
Contribution to the Themed Section: ‘Science in support of a nonlinear non-equilibrium
world’

Food for Thought

Frequently asked questions about nonlinear dynamics and
empirical dynamic modelling

Stephan B. Munch1*, Antoine Brias 1, George Sugihara2, and Tanya L. Rogers1

1Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, CA 95060,
USA
2Scripps Institution of Oceanography, University of California, La Jolla, CA 92037, USA

*Corresponding author: tel: 831-420-3909; e-mail: steve.munch@noaa.gov.

Munch, S. B., Brias, A., Sugihara, G., and Rogers, T. L. Frequently asked questions about nonlinear dynamics and empirical dynamic
modelling. – ICES Journal of Marine Science, 77: 1463–1479.

Received 14 December 2018; revised 24 September 2019; accepted 8 October 2019; advance access publication 26 November 2019.

Complex nonlinear dynamics are ubiquitous in marine ecology. Empirical dynamic modelling can be used to infer ecosystem dynamics and
species interactions while making minimal assumptions. Although there is growing enthusiasm for applying these methods, the background
required to understand them is not typically part of contemporary marine ecology curricula, leading to numerous questions and potential
misunderstanding. In this study, we provide a brief overview of empirical dynamic modelling, followed by answers to the ten most frequently
asked questions about nonlinear dynamics and nonlinear forecasting.
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Introduction
Ecosystems are complex systems consisting of many species inter-

acting with one another and the environment. Ecology, as a sci-

ence, seeks a quantitative understanding of these relationships

through observations, experiments, and theory, but many serious

challenges inhibit this pursuit. Most basically, many of the rele-

vant species or variables in an ecosystem may go unobserved be-

cause they are unknown and/or difficult to measure. Uncertainty

about the relevant variables may arise in part because in complex

nonlinear systems like ecosystems, causes and effects can appear

decoupled (i.e. lack of correlation between variables does not im-

ply lack of a causal relationship; Sugihara et al., 2012). Finally, be-

cause experiments are not always feasible at the relevant spatial

and temporal scales, our understanding of ecosystems is often

limited to that which can be built from field observations, forcing

us to confront the uncertainties mentioned earlier.

We typically try to identify relevant variables and understand

how they relate to each other by looking at correlations or

regressions between candidate pairs of variables. Under this

scheme, the relationships between variables are assumed to be

constant and independent of each other, e.g. competition be-

tween two species will manifest as a constant negative correlation

that is independent of changes in underlying resource availability.

The ubiquitous deviations from idealized lines and curves (the

scatter around correlations, linear and otherwise) are typically

regarded as noise and an unavoidable part of reality. While ex-

tremely useful for simple physical systems and for controlled

experiments, regarding natural ecosystems in this way may actu-

ally inhibit our understanding if ecological dynamics are nonlin-

ear (i.e. pairwise associations are not independent of each other)

and not constant (i.e. the system is not in static equilibrium).

The “dynamical systems” perspective offers an alternative and

more holistic view of ecosystems. It does not assume constancy or

separability of ecosystems into independent components with

fixed relationships. It begins by thinking of each species, nutrient,

environmental driver, etc., as a state variable or coordinate that
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defines a so-called “state space,” which frames the system. Thus,

the number of coordinates or dimensionality of the state space

reflects how many species or environmental drivers there are. A

point in the state space corresponds to the current state of the sys-

tem and the location of this point changes through time according

to the rules governing the system dynamics. This traces out a tra-

jectory: a rendering of the system dynamics where, depending on

the location in state space, pairwise relationships among coordinate

variables may change through time. The “attractor” is the set of

values in the state space towards which this trajectory tends to con-

verge. Under this dynamical systems viewpoint, deviations from

simple curves may not actually be “noise” but may represent deter-

ministic dynamics, where the apparent noisiness results from varia-

bles that were simply not taken into account.

Viewing ecosystems in this way allows us to leverage some

powerful mathematical concepts from dynamical systems theory.

These concepts are particularly useful in cases where we lack

observations on all of the relevant variables, we do not know (but

would like to know) which of the observed variables are relevant,

and/or we do not know how the relevant variables interrelate.

These are, of course, incredibly common problems in ecology.

Nonlinear time series methods, such as empirical dynamic

modelling (EDM, also referred to as methods for state-space re-

construction, attractor reconstruction, time-delay embedding,

and nonlinear forecasting), provide a path to understand dynam-

ics that can be used to gain insight into how ecosystems work as

well as to make accurate out-of-sample forecasts about future

ecosystem states (e.g. Fogarty et al., 2016). Nonlinear time series

methods were used early on by Schaffer and Kot (1986) to con-

struct classical unimodal maps, but the idea to reconstruct attrac-

tors to recover hidden variables and make forecasts was

introduced to ecology by Sugihara and May (1990). This followed

seminal studies by May (1976) and others establishing the poten-

tial for deterministic chaos to arise in nonlinear models of ecolog-

ical dynamics, offering an explanation for the complex dynamics

observed in nature, and heralding searches for chaos in empirical

data (Hastings et al., 1993; Ellner and Turchin, 1995). Early appli-

cations of nonlinear forecasting in ecology found these techniques

to be especially useful for understanding ecological dynamics,

provided time series of sufficient length (Grenfell et al., 1994).

While several seminal studies have established that chaos occurs

in both laboratory and natural populations (Costantino et al.,

1997; Becks et al., 2005; Graham et al., 2007; Benincà et al., 2008,

2015), other authors have concluded that chaos is rare in ecology

(Berryman and Millstein, 1989; Upadhyay et al., 1998; Sibly et al.,

2007) and that ecological time series were too short, noisy, and

non stationary for nonlinear time series methods to be of much

use (Hsieh et al., 2008). Although model-based inference and pre-

diction remain the norm (Dietze, 2017), their lack of perfor-

mance, especially in fisheries contexts (Glaser et al., 2014), has

increased interest in methods such as EDM. And while EDM has

yet to become mainstream, recent work has demonstrated its util-

ity in a wide range of ecological applications (Deyle and Sugihara,

2011; Sugihara et al., 2012; Benincà et al., 2015; Tajima et al.,

2015; Ye et al., 2015; Deyle et al., 2016a; Munch et al., 2018).

There are, of course, many other approaches to ecosystem forecast-

ing (Dietze, 2017). For example, dynamic linear models (West and

Harrison, 1997; Stow et al., 1998), extended or unscented Kalman fil-

ters (Wan and van der Merwe, 2001; Lillacci and Khammash, 2010),

and more general hidden Markov models (Morales et al., 2004;

Fukaya and Royle, 2013) and data assimilation methods (Luo et al.,

2011; Niu et al., 2014; Massoud et al., 2018; Dietze, 2017) are widely

used to understand and predict ecological dynamics. These methods

are particularly powerful when the parametric model structure is a

good approximation of the real dynamics. However, a complete de-

scription of these methods is beyond the scope of this article.

Although nonlinear time series methods are being used with

increased frequency, we suspect that their adoption in ecology is

hampered by the fact that the mathematical foundation required

to understand them, which is rooted in dynamical systems theory

and topology, can be difficult to penetrate. However, the resulting

murk generally follows a few common channels, epitomized by a

suite of frequently asked questions. The purpose of this Food for

Thought essay is to dispel some of the mystery surrounding EDM

by providing answers to these questions.

In this study, we begin with a brief, but novel, description of

the modelling approach and then address ten of the most com-

monly asked questions about nonlinear dynamics (Questions 1–3)

and nonlinear forecasting using EDM (Questions 4–10). These are

the questions that are almost always asked following our talks on

EDM. Although we cite relevant literature throughout, we have fo-

cused on providing answers rather than a comprehensive review

[but see Chang et al. (2017) for an excellent overview]. The answers

to each question are more or less self-contained; rather than read-

ing from beginning to end, the reader is encouraged to skim the

questions and decide which seem the most relevant. This article is

intended for quantitative ecologists who, like the authors, are not

theoreticians with formal training in dynamical systems theory but

are learning it as they go. To this end, a glossary of the mathemati-

cal jargon is provided in the supplement and verbal arguments and

simulations are used to illustrate our answers rather than formal

proofs. To keep the background a manageable length, we defer to

the supplement extended descriptions of attractors, Lyapunov

exponents, and the connection between discrete- and continuous-

time approaches. For further information, Alligood et al. (1996)

provide an excellent introduction nonlinear dynamics and chaos.

