U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION
NATIONAL WEATHER SERVICE
OFFICE OF SYSTEMS DEVELOPMENT
TECHNIQUES DEVELOPMENT LABORATORY

TDL OFFICE NOTE 93-2

AN ANALYSIS OF SOME FEATURES OF THE GRIB CODE

Harry R. Glahn

May 1993

AN ANALYSIS OF SOME FEATURES OF THE GRIB CODE

Harry R. Glahn

1. INTRODUCTION

The GRIdded Binary code contained in the Manual on Codes (WMO 1988) is
becoming the international standard for exchanging meteorological gridpoint
data and has been specified as the form of exchange of such data between the
U.S. Government and the Automated Weather Interactive Processing System
(AWIPS) contractor. Since a large part of the data to be transmitted in
AWIPS--and especially a large part of the non-satellite data--is gridpoint,
the size (number of bytes) of the (packed) message used to transmit the
"information" is of considerable interest and importance. While compact in
some respects, GRIB is not especially compact in other respects. This note
discusses some of the features of GRIB that could be improved in future
editions.?

Specifically, the issues addressed are (1) the use of a bit map for identi-
fying missing data, (2) the use of full octets to pack group minima in second-
order packing, (3) the use of a bit map to identify the "groups" for second-
order packing, (4) the scanning modes, and (5) the limitation of packing the
actual scaled gridpoint values rather than taking full advantage of the
spatial redundancy in the meteorological fields by packing differences between
gridpoints. These five issues are discussed in approximately reverse order of
importance.

The discussion will be limited to (1) where there is only one value per
gridpoint, not a vector, as specified in bit 6 of GRIB Code Table 11, and
(2) gridpoint data in reference to a particular map projection such as polar
stereographic (not spherical coordinates). These comments may also be
relevant to vectors at gridpoints and latitude/longitude grids, but no
attention has been given to them.

Certain aspects of the GRIB code have been previously studied and documented
in TDL Office Note 92-11 (Glahn 1992); reference to it here will be by
TDLON92-11. The 1992 office note should be used as a companion to this one.

2. BIT MAP FOR MISSING POINTS IN A RECTANGULAR GRID

There are two ways the basic grid can be specified in the GRIB code--by
including the full description in Section 2 and by a Grid Definition Number
(octet 7 of Section 1). 1In the latter case, Section 2 can be omitted and the
receiver would then have to know the definition of the grid (size, location,
gridpoint spacing, etc.--the information that would have been included in
Section 2). While it is possible the Grid Definition Number could define a
number of points in relation to a particular map projection that didn't form a
rectangle, the grid description in Section 2 allows only a rectangular grid.
However, there could be "missing points"--points which could be interior
points; points which could, in effect, redefine the rectangle's boundary,; or
points usually present but with missing data on a particular occasion.

IThe current edition is 1.

If there are indeed "missing" gridpoint values, GRIB carries this informa-
tion through a bit map--that is, a 1 or O is packed for each and every
gridpoint representing, respectively, whether or not a value exists at that
point. If the value is zero, that point is "skipped" in all processing and
must be recognized as missing by the receiver. While one bit per point seems
small, it may in actuality not be small in relation to message size if only,
say, five bits are required on average to send the data at points with data.

An alternate way of sending the information regarding missing values would
be to reserve the maximum value (all 1 bits) within the field to represent
missing. Without knowing the specific situation, it's not possible to know
which would be the more efficient (require less bits) method. If only a few
values were missing, as might be the case with a nearly rectangular grid but a
few missing points, the "all ones" solution would be better. However, if,
say, 20% of the values were characteristically missing, the bit map would
probably be better.

Since most uses of GRIB will likely be for fully populated rectangular grids
(and, therefore, no bit map is needed), and when there are missing values the
number of such values may be large with respect to the rectangle, the bit map
may be the better overall solution in most cases. A change to include the
"all ones" option is not recommended. ?

3. FULL OCTET FOR DEFINING GROUP WIDTHS

A current capability of GRIB is to not only reduce the range of the scaled?®
values by subtracting the overall grid minimum value* (which renders all

20ne use for non-rectangular grids in AWIPS is the sending by a Weather
Forecast Office (WFO) of the official forecasts in gridpoint form over (only)
that WFO's area of responsibility to other WFO'’'s and River Forecast Centers.
These forecasts would be mosicked with other such forecasts onto a larger map,
such as the AWIPS Local Area, an approximate 750 by 750 km area.

3Scaling by a power of 10 and/or a power of 2 is available.

4Tt is noted that this "reference" value in octets 7-10 of Section 4 is
floating point, and that it is the only such number needed in the GRIB message
when the scaled values are integers. Since different computer systems use
different representations for floating point numbers, this seems to be an
unnecessary and disagreeable complication. If the reference value is to be
packed with more accuracy than the scaled gridpoint values (with the reference
value subtracted), then the reference value can be dealt with more easily by
packing four integer values: a positive value representing the absolute value
of the scaled reference value (in, say, 23 bits), its sign (in one bit),
another positive integer representing the absolute value of a power of 2 .(in,
say, 7 bits), and its sign (in one bit). The power of 2 and its sign would be
used as an exponent to the first two of these four values. Each of these
positive integer values can be unpacked separately and easily dealt with. No
knowledge would be required of the bit configuration of floating point numbers
of the computer on which the code is run, thereby making the code transport-
able. It should be easier, and reduce errors, for someone using, say, VAX
equipment to deal with this arrangement than to compose the reference value
into a floating point representation not matching the VAX.

2

resulting values positive or zero),’> but to also further reduce the range of
values within groups of "adjacent" gridpoints by subtracting each group's
minimum from all members of that group.

The efficiency of that process for reducing message size depends on the
spatial redundancy of the data. In many fields of data, such as 500-mb height
or surface temperature, adjacent values may well be more like each other in
size than like values in another group at another place on the grid. Other
fields having more small scale spatial variability may not benefit much, if at
all.

This option is well worth implementing, but does require a method of deter-
mining groups in such a manner to take good advantage of the option. The
groups are determined by scanning the data, point-to-point as defined in the
scanning mode flags in octet 28 of Section 2. An algorithm for defining
groups is contained in TDLON92-11.

GRIB provides for packing the minimum of each of the, say, LX groups in an
efficient manner--transmitting the number of bits needed for the largest
minimum (octet 11 of Section 4), then packing each value in that number of
bits. The number of bits needed can be easily determined, once the minima are
known.

The current GRIB code uses a full octet for each group to define the "width"
of the group (i.e., the number of bits needed to pack the maximum of the group
after the group minimum is subtracted). This is wasteful in that a group will
characteristically require 5 to 10 bits to contain the necessary information,
which would take only 4 bits to define. That is, even if the maximum value in
any group requires 15 bits, only half an octet would be needed to carry the
width information.

As explained earlier in this section, GRIB uses only as many bits as
necessary to send the LX group minima. This same procedure can also be used
for group size. Several tests were done with 83 X 59 eta model (Mesinger et
al. 1990) fields® in which the number of bytes required for this proposed
procedure was compared to the number of bytes required by the current GRIB
code. The "new" code was exactly the same as GRIB Edition 1 except that
instead of the widths starting in octet 22 of Section 4 and occupying an octet
each, octet 22 contained the "width of widths" (that is, the number of bits
necessary to define the widths), followed by Pl (octets 17-18) widths of
octet 22 size.

Table 1 gives results for four different fields--500-mb height, 700-mb
omega, precipitation amount, and surface temperature. The data for these
fields were rounded to meters, tenths of microbars sec’!, hundredths of
inches, and tenths of degrees Celsius, respectively. For an additional
comparison, the 500-mb heights were rounded to tenths of meters.

5This will not reduce the range when the original values vary about zero,
but the bits necessary to pack the resulting positive numbers may be less (see
TDLON92-11, footnote 7).

5These same fields were used in TDLON92-11, and maps of them are presented
there.

Table 1. The number of bytes required for the GRIB message for each of
five tests and six packing options. The units for the two 500-mb tests
were meters and tenths of meters, respectively. See text for other

units.
Field Grib Width of No Bit Scan 2nd Order Range
Ed. 1 Widths Map Option Differences Option

500-mb height 4717 4591 4170 4117 2308 2308
500-mb height 6879 6749 6334 6245 4248 4248
700-mb omega 4577 4452 4029 3980 4102 3980
Precipitation 2877 2752 2329 2183 2895 2183
Surface temp 5083 4950 4539 4333 4265 4333
Total 24133 23494 21401 20858 17818 17052

The "grouping" algorithm used is that given in TDLON92-11 with a minimum
group size (MINPK) of 15 and an increment (INC) of 3 (again, see TDLON92-11
for further explanation). The number of groups generated was fairly constant
and ranged from 251 to 268 for the five tests. In each test, the number of
bytes required by the proposed method (given in the column headed "Width of
widths") was reduced from that of GRIB Edition 1, and based on the totals, the
reduction was about 3%. While not impressive, this (almost) guaranteed
improvement is very easy to achieve with only a minor adjustment to the code
and essentially no more processing at either the sending (packing) or receiv-
ing (unpacking) end.

4. BIT MAP FOR DEFINING 2ND ORDER GROUPS

GRIB must also contain information about the size of each group, or alterna-
tively where each group starts. GRIB uses a bit map for this purpose. This
map, contained in Section 3 of the GRIB message, has a 1 for each gridpoint
where a group starts and a O at each other point. As with the bit map
discussed in Section 2 of this document, one bit is required for each grid-
point with data. This means that if a group has 15 values in it, 15 bits will
be required to send the size of group information. A better way to do this is
to pack the size of each group (along with the minimum of each group) and send
these sizes in as few bits as possible--the number of bits required is easily
determined once the group sizes are known. If no group is over 63 in size,
then each group size can be sent in 6 bits; this can be compared to the
15 bits needed in a bit map for a 15-value group.

These two methods of sending group size information has been tested on the
83 X 59 fields from the eta model discussed previously. The three differences
in the code used for testing were (1) the variable width possibility described
and tested in Section 3 was used (that is, this test includes the option
tested in Section 3), (2) immediately after the group widths information,

8 bits were used to define the number of bits needed (say MBIT) to provide the
group size information, followed by Pl (octets 17-18) group sizes, each in
MBIT's, and (3) the bit map was deleted. To keep continuity with the current
GRIB, binary zeros were used as needed to pad to a whole octet.

Table 1 shows in the column headed "No Bit Map" the bytes needed for this
option. In each test, the bytes required was reduced from the previous test,
and based on the totals, the reduction over using a bit map was about 9%.
This guaranteed improvement would require more change in the GRIB code than
the one proposed in Section 3, but the processing time should be a wash at
both ends.

5. SCAN MODES

GRIB provides for scanning in either the plus or minus IX direction and in
either the plus or minus JY direction, and with either IX or JY points in
sequence (consecutive) (octet 28 of Section 2--Flag/Code Table 8). When
packing by groups, it is better to reverse the order on alternate rows (when
IX points are consecutive) or columns (when JY points are consecutive). With
the current code, when IX points are consecutive, one marches along a row from
start to finish, then jumps back to the start of the next row. The two points
spanning the end of one row and the beginning of the next are not neighbors.
By reversing the marching order for alternate rows, points will always be
adjoining.

To implement this option, no change to the GRIB code is necessary, but the
Flag/Code in octet 28 of Section 2 must be augmented and the software modified
slightly. Since only three bits are currently in use in octet 28, the fourth
can be used so that a 1 indicates reversal of alternate rows (or columns).

This option was tested, along with the two described in the previous two
sections. That is, this test included (1) a variable width of widths, (2) the
elimination of the secondary bit map in favor of sending explicitly the number
in each group, and (3) this "alternate reversal" method.

Table 1 gives the results in the column headed "Scan Option." In each test,
the number of bytes required was reduced, and based on the totals, the
reduction was about an additional 3%. To implement this feature would require
less than 10 extra lines of code for each the packer and unpacker.

6. SECOND-ORDER SPATIAL DIFFERENCES

Many meteorological fields are quite redundant, point-to-point. Although
much of this redundancy can be eliminated by subtracting group means, consid-
erable redundancy will still remain for smooth fields--those with little
(compared to the overall variability) small-scale detail. A method of
removing this redundancy is to not pack each value (with the appropriate
minimum removed) but to pack the second-order differences between gridpoints.
To recover the original, say, N values, one must have not only the N-2 second-
order differences, but also the first value, and the first first-order
difference. This process is explained in more detail in TDLON92-11 and is not
repeated here.

This method was tested, along with the options in Sections 3, 4, and 5, and
the results are in the penultimate column in Table 1. Here, improvement was
not achieved for all fields. The smooth field, 500-mb height, was helped
considerably--about 32% for tenths of meters resolution and 44% for meter
resolution. The relatively smooth field of surface temperature benefitted
slightly--about 2%. The other two fields contained much small scale detail

and did not benefit.’” In fact, the precipitation field required more bytes
than the GRIB code, Edition 1.

