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. This study develops a 73-year dataset of water balance components from 1950 to 2022 for the

© Laurentian Great Lakes Basins. This is carried out using the Large Lakes Statistical Water Balance Model
(L2SWBM), which provides a Bayesian statistical framework that assimilates binational input datasets
sourced from the United States and Canada. The L2SWBM infers feasible water balance component
estimates through this Bayesian framework by constraining the output with a standard water balance
equation. The result is value-added time series, including expressions of uncertainty, that ultimately

. close the water balance across the interconnected Great Lakes system. Therefore, the L2SWBM

. facilitates the understanding of discrepancies in datasets and hydroclimate parameters. This enhanced

. reliability stemming from coordinated data, with an understanding and quantification of uncertainty,
could significantly boost confidence in decision support tools for water resources practitioners and
policymakers. This joint effort advances scientific understanding and strengthens strategies and policies
designed to bolster resilience in Great Lakes communities and its ecosystem in the face of a shifting
climate.

: Background & Summary
. 'The Laurentian Great Lakes (Fig. 1), located in North America, are the largest freshwater system in the world,
© holding nearly 20% of the world’s surface freshwater supply and home to over 30 million American and
Canadian residents’. The Great Lakes watershed supplies a regionally significant source of potable water and
. acomplex ecosystem, encompassing a rich aquatic habitat, wetlands, woodlands, and densely urbanized areas.
Additionally, the Great Lakes provide economic benefits to the region, which include recreation, shipping, and
¢ tourism. This highly populated region has been the focus of climate change studies in recent years, which pro-
* vide insight into future lake levels and variability>. An intensification of the hydrologic cycle, with more var-
. iable lake levels and longer periods of high and low water levels is expected as a result of a changing climate®-.
This is evidenced by both record low water levels in some of the Great Lakes between 1998 and 2013° and the
recent record high water event throughout the Great Lakes between 2017 and 2020'Y, the latter of which resulted
in pronounced socio-economic outcomes!!. The environmental, economic, and social factors described above
underscore the importance of advancing hydrological modeling and data in the region.
: Water balance components (i.e., over-lake evaporation, over-lake precipitation, and runoff) in watersheds
: with very large lakes can be challenging to estimate'>"3. Therefore, the large and varied geographic extent of the
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‘Water Balance Period of Used for Prior Distribution | Used for Likelihood
Data Source Component Record* Estimation? Function Estimation? | Data Reference
ECCCRDPA P 2002-2022 Y Fortin'®
CCGLHHD H,LQ,D,P 1900-2022 Y Y Gronewold et al.'*
NOAA-GELRLFVCOM | E 2018-2022 Y S(})‘::ge;“:/lr:s /}gtcl;:;/ fveww.glerl.
NOAA-GLERL GLMHMD | R 2011-2022 Y Hunter et al.*
GLSHyFS PE,R 1950-2022 | Y Y ﬁg‘fﬁmgg}jflfetrf;:}}ffgre" &
1GS LQ 1900-2022 Y Gronewold et al.'*
NOAA-NWS MPE R 2008-2022 Y Stevenson & Schumacher!”
ECCC NSRPS* B E,R 2022 Y Fortin et al.*
NOAANWM R 1979-2020 Y Johnson et al.*!
ECCC SWAT R 2001-2022 Y Shrestha et al.®
ECCC WATFLOOD R 2001-2022 Y Shrestha et al.®
ECCC WCPS P ER 2016-2022 Y Durnford et al.*®
USACE Thiessen Polygons | P 2016-2022 Y Hunter et al.**

Table 1. Overview of the datasets that were used as input into the LZ2SWBM, the associated water balance
component data availability, the period of record of each input dataset, whether the data were used to estimate
the prior distribution, if the data was used to estimate the likelihood function and an associated data reference
for each water balance component. “Note that the period of record for NSRPS used for the final published
datasets is up to the end of 2022; however, data extending to June 2023 were available and used for the
correlation analysis, discussed in the following section.

