similar to many other remote sensing applications of machine
learning, sea ice classification is an imbalanced classification
task, regardless of the area or the period of study. Class im-
balance occurs when one or more classes have a much lower
proportion of training samples compared to other classes. In the
case of sea ice, this can be attributed to the physics of sea ice
formation. Younger, thinner ice typically covers relatively small
areas and exists for only a short period (a few days) before it
either grows into thicker (older) categories or melts away.

To address this issue, we integrate partial labels within the
FL function to train our model. FL, first introduced by Lin et al.
[52], is a generalization of the CE loss that is designed to deal
with highly imbalanced datasets. CE loss simply calculates the
logarithm of the model’s estimated probability for each class
(often calculated using the Softmax function) and is defined as

l
CE(p,y) = — Y log(p:).-i 2
i=1

where p; € [0, 1] is the model’s estimated probability for class
i, y; € {0,1} is the label for that class, and / is the number of
classes. FL adds a scaling (modulating) factor and a focusing
parameter to the CE loss. In tandem, these two decrease the loss
value for samples from majority class(es), which are often well
classified, and shift the focus to samples from minority class(es),
often called hard samples. FL is defined as [52]

FL(p,y) = — Y _ a(l —p;)" log(p:)-i 3)

i=1

where (1 — p;) is the modulating factor, v > 0 is the focusing
parameter, and o € [0, 1] is the weighting factor. If y = 0 and
a = 1, FL is equivalent to CE loss.

As can be seen in (3), the modulating factor is defined such
that it decreases to zero as the probability of the correct class
increases and, consequently, reduces the contribution of easy
samples to the training loss. The focusing parameter adjusts
the rate at which easy samples are downweighted. Therefore,
increasing v would exponentially increase the rate at which
such samples are down-weighted and make the model focus on
hard samples [75]. The a parameter is used to balance the loss
function by adjusting the weight assigned to the rare class(es).
It is an optional parameter, but it is shown to improve the
performance of the models trained with the FL [75]. Both v and
« adjust the effect of the rare class; therefore, they interact with
each other and have to be optimized for a domain application
together.

Another approach in dealing with imbalanced datasets in
classification problems is to incorporate class weights in the
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loss function directly. Class weight is calculated as [79]

n

W, @)

N I x n;
where W; is the weight for class j, n is the total number of
samples, [ is the number of classes, and n; is the number of
samples in class j. In this formulation, the weight of each class
is inversely proportional to its frequency. Thus, by incorporating
(4) in the loss function, minority (less frequent) classes will be
weighed higher, and therefore, the model will be penalized more
for misclassifying samples from those classes.

Class weights can be incorporated in both FL. and CE loss.
The class weights are often multiplied by the individual loss
values corresponding to each sample in the training batch. By
doing so, the loss function gives more importance to the minority
class samples, effectively addressing the imbalance issue and
helping the model learn from the rare classes. Therefore, in
addition to evaluating different label encoding methods, we also
incorporate class weights into both loss functions and evaluate
the performance of the models with and without those weights
for sea ice classification.

C. Model Architecture

In our preliminary research, we compared the performance of
four CNN-based image classification architectures for the task
of sea ice classification and identified the pretrained version
of ResNet-50 as the best-performing architecture [80]. The
superiority of ResNet can likely be attributed to its use of
skip connections and residual blocks. These features enable
it to deliver enhanced performance with a lower number of
trainable parameters (approximately 25.6 million in ResNet-50)
compared to models such as VGG-16, which has approximately
138 million trainable parameters. In our context, where we
deal with a relatively small dataset, having fewer trainable
parameters is advantageous. Therefore, in this work, we use
the same architecture as the backbone of the model and freeze
the pretrained weights of the convolutional layers (pretrained
on the ImageNet dataset [81]). Employing a carefully selected
pretrained NN can partly alleviate the challenge of having a
small number of training samples, which is the case in our
experiments. To fine-tune the model for sea ice classification,
we add two fully connected layers of 64 neurons, each followed
by a batch-normalization layer [82], ReL.U activation function,
and dropout [83]. Dropout regularizes the model and reduces
its generalization error, and thus, helps prevent overfitting the
model to the training samples. We experimented with different
dropout rates and found 0.25 to yield the best performance (more
detail in Section II-D). We finally added an output layer with six
neurons (equal to the number of classes) and Softmax activation.
Fig. 2 presents the architecture of our model.

Many pretrained image classification models, including the
ResNet, take three-channel RGB images (such as those pro-
vided in the ImageNet dataset) as input. Sentinel-1 SAR records
backscatter in HH and HV polarization, and therefore, the result-
ing images have two channels by default (one per polarization).
To create a third channel, others have used different linear
combinations of HH and HV channels. For instance, Kulesza
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Fig. 2. Model architecture based on ResNet-50 model with added fully connected layers. The ResNet-50 architecture includes an initial 7 x 7 convolutional

layer, max pooling, and multiple residual blocks with 1 x 1 and 3 x 3 convolutions. BN is applied after each convolution, and ReLU activation functions introduce
nonlinearity. Skip connections bypass layers to improve training, followed by global average pooling and a fully connected (FC) layer. In a pretrained model, all
the layers up to “FC, 1000 use the weights pretrained on the ImageNet dataset. We added three fully connected layers with BN and dropout for fine tuning. The

final layer outputs six classes.

et al. [33] used HV, HH-HYV, and HH/HV as the three channels
to create pseudo-RGB images. However, this approach may not
introduce new information, given the existing presence of the
two channels in the input. In this work, we use local incidence
angle measurements as the third channel since incidence angle
is shown to affect backscatter intensity differently depending on
ice type [44] and, thus, can provide additional information to the
classifier. To facilitate reproducibility and reuse in the remote
sensing research community, an open-source implementation
of our approach is available on GitHub at https://github.com/
geohai/PLL-sea-ice-classification.

