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Abstract 
Not all bacteria are fast growers. In soil as in other environments, bacteria exist along a continuum—from copiotrophs that can grow 
rapidly under resource-rich conditions to oligotrophs that are adapted to life in the “slow lane.” However, the field of microbiology is built 
almost exclusively on the study of copiotrophs due, in part, to the ease of studying them in vitro. To begin understanding the attributes of 
soil oligotrophs, we analyzed three independent datasets that represent contrasts in organic carbon availability. These datasets included 
185 samples collected from soil profiles across the USA, 950 paired bulk soil and rhizosphere samples collected across Europe, and soils 
from a microcosm experiment where carbon availability was manipulated directly. Using a combination of marker gene sequencing 
and targeted genomic analyses, we identified specific oligotrophic taxa that were consistently more abundant in carbon-limited 
environments (subsurface, bulk, unamended soils) compared to the corresponding carbon-rich environment (surface, rhizosphere, 
glucose-amended soils), including members of the Dormibacterota and Chloroflexi phyla. In general, putative soil oligotrophs had 
smaller genomes, slower maximum potential growth rates, and were under-represented in culture collections. The genomes of 
oligotrophs were more likely to be enriched in pathways that allow oligotrophs to metabolize a range of energy sources and store carbon, 
while genes associated with energy-intensive functions like chemotaxis and motility were under-represented. However, few genomic 
attributes were shared, highlighting that oligotrophs likely use a range of different metabolic strategies and regulatory pathways to 
thrive in resource-limited soils. 
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Introduction 
In 1991, A.M. Semenov described oligotrophic microorganisms 
as those “that are evolutionarily adapted to exploit ecological 
niches characterized by low substrate concentrations and low 
energy flow” [1]. Compared with copiotrophs that can grow rapidly 
in carbon-rich environments, oligotrophs instead rely on effi-
cient resource use to survive in environments where the sub-
strates required to fuel growth and metabolism are in limited 
supply [2–5]. Dividing bacteria into categories based on general 
life history strategies is not easy, and oligotrophs are no excep-
tion. Rather than representing a discrete category, heterotrophic 
bacteria span a continuous gradient from more copiotrophic to 
more oligotrophic lifestyles [6–9]. Previous studies have mainly 
focused on aquatic systems, where Lauro et al. [10] have estimated  
that oligotrophs dominate. Studies have also been performed 
in soil systems to attempt to identify where specific bacterial 
taxa and/or lineages fall along the oligotrophic to copiotrophic 
spectrum [9]. However, the specific traits and genomic attributes 
that differentiate soil bacteria across this spectrum remain largely 
undetermined. 

Oligotrophic bacteria should be more dominant in soil envi-
ronments with lower concentrations of available organic C [9, 11]. 
We therefore expect that oligotrophs are more abundant in bulk 
than in rhizosphere soils [12], deeper than shallower soils [13], and 
surface soils in systems with low plant net primary productivity 
compared to systems with greater plant-derived organic C [14]. 
However, even soils with high concentrations of organic matter 
could favor oligotrophs if that organic matter is unavailable to 
fuel microbial metabolism, either due to chemical recalcitrance, 
physical protection, or other factors that make organic carbon 
resistant to microbial catabolism [15]. 

We expect that soil environments dominated by more olig-
otrophic bacteria are common. As one line of evidence, consider 
that 35% to 50% of the microbial biomass contained in soils is 
located in subsurface horizons that generally have lower levels 
of available organic carbon compared to surface soils [13, 16–20]. 
Likewise, even at the scale of individual bacterial cells, most of the 
available surface area in soil is not occupied [21]. Finally, consider 
that the generation times of soil bacteria are quite long, on the 
order of weeks [22], highlighting that conditions which we would
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expect to favor oligotrophic soil bacteria are likely the norm, not 
the exception. 

We note that the amounts of available organic substrates are 
not the only factor limiting microbial growth in soil; there are 
abiotic stressors (e.g. low pH, moisture limitation, anaerobic con-
ditions) and disturbances (e.g. predation, drying–rewetting and 
freezing–thawing events) that can also limit microbial growth, 
even in soils where substrate concentrations are high [23, 24]. 
Thus, soils that favor oligotrophic bacteria due to reduced sub-
strate availability can also be environments that might favor bac-
teria tolerant of other abiotic or biotic stressors or disturbances. 
To give one example, hyper-arid desert soils in Antarctica and 
the Atacama Desert typically have low inputs of plant-derived 
organic C, but the microbes living in desert soils also have to 
tolerate conditions of low moisture, high ultraviolet exposure, and 
high soluble salt concentrations [25, 26]. Oligotrophic bacteria, by 
definition, must be able to tolerate environments where organic 
substrate availability is limited, but they may also have to toler-
ate other conditions that could simultaneously act to constrain 
growth in such environments. 

There has been a rapid increase in the availability of genomic 
data from a broad diversity of bacteria, making genomic analyses 
an important strategy to infer the traits and attributes of bacte-
ria, especially when coupled with cultivation-based assessments 
of phenotypes. However, neither genomic information nor well-
characterized isolates are currently unavailable for many soil 
bacterial taxa, even abundant and ubiquitous taxa [24, 27]. We 
would expect oligotrophs to be particularly under-represented in 
pre-existing genome databases and culture collections given that 
they are likely difficult to cultivate using standard approaches 
which typically favor fast-growing taxa that can thrive on rich 
media [2, 5, 28]. While some oligotrophs can be cultivated, most 
notably demonstrated through the cultivation of SAR11 from 
marine waters using extremely dilute media and long incubation 
periods [29, 30], doing so is neither easy nor quick. The under-
representation of oligotrophic bacteria in pre-existing culture 
collections has two important ramifications. First, it means that 
the physiological attributes of oligotrophs have not been as well 
characterized as those of more copiotrophic taxa which are more 
amenable to in vitro study [11]. Second, it means that pre-existing 
genomic databases will be biased against soil oligotrophs as most 
high-quality bacterial genomes are obtained from the sequencing 
of cultured isolates. For example, 70% of the bacterial genomes 
in one of the largest curated genome databases, Genome Tax-
onomy Database (GTDB), are currently from isolates [31]. For 
these reasons, it has remained difficult to identify the genes, or 
gene categories, that may be characteristic of soil oligotrophic 
bacteria and what those genomic attributes could tell us about 
the physiological adaptations of oligotrophic bacteria. 

