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Incorporating Mid-Term Temperature Predictions into

Streamflow Forecasts and Operational Reservoir
Projections in the Colorado River Basin

Erin Towler'; David Woodson?; Sarah Baker®; Ming Ge*; James Prairie®; Balaji Rajagopalan®;
Seth Shanahan’; and Rebecca Smith®

Abstract: Skillful mid-term temperature predictions (up to five years out) offer a potential opportunity for water managers, especially in the
Colorado River Basin (CRB), where streamflows are sensitive to temperature. The purpose of this paper is to develop and demonstrate a
framework for how mid-term temperature predictions can be incorporated into streamflow forecasting and operational projections. The frame-
work consists of three steps. First, 5-year average temperature predictions are obtained from two large ensemble climate model datasets. Second,
hindcasts from the Ensemble Streamflow Predictions (ESP), an operationally used forecast method in the CRB, are post-processed using the
5-year average temperature predictions; specifically, a tercile-based block bootstrap resampling approach generates weighted streamflow en-
sembles called WeighESP. Third, ESP and WeighESP are run through an operational model, the Colorado River Mid-term Modeling System
(CRMMS). Compared to ESP, WeighESP marginally improves streamflow forecast accuracy in the multi-year hindcasts up to five years out
(i.e., years 1-5, 2-5, 2-4, and 2-3). The multi-year hindcasts show median annual root mean square error (RMSE) improvements between 437,000
and 771,000 m? (354 and 625 thousand acre-feet). Improvements in streamflow accuracy are more pronounced for the most recent hindcast run
dates through 2016, partially due to ESP being run with climate time series data from 1981 to 2010. Next, CRMMS translates the streamflow
forecasts into operational projections of end of calendar year (EOCY) pool elevations. WeighESP improves the accuracy of EOCY predictions,
but mainly for longer leads of 3- and 4-years. For the 4-year lead, the median RMSE improves by 1.1 and 0.7 m (3.5 and 2.3 ft) for Lakes Powell
and Mead, respectively. Although marginal improvements in pool elevation could be beneficial, not being realized until longer leads is a
limitation. This study describes the need for better predictive tools at the mid-term timescale and underscores the importance of evaluating
improvements in streamflow forecasts in decision-relevant terms. DOI: 10.1061/(ASCE)WR.1943-5452.0001534. This work is made available

under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

Wood et al. (2020) provided an overview of streamflow forecasting
in the Colorado River Basin (CRB), with a focus on the streamflow
forecasts used to drive operational models for the US Bureau of
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Reclamation (Reclamation). Operational streamflow forecasts in the
CRB are issued by the Colorado Basin River Forecasting Center
(CBREFC), using the Ensemble Streamflow Prediction (ESP) method.
ESP is a dynamic hydrological approach, initialized with basin-
observed conditions, and run out with historical climate time series,
to produce a probabilistic streamflow ensemble (Day 1985). The fore-
casted ESP streamflow traces are used to drive one of Reclamation’s
operational models, the Colorado River Mid-term Modeling System
(CRMMS), formerly known as the Mid-Term Probabilistic Opera-
tions Model (MTOM). For a 5-year time horizon, CRMMS projects
probabilistic monthly reservoir levels and releases, along with other
water management variables. The first year of these risk-based pro-
jections is currently part of Reclamation’s framework supporting
stakeholder decision making in the CRB, and studies are under
way that could result in the use of CRMMS projections for years
two through five. Any improvements to ESP-based data that drive
CRMMS would be welcome by the community and stakeholders in
the basin, with potential benefits for management and planning.
In the CRB, there has been ongoing interest in quantifying
the sensitivity of streamflow to temperature and precipitation.
Woodhouse et al. (2016) showed that although cool season precipi-
tation explains most of the Upper CRB streamflow variability, tem-
perature exerts strong control under certain conditions. Further,
temperature has been shown to be an influential control on runoff
efficiency over past centuries (Woodhouse and Pederson 2018).
Milly and Dunne (2020) reported a sensitivity of —9.3% stream-
flow per degree Celsius (C), and Udall and Overpeck (2017) found
a similar decrease of 7% per degree C. On the other hand, Hoerling
et al. (2019) attributed most of the streamflow decrease to changes
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in precipitation and found that streamflow only decreases by 2.5%
per degree C.

Given streamflow’s sensitivity to climate, there have been efforts
to improve streamflow forecasting in the CRB by incorporating fu-
ture climate information. One approach has been to post-process
the streamflow ensembles resulting from ESP. Werner et al. (2004)
used an ESP member weighting scheme based on a climate index
(e.g., the El Nino Southern Oscillation), which improved forecasting
of spring runoff in three CRB sub-basins. Baker et al. (2021, 2019)
demonstrated improvements over ESP using a k-nearest neighbors
(k-nn) scheme, which weighed ESP based on 1-month and 3-month
temperature and precipitation forecasts from the North American
Multi-model Ensemble (NMME). Given that post-processing ESP
has shown improvements on the seasonal time scale, there is a new
opportunity to investigate potential improvements in mid-term pre-
diction, or up to 5 years out.