For specific information on code implementing EDM, the inter-

ested reader is encouraged to consult the rEDM package and its

documentation (Ye et al., 2018).

Background
Let us say we have an ecosystem consisting of M different “state

variables.” The state variables could represent the population den-

sity of M different species, or the concentrations of M different

nutrients. They could also represent the density of just one species

in M different locations. More likely, the state variables represent

some combination of population densities, nutrients, and abiotic

factors in several different locations. If we use x1;t ; x2;t , . . ., xM ;t to

represent the value of all state variables at time t, then the vector

xt ¼ fx1;t ; x2;t ; . . . ; xM ;tg represents the state of the system. As the

system changes through time, the result is a trajectory through this

state space. Apart from transients and random perturbations, the

trajectory for most systems of interest will converge to an attractor,

e.g. a point, a closed loop, or a more complex shape. More com-

plex shapes arise when the dynamics are “chaotic.” In this case, tra-

jectories that are initially close together tend to diverge at a rate

governed by the dominant Lyapunov exponent, though they ulti-

mately remain on the attractor.

We can describe the dynamics of the system in discrete time by a

set of coupled equations. Since there are M state variables, there are

M different “maps,” i.e. discrete-time models, each of which is a

function of the current system state. That is, x1;tþ1 ¼ F1ðxt Þ;
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x2;tþ1 ¼ F2ðxt Þ, etc. The notation xtþ1 ¼ Fðxt Þ is shorthand for

this collection of equations. In the supplement, we describe the con-

nection between this discrete-time model and its analogue in contin-

uous time.

If we have data on all of the state variables over a wide enough

range of values, we can empirically estimate the functions Fiðxt Þ
from the data. As an example of this idea, Figure 1 shows

abundance time series for a single species in a two-site meta-

population system. Plotting the future population size in each

location as a function of the current population size at both loca-

tions reveals that there is smooth function governing the

dynamics. This function can be estimated using any number of

flexible, non-parametric regression approaches (e.g. splines, neural

networks, or Gaussian processes). Use of this empirical,

non-parametrically estimated map to make predictions and infer-

ences about the dynamics is one of the core ideas of EDM

(Sugihara and May, 1990; Sugihara et al., 2012; Chang et al., 2017).

Unfortunately, it is almost always the case that we only have meas-

urements on a subset of the relevant state variables and that the true

dimensionality of the system, M, is effectively unknown. To make this

explicit, we split the state variables xt into the following two subsets:

yt ¼ fx1;t ; x2;t ; . . . ; xO;tg representing the observed state variables

and zt ¼ fxOþ1;t ; . . . ; xM ;tg containing the remaining unobserved

state variables. We rewrite the dynamics as follows:

ytþ1 ¼ Fðyt ; zt Þ; (1)

ztþ1 ¼ Gðyt ; zt Þ; (2)

where F represents the maps for the observed states (1 through

O) and G represents the maps for the unobserved states (Oþ 1

through M). There is more than one way to proceed in this situa-

tion, including (i) modelling only the observed states and treating

the unobserved states as process noise, (ii) implicitly accounting

for the unobserved states using time lags (Deyle et al., 2013;

Munch et al., 2018), or (iii) modelling the complete dynamics

and imputing the unobserved states using a hidden Markov ap-

proach e.g. Morales et al. (2004). As there are several good books

on hidden Markov models for ecologists (Ruth King et al., 2010;

Dymarski, 2011; Newman et al., 2014), we focus here on the first

two approaches.

Process noise
The most commonly adopted approach is to focus solely on modelling

the observed states, implicitly treating the unobserved state variables as

noise. To do so, we replace our deterministic model with an approxi-

mation incorporating process uncertainty. The standard approach

would be to use something like yi;tþ1 ¼ F̂ iðyt Þ þ ei;t where ei;t repre-

sents the process noise affecting the ith observed state variable.

We can explicitly connect this model with process noise to (1)

via a first-order approximation around the mean of the unob-

served states:

yi;tþ1 � Fiðyt ; �zÞ þ
XM

j¼Oþ1

@Fi

@zj

ðzj;t � �z jÞ ; (3)

from which we can see that the variance in the process noise is

approximately,

Figure 1. Empirical dynamics of a single-species, two-location population model when all state variables are observed. (a) Time series of
simulated abundance for sites 1 (y) and 2 (z). (b) The next population size at site 1 as a function of current population sizes at sites 1 and 2.
The points represent the simulated data as plotted in panel (a). The surface is estimated using a Gaussian process regression (Munch et al.,
2017). (c) Same as in (b) but for the next population size at site 2.
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Varðei;t Þ �
XM

j¼Oþ1

@Fi

@zj

 !2

VarðzjÞ:

In some sense, this approximation is almost unavoidable in

ecology, but it is something we rarely make explicit. Importantly,

doing so reveals that the quality of the approximation depends

on both the variance in the unobserved variables through time

(VarðzjÞ) and the sensitivity of the observed state variables to

changes in the unobserved ones @Fi

@zj

� �
.

As a simple example of this approach, we return to the two-

location system from Figure 1 where only the abundance in site 1,

y, is measured. The complete dynamics are as follows:

ytþ1 ¼ ð1�m1Þyt er1�yt þm2zt er2�zt

ztþ1 ¼ ð1�m2Þzt er2�zt þm1yt er1�yt :

Since we only have data for site 1, we might fit a model of the

form ytþ1 ¼ yt er̂�ytþet where the apparent growth rate implicitly

includes migration, i.e. r̂ ¼ r1 þ lnð1�m1Þ and the noise term is

driven by immigration from site 2. Fitting this model to some

data generated with (4) looks pretty good by ecological standards

(Figure 2a). However, as we will see, it is possible to do much bet-

ter in this case.

Delay embedding
Rather than treating the unobserved variables as noise, we could

make use of Takens’ theorem of time-delay embedding (Takens,

1981). Briefly, Takens’ theorem says that if the trajectory of an au-

tonomous deterministic system fy1; y2; . . . ; yMg converges to an

attractor, and the dimensionality of the attractor (d) is less than the

dimensionality of the system (M), then we only need data on the ob-

servable variables fy1; y2; . . . ; yOg to fully reconstruct the system

dynamics. Specifically, we can faithfully reconstruct the attractor us-

ing time lags of the observed variables as a synthetic coordinate sys-

tem, provided that the number of time lags (delay coordinates) used

is > 2d. In its original form, Takens’ theorem uses lags of only a

single observable variable fyi;t ; yi;t�s; yi;t�2s; . . . ; yi;t�Esg to recon-

struct the attractor, where s is the “time delay” and E ð� 2dÞ is the

“embedding dimension.” This result was later generalized to include

externally driven (Stark, 1999) and stochastic systems (Stark et al.,

1997; Kantz and Schreiber, 2003). Mixtures of time delays can be

used to account for multiple time scales (Judd and Mees, 1998) and

(Munch et al., 2017) used automatic relevance detection (Neal,

1997) to select relevant lags. Reconstructions from multiple variables

(Deyle and Sugihara, 2011; Ye and Sugihara, 2016) can improve pre-

diction and facilitate the inference of different mechanisms (Deyle

et al., 2016b). Takens’ theorem is a deep mathematical result with

far-reaching implications. Unfortunately, to really understand it, it

requires a background in topology.

We can, however, build intuition for how lags implicitly ac-

count for unobserved state variables. To do so, shift the map for

the unobserved states back by one time step and substitute this

into the dynamics for the observed states. That is, plug zt ¼
Gðyt�1; zt�1Þ into (1) to get ytþ1 ¼ F½yt ;Gðyt�1; zt�1Þ�. Now, if

we are very lucky, we can solve (1) for the unobserved states and

obtain an equation of the form zt�1 ¼ Uðyt ; yt�1Þ. Substituting

this in for zt�1, we find

ytþ1 ¼ Fðyt ; zt Þ ¼ Fðyt ;G½yt�1; zt�1�Þ
¼ Fðyt ;G½yt�1;Ufyt ; yt�1g�Þ: (5)

We now have a new map for ytþ1 that is a complete description

of the dynamics that depends only on fyt ; yt�1g; no information

about z is required.