What are the expected traits of soil bacterial oligotrophs? 
Oligotrophic bacteria that are heterotrophs should be able to 
survive and grow under conditions where metabolizable organic 
substrates are infrequently supplied and/or supplied at consis-
tently low concentrations [1, 2, 4, 5]. We would expect that bacteria 
able to thrive under such soil conditions might share similar 
ecological attributes. Previous research from marine systems have 
identified certain phenotypic traits that have long been thought 
to be characteristic of oligotrophic soil bacteria including (but 
are not limited to) long generation times, low maximal specific 
growth rates (μmax), low maintenance energy requirements, high 
substrate uptake affinities, ability to accumulate intracellular 
storage polymers, smaller cell sizes (high surface area/volume 
ratios), and higher density of transport sites per unit cell surface 

area (and/or low specificity transporters) [1–4, 10, 32–35]. Most of 
these hypotheses regarding oligotrophy-associated traits are sup-
ported by limited evidence and there is considerable uncertainty 
regarding the validity of these hypotheses. For example, Noell and 
Giovannoni [33] proposed that small genome size is associated 
with oligotrophs, while Vieira-Silva and Rocha [32] have argued  
otherwise. A more detailed list of 18 hypothesized genes, gene 
categories, or other genomic features that might be associated 
with more oligotrophic soil bacteria, based on pre-existing work 
focused on soil bacteria and on heterotrophic bacteria found 
in other environments (including marine environments), can be 
found in Table 1. 

Here, we analyzed three independent datasets to test hypothe-
ses about oligotrophic versus copiotrophic soil bacteria. These 
include a “soil profile” dataset of samples collected from 20 soil 
profiles representing distinct soil and ecosystem types across 
the USA [13] and a “rhizosphere” dataset of paired bulk soil 
and rhizosphere samples collected from a range of plant species 
and locations across Europe [41]. For the soil profiles, we used 
depth as a proxy for carbon availability because most fresh C 
inputs are derived from plant litter and root exudates with soil 
microbial biomass, SOC, and respiration rates declining sharply 
with depth [42–46]. We also expected the rhizosphere samples 
to have more available carbon than the corresponding bulk soils 
due to root exudates and rhizodeposition, as has been shown 
previously [12, 47–49]. Thus, we presume that these field datasets 
capture site-specific contrasts in organic C availability (surface 
vs. subsurface soils, and rhizosphere vs. bulk soils); however, we 
recognize that organic C availability is not the only factor that 
can vary with depth or with proximity to plant roots. Thus, we 
also included a third dataset where soil organic C availability 
was experimentally manipulated in the absence of other potential 
confounding factors, amending soil microcosms with glucose over 
a 4-month period [50]. Using DNA sequence information from 
these three datasets, we identified the bacteria that consistently 
have higher relative abundances in soils with more available C 
(surface, rhizosphere, glucose-amended soils) versus soils that 
are likely more C limited (subsurface, bulk, unamended soils). 
Specifically, we aimed to identify putatively oligotrophic bacterial 
taxa and to test the hypotheses outlined in Table 1 regarding the 
genomic attributes previously hypothesized to be associated with 
oligotrophic bacterial heterotrophs. 

Materials and methods 
Sample collection and data acquisition 
Details regarding the soil sampling process and characterization 
of samples included in the “soil profile” dataset are provided in 
Brewer et al. [13]. In brief, they collected 185 soil profile samples 
from 10 different Critical Zone Observatories across the USA. Two 
soil profiles representative of distinct soil types found at each 
Critical Zone Observatory site were sampled in 10-cm increments 
to 100 cm in depth or to refusal. They then conducted marker gene 
sequencing using the 515f/806r primer pair to allow for sequenc-
ing of the V4–V5 region of the 16S rRNA gene. We downloaded 
their raw 16S rRNA gene sequencing data from Figshare at https:// 
doi.org/10.6084/m9.figshare.4702711. 

Details regarding the sampling process and characterization 
of the soils included in the “rhizosphere” dataset can be found 
in Ramirez et al. [41]. To summarize, they collected paired rhizo-
sphere samples and bulk soil samples from under and around 
range-expanding plants across six countries in Europe. Their 950 
samples were also sequenced using the primer pair 515f/806r. We
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Table 1. Genomic characteristics (A), functional gene categories (B), and individual genes (C) that have been hypothesized in previous 
studies as being indicative of oligotrophic bacteria. 

A. Genomic characteristic Hypothesis Reference 

Delta ENC Codon usage bias in highly expressed genes (a proxy for maximum potential 
growth rate) should be lower for oligotrophs 

[32] 

Estimated rRNA operon copy # Oligotrophs, with lower maximum potential growth rates, should have fewer 
rRNA operons 

[3, 32] 

Genome size Oligotrophs have smaller genomes [10] 

B. Functional categories 
Amino acid transport and metabolism Oligotrophs should have more genes associated with amino acid transport and 

metabolism to facilitate the enhanced utilization of proteinaceous substrates 
[36] 

Chemotaxis and motility Sensing and moving is an energetically expensive foraging strategy and should 
be less common in oligotrophs 

[3, 10] 

Lipid transport and metabolism Oligotrophs are expected to be enriched in lipid transport and metabolism genes 
for C storage 

[10] 

Secondary metabolite biosynthesis, transport, metabolism Oligotrophs may have more genes associated with secondary metabolite 
metabolism 

[10] 