The time horizon referred to as mid-term prediction in the water
community overlaps with what is called “decadal prediction” in the
climate community. Decadal climate prediction is a developing field
that predicts potential climate variability and change on the time-
scale of 1 to 10 years in advance. These efforts use the same climate
models and prescribed greenhouse gas forcings as their better-
known counterparts, the multi-decadal to centennial climate change
projections. Climate change projections have become fairly main-
stream and well-known, such as from the Intergovernmental Panel
on Climate Change (IPCC) Reports and their use in climate change
impact studies. Climate change projections are uninitialized, i.e., they
are free-running continuously through time. On the other hand, for
decadal climate predictions, the climate model runs are initialized
with observed current conditions. Although experimental, these pre-
dictions of the upcoming 1 to 10 years offer potential to capture dec-
adal phenomenon that could contribute more skill than externally
forced climate projections. Decadal climate predictions have been
included in the experimental design in both phases 5 and 6 of the
Coupled Model Intercomparison Project (CMIP5 and CMIP6).
Global and regional evaluations have shown that decadal predic-
tions have skill predicting temperature (Yeager et al. 2018). Precipi-
tation is less skillful, although recent work suggests that using very
large ensemble sizes (>70 members) can result in higher skill than
previously found (Smith et al. 2019). Given the skill found on dec-
adal time scales for temperature, research has begun to explore its
potential usability. Towler et al. (2018) compared how decadal tem-
perature predictions could be applied deterministically using an
anomaly, versus probabilistically, which uses the likelihood of being
in each tercile. Further, Towler and Yates (2020) assessed stream-
flow simulations using decadal temperature predictions in a process-
based hydrological model versus an empirical/statistical approach;
they found that including temperature improved the streamflow
prediction from both approaches, but that there was substantial
uncertainty without precipitation predictions. Temperature predic-
tions have also been used to improve streamflow prediction for
other timescales, such as seasonal forecasting (Lehner et al. 2017)
and future climate change (Kiem et al. 2021). Henceforth, these
climate predictions will be referred to as mid-term climate predic-
tions, both for consistency with their application to water use, and
to clarify the 5-year time horizon being explored.

The purpose of this paper is to develop and demonstrate a frame-
work for how mid-term temperature predictions can be incorporated
into streamflow forecasting as well as into operational reservoir pro-
jections. The framework has three steps. First, mid-term temperature
predictions are obtained from two large ensemble climate datasets.
Second, a method called “WeighESP” is developed to post-process
ESP streamflows based on probabilistic temperature predictions.
Third, streamflow ensembles are passed through CRMMS and the
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operational projections are evaluated within the context of current
CRB operations and planning. This study provides two main con-
tributions: first, the framework focuses on adding prediction skill
for the mid-term planning horizon that aligns with an unmet soci-
etal need at this timescale (Sandgathe et al. 2020; Vera et al. 2010;
Barsugli et al. 2009). Second, the framework provides a demonstra-
tion of how new streamflow forecasting methods can be tested and
potentially implemented in operational practice, addressing a need
to make research more useful to decision-making (NRC 2009).

Data
Climate Data

Observations

PRISM (Daly et al. 1997) is a gridded 4-km observational dataset
of precipitation, minimum temperature (T ,;,), and maximum tem-
perature (T,,,c).- PRISM is available from 1980 to 2018. The aver-
age temperature (T,,,) was calculated as a function of Ty, and
Tinin: Tave = 0.6T 1 + 04T, (Thornton et al. 1997). PRISM ob-
servations are used to assess the skill of the climate model datasets
for a historical period.

Climate Model Datasets

This study examines two large ensemble climate datasets from
NCAR’s Community Earth System Model (CESM). The CESM
decadal prediction large ensemble (DP) is utilized for the initialized
prediction dataset (Yeager et al. 2018). This hindcast dataset is ini-
tialized annually on November 1st and is available for the time
period between 1954 and 2017. Each annual initialization is run
out for 122 months and includes 40 members (Yeager et al. 2018),
where each member represents a unique climate trajectory or reali-
zation. Each ensemble member begins from a slightly different
atmospheric state that is generated by randomly perturbing temper-
atures at round-off error levels. The ensemble spread results from
internal climate variability. For this study, annual initializations
from November 1980 through November of 2016 were used (for
a total of 37 run dates, each with 40 members). For each run date,
five-year hindcasts were used, i.e., for the first run date, November
1980 through October 1985 is used, and for the last run date,
November of 2016 through October 2021 is used.

The DP is an experimental dataset, which is quite large since the
annual initialization results in lead-based overlapping hindcasts. As
such, it was decided to test a second large ensemble dataset: NCAR
also has a corresponding uninitialized 40-member large climate
projection ensemble (LE) for CESM (Kay et al. 2015). As with the
DP, each LE ensemble member’s trajectory results from small dif-
ferences in initial conditions. For the LE, the initial condition tem-
perature perturbation is imposed in 1920, and then members are run
continuously forward in time. The LE uses the exact same model
configuration and forcings as the DP, so their skill can be directly
compared, offering insight on the value of the initialization for tem-
perature predictions (see e.g., Goddard et al. 2012). The advantage
of the LE is that it is similar to other Global Climate Model (GCM)
data that is familiar to stakeholders in the CRB, and compared to
the DP, is a smaller and more straightforward dataset to manipulate.
For this study, for each of the 40 members of the LE, the continuous
time series from November 1980 through October 2021 is used.
Although not originally intended as a hindcast, the LE’s continuous
time series can be broken out and evaluated as such: for instance,
November 1980 through October 1985 can be selected to corre-
spond to the first DP run date, and so on.
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Data Pre-Processing

Because climate models do not provide perfect representations of
the Earth system, observational and model data need to be com-
pared in terms of anomalies. All data is converted into anomalies
using the 1981-2010 baseline period. This is straightforward for
the LE projection dataset, since for long-running projection data,
once it is past an initial spin-up period the climate model stabilizes
and it is reasonable to assume that the model bias is constant in time
(i.e., the LE is perturbed in 1920 but is only used for this study
starting in November of 1980). However, for the DP, due to the
annual initialization, the model bias is not constant in time, rather
it is larger at times closer to initialization and decreases as the
model approaches its preferred state (Meehl et al. 2014). As such,
the anomalies need to be calculated as a function of their lead time.
This is called “drift-correction” (Meehl et al. 2014) and is widely
accepted and applied for decadal prediction datasets (e.g., Meehl
and Teng 2012, 2014a, b; Towler et al. 2018). The protocol fol-
lowed here to calculate the temperature prediction dataset anomalies
is outlined by the US CLIVAR (CMIP-WGCM-WGSIP Decadal
Climate Prediction Panel 2011).