It is likely that a majority of meteorological fields that one would be
packing would be smooth, especially forecasts at various levels of the
atmosphere produced by numerical models. The question is, can second-order
packing be used where it is best and not where is isn’t. The answer is a
qualified "yes." One could, of course, go through the whole packing process
twice, once with second-order differences and once without, then use the
method that required less bytes. But this would require approximately double
the packing (cpu) time of either method by itself. An alternative is to use a
"cheap" algorithm to estimate which is the better procedure.

One such algorithm is to compute the average range of numbers over groups of
size MINPK for both the original values and the second-order differences. The
lower average range would indicate the better procedure. This was tried, and
the results are given in the last column of Table 1. The algorithm gave the
correct solution in all cases except for the surface temperature. Here, it
indicated to not use second-order differencing when, in fact, that would have
been better. But the improvement in that case would have been quite small
(less than 2%). It seems the algorithm gives the correct solution when the
difference is major (important) and may or may not give the correct answer
when the difference is small (and it doesn’t much matter which method is
used) .

Another way to implement this option is to predetermine, through a few
simple tests, which types of fields are not likely to benefit from second-
order spatial packing.

7. SUMMARY AND CONCLUSIONS

The overall improvement on these five test fields, computed on the totals of
the first and last digital columns, was 29%. The range was from 51% for
500-mb height rounded to meters to 13% for 700-mb omega. The overall improve-
ment for a full range of synoptic-scale analyses and forecasts would likely be
about 35% to 40%.

The current version of Appendix K to the AWIPS Systems Requirements Specifi-
cation® estimates the total point to multipoint gridpoint traffic to be
713 megabytes and the peak traffic (over four 50-minute periods) due to
gridpoint data from the mesoscale model to be 248 kilobits per second. If a
35% overall reduction could be achieved, these values would reduce to
463 megabytes and 161 kilobits per second, respectively.

’As stated in TDLON92-11, these eta model fields were chosen for experimen-
tation because they had fine-scale detail to see how possible packing options
would be affected by detail or lack thereof. Note that these results agree
comparatively with those in TDLON92-11, Table 6, columns headed "Method 5" and
"Method 8." The values are not the same because a full GRIB code was not used
in TDLON92-11.

8Appendix K is currently undergoing revision and the estimated transmission
totals and rates will change. However, these comparisons should be represen-
tative of the magnitudes involved.

The changes to implement the options described in Sections 3 through 6 above
would not change the overall structure of Edition 1 of the GRIB code. As
mentioned previously, the packing of the group widths and sizes would follow
exactly the same pattern now used in GRIB for packing the group minima,
whereas the current GRIB packs each of these kinds of information differ-
ently--variable number of bits for group minima, constant number of bits (8)
for group widths, and a bit map for group membership.

The alternate scanning can be implemented by only the extension to bit 4 of
octet 28 in GRIB Section 2. The use of second-order spatial differences
requires more change. For a field with N points, N values are still packed- -
the first value in the field, the first first-order difference, and N-2
second-order differences.

In order to get an indication of the added computer time required for the
options recommended here, the 500-mb height field was packed (and then
unpacked) to tenths of meters (row 2, Table 1) 50 times for both GRIB
Edition 1 (column 1, Table 1) and the recommended options (last column,

Table 1). This included reading the height field and writing the packed
record, as well as reading some control information that is needed for each
individual field and writing a half dozen lines of diagnostic print for each
field. The clock time on a VAX 3400--approximately a 1 MIP (millions of
instructions per second) computer--was 1.8 seconds per 83 X 59 field for GRIB
Edition 1 and 1.4 seconds per field for the options recommended here. The
unpacking--which included reading the packed field but not writing the
unpacked field, and writing a half dozen lines of diagnostic information--took
0.8 and 0.6 seconds per field for GRIB Edition 1 and the recommended options,
respectively. These values indicate that the added cpu time is not only
dwarfed by the input/output (I/0) normally required in such processes, but
that the smaller packed record (output for packing, input for unpacking) for
the recommended options (4,248 vs 6,879 bytes, a 38% reduction) actually made
the recommended process speedier in terms of clock time. The I/O used for the
data records was normal FORTRAN binary reads and writes; it is recognized that
faster 1/0 methods may be practical. The point here is that the difference in
cpu time seems unimportant.

Appendix 1 (2) gives a FORTRAN packing (unpacking) code for implementing
these options. These codes essentially implement grids with relation to polar
stereographic and Lambert map projections. Not all GRIB options are imple-
mented by these routines. Appendix III summarizes the changes that would be
necessary in the Manual on Codes (WMO 1988) to implement the options recom-
mended in this office note and contained in the code in Appendices I and II.

REFERENCES

Glahn, H. R., 1992: On the packing of gridpoint data for efficient
transmission. TDL Office Note 92-11, National Weather Service, NOAA,
U.S. Department of Commerce, 32 pp.

Mesinger, R., T. L. Black, D. W. Plummer, and J. H. Ward, 1990: Eta model
precipitation forecasts for a period including tropical storm Allison.
WEA Forecasting, 5, 483-493.

WMO, 1988: Manual on Codes, Vol. 1, Part B--Binary Codes. WMO No. 306, World
Meteorological Organization, Geneva.

7

APPENDIX I

This appendix contains a listing of the FORTRAN code to implement the
options recommended in this office note. It consists of four routines, GRIBC,
BGVRBL, GRIBPR, and PKBG, the latter three being called by the former.
Another routine called by GRIBC, Q9VI32, is for use only when implementing
this code on a VAX computer, and is not included. Subroutine BGVRBL corre-
sponds closely to VRBLPK in TDLON92-11.

SUBROUTINE GRIBC(KFIL10,KFIL12,A,IA,IC,NX,NY,IS1,IS2,IS4,ND8,
1 LBIT,JMAX,JMIN,NOV, IPACK,ND4 ,MINPK, INC,
2 LX ,MAXMAX , IOCTET)

APRIL 1993 GLAHN TDL MICROVAX

PURPOSE
SUBROUTINE TO PACK DATA AT "UNITS" RESOLUTION
PROVIDED IN A(,) AFTER MULTIPLYING BY 10**IS1(27).
THE SMALLEST VALUE IS SUBTRACTED TO MAKE ALL VALUES POSITIVE.
ADDITIONAL VALUES ARE TAKEN OUT AT NONUNIFORM STEPS WITH
A MINIMUM GROUP SIZE OF MINPK. THIS VERSION IS FOR TESTING:
(1) LESS THAN FULL OCTET FOR PACKING GROUP WIDTHS,
(2) THE PACKING OF GROUP SIZES RATHER THAN A BIT MAP,
(3) THE REVERSAL OF ALTERNATE ROWS, AND
(4) THE OPTION OF SECOND-ORDER SPATIAL DIFFERENCES.
THESE OPTIONS ARE EXPLAINED IN MORE DETAIL IN TDL OFFICE
NOTE 93-XX. GRIB SECTIONS O, 1, 2, 4, AND 5 ARE PACKED
AS EXPLAINED IN THE WMO GRIB CODE, MODIFIED AS
INDICATED IN THIS OFFICE NOTE.

RESTRICTIONS: THIS SUBROUTINE DEALS WITH

- ONLY RECTANGULAR GRIDS WITH RESPECT TO NORTH POLAR
STEREOGRAPHIC OR LAMBERT CONFORMAL MAP PROJECTIONS
(CODE TABLE 11, BIT 1 = 0; CODE TABLE 6 = 3 OR 5.

- ONLY SINGLE VALUES AT GRIDPOINTS, NOT MATRICES; CODE
TABLE 11, BIT 6 = O.

- SCALES BY POWERS OF 10, NOT POWERS OF 2.

- SECTION 1 IS ALWAYS 28 OCTETS LONG.

- SECTION 2 IS 28 OCTETS LONG FOR POLAR STEREOGRAPHIC
AND 42 OCTETS LONG FOR LAMBERT.

ERROR RETURNS
IF SUBROUTINE PKBG DETECTS AN ERROR, RETURN IS MADE TO
FORTRAN STATEMENT 900 WHERE A DIAGNOSTIC IS PRINTED AND
RETURN IS TO THE CALLING PROGRAM WITH THE ERROR NUMBER IN
IER.

DATA SET USE
KFIL10 - UNIT NUMBER FOR CURRENT CONSOLE. (OUTPUT)
KFIL12 - UNIT NUMBER FOR OUTPUT (PRINT) FILE. (OUTPUT)

VARIABLES
KFIL10 = UNIT NUMBER FOR CURRENT CONSOLE. (INPUT)
KFIL12 = UNIT NUMBER FOR OUTPUT (PRINT) FILE. (INPUT)

[cNoNoNeoNoNoNoNoNoNoNoRoNeoNeoRoNeoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNeoNoNoNoNoNoNoNoNoNoNoNoNe]

A(IX,JY) = ARRAY FOR ORIGINAL INPUT GRID (IX=1,NX) (JY=1,NY).

8

e NeoReRoRo e ReoReoRoReoReoRoRoReoReRo o ReoReoReoReoRe o Re RN Re e Re Re o Re Ne N Ns ReNeoNeNoNoNoNo NoNoNeoloNoNoNoNo o NoNo No N}

IA(IX,JY)

IC(K)
NX,NY =

IS1(L)

IS2(L) =

(INPUT)

ARRAY FOR SCALED AND ROUNDED INPUT GRID
(IX=1,NX) (JY=1,NY). (INTERNAL)

WORK ARRAY (K=NX*NY). (INTERNAL)
DIMENSIONS OF A(,), IA(,), AND

I1C(). (INPUT)

HOLDS THE OCTETS TO FURNISH FOR GRIB
SECTION 1 (L-1,ND8). (INPUT)

THE FOLLOWING LOCATIONS CORRESPOND TO OCTET
NUMBERS AND ARE INPUT:

IS1(4) = GRIB VERSION NUMBER OF CODE TABLE 2.

IS1(5) = CODE TABLE O, ORIGINATING OFFICE.

IS1(6) = GENERATING PROCESS NUMBER.

IS1(7) = CATALOGUE NUMBER OF GRID FOR CENTER
DEFINED IN IS1(5). (EVEN IF USED,
SECTION 2 WILL ALWAYS BE PRESENT.)

IS1(8) = CODE TABLE 1 = 10000000 BINARY;

SECTION 2 ALWAYS PRESENT, SECTION 3
NOT PRESENT.

1S1(9) = CODE TABLE 2, PARAMETER DEFINITION

1S1(10) = CODE TABLE 3 VALUE

1S1(11) = CODE TABLE 3 VALUE

1S1(13) = YEAR OF CENTURY

IS1(14) = MONTH

1S1(15) = DAY

1S1(16) = HOUR

IS1(17) = MINUTE

IS1(18) = CODE TABLE 4, UNIT OF TIME RANGE

1S1(19) = PROJECTION TO END OF PERIOD

1S1(20) = TIME INTERVAL

1S1(21) = CODE TABLE 5, TIME RANGE INDICATOR

1S1(22) = NUMBER INCLUDED IN AVERAGE, IF
RELEVANT

1S1(24) = NUMBER MISSING FROM AVERAGE, IF
RELEVANT

1S1(25) = CENTURY OF REFERENCE.

1S1(27) = DECIMAL SCALE FACTOR.

HOLDS THE OCTETS FOR GRIB SECTION 2 (L-1,ND8).

NOT ALL LOCATIONS ARE USED. (INPUT)

THE FOLLOWING LOCATIONS CORRESPOND TO OCTET

NUMBERS AND ARE INPUT:

1S2(5) = 255 (SINGLE VALUES AT GRIDPOINTS)

IS2(6) = CODE TABLE; MAP PROJECTION = 3 OR 5
ONLY

IS2(7) = NUMBER OF POINTS IN IX DIRECTION

1S2(9) = NUMBER OF POINTS IN JY DIRECTION

IS2(11) = LATITUDE OF FIRST GRIDPOINT,
MUST BE POSITIVE

LONGITUDE OF FIRST GRIDPOINT,
MUST BE POSITIVE

IS2(17) = CODE TABLE 7

IS2(14)

1S2(18) = ORIENTATION OF GRID, MUST BE POSITIVE
IS2(21) = DX = IX DIRECTION GRID LENGTH
IS2(24) = DY = JY DIRECTION GRID LENGTH

1S2(28) = CODE TABLE 8, SCANNING MODE = 4 OR 5

9

aoaoaooaooo0oocaoaaoooo00aanoo00n0a0O000000 0000000000000 0N 00O

IS4(L) =

ND8 =
LBIT(M) =

JMAX(M) =

JMIN(M) =
NOV(M) =
IPACK(J) =
ND4 =

MINPK =

INC =

IX =
MAXMAX =
IOCTET =

SCALE =
MAXA ,MINA =

LOC =

ONLY
IS2(29) = LATITUDE OF FIRST SECANT CUT FOR
LAMBERT MAP ONLY

IS2(32) = LATITUDE OF SECOND SECANT CUT FOR
LAMBERT MAP ONLY

IS2(35) = LATITUDE OF SOUTHERN POLE FOR LAMBERT
MAP ONLY

IS2(38) = LONGITUDE OF SOUTHERN POLE FOR LAMBERT
MAP ONLY

HOLDS THE OCTETS FOR GRIB SECTION 4 (L=1,ND8).
ONLY 2 LOCATIONS ARE USED.