Defense mechanisms Oligotrophs should have fewer genes allocating energy to defense [37] 
Transcription Oligotrophs should have fewer genes allocated to transcription [37] 
Signal transduction Oligotrophs should have fewer genes allocated to signal transduction [37] 
Cellular replication, recombination, repair Oligotrophs should have fewer genes and allocate less energy to cellular 

replication, recombination, and repair 
[4] 

C. Specific genes 
Glycine betaine ABC transporter (ProX) Glycine betaine ABC transporters are more abundant in oligotrophs [33] 
RNA polymerase, extracytoplasmic E (rpoE) Transcription factor involved in environmental stress responses should be more 

common in oligotrophs 
[10] 

Trehalose synthase and transporter Universal stress molecule and osmolyte that stabilizes proteins are expected to 
be more common in oligotrophs 

[34] 

Form 1 CO dehydrogenases (coxL) Consumption of CO, even at low concentrations, is beneficial for oligotrophs and 
genes associated with this metabolic pathway will be more common 

[38] 

[NiFe] hydrogenases Genes involved in H2 metabolism, which can serve as an energy source in 
challenging environments, should be more common in oligotrophs 

[39, 40] 

Thiamine biosynthesis Genes related to thiamine biosynthesis should be less common in oligotrophs, 
who gather thiamine from exogenic sources 

[3] 

Poly-B-hydroxybutyrate, polyhydroxyalkanoate Oligotrophs should have more genes associated with poly-B-hydroxybutyrate 
and polyhydroxyalkanoate synthesis to cope with periods of starvation 

[2] 

accessed the raw 16S rRNA gene sequences from the European 
Nucleotide Archive under accession number PRJEB25694 for bulk 
soils and PRJEB25692 for rhizosphere soils. 

Details of the experimental design used for the “microcosm” 
samples are described in Lucas et al. [50]. To summarize, they 
created microcosms (50 g of dry weight soil) from sub-samples 
of a single homogenized surface soil (1–10 cm depth) collected 
from a mixed deciduous forest in Virginia, USA. Weekly addi-
tions of glucose (260 μg C g dry wt soil−1 day−1) were added to 
four of the microcosms over a 117-day period, with five of the 
microcosms receiving only an equivalent amount of water (no 
glucose) over the same 117-day period [50]. DNA extraction and 
amplicon sequencing methods for these samples are described 
in Ramoneda et al. [51]. Raw 16S rRNA sequence from these 
nine “microcosm” samples were downloaded from the European 
Nucleotide Archive (accession number PRJNA1071192). 

Taxonomic analysis via amplicon sequencing 
We processed the 16S rRNA gene sequences from the 185 
“soil profile” samples, the 950 “rhizosphere” samples, and the 
9 “microcosm” samples using the DADA2 pipeline v.1.26 [52]. 
All three datasets were processed independently. For each 
dataset, sequences were quality filtered and clustered into 

amplicon sequence variants (ASVs, 100% sequence similarity), 
with taxonomy determined using a naïve Bayesian classifier 
method [53] trained against the SILVA reference database v.138 
[54, 55]. A minimum bootstrapping threshold required to return a 
taxonomic classification of 50% similarity was used for analysis. 
More details of the specific parameters used can be found at 
https://github.com/fiererlab/dada2_fiererlab. Raw ASV tables for 
each of the three datasets can be found in Dataset S1. 

For the soil profile dataset, we removed samples that did not 
have >10 000 reads (7 samples) which left us with 178 samples 
in total, 139 subsurface (>20 cm depth) and 39 surface soils (0– 
20 cm depth). ASVs associated with chloroplast, mitochondria, 
and eukaryotes (785 ASVs total) as well as those unassigned to 
the phylum level (613 ASVs) were removed. As we were most 
interested in the more abundant and ubiquitous taxa, ASVs with 
<50 reads across all 178 samples were removed (21 570 ASVs) and 
ASVs that were found in <5 profiles were also removed (6012 
ASVs). A total of 12 075 ASVs remained for downstream analyses. 

For the bulk soil and rhizosphere dataset, we only included 
the 929 samples that had >1000 reads for downstream analyses 
(443 bulk soil and 486 rhizosphere samples). ASVs associated with 
chloroplasts, mitochondria, and eukaryotes (2856 ASVs total) as 
well as those unassigned to the phylum level (780 ASVs) were then 
removed. As with the soil profile dataset, ASVs with <50 reads
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across all 929 samples were removed (27 837 ASVs) and ASVs that 
were found in <5 samples were also removed (6533 ASVs), leaving 
a total of 9638 ASVs for downstream analysis. 

For the nine samples from the “microcosm” experiment, ASVs 
associated with chloroplasts, mitochondria, eukaryotes (213 ASVs 
total) as well as those unassigned to the phylum level (26 ASVs) 
were removed. ASVs with <50 reads across the nine samples were 
removed (1288 ASVs) as were ASVs that were found in fewer 
than three samples (162 ASVs). This left a total of 726 ASVs for 
downstream analysis. 

To determine which bacterial taxa are more likely to be found 
in the subsurface soils (n = 39) versus the surface soils (n = 139), 
in the bulk soils (n = 486) versus the rhizosphere soils (n = 443), 
and in the unamended soils (n = 5) versus the glucose-amended 
soils (n = 4), we used Mann–Whitney nonparametric tests cor-
rected for multiple comparisons with Bonferroni tests to com-
pare the relative abundance of each ASV within each individual 
dataset. The relative abundance of each ASV in each sample 
was calculated by dividing the number of reads assigned to that 
ASV by the total number of reads for a sample remaining after 
the filtering described above. Bacterial ASVs that were signifi-
cantly more abundant in the subsurface soil samples (178 ASVs) 
were classified as “subsurface soil-associated” and considered 
more likely to be oligotrophic, while those significantly more 
abundant in surface samples (1271 ASVs) were considered to be 
more copiotrophic. Similarly, bacterial ASVs that were signifi-
cantly more abundant in the bulk soils (2779 ASVs) were consid-
ered more oligotrophic while those that were significantly more 
abundant in rhizosphere samples (1366 ASVs) were considered 
more copiotrophic. Finally, bacterial ASVs that were significantly 
more abundant in the unamended (no glucose) microcosms (169 
ASVs) were considered more oligotrophic while those that were 
significantly more abundant in the glucose-amended microcosms 
(239 ASVs) were considered more oligotrophic. In total, 8658 ASVs 
showed no significant difference in abundance between the sub-
surface and surface soils, 5434 ASVs showed no significant differ-
ence in abundance between the bulk and rhizosphere soils, and 
314 ASVs showed no significant difference in abundance between 
the no glucose and glucose soils. A summary of all bacterial 
ASVs associated with each category per dataset can be found 
in Dataset S2. While 0.20%–3.40% of the ASVs detected across 
the three datasets were identified as archaeal, we focus just on 
bacteria for this study. 