Streamflow Data

Historical Streamflow

Reclamation provided monthly historical unregulated streamflow for
the input sites used in CRMMS. As described in Baker (2019), there
are 12 Upper CRB forecast locations in CRMMS (Fig. 1). Monthly
flows were provided for 1980 to 2019. Unregulated flows were back
calculated to simulate flows as if there were no reservoir regulation
or depletion upstream of the forecast point, except for three trans-
basin diversions that are explicitly modeled in CRMMS (see Lukas
et al. 2020 for details). Unregulated flows differ from naturalized
flows, which represent the observed flows if no upstream reservoirs
or diversions were present.

CRMMS Configuration of
Upper Colorado River Basin

A Reservoirs

e Forecast Points:
Fontenelle Inflow
Flaming Gorge Unreg. Inflow
Yampa at Deerlodge Park
Gunnison — Gains Crystal to
Grand Junction

Crystal Unreg. Inflow
Morrow Point Unreg. Inflow
Blue Mesa Unreg. Inflow
Taylor Park Inflow

9. Animas at Durango

10.  Vallecito Inflow

11. Navajo Unreg. Inflow

12. Lake Powell Unreg Inflow

Lol o

Mead
A

Fig. 1. Colorado River Mid-term Modeling System (CRMMS) config-
uration of the Upper Colorado River Basin, where dots represent
approximate forecast locations, numbered from 1 to 12 and described
in the top left table. Triangles represent reservoirs (only Lake Powell
and Lake Mead are shown).
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Ensemble Streamflow Predictions

ESP forecasts for the 12 Upper CRB locations were provided by the
CBRFC. To create the forecasts, CBRFC uses a hydrologic model,
the Sacramento Soil Moisture Accounting Model (SAC-SMA),
which has been calibrated using historical conditions and temper-
ature and precipitation traces from the 30-year climatological record
(1981-2010).

Using the calibrated SAC-SMA, CBRFC issues monthly opera-
tional ESP forecasts; this study uses operational forecasts from 2012
to 2016. For each forecast, or so-called “run date”, the model is run
out 60 months. For each run date, the model is initialized to current
basin conditions, and then run with temperature and precipitation
time series from 1981 to 2010, creating a total of 30 ESP traces.
Further, to have a longer record to evaluate forecast performance,
CBRFC created reforecasts from 1981 to 2011. Reforecasts are
run retrospectively, and unlike operational forecasts, they do not in-
clude short term forecasts of temperature and precipitation. These
forecasts each only have 29 traces, reflecting the fact that the trace
from the run date (i.e., year being forecast) is dropped; this avoids
having a trace with perfect climate information.

This work uses ESP forecasts initialized with basin conditions
every November from 1980 to 2016, for a total of 37 run dates.
November was selected since it corresponds to the time when the
DP hindcast dataset is initialized annually.

Climatology Streamflow Ensemble

To evaluate the streamflow forecasts, a reference forecast from cli-
matology was derived for run dates from November 1980 through
November 2016, i.e., 37 run dates. The climatology ensemble is
comprised of historical unregulated streamflows. Similar to what
was described in the ESP ensemble, to avoid using “perfect” climate
information, for run dates from November 1980 through November
2009, the run date’s observation is dropped, and the remaining
29 years of historical unregulated streamflows create the ensemble.
For run dates from November 2010 through November 2016, all
30 years of the historical unregulated streamflows were part of the
climatology ensemble.

Data Diagnostics and Mid-Term Climate Skill

Given the sensitivity of CRB flows to climate (e.g., Udall and
Overpeck 2017; Woodhouse et al. 2016; Woodhouse and Pederson
2018; Milly and Dunne 2020; Hoerling et al. 2019), it is useful to
look specifically at the relationship between climate and stream-
flow in the Upper CRB. Fig. 2 shows the relationship between
the 5-year mean precipitation and temperature versus the natural-
ized streamflow at Lees Ferry, which is just downstream of the
outflow for Lake Powell (Fig. 1). Naturalized streamflow is back
calculated to have the effect of both upstream reservoir regulation
and human induced depletions removed from the observed stream-
flow record. As expected, the 5-year average annual precipitation has
the strongest correlation with 5-year average streamflow (r = 0.95).
Although this is a very strong predictor for streamflow, the DP and
LE do not show skill at predicting precipitation; Table 1 shows the
anomaly correlation coefficient (ACC) between the large ensembles
and observed climate for the 5-year mean. For precipitation, the
ACC is 0.087 for the LE and —0.057 for the DP, indicating a lack
of skill for this variable. Fig. 2 shows that T ,,, has a relatively high
correlation with average streamflow (r = —0.77), followed by Ty,
(—0.67), and T, (—0.52). From Table 1, it can be seen that there is
skill for both T;, (ACC = 0.76 for DP and 0.71 for LE) and T,
(0.54 for the DP and 0.48 for the LE). The skill of the DP is slightly
higher than LE for the T,;, and Tp,.
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Fig. 2. Relationship between 5-year mean annual naturalized streamflow at Lees Ferry: (a) 5-year mean annual precipitation; (b) mean average annual
temperature; (c) mean maximum annual temperature; and (d) mean minimum annual temperature from 1981 to 2018.

