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ABSTRACT This paper summarizes the current challenges in climate and weather research and provides sugges-
tions for future research directions in global observing systems, in modelling and prediction, and in academic
environment and education systems.

RÉSUMÉ [Traduit par la rédaction] Le présent document résume les défis actuels de la recherche sur le climat et
la météo, et propose des suggestions pour les orientations ultérieures de la recherche dans les systèmes d’obser-
vation mondiaux, dans la modélisation et les prévisions, et dans l’environnement universitaire et les systèmes
d’éducation.

KEYWORDS climate variability; extreme weather; paleoclimate; global observing systems

Humankind has already gone through a long journey in observ-
ing, understanding and predicting Earth’s weather and climate.

The first international network of meteorological observations,
the Medici Network, was implemented in Europe in 1654 and

*Corresponding author’s email: lin.789@osu.edu
© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been 
published allow the posting of the Accepted Manuscript in a repo-sitory by the author(s) or with their consent.

ATMOSPHERE-OCEAN 60 (3–4) 2022, 506–517 https://doi.org/10.1080/07055900.2022.2079473
2022 La Société canadienne de météorologie et d’océanographie

http://orcid.org/0000-0003-2120-7732
http://orcid.org/0000-0001-5084-6600
http://orcid.org/0000-0003-3706-4174
http://orcid.org/0000-0002-9048-0305
http://orcid.org/0000-0003-3580-8897
mailto:lin.789@osu.edu
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1080/07055900.2022.2079473&domain=pdf&date_stamp=2023-12-20


was in operation for sixteen years (Camuffo & Bertolin, 2012).
Regular weather observations were started by the Royal Society
in the UK in 1744 and the telegraphic daily weather report
began in 1849. Upper air radiosondes were invented in the
1930s, while meteorological radar and aircraft reconnaissance
started in the 1940s during and just after World War II. The
first meteorological satellite was launched in 1960. Today we
have a comprehensive global meteorological network of obser-
vations including satellites, radars, upper air sounding stations
and surface stations (see review by Bluestein et al., 2022 in
this special issue). Observations of ocean tides and global sea
level began in the mid-seventeenth century, and self-registering
tide gauges were invented in the 1830s. In 1853, ten countries
reached agreement on a code of observational practice at sea.
Observations of ocean subsurface temperature began with
reversing thermometers in 1878. Today we have established a
global ocean observing systemwith satellites, ships, buoys, drif-
ters and coastal stations (Davis et al., 2019). Paleoclimatology
began in the seventeenth century when the basic principles of
stratigraphy were established. Radioisotopic dating and
modern techniques of mass spectrometry were devised in the
early twentieth century and have been applied to numerous
paleoclimate proxies, such as tree rings, coral reefs, lake sedi-
ments, speleothems, ice cores, ocean sediments, paleosols and
rocks. We now have developed solid regional paleoclimate
field reconstructions and global paleoclimate reanalysis, and
we are studying the Earth’s climate variability over the past
4.5 billion years of Earth history.
Geophysical fluid dynamics was founded by Laplace who

published the famous Laplace equations of tidal dynamics
in the late eighteenth century (Laplace, 1775, 1798). The
Navier-Stokes equations were formulated in the nineteenth
century (Navier, 1822; Stokes, 1842). The complete primitive
equations were published by Poincare (1901), Abbe (1901)
and V. Bjerknes (1904), and were later applied to theoretical
atmospheric models (J. Bjerknes, 1937; Charney, 1948; Elias-
sen, 1949; Rossby, 1939, 1940), theoretical ocean models
(Ekman, 1905; Munk, 1950; Stommel, 1948; Sverdrup,
1947), theoretical mantle models (Davies, 1977; Morgan,
1972; Pekeris, 1935; Runcorn, 1962) and theoretical core geo-
dynamo models (Backus, 1958; Herzenberg, 1958; Larmor,
1919). After modern electronic digital computers were
invented in the 1940s, numerical models have been developed
based on the primitive equations for Earth’s atmosphere,
ocean, mantle and core geodynamo. We now have Earth
system models coupling the atmosphere, ocean, land, sea
ice and biogeochemistry cycles (see review by Randall
et al., 2019), and we are improving key physical processes
such as atmospheric convection (see review by Lin & Qian,
2022a in this special issue) and cloud microphysics (see
review by Seiki et al., 2022 in this special issue).
Using comprehensive observing systems and powerful

theoretical and numerical models, we have made great pro-
gress in describing and understanding the dominant modes
of climate variability and disastrous climate and weather
extremes of the Earth system (Fig. 1). This special issue

covers the dominant modes of climate variability such as
the supercontinent cycle and the Phanerozoic cycles (see
review by Lin & Qian, 2022b in this special issue), the inter-
glacial cycles and millennial variability (see review by Ditle-
vsen, 2022 in this special issue), the Atlantic Multi-decadal
Oscillation (see review by Lin & Qian, 2022 in this special
issue), and the Madden-Julian Oscillation (see review by
H. Lin, 2022 in this special issue), as well as the disastrous
extremes such as droughts and mega-droughts (see review
by Lin, Qian and Schubert 2022 in this special issue), tropical
cyclones (see review by Lin, Qian and Klotzbach 2022 in this
special issue), and tornadoes and tornado outbreaks (see
review by Tochimoto, 2022 in this special issue).