Great Lakes watershed, the uniqueness of its large lakes, the complexity of simulating lake-atmosphere feed-
backs, discontinuities of data at the international border'*, and a comparatively sparce hydrometeorological
gauging network provide challenges to physical models in accurately estimating water balance components.
Additionally, hydrological model simulations suffer from data availability and data quality issues resulting in
model validation and calibration challenges'”. Precipitation data developed through gridded multisensory quan-
titative precipitation estimates, such as the Meteorological Service of Canada’s Canadian Precipitation Analysis
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Run ID | Model Run Details Analysis Type

0 Operational model configuration Status quo

1 ECCC WCPS precipitation removed Leave-one-out

2 ECCC RDPA precipitation removed Leave-one-out

3 NOAA-NWS MPE precipitation removed Leave-one-out

4 CCGLHHD precipitation removed Leave-one-out

5 USACE Thiessen polygons precipitation removed Leave-one-out

6 GHSHYyFS precipitation removed Leave-one-out

7 ECCC NSRPS precipitation removed Leave-one-out

8 ECCC WCPS evaporation removed Leave-one-out

9 NOAA-GLERL FVCOM evaporation removed Leave-one-out

10 GLSHYyFS evaporation removed Leave-one-out

11 ECCC NSRPS evaporation removed Leave-one-out

12 NOAA-GLERL GLM-HMD runoff removed Leave-one-out

13 ECCC WCPS runoff removed Leave-one-out

14 ECCC WATFLOOD runoff removed Leave-one-out

15 ECCC SWAT runoff removed Leave-one-out

16 GLSHYyFS runoff removed Leave-one-out

17 ECCC NSRPS runoff removed Leave-one-out

18 NOAA NWM runoff removed Leave-one-out

19 All ECCC WCPS water balance components removed Leave-one-out

20 All GLSHYFS water balance components removed Leave-one-out

21 All ECCC NSRPS water balance components removed Leave-one-out

22 No Welland Canal discharge Diversion sensitivity
23 No Chicago Diversion discharge Diversion sensitivity
24 No Long Lac Diversion discharge Diversion sensitivity
25 No Ogoki Diversion discharge Diversion sensitivity
26 No diversion discharge Diversion sensitivity
27 No historical coordinated precipitation, only ECCC WCPS evaporation, and no ECCC WATFLOOD runoft | Least Correlated

28 No historical coordinated precipitation, only ECCC WCPS evaporation, and no ECCC SWAT runoff Least Correlated

29 No ECCC NSRPS precipitation, only WCPS evaporation, and no ECCC WATFLOOD runoff Least Correlated

30 No ECCC NSRPS precipitation, only ECCC WCPS evaporation, and no ECCC SWAT runoff Least Correlated

Table 2. Summary of experimental runs, including the Run IDs 0 to 30, model run details, and analysis type.

(CaPA)', the National Weather Service Multisensor Precipitation Estimator (MPE)!7!%), and the National Severe
Storm Laboratory’s Multi-Radar/Multi-Sensor (MRMS)'" have resulted in advancements in the resolution of the
Great Lakes water balance, however, estimating all water balance components remains challenging.

The goal of this article is to present updated water balance component datasets of the Laurentian Great Lakes
over-lake precipitation, over-lake evaporation, and lateral tributary inflow for a seventy-three year period from
1950 to 2022 using the Large Lakes Statistical Water Balance Model, henceforth referred to as the L2ZSWBM*2!,
The L2SWBM provides a Bayesian statistical framework for the assimilation of independent datasets and
calculates water balance components by constraining estimates with a conventional water balance equation.
This results in water balance component estimates that close the water balance over several time periods. The
L2SWBM is used operationally, on a monthly basis, in support of the Coordinating Committee on Great Lakes
Hydraulic and Hydrologic Data (CCGLHHD) (henceforth known as the Coordinating Committee) (https://
www.greatlakescc.org/en/home/). Additionally, work is underway to use the L2SWBM to coordinate net basin
supply (NBS) components on a monthly basis. The Coordinating Committee is an ad hoc committee comprised
of experts from government organizations from the United States (US) and Canada, who are responsible for the
collection, coordination and dissemination of the hydraulic, hydrologic, and vertical control data required for
water management and research purposes in the Great Lakes and St. Lawrence River. The L2SWBM output is
also used in support of the International Joint Commission’s (IJC) International Lake Ontario - St. Lawrence
River Board and the IJC Great Lakes Adaptive Management (GLAM) Committee. Significant effort and collab-
oration have resulted in binationally coordinated data products and marked advancements in monitoring and
modeling of Great Lakes hydraulic and hydrologic conditions??. However, continued binational collaborative
research is needed to continue to advance this work®.