If it is not possible to solve for zt�1 using one lag, we can push

z back in time another step, i.e. zt�1 ¼ Gðyt�2; zt�2Þ to get

ytþ1 ¼ Fðyt ;G½yt�1;Gfyt�2; zt�2g�Þ. Obviously, we can continue

in this way indefinitely and keep going until we have enough in-

formation to write zt�E � Uðyt ; yt�1; . . . ; yt�EÞ. We may not be

able to solve for zt�E exactly, but we can think about this as an

approximation analogous to (3). In this case, the quality of the

approximation depends on how sensitive ytþ1 is to zt�E and on

the variance in zt�E conditional on fyt ; . . . ; yt�Eg. If having more

information about past values of y reduces the variance in zt�E ,

we can expect including lags in the model to reduce the

(a) (b) (c)

Figure 2. Empirical dynamics of a single-species, two-location population model when only one site is observed. (a) Approximate dynamics
using a 1-d model (black line). The next population size at site 1 is plotted as a function of the current population size at site 1. The points
are the simulated data. (b) Dynamics using a 2-d delay-coordinate model. The next population size at site 1 is plotted as a function of the
current and previous population sizes at site 1. (c) Multi-step prediction using the 1-d approximation (black line) and the delay-coordinate
model (grey line). The horizontal axis is the number of steps into the future we are trying to predict. The vertical axis is the mean squared
prediction error, i.e.

P
t ðŷtþs � ytþsÞ2=N. The sum is obtained by making predictions s steps ahead starting from each point in the time

series shown in Figure 1.
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prediction error for the observed variables. If the true system is

deterministic and we have unlimited quantities of noise-free data,

this conditional variance, and hence the prediction error, will go

to zero. In real life, we can expect including lags to reduce the

prediction error down to some finite limit.

We do not intend this as a proof of Takens’ theorem or a com-

plete statement about the implications of time-delay embedding.

Nevertheless, this line of thinking should provide some intuition for

why it is possible to reconstruct the dynamics of a system using delay

coordinates. The practical upshot is that the same function approxi-

mation tools that we would use to estimate F in the case where we

had a complete state vector can now be used to estimate the map in

delay coordinates. Making use of time lags to implicitly account for

unobserved state variables is the second core idea of EDM.

Returning to the two-site illustration, we can use the shift-and-

substitute recipe to find the unobserved variable (z) as a function of

the observed variable (y), i.e. Zðyt ; yt�1Þ ¼ ð1� 1=m2Þytþ
ð1� ð1�m1Þ=m2Þyt�1er1�yt�1 , and use this to rewrite (4) as

ytþ1 ¼ ð1�m1Þyt er1�yt þm2Zðyt ; yt�1Þer2�Zðyt ;yt�1Þ. Thus, we

have an exact description of the two-site system expressed solely in

terms of the abundance in site 1. If we knew these dynamics explic-

itly, fitting this model to the data from site 1 would require just three

more parameters than fitting the one-dimensional (1-d) approxima-

tion. If we did not know enough about the system to write this para-

metric expression for the dynamics, we would use a non-parametric

regression with yt and yt�1 as inputs (Figure 2b).

Iterating the models shown in Figure 2a and b several steps

into the future highlights the most salient difference between the

time-delay embedding approach and treating the unobserved

states as noise: predictions using delay embedding are substan-

tially better than the 1-d noisy model up to eight steps into the

future (Figure 2c). Of course, these results are specific to this ex-

ample; the difference in forecast accuracy generally depends on

both the sensitivity of the dynamics to the unobserved states and

our ability to reconstruct the dynamics from the available data.

Because the shape of the model must be inferred from the

data, time-delay embedding is most useful when the time series

cover a broad range of states. This is more likely to happen in a

nonlinear or chaotic system than it is for stable dynamics per-

turbed by noise. However, even when the data are not sufficient

to completely recover the deterministic dynamics, including lags

may still improve predictions.

We note that in actual application, we typically need to iden-

tify the relevant time delay, s, in addition to the embedding di-

mension, E. The selection of both E and s for a given data set is

usually based on minimizing prediction error, cross-validation,

or mutual information (see e.g. Chang et al., 2017). The optimal

values for E and s for a given time series are not always obvious,

though several methods have been developed to automate their

identification (e.g. Garland et al., 2016; Munch et al. 2017).

To summarize, ecosystems involve high-dimensional state spaces

with complex dynamics. We rarely have data on all of the relevant

state variables and our mechanistic understanding of the dynamics

hardly ever complete. EDM uses time delays to account for unob-

served variables and non-parametric modelling to flexibly infer the

dynamics. These methods are being applied successfully in marine

ecosystems to understand their dynamics (Deyle et al., 2013, 2016b)

and make better predictions (Ye et al., 2015; Munch et al., 2018;

Pierre et al., 2018). Nevertheless, there are often questions about the

relevance of nonlinear or chaotic dynamics in ecology, the condi-

tions under which EDM is expected to produce useful results, and

what can be learned from EDM beyond making forecasts. The ten

questions we have encountered most often are addressed below.

Question 1. Do nonlinear models always generate
nonlinear dynamics?
Although statistical ecologists frequently fit nonlinear dynamical mod-

els to data, we need to distinguish between nonlinearity in the equa-

tions and nonlinearity in the dynamics that the fitted models generate.

If a dynamical model is linear, the system can be written as follows:

xtþ1 ¼ Axt ; (6)

where A is a matrix of coefficients which does not depend on x.

Note that the trajectories xiðtÞ will not typically be linear with re-

spect to time. A 1-d linear model leads to exponential growth/decay,

but when the dimension of x is large enough, linear models can dis-

play other behaviours, including rather complicated-looking peri-

odic cycles. Of course, almost no ecological models start out linear

because this is inconsistent with ecological reality. More often, we

say that a model is given by xtþ1 ¼ Fðxt Þ where F is a collection of

nonlinear functions. However, for many nonlinear models, the dy-

namics near a stable equilibrium can be well approximated by a lin-

ear model. This occurs whenever there is an equilibrium point, x�,
and the Jacobian matrix, Jij ¼ @Fi

@xj
, evaluated at x� has eigenvalues

with modulus <1. Then, the dynamics following any small perturba-

tion from x� will be well approximated by (6) with A ¼ J.

Importantly, nonlinear and chaotic dynamics can only be gen-

erated by nonlinear models; thus, chaotic dynamics and nonlinear

dynamics are closely associated and the terms are sometimes used

interchangeably in the literature. An unstable equilibrium is also

a necessary, but not sufficient, condition for nonlinear (chaotic)

dynamics in a deterministic setting. Thus, studies of nonlinear

dynamics often include discussions of stability, as measured by

eigenvalues or Lyapunov exponents.

As an example of a nonlinear model generating linear dynam-

ics, take the classic Ricker model (Ricker, 1975) with noise,

xtþ1 ¼ xt er�xtþet , where et � Nð0; r2Þ and r controls the popula-

tion growth rate. This model is clearly nonlinear. However, when

r< 2, the dynamics are very nearly linear, which is shown in

Figure 3a. That is, a straight line fit of xtþ1 to xt is pretty good—

and about the best we can do with the information in the time se-

ries. Increasing the value of r destabilizes the equilibrium, leading

to limit cycles or chaos (Figure 3b and c). In this case, a straight

line fit of xtþ1 to xt does not adequately capture the dynamics.

In light of this, it can be useful to measure whether the dynam-

ics for a given system are linear or nonlinear. If we have a suffi-

ciently long time series, we can empirically evaluate whether the

dynamics are well approximated by (6) by comparing the fit of

(6) with the fit of a nonlinear alternative. Unfortunately, it is not

always obvious what the nonlinear alternative model should be.

Another approach that has been applied quite widely is to fit a

model in which A is allowed to vary with x using a local linear re-

gression and thereby test whether the dynamics depend on x.

This approach is often referred to as “s-map” (Sugihara, 1994).