The sequences of the 1449 ASVs that we identified as either 
being subsurface- or surface soil-associated (178 ASVs and 1271 
ASVs respectively) and the 4145 ASVs we identified as either bulk 
soil- or rhizosphere-associated (2779 ASVs and 1366 ASVs respec-
tively) and the 408 ASVs identified as either associated with the 
“no glucose” microcosm soils or the glucose-amended soils (169 
ASVs and 239 ASVs respectively) were matched against the GTDB 
release 207 [31, 56, 57] using VSEARCH v2.22.1 (–strand both – 
notrunclabels –iddef 0 –id 0.97 –maxrejects 100 –maxaccepts 100) 
[58]. If a single ASV matched to multiple GTDB genomes equally, 
the most complete genome with the lowest contamination was 
chosen as the reference. A total of 453 surface-associated ASVs 
and 66 subsurface soil-associated ASVs matched to reference 
genomes in GTDB (Fig. S1). Before any additional analyses were 
performed, we removed reference genomes that matched to both 
categories (surface and subsurface soils) which yielded a total of 
40 unique subsurface soil genomes and 303 unique surface soil 
genomes (Fig. S2, Dataset S3). For the “rhizosphere” dataset, a total 
of 825 bulk soil-associated ASVs and 782 rhizosphere-associated 
ASVs matched to reference genomes in GTDB (Fig. S1), giving us a 

total of 336 unique bulk soil genomes and 592 unique rhizosphere 
genomes (Fig. S2, Dataset S3). Finally, for the “microcosm” dataset, 
a total of 80 ASVs from the unamended samples and 97 ASVs from 
the glucose-amended samples matched to reference genomes in 
GTDB (Fig. S1), giving us a total of 66 and 71 unique genomes for 
the unamended and glucose-amended treatments, respectively 
(Fig. S2, Dataset S3). 

Genomic analyses of representative genomes 
General characteristics of the 1408 genomes representative of 
the inferred copiotrophs and oligotrophs from the three inde-
pendent datasets were compiled from the metadata associated 
with the GTDB reference database release 207 [31, 57]. More 
specifically, we used information about the genome category 
(metagenome assembled genome (MAG) vs. isolate), predicted 
genome size, GC percentage, predicted small subunit rRNA gene 
count, and taxonomy (based on SILVA reference database v.138 
[54, 55]) (Dataset S3). For more information about how the meta-
data were generated by GTDB, see details in Parks et al. [31, 56] and  
https://gtdb.ecogenomic.org/methods. 

To estimate the predicted maximum potential growth rate for 
each of the 1408 reference genomes, we used the tool gRodon2 
on the genome scaffolds downloaded from GTDB following the 
authors’ recommendations for MAGs and genomes as detailed in 
Weissman et al. [59] and  https://github.com/jlw-ecoevo/gRodon. 
The gRodon2 tool estimates maximal growth rates from codon 
usage biases in highly expressed genes, an indicator of selec-
tion for rapid growth [32, 59]. We note that gRodon2 only pro-
vides a prediction of maximum potential growth rates, not actual 
growth rates, and the calculated values are simply estimates 
useful for inferring broad patterns in maximum potential growth 
rates across genomes [59]. 

To determine the functional gene abundances in each refer-
ence genome, we used the blastp function of DIAMOND v.2.0.15 
(-k 1 -e 10-10 –query-cover 90) [60] to annotate the 1408 genomes 
against the database of Clusters of Orthologous Genes (COGs) 
ontology v.2020 [61, 62]. For calculating the abundances of the 
COGs, COG categories, and COG groups listed in Table 1, we  nor-
malized the reads assigned to each of the 4877 individual COGs 
by the estimated genome size for each reference genome and 
gene abundances are presented as reads per million base pairs. 
The abundances of COGs associated with different hypotheses 
were determined by summing the normalized gene abundances of 
each COG or COG category associated with the specific hypothesis 
being tested (Table 1, Table S1). For the 25 COG categories, we 
also followed a method used by Weissman et al. [59]. Briefly, we 
calculated the proportion of COGs associated with each category 
by dividing the number of genes assigned to that category by the 
total number of COGs identified. If a COG was found to be assigned 
to multiple categories, it was counted in each. The abundance of 
each COG in each sample can be found in Dataset S4. 