This manuscript builds upon the work of Do et al.** who presented a seventy-year record of Lake Superior,
Lake Michigan-Huron, Lake Erie, and Lake Ontario water balance components using the L2SWBM. The cur-
rent operational LZSWBM includes several additional input datasets that were not included in the Do et al.*
simulation, incorporates data updates and bug fixes that result in improved connecting channel flow estimates,
and extends the period of record to 2022. The present research additionally focuses on the performance of the
L2SWBM when run with different subsets of input data to determine an optimal configuration. Furthermore,
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Run ID | Model Run Details Analysis Type
31 No historical coordinated precipitation, only NOAA-GLERL FVCOM evaporation, and no ECCC WATFLOOD runoff | Least Correlated
32 No historical coordinated precipitation, only NOAA-GLERL FVCOM evaporation, and no ECCC SWAT runoff Least Correlated
33 No NSRPS precipitation, only NOAA-GLERL FVCOM evaporation, and no ECCC WATFLOOD runoff Least Correlated
34 No ECCC NSRPS precipitation, only NOAA-GLERL FVCOM evaporation, and no ECCC SWAT runoff Least Correlated
35 No historical coordinated precipitation, only ECCC NSRPS evaporation, and no ECCC WATFLOOD runoff Least Correlated
36 No CCGLHHD precipitation, only ECCC NSRPS evaporation, and no ECCC SWAT runoff Least Correlated
37 No ECCC NSRPS precipitation, only ECCC NSRPS evaporation, and no ECCC WATFLOOD runoff Least Correlated
38 No ECCC NSRPS precipitation, only ECCC NSRPS evaporation, and no ECCC SWAT runoff Least Correlated
39 No CCGLHHD precipitation, only GLSHYFS evaporation, and no ECCC WATFLOOD runoff Least Correlated
40 No CCGLHHD precipitation, only GLSHyFS evaporation, and no ECCC SWAT runoff Least Correlated
41 No ECCC NSRPS precipitation, only GLSHyFS evaporation, and no ECCC WATFLOOD runoff Least Correlated
42 No ECCC NSRPS precipitation, only GLSHyFS evaporation, and no ECCC SWAT runoff Least Correlated
3 GLSHyFs, NOAA-WMS MPE, and ECCC RDPA precipitation, GLSHyFS, NOAA-GLERL FVCOM, and ECCC WCPS Best Model Skill
evaporation, and ECCC SWAT, ECCC WCPS, GLSHyFS, and ECCC WATFLOOD runoff
44 5 additional randomly selected and permutated evaporation datasets, 4 runoff, and 5 precipitation Permutated and Infilled
45 ECCC RDPA precipitation prior, GLSHyFS evaporation prior, and ECCC SWAT later tributary inflow prior Prior sensitivity
46 Model run with ECCC RDPA precipitation, NOAA-GLERL FVCOM evaporation, and ECCC WATFLOOD runoff Limited input data

Table 3. Summary of experimental runs, including the Run IDs 31 to 46, model run details, and analysis type.

ECCC WCPS | ECCCRDPA | NOAA-NWS MPE | CCGLHHD | USACE Thiessen Polygons | GLSHyFS
ECCC WCPS 1 0.815 0.913 0.919 0.872 0.925
ECCCRDPA 0.815 1 0.825 0.797 0.729 0.832
NOAA-NWS MPE 0.913 0.825 1 0.938 0.892 0.943
CCGLHHD 0.919 0.797 0.938 1 0.976 0.991
USACE Thiessen Polygons | 0.872 0.729 0.892 0.976 1 0.956
GLSHyFS 0.925 0.832 0.943 0.991 0.956 1

Table 4. Cross-correlation matrix of Lake Michigan-Huron over-lake precipitation from November 2016 to
December 2020.