Question 2. Do vital rates have to be
physiologically or ecologically unreasonable to
generate nonlinear dynamics?
There appears to be widespread belief that the growth rate (r) of a

population at low population sizes needs to be unreasonably large
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for nonlinear dynamics or chaos to occur (May, 1976). Although

this is true for the simple, 1-d difference equation models that

were used in early explorations of chaos, such as the logistic and

Ricker maps, it is not true in general (see e.g. Gross et al., 2005).

The connection between population growth at low densities and

chaos is highly model specific and inferences from low-

dimensional models tell us little about real, high-dimensional,

dynamics.

A necessary, but not sufficient, condition for nonlinear dynam-

ics in a difference equation setting is that the model has an unsta-

ble equilibrium. To have an unstable equilibrium in a 1-d map,

the slope of the return map at equilibrium must be >1 in abso-

lute value. The apparent relationship between the onset of chaos

and unreasonably high growth rates at low population densities is

solely because—in early theoretical studies—there was a single

parameter governing both the slope at the origin and the slope at

the equilibrium.

It is straightforward to obtain chaotic dynamics with small

population growth rates at low population sizes by decoupling

the slope at the origin and the slope at the equilibrium. As an ex-

ample, we can generalize the logistic map with one additional

“shape” parameter to obtain the discrete theta-logistic model:

xtþ1 ¼ rxt ð1� xh
t Þ. As in the discrete logistic, the slope at the ori-

gin is given by r, but, the slope at equilibrium is 1� hðr � 1Þ,
which can be a large negative number even when r is close to 1.

Moreover, the value of r needed to generate chaotic dynamics (as

indexed by a positive Lyapunov exponent) decreases with increas-

ing h (Figure 4).

Despite the allure of analytical tractability, 1-d biological sys-

tems exist only in chemostats and theory. The conditions for

chaos to occur tend to be less stringent in larger systems. Even in

classical Lotka–Volterra models, complex dynamics arise with the

introduction of additional species (Vano et al., 2006), reproduc-

tive delays (Zhao et al., 2014), space (Wildenberg et al., 2006), or

contemporary evolution (Yu and Liu, 2016). As the number of

species involved becomes large, random matrix theory can be

used to show that instability is more likely (Stone, 2018), suggest-

ing that nonlinear behaviour is easier to obtain as well. This is

consistent with theory indicating that long food chains have gen-

eral properties that make chaos likely (Gross et al., 2005).

As an example, consider the multi-species Ricker model

(Ackleh and Salceanu, 2015; Hartmann et al., 2017). In this

model, there are n species and the dynamics for the ith species are

given by the following equation:

xi;tþ1 ¼ xi;t e
ri�
P

j
Ai;j xj;t (7)

The parameter ri represents the growth of species i in the ab-

sence of interactions, and the Ai;j terms represent the effect of

species j on the growth of species i.

To see the effect of system size on the likelihood of chaos, we

fixed r at 0.1 for all species, which is well below the value needed

to generate chaos in the single-species Ricker model. We set the

intraspecific interactions, Ai;i , to 0.1 as well so that in the absence

of interspecific interactions, all species would converge to a stable

equilibrium population size of 1. We then randomly assigned in-

terspecific interaction strengths (i.e. the remaining Ai;j terms). To

randomly construct a predator–prey network, we drew interac-

tion strengths, z, from a Nð0;r2=nÞ distribution. Since, by con-

vention, we are subtracting A, if z< 0, then species i preys on

species j, and we set Ai;j ¼ fz and Aj;i ¼ �z where f¼ 0.1 is the

conversion efficiency. If z> 0, then species j preys on species i,

and we set Ai;j ¼ z and Aj;i ¼ �fz. This algorithm constructs

densely connected networks with many weak interactions, which

is at least qualitatively consistent with diet studies in marine fishes

(Link, 2002).

For each randomly constructed community of n species, we it-

erated the model 1000 steps to eliminate transients and then 1000

more steps to evaluate the dominant Lyapunov exponent. Since

the Jacobian for the system is known at each time step, i.e. Ji;j ¼
�xi;tþ1Ai;j and Ji;i ¼ xi;tþ1=xi;t � xi;tþ1Ai;i , we can compute the

complete set of Lyapunov exponents using the QR algorithm of

(a) (b) (c)

Figure 3. The Ricker model with noise (r ¼ 0:05) exhibits several different behaviours depending on the population growth rate: (a) nearly
linear when r¼ 1.9, (b) a noisy two-cycle when r¼ 2.5, and (c) chaos when r¼ 3.
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Benettin et al. (1980). We repeated this procedure 250 times for

each n over a range of ns from 1 to 50.

For predator–prey communities constructed in this way, the

plausibility of chaotic dynamics increased sharply as the number

of species increased (Figure 5). Under this setup, where all of the

ris are small, at least three species were required for chaos to oc-

cur. More than half of the randomly constructed networks exhib-

ited chaos when the number of species exceeded 20.

This simple model illustrates that intuition from single-species

models can be quite misleading; it is clearly possible to generate

chaos with small population growth rates (here r¼ 0.1) and very

modest interaction strengths; in this model, they are typically

much <1, particularly when n is large.

Question 3. If a fitted model is stable, does this
mean the system dynamics are stable?
To paraphrase E.T. Jaynes, this reflects a “model projection fal-

lacy” in which the way a model describes the world is assumed to

reflect the way the world really is. In fact, the stability of a fitted

model can produce qualitatively incorrect inference about the sta-

bility of the system that generated the time series.

Stability is essentially a statement about the long-run behav-

iour of a system. If we have a model that accurately predicts out-

of-sample data over an extended period of time into the future,

then the stability of the model is likely to reflect reality. However,

even seemingly trivial degrees of model mis-specification can lead

to incorrect conclusions about the stability of a dynamical system.

This is particularly problematic when discrepancies between

model and data are attributed to “noise.”

For example, consider the data in Figure 6. The fit of the

Beverton–Holt model (i.e. xtþ1 ¼ rxt ða þ xt Þ�1
) appears quite

good, and we would be well-justified in selecting this model.

However, the data were actually generated with a two-dimensional

model in which the focal species is consumed by a generalist preda-

tor. So what looks like stable dynamics with noise when viewed in 1-

d is really deterministic chaos in two-dimensions. However, we will

never find any evidence of chaos by fitting a Beverton–Holt model:

the dynamics under Beverton–Holt are always stable.

As a second example, let us say we generated data from the

multi-species system from Question 2 (7) but then fitted it using

a single-species Ricker model. To do this in the simplest way pos-

sible, we fitted y ¼ lnðxtþ1=xt Þ ¼ r̂ þ ĝ xt þ � via least squares for

(a) (b)

Figure 4. Chaos in the discrete theta-logistic model. (a) The theta-logistic for h¼ 1 (black), 5 (dark grey), and 20 (light grey). The horizontal
and vertical axes are the population sizes at t and tþ 1 respectively. For each value of h, r is chosen such that the maximum value of
xtþ1 ¼ 1. Each of these examples exhibits chaotic dynamics. (b) The minimal population growth rate required for chaos. The vertical axis is
rcrit, i.e. the smallest value of r for a given value of h such that the dynamics are chaotic. For sufficiently large h, chaos occurs with r � 1.

Figure 5. Dynamics of randomly constructed predator-prey networks. (a) The dominant Lyapunov exponent (median and interquartile
range from 250 simulations) as a function of the number of species (n). (b) The frequency of dominant Lyapunov exponents that are positive,
indicating chaotic dynamics. The distribution of Lyapunov exponents narrows with increasing n, and the dynamics are chaotic more than half
the time for communities larger than about 20 species.
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each simulated species and recorded the maximum estimate of r̂

from each simulated community. Since the Ricker model is ex-

actly the right shape for an approximation of the form (3), and

chaos in the Ricker model emerges at high growth rates, we might

expect the maximum growth rate to be a reasonably good indica-

tor of whether or not the dynamics are chaotic. This is precisely

the sort of thing that ecologists have done for decades (see Hassell

and Comins, 1976; Sibly et al., 2007; Shelton and Mangel, 2011).

How often would we conclude that the dynamics were chaotic?