Despite our substantial progress, we are still facing signifi-
cant challenges in understanding and predicting Earth’s
climate and weather, because the Earth’s climate system is
a complex system with global teleconnections among differ-
ent regions, and strong feedbacks among its different com-
ponents, such as the atmosphere, ocean, land, sea ice and
biogeochemistry. The greatest challenges are:

(1) What is the primary driver of the supercontinent cycle?
(2) What is the primary driver of the 100,000-year intergla-

cial cycle?
(3) What is the primary driver of the millennial-scale

variability?
(4) What is the primary driver of the centennial-scale varia-

bility? What are the relative roles of anthropogenic
global warming and natural variability in generating
the ongoing global climate change?

(5) What is the primary driver of the Atlantic Multi-decadal
Oscillation? What are the relative roles of AMOC, sto-
chastic forcing and other potential factors in generating
the AMO and the above longer-scale variability?

(6) What causes the switch between El Niño and La Niña?
(7) What is the primary driver of the Madden-Julian

Oscillation?
(8) What are the relative roles of SST-driven teleconnec-

tions, inter-basin interactions, atmospheric internal
dynamics, local feedbacks, cross-timescale interactions
and other potential factors in generating the continental
droughts and other climate impacts?

(9) What are the primary mechanisms of the stratosphere-
troposphere coupling and the teleconnections involving
the stratosphere?

(10) What is the primary driver of the rapid intensification of
tropical cyclones?

(11) What is the primary driver of the explosive cyclogen-
esis in the extratropics?

(12) What determines the timing, location and intensity of
the deadliest tornadoes?

(13) How does the evolution of the whole Earth system
(atmosphere, hydrosphere, mantle, core) affect the
surface climate?
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(14) How does the solar system affect Earth’s climate
through the variations of radiative flux, high energy par-
ticles and tidal gravitational force?

To overcome these challenges, international collaborations
across different sciences are needed. The American Meteorolo-
gical Society (AMS), the American Geophysical Union
(AGU), the International Union of Geodesy and Geophysics
(IUGG), and the International Astronomical Union (IAU)
were all founded in 1919. On their 100-year anniversary,
they published their strategic plan for the future (AGU, 2020;
AMS Council, 2020; IAU, 2018; Joselyn et al., 2019). The
World Meteorological Organization (WMO) published Vision
for the WMO Integrated Global Observing System in 2040
(WMO, 2019), while the World Climate Research Programme
(WCRP) released its strategic plan for the next decade (WCRP,
2019). The European Union announced the plan for Copernicus
– the European Earth Observation programme (Jutz &Milagro-
Pérez, 2020; Thepaut et al., 2018). The U.S. National Research
Council published a series of reports on the future of the indi-
vidual fields of the atmospheric sciences (NAS, 2016a, 2016b,
2017, 2018a, 2018b).
Based on these reports and our reviews in this special issue,

we suggest the following directions for future observations of
Earth’s climate system (Fig. 2):

(1) Improve the spatial coverage and spatiotemporal resol-
ution of the backbone global observation system (Fig.
3). We suggest to increase the spatial resolution of the
geostationary satellites and low-Earth orbit satellites to

about 100 m (Fig. 3(a)), fill the gaps between land
surface stations using automated surface weather stations
(Fig. 3(b)), fill the gaps in upper air sounding stations
using automated balloon-sounding system launched
from moored buoys (Fig. 3(c)), fill the gaps and commer-
cially-induced decrease in ship-based ocean surface
observations using moored and drifting buoys and
uncrewed surface vehicles (Fig. 3(d)), and increase the
depth of deep ocean profiling floats (Fig. 3(e)).

(2) Develop a global unmanned aircraft network for study-
ing tropical cyclones, severe storms and tornadoes.
Drones carrying remote-sensing and flight-level instru-
ments can be used to fly above and inside these deep con-
vective systems, which can provide valuable research
datasets as well as in-situ monitoring and accurate
short-term warning.

(3) Improve very-high-resolution instruments for studying
tornadoes, such as satellites, radars and lidars. We
suggest developing very-high-resolution satellites with
1–10 m resolution specifically for observing cloud-top
structure associated with tornadoes (Adler & Fenn,
1981; Marion et al., 2019; Sandmæl et al., 2019).

