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ABSTRACT

As part of their strategy to meet total maximum daily load restrictions in the Chesapeake Bay, managers have

developed nutrient trading markets to curb nitrogen and phosphorus flows into the estuarine system. Histor-

ically, nutrient trading programs have been restricted to credits between point sources or for agricultural mit-

igation technologies, such as the planting of cover crops. However, the denitrification and nutrient sequestra-

tion associated with oyster reefs has recently been a topic of much biological research. We investigate the role

that nutrient credits for ecosystem services provided by restored oyster reefs can play in optimally managing

oyster reef complexes by developing a coupled bioeconomic model of oyster reef growth and harvest. Our

findings suggest that, along with harvest, the regulating services of denitrification and nutrient sequestration

lead to positive net benefits in a majority of scenarios analyzed, although local environmental conditions play a

prominent role in the ultimate outcomes.
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INTRODUCTION

Restoring oyster reefs is a primary goal of large-scale coastal ecosystem restoration programs,
such as in the Chesapeake Bay (Chesapeake Bay Program 2014a) and Gulf of Mexico (Brown
et al. 2014). Oysters are dominant ecosystem engineers1 that provide diverse benefits to marine
and estuarine species, including food, refuge from predators, and buffers from physical stress
(Luckenbach, Mann, and Wesson 1995). Given that oyster reef ecosystem services are a public
good, restoration has mostly been conducted as a public enterprise funded by taxpayer dollars,
and thus, may be severely constrained by static or declining state and federal budgets.

A potential alternative mechanism to fund oyster restoration in the Chesapeake Bay (the Bay)
arose in December 2010 when the US Environmental Protection Agency (EPA) instituted total
maximum daily load (TMDL) levels for nitrogen and phosphorus in the Bay to combat their de-
grading effects on the environment (Environmental Protection Agency 2011). Nitrogen and
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phosphorus are the two major nutrient pollutants of concern in the Chesapeake Bay in terms of
natural resource (Boesch, Brinsfield, and Magnien 2001; Hagy et al. 2004) and human health
(Magnien 2001; Birch et al. 2011). The TMDL regulations apply to seven jurisdictions across
the Bay watershed: Delaware, Maryland, New York, Pennsylvania, Virginia, Washington, DC,
and West Virginia. Each jurisdiction has developed watershed implementation plans to comply
with TMDL regulations. Pennsylvania, Maryland, Virginia, and West Virginia have instituted
nutrient trading programs as part of their state plans (Branosky, Jones, and Selman 2011). Be-
tween 2011 and 2014, credits covering 1,293,916 lbs. of nitrogen were traded in these programs
(Virginia Department of Environmental Quality 2016; Markit Financial Information Services
2016). Further, a Trading and Offsets Workgroup with members from all seven jurisdictions
and relevant federal agencies meets monthly to standardize the development and trading of nu-
trient credits across jurisdictions (Chesapeake Bay Program 2014b). These nutrient trading pro-
grams have mostly been designed to generate credits through land-based mitigation activities,
such as cover-crop plantings and development of farm-based nutrient management plans (Bra-
nosky, Jones, and Selman 2011). However, there is increasing interest in determining whether
credits for trading should also be awarded for the sequestration and denitrification services pro-
vided by oyster populations, given their historical role in mediating nutrient loads within the Bay
(Maroon 2011; Newell and Mann 2012; NOAA Chesapeake Bay Office 2013; STAC 2013).

Oysters are such prodigious filter feeders that prior to the 1870s the entire water column could
have been filtered within 3–6 days (Newell 1988). The combined effects of overfishing, habitat
degradation, eutrophication, and the appearance of two diseases MSX (Haplosporidium nelson)
and dermo (Perkinsus marinus) have depressed this natural oyster population by over 99%
(Rothschild et al. 1994; Jackson et al. 2001; Wilberg et al. 2011), increasing the time it takes to
filter the bay’s water column to almost a year (Newell 1988). Oysters sequester nitrogen and phos-
phorus both in their shell and meat (Newell and Mann 2012). In addition, natural oyster reefs
facilitate denitrification in the Bay through the deposition of feces and pseudofeces into the sed-
iment (Newell and Mann 2012; Kellogg et al. 2013). The evidence indicates that the oyster pop-
ulation historically played a key role in maintaining the Bay’s nitrogen cycle and water quality.

The role tradable permits can play in addressing water-borne pollution externalities is an im-
portant and complex issue, as attested by the numerous economic surveys and reviews on the
topic (e.g., Letson 1992; Shortle and Horan 2001, 2008; Selman et al. 2009; Shortle 2013).

Although some research has been undertaken in the role trading can play in abating nutrient
pollution from finfish aquaculture (Nielsen 2012; Nielsen, Andersen, and Bogetoft 2014), the
majority of work on fisheries has focused on shellfish and their ability to filter pollutants from
the water (e.g., Lindahl et al. 2005; Gren, Lindahl, and Lindqvist 2009; Grabowski et al. 2012;
Pollack et al. 2013; Baker et al. 2015).

The potential economic value of the denitrification and nutrient sequestration services pro-
vided by oysters has been explored both for natural oyster reefs (Kasperski and Wieland 2010;
Mykoniatis and Ready 2015) and in aquaculture operations (Miller 2009). However, these pa-
pers did not consider the constraining factor in oyster population dynamics, namely the avail-
ability of clean oyster shell for juvenile oyster spat settlement (Mann and Powell 2007; Powell
and Klinck 2007). Although various artificial substrates, such as granite rocks or concrete struc-
tures, can function effectively as alternative oyster reefs (Lipcius and Burke 2006; Theuerkauf,
Burke, and Lipcius 2015), they are usually not of a structural form that lends itself to harvest.
Consequently, oyster shell is the preferred substrate for rehabilitating harvest grounds, because
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oysters not only settle on, grow, and survive well on oyster shell, but they are also readily culled
and harvested from shell.