D. Experimental Evaluation

In this section, we introduce the dataset and then describe the
experiments, the parameters used in each, and the results.

1) Dataset: We use the “ExtremeEarth Polar Use Case Train-
ing Dataset Version 2.0.0” for our experiments. This dataset
covers the Danmarkshavn region east of Greenland and contains
sea ice charts for 12 Sentinel-1 SAR images, each acquired
approximately one month apart in 2018 [76]. It was generated
as part of the multi-institutional ExtremeEarth project [4] and is
designed to serve as a training or validation dataset for automated
satellite image processing algorithms. As a result, it provides
high-resolution ice charts that would not be publicly available
otherwise. To the best of our knowledge, this dataset has not
been used for sea ice classification research before.

The ice analysts from the Norwegian MET have interpreted
the imagery in the dataset to draw ice charts. The generated ice
charts include six different ice types: new ice, nilas, YI, FYI,
old ice, and ice-free (or water). New ice describes ice that has
been recently formed and has a thickness below 10 cm. Nilas is
a thin sheet of smooth ice that has a similar thickness to new ice
but visually looks darker (especially when thin).

Yl refers toice that has a thickness between 10 and 30 cm. FYI
is ice that has formed since the onset of freeze-up and has not
survived a summer melt season. Its thickness is greater than 30
cm and typically grows up to 2 m (depending on air temperatures
and time since formation). Sea ice that has survived at least one
melt season is called old ice (also multiyear or perennial ice) and
usually has a thickness above 2 m. The corresponding codes used
for representing these ice types in the ice charts are 81, 82, 83,

86, and 95, respectively. Monitoring the ice type, and therefore
its thickness, is crucial for marine navigation as thicker ice types
may present hazards for vessels depending on their ice-breaking
grade.

During the melt season, melt ponds form on the surface of
the ice. In addition, the snow on the surface of the ice melts and
creates a wet (moist) layer. The melt ponds and the wet snow
alter the radar backscatter and make automated classification
prone to error, especially when using C-band SAR, as is the
case with Sentinel-1 SAR acquisition. Therefore, we focus on
the freeze-up season in the Arctic for this study and only use
the six images acquired in January, February, March, October,
November, and December of 2018. The acquisition times and the
file names of these images are listed in Table I of Supplementary
Material and their footprint is presented in Fig. 3.

The Sentinel-1 images in this dataset were all acquired in
the EW swath mode with HH and HV co- and cross-polarized
channels. To process the raw images, we first apply radiometric
and orbital corrections on each image, replicating the processes
that are described in the dataset documentation [76]. To mini-
mize the effect of thermal noise on the images, we also apply
the thermal noise removal algorithm provided in the Sentinel
Application Platform (SNAP).? This algorithm, however, does
not sufficiently remove the noise in the HV polarization [see
Fig. 4(b)].

The residual noise can be misclassified as ice artifacts by
automated algorithms [36]; thus, we manually mask patches
with high residual noise. Fig. 4 presents the HV cross-polarized
channel of the image acquired in January in addition to the
denoised version of this channel, as well as the resulting image
after masking noisy patches.

The spatial footprint of these images is approximately 400 km
x 400 km. With a pixel spacing of 40 mx40 m, each image con-
tains approximately 10 000x 10 000 pixels. To prepare samples
and labels for a CNN model, we divide each image into 50 x
50-pixel patches, each covering a 2 km x 2 km area on the
ground. We then align each image with its corresponding ice
chart (by projecting it into the same projection system as the
ice chart), overlay the patches with the ice polygons, and store
the information about the ice types present in the patch once as

3[Online]. Available: https:/earth.esa.int/eogateway/tools/snap
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Footprint of the six Sentinel-1 images used in our experiments. Note that the January and December images have identical footprints that are overlapped,

(a)

Fig. 4.

(b) (©

HYV cross-polarized channel of the January image (file name and acquisition time listed in Table I of Supplementary Material). (a) Raw backscatter values

and (b) denoised version (using SNAP). Note the amount of residual noise still present in (b), especially along subswath edges. To remove the residual noise,
we manually excluded pixels along the subswath boundaries in all images. (c) Image after manual masking. (a) Raw (noisy) image. (b) Denoised using SNAP.

(c) Masked image.

one-hot encoded labels, and once as partial label vectors with
confidence (to be used in the experiments outlined as follows).
To perform a robust evaluation of the models, we only consider
samples where the concentration of the oldest ice type is above
50%, or in other words, the samples where the oldest ice type
is also the most dominant. In addition, to avoid the potential
inaccuracies in labeling areas close to ice polygon borders [36],
we excluded the samples where the distance from the center of
the patch to any polygon border was less than 2 km.

