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Abstract.—Phylogenomics has the power to uncover complex phylogenetic scenarios across the genome. In most cases, 
no single topology is reflected across the entire genome as the phylogenetic signal differs among genomic regions due 
to processes, such as introgression and incomplete lineage sorting. Baleen whales are among the largest vertebrates on 
Earth with a high dispersal potential in a relatively unrestricted habitat, the oceans. The fin whale (Balaenoptera physalus) 
is one of the most enigmatic baleen whale species, currently divided into four subspecies. It has been a matter of debate 
whether phylogeographic patterns explain taxonomic variation in fin whales. Here we present a chromosome-level whole 
genome analysis of the phylogenetic relationships among fin whales from multiple ocean basins. First, we estimated 
concatenated and consensus phylogenies for both the mitochondrial and nuclear genomes. The consensus phylogenies 
based upon the autosomal genome uncovered monophyletic clades associated with each ocean basin, aligning with the 
current understanding of subspecies division. Nevertheless, discordances were detected in the phylogenies based on 
the Y chromosome, mitochondrial genome, autosomal genome and X chromosome. Furthermore, we detected signs of 
introgression and pervasive phylogenetic discordance across the autosomal genome. This complex phylogenetic scenario 
could be explained by a puzzle of introgressive events, not yet documented in fin whales. Similarly, incomplete lineage 
sorting and low phylogenetic signal could lead to such phylogenetic discordances. Our study reinforces the pitfalls of 
relying on concatenated or single locus phylogenies to determine taxonomic relationships below the species level by 
illustrating the underlying nuances that some phylogenetic approaches may fail to capture. We emphasize the significance 
of accurate taxonomic delineation in fin whales by exploring crucial information revealed through genome-wide 
assessments. [Discordance; fin whale; incomplete lineage sorting; introgression; subspecies; whole genomes.]

Whole genome sequences should, in principle, enable 
the most robust inference of the evolutionary history 
among taxa and thus the elucidation of taxonomic rela-
tionships (Eisen and Fraser 2003; Delsuc et al. 2005; 
Misof et al. 2014; McGowen et al. 2020). However, sev-
eral phylogenomic studies have revealed complex pat-
terns underlying such phylogenies, that is, different 
genomic regions support divergent topologies, which 
in turn is a product of the species’ history (Pamilo and 
Nei 1988; Maddison 1997; Jeffroy et al. 2006). Such 
phylogenetic discordances across the genome have 
emerged in a growing number of studies aimed at infer-
ring taxonomic relationships, especially among closely 

related taxa (e.g., Chen et al. 2019; Meleshko et al. 2021; 
de Jong et al. 2023; Rivas-González et al. 2023; Sørensen 
et al. 2023). A multitude of different processes can result 
in phylogenetic discordance, such as introgression 
and incomplete lineage sorting (Pamilo and Nei 1988; 
Maddison 1997; Jeffroy et al. 2006).

Resolving the phylogenetic relationships among con-
specifics, for example, subspecies, is especially chal-
lenging, and molecular-based phylogenies are often 
the only means available in difficult-to-study species 
lacking obvious geographic, reproductive, or pheno-
typic barriers. Conspecific populations are also sub-
jected to processes that may disrupt phylogeographic 
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patterns, such as introgression and retention of ances-
tral polymorphisms (Pamilo and Nei 1988; Arnold 1993; 
Kutschera et al. 2014; Ge et al. 2022; de Jong et al. 2023; 
Rivas-González et al. 2023). Sex-specific and asymmet-
ric gene flow may further enhance phylogeographic 
discordance resulting in divergent topologies among 
uni-parentally inherited loci (e.g., mitochondrial and Y 
chromosome) and autosomal loci (Lyrholm et al. 1999; 
Petit and Excoffier 2009; Sørensen et al. 2023).

Baleen whales (Mysticeti) are gigantic marine mam-
mals undertaking extensive seasonal migrations 
between high-latitude summer feeding and tropical 
winter breeding areas (Mackintosh 1946; Lockyer and 
Brown 1981; Mizroch et al. 1984). Most mysticete species 
have a cosmopolitan distribution, which is additional 
evidence of their extensive dispersal ability. Mysticetes’ 
extensive capacity for dispersal, in the comparatively 
unrestricted pelagic ocean, likely facilitated introgres-
sion, even among ocean basins (Palumbi and Baker 
1994; Bérubé et al. 1998; Jackson et al. 2014; Stevick et 
al. 2014; Alter et al. 2015). Despite observations of inter-
ocean basin gene flow, some mysticete species have 
been divided into multiple subspecies. Traditionally, the 
Northern and Southern Hemisphere mysticete popula-
tions were assigned to separate subspecies (Lönnberg 
1906; Ichihara 1966; Clarke 2004). In some species, 
additional “pygmy” subspecies have been identified as 
well, mostly in the Southern Hemisphere (e.g., the blue 
whale, Balaenoptera musculus spp., Ichihara 1966).