Oyster restoration takes many forms, involving one or more types selectively or in combina-
tion. One is the construction of oyster reef sanctuaries where harvest is prohibited. These oyster
sanctuaries may be connected through larval dispersal to harvest grounds (Lipcius et al. 2008),
but this is not the focus of our analysis because the data necessary to parameterize models for this
alternative are not available. Another form involves construction of harvest reserves or rotational
harvest grounds, whereby previously harvested grounds are rehabilitated through provision of
oyster shell, either dredged from fossil deposits or purchased from shucking operations, then
protected from harvest for one to a few years. These areas are subsequently harvested at a
sustainable level of fishing mortality. Such is the mode of operation on harvest grounds in
Louisiana, Florida, the Delaware Bay, and, historically, the Chesapeake Bay. The goal here is
to achieve profitable harvest without unsustainable depletion of the shell resource; one example
of this has been implemented in the Delaware Bay for years, even in the presence of persistent
disease challenge using a shell-budget model (Powell et al. 2012).

Harvest thus affects the oyster’s population dynamics through two channels: the direct re-
moval of living oysters and the removal of future oyster habitat. These dynamics are particularly
important when considering the issue of nutrient sequestration, because the removal of the meat
and shell from the Bay is a major channel by which nutrient credits could be generated (Newell
et al. 2005; Miller 2009; Mykoniatis and Ready 2015).2 In this situation, estimation of economic
benefits has typically only involved fishery harvest, not those resulting from ecosystem services.
Those that have addressed ecosystem services have used bioeconomic models that provide gen-
eral answers (Kasperski and Wieland 2010; Mykoniatis and Ready 2015), but do not specifically
deal with the habitat-related population dynamics of oysters. Further, recent research suggests
that multiple oyster reef equilibria exist, and reef height determines the oyster population tra-
jectory (Jordan-Cooley et al. 2011).

As an example of public support for oyster restoration, the oyster fishery in Maryland was
highly subsidized, highlighting the public’s vested interest in the topic. Public funds were used
to grow juvenile “seed” oyster in aquaculture facilities, which were then transferred to natural
reefs to bolster weak natural recruitment to the fishery (Maryland Department of Natural Re-
sources 2014). To enhance natural settlement, clean oyster shell was also relocated to natural oys-
ter reefs from either fossil beds on land or buried natural reefs (Maryland Department of Natural
Resources 2014). Oyster harvest reserves were restored with oyster shell and seed, but were
opened to harvest three years after seeding in what became a “put and take” fishery. The failure
of those efforts to achieve lasting restoration led to the current approach of designating oyster
sanctuaries, distinct areas where no oyster harvest is allowed, in addition to harvest grounds
(Maryland Department of Natural Resources 2014). In other locations, such as the lower Ches-
apeake Bay, Louisiana, and Florida, seeding harvest grounds is unnecessary because there is suf-
ficient recruitment of larvae onto the restoration reefs (Lipcius et al. 2015). Eventually, this may
also be achieved in Maryland when there is an adequate oyster sanctuary network (North et al.
2011). Moreover, disease challenge has been dealt with successfully by allowing oyster popula-
2. The removal of nitrogen and phosphorus through oyster harvest has been vetted by the Chesapeake Bay Program, the multi-
jurisdictional organization directing restoration and protection of the Bay, for inclusion into the Chesapeake Bay TMDL imple-
mentation plan (STAC 2013).
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tions to evolve disease resistance (Carnegie and Burreson 2011), by limiting harvest to sustain-
able levels based on the level of disease mortality (Powell et al. 2012), or less so recently by trans-
planting oysters. These restoration efforts are thus driven by the desire to reestablish the ecosystem
services of oyster reefs, beyond the direct provisioning of harvested oysters.

Jordan-Cooley et al. (2011) developed a system of differential equations to capture complex
population dynamics at the oyster reef scale. The three equations of the model govern the live
oyster population, shell availability and reef height, and siltation rates. We couple this model to
an economic value function and investigate trajectories towards steady-state equilibria at the
reef scale, as opposed to focusing on steady-state dynamics themselves. There are two reasons
why calculating the net present value (NPV) along the dynamic path is critical to making policy
decisions in this context.3 First, the costs and benefits of the policy options are not contempo-
raneous in this system. Specifically, a large upfront investment must be made to restore an oyster
reef, whereas benefits accrue over many subsequent years. Second, the population takes on the
order of five years to approach equilibrium, post restoration. These reef-level trajectories are of
great interest to fisheries managers, given the current state of the natural oyster population in
the bay and the fact that restoration decisions are made at a relatively fine spatial scale. The dis-
counted flow of rewards generated from the value function is maximized throughout the life of
the reef, conditional on the initial state of the oyster reef and oyster population, using numerical
dynamic programming and simulation techniques. The model specified in this article provides
guidance for current harvest and restoration efforts at the most relevant spatial scale. It also
helps address two fundamental questions regarding the management of restoration projects.
First, does the optimal management of an oyster reef intended to achieve a given level of nutrient
removal entail some harvest of oysters? Second, are the benefits from an optimally managed re-
stored oyster reef sufficient to cover the cost of restoration?

Comparing an optimized ecosystem-based management (EBM) approach to values gener-
ated from a single stream (either harvest only, akin to traditional management regimes, or
nutrient-credit value only) indicates there are substantial gains from EBM. The value generated
from nutrient trading credits with no harvest generates a NPV gain of just under $2 million. The
historical approach of allowing only harvest, with no nutrient-credit value, indicates that resto-
ration costs are unlikely to be covered by fishery returns alone. The EBM strategy allowing man-
agement to capitalize on both harvest and nutrient credits provides substantially higher values,
with the core scenario generating a NPV of roughly $32 million. The results hearken back to
Smith (2007), who underscores the importance of the management institutions themselves in
the ability to maximize the expected benefits that can be derived from fisheries management,
in that the NPV is highly dependent on the mix of benefit streams allowed by managers.