ECCC WCPS | NOAA-GLERL FVCOM | GLSHyFS
ECCC WCPS 1 0.960 0.957
NOAA-GLERL FVCOM 0.960 1 0.962
GLSHyFS 0.957 0.962 1

Table 5. Cross-correlation matrix of Lake Michigan-Huron over-lake evaporation from January 2018 to
December 2022.

measures of model skill, uncertainty, and model closure are used to assess model performance. Ultimately, data-
sets of basin-wide average precipitation, runoff, and evaporation for each of the Laurentian Great Lakes are
estimated. This data is intended for use by hydrologists, engineers, decision-makers, and other users for research
and water management purposes throughout the Great Lakes Basin.

Large lakes statistical water balance model (L2SWBM). The modeling framework of the L2SWBM
implements a water balance model by constraining water balance components over monthly, yearly, and 5-year
time periods. The water balance for lakes Superior, Michigan-Huron, Erie and Ontario can be defined through
the change in storage over a given time period, as provided in Eq. (1)%.

_ _ j+w—1
AI_Ij,w_I_Ijer_I_Ij_ZH (F,—E+R +1—Q=£D;+¢) (1)

i=j
Where AH; , is the change in lake storage over w months, starting with month j, H; is the water level at the
beginning of month j, H, , , is the water level at month j + w, P, is the over-lake precipitation (mm), E; is the
over-lake evaporation (mm), R; is lateral tributary inflow (or runoff) (mm), I, is inflow from upstream lakes
(mm normalized over lake area), Q; is the outflow to downstream lakes (mm normalized over lake area), D, is the
inter-basin diversions (mm normalized over lake area), and ¢, is a process error term intended to account for
sources of water balance uncertainty that are not accounted for by the other water balance components such as
thermal expansion, glacial isostatic rebound, and groundwater fluxes?>?. Note that the sign of D, is dependent
on diversion direction (either in or out of a given lake). Also, a rolling window of 12 months (w) is used herein,
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NOAA-GLERL GLM-HMD | ECCC WATFLOOD | ECCC SWAT | GLSHyFS | NOAA NWA
NOAA-GLERL GLM-HMD | 1 0.901 0.894 0.940 0.886
ECCC WATFLOOD 0.901 1 0.957 0.902 0.896
ECCC SWAT 0.894 0.957 1 0.906 0.878
GLSHyFS 0.940 0.902 0.906 1 0.908
NOAA NWA 0.886 0.896 0.878 0.908 1

Table 6. Cross-correlation matrix of Lake Michigan-Huron runoff from January 2001 to March 2016.

as it typically provides improved water balance closure?”?!. The comparatively small lake-surface area of Lake St.
Clair results in its water balance being dominated by inflows from the St. Clair River and outflows from the
Detroit River. It is accordingly run in a different configuration in the L2ZSWBM model, but since its water balance
components are not the focus of this analysis, it will not be discussed further herein. Probabilistic water balance
component estimates are inferred through a Bayesian approach, where prior distributions and likelihood func-
tions are parameterized from specified independent data sources and expert knowledge and opinion. Water
balance components developed through the model are considered the “true” estimates, given they are appropri-
ately constrained by the closure of the water balance.

The likelihood function for the change in storage within a given lake over a period of w months is given by*":

yAHjAw yH]er - yH) - N(AI_I]',W’ 7_AH)-‘W) (2)
where yAHJ w is the observed change in storage, starting in month j and over the rolling window of length w, ” Hy.,,

is the water level measurements at the beginning of month j + w, J H, is the water level measurements at the
beginning of month j, the difference of which is modeled with a normal distribution with mean AH; ,, and pre-
cision TAH,, . In this formulation of the LZSWBM, the normal distribution is parameterized using the y precision,

rather than the variance, following Bayesian inference convention?’-%. The precision of the data sources of each
water balance component at each time step were modeled with a noninformative gamma prior probability dis-
tribution with both shape and scale parameters equal to 0.12*°. The bias of channel flow; however, was modeled
using a normal distribution with mean 0 and precision of 0.01°!.