2) Experimental Design: We hypothesize that our proposed
approach in encoding ice charts as confidence-aware partial la-
bels could outperform traditional one-hot encoding alternatives
in training sea ice classification. This is because our approach
capitalizes on all the available information in samples when

training the network. In addition, we posit that integrating
confidence-aware partial labels with the FL will effectively
address the class imbalance issue.

To investigate these hypotheses, we designed a set of experi-
ments to compare the performance of two types of training label
encoding: partial and one-hot encoding. Concurrently, these ex-
periments allow us to evaluate two strategies for mitigating class
imbalance: utilizing CCE loss with class weights or applying FL.

The experiments are divided into two groups based on the
loss function: the first group utilized the CCE loss, while the
second deployed the FL. Within each group, we independently
used partially encoded labels and one-hot-encoded labels to
train separate models, enabling us to scrutinize the impact of
label encoding on model performance. In order to identify the
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TABLE I
SUMMARY OF EXPERIMENTS

Group Loss Function Training Labels Variable Values # of models
1 Categorical Partial Class weights ~ With and w/o class weights 2
Cross Entropy ~ One-hot-encoded ~ Class weights ~ With and w/o class weights 2
Partial Alpha {0.1,0.25,0.5,0.75,0.9} 15
2 Focal Gamma 11.2.5}
One-hot-encoded Alpha {0.1,0.25, 0.5, 0.75, 0.9} s
Gamma {1,2,5}

most effective method for handling class imbalance (outlined in
Section II-B), we conducted each set of experiments in group 1
with and without class weights. Table I presents a summary of
these experiments.

Furthermore, we analyze the sensitivity of the FL to v and
~ hyperparameters for sea ice classification. As such, we adopt
{0.1, 0.25, 0.5, 0.75, 0.9} as potential @ values and {1, 2, 5} as
potential y values. For each set of experiments in group 2 and
for each unique combination of these values, we train a separate
model.

We performed a total of 34 experiments (see Table I), each
corresponding to a CNN model, with different configurations to
reflect the setting of the experiment. We use the Adam method
[77] and a learning rate of 10~ for optimizing the models and
train them for 200 epochs with a batch size of 512. We developed
the models using the PyTorch library [78] and trained them on a
system with dual Nvidia RTX A5000 GPUs, which allowed for
a training time of 20-25 s per epoch.

3) Evaluation: In line with the typical approach in DL eval-
uation, we randomly divided our dataset of 127 K samples into
training, validation, and testing subsets. The ratios for these
subsets were set at 81%, 9%, and 10%, respectively. To evaluate
the performance of our models, we utilized the unseen test set
and computed the following metrics:

TP +TN
TP + FP + TN + FN
l

Weighted Average Precision = Z (
i=1

Accuracy =

®)

n; o TP;
(6)

l
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where n is the total number of samples, / is the number of classes
(six in our experiments), and n;, TP;, TN,, FP;, and FN; are
the number of samples, true positive predictions, true negative
predictions, false positive predictions, and false negative predic-
tions, respectively, for a given class i.

As seen in (6)—(8), weighted average precision, recall, and
F-1 score are weighted by the number of samples (or support)
in each class and, as such, are suitable for our imbalanced
classification task. F-1 score is the harmonic mean of precision
and recall which takes the number of prediction errors as well as
the type of such errors into account. Therefore, in an imbalanced
classification task, F-1 provides a more robust measure of model
performance compared to accuracy. Thus, we use the weighted
average F-1 score as the primary metric to compare our models.

To reduce the stochasticity associated with NN-based models,
we repeated each experiment twice and reported the average
values for each metric. Even though we did not notice a large
variation, we acknowledge that a higher number of repetitions
could result in more robust estimates. In addition to these evalu-
ation metrics, we compare the convergence speed of the models.

III. RESULTS

A. Experiment Group One: Categorical Cross-Entropy Loss

This experiment group consists of models trained with CCE
loss, one-hot or partial labels, and weighted or unweighted
samples. As seen in Table II, leveraging partial labels, instead
of one-hot encoded labels, leads to higher weighted average F-1
scores, regardless of whether class weights are incorporated in
the loss function. It also leads to better or equal performance
across other aggregated metrics. Moreover, the scores are less
sensitive to the use of class weights when partial labels are used.
However, the results are not conclusive in terms of per-class F-1
scores, as using partial labels leads to better F-1 scores in half
of the classes (three of the six in both experiments).

On the other hand, regardless of the method used for encoding
the labels, integrating class weights into the CCE loss yields
lower weighted average F-1 scores. Furthermore, it results in
lower per-class F-1 scores for all classes except YI and lower
performance across all other aggregated metrics.

In addition, the label encoding method makes little differ-
ence in convergence speed when class weights are not used in
minimizing CCE loss (see Fig. 5). This is corroborated by the
performance values in the second and fourth rows of Table II.
Therefore, even though using confidence-aware partial labels in
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TABLE II
PERFORMANCE RESULTS OF THE MODELS TRAINED WITH CCE LosSs

Encodin Class  Training - . Weighted Average Per-class F-1 Score
& Weights Accuracy y F-1 Precision  Recall INL, N, YL, FYI, OI, W]
Yes 63.77 64 59 58 64 [35,7, 51,28, 84, 89]
One hot
No 88.85 87 90 93 87 [89, 13, 49, 63, 84, 91]
) Yes 76.91 68 76 91 68 [83, 4, 44, 68, 86, 83]
Partial
No 89.68 89 91 93 89 [87, 15, 44, 66, 83, 96]

All metrics, except for training accuracy, are measured on the unseen test set.
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tandem with CCE loss leads to improvements in classification
performance, these improvements are marginal.