Methodology

Step1. Obtain Mid-Term Climate Prediction

LE and DP mid-term climate prediction ensembles are available as
community resources for the research and practitioner community.
Towler et al. (2018) discussed the two different formats familiar to
practitioners that can be used to convey mid-term predictions: dis-
crete and probabilistic. In this case, since the goal is to post-process
streamflow ensembles, the probabilistic tercile-based approach was
selected. This means that the mid-term temperature predictions are
given in terms of the probability that the average temperature over
the next 5 years will be below-normal, near-normal, and above-
normal. This is similar to how seasonal forecasts are issued opera-
tionally [e.g., by NOAA’s Climate Prediction Center and Columbia
University’s International Research Institute for Climate and Soci-
ety (IRD)].

For each of the climate model datasets, Ty, Ty, and Ty, tem-
perature variable anomalies were initially investigated, and the

Table 1. Anomaly correlation coefficient, ACC, for 5-year mean
(i.e., multi-year forecast 1-5) minimum temperature (T,;,), maximum
temperature (T,,,c), and precipitation (Prec) for the decadal prediction
large ensemble (DP) and large ensemble (LE) over the Upper Colorado
River Basin

ACC
CESM Thin Thax Prec
DP 0.76 0.54 —0.057
LE 0.71 0.48 0.087
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results of this paper focus on: (1) water year T, for the LE,
(2) water year T, for the DP, (3) Ty, winter (DJF) for the
LE, and (4) Tm;, (DJF) for the DP. T,,, was selected since
real-time forecasts from global climate centers are typically pre-
sented as averages (WMO 2020), making this a practical choice
for potential utility. When considering T,;, versus T, it was
found that T,;, had slightly higher skill than T, (Table 1),
but T,.« had a higher correlation with streamflow than T,
(Fig. 2). However, since the Colorado River Basin is snow-
dominated and T,,;, showed good skill (Table 1), winter T,;, was
also selected for demonstration. For each variable, the data
was subset to include 5-year averages, averaged over the Upper
CRB, starting in November for each of the 37 run dates (November
1980 to November 2016). November was selected for the DP, since
that was the month of initialization. Although the LE is not a true
hindcast, for consistency, the 5-year average beginning in Novem-
ber of the run dates was also used. Then for each run date, the
5-year average temperature anomaly for each ensemble member
was calculated for both the LE and DP and compared to the
1981-2010 climatology.

The number of ensemble members that fell into the below-,
near-, and above-normal terciles were counted. An example of this
is shown for several run dates in Table 2. For example, for the DP
hindcast initialized in November of 1980 and run out to October of
1985 (5 years), had 26 members whose 5-year average was below-
normal, 11 members were near-normal, and 3 members were in the
above-normal tercile. The LE projection over the same period was
for 24 members to be in the below-normal tercile, 16 members in
the near-normal tercile, and O in the above-normal tercile. Table 2
shows that regardless of the climate model, the counts for the first
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Table 2. Number of ensemble members that were in each temperature tercile (below-, near-, and above- normal) for each run date of the decadal prediction
large ensemble (DP) and large ensemble (LE), as well as what was observed using PRISM

Run date DP LE PRISM
Index Start End Below- Near- Above- Below- Near- Above- Below- Near- Above-
1 November 1980 October 1985 26 11 3 24 16 0 X — —
2 November 1981 October 1986 30 10 0 24 16 0 X — —
3 November 1982 October 1987 15 21 4 21 16 3 X — —
4 November 1983 October 1988 11 19 10 16 21 3 X — —
32 November 2011 October 2016 0 10 27 0 1 39 — — X
33 November 2012 October 2017 2 9 23 0 2 38 — — X
34 November 2013 October 2018 0 2 28 0 0 40 — — X
35 November 2014 October 2019 1 8 31 0 0 40 — — —

four run dates were skewed towards the below-normal temperature
tercile, and the last four run date counts were skewed toward the
above-normal tercile. This makes sense given the greenhouse gas
forcing in the LE and DP models, consistent with the increasing
trend in observed temperature over the basin. The final column
shows the observed tercile, based on the 5-year temperature aver-
ages in PRISM. There were 35 five-year periods that could be va-
lidated with historical unregulated streamflows (run dates from
November 1980 to November 2014, since the historical unregu-
lated streamflows go through 2019) and 34 five-year periods that
could be compared to PRISM observations (since the PRISM
observations only go through 2018).