THE FOLLOWING LOCATIONS CORRESPOND TO OCTET
NUMBERS :

1S4(4) = CODE TABLE 11; FLAG = 01110000 BINARY
INDICATING GRIDPOINT DATA, SECOND-ORDER
PACKING, INTEGER VALUES, AND ADDITIONAL
FLAGS IN OCTET 14. (INTERNAL)

CODE TABLE 11; FLAG = 0001X000 BINARY
INDICATING SINGLE DATUM PER GRIDPOINT,
NO SECONDARY BIT MAP, AND SECOND-ORDER
VALUES HAVE DIFFERENT WIDTHS. A O OR
1 IN THE FIFTH FROM THE LEFT (WHERE THE
X IS) INDICATES THAT SECOND-ORDER SPATIAL
DIFFERENCES ARE OR ARE NOT PACKED,
RESPECTIVELY. (INTERNAL)

DIMENSION OF IS1(), IS2(), AND IS4(). (INPUT)
THE NUMBER OF BITS NECESSARY TO HOLD THE
PACKED VALUES FOR EACH GROUP M (M=1,1X).

(OUTPUT) '

THE MAXIMUM OF EACH GROUP M OF PACKED VALUES
AFTER SUBTRACTING THE GROUP MINIMUM VALUE
(M=1,1X). (OUTPUT)

THE MINIMUM VALUE SUBTRACTED FOR EACH GROUP
M (M=1,LX). (OUTPUT)

THE NUMBER OF VALUES IN GROUP M (M=1,LX).

(OUTPUT)

THE ARRAY TO HOLD THE ACTUAL PACKED MESSAGE

(J=1,MAX OF ND4). (OUTPUT)

THE SIZE OF THE ARRAYS JMAX(), LBIT(),

NOV(), JMIN(), AND IPACK(). (INPUT)

VALUES ARE PACKED IN GROUPS OF MINIMUM SIZE

MINPK. ONLY WHEN THE NUMBER OF BITS NEEDED TO HANDLE
A GROUP CHANGES WILL A NEW GROUP BE FORMED. (INPUT)
NUMBER OF VALUES TO ADD TO THE GROUP TO BE

PACKED AT A TIME. (INPUT)

THE NUMBER OF GROUPS (THE NUMBER OF 2ND ORDER
MINIMA). (OUTPUT)

THE MAXIMUM VALUE IN IC(), WHICH IS THE

LARGEST VALUE THAT HAS TO BE PACKED. (OUTPUT)

THE TOTAL MESSAGE SIZE IN OCTETS. (OUTPUT)

SCALING PARAMETER = 10.**IS1(27). (INTERNAL)

THE MAXIMUM AND MINIMUM VALUES IN IA(,) AND

IC() BEFORE SUBTRACTING THE MINIMUM VALUE.
(INTERNAL)

WORD POSITION IN IPACK() WHERE THE FIRST

IS4(14)

10

0OOOOOOOOC)OOOOOOOGOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOO

IPOS

IBIT

KBIT

MBIT

IBIT

JBIT

NBIT

IFIRST

IFOD

FMNVAX

FMNIBM

NXY =
NCOUNT =

C7777

17771

GRIBX

IFILL

MOCTET

STATE

(LEFTMOST) BIT OF THE VALUE TO PACK GOES.

PKBG UPDATES 1IT.

BIT POSITION WITHIN IPACK(LOC) WHERE THE FIRST
(LEFTMOST) BIT OF THE VALUE TO PACK GOES.

PKBG UPDATES 1IT.

THE NUMBER OF BITS REQUIRED TO PACK THE GROUP
MINIMUM VALUE. (INTERNAL)

THE NUMBER OF BITS REQUIRED TO PACK THE WIDTH

OF WIDTHS--OCTET 22, SECTION 4. (INTERNAL)

THE NUMBER OF BITS REQUIRED TO PACK THE

GROUP SIZES. (INTERNAL)

THE NUMBER OF BITS REQUIRED TO PACK THE

FIRST VALUE IN THE FIELD (WITH THE REFERENCE
REMOVED). USED ONLY WHEN PACKING SECOND ORDER
DIFFERENCES .

THE NUMBER OF BITS REQUIRED TO PACK THE

ABSOLUTE VALUE OF THE FIRST FIRST ORDER
DIFFERENCE. USED ONLY WHEN PACKING SECOND ORDER
DIFFERENCES.

THE NUMBER OF BITS REQUIRED TO PACK THE

ABSOLUTE VALUE OF THE MINIMUM SECOND ORDER
DIFFERENCE. USED ONLY WHEN PACKING SECOND ORDER
DIFFERENCES .

THE FIRST VALUE IN THE FIELD TO PACK (WITH THE
REFERENCE REMOVED). USED ONLY WHEN PACKING SECOND
ORDER DIFFERENCES.

THE FIRST FIRST ORDER DIFFERENCE. USED ONLY WHEN
PACKING SECOND ORDER DIFFERENCES.

VAX FLOATING POINT REPRESENTATION OF MINA,

THE REFERENCE VALUE.

IBM FLOATING POINT REPRESENTATION OF MINA,

THE REFERENCE VALUE. THIS IS THE REPRESENTATION
SPECIFIED FOR GRIB. CONVERSION FROM FMNVAX TO
FMNIBM DONE BY SUBROUTINE Q9VI32.

NX*NY. MAY BE SET TO NXY-2 BY GRIBPR. (INTERNAL)
COUNTS THE VALUES ACTUALLY PACKED. THIS CAN BE
LESS THAN NXY WHEN ONE OR MORE GROUPS HAVE THE
SAME VALUE, AND THE VALUES ARE OMITTED.

HOLDS '7777'. EQUIVALENCED TO 17777 FOR
PROVISION TO SUBROUTINE PKBG AS AN INTEGER.
(INTERNAL) (CHARACTER*4)

SEE C7777. (INTERNAL)

HOLDS 'GRIB’. EQUIVALENCED TO IGRIB FOR
PROVISION TO SUBROUTINE PKBG AS AN INTEGER.
(INTERNAL)

NUMBER OF BITS TO PAD MESSAGE (AT THAT POINT

IN THE PROCESS) TO AN EVEN OCTET. (INTERNAL)
NUMBER OF OCTETS CALCULATED FOR LENGTH OF
SECTIONS, ETC. (INTERNAL)

HOLDS 4 CHARACTERS FOR PRINTOUT IN CASE OF
ERROR. (INTERNAL) (CHARACTER*4)

NON SYSTEM SUBROUTINES CALLED
BGVRBL, PKBG, GRIBPR, Q9VI32,

11

Q

90

102
103

aaoaan

105

114
115

CHARACTER*4 GRIBX/'GRIB'/,
1 c7777/'7771'/
CHARACTER*4 STATE

LOGICAL SECOND

DIMENSION A(NX,NY),IA(NX,NY),

1 IC(NX*NY)

DIMENSION JMAX(ND4),JMIN(ND4),NOV(ND4),LBIT(ND4) , IPACK(ND4)
DIMENSION IS1(ND8),IS2(ND8),IS4(ND8)

EQUIVALENCE (IGRIB,GRIBX),(C7777,17777)

DATA IZERO/0/,
1 IONE/1/

NXY=NX*NY
IPACK() MUST BE ZEROED.

DO 90 K=1,ND4
IPACK(K)=0
CONTINUE

DATA ARE IN A(,). NOW SCALE THEM INTO IA(,).
SCALE=10.**IS1(27)

DO 103 JY=1,NY

DO 102 IX=1,NX
IA(IX,JY)=NINT(A(IX,JY)*SCALE)
CONTINUE

CONTINUE

IF(IS2(28).EQ.5)GO TO 120

IF(IS2(28).EQ.4)GO TO 110
THE ONLY SCANNING MODES ALLOWED ARE REPRESENTED BY IS2(28)
EQUAL 4 OR 5. EACH DESIGNATES LEFT TO RIGHT FIRST, THEN
BOTTOM TO TOP. ADDITIONALLY, 5 MEANS TO REVERSE THE ORDER
ON ALTERNATE ROWS TO TAKE ADVANTAGE OF THE 2ND ORDER PACKING.

WRITE(KFIL12,105)IS2(28)

FORMAT (' OSCANNING MODE NOT PROVIDED FOR. IS2(28) ='I6,’'. ',

1 * STOP IN GRIBC AT 105.')

STOP 105

PUT DATA INTO A SINGLE DIMENSIONED ARRAY.
K=0
DO 115 JY=1,NY
DO 114 IX=1,NX
K=K+1
IC(K)=IA(IX,JY)
CONTINUE
CONTINUE
GO TO 127

12

aaoaoaan

120

(@]

130

aaoaa

140

(@]

olls oMo

[cNoNoNoNeoNoNeoNe]

PUT DATA INTO A SINGLE DIMENSIONED ARRAY. THE FIRST ROW IS
PROCESSED LEFT TO RIGHT, THEN HOP UP TO ROW 2 AND PROCEED
RIGHT TO LEFT, ETC. THIS MAKES FOR SMALLER DIFFERENCES.

K=0

DO 125 JY=1,NY

DO 124 IX=1,NX

K=K+1

I=IX
IF(MOD(JY,2) .EQ.0) I=NX+1-IX
I1C(K)=IA(I,JY)

CONTINUE

CONTINUE

FIND THE MAX AND MIN VALUES, MAXA AND MINA.

MAXA=IC(1)
MINA=IC(1)

DO 130 K=2,NXY
IF(IC(K).GT.MAXA)MAXA=IC(K)
IF(IC(K).LT.MINA)MINA=IC(K)
CONTINUE

ADJUST VAUES TO MAKE THEM POSITIVE IN IC() AND TO MAKE THE SMALLEST
EQUAL 0. ALSO, FIND THE MAMIMUM, MAXMAX, AFTER ADJUSTMENT.

DO 140 K=1,NXY
IC(K)=IC(K)-MINA
CONTINUE

MAXMAX=MAXA -MINA

CALL GRIBPR TO COMPUTE SECOND ORDER DIFFERENCES AND DECIDE
WHETHER TO USE THEM IN PACKING.

IDIM=NXY

SECOND=.FALSE.

IF(MINPK.GT.NXY-2)GO TO 145

CALL GRIBPR(KFIL10,KFIL12,IC,IA,A,IDIM,NXY,MINPK,

IMIN, IFIRST,IFOD, SECOND)

UPON RETURN, SECOND IS TRUE WHEN SECOND ORDER DIFFERENCES
ARE TO BE PACKED. NXY HAS BEEN SET TO NXY-2, AND THESE NXY
DIFFERENCES MINUS THEIR MINIMUM VALUE IMIN ARE NOW IN IC()
IF SECOND IS FALSE, NXY AND IC() HAVE NOT BEEN MODIFIED.

CALL VRBLPK TO CALCULATE LX, JMIN(), JMAX(), LBIT(),
AND NOV().

145 CALL BGVRBL(KFIL10,KFIL12,IC,NXY,MINPK,INC,

(¢

1

JMIN,JMAX,IBIT,LBIT,NOV,ND4, LX)

1:3

aao

aaoaan

152
153

210

220

1

SUBTRACT LOCAL MIN FOR EACH OF LX GROUPS.
K=0

DO 153 L-1,1X

DO 152 M=1,NOV(L)
K=K+1
IC(K)=IC(K)-JMIN(L)
CONTINUE

CONTINUE

PACK SECTION O OF THE MESSAGE INTO IPACK().

STATE='0 '

LOC~1
LOC = 4-BYTE WORD POSITION IN IPACK() TO START PACKING.
PKBG UPDATES IT.

1POS=1
IPOS = BIT POSITION IN IPACK(LOC) TO START PUTTING VALUE.
PKBG UPDATES 1IT.

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOGC,IPOS,IGRIB,32,IER,*900)
LOCO=LOC
IPOS0=IPOS

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,24,1IER,*900)
OCTETS 5-7 MUST BE FILLED IN LATER; ABOVE STATEMENT HOLDS
THE PLACE. LOCO AND IPOSO HOLD THE LOCATION.

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IONE,8,IER,*900)
THIS IS GRIB EDITION 1.

PACK SECTION 1 OF THE MESSAGE INTO IPACK().

STATE='1 '

IS1(1)=28
LENGTH OF SECTION 1 IS 28 OCTETS.

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS1(1),24,1ER,%*900)
LENGTH OF SECTION 1 IS 28 OCTETS.