The fin whale (B. physalus) is the second largest mys-
ticete and was subjected to intense whaling during 
the 20th century across the globe (Rocha, Jr. et al. 
2015). Based on morphological differences in the ver-
tebrae, Lönnberg (1906) proposed that fin whales in 
the Southern Hemisphere be assigned to their own 
subspecies, B. p. quoyi. Consequently, fin whales in the 
Northern Hemisphere were assigned to another subspe-
cies, B. p. physalus. Later, a third, smaller form observed 
in the Southern Hemisphere was nominated as a sub-
species, B. p. patachonica (Clarke 2004). More recently, 
Archer et al. (2013, 2019) proposed a taxonomic revi-
sion of B. physalus spp. based on the phylogeographic 
pattern observed in a phylogeny estimated from com-
plete mitochondrial genomes and 23 autosomal single 
nucleotide polymorphisms (SNPs). Based on fixed dif-
ferences in the mitochondrial DNA, Archer et al. (2019) 
proposed an additional, new subspecies confined to 
the North Pacific, B. p. velifera, constraining B. phys-
alus physalus to the North Atlantic. These intraspecific 
taxonomic divisions have been the subject of debate, 
centering on whether subspecies should be recognized 
based on their phylogeographic pattern (Archer et al. 
2019; Cabrera et al. 2019; Pérez-Alvarez et al. 2021; Buss 
et al. 2023). Cabrera et al. (2019) pointed to the well-
known issues in defining subspecies based solely on the 
phylogenetic topology inferred from the uni-parentally 
inherited mitochondrial genome. The authors addition-
ally pointed to the effect of low sample sizes which may 
erroneously result in monophyly, seemingly supporting 

a distinct phylogeographic division. Such sensitivity of 
the topology in phylogenies inferred from the mito-
chondrial genome clearly illustrates the challenges in 
defining intraspecific phylogenetic relationships in a 
species with a high dispersal capacity in an environ-
ment devoid of physical barriers. The above aspects 
highlight the need for a robust, genome-wide phyloge-
netic assessment of fin whales to enhance research into 
their evolution and systematics, thereby aiding effec-
tive conservation of this charismatic species.

To this end, we employed whole nuclear and mito-
chondrial genome sequences to conduct a phyloge-
netic assessment of fin whales from different ocean 
basins. Here we aimed to fill existing gaps and robustly 
estimate the species’ phylogenetic relationships to a 
chromosome whole-genome level. We subsequently 
evaluated the concordance among phylogenies inferred 
from the autosomal chromosomes, sex chromosomes, 
and the mitochondrial genome. The consensus autoso-
mal genome phylogenetic results revealed strong sup-
port for a phylogeographic structure that aligns with 
the most recently proposed subspecies (see Archer et 
al. 2019). Furthermore, we found discordances between 
the phylogeny inferred from the Y chromosome, the 
mitochondrial genome, and the autosomal genome, 
along with signs of introgression and pervasive phy-
logenetic discordance across the autosomal genome. 
These discordances may be not only due to high levels 
of incomplete lineage sorting, or low phylogenetic sig-
nal but also due to a puzzle of introgression events. Our 
findings suggest a complex phylogenetic scenario in fin 
whale genomes and the potential pitfalls of inferring 
intraspecific phylogenies from a single locus, such as 
the mitochondrial genome, or a few nuclear SNPs. We 
emphasize the importance of correct taxonomic delin-
eation in fin whales, which in turn could affect manage-
ment decisions.

MATERIALS AND METHODS

Sampling and Whole Genome Resequencing

Tissue samples were collected from 3 major ocean 
basins: the North Atlantic (B. physalus physalus), the 
North Pacific (B. physalus velifera), and the Southern 
Ocean (B. p. pathaconica or B. p. quoyi). In the North 
Atlantic, tissue samples were collected along the North 
American eastern sea border (N = 8, Gulf of Maine and 
the Gulf of Saint Lawrence), and Iceland (N = 1). In 
the North Pacific, samples were collected off Kodiak 
Island, along the eastern sea border of the United 
States (N = 6), and in the Gulf of California, Mexico 
(N = 6). In the Southern Ocean, samples were collected 
off South Georgia and the eastern Antarctic Peninsula 
(N = 7). A sample of the most closely related species, 
the humpback whale (Megaptera novaeangliae), served 
as an outgroup. Tissue samples from free-ranging ani-
mals were collected as skin biopsies using a crossbow 
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as described by Palsbøll (1991). Tissue samples were 
stored in 6M saturated NaCl with 25% DMSO and 
stored at −80 °C (Amos and Hoelzel 1991). Genomic 
DNA was extracted using Qiagen DNAEasy™ Blood 
and Tissue Kit columns (QIAGEN Inc., USA) follow-
ing the manufacturer’s protocol and resuspended in 
1XTE buffer (10 mM Tris–HCl, 1 mM EDTA, pH 8.0). 
DNA concentrations were estimated by fluoromet-
ric quantification using a Qubit® 2.0 Fluorometer 
(Life Technologies™). The integrity of the DNA was 
assessed by electrophoresis through a 0.7% agarose gel 
at 175 volts for ~30 min and subsequently visualized 
by staining with ethidium bromide. Library construc-
tion and whole-genome resequencing were conducted 
using the BGI-SEQ 500 (MGI, China) 100 base pair (bp) 
paired-reads manufacturer’s protocols outsourced to 
the Beijing Genomics Institute, Europe. In addition to 
the samples sequenced during this study, published 
raw reads were retrieved from the National Center 
of Biotechnology Information (NCBI) from one North 
Pacific fin whale (NCBI accession code: SRR935201; Yim 
et al. 2014) and eight Icelandic fin whales (NCBI acces-
sion codes: SRR14986187, SRR15013014, SRR15042059, 
SRR15042061, SRR15042062, SRR15042063, 
SRR15048183, SRR15082441; Wolf et al. 2022).