Step 2. Generate Weighted ESP Streamflow Ensembles

The WeighESP method generates an ensemble that is weighted
to reflect the mid-term temperature tercile predictions obtained in

Step 1. To review, for each run date, the ESP forecast is comprised
of 29 (or 30) equally weighted streamflow traces, which are derived
from temperature and precipitation time series from the climato-
logical period. To describe how ESP is modified for WeighESP, the
example of the November 1980 run date is used, where 29 traces
are used (1981 is dropped). The first step is to bin each of the
29 ESP traces by their 5-year observed temperature average tercile,
using 1981-2010 as the climatology (i.e., from the PRISM column
of Table 2). The second step is to resample the 29 ESP traces, with
replacement, based on the DP or LE predictions in Table 2. For
example, for the November 1980 run date using the DP prediction,
65% (= 26/40) of the ESP streamflow traces are selected from
the below-normal bin, ~27% (= 11/40) from the near-normal, and
~8% (= 3/40) from the above-normal. This generates a WeighESP
sample of 100 members. The results for the Powell unregulated
flows for all run dates can be seen in Fig. 3. For the November
1980 run date, WeighESP shifts the 5-year average distribution

Powell Unregulated Inflow (MAF)

- 20

Method
E3 ESP
E3 WeighESP (Tavg LE)

(Jo32WO[R 21gN2) Moju| pareinbaiun |jemod

S 2222223232322 222222323232>2
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0O 0 00000 0 o0 oo
F3223223222
T W ONDOVDHDO AN M
0O 0O 0000 «=™ v« ™ ™ ™
O 0000000 OO Qoo
AN NN N ANNANNN NN

Fig. 3. Distribution of 5-year average Lake Powell unregulated inflows in million acre-feet (MAF) and cubic kilometers for ESP and WeighESP
(boxplots) compared to historical data (horizontal dashes) for each run date.

© ASCE

04022007-5

J. Water Resour. Plann. Manage.

J. Water Resour. Plann. Manage., 2022, 148(4): 04022007



Thiswork is made available under the terms of the Creative Commons Attribution 4.0 International license.

towards higher flows, which was closer to the historical streamflow.
However, there are also years where neither ESP or WeighESP dis-
tribution captures the observed flow (e.g., November 1981), high-
lighting the challenge of predicting streamflow at this timescale.
This is repeated for all 12 Upper CRB forecast locations; it is noted
that although the same weights are used for each run date (derived
from Table 2), resampling occurs independently for each location,
so different traces can be selected for each location.

The streamflow ensembles from ESP and WeighESP are evalu-
ated using accuracy and skill metrics. To evaluate accuracy, root
mean square error (RMSE) is calculated based on the error of each
trace for each run date. Skill is calculated using the ranked prob-
ability skill score (RPSS; Wilks 1995). The RPSS evaluates fore-
cast performance for multiple categories, which, in this case, are the
streamflow terciles (below-, near-, and above-normal). The RPSS is
calculated relative to the climatology ensemble using the library
SpecsVerification in R.

Step 3. Evaluate Operational Projections

The ESP and WeighESP traces for the 12 Upper CRB forecast
locations generated in Step 2 are used as inputs into CRMMS, Rec-
lamation’s mid-term operational probabilistic projection model.
CRMMS was developed using the RiverWare software (Zagona
et al. 2001) and is a rule-based water management model that sim-
ulates reservoir operations in the CRB. CRMMS results provide
stakeholders with risk-based projections of monthly reservoir levels
and basin conditions. In this study, the focus is on projections of
pool elevations for Lakes Powell and Mead because they store the
majority of water in the system [50 MAF (61.67 km?) of the
60 MAF (74 km?) of the system storage modeled in CRMMS]
and are important for basin operations. End of year pool elevation
projections are evaluated in terms of annual RMSE.

This study uses CRMMS in the context of the Colorado River
Basin Operational Prediction Testbed (CRBOPT), which is a
framework for assessing the skill of mid-term streamflow forecasts
and associated CRMMS modeled operational projections in the
CRB (Baker et al., forthcoming). The CRBOPT ingests Upper
Basin streamflow forecasts and runs them through CRMMS.
CRMMS solves for all modeled basin variables, including opera-
tions at twelve reservoirs, operating conditions, and water uses in

the Lower Basin. The CRBOPT sets the Lower CRB intervening
flows, Upper CRB tunnel diversions, and Lower Basin water use to
historical values; this means that the only input being adjusted is the
Upper CRB streamflow.

Results

Streamflow Ensembles

Although streamflow ensembles are generated for all 12 forecast
points, results are shown for the most downstream point, the Lake
Powell unregulated inflows (forecast location 12 in Fig. 1). The
evaluation on the 5-year average is designated “1-5”, i.e., for each
trace, the monthly streamflows over the 60 months from the run
date are averaged before they are evaluated. Evaluation metrics are
also calculated on several additional multi-year and individual year
forecasts. Multi-years include the aforementioned, 1-5, as well as
2-5,2-4, and 2-3. Individual years included 1, 2, 3, 4, and 5; e.g., year
1 would include averaging streamflow over the first 12 months of the
forecast (i.e. November through October of the following year).
Fig. 4 shows annual RMSE for Lake Powell unregulated in-
flows. Each boxplot is comprised of the RMSE for each run date;
the run date sample size (n) depends on how many observational
years were available to validate: n = 35 for 1-5 and 2-5, n = 36 for
2-4,n = 37 for 2-3. Fig. 4 compares climatology, ESP, and the four
‘WeighESP hindcasts. The median annual RMSEs from the boxplots
are shown in Table 3; lower RMSE values are better (RMSE = 0
indicates a perfect prediction). Across all forecast years, except
for individual year 5, the median error from the climatology ensem-
ble (i.e., the historical unregulated streamflows) is always higher
(worse) than ESP and the WeighESP forecasts. This shows the im-
portance of initial conditions in the streamflow forecasts through
year 4. Further, the ESP median is always higher (worse) than
the WeighESP multi-year forecasts (1-5, 2-5, 2-4, and 2-3). Water
year Tyyo (LE) had the lowest RMSE for three of the multi-year
forecasts, and the second lowest RMSE for the remaining multi-year
forecast (i.e., 1-5). In this study, improvements in multi-year stream-
flow forecasts might be expected, since WeighESP is conditioned
on multi-year temperature forecasts. However, it is also interesting
to look at the individual year forecasts. For year 1, when initial
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Fig. 4. For Lake Powell unregulated inflows, annual root mean squared error (RMSE) for climatology, ESP, and four WeighESP hindcasts [water year
T,y from the LE and DP and winter (DJF) Ty, from the LE and DP] for traces averaged over multi-year and individual forecast years (using hindcast

run dates from November 1980 to November 2016).
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Table 3. For Lake Powell unregulated inflows, median annual root mean
square error (RMSE) for climatology, ESP, and four WeighESP hindcasts in
cubic kilometers (km?)