In our initial experiments, the models in this group did not
seem to converge after 200 epochs. Therefore, to generate Fig. 5,
we trained these models for 300 epochs so that they can achieve
a stable state. However, it is important to note that the results
in Table II are generated after 200 epochs of training in order
to keep the comparison between models of different groups
consistent.

B. Experiment Group Two: Focal Loss

Table IIT presents the performance of the 15 models trained
with confidence-aware partial labels integrated with FL, with
various values of hyperparameters. The model with o« = 0.25
and v = 1 achieved the highest weighted average F-1 score
among all the 34 experiments we carried out across all groups,
confirming our hypothesis that integrating partial labels with FL
achieves the best performance for training sea ice classification
using ice charts as labels. The model with o« = 0.25 and y = 1 also
achieved the highest per-class F-1 score in three out of the six
classes (YL, FYI, and water), as well as the highest test accuracy
and weighted average recall and precision (with precision tied
with five other models). Furthermore, this model achieved a
better per-class recall in four of the six classes compared to
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Training loss and accuracy plots for the first group of experiments (trained with CCE loss). (a) Loss. (b) Accuracy.

the model trained with CCE loss and partial labels and, thus,
provides a more balanced classification as all classes have a
recall of at least 60% (see Fig. 7).

Compared to the model trained with CCE loss and “Class
Weights = No” (the second row in Table II), our best-performing
model achieves improvements in the following metrics: Test
accuracy: 5%, weighted average F-1: 3%, weighted average
recall: 5%, and per-class F-1 score for the following classes:
nilas: 6%, YI: 4%, FYI: 5%, and water 7%.

However, not all models in this group achieve better weighted
average F-1 scores compared to the model trained with CCE loss
and confidence-aware partial labels (the last row in Table II).
This points to the importance of tuning the hyperparameters of
the FL for the specific task, in this case, sea ice classification.
When its hyperparameters are tuned, using FL yields higher F-1
scores (weighted average and per class) compared to the CEE
loss.

Due to space limitations, Fig. 6 only presents the training loss
and accuracy for four of the models from Table III with o €
{0.25,0.5} and v € {1, 5}. Comparing this figure with Fig. 5,
we can observe that the models trained with FL converge to a
stable condition faster than the models trained with CCE loss.

Table III [and Fig. 6(b)] shows that when v = 1, different
« values yield similar training accuracies. Despite a similar
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TABLE III
PERFORMANCE RESULTS OF THE MODELS TRAINED WITH CONFIDENCE-AWARE PARTIAL LABELS INTEGRATED WITH FL

Aloh G Training Test Weighted Average Per-class F-1 Score
pha amma - A ccuracy  Accuracy  F-1 Precision Recall [NL N, YL FYL OL W]
1 98.79 72 77 88 72 [48, 8, 26, 52,79, 84]
0.1 2 98.44 80 83 89 80 [73, 11,29, 50, 80, 90]
5 91.05 68 75 89 68 [50, 3, 38, 39, 80, 82]
1 98.91 92 93 93 92 [89, 19, 53, 68, 82, 98]
0.25 2 98.04 85 88 92 85 [84, 10, 33, 65, 82, 93]
5 92.47 89 91 93 89 [87, 18,47, 61, 81, 96]
1 98.98 89 90 92 89 [89, 24, 49, 58, 76, 96]
0.5 2 98.58 83 87 91 83 [81, 13,33, 61, 83, 92]
5 94.00 84 87 92 84 [82,7, 38, 61, 83, 93]
1 99.29 85 88 92 85 [86, 14, 35, 61, 81, 93]
0.75 2 98.81 86 88 92 86 [87, 12,36, 62, 82, 94]
5 94.80 81 84 90 81 [72, 13,36, 57, 83, 90]
1 99.44 89 91 93 89 [87, 12,45, 64, 81, 96]
0.9 2 99.08 89 90 92 89 [88, 12,39, 61, 82, 96]
5 93.87 73 79 89 73 [60, 6, 36, 55, 82, 84]

All metrics, except for training accuracy, are measured on the unseen test set. The model with the best weighted average F-1 score among

all groups is boldfaced.

Loss Per Epoch

Loss (FL)

Fig. 6.
(b) Accuracy.

performance in training, the test metrics vary as the value of
« changes. This points to the better generalizability of some
models (for instance a = 0.25) compared to others (for instance
a = 0.75) and potentially less overfitting. This can be explained
by reviewing (3), where the value of the FL when v = 1 is
determined by « and (/-p;), or the modulating factor, and the
interaction between these two terms.