The article progresses as follows. We introduce the theoretical model, coupling an economic
value function with the reef dynamics, and review general model performance. Next we scale the
analysis and results to an ongoing oyster restoration project in the Bay, providing policy guid-
ance on the tradeoff between harvest and sequestration and denitrification services when com-
plex life-cycle dynamics are more fully considered.
3. We thank an anonymous reviewer for the suggested text more fully explaining the importance of the approach path in this
management context.
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OYSTER REEF BIOECONOMIC MODEL

We begin by specifying the transition equations governing the biological dynamics of the sys-
tem. Next we identify the objective function that we look to maximize, which facilitates the un-
derstanding of biological factors entering the value function. The only departure from the bio-
logical model specified by Jordan-Cooley et al. (2011) is the incorporation of harvesting impacts.
For ease of notation we drop time subscripts on both state and control variables in the model
specification, acknowledging that some clarity is lost. The differential equation governing the
volume of live oysters on a reef is defined as:

dO
dt

p
O

1 1 exp –h O
2 1 B – S
� �� � r 1 –

O
K

� �
– m

� �
– 1 –

1

1 1 exp –h O
2 1 B – S
� �� �

 !
Oε – x: (1)

In this specification, O (live oyster volume), S (sediment volume), and B (oyster shell volume)
represent the three state variables of the system, all of which are measured in cubed meters,
while t represents time. The unit of volume is based on a 1 m by 1 m footprint, such that the
change in volume is coincidentally the change in height of live oyster, shell reef, and sediment.
The instantaneous rate of population increase, r, oyster population carrying capacity, K, instan-
taneous mortality rate due to sedimentation burial, ε, mortality rate due to predation and dis-
ease, m, and scaling factor, h, are all specified in the model to be consistent with biological esti-
mates and theory.

The ratio f (O, B, S) p 1
11exp(–h(O21B–S))

scales the population of live oysters to represent the
oysters that are unaffected by sedimentation, and thus available to contribute to population
growth in the next period. Buried oysters are assumed to die of suffocation at rate ε, with the
exact impact of sedimentation modeled as a sigmoid curve in which more than ½ a live oyster
must be buried before it is affected by sedimentation. The function f has the properties f′(·) 1 0,
f(0) p 1

2, limd→ –∞ f (d) p 0, and limd→∞ f (d) p 1, and the scaling factor, h, governs the rate
at which the proportion of oysters affected by sedimentation transitions from 0 to 1.

The range and core value for these parameters, and all other arguments to be specified, can be
found in table 1. The biological parameters are pulled directly from Jordan-Cooley et al. (2011),
with the core parameterization consistent across both papers. The control variable, x, represents
oyster harvest. Oyster population dynamics thus follow a logistic growth function, which is aug-
mented to incorporate the impact of burial, predation and disease, and harvest.

A second differential equation, defined in equation 2 below, governs the dynamics of oyster
shell availability:

dB
dt

p
Om

1 1 exp –h O
2 1 B – S
� �� � 1 1 –

1

1 1 exp –h O
2 1 B – S
� �� �

 !
Oε: (2)

The γ term represents the natural rate of oyster shell decay, with all other arguments as previ-
ously specified. An important consideration built into equations 1 and 2 that warrants clarifica-
tion is that only unburied oyster shell contributes positively to the population dynamics. Al-
though mortality from both predation and disease and burial can contribute to the stock of
shell, this only translates into viable oyster habitat if the volume of shell is greater than silt.

(1)
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The third transition equation for the system governs siltation, and is specified as:

dS
dt

p –bS 1 C exp –h O 1 Bð Þð Þexp –
F0O
y0

exp
y0 – Cexp –h O 1 Bð Þð Þ

y0

� �� �
: (3)

The natural sediment erosion rate, b, rate of decay for the reef due to sedimentation, h, maxi-
mum oyster filtration rate, F0, sedimentation rate corresponding to maximum filtration, y0, and
maximum sedimentation rate, C, are parameters defining the local reef environment that affect
both the quantity of sediment in the water column, as well as the speed at which oysters can filter
the sediment out of the water. All other arguments have previously been specified. The first term
of equation 3 represents the natural erosion of sediment, while the second term defines the pro-
portion of sediment that contributes towards burial because it is not filtered from the water col-
umn by oysters.

Ultimately the manager’s problem is one of selecting the harvest rate that maximizes the dis-
counted flow of benefits derived from oysters, subject to the constraints imposed by the oyster
population dynamics defined in equations 1–3. In this article, we consider two values derived
from the oyster population: the value of direct harvest for consumptive purposes and the gen-
eration of nutrient credits in order to meet TMDL regulations for the Bay. Given we are mod-
eling a single reef within the Bay, from which a very small portion of overall oyster market sup-
ply is generated, we focus solely on harvesting profits for the consumptive benefit generated
from oysters and take the market price of oysters as exogenous. Profits are specified as follows:

p x,Oð Þ p pHv – c 1 –
O – x
K

� �� �� �
x: (4)
Table 1. Model Arguments and Values

Argument Definition Range Core Sensitivity

O Oyster volume State
B Oyster shell State
S Siltation rate State
x Harvest Control
e Mortality due to sediment 0.94 0.94
m Predation and disease mortality 0.2–0.6 0.4 0.2, 0.6
γ Oyster shell degradation rate 0.5–0.9 0.7 0.5, 0.9
K Oyster carrying capacity 0.1–0.3 0.3 0.1, 0.3
r Instantaneous rate of pop. increase 0.7–1.3 1 0.7, 1.3
F0 Maximum sediment filtration rate 1 1
C Maximum sediment deposition rate 0.04–0.08 0.02 0.08
y0 Sediment value maximizing filtration 0.02 0.02
b Sediment erosion rate 0.02–0.04 0.01
h Scaling factor 10–30 20
h Decay rate of sediment 3.33 3.33
pH Harvest price/m3 $143.82–$323.59 $223.91 $185.85, $264.22
pN Nitrogen price/lb. $0–$20 $10 $0, $4, $20
c Cost/m3 harvested $0–$195.65 $150.22 $0, $65.22, $195.65
h Percent of harvest of market size 0.67 0.67
a lbs. nitrogen sequestered/m3oysters 3.47 3.47
d Discount rate 0.03–0.118 0.05 0.03, 0.07, 0.118
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The pH represents the market price for a Maryland bushel of oysters scaled to represent a
cubed meter, v is a scaling factor representing the percentage of the oyster population that is
market size and captures the fact that not all oysters harvested can be sold, c is the maximum
cost of harvest, and all other arguments are as previously specified. The cost of harvest is mod-
ulated by the ratio of the current oyster population (minus harvest) to the carrying capacity. In
this manner, costs are decreasing in the oyster population and nonlinearly increasing in harvest.
The exact specification of a cost function is somewhat arbitrary given that data does not exist to
estimate costs at this fine a spatial scale. However, intuitively it makes sense to have the cost of
harvest dependent on the density of oysters on the reef (i.e., the lower the number of oysters on
the reef, the harder it is to extract those oysters), which is what the modulation factor achieves.
Although sensitivity around the choice is conducted, we set the default cost of harvest equal to
pHv in order to ensure that profits are zero with complete elimination of the oyster population.
The default harvest price, pH, corresponds to a 31-year average real price of $28.90 per MD
bushel (Maryland Department of Natural Resources 2006), with the low and high values of
the sensitivity analysis equal to the first and third quartile of the same data.

Oysters are assumed to generate nutrient credits separately through two channels.4 The first
is denitrification, which refers to the fact that the biodeposition of filtered organic particles as
either feces or pseudofeces by oysters enhances the rate of denitrification by anaerobic bacteria
(Newell et al. 2005; Kellogg et al. 2013). While highly variable from location to location, this
reef-level denitrification rate is quantified in a recent paper by Kellogg et al. (2013) to be as much
as 61 g N m–2 y–1 for a restored oyster reef. Given that denitrification is conditional on the
biodeposition rate, we assume that the nutrient credit is proportional to the oyster filtration rate:

D p λ 1 – exp –
F0O
y0

exp
y0 – Cexp –η O 1 Bð Þð Þ

y0

� �� �� �
: (5)

In equation 5, λ represents the denitrification rate of a restored oyster reef, and the second factor
represents the filtration rate, as a percentage of the maximum filtration rate under optimal con-
ditions; D equals the rate of denitrification on the reef.

The second channel by which oysters can generate nutrient credits is sequestration, or the
fact that oyster shell and meat act as nitrogen sinks, locking the nutrient away. This sequestra-
tion occurs in both the meat and shell of the oyster, and thus the generation of credits is modeled
as a linear function of the growth in the oyster population:

G p a O
r 1 – O

k

� �
1 ε – m

1 1 exp –h O
2 1 B – S
� �� � – ε

 ! !
: (6)

In equation 6, G defines the rate of nitrogen sequestration by oysters, and a represents the
61.759 g N m–2 estimated to be sequestered in oysters from Kellogg et al. (2013), scaled to rep-
resent a cubic meter of oysters. All other arguments are as previously defined. Of note is that
positive increases in extant oyster biomass are awarded nutrient credits for sequestration, re-
gardless of whether the oysters are then harvested. This ensures that there is no double-counting
4. We focus on nitrogen dynamics for the model and subsequent analysis, which is more complicated than phosphorus re-
moval that occurs primarily through sequestration in meat and shell. Thus, the values obtained are conservative estimates of
the total nutrient removal value.
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of sequestration services, but also allows for harvested oysters to contribute to the total nutrients
sequestered, given that they are removed from the system.

The full current value of the nutrient credits is:

E O, B, Sð Þ p pN

"
λ 1 – exp –

F0O
y0

exp
y0 – Cexp –η O 1 Bð Þð Þ

y0

� �� �� �

1 aO
r 1 – O

k

� �
1 ε – m

1 1 exp –h O
2 1 B – S
� �� � – ε

 !#
: (7)

The pN term represents the market value of nutrient credits. As previously mentioned, although
oysters are not currently eligible to generate nutrient credits, there are nutrient trading programs
in the Bay watershed, although they are relatively limited in scope. We utilize the current price of
credits on this market to assess the value of the nitrogen removed by oysters from Bay waters,
but conduct sensitivity analysis around this price in order to assess the impact of exogenous
shifts in nutrient prices on optimal extraction rates. We again assume that the price of nitrogen
on the trading market is exogenous. This is appropriate given the scale of the modeling exercise.
However, the assumption would need to be revisited if trading of oyster-generated nutrient
credits was ultimately scaled Bay wide.

The full deterministic maximization problem is thus:

n O, B, S; xð Þ p maxx

ð∞
0
p x,Oð Þ 1 E O, B, Sð Þð Þe–dtdt s:t:

dO
dt p O

r 1–Okð Þ1ε–m

11exp –h O
21B–Sð Þð Þ – ε

� �
– vx

dB
dt p O m–ε

11exp –h O
21B–Sð Þð Þ 1 ε

� �
– γB

dS
dt p –bS 1 C exp –h O 1 Bð Þð Þexp –

F0O
y0

exp y0–Cexp –h O1Bð Þð Þ
y0

� �� �
0 ≤ O ≤ K ; 0 ≤ B ≤ 1; 0 ≤ S ≤ 0:1:

(8)

The flow of benefits in time t are discounted by the rate d. Although consistent with environ-
mental observations, the constraints on shell volume and siltation were chosen after a broader
search narrowed down the relevant state space for the questions being posed. We use dynamic
programming to numerically solve the Bellman Equation:

dV O, B, S, tð Þ p maxx p x,Oð Þ 1 E O, B, Sð Þ

1 O
r 1–O

kð Þ1ε–m

11exp –h O
21B–Sð Þð Þ – ε

� �
– x

� �
VO

1 O m–ε
11exp –h O

21B–Sð Þð Þ 1 ε

� �
– γB

� �
VB

1 –bS 1 C exp –h O 1 Bð Þð Þexp –
F0O
y0

exp y0–Cexp –h O1Bð Þð Þ
y0

� �� �� �
VS:

(9)

(7)
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Substituting equations 4 and 7 into 9, the first order equation is pHv – c(1 – (O–2xK )) p VO which
is the familiar equimarginal principle setting the marginal profit earned from harvest today equal
to the marginal value of the oyster if left on the reef, in terms of future harvest potential and de-
nitrification/sequestration services. Of note is that the harvest has no direct effect on either the
sequestration or denitrification value derived from the reef, for reasons previously indicated. In-
stead, these values are indirectly affected by harvest through the oyster stock dynamics and im-
pact on the future value stream. The first-order condition can be rearranged to solve for x:

x O,VOð Þ p k
2C

pHv – c 1
cO
K

– VO

� �
: (10)

This explicit solution for x can be substituted into equation 9 to form the concentrated Bellman
Equation, leaving VO, VB, and VS to be solved numerically, given the parameter values defined in
table 1. Numerical results were computed inMATLAB (MATLAB 2013) using collocation policy
iteration in the CompEcon Toolbox (Miranda and Fackler 2002). The state space is approximated
using a linear spline, with 90 nodes fitting O, 7 nodes fitting B, and 4 nodes in S space. Convergence
tolerance was set to the square root of machine precision (∼1.49 e–8).

MODEL RESULTS

Although an infinite horizon dynamic program was used to solve the optimization problem, we
simulate the system dynamics to investigate the approach path to the steady state under alterna-
tive scenarios. The approach path is of keen interest to managers in understanding under what
circumstances, and in which period, harvest is optimal. Further, given the state transition equa-
tions do not readily map into the harvest, denitrification, and sequestration values, simulation
was used to decompose the value function into its constituent parts, but the infinite horizon value
for each is calculated and reported.5

The simulations were initialized with an oyster population volume of 0.1, a third of carrying
capacity, and sediment volume of 0.01. Shell volume is set equal to the point at which the rate of
shell growth minus siltation is equal to zero (dBdt –

dS
dt p 0), which varies with the scenarios inves-

tigated and, as will be seen in the next section, has implications for the costs of restoration.6 The
next section will also return to a discussion of the last four columns of table 2. The results in ta-
ble 2 illustrate the core specification dynamics against scenarios illustrating the range of out-
comes encountered based upon parameter values within the natural variation of the system, with
all dollars represented in present value. The table indicates that optimal paths and system dy-
namics are more sensitive to biological parameter values than market values. Four scenarios lead
to extinction of the oyster population given the initial parameter values, rp 0.7, Cp 0.08, Kp

0.1, and h p 10, all of which are biological parameter values within the natural variability
5. A 750-year time horizon was used to assess the convergence of the current value of profits generated between two time
periods, with convergence defined as pt – pt–1 ≤ machine precision (∼1.49e–8). Once convergence was achieved, the steady-state
present value function was integrated between the time period of convergence and infinity. The result was added to the present
value of optimal management up until the point of convergence. If convergence was not achieved by period 750, the value function
was integrated between period 750 and infinity, holding state and action variables constant at their values in period 750. The pro-
portion of value generated from denitrification, sequestration, and harvest do not change with a shorter time horizon, such as
50 years.