(4) Develop very-high-resolution reanalysis such as global
storm-scale (1 km) reanalysis and regional tornado-
resolving (1–10 m) reanalysis. The very-high-resolution
observations listed above will provide the foundation
for such reanalysis, while non-hydrostatic global and
regional models will be needed for the data
assimilation.

Fig. 1 Earth’s climate and weather: dominant variability and disastrous extremes.
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Fig. 2 Schematic of the future global observation system of Earth’s climate and weather.
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Fig. 3 Current status of the backbone global observation system. (A) Satellite – the European Copernicus Sentinel programme (from NAS 2018a). (B) Land
surface – Global Land Surface Databank Stations (courtesy of NOAA NCEI). (C) Upper air sounding stations (courtesy of NOAA NWS). (D) Ocean
surface – the ICOADS observations for August 2021 (courtesy of NOAA). (E) Deep ocean – the Argo profiling floats for September 28, 2021 (from
Argo Programme).
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Fig. 4 Current status of the paleoclimate proxy networks. (A) Tree ring (Locosselli et al., 2020). (B) Coral (Tierney et al., 2015). (C) Speleothem (Comas-Bru
et al., 2020). (D) Ice core (Jouzel, 2013 and the OSU Ice Core Group). (E) Ocean sediment (National Research Council, 2011).
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Fig. 5 Schematic of future integrated research on modelling and predictions of Earth’s climate and weather.
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(5) Expand the paleoclimate proxies archive and improve
the dating methods. We suggest to fill the gaps in the
global tree-ring network (Fig. 4(a)), the global coral
network (Fig. 4(b)), the global speleothem network
(Fig. 4(c)), the global ice core network (Fig. 4(d)), and
the global ocean sediment network (Fig. 4(e)). We
suggest conducting inter-calibrations within each
network as well as among different networks. We
suggest to re-date the paleoclimate proxies using the
annual layer counting method whenever possible, and
improve the dating methods when annual layer counting
is not feasible. We need to significantly expand the
paleoclimate proxies archive for the past 65 million
years (Cenozoic), the past 541 million years (Phanero-
zoic), and the past 4.5 billion years (Precambrian).

(6) Develop regional paleoclimate field reconstructions and
global paleoclimate reanalysis. We suggest expanding
the paleoclimate field reconstructions for regions with
the best data availability. We suggest expanding the
paleo-atmospheric reanalysis for the past 2000 years to
the upper air and restore the decadal-centennial variabil-
ity from the raw data. We suggest developing paleo-
ocean reanalysis for the past 2000 years, paleoclimate
reanalysis for the past 15,000 years (Holocene), paleocli-
mate reanalysis for the past 110,000 years (Last Glacial
Maximum), paleoclimate reanalysis for the past one
million years (Late-Quaternary), and paleoclimate reana-
lysis for the past 65 million years (Cenozoic), all with
reconstructions of paleo-cryosphere especially sea ice
history.

(7) Enhance research on paleo-chemistry, especially the evol-
ution of CO2 in the Earth’s climate history, and on paleo-
biology, especially changes in biodiversity in the Earth’s
climate history. Enhance research on paleo-forcing,
especially the planetary ephemerides. We need to
develop different CO2 proxies and conduct intercompari-
sons among the different proxies. We suggest collecting
more proxies for paleo-rotation which serve as the obser-
vational benchmark for planetary ephemerides. We need
to extend the length of planetary ephemerides back to
4.5 billion years ago. We need to collect more paleo
proxies for solar activity and geomagnetic intensity.

(8) Develop WMO/IUGG/IAU catalog/app for all weather
and climate datasets around the world and promote
data accessibility in all countries’ data centres. All
peer-reviewed publications should make their data
accessible. All data centres are encouraged to use inter-
national data format, such as Excel and NetCDF.

With the limited funding and resources, items (1), (2), (4),
(5) and (6) are of the highest priority. We suggest the follow-
ing directions for future modelling and prediction of Earth’s
weather and climate (Fig. 5):

(1) For weather prediction, we suggest developing high-res-
olution (0.1–1 km) tropical cyclone forecast models

which can clearly resolve a tropical cyclone’s central
eye, and very-high-resolution (1–10 m) nested-grid
tornado forecasting models, and studying interactions
between vortex dynamics and the stratosphere. Current
computation power allows ensemble predictions using
multiple nested grids with 50-m resolution on the
inner-most grids (Mashiko, 2016; Snook et al., 2019;
Xue et al., 2014; Yokota et al., 2018). The very-high-res-
olution observations and reanalysis products listed above
will provide the initial fields and verifications.

(2) For climate prediction, we suggest developing Earth
system models with a full representation of the strato-
sphere and a high-resolution ocean component that can
clearly resolve the thermocline in the vertical direction
and eddies and tides in the horizontal direction, and
which includes tidal forcing from the solar system.
Current computation power allows 1/12° or finer grids
for the global ocean models.