Variant Calling

Raw FASTQ reads were mapped against a male blue 
whale (Balaenoptera musculus) genome assembly (NCBI 
accession code: mBalMus1.pri.v2; Bukhman et al. 
2024) using the BWA mem (v. 0.7, Li and Durbin 2009) 
with default parameter settings. Duplicate reads were 
removed using the MarkDuplicates function in PICARD 
(v. 2.25, http://broadinstitute.github.io/picard/, MIT 
Broad Institute 2021). The Genome Analysis Toolkit 
(GATK, v. 4.1, McKenna et al. 2010) was applied to call 
high-confidence variants from the aligned reads in the 
following manner: alignment files were recalibrated 
using the variant sites called with the highest confidence 
using GATK base recalibration workflow. Variants were 
first called using GATK HaplotypeCaller in reference 
confidence mode (-ERC) emitting intermediate geno-
type files (GVCF) per sample. GATK GenotypeGVCF was 
then used to convert GVCF into variant files. Hard fil-
tering of single nucleotide polymorphisms (SNPs) and 
indels was conducted using GATK SelectVariants and 
VariantFiltration (filtering expression for SNPs: “QD < 
2.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 
|| ReadPosRankSum < -8.0 || SOR > 4.0” / Indels: 
‘QD < 2.0 || FS > 200.0 || ReadPosRankSum < -20.0 
|| SOR > 10.0’). After mapping the highest-confidence 
variants, read alignment files were recalibrated using 
GATK BaseRecalibrator and ApplyBQSR functions. 
After recalibration steps, variant calling was performed 
using GATK HaplotypeCaller in ERC mode, retaining 
all active positions including monomorphic sites (BP_
RESOLUTION and MQ > 30). GATK CombineGVCFs 
and GenotypeGVCF were used to merge genotypes 
for all samples. All GATK steps were conducted per 

chromosome (-L option) and results were combined 
using the PICARD GatherVcfs function.

Mitochondrial Genome Assembly From Whole Genome 
Sequence Data

Whole mitochondrial genome fasta files were 
retrieved directly from the recalibrated read alignment 
files (BAM) using the ANGSD (v. 0.93, Korneliussen et 
al. 2014) -doCounts and -dofasta functions, selecting the 
most frequent allele and a minimum 3-fold read depth. 
In addition to the mitochondrial genome sequences 
generated during this study, a total of 161 sequences 
were retrieved from public repositories (Archer et al. 
2013; Cabrera et al. 2019). MAFFT (v. 7.4, Katoh and 
Standley 2013) alignments were conducted using the 
default parameters (--auto) for 2 datasets: one alignment 
of all available whole mitochondrial genome data, and 
a second, containing only the mitochondrial genomes 
retrieved from the whole genome sequences analyzed 
in this study. Alignments were checked and trimmed 
at both ends using JALVIEW (v. 2.11, Waterhouse et 
al. 2009). IQ-TREE (v. 2.2, Minh et al. 2020) maximum 
likelihood (ML) phylogenetic analyses were performed 
on both alignments using the General Time Reversible 
(GTR) + GAMMA model (Abadi et al. 2019) with 20 ini-
tial topology searches and 1000 bootstraps. The hump-
back whale mitochondrial genome sequence generated 
during this study, as well as a published mitochondrial 
sequence, served as outgroups (NCBI accession num-
ber: NC006927l; Sasaki et al. 2005).

Concatenated Nuclear Autosomal Genome Phylogeny 
Estimation

The phylogeny estimated from the whole autosomal 
genome sequences was based on the 21 fin whale auto-
somal chromosomes. Low-quality sites were removed 
(-MQ, -FORMAT/DP < 3, exclude-types indel, -e F_
MISSING > 0.2, -m 2 -M 2) using BCFTOOLS (v. 1.15, 
Danecek et al. 2011), and the remained sites (includ-
ing monomorphic sites) converted into a PHYLIP-
formatted alignment using vcf2phylip (v. 2.0, Ortiz 2019). 
The PHYLIP-based alignment served as input for esti-
mating an ML phylogeny as implemented in IQ-TREE. 
The GTR + GAMMA model was applied in 20 initial 
topology searches, followed by 1000 (-B 1000) ultra-
fast bootstraps, using the humpback whale genome 
as the outgroup. Y and X chromosome concatenated 
topologies were obtained from the data restricted to 
these genome regions using the BCFTOOLS view tool. 
Chromosome-specific alignment generation and phylo-
genetic estimates were performed as described above 
for the autosomal genome.