To determine differences in the genomic characteristics, 
predicted maximum growth rates, abundance of COGs, COG 
categories, and specific functional genes, we used Mann–Whitney 
nonparametric tests corrected for multiple comparisons with 
Bonferroni tests to compare the presence and abundance of 
these features between subsurface soil-associated genomes (40 
genomes) and surface soil-associated genomes (303 genomes), 
between the bulk soil genomes (336 genomes) and the rhizosphere 
genomes (596 genomes), and between the genomes from the 
unamended microcosms (66 genomes) and the glucose-amended 
microcosms (71 genomes). Functional genes and gene categories 
that were significantly more abundant in subsurface, bulk, and

D
ow

nloaded from
 https://academ

ic.oup.com
/ism

ecom
m

un/article/4/1/ycae081/7691754 by N
ational O

ceanic & Atm
ospheric Adm

inistration user on 18 M
arch 2025

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://gtdb.ecogenomic.org/methods
https://gtdb.ecogenomic.org/methods
https://gtdb.ecogenomic.org/methods
https://gtdb.ecogenomic.org/methods
https://gtdb.ecogenomic.org/methods
https://github.com/jlw-ecoevo/gRodon
https://github.com/jlw-ecoevo/gRodon
https://github.com/jlw-ecoevo/gRodon
https://github.com/jlw-ecoevo/gRodon
https://github.com/jlw-ecoevo/gRodon
https://github.com/jlw-ecoevo/gRodon
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae081#supplementary-data


Attributes of oligotrophic soil bacteria | 5

unamended soils were considered to be oligotroph-associated 
traits while those significantly more abundant in surface soil, 
rhizosphere soil, and glucose soil genomes were considered to be 
copiotroph-associated traits. 

Plotting and additional analysis in R 
Supporting analyses were performed in R v.4.2.2 [63]. Statistical 
tests were performed using the base R functions “wilcox.test” 
and the packages “rstatix” (https://github.com/kassambara/ 
rstatix). Plotting was performed using the R packages “ggplot2” 
and “cowplot.” ASV table filtering, stacked bar plots of relative 
abundance, and other ASV-based analyses were performed using 
the R package “mctoolsr” (https://github.com/leffj/mctoolsr/). 

Results and discussion 
Evidence of gradients in organic C availability 
We used three independent datasets that we expect to each 
represent categorical differences in organic C availability and 
thus differences in the predominance of oligotrophic bacteria. 
For the “soil profile” dataset (185 soils from 20 profiles across 
the USA; see Brewer et al. [13]), we first divided the samples into 
those coming from subsurface horizons (20 to 100 cm in depth) 
and surface horizons (top 20 cm). As expected, total organic C 
concentrations were significantly higher in the surface soils than 
in the subsurface soils (Fig. S3), with surface soils having, on 
average, 3.6 times higher organic C concentrations. While we did 
not quantify the fraction of the organic C available to microbes, we 
would expect that the bioavailability of organic C also decreases 
with depth [20, 44, 64]. 

We recognize that there are other abiotic factors that also vary 
with soil depth, including, but not limited to, the availability of 
other nutrients (including N, P), moisture, and temperature. How-
ever, analyses of these same soils [13, 65] have shown that other 
soil variables (including pH) exhibit minimal consistent changes 
with soil depth. Notably, Dove et al. [65] also found that both extra-
cellular enzyme activity and microbial biomass concentrations 
decrease with depth across these samples, further evidence that 
soil profiles represent a gradient in organic C availability, with 
deeper soils being more organic carbon limited and more likely 
to harbor oligotrophic bacteria as compared to surface soils. 

For the “rhizosphere” dataset, we had 950 paired samples of 
bulk and rhizosphere soils collected from a wide range of plant 
species and locations across Europe; see Ramirez et al. [41] for  
details. Data on organic C concentrations were not available for 
these samples, but we expect more organic carbon to be available 
to microbial communities in the rhizosphere. Plant-derived inputs 
of organic carbon into rhizosphere soils has been well described 
[47, 66] and root-associated C fluxes have been shown to be a 
major contributor to soil C pools [67] with rhizosphere carbon 
inputs representing 30%–40% of total carbon inputs to soil, despite 
the rhizosphere being <1% of the world’s total soil volume [48]. 
We also know that the input of C from root exudates can substan-
tially increase microbial biomass and activity in the rhizosphere 
compared to bulk soils [68, 69]. We recognize that the specific 
amounts and quality of organic carbon inputs to the rhizosphere 
will depend on plant species, plant age, soil texture, and other 
factors [70], but previous studies have consistently found evidence 
that supports our designation of bulk soils as being more C limited 
than rhizosphere soils (see refs [12, 47–49] for examples). However, 
we also recognize that there are likely other biotic and abiotic 
factors, in addition to soil C availability, that can differ between 
bulk and rhizosphere soils. 

Given that organic C availability is not the only factor that 
differs between surface and subsurface soils, or between bulk and 
rhizosphere soils, we also included a third dataset that represents 
a direct experimental manipulation of available C in laboratory 
microcosms, with other factors held constant. For this “micro-
cosm” study, four replicate microcosms containing a single soil 
type were incubated for 4 months during which they received 
weekly additions of glucose, with five microcosms containing the 
same soil and incubated under identical conditions, but without 
any glucose added. By comparing changes in microbial communi-
ties across the three independent datasets, we can identify taxa, 
and the traits of those taxa, that consistently differ between soils 
that we would expect to favor more oligotrophic soil bacteria over 
more copiotrophic soil bacteria. 

Taxa consistently associated with soil carbon 
availability 
Bacteria span a continuous gradient from more copiotroph to 
more oligotrophic lifestyles [6, 7], and our data support our ini-
tial hypothesis that oligotrophy is challenging to predict from 
taxonomy alone. Our results are in line with previous work [9] 
highlighting that many taxonomic groups, especially at broader 
levels, can include both more-oligotrophic and more-copiotrophic 
members. 

For the “soil profile” dataset, we compared the abundances of 
the 12 075 ASVs (100% sequence identity) recovered from the 16S 
rRNA gene sequencing effort conducted across all 20 soil profiles, 
comparing surface versus subsurface soils. We identified 178 bac-
terial ASVs that were consistently more abundant in subsurface 
soils and 1271 ASVs that were consistently more abundant in 
surface soils (Fig. 1, Dataset S2). There were more distinct families 
associated with the surface than the subsurface (159 and 82 
families, respectively), a result that is to be expected given that 
we found nearly seven times more surface-associated taxa than 
subsurface-associated taxa. While the bacterial families that were 
most abundant in the subsurface soils (Pedosphaeraceae, uniden-
tified Chloroflexi, unidentified Rokubacteriales, Gemmatimon-
adaceae) were different from those that were more abundant at 
the surface (Chthoniobacteraceae, Chitinophagaceae, Gemmat-
aceae, Pedosphaeraceae, Xanthobacteraceae; see Fig. 1 for more 
details), 31% of the families identified by this analysis (62 of the 
202 total) included ASVs assigned to both the subsurface- and 
surface-associated groups, highlighting that presumably copi-
otrophic and oligotrophic bacterial taxa can be found within 
related groups, a result in line with other studies [9]. 