Using the same « and ~y values as those used in Table III,
we trained additional models with one-hot encoded labels to
examine the effects of label encoding when integrated with FL
(see Table IV). Comparing each model with its counterpart in
Table III, we can observe that using confidence-aware partial
labels leads to improvement in weighted average F-1 score and
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Training loss and accuracy plots for four of the models trained with confidence-aware partial labels and FL (a € {0.25, 0.5} and v € {1, 5}). (a) Loss.

test accuracy in 9 out of the 15 experiments. More specifically,
we can see that when o € {0.25, 0.5}, the models perform
generally better. Also, within the same range of values for a,
models trained with confidence-aware partial labels outperform
their one-hot encoded counterparts in five out of six experiments.
This is further evidence of the importance of optimizing the
hyperparameter of the FL function with respect to the label
encoding being used.

Fig. 7 presents the confusion matrices for both our highest-
performing model and the traditional model used for seaice clas-
sification, which uses one-hot encoded labels but does not weigh
the loss with class weights. Although the conventional model is
more adept at classifying new ice and YI than our model, it
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Confusion matrices. (a) Model trained with confidence-aware partial labels and FL (v = 0.25, v = 1). (b) Conventional approach in which we used

one-hot encoded labels but did not weigh the loss with class weights (second row of Table II).

TABLE IV
PERFORMANCE RESULTS OF THE MODELS TRAINED WITH ONE-HOT ENCODED LABELS INTEGRATED WITH FL

Alpha Gamma Training Test Weighted Average Per-class F-1 Score
P Accuracy Accuracy F-1 Precision Recall INL, N, YL, FYI, OI, W]

1 94.11 85 87 92 85 [83, 13, 33,59, 82, 94]

0.1 2 97.37 82 83 85 82 [83, 12, 36, 60, 79, 91]
5 93.22 84 86 80 84 [64, 18,47, 52, 80, 89]
1 99.07 84 86 90 84 [78, 10, 37, 56, 81, 93]

0.25 2 98.88 84 87 92 84 [86, 8, 46, 60, 81, 94]
5 94.72 89 91 93 89 [90, 13, 50, 65, 82, 96]
1 99.41 86 88 91 86 [88, 12,36, 59, 81, 94]

0.5 2 98.94 87 88 91 87 [64, 24, 48, 62, 83, 95]
5 93.29 80 84 90 80 [78, 12, 33, 52, 80, 90]
1 99.51 67 72 87 67 [39, 6, 36, 46, 82, 79]

0.75 2 99.47 88 89 91 88 [85, 17,39, 64,79, 95]
5 97.52 82 86 92 82 [83,7, 42,59, 83,91]
1 99.34 88 89 92 88 [87, 15, 35, 58,79, 96]

0.9 2 99.49 81 84 90 81 [77, 17, 30, 53, 82, 90]
5 98.34 84 87 91 84

[87, 20, 33, 53, 79, 93]

All metrics, except for training accuracy, are measured on the unseen test set.

struggles to achieve over 50% recall when identifying nilas and
FYI. This result suggests that the traditional CCE approach may
lack consistency when training sea ice classification models.

It is important to note that while the best model in Table IV («
= 0.25, v = 5) achieves a weighted F-1 score within 2% of the
best model in Table III, the performance of the models trained
with one-hot encoded labels and FL (see Table IV) as a whole is
less consistent compared to those trained with confidence-aware
partial labels. This suggests that leveraging confidence-aware
partial label encoding is advantageous in the context of robust
sea ice classification.

C. Focal Loss Sensitivity Analysis

As the results presented in Section III-B show, the a and
v hyperparameters of FL should be tuned to utilize their full
potential for sea ice classification using Sentinel-1 images. o
adjusts the weight assigned to the rare class(es) and -y determines
how much the loss should be down-weighted for well-classified
examples; therefore, their optimal values depend on the train-
ing dataset and, in particular, on the degree of imbalance and
difficulty in classification among classes. For instance, Fig. 3 in
Supplementary Material shows that nilas and YI classes have a
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higher sensitivity to -y values. This could primarily be explained
by the lower frequency of samples from these classes in our
dataset, which is also inherent in sea ice type classification in
general. The sensitivity to v values, however, is not necessarily
a problem, and rather shows the importance of tuning the FL
for hyperparameters for sea ice classification to achieve optimal
performance. The « and  hyperparameters tune how much
attention the model should pay to the more difficult and less
frequent classes (compared to the easier, more frequent classes).
The results of our sensitivity analysis, presented in Fig. 4 of
Supplementary Material, show that v = 1 or 2 work similarly
well across all « values, but v = 5 consistently underperforms
in comparison. Furthermore, the optimal range of values for
a seems to be € [0.25, 0.75], as values outside of this range
result in lower stability and lower performance, especially on
the test set. Table III further proves this point by providing the
performance of each combination of values on the test set. Our
findings show that the combination of v = 0.25 and v = 1 yields
the optimal results in sea ice classification.

D. Visual Inspection of Out-of-Distribution Samples

Considering the number of scenes available in the Ex-
tremeEarth dataset, leaving an entire scene out (from the freeze-
up season) for testing would lead to an approximate 20% re-
duction in the already-limited number of training samples. It
would also mean that the model would not have seen any samples
from that specific freeze-up month during training. Therefore,
we decided to split the entire sample set into train, evaluation,
and unseen test sample subsets, as mentioned before. The results
provided in Section III-B demonstrate that with a test accuracy
of 92% and a weighted F-1 score of 93%, our best-performing
model can generalize well to unseen test samples. This can
be interpreted as the generalization power of the model when
extrapolating spatially as the test samples were randomly chosen
from one of the six scenes.