DO 210 K=4,10
CALL PKBG(KFIL1O,KFIL12,IPACK,ND4,LOC,IPOS,IS1(K),8,IER,*900)
CONTINUE

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS1(11),16,IER,*900)

DO 220 K=13,21
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS1(K),8,IER,*900)
CONTINUE

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS1(22),16,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS1(24),8,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS1(25),8,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,8,IER,*900)

A NEGATIVE DECIMAL SCALE FACTOR MUST HAVE THE MINUS SIGN,

IF PRESENT, IN BIT 1 OF THE 16-BIT FIELD.
IF(IS1(27).LT.0)

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IONE,1,IER,*900)

14

aaoa

[eNe!

IF(IS1(27).GE.0)

1 CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,1,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,ABS(IS1(27)),15,
1 IER,*900)

PACK SECTION 2 OF THE MESSAGE INTO IPACK().

STATE="'2 !
IF(IS2(6).EQ.5)IS2(1)=32
LENGTH OF SECTION 2 IS 32 OCTETS FOR POLAR STEREOGRAPHIC.
IF(IS2(6).EQ.3)IS2(1)=42
LENGTH OF SECTION 2 IS 42 OCTETS FOR LAMBERT.
IF(IS1(8).EQ.128)GO TO 225
IS1(8) MUST BE 128 DECIMAL = 10000000 BINARY TO INDICATE
SECTION 2 IS INCLUDED AND SECTION 3 IS NOT.
WRITE(KFIL12,224)
224 FORMAT('0IS1(8) MUST BE 128. STOP IN GRIBC AT 224.')
STOP 224

225 CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(1),24,1ER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,8,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(5),8,1ER,%*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(6),8,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(7),16,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(9),16,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(11),24,1ER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(14),24,1ER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(17),8,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(18),24,1ER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(21),24,1ER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(24),24,1ER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,8,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(28),8,IER,*900)
IF(IS2(6).NE.5)GO TO 230

THIS IS POLAR STEREOGRAPHIC.
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,32,IER,*900)
GO TO 300

230 1IF(IS2(6).EQ.3)GO TO 232
WRITE(KFIL12,231)

231 FORMAT('0IS2(6) MUST BE EITHER 3 OR 5. STOP IN GRIBC AT 231.')
STOP 231

THIS IS LAMBERT. 1IS2(6) IS EITHER 3 OR 5.

232 CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(29),24,1ER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(32),24,1ER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(35),24,1ER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS2(38),24,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,16,IER,*900)

OMIT SECTION 3 OF THE MESSAGE.
300 1IS3=0
LENGTH OF SECTION 3 = O OCTETS.

15

PACK SECTION 4 OF THE MESSAGE INTO IPACK().

(@R

STATE='4.0 '
1S4 (4)=112

C 112 DECIMAL = 160 OCTAL = 1110000 BINARY.

LOC1=LOC

IPOS1=IPOS

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,24,1ER,*900)
OCTETS 1-3 MUST BE FILLED IN LATER; ABOVE STATEMENT HOLDS
THE PLACE. LOCl AND IPOS1 SAVE THE LOCATION.

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS4(4),4,IER,*900)
THE LEFTMOST 4 BITS OF OCTET 4 SHOULD BE 0111 BINARY TO
INDICATE GRIDPOINT DATA, COMPLEX PACKING, INTEGER VALUES,
AND ADDITIONAL FLAGS IN OCTET 14. LOC2 AND IPOS2 SAVE THE
LOCATION FOR THE LAST 4 BITS OF OCTET & FOR FILLING LATER.

LOC2=L0C

IPOS2=IPOS

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,4,IER,*900)

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,16,IER,*900)

FMNVAX=MINA

C THE REFERENCE VALUE IS PACKED AS FLOATING POINT.

Cc FMNVAX IS THE VAX REPRESENTATION.

FMNIBM=FMNVAX

CHErirrrrrrhrhhddtyx

i NOTE: THE FLOATING POINT NUMBER TO BE PACKED IS THE

C GRIB IBM REPRESENTATION. IF THIS PACKING PROGRAM IS RUN

C ON A VAX MACHINE, THEN INSERT THE FOLLOWING STATEMENT

C TO CONVERT FROM VAX TO IBM REPRESENTATION.

CALL Q9VI32(FMNVAX,FMNIBM,1,ISTAT)
Cc FMNIBM IS THE IBM REPRESENTATION SPECIFIED FOR GRIB.
Chx¥kkkhtdkkddddktt
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,FMNIBM,32,IER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IBIT,8,IER,*900)
¢ IBIT INTO OCTET 11 IS THE NUMBER OF BITS NEEDED FOR
B SECOND-ORDER MINIMUM VALUES.
LOC3=L0C
IPOS3=IPOS
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,16,IER,*900)

G OCTETS 12-13 HAVE TO BE PROVIDED LATER. LOC3 AND IPOS3 SAVE

o THE LOCATION. OCTETS 12-13 HOLD STARTING POSITION WITHIN
SECTION 4 OF GROUP MINIMA.

1S4(14)=16

IF(SECOND) IS4 (14)=1S4(14)+8
OCTET 14 MUST BE 00100000 BINARY = 20 OCTAL = 16 DECIMAL TO
INDICATE A SINGLE VALUE AT EACH POINT, NO SECONDARY BIT MAP
PRESENT, AND SECOND ORDER VALUES ARE OF DIFFERENT WIDTHS.
THE ABOVE STATEMENT ADDS A BIT IN THE 5TH PLACE TO INDICATE
SECOND ORDER PACKING.

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IS4(14),8,1ER,*900)

LOC4=LOC

IPOS4=IPOS

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,16,IER,*900)
OCTETS 15-16 HAVE TO BE PROVIDED LATER. LOC4 AND IPOS4 SAVE
THE LOCATION. OCTETS 15-16 HOLD STARTING POSITION WITHIN
SECTION 4 OF PACKED VALUES.

aQ

O Y O

a

QO aaa

aaa

16

aaoaoaa aaoaoa

(@}

314

315

321

325

aaoaa

Q

326

327

329

330

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,L0C,IPOS,LX,16,IER,*900)
OCTETS 17 AND 18 HOLD THE NUMBER OF SECOND ORDER MINIMA.

LOC5=L0C

IPOS5=IPOS

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,16,IER,*900)
OCTETS 19 AND 20 HOLD THE NUMBER OF PACKED VALUES. THIS IS
THE NUMBER OF GRID POINTS, UNLESS ONE OR MORE GROUPS IS EMPTY
(ALL VALUES THE SAME). THIS MUST BE FILLED LATER, AND
LOC5 AND IPOS5 SAVE THE LOCATION.

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,255,8,1ER,*900)
OCTET 21 IS RESERVED.

PACK LX WIDTHS OF GROUP MINIMA. FIRST DETERMINE THE NUMBER OF
BITS NEEDED, KBIT, AND STORE IN OCTET 22.

KBIT=1

DO 315 K=1,LX
IF(LBIT(K).LT.2**KBIT)GO TO 315
KBIT=KBIT+1

GO TO 314

CONTINUE

WRITE(KFIL12,321)KBIT
FORMAT (' ONUMBER OF BITS NEEDED FOR GROUP WIDTHS ='I3)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,KBIT,8,IER,*900)

STATE='4.1 '

DO 325 K=1,1IX
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,LBIT(K),KBIT,IER,*900)
CONTINUE

PACK LX GROUP SIZES. FIRST DETERMINE THE NUMBER OF BITS
NEEDED, MBIT, AND STORE IN 8 BITS.

MBIT=1

DO 327 K=1,IX

IF(NOV(K) .LT.2**MBIT)GO TO 327
MBIT=MBIT+1

GO TO 326

CONTINUE

WRITE(KFIL12,329)MBIT

FORMAT ('ONUMBER OF BITS NEEDED FOR GROUP SIZES ='I3)
STATE='4.2 '

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,MBIT,8,I1ER,*900)

DO 330 L-1,LX

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,NOV(L),MBIT,IER,*900)
CONTINUE

17

(@]

Q

332

aa

340
c

342

Q

a0

343

344

aaoaoaan

1

1

1

PAD WITH ZEROS TO AN EVEN OCTET.

IFILL=-MOD(33-IPOS,8)
IF(IFILL.EQ.0)GO TO 332
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,IFILL,IER,*900)

PACK LX GROUP MINIMA VALUES.

MOCTET=LOC*4- (33-1P0S) /8+1- (8+IS1(1)+IS2(1)+IS3)
MOCTET = NUMBER OF THE OCTET WHERE THE GROUP MIMINA START
WITHIN SECTION 4.
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC3,IP0OS3,MOCTET,16,
1ER,*900)
DO 340 L=1,LX
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,JMIN(L),IBIT,
IER,*900)
CONTINUE

IFILL-MOD(33-IPOS, 8)

IF(IFILL.EQ.0)GO TO 342

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,IFILL,IER,*900)
PAD WITH ZEROS TO AN EVEN OCTET. CAN NOW FILL OCTETS 15-16.

THE UPDATED POSITION IPOS IS WHERE THE SECOND ORDER DATA BEGIN.

MOCTET=LOC*4 - (33-1P0S) /8+1- (8+IS1(1)+IS2(1)+IS3)
MOCTET = NUMBER OF THE OCTET WHERE THE SECOND ORDER DATA BEGIN
WITHIN SECTION 4.

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC4,IP0OS4,MOCTET, 16,

1ER,*900)

PACK THE VALUES, WITH BOTH FIRST AND SECOND ORDER MINIMA OUT.

STATE='4.3 '

IF(.NOT.SECOND)GO TO 3480
SECOND ORDER PACKING BEING DONE, SO ADDITIONAL VALUES MUST BE
INSERTED BEFORE THE DATA VALUES THEMSELVES. ONCE THESE VALUES
ARE INSERTED, THE VALUES IN IC() CAN BE PACKED JUST AS WHEN
SECOND ORDER VALUES ARE NOT USED. THE NUMBER OF DATA VALUES

ARE, HOWEVER, REDUCED BY TWO WHEN SECOND ORDER PACKING IS DONE.

FIND THE NUMBER OF BITS (IBIT) NECESSARY TO PACK THE FIRST

VALUE AND PACK IBIT INTO 5 BITS AND THE FIRST VALUE. THE FIRST
VALUE WILL BE POSITIVE SINCE THE REFERENCE VALUE IS STILL USED.

IBIT=1

IF(IFIRST.LT.2**IBIT)GO TO 344
IBIT=IBIT+1

GO TO 343

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IBIT,5,1ER,*900)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IFIRST,IBIT,IER,*900)

FIND THE NUMBER OF BITS (JBIT) NEEDED TO PACK THE ABSOLUTE
VALUE OF THE FIRST FIRST ORDER DIFFERENCE AND PACK JBIT INTO
5 BITS, THE SIGN INTO 1 BIT, AND THE ABSOLUTE VALUE OF THE
FIRST FIRST ORDER DIFFERENCE INTO JBIT BITS.

18

JBIT=1

345 IF(ABS(IFOD).LT.2%*JBIT)GO TO 346
JBIT=JBIT+1
GO TO 345

346 CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,JBIT,5,IER,*900)
IF(IFOD.LT.0)CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,1,1,IER,

1 *900)

IF(IFOD.GE.0)CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,0,1,IER,

1 *900)

CALL PKBG(KFIL10,KFIL12,IPACK,ND&4,LOC,IPOS,ABS(IFOD),JBIT,IER,

1 *900)
c
Cc FIND THE NUMBER OF BITS (NBIT) NEEDED TO PACK THE ABSOLUTE
G VALUE OF THE MINIMUM SECOND ORDER DIFFERENCE AND PACK NBIT
g INTO 5 BITS, THE SIGN INTO 1 BIT, AND THE ABSOLUTE VALUE OF
G THE MINIMUM SECOND ORDER DIFFERENCE INTO NBIT BITS.
c

NBIT=1

347 IF(ABS(IMIN).LT.2**NBIT)GO TO 348

NBIT=NBIT+1

GO TO 347
@

348 CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,NBIT,5,IER,*900)
IF(IMIN.LT.0)CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,1,1,IER,

1 *900)

IF(IMIN.GE.O)CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,0,1,IER,

1 *900)

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,ABS(IMIN),NBIT,IER,

1 *900)
C
g NOW PACK THE DATA VALUES THEMSELVES.
5

3480 K=0

NCOUNT=0
v

DO 350 L~1,LX
C

DO 349 M=1,NOV(L)

K=K+1

IF(LBIT(L).EQ.0)GO TO 349

C GROUPS WITH ALL VALUES THE SAME ARE OMITTED.

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IC(K),LBIT(L),

1 IER,*900)

NCOUNT=NCOUNT+1

349 CONTINUE
350 CONTINUE

G
C PAD WITH ZEROS TO AN EVEN OCTET.
C

IFILL-MOD(33-IPOS,8)

IF(IFILL.EQ.0)GO TO 360

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,IZERO,IFILL,IER,*900)
¢ UPDATE OCTET 4 WITH UNUSUED BITS.

19

360

CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC2,IP0S2,IFILL,4,IER,*900)
THE LENGTH OF SECTION 4 CAN NOW BE PUT INTO OCTETS 1-3.