Median root mean square error (RMSE) (km?®)

Forecast Tavg Tavg Tmin,DJF Tmin.DJF
year Climatology ESP  (LE) (DP)  (LE) (DP)
1-5 4.72 414 370 392 3.93 3.61
2-5 4.94 4.64 393 4.08 4.19 4.33
2-4 5.46 5.15 438 4.79 4.44 4.69
2-3 6.01 549 474 482 4.89 4.96
1 7.68 5.66  5.57 5.67 5.56 5.70
2 7.69 7.04 7.03 7.00 6.59 6.99
3 7.76 7.11 645 6.85 7.20 7.32
4 7.35 7.16  6.71 7.11 6.93 7.02
5 6.66 7.00 7.16 6.94 7.26 7.09

Note: Bold shows the minimum for each forecast year.

Table 4. For Lake Powell unregulated inflows, difference between ESP
and WeighESP (T,,, LE) median root mean square error (RMSE) in
cubic kilometers (km?) and million acre-feet (MAF)

Difference in median RMSE in km? (MAF)

Forecast year

1-5 0.437 (0.354)
2.5 0.716 (0.580)
24 0.771 (0.625)
23 0.749 (0.607)
1 0.083 (0.068)

2 0.005 (0.004)
3 0.662 (0.537)
4 0.444 (0.360)
5 —0.151 (=0.123)

conditions have the most impact, the ESP median is very similar
to the WeighESP medians, though T,;, DJF (LE) had the lowest
RMSE. For the other individual years, ESP and the WeighESP
medians are relatively similar. To summarize, Table 4 shows that
taking the difference between ESP and WeighESP for T,,, (LE),
offers an improvement of 436,652 and 770,925 m? [354 and

625 thousand acre-feet (KAF)] for multiyear forecasts, and improve-
ments in individual year forecasts, except in year 5. The RMSE
improvements for unregulated inflows to Lake Powell are more
pronounced when looking at the most recent run dates, i.e., the
run dates from November 2010 to November 2016; this is shown
for the multi-year forecasts in Fig. 5. For run dates starting in
November of 2010: n =5 for 1-5 and 2-5, n =6 for 2-4, n =7
for 2-3. This shows that using equally weighted climate traces
for 1981-2010, which is the current ESP practice, reduces the ac-
curacy of the later run dates presumably because the traces do not
include the more recent, warmer temperature time series.

Fig. 6 shows the RPSS results for Lake Powell unregulated in-
flows, using the climatology ensemble as a reference for ESP and
WeighESP. The highest skill compared to climatology occurs in the
forecast for individual year 1, reflecting the importance of the initial
conditions. In year 1, ESP has the highest median, though the
WeighESP medians are similar. Positive median skill is also seen
in years 2-5, 2, 3, 4, and 5, but median skill is negative when aver-
aging over other years (e.g. 1-5, 2-4, and 2-3). The RPSS is a prob-
abilistic measure of skill, and the lack of skill found may indicate
that the resulting trace ensembles are under confident or lacking
discrimination.

Operational Projections

Based on the better median RMSEs from the LE-conditioned tem-
perature predictions (Table 3), it was decided that the WeighESP
streamflow ensembles conditioned from the water year T,,, (LE)
would be run through CRMMS. To be more decision-relevant,
CRMMS accuracy evaluation was performed differently than what
was done directly on the unregulated streamflow. Specifically, RMSE
was calculated on the December (end of calendar year, EOCY) pool
elevation ensembles for each year of a given 5-year projection
period and repeated for every 5-year block in the 1981-2017 hind-
cast (n = 31). EOCY elevations are important because calendar
year-based operations are determined for the upcoming year based
on elevation projections at the end of the current year.

Fig. 7 depicts an example 5-year CRMMS simulation that in-
cludes ESP and WeighESP traces initialized in November 2001 and
run out through 2006. To assess skill across a time period including
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Fig. 5. For Lake Powell unregulated inflows, annual root mean squared error (RMSE) for climatology, ESP, and four WeighESP hindcasts [water year
T,y from the LE and DP and winter (DJF) Ty, from the LE and DP] for traces averaged over the multi-year forecasts (using hindcast run dates from

November 2010 to November 2016).
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Fig. 6. For Lake Powell unregulated inflows, ranked probability skill score (RPSS) for ESP and four WeighESP hindcasts [water year T,,, from the
LE and DP and winter (DJF) T,,;, from the LE and DP] as compared to climatology for traces averaged over the multi-year and individual forecast
years (using hindcast run dates from November 1980 to November 2016).