(3) For studying Earth’s climate variability over the past 4.5
billion years, we suggest developing a Whole Earth
model combining the atmosphere, hydrosphere and litho-
sphere, all of which are rotating convective fluids gov-
erned by the primitive equations and driven by external
radiative forcing and gravitational forcing from the
solar system.

To overcome the current challenges, we need a supportive
and collaborative environment for scientific research with
emphasis on (Fig. 6):

(1) Academic freedom. Open-minded independent thinking
is the key to important scientific discovery. We should

Fig. 6 The expected academic environment.
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Fig. 7 The education system for young students.
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encourage explorations of new directions and new ideas
and use the peer-review process to guarantee the quality
of the work.

(2) Equal opportunity in funding. We call for equal opportu-
nity in funding on natural climate variability, extreme
weather events and human-induced climate change. We
call for small-size seed funding for early-career scien-
tists, medium-size funding for individual explorations,
and caution regarding large-size funding that is often
spent on infrastructure and administrative support.

(3) Supporting female scientists. Despite some improve-
ments, female scientists continue to face discrimination,
unequal pay, and funding disparities (Gay-Antaki &
Liverman, 2018). Women face barriers associated with
their family responsibilities and are poorly represented
in journals and citations (Ceci & Williams, 2011).
Including women in research teams strongly enhances
innovation and discovery. Despite the low female rep-
resentation in Mathematics and Statistics, Engineering,
and Physics and Astronomy, top women scholars in
those three fields conduct more impactful research than
their male colleagues (Chan & Torgler, 2020).

(4) Collaborations across sciences. It is important to have
collaborations among atmospheric science, oceanogra-
phy, geology, astronomy, chemistry, biology and other
sciences related to Earth’s climate system, and among
the WMO, IUGG, IAU and their member organizations.

(5) Helping developing countries. Many developing
countries lack the experts and resources for weather
and climate research, modelling and, most importantly,
prediction. We suggest that the WMO could organize
international collaborations in disaster predictions, such
as a drought prediction bulletin similar to the existing
ENSO prediction bulletin, which could help the develop-
ing countries and save the lives of many people. Another
example is the extremely deadly cyclones in the North
Indian Ocean. The deadliest tropical cyclones of the
past 40 years, Cyclone 02B in 1991 and Cyclone
Nargis in 2008, both resulting in �130,000 fatalities,
occurred in the North Indian Ocean. Unfortunately,
research on cyclones in this region is very limited.
There is an urgent need for in-depth research to help
save lives in this highly populated region.

(6) Attracting young students. New blood is most important
for the future progress of climate and weather research,
modelling and prediction. We need to attract talented stu-
dents from different majors such as math, physics, chem-
istry, biology and engineering. Introducing atmospheric
dynamics/physics/chemistry classes at junior and senior
levels for physics, math, and chemistry majors may
help to better attract talent from these fields.

The quality of education for the new students will strongly
affect the level of research in the future. WMO (2015) pro-
vided an excellent guide to education and training standards

in Meteorology, while Mosher and Keane (2021) offered a
far-reaching vision for the future of undergraduate
Geoscience education. For the prosperity of climate and
weather research in the future, a successful education pro-
gramme should emphasize (Fig. 7):

(1) The spirit of academic freedom, independent thinking,
diversity and equal opportunity.

(2) Integration of atmospheric science, oceanography,
geology, astronomy and other sciences related to
Earth’s climate system.

(3) Systematic training in climate and weather sciences on
fluid dynamics, thermodynamics and instruments, as
well as atmospheric chemistry, atmospheric radiation,
microphysics, boundary layer meteorology, mesoscale
meteorology, synoptic meteorology and climatology.

(4) Solid skills in computer programming, writing and oral
presentation. The undergraduate students in atmospheric
sciences now generally lack solid skill in computer pro-
gramming, which prevents them from participating in
real research work although most of them have a
strong interest in weather and climate. Early training of
computer programming from high school is highly
recommended.

In 1900 Lord Kelvin gave the famous lecture Nineteenth-
Century Clouds over the Dynamical Theory of Heat and
Light pointing to two “dark clouds” hanging over physics at
that time, which eventually led to the discovery of the
theory of relativity and quantum mechanics, respectively.
Here we have listed the biggest current challenges in
climate and weather sciences, which hopefully can be over-
come in the next 30–50 years. Climate and weather scientists
are like detectives who have in hand only a limited number of
samples from the crime scene, some having been degraded by
time, from which they try to figure out what really happened.
It is a very difficult job, but it is a lot of fun. As Galileo Galilei
said:

Facts which at first seem improbable will, even on scant
explanation, drop the cloak which has hidden them and
stand forth in naked and simple beauty.
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