The answer, perhaps surprisingly, is never (Figure 7). Of the 4000 sim-

ulations with n ranging from 1 to 50, in which 1168 had positive

Lyapunov exponents, none of the resulting regressions had a maxi-

mum r̂ of >1. Since chaos in the Ricker model does not emerge until

r> 2.65, we would be forced to conclude that chaos is rare in ecology.

As these examples illustrate, fitting a model to data does not

necessarily tell us what we want to know about system stability. It

might seem obvious that if you fit a wrong model you get a wrong

answer, but many times, we focus on selecting models from a

short list of a priori candidates by asking which one fits the data

best. Although there will always be a best fitting model, this is not

a guarantee that the selected model faithfully re-creates the dy-

namical properties of the system (see e.g. Boettiger et al., 2015).

For complex systems, this issue is even more subtle—we could

fit a correctly specified model to data and still get the wrong answer

for stability. For a suite of ecological models in the chaotic domain,

parameters estimated using traditional likelihood-based methods

are biased towards stability (Perretti et al., 2013). This problem is

well known outside of ecology (see Abarbanel et al., 1996; Judd,

2008) and arises because of extreme sensitivity to parameters and

initial conditions. Synthetic likelihoods (Wood, 2010), shadowing

(Judd, 2008), and synchronization (Abarbanel et al., 1996) allow us

to fit chaotic models to data without bias, but these methods are

not routinely applied by quantitative ecologists.

So what should we do if we want a robust measure of the sta-

bility of a system? Farmer and Sidorowichl (1989) pioneered the

idea of estimating Lyapunov exponents, and hence system

stability, directly from data by measuring the divergence rate of

trajectories that are initially close in state. There is now a consid-

erable literature generalizing and applying this idea (see e.g.

McCaffrey et al., 1992; Benincà et al., 2015; Ushio et al., 2018).

These methods allow us to characterize the stability of given sys-

tem from data, rather than the stability of a model analogue.

Question 4. How long does the time series need to
be to use EDM?
A generic but vague answer is that to empirically quantify system dy-

namics, the length of the time series needs to be several multiples of

the characteristic return time for the system, i.e. the time it takes for

the system state to return to a small neighbourhood of a given start-

ing state. In addition, the maximum embedding dimension that we

can recover with a given data set scales roughly as the square root of

the time series length (Cheng and Tong, 1992). Thus, we can expect

a fair amount of unexplained variation to remain when the time se-

ries is short and the attractor dimension is large.

In our experience, it is often the case that we see a significant

reduction in prediction error when we have >30 years of data,

particularly for short-lived species (Sugihara et al., 2012; Ye et al.,

2015; Munch et al., 2018). For example, Munch et al. (2018)

found that when the length of the time series was ten times the

mean age at maturation, that EDM could explain >50% of the

variation in recruitment in several species.

However, time series length alone does not guarantee our abil-

ity to reconstruct dynamics. Dynamics that occur on time scales

much shorter than the sampling interval will be difficult to recon-

struct and lead to apparent indeterminism. To see this, imagine

that the dynamics are governed by a logistic map: xtþ1 ¼
rxt ð1� xt Þ with r¼ 4. If we have data at every time step, we can

do a good job of reconstructing the dynamics with EDM. If we

0 0.2 0.4 0.6 0.8 1

x
t

0

0.2

0.4

0.6

0.8

1
x t+

1

Figure 6. Seemingly stable population dynamics. The points are
simulated data and the black line is fit of a Beverton–Holt model to
them. The data, xt were generated by a chaotic predator-prey system:
xtþ1 ¼ rxxtð1� cytÞðaþ xtð1� cytÞÞ�1; ytþ1 ¼ ry � ytð1� ytÞ
þfxtyt with rx¼ 2, c¼ 1, ry ¼ 3:9, and f¼ 0.005.

Figure 7. Single-species growth rates, r̂ , estimated from data
generated by the randomly constructed predator-prey networks in
Figure 5. For each randomly constructed community, we fit the Ricker
model to the time series for each species separately and recorded the
maximum estimate of r̂ over all species, rmax. We did this 250 times
for each community size, n, ranging from 1 to 50. The line indicates
the median rmax and the bands are the interquartile range.
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have data every other time step, the map is now a fourth-order

polynomial, i.e. xtþ2 ¼ r2xt ð1� xt Þð1� rxt ð1� xt ÞÞ, and will re-

quire twice the data to resolve. If we only have data every five

time steps, the map is now a 32nd-order polynomial that we have

little hope of resolving. Unless we are able to sample more fre-

quently, we are likely to conclude that the dynamics are

stochastic.

Question 5. Can we use the embedding dimension
to estimate the number of relevant species in the
system?
The short answer is no. In Takens’ theorem, the number of lags

used must be greater than twice the dimension of the attractor,

not the dimension of the system. This threshold guarantees that

the delay-coordinate representation shares a one-to-one corre-

spondence with the original attractor. However, the attractor di-

mension in a deterministic system is nearly always less than the

dimension of the state space, sometimes very much so. For exam-

ple, in any system that converges to a stable fixed point, the at-

tractor dimension is 0. An arbitrarily complex system that

exhibits a limit cycle may have an attractor dimension as low as 1.

Attractor dimension and system dimension are definitely not the

same.

Second, Takens’ requirement that the embedding dimension

be at least twice the attractor dimension is a generic condition

intended for an arbitrary dynamical system. In practice, many

systems can be reconstructed with fewer lags. For instance, the at-

tractor for the Ricker map in the chaotic domain is 1-d, so a lit-

eral use of Takens’ theorem would indicate that we needed

E ¼ 2� 1þ 1 ¼ 3 lags, but really, we can do just fine in 2, i.e.

xtþ1 ¼ f ðxt Þ. So if we are using some measure of goodness of fit

to evaluate the embedding dimension, we often end up with an

estimate that is less than 2d þ 1. Third, the maximum embedding

dimension scales as
ffiffiffiffi
T
p

(Cheng and Tong, 1992). For an ecologi-

cal time series of 50 years, we should expect the embedding di-

mension estimate to be <7, which seems consistent with the

results that Glaser et al. (2014) found for abundance and landings

time series. In >90% of the 135 time series they analysed, the esti-

mated embedding dimension was <7.

Question 6. Does EDM work with stochastic
dynamics or observation error?
Originally, Takens’ theorem was restricted to deterministic sys-

tems but subsequent work extended these results to systems with

noisy dynamics (Stark et al., 1997; Kantz and Schreiber, 2003). As

an illustration, consider the Lorenz attractor (Figure 8) perturbed

by noise. Small amounts of process noise do not dramatically

change the shape of the attractor, even in the delay-coordinate

space. More extreme amounts of noise definitely distort the at-

tractor, but this does not necessarily render delay-embedding

useless.

To evaluate the utility of EDM for systems with stochastic dy-

namics, consider a fully stochastic two-stage population model

representing juveniles, Jt, and adults, At. In this model, the num-

ber of offspring born to each female follows a Poisson distribu-

tion, bi � PoiðkiÞ, and the expected birth rate ki varies among

females and follows a gamma distribution, ki � Cða;bÞ. The

number of juveniles surviving each year follows a binomial distri-

bution with survival probability sje
�cAt representing agonistic

interactions with adults. The number of surviving juveniles that

mature follows a binomial with maturation probability l. The

number of adults that survive also follows a binomial distribu-

tion, with survival probability sa. The resulting adult time series

are illustrated in Figure 9 for several values of a. Models of this

sort are currently used in the conservation literature (e.g. Schaub

et al., 2007; Fujiwara and Diaz-Lopez, 2017), and it is of interest

to see how well EDM might recover these dynamics, using just

the time series of adults.

It is important to note that when the dynamics are stochastic,

there are intrinsic limits to prediction that are not present in the

deterministic case. Some error will always remain because of the

stochasticity. One standard measure of model performance in

this context is the mean square prediction error Vpred ¼
VarðAtþ1 � Âtþ1Þ=VarðAÞ where Âtþ1 is the predicted population

size at the next time step. In this Markovian model, the condi-

tional mean (i.e. setting Âtþ1 ¼ EðAtþ1jAt ; Jt Þ) provides the

lower bound on the mean square prediction error. Any other pre-

diction will inflate the mean square error. Using the sample mean

as the prediction for all time steps, i.e. setting Âtþ1 ¼ EðAÞ gives

(a) (b)

Figure 8. Lorenz attractor with process noise (dark lines) in (a) the native coordinate space and (b) the delay-coordinate space for xt. The
deterministic Lorenz attractor is shown in light grey. Low process noise will not strongly affect the nonlinear forecasts.
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the sample variance, V0. The scaled mean square error is defined

as Vpred=V0. As our measure of model performance, we subtract

the scaled mean square error from 1 to obtain the “variance

explained” by the model (where 0 is bad and 1 is best). By anal-

ogy with standard regression, we refer to this as R2
pred (i.e.