Lake Mead pool elevation for water years 2002-2006
Resampled ESP (Tavg LE)

Elevation (ft) (m)

—— Observed
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—— WeighESP (Tavg LE)
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Fig. 7. CRMMS-simulated Lake Mead pool elevation spanning October 2001 to September 2006 from ESP (~30 traces), WeighESP (100 traces),
and a quasi-observed historic time series. RMSE is calculated for each projection method on the end of calendar year ensemble spread, i.e., months 1,

13, 25, 37, and 49 (vertical lines).

two different operating guidelines (current operating guidelines
did not take effect until 2008), a “quasi-observed” time series of
reservoir elevations that approximate what would have happened
under the current operating guidelines was generated (by providing
the model perfect information about historical streamflow); this
approximation is shown in Fig. 7. The vertical lines indicate EOCY
points, in terms of number of months lead time, at which the RMSE
of each ensemble was evaluated. This ‘ensemble RMSE’ represents
the aggregate performance of all traces for a given projection method
at each lead time and has precedent in Baker et al. (2021).
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Fig. 8 shows the ensemble RMSE results for Lake Powell
EOCY pool elevations from 31 different 5-year projection blocks
in the 1981-2017 hindcast, separated by method and lead time.
Since the ESP and WeighESP forecasts are initialized at the begin-
ning of November, the first December pool elevation’s RMSE is
similar for both methods and quite low due to the 1-month lead
time. Of greater interest are the subsequent lead times; the RMSE
for lead times of 13- and 25-months are very similar for both fore-
cast methods, but at 37- and 49-month leads (i.e., about 3- and
4-year leads) WeighESP has lower (better) median RMSE values
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Lake Powell elev. years 1-56 December ensemble RMSE by forcing for 31 different 5-year blocks
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Fig. 8. Lake Powell pool elevation root mean square error (RMSE) for ESP and WeighESP hindcasts (T, LE), calculated on end of calendar year
ensemble spread, i.e., RMSE at 1-, 13-, 25-, 37-, 49-month lead times for all 31 different 5-year blocks in the 1981-2017 hindcast (n = 31 RMSE

values per boxplot).

Table 5. ESP and WeighESP (Tavg LE) hindcast RMSE spread in meters
(m) and feet (ft) for a 49-month lead time. UW is upper whisker, Q75
is 75th percentile, Q50 is 50th percentile, Q25 is 25th percentile, and
LW is lower whisker; whiskers are calculated as 1.5x the inner quartile
range +/— the upper or lower quartile for the upper and lower whiskers,
respectively

RMSE Lake Powell Lake Mead

in m (ft) ESP WeighESP ESP WeighESP
Uw 25.7 (84.2) 25.9 (84.9) 20.0 (65.6) 20.8 (68.4)
Q75 18.6 (61.0) 17.7 (58.2) 14.7 (48.3) 14.7 (48.1)
Q50 15.6 (51.3) 14.6 (47.8) 12.1 (39.7) 11.4 (37.4)
Q25 12.6 (41.3) 11.0 (36.1) 6.1 (20.1) 6.0 (19.7)
LW 5.5 (18.2) 5.0 (16.4) 3.5 (11.5) 3.1 (10.1)

than ESP. For example, at a 49-month lead time the median RMSE
improves by ~1.1 m (3.5 ft; Table 5). Results using blocks from
only 2000 to 2017 show similar, slightly better results, with the
median RMSEs performing marginally better for WeighESP for
leads >13 months (Fig. 9).

Fig. 10 reveals similar results for the Lake Mead EOCY pool el-
evations for the 1981-2017 projection blocks. Again, lead month 1
shows low RMSE values, and ESP modestly outperforms WeighESP
for 1-, 13-, and 25-month leads. However, for lead times of 37-
and 49-months, WeighESP outperforms ESP, yielding reductions
in hindcast median RMSE of —10.8% and -5.8%, respectively
(Table 6). Results for 5-year projection blocks from the more re-
cent period (2000-2017) are shown in Fig. 11, which show slightly
different results. Here, WeighESP is similar or outperforms ESP at

Lake Powell elev. years 1-5 December ensemble RMSE by forcing for 13 different 5-year blocks
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Fig. 9. Lake Powell pool elevation root mean square error (RMSE) for ESP and WeighESP (T, LE) hindcasts, calculated at the end of calendar year
ensemble spread, i.e., RMSE at 1-, 13-, 25-, 37-, 49-month lead times for 5-year blocks in 2000-2017 hindcast (n = 13 RMSE values per boxplot).
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Fig. 10. Lake Mead pool elevation root mean square error (RMSE) for ESP and WeighESP (T,,, LE), calculated at the end of calendar year ensemble
spread, i.e., RMSE at 1-, 13-, 25-, 37-, 49-month lead times for all 31 different 5-year blocks in 1981-2017 hindcast (n = 31 RMSE values per
boxplot).

Table 6. Percent change in hindcast median annual root mean square error (RMSE) in meters (m) and feet (ft) for WeighESP (Tavg LE) relative to ESP

Powell Mead
Lead time Median RMSE in m (ft) Median RMSE in m (ft)
(months) ESP WeighESP % change ESP WeighESP % change
1 0.41 (1.33) 0.40 (1.32) —0.75 0.01 (0.04) 0 (0) N/A
13 7.41 (24.3) 7.07 (23.2) —4.53 2.04 (6.69) 2.22 (7.29) 8.97
25 10.5 (34.6) 10.7 (35.0) 1.16 4.45 (14.6) 4.66 (15.3) 4.79
37 13.8 (45.2) 12.9 (42.2) —6.64 8.99 (29.5) 8.02 (26.3) —10.8
49 15.6 (51.3) 14.6 (47.8) —6.82 12.1 (39.7) 11.4 37.4) -5.79