To further evaluate the generalizability of our model, we use
it to classify an entirely unseen image from the melt season
and compare its performance against a benchmark model. The
benchmark model is the model presented in the second row of
Table II, which has an identical architecture to our model but is
trained with one-hot encoded labels and CCE loss, which is the
conventional approach in training CNNs on ice charts.

It is important to note that since our model is only trained for
the freeze-up season, samples taken from the melt season can be
considered out-of-distribution samples. This is exacerbated by
the differences in sea ice dynamics and SAR backscatter across
different months and seasons, especially between the freeze-up
and melt seasons. Therefore, we do not expect the models to
achieve high accuracies when generating predictions for images
acquired during the melt season. Yet, this experiment could
provide visual insight into the generalizability of our proposed
approach compared to the conventional approach with limited
training data in the benchmark dataset.

To perform this experiment, we chose the September scene
as the month immediately preceding the training period. Based
on the information provided in the ExtremeEarth dataset user
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instructions [76], the surface air temperature had ranged between
—5 and 5 °C prior to the acquisition of the September image,
which in many areas of the image is above the typical —1.8 °C
freezing temperature that sea ice formation begins. Therefore,
we can assume that it is acquired toward the end of the melt
season.

Fig. 8 provides a visual comparison between the two models
when classifying the September scene. As can be seen in this
figure, neither model performs remarkably well in identifying
the primary ice types [see Fig. 8(c) and (g)]. So, we also com-
pared the model predictions with both the primary and secondary
ice types (SA and SB) in the label ice charts. In this case, we
assume model predictions to be correct if they are equal to
either SA or SB classes provided in the ice charts. When model
predictions are compared to the primary ice type label (predicted
label = SA), the benchmark model achieves an accuracy of 36%,
whereas our model achieves an accuracy of 57%. Alternatively,
when model predictions are compared to either the primary or the
secondary ice type (predicted label = SA or SB), the accuracies
of the benchmark model and our proposed approach are 42%
and 62%, respectively.

This shows that our approach in training a DL model outper-
forms the conventional benchmark by achieving 19% and 20%
improvements, respectively. It is important to note that these
metrics are generated using all the samples from the image (not
just samples where CA>50%).

E. Comparative Analysis

This section presents a comparative analysis of our results
with similar sea ice classification studies. Our selection criteria
for including these studies are as follows: 1) the study must
classify multiple sea ice types (as opposed to binary ice-water
classification or ice concentration classification); 2) it should
exclusively use Sentinel-1 images as input; and 3) it should
employ supervised classification. Boulze et al. [36] considered
four classes in their study (ice free, YI, FYI, and old ice) and
evaluated their model on two datasets. They achieve accuracies
of 90.5% on a dataset of 2018 images and 91.6% on a dataset
of 2020 images. However, to the best of our knowledge, these
accuracies are measured on a validation set as opposed to a
test set. Our model achieved a test accuracy of 92%, which is
higher than both, but underperformed the model developed by
Boulze et al. [36] in per-class accuracy of YI (0.77 versus 0.63),
FYT (0.85 versus 0.68), old ice (0.98 versus 0.82), and water
(0.98 versus 0.96). This could be due to the higher number of
classes in our model, which makes the classification task more
challenging, as well as the finer labels present in our dataset. We
also replicated the architecture used in [36], following the parts
of code available on GitHub and using the same hyperparameters
as those listed in the article and tested it on our dataset. This
model achieved a test accuracy of 70.00%, an average F-1 score
of 72.3%, and per-class F-1 scores of 58.4% for new ice, 9.8%
for Nilas, 42.5% for Y1, 38.6% for FYI, 73.4% for old ice, and
90.7% for water. These are lower compared to our best model
as well as the model trained with partial labels in group one
(with CCE loss). It should be noted that the model proposed by
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Model performances in predicting and entirely unseen Sentinel-1 image from ExtremeEarth dataset acquired in September 2018. (a) Sentinel-1 SAR image

(R: HH channel, G: HV channel, and B: local incidence angle). Subswath edges are manually masked out. (b) Sea ice types generated by our best-performing model.
(c) Prediction errors in (b) against label SA values. (d) Prediction errors in (b) against label SA and SB values. (e) Ice chart label provided in the ExtremeEarth
dataset color-coded using SA. (f) Sea ice types generated by the benchmark model (trained with one-hot encoded labels as CCE loss). (g) Prediction errors in (f)
against label SA values. (h) Prediction errors in (f) against label SA and SB values. The results are highly affected by banding noise in the images. The number of
incorrectly predicted patches is reduced when using partial concentrations integrated with FL and further reduced if either SA or SB is taken as correct label.

Boulze et al. [36] was trained only using HH and HV channels
and has approximately 72K trainable parameters (compared to
25M parameters in our model).

Using the same 2018 dataset mentioned above, Park et al.
[44] trained random forest classifiers using three different fea-
ture configurations (FC), all of which included texture features
derived from Sentinel-1 images. In five-class classification (open
water, new ice, YI, FYI, and old ice), their model achieved an
accuracy of 60% in winter, which is considerably lower than
our model. Their highest per-class accuracy (depending on the
FC) in four of the five classes was lower compared to our model
(0.45 versus 0.93 for new ice, 0.626 versus 0.63 for YI, 0.659
versus 0.68 for FYI, and 0.924 versus 0.96 for water), but their
accuracy for old ice was higher than ours (0.906 versus 0.82).