R2
pred ¼ 1� Vpred=V0). Of course, other metrics of model perfor-

mance may be relevant, but this gives us an interpretable bench-

mark for determining how close our EDM predictions (based

solely on the adult time series) can come to recovering the condi-

tional mean.

When the dynamics are stable, most of the change in popula-

tion size from one step to the next is driven by stochasticity. In

this case, we expect the conditional mean to be close to the long-

run mean and R2
pred � 0. On the other hand, when the dynamics

are cyclic or chaotic and the deterministic component of the dy-

namics dominates the stochastic component, the current state of

the population will be useful for making predictions and we ex-

pect R2
pred ! 1. Importantly, any model that fails to approximate

the conditional mean will have a smaller value of R2
pred.

To evaluate how EDM performs in this stochastic setting, we

iterated the model 100 time steps and computed R2
pred using the

Gaussian process EDM (GP-EDM) approach of Munch et al.

(2017) with a maximum embedding dimension of 4 applied to

the simulated time series of adults. For comparison, we computed

the R2
pred from the original model, conditioning on the current

numbers of adults and juveniles and refer to this as the true R2.

To explore a range of dynamics, we simulated the model with

b ¼ 1=q; q ¼ 0:01::300, and a ¼ rs�1b with r ¼ 10::50, and re-

peated the simulation 50 times for each parameter combination.

This combination of parameters generates models that span

nearly the full range of possible true R2 values.

The results indicate a close correspondence between the true

R2 and R2
pred using GP-EDM for this stochastic model (Figure 9).

Our experience with other simulations is broadly similar, suggest-

ing that stochastic dynamics are nearly as predictable with EDM

as they are with a correctly specified model; the process noise

increases the range of states sampled by the dynamics, which ac-

tually makes interpolation easier.

Although we have focused our answer on process stochasticity,

there has also been considerable effort invested in “nonlinear

noise reduction,” i.e. models that explicitly deal with measure-

ment error (Bröcker et al., 2002). The most recent major advance

is the Takens–Kalman filter, which uses delay-coordinate embed-

ding in the context of an unscented Kalman filter to deal with

both measurement and process uncertainties (Hamilton et al.,

2017).

Question 7. How can we include other factors, like
temperature, in these forecasting models?
Takens’ theorem was extended to driven and stochastic systems

by Stark et al. (1997, 1999). From a practical viewpoint, this

implies that the discrete-time map includes lags of the driving

variable. To demonstrate how this might work and some of the

potentially counter-intuitive results that can emerge, consider a

two-species system, in which both species are affected by temper-

ature, Tt.

xtþ1 ¼ Fðxt ; yt ;Tt Þ
ytþ1 ¼ Gðxt ; yt ;Tt Þ:

(8)

Pretending for the moment that we can invert F to solve for

yt�1 ¼ F�1ðxt ; xt�1; Tt�1Þ, we can rewrite the dynamics for x as

follows:

xtþ1 ¼ F
�

xt ;G½xt�1; F�1ðxt ; xt�1; Tt�1Þ; Tt�1�;Tt

�
: (9)

So, the prediction for x depends not just on two lags of x but

also on two lags of T. There are two things worth noting about

this. The first is that the direction of the lagged temperature effect

(a) (b)

Figure 9. (a) Time series generated with a two-stage stochastic population model (parameters b ¼ 0:003 and, from top to bottom,
a ¼ 0:13; 0:2; 0:27). (b) Comparison of the true prediction R2 (maximum explainable variance, see text for details) for the stochastic
population model and the R2 obtained using EDM. The colours correspond to different values of r: light gray indicates r¼ 10 and black
indicates r¼ 50. Within each colour group, the different points indicate different values of b. When the dynamics are stable (light gray) most
of the variation is due to noise and both the true and estimated R2

pred are close to 0. As the dynamics become more nonlinear, the R2
pred

increases. Other parameters are sj ¼ 0:5; sa ¼ 0:02; c ¼ 0:01 and l ¼ 0:5.
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now depends on the nature of the species interaction. If the

growth of x is reduced by the presence of y, and the growth of y

increases with T, then we should expect an increase in lagged T to

decrease the growth of x. This is an important cautionary note for

the interpretation of lagged effects more generally—the apparent

effect of the lagged variable reflects both its direct effect and the

cumulative impact of all the indirect effects on the species (and

other state variables) that have been left out of the analysis.

The second issue is that we need to be careful about how the

neighbourhoods are defined with such mixed inputs. In the

S-map (local linear regression) framework (Sugihara, 1994),

the Euclidean distance in the delay-coordinate space is used to

weight the points to generate the locally linear map. To ensure

that the distances between delay vectors are appropriate, the dif-

ferent variables need to be scaled correctly. There is, to our

knowledge, no universal solution to this problem. However, we

can make progress by introducing a scaling parameter for the en-

vironmental driver and estimating this during the course of

model training (Munch et al., 2017).

Question 8. Does EDM work if the environment is
not stationary?
Since EDM constructs forecasts from past states of the system,

nonstationarity tends to limit the time horizons over which we

can make accurate predictions. However, there are several reasons

why nonstationarity may not be as much of a problem as it might

first seem. First, nonlinear systems often look nonstationary over

a short interval. Second, even when the dynamics truly are non-

stationary, reasonably good predictions may be possible if the sys-

tem is not changing too fast.

We typically envision nonstationarity in ecology arising from

temporal changes in vital rates, carrying capacity, species interac-

tions, or other parameters driven by shifts in abiotic drivers,

changes in community structure, or contemporary evolution.

However, it is worth noting that some trajectories that appear

nonstationary may actually result from nonlinear dynamics.

Various nonlinear oscillators, such as the three-dimensionnal

prey–predator model shown in Figure 10, can remain in distinct

“regimes” for extended periods of time and then make a rapid

shifts to a new regime without any changes in the parameters or

external forcing (Guckenheimer and Holmes, 1983). This is not

to say that nonstationarity is not a real issue for ecology but just

to suggest that some apparent nonstationarity may instead reflect

complexity. For a more in-depth discussion of the difficulties in

identifying nonstationarity from finite time series, see Manuca

and Savit (1996).

In the case where nonstationarity is driven by a variable that is

changing over time, there are two possible approaches to take. If

we know the driving variable, we can attempt to include the

driver (e.g. temperature) as a predictor. In a mechanistic model-

ling framework, we would make one or more parameters a func-

tion of temperature to represent the influence of the environment

on population growth. In the EDM framework, we can likewise

include temperature as a predictor in the delay-coordinate system

(see Question 7). Both approaches, of course, assume that the

functional dependence on temperature continues to apply outside

the current temperature regime (i.e. we can extrapolate). As long

as the relationship between the environment and population dy-

namics is constant, EDM approaches can produce robust short-

term predictions.

If, on the other hand, we do not know what the driving vari-

able is, we may still be able to make short-term predictions. As

long as the system behaviour does not change qualitatively in re-

sponse to the driver, the recent past will be a good proxy for the

near future. For instance, consider a two-species model where the

growth rate of one species is linked to an unknown driver that is

increasing through time. If we focus only on making short-term

forecasts and the driver is changing slowly relative to the time

scales of interest for prediction, this approach will not be too bad

(Figure 11). Success depends on the rate at which the system is

changing relative to the time scale over which we are trying to

predict (Perretti et al., 2013; Munch et al., 2017).