6. We thank an anonymous reviewer for this suggestion.



T
ab
le
2.
P
re
se
nt

V
al
ue

G
en
er
at
ed

fr
om

th
e
C
om

bi
ne
d
H
ar
ve
st
an
d
N
ut
ri
en
t
C
re
di
ts

Sc
en
ar
io

P
ar
am

et
er

H
ar
ve
st
$/
m

2
D
en
it
ri
fi
ca
ti
on

$/
m

2
Se
qu

es
tr
at
io
n
$/
m

2
Sh
el
l
C
os
t
$
M
ill
io
n

Se
ed

C
os
t
$
M
ill
io
n

N
P
V
*
$
M
ill
io
n

B
re
ak
-e
ve
n
Y
ea
r

C
or
e
sp
ec
ifi
ca
ti
on

19
.0
5

27
.5
7

8.
78

15
.6
2

15
.7
0

30
.6
6

16
10
0%

C
ul
lm

or
ta
lit
y

13
.2
6

27
.5
7

8.
63

15
.6
2

15
.7
0

23
.5
2

18
R
ee
f
da
m
ag
e

14
.8
8

27
.5
7

6.
88

15
.6
2

15
.7
0

22
.8
6

18
H
ig
h
sh
el
ld

eg
ra
da
ti
on

γ
p

0.
9

15
.2
6

27
.5
7

7.
21

19
.4
5

16
.1
7

20
.6
5

22
Lo

w
sh
el
l
de
gr
ad
at
io
n

γ
p

0.
5

23
.5
6

27
.5
7

10
.7
1

11
.6
5

15
.1
2

43
.8
3

11
N
o
nu

tr
ie
nt

cr
ed
it

p N
p

$0
19
.7
1

0.
00

0.
00

15
.6
2

15
.7
0

–
8.
67

–

Lo
w
nu

tr
ie
nt

cr
ed
it

p N
p

$4
19
.5
5

11
.0
3

3.
67

15
.6
2

15
.7
0

8.
08

36
H
ig
h
nu

tr
ie
nt

cr
ed
it

p N
p

$2
0

18
.6
4

55
.1
5

17
.0
2

15
.6
2

15
.7
0

70
.7
7

9
H
ig
h
ha
rv
es
t
co
st

c
p

$9
10
.2
2

27
.5
7

8.
01

15
.6
2

15
.7
0

21
.2
2

20
Lo

w
ha
rv
es
t
co
st

c
p

$3
41
.0
3

27
.5
7

9.
70

15
.6
2

15
.7
0

56
.2
6

11
H
ig
h
ha
rv
es
t
pr
ic
e

p H
p

$1
2.
15

29
.3
2

27
.5
7

9.
32

15
.6
2

15
.7
0

42
.8
5

13
Lo

w
ha
rv
es
t
pr
ic
e

p H
p

$8
.5
5

10
.6
4

27
.5
7

8.
28

15
.6
2

15
.7
0

21
.7
2

20
Lo

w
di
sc
ou

nt
ra
te

d
p

0.
03

32
.3
7

45
.5
0

13
.7
6

15
.6
2

15
.7
0

73
.3
1

14
H
ig
h
di
sc
ou

nt
ra
te

d
p

0.
07

13
.5
5

19
.8
9

6.
73

15
.6
2

15
.7
0

13
.7
2

18
C
or
po

ra
te

di
sc
ou

nt
ra
te

d
p

0.
11
8

8.
16

12
.6
9

4.
45

15
.6
2

15
.7
0

–
4.
05

–

Lo
w
na
tu
ra
l
m
or
ta
lit
y

m
p

0.
2

47
.6
3

27
.5
7

18
.8
2

22
.7
6

14
.2
8

67
.6
8

11
H
ig
h
na
tu
ra
l
m
or
ta
lit
y

m
p

0.
6

0.
60

27
.5
6

0.
17

11
.4
8

17
.9
1

1.
73

O
ve
r
50

yr
s.

Lo
w
ca
rr
yi
ng

ca
pa
ci
ty

K
p

0.
1

3.
65

7.
21

–
2.
28

15
.6
2

32
.9
3

–
39
.1
8

–

Lo
w
gr
ow

th
ra
te

r
p

0.
7

0.
00

17
.7
7

–
1.
99

15
.6
2

18
.6
2

–
16
.7
3

–

H
ig
h
gr
ow

th
ra
te

r
p

1.
3

44
.7
0

27
.5
7

19
.6
4

16
.8
4

14
.7
3

73
.2
8

8
H
ig
h
se
di
m
en
t
de
po

si
t

C
p

0.
08

3.
67

6.
30

–
0.
17

21
.7
6

16
.4
2

–
27
.4
3

–

H
ig
h
se
di
m
en
t
er
os
io
n

h
p

0.
04

20
.0
4

27
.5
7

9.
48

15
.5
3

15
.6
9

33
.2
9

15
H
ig
h
sc
al
in
g
fa
ct
or

h
p

30
26
.3
8

27
.5
7

11
.9
3

16
.8
4

14
.7
3

42
.0
2

13
Lo

w
sc
al
in
g
fa
ct
or

h
p

10
0.
00

23
.1
8

–
1.
29

13
.5
3

18
.2
4

–
7.
36

–

N
o
ha
rv
es
t

0.
00

27
.5
7

2.
20

15
.6
2

15
.7
0

1.
99

O
ve
r
50

yr
s.

*
In
cl
ud

es
$3
33
,0
00

in
m
on

it
or
in
g
co
st
s.



Oyster Ecosystem Values | 11
occurring on oyster reefs. Only two of the four scenarios leading to oyster extinction include di-
rect harvest as an optimal strategy at any point within the time horizon modeled. This is a result
of the additional in situ value associated with denitrification and represents a departure from
optimal harvest of renewable resources with depensatory growth thresholds that generate only
a single benefit stream (e.g., Clark, Munro, and Sumaila 2010). The result also highlights the
added value of this article’s reef-level tactical model, encapsulating local system dynamics for
managing oyster reefs, over the existing analyses that model the entire Bay oyster population
as a homogenous whole.

Predation and disease mortality, the carrying capacity, and population growth rates substan-
tially affect system dynamics across all dimensions. The population density in the terminal year
of the simulation varies from a low of extinction to a high of roughly 580 oysters m–2, with a core
parameterization level of 443 individuals m–2 and average of 372 oysters m–2. These levels are
substantial, given that densities on public reefs rarely exceed 100 oysters m–2 (Schulte, Burke,
and Lipcius 2009).

Beyond sensitivity to different harvest and nutrient credit prices, we also investigate different
assumptions of gear impacts on population dynamics in two different manners. First, the core
parameterization assumes that sub-market sized oysters that are culled and returned to the wa-
ter face no increased mortality due to handling; thus, nutrient sequestration and productivity
due to these oysters is not lost. Although there is little evidence of increased mortality due to
the culling process, the sensitivity of our results to this assumption was tested by assuming a
100% mortality rate of culled oysters under market size. The results are relatively robust to this
assumption, with negligible change in optimal live oysters on the reef, although harvest itself
decreases by an annual average of 34%, and annual profits decrease 11%.

Second, the core parameterization assumes that there is no impact of harvest on shell avail-
ability beyond the harvest of live oysters themselves. In fact, the act of harvest itself can have an
impact on reef height and oyster shell availability (Lenihan and Peterson 2004), although this
finding is not consistent throughout the literature (Powell et al. 2001) and differs by harvest
technology. In order to assess the impact of additional damage to the reef structure, we assumed
that the volume of live oysters harvested corresponds to a commensurate removal of oyster shell
at a 1 :1 ratio. This assumption, again, leads to negligible changes in optimal volume of live oys-
ters on the reef, though annual harvest drops by 26% and total annual profits are reduced by an
average of 12%.