Phylogenies Across the Autosomal Genome

Additional phylogenies were obtained across the 
nuclear genome for nonoverlapping windows with 
sizes of 1 M bps, 100k bps, and 50k bps. The windows- 
based analysis for the Y chromosome was restricted to 
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windows of 50k bps and 100k bps due to the chromo-
some size. IQ-TREE ML phylogenies were estimated 
for each window as described above for concatenated 
genomes. The coalescent-based framework imple-
mented in the ASTRAL weighted method (v. 1.15, 
Zhang and Mirarab 2022) was employed to estimate 
a consensus phylogeny for each set of genomic win-
dow sizes. Concordance between the genomic window 
phylogenies with the ASTRAL consensus, concate-
nated autosomal, and mitochondrial phylogenies was 
checked by calculating gene concordance factors (gCFs) 
using IQ-TREE (Ané et al. 2007). The topology weight-
ing test was performed with topology weighting by 
iterative sampling of subtrees in TWISST (Martin and 
Van Belleghem 2017) based on the output phyloge-
nies from the 100k bps window analysis and assigning 
groups according to their sampling origin.

Inter-Ocean Basin Introgression

The possible effects of introgression were investi-
gated using Patterson’s D, also known as D-statistics or 
the ABBA-BABA test (Green et al. 2010; Durand et al. 
2011). First, global D-statistics estimates were conducted 
using the whole autosomal dataset. The input variant 
file was first filtered using BCFTOOLS to contain only 
variable sites (--type snps). D-statistics were estimated 
using D-SUITE (v. 0.4, Malinsky et al. 2021) Dtrios using 
the likely topology inferred using ASTRAL ((North 
Pacific, (North Atlantic, Southern Ocean)), Outgroup). 
Significance was assessed using 1000 Jackknife blocks 
(-k 1000) across the autosomal genome. D-statistics were 
subsequently estimated locally for each of the 100k bps 
genomic windows using Dtrios with default parameters 
and the most likely topology from the TWISST results 
as input tree ((North Pacific, (North Atlantic, Southern 
Ocean)), Outgroup). D-statistics significance values 
for the 100 k bps genomic windows were corrected for 
multiple tests using the Bonferroni correction method 
(Bonferroni 1936) implemented in R (v. 4.1, R Core Team 
2020).

RESULTS

Resequencing and Alignment Metrics

The final data set comprised 38 whole genome 
sequences, of which 29 were generated during the pres-
ent study and nine were retrieved from NCBI. Of 12.2 
billion initial raw FASTQ reads, 10.53 billion passed 
duplicate and quality filters. The average read depth for 
the mitochondrial genomes was 909 (SD 436.5) and the 
mean genome coverage was 99.5% (SD 0.09). The final 
mitochondrial genome sequence alignment comprised 
200 samples and 16,404 sites. The mean autosomal read 
depth was 13 (SD 1.69) and the mean genome coverage 
was 98.07% (SD 0.17) resulting in 2.25 billion (SD 0.025) 
sites in total. After filtering, the final whole autosomal 
genome alignment contained a total of 1.568 billion 

sites with 9,559,510 alignment patterns (Supplementary 
Tables S1, S2). For the Y and X chromosomes, the align-
ment yielded 1,797,065 sites with 46,518 distinctive pat-
terns and 23,828,069 with 232,314 distinctive patterns, 
respectively.

Whole Mitochondrial and Concatenated Nuclear Genome 
Phylogenetic Relationships

We detected 23 novel haplotypes among the 198 mito-
chondrial genomes. The most likely phylogeny inferred 
from the mitochondrial genomes did not align fully 
with ocean basins, as shown in earlier work (Archer 
et al. 2013; Cabrera et al. 2019; Buss et al. 2023). Most 
individual samples were grouped within ocean-specific  
clades, but all ocean basins were polyphyletic. One 
clade, which contained most Southern Ocean samples, 
also included North Atlantic samples, and another clade 
included North Pacific and a Southern Ocean sample 
(Fig. 1). The phylogeny based only on haplotypes from 
the samples with whole genome data yielded a similar 
topology. Polyphyly was also evident in this reduced 
representation phylogeny, where samples from the 
North Pacific and the North Atlantic clustered together 
with samples from the Southern Ocean (Fig. 2a).

The phylogeny estimated from the concatenated Y 
chromosome also contained polyphyletic clades, in 
which individuals sampled in the Southern Ocean 
clustered together within samples from the North 
Atlantic, although sampling was somewhat reduced 
(N = 15) as this assessment was based solely on males 
(Supplementary Fig. S7). In contrast, the concatenated 
phylogeny estimated from the autosomal genome clus-
tered samples in well-supported monophyletic clades 
corresponding to their geographic origin, that is, ocean 
basins. Similar to the whole mitochondrial-based phy-
logeny, the Southern Ocean and North Pacific clades 
were placed as sister groups (Fig. 2b). Within some 
ocean basins, the additional phylogeographic struc-
ture was visible, for example, samples from the Gulf 
of California all clustered together in a distinct, well- 
supported sub-clade within the main North Pacific 
clade, differentiating these samples from the eastern 
North Pacific samples. The best-fitting phylogeny esti-
mated from the concatenated X chromosome genomes 
corresponded to that based on the autosomal genome 
with a clear phylogeographic structure corresponding to 
the oceanic origin of samples (Supplementary Fig. S5).