If the exogenous driver is changing more rapidly, another ap-

proach is needed. For instance, we might allow F to change

through time directly, i.e. by asserting that Ftþ1 ¼ Ft þ dF and

assigning a prior to dF (Munch et al., 2017). Another possibility

is to introduce a latent (i.e. unobserved) variable representing the

t

z
t

y
t x

t

z
t

(a) (b)

Figure 10. Deterministic three-dimensional prey–predator model. (a) Time series for prey species x. (b) System trajectory plotted in the
native coordinate space. Apparent shifts between steady and fluctuating regimes are due to nonlinear dynamics. Equations for the prey

density x, predator density y, and a prey trait z are dx
dt
¼ x a1

z
1þb1z� a2

y
1þb2x� d1

� �
; dy

dt
¼ y yaa2

x
1þb2x� d2

� �
and dz

dt
¼ zV 2k2d1�ð 4k4d1z2 �

a1k1
x

1þb1zÞ from Gilpin and Feldman (2017) with a1 ¼ 2:5; a2 ¼ 0:05; d1 ¼ 0:16; d2 ¼ 0:004; b1 ¼ 6; b2 ¼ 4
3 ; k1 ¼ 6; k2 ¼ 9; k4 ¼ 9, ya ¼

1, and V ¼ 1
3.
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environment into the delay-coordinate map (Verdes et al., 2006).

That is, xt ¼ Fðxt�1; . . . ; xt�E ; ut Þ, where ut represents environ-

mental effects on x. We then use the time series to estimate both

F and u1; . . . ; uT . Verdes et al. (2006) constrain ut using a penalty

analogous to the random walk priors used in many ecological

models with time-varying coefficients (Congdon, 2007; Ives and

Dakos, 2012). Both of these approaches can be thought of as gen-

eralizations of the time-delay embedding method that can explic-

itly be used to test for nonstationarity in the dynamics on the

time scales of interest. Several other ideas for dealing with nonsta-

tionarity, collectively called over-embedding, can be found in the

physics literature (Kantz and Schreiber, 2003).

Question 9. Can we really learn anything about
biology this way?
This question probably arises from the fact that these methods

have historically been framed as forecasting tools rather than gen-

eral tools for ecological inference, but many useful insights can be

obtained using EDM.

First, EDM can be used to evaluate whether the dynamics of a

system are nonlinear (Sugihara, 1994; Sugihara et al., 1999). In

addition, Lyapunov exponents can be estimated from the

reconstructed map to infer the dynamic stability of the system

(see Abarbanel et al., 1992; McCaffrey et al., 1992; Benincà et al.,

2015; Ushio et al., 2018). It seems plausible to us that analogous

methods could also be used as the basis of robust tests for statio-

narity, although we are not aware that anyone has done so.

Second, EDM can be used to test for causal coupling between

variables in complex systems (Sugihara et al., 2012). For example,

we can test whether two species are interacting directly (Sugihara

et al., 2012) and whether temperature is an important driver of

population dynamics (Deyle et al., 2013). The fact that inferences

about these mechanisms of population dynamics are not filtered

through parametric models is a great strength of EDM.

Third, since the coefficients in a local linear mapping approxi-

mate the Jacobian matrix, Deyle et al. (2016b) showed that they

are a direct estimate of the net effect of species interactions at each

time point. In this way, we can investigate how species interactions

change with through time and in response to other state variables.

Fourth, by incorporating an hypothesized “mechanistic mod-

el” into the non-parametric structure (e.g. Sugihara et al., 1999;

Thorson et al., 2014), these methods can also be used to iden-

tify—and correct for—model mis-specification. By explicitly de-

termining how much of the residual variation around the

mechanistic model is predictable using EDM, we can evaluate the
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Figure 11. Prediction error in a nonstationary Lotka–Volterra predator-prey system, where the prey growth rate increases linearly over time

at forcing speed v. Equations are dx
dt
¼ 2

3

�
1þ rðtÞ

�
x� 4

3 xy and dy
dt
¼ �yþ xy with rðtÞ ¼ vt . (a, b) System trajectories for two different

values of v, plotted in the state space. In a constant environment, the attractor would be a limit cycle with period 8; however, due to the
changing growth rate, the cycle period and amplitude change over time. The white points indicate the current state in a small
neighbourhood and the dark gray points are their corresponding future values (at tþ 2). The future points are closer together when the
forcing speed is low (a) than when the forcing speed is high (b). Consequently, the uncertainty (gray ellipse) of predictions increases with
increased forcing speed. (c) The vertical axis is the scaled mean squared error using EDM on the time series for y from t¼ 0 to t¼ 40 (on this
scale 0 means no error, 1 means the prediction error is equal to the total variance in the time series for y). Clearly, prediction error increases
with v. Nevertheless, even if v¼ 0.05, such that the growth rate increases from 1 to 3 over the duration of the time series, the predictions are
still useful (i.e. prediction error < 0.5).
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adequacy of a given model structure. Models with predictable

residuals either are the wrong shape or are missing some impor-

tant state variables. In contrast, residuals from a well-specified

model structure should be unpredictable.

Question 10. When does EDM not work?
This is an important issue that, in our view, has not received

enough attention in the ecological literature. There are, of course,

several studies that conclude the methods do not work (Grenfell

et al., 1994; Ward et al., 2014; Cobey and Baskerville, 2016), but

to our knowledge, there has not been a concise summary of when

we expect these methods to fail or to be outperformed by alterna-

tive approaches.

The delay embedding approach may fail either because the sys-

tem in question does not meet the assumptions of the theorem or

because the available data are insufficient to fully resolve the dy-

namics. For instance, we expect that the stationarity assumption

is likely to be violated in marine ecosystems over long time scales

(but see Question 8). Along these lines, EDM is not well-suited to

analysing time series dominated by a monotonic trend, though

some progress may be made by differencing (see Wu et al., 2007).

Cobey and Baskerville (2016) also note that causal inference using

EDM is inhibited in the presence of strong external forcing driven

by seasonality or highly correlated process noise.

Time series length and large observation errors are likely to be

more problematic when applying EDM to ecological data. Since the

recoverable embedding dimension scales roughly as the square root

of the time series length [Cheng and Tong (1992), Question 4], this

sets a practical upper bound on the dynamics that can be resolved.

Moreover, since EDM requires time series that are several times lon-

ger than the characteristic return time of the system, success is more

likely in systems with rapid turnover. We expect EDM to have diffi-

culties when trying to make predictions for species whose lifespans

exceed the length of the available time series (e.g. rockfishes, see

Munch et al., 2018). In addition, observation noise presents some

practical problems, particularly when the time series is short or the

observation variance is commensurate with the size of the attractor.

Linear time series models (e.g. Ives and Dakos, 2012) and dy-

namic linear modelling approaches (e.g. West and Harrison,

1997; Carpenter and Brock, 2006) are likely to outperform EDM

when the system is strongly nonstationary or the observation

noise is fairly large. The additional information provided by the

parametric structure of these models helps compensate for these

deficiencies in the data. More specific mechanistic models can be

expected to outperform EDM when the model structure is a good

approximation of the true dynamics. That said, mechanistic mod-

els with missing state variables or incorrect structure can also be

quite misleading. Post hoc checks for the predictability of model

errors may be helpful in identifying model deficiencies.

Conclusions
Although EDM has been described as non-mechanistic (Jabot,

2015; Lagergren et al., 2018), this viewpoint essentially confounds

the action of specific mechanisms with the existence of a set of

equations describing them. In our view, EDM represents an alter-

native perspective in mechanistic modelling, one that regards the

observed attractor as the fundamental description of the dynam-

ics, rather than a prescribed set of equations.

Ecology is currently experiencing rapid growth as a quantitative

discipline. Incredibly complex models can now be fit to data with

relatively little effort. Some intuition for nonlinear dynamics is

indispensable in formulating and evaluating the performance of

these models. Although useful in its own right, EDM can also help

in constructing and validating parametric models. In the early

stages of model development, CCM (Sugihara et al., 2012) and S-

map estimates of interactions strengths (Deyle et al., 2016b) can

be useful tools for identifying the important components of multi-

species models. Following model development, residual delay

maps (Sugihara et al., 1999) are useful for identifying unexplained

structure and Gaussian process (GP) regression (Thorson et al.,

2014) is useful for identifying and compensating for model mis-

specification. Rather than opposing viewpoints, we see EDM and

parametric mechanistic modelling as highly complementary.