HARRIS CREEK RESTORATION

We demonstrate the utility of our approach by applying it at a scale equivalent to an actual oys-
ter reef restoration project currently being conducted in Harris Creek, located near the mouth
of the Choptank River on the eastern shore of Maryland (figure 1). The project plan calls for
153 hectares of restored oyster reef; requiring the placement of over 267,594 cubic meters of sub-
strate and the planting of over 2 billion oyster seed (seed p juvenile oysters; Maryland Depart-
ment of Natural Resources 2014). The reef is expected to take six years to achieve full function-
ality. The total project cost is estimated to be over US$31.65 million and will rely entirely on
public funding through both federal and state dollars. Of this total, $15.698 million is dedicated
to purchasing and planting seed, while $15.62 million is reserved for transplanting shell to the
reef, and $0.333 million is for monitoring of the restoration progress.
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From the perspective of justifying government expenditures, we are interested in the NPV of
a similarly sized reef restoration project. Using the outcomes from the model simulations in the
previous section, we calculate the infinite horizon NPV of oyster reef ecosystem services for each
model run using the assumption that all project costs are incurred in the initial year. Due to bud-
get constraints the actual restoration in Harris Creek is being phased in over several years, indi-
Figure 1. Harris Creek Restoration Site
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cating our estimates are conservative estimates of the net benefits that can be achieved. We as-
sume that in year six our hypothetical reef is restored and will begin performing based on the
modeling and simulation results in the previous section. Although the reef will generate some
ecosystem service benefits during the period from initial planting to restoration, our simulations
are not designed to capture this period. Therefore, our estimates of ecosystem service benefits are
again on the conservative side of the total value generated, as indicated by other restoration pro-
jects where reef functionality was achieved after three years (Schulte, Burke, and Lipcius 2009;
Lipcius et al. 2015). These assumptions may reflect a realistic approach to establishment of best
management practices, in that the sale of nutrient credits would most likely not be allowed until
a functioning, sustainable oyster reef were to be credibly established. Another major difference
from the actual Harris Creek restoration is that it is designated as strictly an oyster sanctuary,
so that no oyster harvest will be permitted. Among other things, we are interested in examining
the impact of the no harvest policy on the value generated of a similar reef, were it to be estab-
lished.

Given that some scenarios have different implications for restoration costs, we scale the costs
relative to the core parameterization as follows. The cost of seed is assumed to be proportional to
the ratio of oyster volume, in time period 2 and setting xp0, between the core parameterization
and scenario of interest. Period 2 is used due to the oyster population being equal across scenar-
ios in period 1 by design. Identifying the magnitude and direction of the population change be-
tween periods 1 and 2 identifies the relative location of each scenario along the logistic function
defined in equation 1, which provides an estimate of the relative difficulty of reaching the initial
oyster population volume of 0.1. For example, shifting the carrying capacity from the core pa-
rameterization of 0.3 to 0.1 (the lower bound estimated for oysters in the biological literature
and the starting value for the simulations) would be expected to result in substantially higher
seed oyster costs, all else being equal, due to a decreasing marginal productivity of the stock
as the population approaches carrying capacity. Similarly, the cost of shell is assumed propor-
tional to the ratio of shell volume between the core parameterization and scenario of interest in
period 1. As previously stated, the starting shell volume is the solution to dB

dt –
dS
dt p 0, which will

depend on the biological dynamics of the system. The ratio of starting shell volumes thus iden-
tifies the relative amount of shell that would need to be deposited during the restoration process
and, by extension, the associated cost.

Our core scenario calls for oyster harvest, and results in a NPV of $30.66 million. Of this, 50%
of the benefits are due to denitrification, 16% from nitrogen sequestration, and 34% from oyster
harvest (table 2). If the sale of nutrient credits is not allowed, but harvesting is permitted, the
NPV of the oyster reef is –$8.67 million. If the sale of nutrient credits is allowed, but no harvest
is permitted from the reef, the NPV is $1.99 million. Interestingly, while the core scenario with
harvest has the same denitrification benefits as the no harvest option, the benefits from nitrogen
sequestration are almost four times greater when harvest is allowed. Harvest thus enhances the
ecosystem services provided by the oyster population by equilibrating the system at a higher
population growth rate.

The question has been raised as to whether private investment can either fully or partially fund
restoration projects similar in scale to the Harris Creek restoration. In order to better approxi-
mate the returns necessary for private investment into a risky enterprise, we investigate the pos-
sibility of private investment by setting the discount rate equal to the 52-week maximum return
for CCC rated corporate bonds. The negative NPV associated with this corporate discount rate



1 4 | MARINE RESOURCE ECONOMICS | VOLUME 32 NUMBER 1 2017
(11.8%) scenario indicates that this is an unlikely source of funding for such an undertaking.
The upfront costs, delayed payoffs, and risky nature of the investment makes public funding a
more realistic alternative for oyster reef restoration.

Overall, 77% of the modeled scenarios generate positive NPV, with an average benefit of
$25.38 million generated. Of those scenarios generating a positive return, the average (median)
number of years after restoration in which the project breaks even is 17.6 (15). This analysis re-
inforces the fact that local conditions play an important role in the net benefits generated from
oyster reef restoration.

Although the system dynamics are not overly sensitive to the economic parameters, the ulti-
mate values generated from optimal management are. This is an important finding from the
standpoint of maximizing the benefits to society, and indicates the key role both future price dy-
namics and the funding sources (encapsulated in the discount rate) would play in the NPV of
restoration projects. For example, when compared to the core specification an 18% percent in-
crease and 17% decrease in the market price of oysters translates into a 40% increase and 29% de-
crease in NPV. Results, in terms of NPV, are similarly sensitive to the price of nutrient credits,
harvesting costs, and discount rate.