Consensus and Phylogenetic Signals Throughout the 
Nuclear Genome

As a concatenated phylogeny may not capture dis-
crepancies among different loci (Pamilo and Nei 1988; 
Maddison 1997), we estimated windows-based phylog-
enies across the nuclear genome. Regions were defined 
as non-overlapping, fixed windows of 1M, 100k, and 50k 
bps windows across the 21 autosomal chromosomes for 
which we estimated a total of 2253, 22,405, and 43,629 
maximum likelihood phylogenies, respectively. We first 
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estimated a heterogeneity-sensitive consensus phy-
logeny from all the above window-based phylogenies 
using ASTRAL (Zhang and Mirarab 2022). Irrespective 
of the window size, all ASTRAL consensus phylogenies 
converged onto a similar topology (Supplementary Fig. 
S4) in which clades were monophyletic with respect to 
the oceanic origin of the samples (Fig. 2c). The clade 
containing the Southern Ocean samples appeared as a 
sister clade to the clade with the North Atlantic sam-
ples in contrast to the concatenated phylogenies based 
on the autosomal and the X chromosome. We also per-
formed a similar ASTRAL consensus analysis based on 
windows across the X and Y chromosomes. The X chro-
mosome ASTRAL consensus phylogenies were also 
congruent with the ocean basin origin of samples, that 
is, with an unambiguous phylogeographic structure 
(Supplementary Fig. S6). However, the ASTRAL con-
sensus phylogenies estimated from the Y chromosome 
were polyphyletic with respect to samples from the 
North Atlantic and Southern Ocean (Supplementary 
Fig. S7).

Topology Weighting and Concordance to Phylogeographic 
Structure

Due to the incongruence in the deeper relationships 
among ocean basins in the phylogenies, we performed 
a topology weighting test using the 100k bps window- 
based phylogenies across the autosomal chromosomes. 
The topology with the highest weight value (37%) 
agreed with the ASTRAL consensus phylogeny inferred 
from the autosomal chromosomes, in which the North 
Atlantic and Southern Ocean were sister clades. 
However, weight values were only slightly lower (31%) 
for the topology with the Southern Ocean and North 
Pacific as sister clades, followed by the lowest weight-
ing score (29%) for the topology in which the Southern 
Ocean and North Pacific were sister clades (Fig. 3a, b).

We assessed concordance, that is, gCF, of the windows- 
based phylogenies with the ASTRAL consensus and 
concatenated phylogenies inferred from the entire 
autosomal genome and sex chromosome. A large frac-
tion of the autosomal window-based phylogenies was 

Figure 2.  Maximum-likelihood (ML) phylogenies estimated from mitochondria and autosome genome. Tip shown as circles (North 
Atlantic), squares (Southern Ocean), and triangles (North Pacific and Gulf of California) Detailed phylogenies are available in Supplementary 
Fig. S3, S4. a) ML phylogeny estimated from mitochondrial genomes. b) ML phylogeny estimated from the concatenated autosomal genome. 
c) ASTRAL consensus phylogeny estimated across autosomal genome windows. Values under the nodes represent support estimated using 
IQ-TREE fast bootstrap (a and b) or ASTRAL scores (c). Values above the nodes in parenthesis correspond to gCF results for windows of 50k, 
100k, and 1M bps, respectively. Squares highlight nodes with low support (i.e., < 80/0.8 IQTREE/ASTRAL).
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discordant with the unambiguous phylogeographic 
structure observed in the consensus and concatenated 
phylogenies. The level of windows-based concordance 
with a phylogeographic structure was positively cor-
related with window size (Fig. 3c). For instance, 57.1 
%, 27.4 %, and only 5.7 % of the phylogenies based on 
a 1M bps window supported monophyly for all North 
Atlantic, North Pacific, and the Southern Ocean sam-
ples, respectively. Decreasing window sizes resulted in 
a lower fraction of window-based phylogenies support-
ing monophyletic clades for the ocean basin samples. 
Across all three window sizes, the support was lowest 
for the Southern Ocean, whereas a monophyletic clade 
for the Gulf of California was relatively well-supported 

compared to other deeper nodes. The highest degree of 
concordance with the ASTRAL consensus topology was 
observed in the X chromosome across all window sizes 
(Fig. 3c).

Signs of Introgression

Introgression can result in phylogenetic discordances 
across the genome (Pamilo and Nei 1988; Maddison 
1997). We inferred the degree of introgression from 
global and local estimates of D-statistics. Global D val-
ues indicate introgression between the North Pacific and 
the Southern Ocean (D-statistics = 0.03; Z-score = 16.9, 
P-value = 1e−16). Locally, the inferred D values were low 
and nonsignificant across a large part of the autosomal 

Figure 3.  a) A genome-wide view of the TWISST topology weights results for three different topologies: top; (SOU,(NAT,NOP)), middle; 
(NOP,(NAT,SOU)), and bottom; (NAT,(NOP,SOU)). b) TWISST topology weighting results in percent across the 100K bps autosomal window 
size phylogenies. c) Percentage (based on the gCF results) of window phylogenies supporting nodes with monophyletic clades in terms of 
ocean basin origin of the samples. Top panel: autosomal genome; Bottom: X chromosome. d) Genomic regions (horizontal bars) showing 
significant D-values across the autosomal genome. GOC: Gulf of California, NAT: North Atlantic, NOP: North Pacific, SOU: Southern Ocean.
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genome. Nevertheless, genomic windows with signifi-
cant positive D values accounted for 6.9% of the autoso-
mal genome (Fig. 3d).