Although training in ecology has become increasingly quanti-

tative, EDM is still something that ecologists typically have to

learn on their own. Each of the topics we have addressed repre-

sent questions that we wrestled with when we began learning

EDM. We hope that the answers we have provided are useful to

other quantitative ecologists and facilitate future applications.

Supplement
Attractors
The trajectories of most dynamical systems of interest eventually

converge to an attractor, which may be a point, a cycle, or a more

complex shape in the state space. The attractor typically does not

fill the entire M-dimensional state space (i.e. the attractor has a

lower dimensionality than the space in which it exists). This has

several implications. First, because we will likely only have obser-

vations xt near the attractor, we will not be able to infer Fiðxt Þ
over all possible values of xt due to the lack of data off the attrac-

tor. However, the states near the attractor are likely the ones that

are the most relevant, as these are the neighbourhood the system

is likely to visit again in the future. Modelling dynamics in this vi-

cinity also allows us to make efficient use of the available data.

On the other hand, the absence of data far away from the at-

tractor limits any statistical attempt to infer ecological dynamics

from the time series, parametric or otherwise. For example, if the

attractor is a stable fixed point, there is not much we can learn

about the dynamics, regardless of the tools we use. Near a stable

fixed point, the dynamics will be well described by a linear ap-

proximation; any explicit model capable of producing a fixed

point with a similar Jacobian matrix (see the answer to Question

1) will appear to fit the data. On the other hand, when the attrac-

tor is a more complex object, e.g. a limit cycle or strange attrac-

tor, then there is more hope of learning something deeper from

the observed fluctuations in the state variables through time.

Lyapunov exponents
The stability of a system along a trajectory may be characterized

by the convergence of nearby trajectories. In the general case, this

is determined by the collection of Lyapunov exponents for the

system, which can be thought of as a generalization of eigenval-

ues, which are used to characterize stability in linear systems.

Specifically, the distance � between two points on the attractor

that are initially close grows (or shrinks) approximately as

�t � ekt �0; (10)

where k is the dominant Lyapunov exponent. The distance grows

(and hence the system is unstable or chaotic) if k > 0. When the

Lyapunov exponent for a system is positive, small errors in the
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initial state estimate grow exponentially such that over sufficiently

long time scales (roughly 1=k), the system is effectively unpredict-

able. This sensitivity to initial conditions is the hallmark of chaos.

This exponential growth approximation is only good over short

time intervals for nonlinear systems; since both initial points are

on the attractor, there is a finite limit to the distance between

them set by the size of the attractor. This is in contrast to an un-

stable linear system in which � will grow without bound. Below,

we present an informal derivation of Lyapunov exponents and

their connection to eigenvalues, which we assume are more famil-

iar. For clarity, we begin in 1-d and then generalize.

Let us say a discrete-time system is governed by the map

xtþ1 ¼ Fðxt Þ. We start with the pair of nearby points x0 and

y0 ¼ x0 þ �0, where j�0j is the initial distance between them. One

step into the future, the distance is j�1j ¼ jFðy0Þ � Fðx0Þj. Using a

first-order approximation of F at x0, the distance is approximately

�1 � F 0ðx0Þ�0 where F 0ðxÞ is the derivative of F at the point x. If

jF 0ðx0Þj is >1, then j�1j will be larger than j�0j.
Two steps into the future, �2 ¼ FðFðy0ÞÞ � FðFðx0ÞÞ. Again,

using a linear approximation around x, the distance is

j�2j � jF 0ðFðx0ÞÞF 0ðx0Þ�0j, where F 0ðFðx0ÞÞ ¼ F 0ðx1Þ is the deriva-

tive evaluated at the next point on the trajectory starting from x0.

So it is the product jF 0ðx1ÞF 0ðx0Þj that determines whether �2

grows or shrinks compared with �0. Typically, the per-time-step

expansion or contraction is used, which is jF 0ðx1ÞF 0ðx0Þj1=2
.

Note that if x0 is a fixed point (i.e. Fðx0Þ ¼ x0), then the deriv-

ative does not change through time, so the per-time-step expan-

sion is determined entirely by jF 0ðx0Þj. If x0 is on a limit cycle

with period s, such that xs ¼ x0, then the stability of the cycle is

given by ½
Qs�1

i¼0 jF 0ðxiÞj�1=s. Extending this argument for more

complicated attractors, stability is characterized using the long-

run limit of this product, i.e. limt!1
Qt�1

i¼0 jF 0ðxiÞj1=t
. The natural

log of this defines the Lyapunov exponent, which is given by

k ¼ lim
t!1

1

t

Xt�1

i¼0

lnjF 0ðxiÞj: (11)

This expression is identical to taking the average of lnjF 0ðxÞj
over the stationary distribution or “invariant measure” for x,

which provides straightforward recipe for calculating the

Lyapunov exponent when we have a 1-d model: at each iteration,

evaluate lnjF 0ðxt Þj and take the average over a long enough inter-

val to obtain convergence. In the main text, we do this for multi-

ple, randomly selected starting values to avoid accidentally

starting on unstable fixed points or limit cycles.

For systems with n state variables, there are n Lyapunov expo-

nents. The largest of these is the “dominant Lyapunov exponent,”

which determines stability. To find the Lyapunov exponents, we

again start with pair of nearby points x0 and y0 ¼ x0 þ �0 and

think about how the distance between these points grows over

time. By analogy with the scalar case, this is determined by

½
Qt�1

i¼0 JðxiÞ�1=t
where JðxiÞ is the Jacobian matrix evaluated at the

state xi. As t !1, the eigenvalues of this long-run product deter-

mine the directions in which � grows and shrinks. As in the scalar

case, if x0 is a fixed point, the eigenvalues of Jðx0Þ completely char-

acterize stability. For a limit cycle, stability is determined by the

product of Jacobians over the sequence of states visited.

For a chaotic system, although it is possible to evaluate the

Jacobian of a model at each point on a trajectory, calculating the

long-run product directly and then taking its eigenvalues is not

numerically stable. So, to avoid numerical artefacts, a QR algo-

rithm is typically used (Eckmann and Ruelle, 1985). This is what

was done in the main text to estimate the Lyapunov exponents

for systems with two or more state variables. To avoid transients

or unstable cycles, the system was randomly initialized and run

for 1000 steps before computing the Lyapunov exponents.

Continuous time
For simplicity, the main text has focused on dynamics in discrete

time. Nevertheless, this material applies to continuous-time sys-

tems as well. In this study, we describe the connection between

continuous- and discrete-time systems.

Imagine we have an n-dimensional autonomous system in

which the derivative of the ith state variable with respect to time

is given by

dxi

dt
¼ fiðxt Þ: (12)

If we want to know the value of each state variable xi at the fu-

ture time t þ s, we could solve (12) by integrating. Doing so gen-

erates a discrete-time “map” over the time step s, i.e.

xi;tþs ¼ Fiðxt ; sÞ. This map is, in general, a function of s.

In the main text, we mention the Jacobian for a discrete-time

system in several places. When observing a continuous-time sys-

tem at discrete intervals, it may be useful to connect the Jacobian

obtained over a discrete-time step and the Jacobian for the con-

tinuous-time dynamics. Let Ji;j ¼ @Fi

@xj
represent the Jacobian ma-

trix for the discrete-time dynamics observed over time step s and

let Ai;j ¼ @fi

@xj
be the Jacobian for the continuous-time system.

Then

J � eAs: (13)

By analogy, the calculation of the Lyapunov exponents in a

continuous-time setting involves, at least theoretically, the eigen-

values of J in the limit as s!1. That is, if KðsÞ are the eigenval-

ues of JðsÞ, then the Lyapunov exponents are defined as

ki ¼ lims!1
1
s lnðKiðsÞÞ.

Glossary

Attractor A set of values towards which a dynamical
system tends to converge. In continuous
time, this could be a single point
corresponding to a stable equilibrium, a
closed loop corresponding to a limit
cycle, or a more complex set
corresponding to chaotic dynamics. In
discrete time, limit cycles are finite
collections of points, which are repeated
indefinitely

Autonomous system A system whose behaviour is not influenced
by external forcing

Chaos Deterministic dynamical systems that
exhibit sensitive dependence to initial
conditions but produce bounded

Continued
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