For the “rhizosphere” dataset, we were able to identify 2779 
bacterial ASVs that were consistently more abundant in bulk soils 
and 1366 ASVs consistently more abundant in the rhizosphere 
soils using the same methods described for the soil profiles (Fig. 1, 
Dataset S2). Similar to the “soil profile” dataset, we found that 
35% of the families identified in our analysis (108 of the 310 
total families) included ASVs assigned to both the bulk soil-
and rhizosphere-associated groups, though there were differences 
in the most abundant families between the two sample cat-
egories: Sphingomonadaceae, Nocardioidaceae, Microscillaceae, 
Chitinophagaceae, and Micromonosporaceae being consistently 
more abundant in bulk soils, and unidentified Vicinamibacterales, 
Chitinophagaceae, Pirellulaceae, Chthoniobacteraceae, and Gem-
matimonadaceae being consistently more abundant in the rhizo-
sphere soils (Fig. 1). 

For the “microcosm” dataset, we identified 169 ASVs that 
were consistently more abundant in the unamended (“no 
glucose”) microcosms and 239 ASVs that were consistently
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Figure 1. Proportion of ASVs inferred to be either copiotrophic or oligotrophic and their taxonomic affiliation at the family level. Results are presented 
for each of the three datasets that were analyzed separately (with results from each dataset separated with the dashed vertical lines). For the “soil 
profile” dataset (left column), we identified 1271 ASVs enriched in the surface soils and 178 ASVs enriched in the subsurface soils. For the 
“rhizosphere” dataset (center column), we identified 2838 ASVs enriched in bulk soils and 1366 ASVs in the associated rhizosphere soils. For the 
“microcosm” dataset (right column), we identified 239 ASVs enriched in the glucose-amended microcosms and 169 ASVs enriched in the unamended 
(no glucose) microcosms. See Dataset S2 for specific details on the ASVs associated with each group. Families were only included if they made up at 
least 2% of the relative abundance of at least one sample category. The size of the bubbles indicates the proportion of the total number of ASVs 
assigned to that taxonomic group. Bubbles are colored based on whether they were identified as being associated with more carbon-rich (rhizosphere, 
surface soils, glucose-amended microcosms) or more carbon-limited environments (bulk soil, subsurface soils, unamended microcosms). 

more abundant in the microcosms amended with glucose ( Fig. 1, 
Dataset S2). Phyla consistently more abundant in the “no glucose” 
microcosms included Firmicutes (26.2% of ASVs), Chloroflexi 
(24.2%), Actinobacteriota (17.2%), Planctomycetota (14.2%), and 
Proteobacteria (10.1%) (Fig. S4). The taxa identified as being con-
sistently over-represented in the glucose-amended microcosms 
were Planctomycetota (31.4% of glucose ASVs), Proteobacteria 
(22.2%), Acidobacteriota (19.7%), and Verrucomicrobiota (13.4%) 
(Fig. S4). Only 22% of the families identified in our analysis (19 of 
the 84 total families) included ASVs assigned to both microcosm 

treatments. The families that were more abundant in the “no 
glucose” microcosms were Ktedonobacteraceae, Planococcaceae, 
Isosphaeraceae, Acidothermaceae, and unidentified Ktedonobac-
terales, while unidentified Tepidisphaerales, Isosphaeraceae, 
Chthoniobacteraceae Acidobacteriaceae, and Gemmataceae were 
more abundant in the glucose-amended microcosms. 

Together, our analyses suggest that, within a dataset, we can 
identify representative taxa that are more likely to be oligotrophic 
(associated with low-carbon soils) or copiotrophic (associated 
with high carbon soils). For example, in the “soil depth” dataset,
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we found that the putatively oligotrophic organisms associated 
with the subsurface, like Dormibacterota, have been described 
in other studies as having functional adaptations to survive in 
challenging, low-carbon environments [13, 71]. However, if we 
compare the putative oligotrophs (associated with subsurface, 
bulk, and “no glucose” soils) and copiotrophs (associated with 
rhizosphere, surface, and glucose-amended soils) across datasets, 
the patterns are more muddled. We did identify some families 
across the two datasets that exhibit consistent patterns; for 
example, Pedospheraceae, Ktedonobacteraceae, and unclassified 
Chloroflexi are more often associated with more carbon-limited 
soils, while Sphingomonadaceae, Chthoniobacteriaceae, and 
Solilrubrobacteraceae are more often associated with the more 
carbon-rich soils. However, many families show contrasting 
patterns across the three datasets. Members of the Chitinopha-
gaceae were frequently identified as being more abundant 
in surface soils and glucose-amended soils, but members of 
this group did not exhibit differential abundances between 
the bulk and rhizosphere soils (Fig. 2). Similarly, members 
of the Gemmataceae, Sphingobacteriales, and Xanthobacte-
riaceae families were identified as putative oligotrophs and 
putative copiotrophs depending on the specific dataset in 
question (Fig. 2). 

Genomic features of oligotrophic soil bacteria 
Given that taxonomic affiliation is not particularly useful for dif-
ferentiating oligotrophic from copiotrophic taxa, we next sought 
to determine if there are genomic attributes that better differenti-
ate these groups. By matching the sequences of the ASVs inferred 
to be more oligotrophic or more copiotrophic from each of the 
three datasets (see above and Fig. 1) against the GTDB [31, 56, 
57], we compiled a dataset of 1408 representative genomes to 
test hypotheses about the genomic characteristics of oligotrophic 
soil organisms (Fig. S1, Dataset S3). For all comparisons described 
below, the representative genomes from the taxa inferred to be 
oligotrophic or copiotrophic were compared within each dataset 
(“soil profile,” “rhizosphere,” and “microcosm”) and not across 
datasets. For details on the numbers of genomes assigned to each 
category per dataset, see Fig. S1 and Dataset S3. 