Discussion

Here we conducted the first, in-depth, intra-specific 
phylogenetic assessment of a baleen whale based on 
whole genome sequences from multiple ocean basins. 
The concatenated and ASTRAL consensus phylogeny 
based on the autosomal genome sequences placed sam-
ples from each ocean basin in well-supported ocean 
basin-specific, monophyletic clades (Fig. 2b, c). However, 
the support across the autosomal genome for such 
ocean-specific monophyletic clades was much lower 
among the fin whale genomes from the Southern Ocean 
compared to the fin whale genomes from both Northern 
Hemisphere ocean basins (i.e., the North Pacific and the 
North Atlantic, Fig. 3c). One straightforward explanation 
for the substantially reduced phylogeographic structure 
in the Southern Ocean may partially be due to direc-
tional, inter-oceanic introgression, that is, sink-source 
dynamics, after a secondary contact (e.g., introgres-
sion from the Southern Hemisphere into the Northern 
Hemisphere). In addition to introgression, high levels of 
incomplete lineage sorting and a low phylogenetic sig-
nal may also explain the disruption of the unambiguous 
phylogeographic structure.

Phylogeographic Structure

The topology of the phylogeny inferred from the 
mitochondrial genomes in this study largely agreed 
with earlier studies, some of which were comple-
mented with a few nuclear loci (Bérubé et al. 1998, 2002; 
Archer et al. 2013; Cabrera et al. 2019; Pérez-Alvarez et 
al. 2021; Buss et al. 2023). In agreement with Cabrera 
et al. (2019), the new mitochondrial genome haplotypes 
detected in this study revealed all ocean basins to be 
polyphyletic or paraphyletic, contrasting to previous 
work (Archer et al. 2013) and likely a result of a larger 
sample size. The haploid, non-recombining mitochon-
drial genomes introduced into a population may persist 
in the recipient population or disappear altogether due 
to random genetic drift and thus may go undetected if 
low frequencies and sample sizes are insufficient to cap-
ture rare haplotypes (Funk and Omland 2003; Ballard 
and Whitlock 2004).

Notwithstanding the above, both the concatenated 
and ASTRAL consensus phylogenies based on the auto-
somal genomes uncovered a clear phylogeographic 
structure in which samples from each ocean basin were 
monophyletic. This distinct phylogeographic struc-
ture aligns with the most recent proposed subspecies 
in fin whales (Archer et al. 2019), apart from a sub-
division of the Southern Ocean fin whales into B. p. 
quoyi and B. p. Patachonica, as no genetic samples have 
yet been assigned unequivocally to either subspecies. 
We observed some degree of substructure among the 

more recent nodes, possibly indicating a recent diver-
gence within the ocean basin. For instance, samples 
from the highly divergent fin whale population in the 
Gulf of California (Bérubé et al. 1998, 2002; Rivera-León 
et al. 2019) often formed a distinct subclade within a 
larger North Pacific clade (Fig. 2a). Bérubé et al. (1998) 
reported results from a population genetic analysis that 
suggested some degree of divergence between western 
and eastern North Atlantic fin whales. The concatenated 
phylogeny estimated here also supported some degree 
of subdivision between the western and Icelandic sam-
ples in the North Atlantic, albeit with low support in 
the ASTRAL consensus phylogeny (Supplementary 
Fig. S3, S4). We also did not detect any well-supported 
subclades among samples from the Southern Ocean in 
the phylogenies estimated from the whole autosomal 
genomes. The samples from the Southern Ocean in our 
study originated off the Antarctic Peninsula and may 
not represent the entire Southern Ocean. Nonetheless, 
our results were in agreement with previous studies 
focusing on a few autosomal loci with a larger sam-
pling range in the Southern Ocean (Pérez-Alvarez et 
al. 2021; Buss et al. 2023). Although our ASTRAL con-
sensus and concatenated results align with an unam-
biguous phylogeographic structure, they also reveal 
pervasive genome-wide discordances, including dif-
ferences among sex chromosomes, autosomal, and 
mitochondrial genomes. Multiple factors might be the 
underlying mechanism of these discordances, includ-
ing a byproduct of scenarios with introgression, incom-
plete lineage sorting, and/or low phylogenetic signal 
(Pamilo and Nei 1988; Jeffroy et al. 2006).

A Scenario With Introgression

The effective population size (NE) of the haploid, 
maternally inherited mitochondrial genome is four-
fold lower than that of the autosomal nuclear genome. 
Consequently, mitochondrial lineages are expected to 
sort comparatively faster (Rosenberg 2003). If incom-
plete lineage sorting is not the sole underlying cause 
of the observed polyphyly inferred from the mitochon-
drial genomes, introgression may have contributed to 
the observed polyphyly (with respect to oceanic ori-
gin) inferred from the mitochondrial genomes in fin 
whales (Pamilo and Nei 1988; Maddison 1997). Past 
paleoclimatic cycles may have facilitated secondary 
contact between otherwise isolated oceanic populations 
(Bérubé et al. 1998; Palsbøll et al. 2007; Alter et al. 2012, 
2015; Carroll et al. 2019; Cabrera et al. 2022). During 
glacial periods, inter-oceanic gene flow was likely ele-
vated when the ranges of baleen whales were contracted 
towards lower latitudes (Bérubé et al. 1998; Carroll et al. 
2019; Cabrera et al. 2022). In such cases, introgression 
of mitochondrial genomes from larger populations into 
smaller populations will result in sink-source dynam-
ics (Ballard and Whitlock 2004). The work by Cabrera 
et al. (2019) suggested directional introgression of mito-
chondrial haplotypes from the much larger fin whale 
population in the Southern Ocean into the Northern 
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Hemisphere populations. Signs of introgression were 
also detected in the autosomal genome, evident by 
significant D-statistic values at 6.9% of the autosomal 
genomic windows. However, this type of estimation can 
be sensitive to short branch lengths, for example, recent 
radiation events and small population sizes, both of 
which may apply to our study (Zheng and Janke 2018).