MOCTET=(LOC*4- (33-1IP0S)/8) - (LOC1*4-(33-1IP0S1)/8)
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC1l,IPOS1,MOCTET,24,1ER,#*900)

FILL OCTETS 19 AND 20.
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC5,IPOS5,NCOUNT,16,IER,*900)
PACK END OF MESSAGE.
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOC,IPOS,17777,32,1ER,*900)
| FILL OCTETS 5-7 WITH THE TOTAL MESSAGE LENGTH IN OCTETS.
IOCTET=LOC*4-(33-IP0S) /8
CALL PKBG(KFIL10,KFIL12,IPACK,ND4,LOCO,IPOSO,IOCTET,24,IER,*900)
CONTINUE
RETURN
ERROR RETURN SECTION.
WRITE(KFIL12,901)STATE, IER
FORMAT (' OERROR IN GRIBC PACKING SECTION 'A4,’' TIER ='I4)

RETURN
END

20

SUBROUTINE GRIBPR(KFIL10,KFIL12,IC,IA,IB,IDIM,NXY,MINPK,
1 IMIN,IFIRST,IFOD, SECOND)

APRIL 1993 GLAHN TDL MICROVAX

PURPOSE
CALLED BY GRIBC TO DETERMINE WHETHER TO USE SECOND ORDER
DIFFERENCES OR ORIGINAL VALUES TO PACK. ORIGINAL VALUES
ARE INDICATED WHEN THE AVERAGE RANGE OF CONSECUTIVE GROUPS
OF SIZE MINPK OF THE SECOND ORDER DIFFERENCES IS LARGER
THAN THE AVERAGE RANGE OF CONSECUTIVE GROUPS OF SIZE MINPK
OF THE ORIGINAL VALUES.

DATA SET USE
KFIL10 - UNIT NUMBER FOR CURRENT CONSOLE. (OUTPUT)
KFIL12 - UNIT NUMBER FOR OUTPUT (PRINT) FILE. (OUTPUT)

VARIABLES
KFIL10 = UNIT NUMBER FOR CURRENT CONSOLE. (INPUT)

KFIL12 = UNIT NUMBER FOR OUTPUT (PRINT) FILE. (INPUT)
IC(K) = HOLDS THE NXY ORIGINAL VALUES ON INPUT (K=1,IDIM).
HOLDS THE NXY SECOND ORDER DIFFERENCES ON

OUTPUT WHEN SECOND ORDER DIFFERENCES ARE TO BE
USED. 1IN THAT CASE, SECOND IS .TRUE. AND NXY
HAS BEEN REDUCED BY 2. (INPUT-OUTPUT)
IA(K) = WORK ARRAY (K=1,IDIM). (INTERNAL)
IB(K) = WORK ARRAY (K=1,IDIM). (INTERNAL)
IDIM = DIMENSION OF IC(), IB(), AND IA(). (INPUT)
NXY = NUMBER OF VALUES IN IC() ON INPUT. ON RETURN,
NXY WILL ALSO BE THE NUMBER OF VALUES IN IC().
IF THESE VALUES ARE SECOND ORDER DIFFERENCES,
THEN NXY WILL HAVE BEEN REDUCED BY 2. (INPUT-OUTPUT)
MINPK = INCREMENT IN WHICH RANGES WILL BE COMPUTED. (INPUT)
IMIN = WHEN SECOND ORDER DIFFERENCES ARE USED, IMIN
IS THE MINIMUM OF THEM. (OUTPUT)
IFIRST = WHEN SECOND ORDER DIFFERENCES ARE USED, IFIRST
IS THE FIRST ORIGINAL VALUE. (OUTPUT)
IFOD = WHEN SECOND ORDER DIFFERENCES ARE USED, IFOD
IS THE FIRST FIRST ORDER DIFFERENCE. (OUTPUT)
SECOND = TRUE (FALSE) WHEN SECOND ORDER DIFFERENCES
ARE (ARE NOT) USED. (OUTPUT)

NON SYSTEM SUBROUTINES CALLED
NONE

eReolele e ReoReRo oo ReoRoReoReo oo o ReoReReo Re Ro ke o e Ko R Ko Re e Neo Ne e NoNo oo oo o e e el

LOGICAL SECOND

C

DIMENSION IC(IDIM),IA(IDIM),IB(IDIM)
C
C COMPUTE FIRST ORDER DIFFERENCES.
c

DO 120 K=1,NXY-1
IA(K)=IC(K+1)-IC(K)
120 CONTINUE
C

21

Qoo

(@]

anno

130

135

140

145

150

COMPUTE SECOND ORDER DIFFERENCES AND THEIR MIMIMUM.
IMIN=999999

DO 130 K=1,NXY-2
IB(K)=IA(K+1)-IA(K)
IF(IB(K).LT.IMIN)IMIN=IB(K)
CONTINUE

COMPUTE AVERAGE RANGE OF NXY ORIGINAL VALUES IN INCREMENTS OF
MINPK.

SUMR=0
KOUNT=0

DO 140 K=1,NXY,MINPK

JMIN=999999

JMAX=-999999

IF(K+MINPK-1.GT.NXY)GO TO 140
THE LAST GROUP MAY BE VERY SMALL AND NOT BE REPRESENTATIVE OF
THE RANGE.

DO 135 J=K,K+MINPK-1
IF(IC(J).GT.JMAX)JIMAX=IC(J)
IF(IC(J).LT.JMIN)JMIN=IC(J)
CONTINUE

KOUNT=KOUNT+1
IRANGE=JMAX-JMIN
SUMR=SUMR+IRANGE
CONTINUE

AVGR=SUMR/KOUNT

COMPUTE AVERAGE RANGE OF NXY-2 2ND ORDER VALUES IN INCREMENTS OF
MINPK.

SUMR=0
KOUNT=0

DO 150 K=1,NXY-2,MINPK
JMIN=999999
JMAX=-999999
IF(K+MINPK-1.GT.NXY-2)GO TO 150
THE LAST GROUP MAY BE SMALL AND NOT REPRESENTATIVE OF THE RANGE.

DO 145 J=K,K+MINPK-1
IF(IB(J).GT.JMAX)JMAX=IB(J)
IF(IB(J).LT.JMIN)JMIN=IB(J)
CONTINUE

KOUNT=KOUNT+1
IRANGE=JMAX - JMIN
SUMR=SUMR+IRANGE
CONTINUE

22

aaa

155

160

200

300

AVGR2=SUMR /KOUNT

SECOND=. FALSE.
WRITE(KFIL12,155)AVGR,AVGR2 , IMIN

FORMAT (' OAVERAGE RANGE OF ORIGINAL SCALED VALUES = 'F10.2/
1 * AVERAGE RANGE OF SECOND ORDER DIFFERENCES ='F10.2/
2 ' MINIMUM OF SECOND ORDER DIFFERENCES = 'I110)

IF(AVGR2.GE.AVGR)GO TO 300
SECOND ORDER DIFFERENCES WILL BE PACKED.

WRITE(KFIL12,160)
FORMAT (' OSECOND ORDER DIFFERENCES WILL BE PACKED')

IFIRST=IC(1)

DO 200 K=1,NXY-2
IC(K)=IB(K)-IMIN
CONTINUE

IFOD=IA(1l)
SECOND=.TRUE.
NXY=NXY-2
RETURN

END

23

oo agoooOOacgaOoOoOnoOOOOQOaOOOaOOOOaOaOOOOAOA OO0 a a G O

SUBROUTINE BGVRBL(KFIL10,KFIL12,IC,NDP,MINPK, INC,

1

JMIN,JMAX, IBIT,LBIT,NOV,NDQ, LX)

APRIL 1993 GLAHN TDL MICROVAX

PURPOSE

TO DETERMINE GROUPS OF VARIABLE SIZE, BUT AT LEAST OF

SIZE MINPK,

THE NUMBER

AND THE ASSOCIATED MAX AND MIN OF EACH GROUP,
OF BITS NECESSARY TO PACK EACH GROUP, AND THE

NUMBER OF VALUES IN EACH GROUP. THE ROUTINE IS DESIGNED
TO DETERMINE THE GROUPS SUCH THAT A SMALL NUMBER OF BITS
IS NECESSARY TO PACK THE DATA WITHOUT EXCESSIVE
COMPUTATIONS. 1IF ALL VALUES IN THE GROUP ARE ZERO, THE
NUMBER OF BITS TO USE IN PACKING IS DEFINED AS ZERO.

ALL VARIABLES ARE INTEGER.

DATA SET USE

KFIL10 - UNIT NUMBER FOR CURRENT CONSOLE. (OUTPUT)
KFIL12 - UNIT NUMBER FOR OUTPUT (PRINT) FILE. (OUTPUT)

VARIABLES IN CALL SEQUENCE

KFIL10 =
KFIL12 =
IC() =

NDP =
MINPK =

INC =

JMIN(J) =
JMAX(J) =
IBIT =

LBIT(J) =

NOV(J) =

UNIT NUMBER FOR CURRENT CONSOLE. (INPUT)

UNIT NUMBER FOR OUTPUT (PRINT) FILE. (INPUT)
ARRAY TO HOLD DATA FOR PACKING. THE VALUES

DO NOT HAVE TO BE POSITIVE AT THIS POINT, BUT
MUST BE IN THE RANGE -9999999 TO +9999999.
THESE INTEGER VALUES WILL BE RETAINED EXACTLY
THROUGH PACKING AND UNPACKING. (INPUT)

NUMBER OF VALUES IN IC(). ALSO TREATED

AS ITS DIMENSION. (INPUT)

THE MINIMUM SIZE OF EACH GROUP, EXCEPT POSSIBLY
THE LAST ONE. (INPUT)

THE NUMBER OF VALUES TO ADD TO AN ALREADY
EXISTING GROUP IN DETERMINING WHETHER OR NOT
TO START A NEW GROUP. IDEALLY, THIS WOULD BE
1, BUT EACH TIME INC VALUES ARE ATTEMPTED, THE
MAX AND MIN OF THE NEXT MINPK VALUES MUST BE
FOUND. THIS IS "A LOOP WITHIN A LOOP," AND

A SLIGHTLY LARGER VALUE MAY GIVE ABOUT AS GOOD
RESULTS WITH SLIGHTLY LESS COMPUTATIONAL TIME.
IF INC IS LE O, 1 IS USED, AND A DIAGNOSTIC IS
OUTPUT. (INPUT)

THE MINIMUM OF EACH GROUP (J=1,1X). (OUTPUT)
THE MAXIMUM OF EACH GROUP (J=1,1X). (OUTPUT)
THE NUMBER OF BITS NECESSARY TO PACK JMIN(J)
VALUES, J=1,LX. (OUTPUT)

THE NUMBER OF BITS NECESSARY TO PACK EACH GROUP
(J=1,1LX). 1IT IS ASSUMED THE MINIMUM OF EACH
GROUP WILL BE REMOVED BEFORE PACKING, AND THE
VALUES TO PACK WILL, THEREFORE, ALL BE POSITIVE.
HOWEVER, IC() DOES NOT NECESSARILY CONTAIN
ALL POSITIVE VALUES. IF THE OVERALL MINIMUM
HAS BEEN REMOVED, THEN IC() WILL CONTAIN
ONLY POSITIVE VALUES. (OUTPUT)

THE NUMBER OF VALUES IN EACH GROUP (J=1,LX).

24

sNeoReoNoNeRoRoNoNoNoNoNoNoNoNoNeoNoNo NN]

aaoaoaoaa

100

110

120

125

(OUTPUT)

NDQ = THE DIMENSION OF JMIN(), JMAX(), LBIT(), AND
NOV(). (INPUT) .
1LX = THE NUMBER OF GROUPS DETERMINED. (OUTPUT)

INTERNAL VARIABLES

KINC = WORKING COPY OF INC. MAY BE MODIFIED.

MINA = MINUMUM VALUE IN GROUP A.

MAXA = MAXIMUM VALUE IN GROUP A.

IBITA = NUMBER OF BITS NEEDED TO HOLD VALUES IN GROUP A.
MINB = MINUMUM VALUE IN GROUP B.

MAXB = MAXIMUM VALUE IN GROUP B.

IBITB = NUMBER OF BITS NEEDED TO HOLD VALUES IN GROUP B.
MINC = MINUMUM VALUE IN GROUP C.

MAXC = MAXIMUM VALUE IN GROUP C.

KTOTAL = COUNT OF NUMBER OF VALUES IN IC() PROCESSED.

NOUNT = NUMBER OF VALUES ADDED TO GROUP A TO MAKE GROUP .