Priors are modeled with normal probability distributions for over-lake evaporation (E,,), inflow (I,,), outflow
(Q,,), and diversions (D,,), where m is the calendar month. These water balance components were modeled
using empirical estimates of input data spanning from 1950 to 2022, which is discussed further below and pre-
sented in Table 1. For example, the prior probability distribution of inflow (connecting channel flow) is modeled
as follows:

T(0,) = N iy o o) 3)

where 7 (I,,) is the prior probability distribution of inflow, 1 118 the mean and 7; , is the precision. Q,,, D,,, and
E,, are similarly modeled, however the precision of over-lake evaporation is divided by two (variance is doubled)
to account for the strong historical seasonality and low variability in this water balance parameter. The prior for
over-lake precipitation (P,,) is modeled using a gamma probability distribution and the prior for runoff (R;) with
a lognormal probability distribution, with the parameters of each distribution being estimated empirically
through historical data. Finally, the error term (¢;) is modeled using a vague prior distribution. For a more
detailed description of the probability distribution used herein, please refer to Do et al.** or Gronewold et al.”.

The L2SWBM infers water balance component estimates from the posterior distribution for a period ranging
from 1950 to 2022 and is coded in the R programming language®?. Parameter estimates for the likelihood and
prior probability distributions, are encoded via Just Another Gibbs Sampler (JAGS) but more specifically the
‘rjags’ package”. For the published dataset, the JAGS model was simulated over 1,000,000 Markov Chain Monte
Carlo (MCMC) iterations using three parallel MCMC chains. The model evaluation runs were similarly carried
out; however, due to their computational expense, were run using the Coordinating Committee’s operational
configuration of the most recent 10 years (2013 to 2022) and with 200,000 MCMC iterations. In both instances,
the first half of the iterations are considered the “burn-in” period and discarded. The remaining data is subse-
quently thinned, resulting in a final dataset of 2000 iterations. The data are additionally used to infer feasible
parameter ranges of the 95% credibility interval. In keeping with best practice, no observations were used to
estimate both the prior distribution and likelihood functions, therefore, the 1,000,000 trial model was run in
two parts, the first spanning from 1950 to 1987 and the second from 1988 to 2022. The priors for the 10-year
operational model were selected from data ranging from 1950 to 2012.

Independent data sources used in the L2SWBM.  The focus of this manuscript is on the optimization of
precipitation, evaporation, and runoff water balance components. Independent data sources that are operational
products used by federal agencies on both sides of the border for tracking Great Lakes water budget changes were
selected for this research. The data sources used as input to the L2ZSWBM for this work include:

o Over-lake precipitation: 7 independent datasets are included in the L2SWBM model, which include (1) the
National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service (NWS) Multisen-
sor Precipitation Estimator (MPE)'”!%, (2) Environment and Climate Change Canada’s (ECCC) Regional
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Fig. 2 Rank histograms of the independent datasets of over-lake precipitation from the operational model (Run
ID 0) of over-lake precipitation for Lake Superior. Note: E denotes entropy.

Deterministic Precipitation Analysis (RDPA)'¢, (3) historical coordinated precipitation from the Great Lakes
Coordinating Committee (CCGLHHD, found at https://doi.org/10.5281/zenodo.10479324), (4) United States
Army Corps of Engineers (USACE) interpolated Thiessen Polygons®, (5) historical precipitation from Envi-
ronment and Climate Change Canada’s Water Cycle Prediction System (WCPS) analysis®, (6) precipitation
from the Great Lakes Seasonal Hydrological Forecasting System (GLSHyFS)*, and (7) Environment and
Climate Change Canada’s National Surface and River Predicting System (NSRPS)%¢.

o Over-lake evaporation: there are 4 independent datasets of evaporation in the L2SWBM model, which
include (1) historical over-lake evaporation from the WCPS analysis®, (2) the Finite-Volume Primitive Equa-
tion Community Ocean Model (FVCOM, described by Chen et al.’’), as run in NOAA-GLERLs experimental
Great Lakes Coastal Forecast System (https://www.glerl.noaa.gov/res/glcfs/), (3) over-lake evaporation from
GLSHyFS™*, and (4) over-lake evaporation from NSRPS*.