We found that more of the representative genomes from taxa 
inferred to be oligotrophic from the “soil profile” and “rhizosphere” 
datasets were MAGs (70% for subsurface, 51% for bulk soil) while 
more of the copiotrophic genomes were derived from cultivated 
isolates (62% for surface soils, 90% for rhizosphere soils) (Fig. 2A). 
This same pattern held for the “microcosm” dataset, where 
MAGs constituted a greater percentage (77.3%) of the putatively 
oligotrophic genomes identified as being more abundant in the 
“no glucose” microcosms as compared to the representative 
genomes from taxa enriched in the glucose-amended micro-
cosms (66.2%) (Fig. 2A). The genomes of bacteria inferred to 
be oligotrophs were more often generated through cultivation-
independent methods than the genomes of copiotrophs, a pattern 
expected given the well-recognized challenges of cultivating and 
isolating oligotrophic taxa [29, 30, 72], further highlighting that 
cultivation-based methods are biased toward more copiotrophic 
taxa [4]. 

We found no significant difference in GC content between the 
representative copiotrophic and oligotrophic genomes from the 
“soil profile” dataset (Mann–Whitney U, P = .18), but we did find 
GC content to be significantly higher in copiotrophic genomes 
from the “rhizosphere” dataset (Mann–Whitney U, P < .001) and 
“microcosm” dataset (Mann–Whitney U, P = .01) (Fig. S2). Esti-
mated genome sizes were significantly smaller for oligotrophic 

taxa in the “soil profile” and “rhizosphere” datasets with a similar 
pattern observed for the “microcosm” dataset (though this pat-
tern was not significant, P = .09, Fig. 2B). A “streamlined” genome, 
or reduced genome size with fewer genes, has been presumed 
to be associated with oligotrophic bacteria reflecting reduced 
metabolic costs [28, 73, 74]. As genome reduction has also been 
linked to symbiotic microbial taxa [75], pathogens [76], and other 
ecological strategies besides oligotrophy, we are hesitant to con-
clude that a smaller genome size is a robust indicator of bacteria 
with a more oligotrophic life history strategy. Likewise, we found 
that estimated minimal doubling times (as inferred from analyses 
of codon usage bias; see ref [59]) were significantly longer for 
genomes of oligotrophic taxa than for genomes of copiotrophic 
taxa in two of the three datasets (Fig. 2C), supporting our hypoth-
esis (Table 1). 

Functional attributes of oligotrophic soil bacteria 
We next used the “soil profile,” “rhizosphere,” and “microcosm” 
datasets to test 15 specific hypotheses compiled from the lit-
erature regarding the functional attributes of oligotrophs (see 
Table 1B,C). We compared the abundances of genes associated 
with 25 COG (clusters of orthologous genes) functional cate-
gories between the representative genomes from the inferred 
copiotrophic and oligotrophic taxa identified from each dataset. 
We found that the categories that were enriched in genomes from 
more oligotrophic taxa supported several of the hypotheses out-
lined in Table 1 (Fig. 3). For example, the representative genomes 
from taxa inferred to be more oligotrophic had more genes associ-
ated with amino acid transport and metabolism (COG E) across all 
three datasets. These genes facilitate the enhanced metabolism of 
proteinaceous substrates which is thought to be particularly ben-
eficial in resource-limited environments [36]. We also found that 
oligotrophic genomes had a wider range of metabolic pathways 
related to lipid transport and metabolism, functions that have 
been linked to bacterial C storage (Fig. 3). In contrast, copiotrophic 
genomes were enriched in genes associated with energetically 
costly activities, including chemotaxis and motility, intracellu-
lar trafficking, secretion, and vesicular transport, and cell wall 
biogenesis (Fig. 3) [3, 10, 37]. However, not all the results from 
our comparative genomic analyses supported the hypotheses 
outlined in Table 1. From previous work, we would expect that 
oligotrophs have fewer genes associated with transcription [37], 
but we found that genes associated with transcription were more 
abundant in the representative genomes of oligotrophic taxa 
(Fig. 3A). Notably, we also found many gene categories that exhib-
ited inconsistent patterns across the three datasets. For exam-
ple, we found that genes associated with secondary metabolite 
biosynthesis, transport, and metabolism (COG Q) were enriched 
in copiotrophs from the surface soils, in contrast to expectations 
[10], but these same genes were enriched in the representative 
oligotrophic genomes from the other two datasets (Fig. 3A). We 
observed the same inconsistent patterns across the three datasets 
for several other COG categories (including P, R, S, and X) (Fig. 3A). 

When we examined more specific genes and functions 
that have previously been hypothesized to be associated with 
oligotrophs (Table 1C), we found just one hypothesis supported 
by consistent patterns observed across all three datasets. [NiFe] 
hydrogenase genes, which are involved in trace gas metabolism 
of H2 [38, 39, 77, 78], were more abundant in genomes from 
oligotrophs across all three datasets. The ability to oxidize H2 

has previously been shown to be widespread across soil bacteria 
[40] and particularly important for bacterial survival and growth 
in resource-limited soil environments, including hyper-arid desert
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Figure 2. Characteristics of the genomes representative of bacterial taxa found to be indicative of soils with lower versus higher carbon availability for 
each of the three datasets (in columns, “soil profile” dataset on the left, “rhizosphere” dataset in the center, and the “microcosm” dataset on the 
right—see methods for details). The number of genomes per sample category are indicated at the top of the figure. (A) The origin of the representative 
genomes for each sample category, whether they were derived from metagenome-assembled genomes (MAGs) or from isolates. For each of the three 
datasets, the proportion of genomes derived from MAGs was higher than those derived from isolates in the lower carbon soil environment 
(oligotrophic) than in the corresponding higher carbon soil environment (copiotrophic). (B) Differences in genome sizes across the sample categories 
included in each dataset. Genome sizes were consistently smaller for representative taxa indicative of the lower C soil environments. (C) Estimated 
minimum doubling times of the representative genomes, as inferred using gRodon2 [59]. Minimum doubling times were significantly longer (lower 
maximum potential growth rates) in the subsurface soil genomes compared to surface soil genomes and in the bulk soil genomes compared to the 
rhizosphere genomes. 