NON SYSTEM SUBROUTINES CALLED
NONE

DIMENSION IC(NDP)
DIMENSION JMIN(NDQ),JMAX(NDQ),LBIT(NDQ),NOV(NDQ)

IF(INC.LE.O)WRITE(KFIL12,100)INC
FORMAT ('OINC ='I8,' NOT CORRECT. 1 IS USED.')
KINC=MAX (INC,1)
KSTART=1
KTOTAL~0
LX=0
KOUNTA=0
IBITA=0
MINA=9999999
=-9999999

FIND THE MIN AND MAX OF GROUP A. THIS WILL INITALLY BE OF
SIZE MINPK (IF THERE ARE STILL MINPK VALUES IN IC()), BUT
WILL INCREASE IN SIZE IN INCREMENTS OF INC UNTIL A NEW
GROUP IS STARTED.

NEND=MIN(KSTART+MINPK-1,NDP)
IF(NDP-NEND.LE.MINPK/2)NEND=NDP

DO 120 K=KSTART,NEND
MINA=MIN(MINA,IC(K))
MAXA=MAX (MAXA, IC(K))
KOUNTA=KOUNTA+1
CONTINUE

INCREMENT KTOTAL AND FIND THE BITS NEEDED TO PACK THE A GROUP.
KTOTAL=KTOTAL+KOUNTA
IF(MAXA-MINA.LT.2**IBITA)GO TO 130
IBITA=IBITA+1
GO TO 125

25

C
130 IF(KTOTAL.GE.NDP)GO TO 200

C
(0 MORE VALUES LEFT IN IC(). TRY TO ADD INC VALUES TO GROUP A.
C THIS AUGMENTED GROUP IS CALLED GROUP C.
C
MINC=MINA
MAXC=MAXA

135 NOUNT=0
IF(NDP- (KTOTAL+INC) .LE.MINPK/2)KINC=NDP-KTOTAL
ABOVE STATEMENT CONSTRAINS THE LAST GROUP TO BE NOT LESS THAN
MINPK/2 IN SIZE. 1IF A PROVISION LIKE THIS IS NOT INCLUDED,
THERE WILL ALMOST ALWAYS BE A VERY SMALL GROUP AT THE END.

eNoNeNe!

DO 140 K=KTOTAL+1,MIN(KTOTAL+KINGC,NDP)
MINC=MIN (MINC, IG(K))
MAXC=MAX (MAXC, IC(K))
NOUNT=NOUNT+1
140 CONTINUE

C
C IF THE NUMBER OF BITS NEEDED FOR GROUP C IS GT IBITA,
C THEN THIS GROUP A IS A GROUP TO PACK.
IF(MAXC-MINC.GE.2**IBITA) GO TO 200
C
C THE BITS NECESSARY FOR GROUP C HAS NOT INCREASED FROM THE
C BITS NECESSARY FOR GROUP A. FIND PACKING BITS OVER MINPK VALUES
C FOLLOWING GROUP A, THAT IS GROUP B.
C
MINB=9999999
MAXB=-9999999
IBITB=0
JOUNT=0
C

DO 160 K=KTOTAL+1,MIN(KTOTAL+MINPK,NDP)
MINB=MIN (MINB, IC(K))
MAXB=MAX (MAXB, IC(K))
JOUNT=JOUNT+1
160 CONTINUE

165 IF(MAXB-MINB.LT.2**IBITB)GO TO 170
IBITB=IBITB+1
GO TO 165

DETERMINE WHETHER THE NEXT MINPK VALUES CAN BE PACKED IN
LESS BITS THAN GROUP A. IF SO, PACK GROUP A AND START
ANOTHER GROUP.

sl e Feliele)

170 IF(IBITB.LT.IBITA)GO TO 200

IBITB GE IBITA. THEREFORE, ADD THIS INCREMENT TO A.

aaa

KTOTAL=KTOTAL+NOUNT
KOUNTA=KOUNTA+NOUNT
MINA=MINC
MAXA=MAXC

26

aQ

eNoNoNe]

slesNoNoNoN]

(@}

200

201

205

210

220

KOUNTA IS THE NUMBER OF VALUES IN GROUP A. THIS GROUP WILL
NEVER BE SPLIT.
IF(KTOTAL.LT.NDP)GO TO 135

GROUP A IS TO BE PACKED. STORE VALUES IN JMIN(), JMAX(),
LBIT(), AND NOV().

LX=LX+1

IF(LX.LE.NDQ)GO TO 205

WRITE(KFIL12,201)

FORMAT('OLX NOT LARGE ENOUGH. STOP IN VRBLPK AT 201')
STOP 201

JMIN(LX)=MINA

JMAX (LX)=MAXA

LBIT(LX)=IBITA

NOV (LX)=KOUNTA

KSTART=KTOTAL+1

IF(KTOTAL.LT.NDP)GO TO 110
WITH THE ABOVE TRANSFER, A NEW GROUP A OF SIZE MINPK WILL
BE DEFINED.

CALUCLATE IBIT, THE NUMBER OF BITS NEEDED TO HOLD THE GROUP
MINIMUN VALUES.

IBIT=1

DO 220 L~1,LX
IF(JMIN(L).LT.2**IBIT)GO TO 220
IBIT=IBIT+1

GO TO 210

CONTINUE

RETURN
END

27

oo 0O0O0O00000a00O00O0aO0O00O0O0000O00O00000 000000

@

SUBROUTINE PKBG(KFIL10,KFIL12,IPACK,NDX,LOC,IPOS,NVALUE,NBIT,
1 IER,*)

APRIL 1993 GLAHN TDL MICROVAX

PURPOSE
PACKS NBIT BITS IN THE POSITIVE INTEGER NVALUE INTO ARRAY
IPACK(NDX) STARTING IN WORD LOC, BIT IPOS. THE WORD
POINTER LOC AND BIT POSITION POINTER IPOS ARE UPDATED
AS NECESSARY. PACKING WILL NOT OCCUR IF IPACK() WOULD
BE OVERFLOWED. IN THAT CASE, RETURN IS WITH IER=1
RATHER THAN FOR THE GOOD RETURN IER=0. WHEN NBIT EQ O
AND NVALUE EQ O, NO PACKING IS DONE. THIS ROUTINE ACTS
AS "INSERTION" RATHER THAN "ADDITION." THAT IS, THE
BITS, IF ANY, TO THE RIGHT OF THE PACKED VALUE
ARE RETAINED. THIS MEANS THAT THE IPACK() ARRAY SHOULD
BE ZEROED OUT BEFORE USING. ALSO, ANY INSERTION MUST BE
BE INTO AN AREA THAT HAS ALL ZERO BITS.

DATA SET USE
KFIL10 - UNIT NUMBER FOR CURRENT CONSOLE. (OUTPUT)
KFIL12 - UNIT NUMBER FOR OUTPUT (PRINT) FILE. (OUTPUT)

VARIABLES
KFIL10 = UNIT NUMBER FOR CURRENT CONSOLE. (INPUT)
KFIL12 = UNIT NUMBER FOR OUTPUT (PRINT) FILE. (INPUT)
IPACK(J) = ARRAY TO PACK INTO (J=1,NDX). (INPUT-OUTPUT)
NDX = DIMENSION OF IPACK(). (INPUT)
LOC = WORD IN IPACK() TO START PACKING. UPDATED
AS NECESSARY AFTER PACKING IS COMPLETED.
(INPUT-OUTPUT)
IPOS = BIT POSITION (COUNTING LEFTMOST BIT IN WORD
AS 1) TO START PACKING. MUST BE GE 1 AND
LE 32. UPDATED AS NECESSARY
AFTER PACKING IS COMPLETED. (INPUT-OUTPUT)
NVALUE = THE RIGHTMOST NBIT BITS IN NVALUE WILL
BE PACKED. (INPUT)
NBIT = SEE NVALUE. MUST BE GE O AND LE 32. (INPUT)
IER = STATUS RETURN:
= GOOD RETURN.
= PACKING WOULD OVERFLOW IPACK().
= IPOS NOT IN RANGE 1 TO 32.
NBIT NOT IN RANGE O TO 32.
NBIT EQ O, BUT NVALUE NE O.
* = ALTERNATE RETURN WHEN IER NE O.

PwWNOEO

NON SYSTEM SUBROUTINES CALLED
NONE (VAX FORTRAN 77 EXTENSIONS ISHFT AND IOR ARE USED)

DIMENSION IPACK(NDX)

28

aaaa

111

140

150

CHECK CORRECTNESS OF INPUT AND SET STATUS RETURN.

IER=0
IF(NBIT.EQ.O0.AND.NVALUE.EQ.0)GO TO 150
IF(NBIT.NE.0)GO TO 111
IER=4
WHEN NBIT=0, NVALUE MUST BE ALSO.
IF(LOC+(IPOS+NBIT-2)/32.GT.NDX)IER=1
PACKING WOULD OVERFLOW IPACK().
IF(IPOS.LE.0.OR.IPOS.GT.32)IER=2
IF(NBIT.LT.0.OR.NBIT.GT.32)IER=3
IF(IER.NE.O)RETURN 1

SHIFT KDONOR=NVALUE TO LEFT TO ELIMINATE UNWANTED BITS, IF ANY,
AND BACK TO RIGHT TO MATCH LOCATION IN IPACK(LOC).

KDONOR=NVALUE

KDONOR=ISHFT (ISHFT (NVALUE, 32-NBIT),1-IPOS)

IPACK(LOC)=IOR (IPACK(LOC) ,KDONOR)
PACKING COMPLETE UNLESS NOT ALL NBIT BITS WOULD FIT INTO
WORD IPACK(LOC).

IF(IPOS+NBIT.GT.33)GO TO 140

PACKING COMPLETE. UPDATE LOC AND IPOS AS NECESSARY.

LOC=LOC+(IPOS-1+NBIT) /32
IPOS=MOD (IPOS-1+NBIT,32)+1

GO TO 150

MUST COMPLETE PACKING.
IPOS=IPOS+NBIT-32
LOC=LOC+1
IPACK(LOC)=IOR (ISHFT (NVALUE, 33-IP0S), IPACK(LOC))
CONTINUE

RETURN
END

29

APPENDIX II

This appendix contains a listing of the unpacking FORTRAN code to implement
the options recommended in this office note. It consists of two routines,
DEGRIBC and UNPKBG, the latter being called by the former. Another routine
called by DEGRIBC, Q9IV32, is for use only when implementing this code on a
VAX computer, and is not included.

SUBROUTINE DEGRIBC(KFILlO,KFIL12,A,IA,IC,IPACK,NDl,ISO,ISl,ISZ,
1 1S4 ,ND8,LBIT,JMIN,NOV,ND4,KOCTET, IER)

APRIL 1993 GLAHN TDL MICROVAX

PURPOSE
SUBROUTINE TO UNPACK (DEGRIB) DATA PACKED BY ROUTINE
GRIBC; ONLY THE OPTIONS IN GRIBC ARE DEALT WITH IN
DEGRIBC. SEE GRIBC AND TDL OFFICE NOTE 93-XX FOR
FURTHER INFORMATION.

DATA SET USE
KFIL10 - UNIT NUMBER FOR CURRENT CONSOLE. (OUTPUT)
KFIL12 - UNIT NUMBER FOR OUTPUT (PRINT) FILE. (OUTPUT)

VARIABLES

KFIL10 = UNIT NUMBER FOR CURRENT CONSOLE. (INPUT)

KFIL12 = UNIT NUMBER FOR OUTPUT (PRINT) FILE. (INPUT)

A(K) = UNPACKED DATA RETURNED (K=1,ND1). THE DATA ARE IN
THIS LINEAR ARRAY, IN THE ORDER OF A FORTRAN
2 -DIMENSIONAL ARRAY LIKE A(IX,JY) (IX=1,NX) (JY=1,NY).
(OUTPUT)

IA(K) = WORK ARRAY (K=1,ND1). HOLDS UNPACKED VALUES.
(INTERNAL)

IC(K) = WORK ARRAY (K=1,ND1). (INTERNAL)

IPACK(J) = THE ARRAY HOLDING THE ACTUAL PACKED MESSAGE
(J=1,MAX OF ND1). (INPUT)
ND1 = DIMENSION OF A(), IA(), IC(), AND IPACK().