o Lateral tributary inflow: 7 sources of independent runoff are included in the L2SWBM (1) lateral tributary
inflow from the NOAA-GLERL Great Lakes Monthly Hydrometeorological Database (GLM-HMD)?*, (2)
historical runoff from the WCPS analysis*, (3) WATFLOOD?, (4) Soil & Water Assessment Tool (SWAT)?,
(5) runoff from GLSHyFS*#, and (6) NOA A’s National Water Model (NWM)*L.

Other sources of data are included in the model and are summarized in Table 1, in addition to the afore-
mentioned data sources. As indicated in the table, data provided by the Coordinating Committee were used as
priors to the model for lake storage, connecting channel flow and diversion flow. Data from GLSHyFS were used
to estimate the prior distribution for precipitation, evaporation, and runoff as it has a long period of available
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Fig. 3 Rank histograms of the independent datasets of over-lake evaporation from the operational model (Run
ID 0) of over-lake evaporation for Lake Superior. Note: E denotes entropy.

record. Several additional datasets were added to the operational version of the L2SWBM since the Do et al.**
publication. The following section will provide an overview of experimental runs conducted to determine if
there is value in the additional of new datasets to the model or if an optimal subset of data can improve model
performance and subsequent output.

Methods

For the current analysis, a series of experiments was carried out to determine if an optimal selection of input
data could be used to improve model output. To this end, model performance was evaluated by the model’s
ability to close the water balance, reductions in uncertainty, and the reliability of the ensemble (or model skill)
through rank histograms. The L2ZSWBM attempts to close the water balance over a rolling window of 60 months
(5-year), 12 months (1-year), and monthly. Through this study, it was determined that the model is capable
of adequately closing the 1-year and 5-year water balances, therefore, the focus herein is on improvements in
monthly water balance closure. Furthermore, monthly data is important for regulation and water management
purposes and forecasting in the Great Lakes basins. The model closure calculation is obtained by first estimating
model outputs of simulated detention storage for each month it is run (i.e. 73 years or 876 months). Empirical
95% confidence intervals are then calculated using the ensemble data for each month. If the actual (measured)
detention storage falls within the 95% confidence interval of the empirical quantile, that monthly water balance
is considered closed. Model closure is summarized as follows:

Nr (4)

where C is the reported L2SWBM monthly closure, N is the number of months the model closes the water bal-
ance as previously described, and N is the total number of months the model is run. Reduction in uncertainty
is measure by the average difference in the upper (97.5%) and lower (2.5%) reported credible intervals for water
balance components, where a decrease in uncertainty is considered an improved result.

Model skill is assessed with a measure of improvement in rank histograms of model output against three
selected datasets that are generally considered to be best estimates based on expert opinion, namely residual
net basin supply (NBS,), which is available from the CCGLHHD, ECCC RDPA precipitation, and NOAA-NWS
MPE precipitation. NBS, is derived from the water balance provided in Eq. 1, however, the equation is rear-
ranged into NBS, and component net basin supply (NBS,), which is given by:

AH-I+Q+D=P+R—E+e (5)

NBS, = NBS, + ¢ (6)

Given that the change in lake storage (AH), connection channel flow (I and Q), and diversion flow (D)
are measured with a high degree of accuracy and internationally coordinated, NBS, is considered precise and
an optimal dataset for which to compare model output. Monthly NBS, data is available from the CCGLHHD
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Fig. 4 Rank histograms of the independent datasets of lateral tributary inflow from the operational model (Run
ID 0) of lateral tributary inflow for Lake Superior. Note: E denotes entropy.

website. Additionally, Lespinas et al.'® and Kiltzmiller et al.'® highlight the accuracy of the ECCC RDPA and
MPE, respectively. The flatness of the rank histograms is measured using an entropy statistic*>*%. Entropy is a
flatness measure ranging from 0 to 1, with zero representing a rank histogram with all counts in a single bin and
1 being perfectly flat.