We detected phylogenetic discordance among the 
topologies estimated from the mitochondrial genomes, 
the Y and X chromosomes, and the autosomal genome. 
Male-mediated gene flow may yield phylogenetic dis-
cordance between sexual and autosomal chromosomes 
(Yu et al. 2021; Ge et al. 2022; de Jong et al. 2023; Sørensen 
et al. 2023). Many cetacean species display sex-specific 
migratory behaviors, such as well-documented maternal- 
directed philopatry (Clapham and Seipt 1991; Palsbøll 
et al. 1995; Lyrholm et al. 1999; Engelhaupt et al. 2009; 
Baker et al. 2013). Specifically, male-mediated gene flow 
has been suggested in other baleen whales, such as 
humpback whales (Baker et al. 1986, 2013; Palumbi and 
Baker 1994; Amaral et al. 2016), and other cetaceans, 
for example, sperm whales, Physeter macrocephalus 
(Lyrholm et al. 1999). Male-meditated gene flow could 
partly explain the phylogenetic discordances among 
the Y chromosome, X chromosome, and autosomal 
genome in our study. For instance, male-mediated gene 
flow is consistent with the higher degree of phylogeo-
graphic structure in the X chromosome windows-based 
phylogenies detected in this study, as recently observed 
in brown bears (Ursus arctos; de Jong et al. 2023), and 
baboons (Papio sp.; Sørensen et al. 2023). Furthermore, 
polyphyletic clades were only detected in the Y  
chromosome-based consensus and concatenated phy-
logenies. Although the Y chromosome results should 
be interpreted with caution, due to the low sample 
size and nonstandard recombination, the presence 
of polyphyletic clades in the ocean basin with most 
samples, the North Atlantic, suggests putative male- 
mediated gene flow on the species (Supplementary Fig. 
S7). Altogether, sings of introgression in the autosomal 
genome, and the discordance found among sex chro-
mosomes, mitochondrial, and autosomal genome phy-
logenies may indicate a complex introgression puzzle 
in fin whales, with likely periods when bi-parental gene 
flow was prominent, and other periods during which 
male-mediated gene flow might have prevailed (Petit 
and Excoffier 2009; de Jong et al. 2023; Sørensen et al. 
2023). Yet, the observed, pervasive, genome-wide phy-
logenetic discordances could also in part stem from 
incomplete lineage sorting and low phylogenetic signal 
(Maddison 1997; Scornavacca and Galtier 2017; Wang et 
al. 2018; Rivas-González et al. 2023).

Incomplete Lineage Sorting and Low Phylogenetic Signal

Incomplete lineage sorting and low phylogenetic 
signal may also explain the phylogenetic discordances 
across the genomes (Pamilo and Nei 1988; Maddison 
1997). For instance, large fractions of the autosomal 
genome did not support any ocean basin monophyly, 

nor did they show significant signs of introgression (1M 
bps: 32%, 100k bps: 84%, 50k bps: 95%). We observed 
discrepancies in the placement of deeper nodes among 
the mitochondrial, sex chromosomes, and autosomal 
genomes. In addition to that, the topology weighting 
results varied slightly across the autosomal genome, 
where alternative topologies had only marginally lower 
values than the best-weighted topology. Therefore, this 
inability to accurately retrieve the species tree may be 
due to high levels of incomplete lineage sorting and/
or low phylogenetic signal (Kutschera et al. 2014; Wang 
et al. 2018; Meleshko et al. 2021). Across all estimations, 
the highest level of discordance was observed in the 
Southern Ocean. The Southern Ocean fin whales have 
the largest long-term population size and the highest 
genetic diversity, according to Cabrera et al. (2022). 
This results in longer coalescent times, which directly 
increases the likelihood of incomplete lineage sorting. 
The high degree of isolation and smaller effective pop-
ulation size (NE) in the Gulf of California (Rivera-León 
et al. 2019; Nigenda-Morales et al. 2023) implies com-
paratively reduced coalescence times and hence a corre-
sponding higher degree of phylogeographic structure, 
consistent with our results. Processes, such as recombi-
nation, are also positively correlated with NE, which in 
turn increases the degree of incomplete lineage sorting 
(Schierup and Hein 2000; Rivas-González et al. 2023).