ISO(L) = HOLDS THE OCTETS DECODED FROM SECTION O (L~1,ND8).
NOT ALL LOCATIONS ARE USED. L CORRESPONDS TO THE
(BEGINNING) OCTET OF THE IDENTIFIERS DEFINED
FOR THE GRIB MESSAGE. (OUTPUT)

IS1(L) = HOLDS THE OCTETS DECODED FROM SECTION 1 (L~1,ND8).
NOT ALL LOCATIONS ARE USED. L CORRESPONDS TO THE
(BEGINNING) OCTET OF THE IDENTIFIERS DEFINED
FOR THE GRIB MESSAGE. (OUTPUT)

IS2(L) = HOLDS THE OCTETS DECODED FROM SECTION 2 (L~1,ND8).
NOT ALL LOCATIONS ARE USED. L CORRESPONDS TO THE
(BEGINNING) OCTET OF THE IDENTIFIERS DEFINED
FOR THE GRIB MESSAGE. (OUTPUT)

IS4(L) = HOLDS THE OCTETS DECODED FROM SECTION 4 (L~1,ND8).
NOT ALL LOCATIONS ARE USED. L CORRESPONDS TO THE
(BEGINNING) OCTET OF THE IDENTIFIERS DEFINED
FOR THE GRIB MESSAGE. (OUTPUT)

ND8 = DIMENSION OF ISO(), IS1(), IS2(),AND IS4. (INPUT)
LBIT(M) = THE NUMBER OF BITS NECESSARY TO HOLD THE
PACKED VALUES FOR EACH GROUP M (M=1,1X). (OUTPUT)

OOOOOC)OOQOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOOOO

30

eNeoRoRoReReoReoReoRoReoRoRoRoRo Ko N ReoReoReo e Reo Ro o RoRe o NoNoNoNoNoNoNoNoNoNoNoNoNeo No o NoNoNoNoNoNoNoNeo NoNo N NGNS}

JMIN(M)
NOV (M)
ND4

KOCTET
IER

SCALE
MINA

NVALUE
C7777
17777
IGRIB
CGRIB

MREF

REF

MOCTET

LOC
IPOS

KBIT

IBIT

JBIT

THE MINIMUM VALUE SUBTRACTED FOR EACH GROUP

M BEFORE PACKING (M=1,1X). (OUTPUT)

THE NUMBER OF VALUES IN GROUP M (M=1,LX).

(OUTPUT)

THE SIZE OF THE ARRAYS LBIT(), NOV(), AND

JMIN(). (INPUT)

THE TOTAL MESSAGE SIZE IN OCTETS = ISO(5). (OUTPUT)

ERROR RETURN. MOST ERROR RETURNS NE O ARE

FROM SUBROUTINE UNPKBG OR Q9IV32. OTHERS USED ARE:

IER = 10--CAN'T FIND BEGINNING OF MESSAGE.

IER = 11--CAN'T FIND END OF MESSAGE.

IER = 20--IS1(8) IS INCORRECT. MUST BE 128 DECIMAL.

IER = 21--IS2(6) IS INCORRECT. MUST BE 3 OR 5.

IER = 22--1S2(28) IS INCORRECT. MUST BE 4 OR 5.

IER = 23--IS4(4) OR IS4(14) IS INCORRECT. IS4(4) MUST
BE 7 AND IS4(14) MUST BE 48.

THE NUMBER OF VALUES IN LBIT(), JMIN(), AND

NOV(). TAKEN FROM IS4(17). (INTERNAL)

SCALING PARAMETER = 10.%*(-IS1(27)). (INTERNAL)

THE MINIMUM VALUE THAT WAS SUBTRACTED BEFORE PACKING

(I.E., THE REFERENCE VALUE). NOTE THAT ALTHOUGH

THE REFERENCE VALUE IS FLOATING POINT (REAL),

IT IS ASSUMED TO BE A WHOLE NUMBER. (INTERNAL)

AN UNPACKED VALUE RETURNED FROM SUBROUTINE

UNPKBG. EQUIVALENCED TO CVALUE.

EQUIVALENCED TO 17777 FOR TESTING. (INTERNAL)

(CHARACTER*4)

EQUIVALENCED TO C7777 FOR TESTING. (INTERNAL)

SET TO ISO(l), WHICH SHOULD BE 'GRIB'. (INTERNAL)

EQUIVALENCED TO IGRIB FOR TESTING. (INTERNAL)

(CHARACTER*4)

SET TO IS4(7), WHICH IS ACTUALLY A FLOATING POINT

NUMBER. EQUIVALENCED TO REF. (INTERNAL)

EQUIVALENCED TO MREF, SO THAT IT CAN BE USED

AS A FLOATING POINT NUMBER WITHOUT GETTING IT

CONVERTED. (INTERNAL)

HOLDS THE NUMBER OF OCTETS AT VARIOUS STEPS OF

UNPACKING FROM WHICH LOC AND IPOS ARE

DETERMINED. (INTERNAL)

HOLDS WORD POSITION IN IPACK OF NEXT VALUE TO

UNPACK. (INTERNAL)

HOLDS BIT POSITION IN IPACK(LOC) OF THE FIRST

BIT OF THE NEXT VALUE TO UNPACK.

THE NUMBER OF BITS TO HOLD THE WIDTHS OF WIDTHS

FROM OCTET 22 (THE SIZE OF THE VALUES PUT INTO

LBIT().

THE NUMBER OF BITS REQUIRED TO PACK THE

FIRST VALUE IN THE FIELD (WITH THE REFERENCE

REMOVED). USED ONLY WHEN PACKING SECOND ORDER

DIFFERENCES.

THE NUMBER OF BITS REQUIRED TO PACK THE

ABSOLUTE VALUE OF THE FIRST FIRST ORDER

DIFFERENCE. USED ONLY WHEN PACKING SECOND ORDER

DIFFERENCES .

31

sHeslsllcBeNelelelcsNoleRellofe e

(5]

G On

110

111

112

1

NBIT = THE NUMBER OF BITS REQUIRED TO PACK THE
ABSOLUTE VALUE OF THE MINIMUM SECOND ORDER
DIFFERENCE. USED ONLY WHEN PACKING SECOND ORDER
DIFFERENCES.
IFIRST = THE FIRST VALUE IN THE FIELD (WITH THE

REFERENCE REMOVED). USED ONLY WHEN PACKING SECOND

ORDER DIFFERENCES.

IFOD = THE FIRST FIRST ORDER DIFFERENCE. USED ONLY WHEN

PACKING SECOND ORDER DIFFERENCES.
STATE

(INTERNAL) (CHARACTER*4)

NON SYSTEM SUBROUTINES CALLED
UNPKBG, Q9IV32

CHARACTER*4 C7777/'7777'/,
CGRIB,
STATE

LOGICAL SECOND

DIMENSION A(ND1),IA(ND1),IC(ND1),IPACK(ND1)
DIMENSION JMIN(ND&),NOV(ND4) ,LBIT(ND4)

DIMENSION ISO(ND8),IS1(ND8),IS2(ND8),IS4(ND8)
EQUIVALENCE (CGRIB,IGRIB),(C7777,17777),(MREF,REF)

SET ERROR RETURN AND ZERO ARRAYS.
IER=0

DO 110 K=1,ND8
ISO0(K)=0
IS1(K)=0
IS2(K)=0
IS4(K)=0
CONTINUE

UNPACK SECTION O.

STATE='0 :

LOC=1

IPOS=1

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,ISO(1),32,IER,*900)

IGRIB=ISO(1)

IF(CGRIB.EQ. 'GRIB')GO TO 112

WRITE(KFIL12,111)CGRIB

FORMAT (' OBEGINNING OF GRIB MESSAGE NOT FOUND. '
' FIRST 4 CHARACTERS = 'A4)

IER=10

GO TO 380

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS0(5),24,1ER,*900)

KOCTET=IS0(5)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS0O(8),8,IER,*900)

32

HOLDS 4 CHARACTERS FOR PRINTOUT IN CASE OF ERROR.

aa

[cNoNeoNoNoNeoNeoNe]

210

212

215

220

227

228

UNPACK SECTION 1.

STATE='1 ' ‘
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,L0C,IPOS,IS1(1),24,IER,*900)

DO 210 K=4,10
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS1(K),8,IER,*900)
CONTINUE

IF(IS1(8).EQ.128)GO TO 215
IS1(8) IS NOT OF CORRECT VALUE. IT MUST BE 128 DECIMAL.
WRITE(KFIL12,212)IS1(8)
FORMAT ('0IS1(8) ='I6,’ IS INCORRECT.')
IER=20
GO TO 380

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS1(11),16,IER,*900)

DO 220 K=13,21
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS1(K),8,IER,*900)
CONTINUE

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS1(22),16,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS1(24),8,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS1(25),8,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS1(26),8,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,ISIGN,1,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS1(27),15,IER,*900)
IF(ISIGN.EQ.1)IS1(27)=-IS1(27)

A NEGATIVE DECIMAL SCALE FACTOR MUST HAVE THE MINUS SIGN,

IF PRESENT, IN BIT 1 OF THE 16-BIT FIELD.

UNPACK SECTION 2.

START ACCORDING TO LENGHT OF SECTION O = 8 OCTETS AND
SECTION 1 = IS1(1l) OCTETS.

STATE='2 '

MOCTET=8+IS1(1)

LOC=MOCTET/4+1

IPOS=(MOCTET- (LOC-1)*4)*8+1

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(1),24,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(4),8,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(5),8,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(6),8,IER,*900)
IF(IS2(6).EQ.3.0R.IS2(6).EQ.5)GO TO 228

WRITE(KFIL12,227)IS2(6)

FORMAT('0IS2(6) ='16,' INDICATES NEITHER POLAR STEREOGRAPHIC',
1 ' NOR LAMPBERT MAP.')

IER=21

GO TO 380

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(7),16,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(9),16,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(11),24,1ER,*900)

33

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(14),24,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,1S2(17),8,1ER,*900)

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(18),24,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(21),24,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,1S2(24),24,1ER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(27),8,IER,*900)

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(28),8,IER,*900)

IF(IS2(6).NE.5)GO TO 230

C THIS IS POLAR STEREOGRAPHIC
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(29),32,IER,*900)
GO TO 300

C THIS IS LAMBERT. 1IS2(6) CHECKED ABOVE.

230 CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(29),24,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,I1S2(32),24,1ER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(35),24,1ER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,1S2(38),24,1ER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS2(41),16,IER,*900)

300 CONTINUE

aa

UNPACK SECTION 3.
IS3=0
NOT IMPLEMENTED.

UNPACK SECTION 4.

START ACCORDING TO LENGTH OF SECTION O = 8 OCTETS PLUS
SECTION 1 = IS2(1) OCTETS PLUS SECTION 2 = IS2(1l) IOCTETS.

sNoNoloR ool

STATE='4 '
MOCTET=MOCTET+IS2 (1)
C MOCTET = THE OCTETS BEFORE SECTION 4.
LOC=MOCTET /4+1
IPOS=(MOCTET- (LOC-1)%*4)%8+1
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,1IS4(1),24,1ER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS4(4),4,1ER,*900)
o ONLY THE LEFIMOST &4 BITS OF OCTET 4 ARE NEEDED.
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,ISX,4,1ER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS4(5),16,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS4(7),32,1ER,*900)

C IS4(7) IS FLOATING POINT.

MREF=IS4(7)
ChErxrrhrhrhrrrdbririyx
c NOTE: THE FLOATING POINT VALUE PACKED, AND UNPACKED INTO
C IS4(7), IS THE GRIB IBM REPRESENTATION. IF THIS UKPACKING
C PROGRAM IS RUN ON A VAX MACHINE, THEN INSERT THE FOLLOWING
c THREE STATEMENTS TO CONVERT TO VAX FLOATING POINT.

CALL Q9IV32(IS4(7),REF,1,ISTAT)
IF(ISTAT.EQ.0)GO TO 318
WRITE(KFIL10,317)ISTAT
317 FORMAT('OCONVERSION PROBLEM IN Q9IV32, CALLED FROM DEGRIG. ',
1 ' ISTAT ='I10)
IER=ISTAT

GO TO 380
Chkkkkddddhihhhkirrtk

34

318

aoaooaoaa

aaoa

322
1

aaoaaa

323

1
325

aa

330

MINA=REF
1S4(7)=MINA
ABOVE CONVERTS FLOATING POINT VALUE TO INTEGER. THIS ASSUMES
THE PACKING HAS BEEN DONE TO UNITS AFTER USING THE 10'S
EXPONENT. THAT IS, NO MORE RESOLUTIN IS RETAINED THAN UNTIS
AFTER SCALING BY THE POWER OF 10. 1IS4(7) IS SET TO THAT VALUE
FOR RETURN TO CALLING PROGRAM.
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS4(11),8,1ER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS4(12),16,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS4(14),8,IER,*900)
SECOND=. FALSE.
IF(ISHFT (ISHFT(IS4(14),28),-31).NE.0)SECOND=. TRUE.
A 1 IN BIT POSITION 5 OF OCTET IS4(14) (BIT POSITION 29 OF THE
FULL WORD) INDICATES THAT SECOND ORDER DIFFERENCES ARE PACKED.
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS4(15),16,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS4(17),16,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS4(19),16,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IS4(21),8,IER,*900)

IF(IS4(4).EQ.7.AND.IS4(14).EQ.48)GO TO 323
THE ONLY UNPACKING ACCOMMODATED IS REPRESENTED BY
IS4(4) = 7 DECIMAL = 7 OCTAL = 111 BINARY, AND
IS4(14) = 48 DECIMAL = 60 OCTAL = 110000 BINARY.
WRITE(KFIL12,322)IS4(4),1S4(14)
FORMAT (' OINCORRECT PACKING INFORMATION. '
' IS4(4) ='16,' 1IS4(l4) ='16)
IER=23
GO TO 380

RETRIEVE IS4(17) = LX WIDTHS IN LBIT(), BUT FIRST RETRIEVE
THE NUMBER OF BITS USED TO HOLDTHE WIDTH OF WIDTHS.