Three general regimes are of most importance to managers: optimization of both harvest and
credits (moving forward referred to the unrestricted model), optimization of harvest with no nu-
trient credits, and the value of nutrient credits generated from a sanctuary reef without harvest.
Further, although uncertain, the $10 per lb. of nitrogen is likely much higher than what can be
expected on a mature market for nutrient credits (Hanson and McConnell 2008). In order to
more fully investigate the tradeoffs between these three regimes, we compare their NPV across
the range of nitrogen credit and harvest prices identified in table 1. Figure 2 presents a plot of
NPV from the unrestricted model against prices. The shaded region identifies price combina-
Figure 2. NPV from Harvest and Nutrient Credits across a Range of Prices (unshaded region represents

negative NPV)
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tions generating a positive NPV, while the unshaded region identifies negative NPVs, for ease of
visual reference. Only at the very lowest prices does the dual benefit stream fail to generate pos-
itive NPV. Of particular interest is the finding that the NPV for the unrestricted model is a con-
cave combination of the no credit and no harvest regimes across all prices investigated. The im-
plication is that a restored reef managed for multiple ecosystem service benefits is preferred to
two individual reefs of the same combined size, with eachmanaged for a single stream of benefits
(either harvest or nitrogen credits), respectively. Even at the relatively unrealistic high nitrogen
credit of $20, some harvest is optimal. Of note is that the harvest-only scenario generates a pos-
itive NPV only for oyster prices over $11.95, which is just under the 75th percentile of the his-
torical price distribution for oysters in the Bay. Conversely, nutrient credits alone generate a pos-
itive NPV at any nitrogen price above $9.50/lb.

Figures 3 and 4 graph the difference in live oysters at equilibrium between the unrestricted
model and harvest-only and nutrient-credit only scenarios, respectively, as a percentage of the
unrestricted model oyster volume. Note that the axis on both figures has been rotated for a better
view of the surface. The equilibrium states are interesting, in that the unrestricted model is more
similar to the harvest-only scenario (maximum difference of ∼7%) than the credit-only scenario
(maximum difference of ∼40%). Given that the opposite is true for the NPV (see table 2), this
disparity suggests that nutrient credits are generating a substantial portion of NPV across all
price points. As previously discussed, harvesting increases the rate of sequestration. Optimal
management when harvest is allowed thus equilibrates at a lower population level (most similar
to the harvest-only scenario, as illustrated in figure 3), but higher population growth rate. This
higher growth rate enhances the generation of nutrient credits well beyond what is achieved
when only nutrient credits are generated only from the reef. Percentage differences in shell vol-
umes are very similar in shape and magnitude to oyster volume, and thus are not presented for
Figure 3. Difference in Live Oyster Volume between Harvest and Nutrient Credits and Harvest Alone as a

Percentage of the Harvest and Credit Volume
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brevity. The difference in siltation rate is negligible in magnitude, with siltation rates equilibrat-
ing very near zero across all three scenarios.

DISCUSSION

By adding an economic component to an existing dynamic model of oyster reef growth, we have
developed a tool that could be used to guide management of oyster reef restoration at the scale at
which it is actually occurring in Bay. With additional research, the model parameters can be ad-
justed to reflect local conditions and help guide restoration to optimal locations. Our analysis
shows that under most conditions, optimal reef management includes some amount of harvest-
ing. This achieves higher nitrogen sequestration levels compared with what would occur if the
reef were allowed to reach an unharvested equilibrium state.

The core parameterization results rely on the assumption that harvesting is relatively non-
invasive, with no impact on the reef beyond oyster mortality. In reality, harvesting technologies
have a differential impact on reef integrity (Lenihan and Peterson 1998), population dynamics,
and maximum sustainable yield (Ducharme-Barth et al. forthcoming), and the result might also
be sensitive to location and reef type (Powell et al. 2001, 2012). For instance, harvest by dredges
is much more destructive than harvest by hand, hand tongs, or patent tongs (Lenihan and Pe-
terson 1998), such that the benefits of harvest are likely to be different across these technologies.
Although sensitivity analysis suggests that harvesting-induced degradation of reef integrity af-
fects optimal harvest levels, and the NPV associated with a reef, the impact on optimal live oys-
ter volumes on the reef is not substantial given our assumptions. Nevertheless, these differential
impacts should be further explored when assessing the full impact of harvest (see Ryan, Holland,
and Herrera 2014).

Our results indicate that government-funded oyster reef restoration could be financed
through the issuance of bonds to be repaid with income generated by the reef. Private funding,
Figure 4. Difference in Live Oyster Volume between Harvest and Nutrient Credits and Credits Alone as a

Percentage of the Harvest and Credit Volume
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however, is not likely to be viable given the high upfront costs of restoration and delayed gener-
ation of harvest and credits. Note that we use a one-to-one trading ratio, which is often not the
case when awarding credits for best management practices due to the uncertainty inherent in
their performance. A higher trading ratio would require adjusting the results accordingly.

Despite concerns regarding institutional constraints to incorporating ecosystem services in
resource management (Scarlett and Boyd 2015), the Chesapeake Bay Program is well-organized
to consider implementation of a nutrient trading program that might aid oyster restoration goals.
An oyster best management practice expert working group has been created under the Chesa-
peake Bay Program’sWater Quality Goal Implementation Team. The work of that group is being
coordinated by the Oyster Recovery Partnership, a non-profit that has supported oyster restora-
tion efforts in the Bay. Thus, the link has been made institutionally between the groups princi-
pally charged with restoring oysters and the group charged with the related ecosystem service of
regulating water quality.

We do not include other ecosystem services that oyster reefs provide, which if quantified and
monetized, could further justify the public subsidy. For example, we did not include phosphorus
sequestration in our analysis, nor did we include the value of increased secondary production
of commercially important species in the Bay (Grabowski et al. 2012). Oyster reefs also aggre-
gate recreationally important species, which results in higher net values to recreational fisher-
men (Hicks, Haab, and Lipton 2004), and they control erosion (Meyer, Townsend, and Thayer
1997; Henderson and O’Neil 2003; Grabowski et al. 2012), neither of which have been accounted
for in our analysis. Finally, the model assumes that nutrient sequestration occurs only in the
bodies of living oysters on the reef. In reality, at least a portion of these nutrients remain seques-
tered in the bodies of scavengers and oyster predators; thus, our estimates of these services are
conservative.

Nevertheless, denitrification and nutrient sequestration services are clearly an important
consideration in optimal oyster reef management. Even this partial quantification of ecosystem
services indicates that oysters have historically been managed inefficiently. Further, models en-
capsulating environmental dynamics at the reef level can be very useful in assessing the benefits
associated with reef restoration and management regimes.
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