Lake Mead elev. years 1-5 December ensemble RMSE by forcing for 13 different 5-year blocks
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Fig. 11. Lake Mead pool elevation root mean square error (RMSE) for ESP and WeighESP (T,,, LE) hindcasts, calculated at the end of calendar year
ensemble spread, i.e., RMSE at 1-, 13-, 25-, 37-, 49-month lead times for 5-year blocks in 2000-2017 hindcast (n = 13 RMSE values per boxplot).

earlier leads (13- and 25-months) but performs worse at longer
leads. The differences between the results for Lake Powell and
Mead could have to do with the fact that the two reservoirs operate
in coordination with one another: Lake Mead inflows are modulated

by guidelines governing releases from Lake Powell. Therefore, Lake
Mead inflows are less directly affected by Lake Powell unregulated
inflow variability (or the response can be delayed), and are more
influenced by the Lake Powell pool elevation.
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Discussion and Conclusions

Despite efforts to enhance operational streamflow forecasts, sub-

stantial improvements have not been realized (Welles et al. 2007;

Pagano et al. 2004). Streamflow forecasts gain skill from two main

sources: initial conditions, particularly at shorter lead times, and

future climate forcings, which become increasingly important at
longer lead times (Li et al. 2009; Wood et al. 2016). ESP is initial-
ized with current basin conditions, but future climate information at
seasonal or longer timescales is not typically incorporated (though
CRB does use 5- to 10-day weather forecasts); rather, ESP is forced
with equally weighted historical climate traces. Aiming to gain skill
from future climate information, this study develops and demon-
strates a simple way to post-process ESP traces so that the ensemble
is weighed towards climate forcings that reflect the mid-term tem-
perature predictions. However, one critical issue is that ESP is run
with climate time series from 1981 to 2010, even for later run dates

(i.e., November 2010-November 2016), which have experienced

warmer temperatures. As such, updating the climate time series to

include years since 2010 will allow for the usage of more recent
years, providing additional variability to the streamflow traces

(i.e., 40 traces rather than 30), and a new ESP benchmark for hind-

cast testing. At the time of this writing, ESP has included 35 traces

since 2017, and will include 40 traces in the CBRFC’s next cali-
bration (2021). A next step could be to test the WeighESP meth-
odology with additional traces. Another potential approach could
be to pre-process ESP (Werner et al. 2004); for instance, ESP could
be forced directly with new climate sequences that have been gen-
erated to reflect a given forecast (see Baker et al. 2021 and refer-
ences therein). Nevertheless, tercile-based approaches, such as the

WeighESP technique put forth in this study, are appealing in that

they are simple, and have precedent in their use with seasonal fore-

casts (e.g., Towler et al. 2010). Other methods, such as k-nn ap-
proaches have also shown promise in the CRB (e.g., Baker et al.

2021). A parallel effort to incorporate mid-term temperature pre-

dictions using a random forest machine learning approach is also

being pursued (Woodson et al. 2021).

Another avenue for increased predictability is to incorporate
precipitation. Although the mid-term precipitation predictions are
not yet skillful (Table 1), it should be noted that the resampling
approach put forth here could be readily extended to a joint tech-
nique that includes precipitation and temperature (e.g., Briggs and
Wilks 1996). As a first step, precipitation scenarios could be used to
test the sensitivity. Another option is to examine the mid-term pre-
dictions for their ability to capture precipitation proxies, such as
conducive circulation patterns or weather types (Towler et al. 2020)
and is the subject of ongoing study.

Part of the study design was to determine the value of initializa-
tion of the DP versus the uninitialized LE. Although the DP showed
slightly better correlation than the LE for temperature (Table 1), in
terms of the conditioned streamflow, it was found that the results
were quite similar, with the LE showing slightly better results than
the DP. In short, the initialization did not add much, if any, value to
the streamflow generation. Of greater importance for this probabi-
listic approach was having a large ensemble of temperature predic-
tions. These findings are favorable for moving forward with the
implementation of this approach for a few reasons:

1. The LE is a smaller, more straightforward dataset to work with
than the DP given the annual initialization and lead-based over-
lapping hindcasts in the DP.

2. While the DP is initialized in November, the LE is a continuous
time series; as such, future work could look at different initial-
ization months of interest, as was done in Baker et al. (2021).
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3. The LE is similar to other Global Climate Model (GCM) data
that is familiar to stakeholders in the CRB. For example, bias-
correcting the LE is the same as what is done for the CMIP3 and
CMIP5 datasets. The DP requires a different technique, where
the bias/drift-correction varies in time.

4. There is a new collection of multi-model large ensembles avail-
able (Deser et al. 2020), which could be explored to assess the
impact of both initial conditions and model differences.
Although the Lake Powell unregulated inflows showed im-

provements for all the multiyear forecasts examined, the CRMMS
operational projections mainly showed improvements at longer lead
periods (approximately 3- and 4-year leads). This could be due to a
cumulative effect, where there are small improvements in accuracy
each month, but that are only realized at longer leads. It could also
indicate that streamflow error reductions need to be larger to show
up as improvements in the shorter lead operational projections. A
key point is that streamflow forecasts need to be evaluated in a
decision-relevant way, and that improvements in streamflow fore-
casts may not directly translate to improvements in operational pro-
jections. By working in close collaboration with Reclamation and
other stakeholders, streamflow ensembles were evaluated using
CRMMS, which established a pathway for testing and implemen-
tation. Given the importance of pool elevations to stakeholders in
the region, even marginal improvements at longer leads shows
promise for the technique and could be beneficial. Improving the
error by several feet can matter, especially when the reservoirs are
projected to be near threshold elevations that affect annual opera-
tions and water deliveries.
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