soils [ 26] and very young soils found on a newly formed volcanic 
island [79], results that are consistent with our findings. Genes 
for the metabolism of other trace gases do not necessarily show 
the same pattern. For example, Form 1 CO dehydrogenases, which 
facilitate the metabolism of CO, were, on average, more abundant 
in copiotrophs (Fig. 3). 

To summarize, we tested specific hypotheses (Table 1) by com-
paring gene abundances between taxa inferred to be copiotrophic 

from those inferred to be oligotrophic. Although we did find some 
support for specific hypotheses given that the expected patterns 
were consistent across all three datasets, as noted above, the 
differences in gene abundances between inferred copiotrophs and 
oligotrophs were often negligible or inconsistent across datasets 
(Fig. 3). Together, these results highlight that observations from a 
single dataset may not apply more generally. Likewise, some of 
the hypotheses regarding the genomic features that distinguish
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Figure 3. Comparisons of the abundances of 33 gene (COG) categories between the genomes representative of taxa indicative of the subsurface (n = 40) 
and surface soils (n = 303), between the bulk soils (n = 336) and rhizosphere soils (n = 592), and between the unamended (no glucose, n = 66) and 
glucose-amended (n = 71) microcosms. (A) Differences in the average proportion of genes in the more copiotrophic group (Ecopiotrophic) and  the average  
proportion of genes in the more oligotrophic group (Eoligotrophic) for each dataset pair. Negative values indicate gene categories enriched in oligotrophic 
genomes while positive values indicate gene categories enriched in copiotrophic genomes are colored based on which group has a higher proportion of 
those genes (i.e. whether the gene category was enriched in oligotrophic genomes or copiotrophic genomes). (B) Abundances of genes associated with 
the hypotheses outlined in Table 1C. Significant differences in gene abundances between the sample categories within a given dataset are starred 
(Mann–Whitney U, P < .05). Information on individual COGs can be found in Dataset S4. 

copiotrophic from oligotrophic taxa (hypotheses often derived 
from the study of a relatively narrow range of bacterial diversity, 
Table 1) may not be robust when considering the broad diversity 
of bacteria found in soil. 

Hypotheses about oligotrophic bacteria 
To further identify other genomic attributes that may be asso-
ciated with oligotrophic bacteria, we next performed an untar-
geted search for any individual COGs that were consistently more 
abundant in the putatively oligotrophic bacterial genomes across 
all three datasets. We found 103 COGs that were significantly 
more abundant in the oligotrophic genomes and 14 COGs that 
were significantly more abundant in the copiotrophic genomes 
(Dataset S5). The other remaining 4760 COGs were either not 
significantly different between the groups or exhibited differing 
patterns across the datasets. 

We found that over 50% of the individual COGs identified as 
more abundant in the genomes of oligotrophic taxa were assigned 
to six functional categories: translation, ribosomal structure, and 
biogenesis (J); signal transduction mechanisms (T); energy pro-
duction and conversion (C); post-translational modification, pro-
tein turnover, and chaperones (O); amino acid transport and 
metabolism (E); and COGs with general function prediction only 
(R). In contrast, the only COG categories that had more than 
one COG identified as being more abundant in the genomes of 

copiotrophic taxa were COG category L (replication, recombina-
tion, repair, 2 COGs) and COG category S (function unknown, 
6 COGs) (Dataset S5). While these patterns further reveal the 
propensity for oligotrophs to have a wide diversity of genes associ-
ated with energy acquisition, as described in [10], it is noteworthy 
that we observed oligotrophs to have more genes associated 
with translation and post-translational processes. Recent work 
in marine environments has shown that marine oligotrophs in 
resource-limited environments compensate for a lack of tran-
scriptional regulation genes with a greater number of genes asso-
ciated with post-translational mechanisms that modify proteins 
and result in changes in enzyme function [8, 80, 81]. More specif-
ically, we see that many of the COGs that are more abundant 
in oligotrophic taxa are assigned to genes associated with tRNA 
modifications (e.g. COG0336: trmD, COG0820: rlmN, COG0343: 
tgt, see Dataset S5). Post-transcriptional tRNA modification has 
been found to be a moderator of cellular stress responses in 
prokaryotes [8, 82], so the prevalence of these, and other post-
translational genes, suggests these genes may also represent 
adaptations by soil oligotrophs to resource limitation. 

Conclusions 
Our analyses of three independent datasets suggest that there 
are particular bacterial taxa that are consistently associated with 
more carbon-limited environments. However, we also identified
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a wide range of taxonomic groups that include members with 
distinct, or inconsistent, life history strategies. Likewise, there 
were relatively few genomic attributes that were consistently 
associated with taxa inferred to be either copiotrophic or olig-
otrophic. Several of the hypotheses regarding the attributes of 
oligotrophic bacteria, hypotheses derived from previous stud-
ies, were supported by our analyses, including our finding that 
soil oligotrophic bacteria typically had smaller genomes, lower 
maximum potential growth rates, enrichment for gene pathways 
that confer metabolic flexibility, and more genes associated with 
post-translational processes. However, we note that many of the 
functional genes and genomic attributes that we found to differ 
between inferred oligotrophs and copiotrophs were not consistent 
across the three datasets, suggesting that there is a diverse array 
of ecological strategies used by soil bacteria to cope with reduced 
carbon availability. There is no single way to be an oligotroph. 
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