1X=IS4(17)
CALL UNPKBG(KFIL10O,KFIL12,IPACK,ND1,LOC,IPOS,KBIT,8,IER,*900)

DO 325 K=1,LX

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,LBIT(K),KBIT,IER,
*900)

CONTINUE

RETRIEVE BITS NEEDED FOR GROUP SIZES AND THE GROUP SIZES.
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,MBIT,8,IER,*900)
DO 330 L-1,LX
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,NOV(L),MBIT,IER,*900)
CONTINUE
RETRIEVE LX 2ND ORDER MINIMA. START ACCORDING TO IS4(12) OCTETS.
IOCTET=IS4(12)-1+(8+IS1(1)+IS2(1)+IS3)
IOCTET = OCTETS BEFORE START OF GROUP MINIMA, COUNTING
FROM THE START OF THE MESSAGE.
LOC=IOCTET/4+1
IPOS=(IOCTET- (LOC-1)%4)%8+1

35

aa an

3 I O

aaoaoaa

(@]

335

337

338

339
340

DO 335 L-1,LX

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,JMIN(L),IS4(11),
1 1IER,*900)

CONTINUE

RETIREVE PACKED VALUES, AND RESTORE ORIGINAL VALUES.
START ACCORDING TO IS4(15) OCTET.

IOCTET=IS4 (15) -1+(8+IS1(1)+IS2(1)+IS3)
IOCTET = OCTETS BEFORE START OF 2ND ORDER VALUES, COUNTING
FROM THE START OF THE MESSAGE.

LOC=IOCTET/4+1

IPOS=(IOCTET- (LOC-1)%4)*8+1

IF(.NOT.SECOND)GO TO 337

SECOND ORDER DIFFERENCES ARE PACKED; OTHER INFORMATION MUST BE
RETRIEVED HERE.

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IBIT,5,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IFIRST,IBIT,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,JBIT,5,1ER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,ISIGN,1,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IFOD,JBIT,IER,*900)
IF(ISIGN.GT.0)IFOD=-I1FOD

CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,NBIT,S,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,ISIGN,1,IER,*900)
CALL UNPKBG(KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,IMIN,NBIT,IER,*900)
IF(ISIGN.GT.0) IMIN=-IMIN

RETRIEVE PACKED VALUES AND RESTORE ORIGINAL VALUES. WHEN
SECOND ORDER DIFFERENCES ARE PACKED, THOSE DIFFERENCES WILL
BE IN IA() RATHER THAN THE ORIGINAL VALUES.

K=0

DO 340 L~1,I1IX
NVALUE=0

DO 339 M=1,NOV(L)
IF(LBIT(L).EQ.0)GO TO 338
CALL UNPKBG(KFILIO,KFILlZ,IPACK,NDl,LOC,IPOS,NVALUE,LBIT(L),IER,

1 *900)
K=K+1
IA(K)=JMIN(L)+NVALUE
CONTINUE
CONTINUE

NXY=IS2(7)*IS2(9)
NX=IS2(7)
NY=IS2(9)

36

(@]

Qo

(@]

aaooaoa

OO0

aaa

(@]

344

3440

3442

3444

345

347

360

361

UNPACK END OF MESSAGE FOR CHECK.
START ACCORDING TO TOTAL LENGTH OF MESSAGE.

STATE='END '

I0CTET=ISO0(5) -4

LOC=IOCTET/4+1

IPOS=(IOCTET- (LOC-1)*4)*8+1

CALL UNPKBG (KFIL10,KFIL12,IPACK,ND1,LOC,IPOS,NVALUE,32,IER,*900)
IF(NVALUE.EQ.I7777)GO TO 3440

WRITE(KFIL12,344)NVALUE

FORMAT (' OEND OF MESSAGE NOT FOUND. 4 CHARACTERS FOUND ARE ',015)
IER=11

GO TO 380

IF(SECOND)GO TO 3444

SECOND ORDER DIFFERENCES NOT USED. PUT OVERALL MINIMUM
BACK IN.

DO 3442 K=1,NXY
IA(K)=IA(K)+MINA
CONTINUE

SECOND ORDER DIFFERENCES ARE USED, THE NXY-2 VALUES BEING
IN IC(). IFIRST IS THE FIRST (ORIGINAL) VALUE, AND IFOD
IS THE FIRST FIRST ORDER DIFFERENCE. NOW RESTORE ORIGINAL
VALUES.

DO 345 K=1,NXY-2
IPACK(K)=IA(K)+IMIN
CONTINUE

ISUM=0

ISUM2=0
IA(1)=IFIRST+MINA
IA(2)=IA(1)+IFOD

DO 347 K=3,NXY
ISUM2=ISUM2+IPACK (K-2)
IC(K)=ISUM2+IFOD
ISUM=ISUM+IC (K)
IA(K)=ISUM+IA(2)
CONTINUE

APPLY SCALE FACTOR FOR "NORMAL" SEQUENCE OF POINTS.

SCALE=10.**(-IS1(27))
IF(IS2(28).EQ.4)GO TO 362
1S2(28) MUST BE EITHER 4, INDICATING "NORMAL" SEQUENCE OF
POINTS, OR 5, INDICATING A REVERSAL OF ALTERNATE ROWS TO
FACILITATE EFFICEINCY IN 2ND ORDER PACKING SCHEME.
IF(IS2(28).EQ.5)GO TO 367
WRITE(KFIL12,361)IS2(28)
FORMAT ('0IS2(28) DOES NOT INDICATE A SEQUENCE OF POINTS THAT',
1 ' THIS DECODER CAN HANDLE.')

37

o NoNe]

369
370

380

900
901

IER=22
GO TO 380

DO 365 K=1,NXY
A(K)=IA(K)*SCALE
CONTINUE

GO TO 380
REVERSE ALTERNATE ROWS IF PACKED THAT WAY AND APPLY SCALE FACTOR.
K=0

DO 370 JY=1,NY
DO 369 IX=1,NX
K=K+1

IF(MOD(JY,2) .EQ.0O)THEN
M=JY*NX+1-IX

ELSE
M=(JY-1)*NX+IX

END IF

A(K)=IA(M)*SCALE
CONTINUE
CONTINUE
RETURN
ERROR RETURN SECTION.
WRITE(KFIL12,901)STATE, IER
FORMAT (' OERROR IN DEGRIBC SECTION ’A4,' 1IER ='I4)

RETURN
END

38

eloRe oo RecRoRoRoReoRoReoReoRoReRe R ReRe R Re o ReRe Ko Re Ko No e NoNoNoNoNo NoNoNoN o NN o Na!

QY €Y (&Y

SUBROUTINE UNPKBG(KFIL10,KFIL12,IA,NDX,LOC,IPOS,NVALUE,NBIT,
L IER,*)

APRIL 1993 GLAHN TDL MICROVAX

PURPOSE
UNPACKS NBIT BITS INTO THE WORD NVALUE FROM ARRAY
IA(NDX) STARTING IN WORD LOC, BIT IPOS. THE WORD
POINTER LOC AND BIT POSITION POINTER IPOS ARE UPDATED
AS NECESSARY. 1IF NBIT EQ O, NVALUE IS RETURNED EQ O,
AND THE POINTERS ARE NOT MOVED.

DATA SET USE
KFIL10 - UNIT NUMBER FOR CURRENT CONSOLE. (OUTPUT)
KFIL12 - UNIT NUMBER FOR OUTPUT (PRINT) FILE. (OUTPUT)

VARIABLES
KFIL10 = UNIT NUMBER FOR CURRENT CONSOLE. (INPUT)
KFIL12 = UNIT NUMBER FOR OUTPUT (PRINT) FILE. (INPUT)
IA(J) = ARRAY TO UNPACK FROM (J=1,NDX). (INPUT)
NDX = DIMENSION OF IA(). (INPUT)
LOC = WORD IN IA() TO START UNPACKING. UPDATED
AS NECESSARY AFTER UNPACKING IS COMPLETED.
(INPUT-OUTPUT)
IPOS = BIT POSITION (COUNTING LEFTMOST BIT IN WORD
AS 1) TO START UNPACKING. MUST BE GE 1 AND
LE 32. UPDATED AS NECESSARY
AFTER PACKING IS COMPLETED. (INPUT-OUTPUT)
NVALUE = THE RIGHTMOST NBIT BITS IN NVALUE WILL
BE FILLED FROM IA(LOC). TIA(LOC+1l) IS USED IF
NECESSARY. RETURNED AS ZERO IF IER NE O.
(OUTPUT)
NBIT = SEE NVALUE. MUST BE GE O AND LE 32. (INPUT)
IER = STATUS RETURN:
0 GOOD RETURN.
1 LOC NOT IN RANGE 1 TO NDX.
2 = IPOS NOT IN RANGE 1 TO 32.
3 = NBIT NOT IN RANGE O TO 32.
* = ALTERNATE RETURN WHEN IER NE O.

NON SYSTEM SUBROUTINES CALLED
NONE (VAX FORTRAN 77 EXTENSIONS ISHFT AND IOR ARE USED)

DIMENSION IA(NDX)
CHECK CORRECTNESS OF INPUT AND SET STATUS RETURN.

IER=0
NVALUE=0
IF(NBIT.EQ.0)GO TO 150

IF IER NE 0, NVALUE IS RETURNED EQ O.
IF(LOC.GT.NDX)IER=1
IF(IPOS.LE.0.OR.IPOS.GT.32)IER=2
IF(NBIT.LT.0.OR.NBIT.GT.32)IER=3
IF(IER.NE.O)RETURN 1

39

aaoaa

aaa

130

150

SHIFT WORD IA(LOC) TO LEFT TO ELIMINATE BITS TO LEFT OF THOSE
WANTED, THEN BACK TO THE RIGHT TO THE PORTION OF THE WORD
WANTED.

NVALUE=ISHFT (ISHFT (IA(LOC),IPOS-1),NBIT-32)
UPDATE IPOS AND LOC AS NEEDED.

IPOS=IPOS+NBIT
IF(IPOS.LE.32)GO TO 150
LOC=L0OC+1

IPOS=IPOS-32
IF(IPOS.EQ.1)GO TO 150

FINISH UNPACKING.
IF(LOC.LE.NDX)GO TO 130
IER=1
NVALUE=0
RETURN 1
NVALUE=IOR(NVALUE, ISHFT(IA(LOC),IP0S-33))
CONTINUE

RETURN
END

40

APPENDIX ITI

This appendix summarizes the changes that would have to be made in the
Manual on Codes (WMO 1988) to implement the four options recommended in this
office note.

Flag/Code Table 8 - A 1 in bit 4 would be used to indicate the alternate
reversal of scanning. Bits 1, 2, and 3 could keep their same meanings.

Code Table 11-Flag - A 1 in bit 9 (which is really packed as bit 5 in octet 14
of Section 4) would be used to indicate that second-order spatial differences
are packed.

Section 4, Gridpoint Data, Second-Order Packing - No change through octet 21.
Then the order of data would be:

Octet 22: Contains the width of the group widths (the number of bits needed
to pack the largest of the widths).

Octet 23 and following: Pl (octets 17-18) widths of octet 22 size.

Next 8 bits: Contains the number of bits needed (say, MBIT) to provide the
group size information, followed by Pl group sizes, each MBIT's in size.

The secondary bit map would be deleted. The above group information could
be padded with zeros to a whole octet.

As before, the packed gridpoint values (with the overall and group minima
removed) follow. That is, Pl first-order values padded with zeros to a
whole octet, then P2 second-order values.

Section 4, Gridpoint Data, Second-Order Packing, Second-Order Spatial Differ-
ences - No change from the above down to the packing of the actual values.
Then the order would be:

After the Pl group sizes and the pad, use 5 bits to hold the number of bits
(say, IBIT) needed to hold the first value in the field (this is the first
value, with both the overall and first group minimum subtracted; this value
will be positive). Then use IBIT's to pack this first value.

Next, use 5 bits to hold the number of bits (say, JBIT) needed to hold the
absolute value of the first first-order spatial difference. Use the next

bit to hold the sign (1 for negative) of this first first-order difference,
then pack the absolute value of the first first-order difference in JBIT's.

Then, use 5 bits to hold the number of bits (say, NBIT) needed to hold the
absolute value of the minimum second-order spatial difference. Use the next

bit to hold the sign of this minimum, then pack the absolute value of this
minimum in NBIT's.

Finally, the second-order spatial differences are packed in the same method
as before. That is, Pl first-order values padded with zeros to a whole
octet, then P2-2 second-order spatial differences. Note that there will be
two less second-order spatial differences than original values. As usual,

41

any group in which all values are the same will not require these values to
be packed, only the minimum.

It is noted that when second-order spatial differences are used, the groups
are determined relative to those differences, rather than relative to the
original values. 1In this case, the overall minimum (reference) value in
octets 7-10 serves no useful purpose, but is retained here for consistency and
simplicity. In packing, it can be subtracted out before it is determined
whether or not to use second-order spatial differences.

42