Khaleghian et al. [79] developed a sea ice classifier based
on the VGG-16 architecture and considered five classes (open
water/leads with water, brash/pancake ice, YI, level FYI, and
old/deformed ice). The authors have reported overall validation
accuracies higher than 99% but have not reported their test or per-
class accuracy, and therefore, direct comparison is not possible.
We were not able to replicate the model used in this study as
the “modified VGG-16" architecture used in it was not publicly
available.

Song et al. [80] used a Sea Ice Residual Convolutional Net-
work, which is based on the ResNet architecture to classify
ice into four classes of (open) water, YI, FYI, and old ice in
Hudson Bay and the Western Arctic. Their best-performing
model trained on a patch size of 57 and optimized with a
multimodel average scoring strategy achieved a test accuracy of
94.05% and per-class accuracies of 97.86%, 79.41%, 92.69%,
and 100%. However, they only used samples where partial

concentration was above 80% and their training dataset was
designed to be balanced. Our overall test accuracy is comparable
with the one achieved in [80] (92% versus 94.05%), but our
per-class accuracies are lower which can be attributed to the
higher number of classes in our study (six versus four) and the
imbalance present in our training dataset. Notably, the authors
in [80] state that “too fine distinction will cause much difficulty
for the classification of sea ice with SAR imagery,” meaning that
increasing the number of classes is expected to drop performance
metrics.

Even though the accuracy of our best-performing model in
classifying FYT is higher than the conventional approach (0.68
versus 0.48), it is still low compared to other recent studies (for
instance, in [32]). We hypothesize that this could be attributed
to the low number of training samples for this class (~8% of the
entire training data) as well as the inclusion of new ice and nilas
classes.

Due to the small size of our public dataset, we only used six
Sentinel-1 scenes for training our models, which is considerably
lower than similar studies. For example, Boulze et al. [36] used
299 scenes, Park et al. [44] used 840 scenes, and Khaleghian
etal. [79] used 31 scenes. We acknowledge that this might make
the model trained here not as generalizable compared to those
mentioned above, but our study and results show the efficiency
of our approach in training with limited samples, which can be
applied to larger datasets.

Finally, it is important to note that achieving an exact, one-
to-one comparison by replicating methodologies from other
studies often proves challenging for multiple reasons. First,
many existing studies on sea ice classification utilize prepro-
cessing and DL frameworks that are not open source, making
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it challenging to replicate methods, such as those used in [79].
Second, the details necessary for training competing methods,
such as sampling strategies and hyperparameters, often remain
undisclosed in similar studies, rendering the exact replication
of these methods impractical without access to such critical
information. As further evidence, the authors in [29] mention
that “it is difficult to compare the presented models’ metric
performance with other recent publications, as different training
and test sets are utilized.” The authors in [30] also state that
“we cannot directly compare our results to other studies, which
frequently use privately owned imagery and labels for training.
Furthermore, the number of ice classes is different in most
studies, and the polygons are drawn with different objectives and
at different sizes, which make comparison difficult.” Therefore,
the comparisons presented in this section should be considered
with caution given these limitations.

IV. DISCUSSION

In Section III-A, we presented the performance of a model
that uses CCE loss and one-hot encoded labels (the conventional
approach in sea ice classification). Even though this model
seemingly achieves a relatively high weighted average F-1 score
and other aggregated performance metrics (the second row in
Table II), the confusion matrix clearly shows that its perfor-
mance is not consistent across different ice types, and it has a
precision of below 50% in classifying both nilas and FYT [see
Fig. 7(b)]. Our approach resulted in a higher weighted average
F-1 score (and higher test accuracy and weighted average recall
while keeping weighted average precision at least as high as
other models) as well as a more consistent performance across
different classes (with a minimum per-class precision of 60%).

There seems to be no noticeable overfitting in the models
presented in Tables II and III (when class weights are not used).
The models presented in Table IV, however, generally demon-
strate overfitting as there is a noticeable difference between the
training and test accuracy in these models. Furthermore, our
best-performing model does not demonstrate strong overfitting.
Our initial experiments showed that including batch normaliza-
tion (BN) in tandem with dropout in the fully connected part of
the network (described in Section II-C) leads to an average of
8% improvement in the test accuracy of the models.

We identified o = 0.25 and v = 1 as the optimal values for
the hyperparameters of FL for sea ice classification. This differs
from the findings of the original FL paper [52], in which the
authors recommend v = 0.25 and v = 2 for general vision tasks
on the COCO benchmark. We acknowledge that our findings are
valid in our study design, and hyperparameters should be tuned
for any specific application.

As mentioned before, we repeated each experiment twice to
reduce the effect of stochasticity. Among all the experiments
we performed, the maximum and average difference between
testing accuracy is 4% and 2.2%, respectively. For the weighted
average F-1 score, the maximum and average differences are 3%
and 1.8%. Weighted average precision demonstrated the lowest
amount of variation with a maximum of 1% and an average of
0.5%. Finally, weighted average recall demonstrated a similar
pattern to testing accuracy.