Experimental design. A number of experiments are carried out to determine if an optimal configuration
of input data can improve L2SWBM output results. These included a series of leave-one-out runs, sensitivity to
diversion flows, a series of runs with subsets of least correlated data, running the model with only those datasets
having the best model skill, running the operational model with updated prior beliefs, and a model run with
additional permutated datasets. An overview of these model runs is provided in Tables 2 and 3.

The initial run (Run ID 0) is the status quo model and serves as a basis of comparison for the remaining
experimental runs. Run IDs 1-21 are leave-one-out experiments where datasets are sequentially removed from
the model runs. Of note, Run IDs 19, 20, and 21 omit the full model datasets (i.e. precipitation, evaporation, and
runoff) for the ECCC WCPS, GLSHYFS, and ECCC NSRPS models, respectively. In Run IDs 22 to 26, diversion
discharge is sequentially removed from the model runs to ascertain the model’s sensitivity to each of the Great
Lakes diversions. Run IDs 27 to 42 were developed by assessing cross-correlation between datasets. It is impor-
tant to provide the L2SWBM with independent datasets, given that highly correlated data may skew the output
in their favour. Using Lake Michigan-Huron as an example, the Pearson correlation matrices of the overlapping
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Fig. 5 Rank histograms of LZ2SWBM over-lake precipitation model output and RDPA, NOAA-NMS MPE, and
L2SWBM NBS. and CCGLHHD NBS, for Lake Superior, Lake Michigan-Huron, Lake Erie, and Lake Ontario
for Run ID 4. Note: E denotes entropy.

periods of record for the precipitation, evaporation, and runoff datasets are provided in Tables 4-6. Please refer
to the Supplementary Information for the complete correlation analysis for lakes Superior, Michigan-Huron,
Erie, and Ontario. Table 4 indicates that correlation among precipitation datasets is high, however, this is
expected with measures of the same water balance component. Of note, is the relationship between the GLSHyFS
dataset and the historical coordinated precipitation data (CCGLHHD). These consistently high correlations
between datasets are a result of the CCGLHHD precipitation dataset using GLSHyFS for its precipitation data,
beginning in 1948. A similar analysis was carried out for lakes Superior, Erie, and Ontario, which provided
similar results that are presented in Tables S1-S21. For this reason, the historical coordinated precipitation is
removed from the L2Z2SWBM as it was not sufficiently independent. Also of note, correlations were calculated for
overlapping periods of record only, therefore, certain datasets are not included in Tables 4-6 but are available
in the Supplementary Information. Thirteen model runs (Run ID 27 to 42) were selected to determine if model
output improvements could be realized when the L2SWBM was run with a subset of least correlated data.

The input datasets for Run ID 43 are selected based on the model skill of the operational version of the
model. Model skill is evaluated through the examination of rank histograms of the water balance components
of over-lake precipitation, over-lake evaporation, and lateral tributary inflow. Figure 2 shows the seven inde-
pendent datasets included in the L2ZSWBM for Lake Superior for over-lake precipitation. For the sake of brevity,
rank histograms of the remaining lakes are provided in Figures S1-S9. The historical coordinated (CCGLHHD)
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Fig. 6 Rank histograms of LZ2SWBM over-lake precipitation model output and RDPA, NOAA-NMS MPE, and
L2SWBM NBS. and CCGLHHD NBS, for Lake Superior, Lake Michigan-Huron, Lake Erie, and Lake Ontario
for Run ID 43. Note: E denotes entropy.

rank histogram appears to be the most balanced with others showing positive or negative bias. Based on the
magnitude of the entropy elucidated in Fig. 2 and Figs. S1-S3 and denoted by E, where 0.5 is selected as the
cutoff, ECCC RDPA, NOAA-GLERL GLSHyFS, CCGLHHD, and NOAA-NWS MPE over-lake precipitation
provide the best model skill. The skill of over-lake evaporation is provided in Fig. 3 and Figs. S4-S6, where
ECCC WCPS, NOAA-GLERL GLSHyFS, and NOAA-GLERL FVCOM have the best result. The rank histogram
of NOAA-GLERL FVCOM indicates some potential for lack of variability for Lake Superior but does provide
stronger results in other lakes (provided in the Supplementary Information). Finally, Figs. 4, S7-S9 provide
the model skill for lateral tributary inflow, where overall, ECCC WATFLOOD, NOAA-GLERL GLSHyFS, and
NOAA NWM are the most skilful input datasets. As noted above, due to its high correlation with NOAA-GLERL
GLSHyFS, CCGLHHD is not included in this model run.