We also uncovered high levels of topology discor-
dances among the phylogenies estimated from more 
narrow windows across the nuclear genome. Although 
the different window sizes (1M, 100k bps, and 50k bps) 
all converged onto a similar consensus phylogeny, we 
also observed a positive correlation between window 
size and concordance with the ASTRAL consensus phy-
logeny. Such a positive correlation could simply be due 
to an increase in the phylogenetic signal as more infor-
mative sites are included in each window. The positive 
correlation could also reflect the masked loci-specific, 
discordant, evolutionary histories with increasing win-
dow sizes, as larger windows may reflect the overall 
species history (Maddison 1997; Jeffroy et al. 2006). 
Irrespective of the underlying cause, the results illus-
trate that phylogenies inferred from both single or few 
loci and concatenated genes, that is, the entire autoso-
mal genome, provide somewhat limited insight into the 
different processes driving the species’ evolutionary 
history (Pamilo and Nei 1988; Maddison 1997; Jeffroy et 
al. 2006; Kubatko and Degnan 2007).

Subspecies or Not?

Suppose a phylogeographic structured intraspecific 
phylogeny is employed as means to define subspe-
cies (Moritz 1994). In such a case, our concatenated 
and ASTRAL consensus autosomal genome phyloge-
nies suggest at least 3 fin whale subspecies, each spe-
cific to their respective ocean basins, aligning with the 
subspecies proposed by Archer et al. (2019). These are; 
B. p. physalus in the North Atlantic, B. p. velifera in the 
North Pacific, and B. p. spp. (i.e., B. p. quoyi and B. p. 
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patachonica) in the Southern Ocean. However, if subspe-
cies are defined in this manner, our data suggests the fin 
whales from the Gulf of California should be assigned 
to a separate subspecies as well. The Gulf of California 
fin whales comprise a genetically distinct, small popula-
tion which have been isolated for a considerable period 
(Bérubé et al. 1998; Rivera-León et al. 2019; Nigenda-
Morales et al. 2023). Taylor et al. (2017) emphasized the 
benefits of using subspecies level in cetacean conser-
vation, which includes a possible shift from long-term 
broader to more immediate local actions granted to 
lower taxonomic units. If that is the case in fin whales, 
a shift to subspecies could lead to more effective local 
management efforts in the small population of the Gulf 
of California (Rivera-León et al. 2019; Nigenda-Morales 
et al. 2023).

Our results detected the presence of mitochondrial 
polyphyletic clades, signs of inter-oceanic introgres-
sion (Cabrera et. al. 2022), and high levels of discor-
dance across the autosomal genomic windows to the 
consensus tree. These findings also raise the question 
of whether the notion of subspecies in fin whales is bio-
logically sensible (Rosenberg 2003; Burbrink et al. 2022). 
First, these results reinforce the oft-raised issues in defin-
ing lower taxonomic units from uni-parental inherited 
or non-informative loci (e.g., a few dozen SNPs), espe-
cially in recently diverged taxa with a high dispersal 
capacity in an environment devoid of barriers (Funk 
and Omland 2003; Ballard and Whitlock 2004). Second, 
as a great part of autosomal window phylogenies failed 
to accurately capture the species’ history, these high 
levels of discordance (mostly in the Southern Ocean) 
may indicate recent divergence, hence the lack of taxo-
nomic variation in fin whales (Funk and Omland 2003). 
Third, while an accurate taxonomic delineation is desir-
able (e.g., Shirley et al. 2014; Taylor et al. 2017; Devitt et 
al. 2019), taxonomic inflation can prevent sound con-
servation strategies (e.g., Zink 2004; Berrilli et al. 2024; 
Clavero et al. 2024). Regardless, in-depth studies focus-
ing on extensive sampling (especially in the Southern 
Ocean), robust estimates of divergence times, past and 
contemporary migration rates, and changes in popula-
tion sizes will further enhance our understanding of the 
evolution, hence aid to the systematics of fin whales. In 
addition, the impact of structural and functional inter- 
and intra-specific genetic variance on phylogenetic esti-
mates could help improve phylogenetic assessments in 
the species. For instance, other work has demonstrated 
the role of introgressed genomic regions in driving local 
adaptation (Richards and Martin 2017; Jones et al. 2018; 
Eberlein et al. 2019). Others have demonstrated a posi-
tive correlation between highly recombined regions and 
incomplete lineage sorting (Rivas-González et al. 2023).

Conclusion

Here we shed light on the complex phylogenetic sce-
nario in a baleen whale species with no clear geograph-
ical and reproductive boundaries. We demonstrated 

the potential for whole genome analysis to uncover the 
complexity underlying a single consensus phylogeny 
in a conspecific model. The fin whale consensus phy-
logeny inferred from the autosomal genome revealed 
a phylogeographic structure that aligned with ocean 
basins and thus supported the most recent proposal of 
subspecies in fin whales (Archer et al. 2019). However, 
we also detected phylogenetic discordances when 
comparing the topologies estimated from the mito-
chondrial genomes, the Y chromosome, and among 
different fixed windows in the autosomal genome, 
most likely caused by a degree of introgression, high 
levels of incomplete lineage sorting, and/or low phy-
logenetic signal. We highlight the importance of an 
accurate taxonomic delineation in fin whales, showcas-
ing the inherent issues of phylogenetic inferences and 
taxonomic revisions based solely on organelle genome 
sequences, or uni-parentally inherited and noninforma-
tive loci. Genome-wide assessments hold the potential 
to uncover details of the processes shaping the phyloge-
netic relationships among organisms, such as the effect 
of introgression and incomplete lineage sorting, here in 
one of the most enigmatic baleen whales.
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