13629

Regardless of the specific approach used for classification, the
current format of ice chart polygon labels (egg code) presents a
significant challenge for automated algorithms. We mentioned
these challenges in Section I. Our experiments, especially those
presented in Section III-D, provide further evidence for these
challenges. Most importantly, the (usually) large spatial extent
of ice chart polygons and the presence of different ice types
within a polygon mean that one cannot confidently assign the
label of the polygon to its constituting patches, and this would
inevitably lead to label error (noise).

The models trained with partial labels and FL were faster
by an average of 5% in terms of training time compared to
models trained with CEE loss and one-hot encoded labels (21.14
s versus 22.2 s per epoch on average). Using class weights
increased the training time, but not significantly (an increase
of 0.2-0.4 s on average) when other variables were fixed. The
choice of the loss function proved to be the most important factor
in determining the convergence speed; models trained with FL
converged anywhere from 50 to 100 epochs faster compared to
those trained with CEE loss. The label encoding method made
little difference in the convergence speed of the models trained
with either CCE or FL.

We chose the ExtremeEarth v2.0 dataset for its higher spatial
and thematic resolution labels, despite its fewer training data
compared to other datasets such as the ASIP dataset [81] or the
AutoICE Challenge dataset [82].

The higher quality of the partial concentration labels in this
dataset was crucial within our framework as the partial labels are
generated based on partial concentration values. Furthermore,
by using this dataset, we have tried to minimize the amount of
inaccuracy caused by the process described above. This, how-
ever, does not completely remove such a source of uncertainty.
Our method and approach are generalizable and can be applied
to the datasets mentioned earlier as well, as long as partial ice
concentration information is provided.

Moreover, while it is common in the literature to seg-
ment Sentinel-1 images into smaller patches, such as 50x50
patches in this study and [36], 45x45 in [40], and 32x32
in [79], this approach may result in a loss of spatial context
necessary for distinguishing between wind roughening and
sea ice. This justifies a future research prospect in compar-
ing pixel-level semantic segmentation frameworks with patch-
based classification frameworks in the context of sea ice
mapping.

As mentioned in Section I, different ice analysts (or the same
analyst at different times) may have different interpretations of
the same SAR image. This subjectivity reduces the reliability of
sea ice type labels, and could potentially lead to interannotator
disagreement and, in turn, label uncertainty. We acknowledge
that the benchmark dataset used in this study does not provide
interannotator agreement metrics, and therefore, we have not ac-
counted for this potential source of uncertainty in our approach.
DL models, less sensitive to random noise than systematic
biases, minimally affect results if interannotator disagreements
are random. Ice experts typically undergo rigorous training
and coordination, and typically, the work of one ice analyst is
checked and confirmed by at least another analyst before making
ice charts available for use.
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V. CONCLUSION

In this article, we proposed confidence-aware PLL as a novel
approach for training DL classifiers in remote sensing appli-
cations where ground-truth labels are generated at the polygon
level, with multiple candidate labels, each with varying levels of
confidence. We tested our approach on sea ice type classification
task using Sentinel-1 SAR imagery, and by performing 34
experiments, showed that: 1) confidence-aware partial encoding
of the labels leads to better sea ice classification performance
in terms of weighted average F-1 score as well as all other
aggregated performance metrics regardless of the loss function
(see Tables II-1V); and 2) integrating confidence-aware partial
encoding with FL, when the hyperparameters of FL are tuned,
yields better classification performance in terms of weighted
average F-1 score (3% improvement), overall testing accuracy
(5% improvement), and per-class F-1 score (improvement in
four out of six classes) compared to the conventional approach
of using one-hot encoded labels with CCE loss (see Table III
and Fig. 7). By allowing the training labels to be encoded as a
set of candidate labels instead of one true label, our approach
can take advantage of all the information embedded in labeled
(annotated) polygons. By integrating partial labels with FL, it
can (better) deal with the class imbalance, which is a common
issue in real-world remote sensing applications. Finally, by
incorporating the confidence associated with each candidate
label in encoding the partial label vector, our approach can
cope with scenarios where training labels have varying levels
of confidence. Our proposed approach can be beneficial in other
remote sensing applications, such as land use and land cover
mapping, vegetation mapping, or snow cover mapping.

Our best-performing model generates higher accuracies for
FYI, old ice, open water, and nilas classes. The first three classes
are usually of higher importance for operational purposes, e.g.,
in marine navigation, and can potentially contribute to making
shipping in the Arctic safer.

The focus of this work is to show the potential of partial
label encoding combined with FL in a PLL framework com-
pared to the conventional one-hot encoding approach. Our high-
resolution benchmark dataset contained a significantly lower
amount of training data compared to similar sea ice classification
studies using Sentinel-1 SAR. To address the issue with the low
number of training samples, we used a pretrained ResNet-50
network. We hope that the performance gain presented in this
work will encourage readers to consider the proposed framework
in similar applications with more training data.

Future directions include improving melt season classifica-
tion, combining PLL with multilabel learning in applications
where each sample is associated with multiple correct labels
[74], exploring the potential of data fusion, e.g., fusing C-band
SAR images with other sources such as L-band (or X-band)
SAR images [83], [84], and transfer learning across regions and
datasets.
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