Through experimental Run IDs 1 to 42, it is determined that the addition of independent datasets of water
balance components decreases model uncertainty. Run ID 44 was developed to determine if this was the result of
additional and correlated data (given it is a measure of the same water balance component) or the nature of the
Bayesian inference model. Existing datasets were selected at random, permutated and inserted into the model,
resulting in numerous additional, feasible, but uncorrelated time series. This was carried out for over-lake pre-
cipitation (5 time series were added), over-lake evaporation (5 time series were added), and runoff (4 addi-
tional time series). The result was no additional decrease in model output uncertainty, which indicates that as
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Fig. 7 Rank histograms of LZ2SWBM over-lake precipitation model output and RDPA, NOAA-NMS MPE, and
L2SWBM NBS. and CCGLHHD NBS, for Lake Superior, Lake Michigan-Huron, Lake Erie, and Lake Ontario
for Run ID 46. Note: E denotes entropy.

additional independent datasets of water balance components are added to the model, there is an associated
decrease in model uncertainty.

GLSHyFS has superior model skill in the operational model, which is shown in Figs. 2-4 (and Figs. S1-S9).
The intent of Run ID 45 is to determine the model’s sensitivity to prior beliefs and to determine if the skill
of GLSHYFS is the result of the use of this dataset as priors for the over-lake precipitation, evaporation, and
runoff water balance components. Therefore, a repeated operational run was carried out using ECCC RDPA
as the over-lake precipitation prior, GLSHyFS for over-lake evaporation, and ECCC WATFLOOD for runoff.
Note that no suitable alternative to GLSHYyFS is available for over-lake evaporation due to limited periods of
record of the alternate datasets. Rank histograms of model output with the updated prior beliefs are provided in
Figs. S10-521, through which it is evident that GLSHYFS continues to have good model skill, and thus confirm-
ing that the LZ2SWBM is not sensitive to the choice of prior belief.

Lastly, the final Run ID 46 is intended to assess the performance of the model with minimal input datasets
where two over-lake precipitation, one over-lake evaporation, and one runoff dataset are retained.
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Data Records

Estimates of water balance components, including over-lake precipitation, over-lake evaporation, and runoft for
Lake Superior, Lake Michigan-Huron, Lake Erie, and Lake Ontario are available for download at https://zenodo.
org/records/13883098% The file size of the data is approximately 350 KB and contains multiple CVS files. Each
CVS file contains the 2.5, 50, and 97.5 percentile of the MCMC iterations of the monthly inferences for each lake
and water balance component.

Technical Validation
Through the experimental design and associated model runs, the following is observed:

o Consistently high correlations between the CCGLHHD precipitation data and NOAA-GLERL precipitation
is the result of the CCGLHHD dataset using GLSHYFS for precipitation input. CCGLHHD precipitation is
therefore henceforth removed from the L2SWBM to avoid bias in the output;

o The addition of independent datasets of water balance components into the L2ZSWBM results in an associated
decrease in the uncertainty, as measured by the average size of the credible intervals; and

o The L2SWBM is insensitive to the dataset used to estimate the prior probability distributions.

In consideration of the following results, a final comparison of Run ID 4 (operational model without the
CCGLHHD over-lake precipitation) is compared to Run ID 43 (with best model skill) and Run ID 46 (model run
with limited datasets). These model runs are assessed for model skill, compared to ECCC RDPA, NOAA-NWS
MPE, and NBS.,. Their uncertainty and ability to close the monthly water balance are also assessed. A compar-
ison of model skill for Run ID 4, Run ID 43, and 46 are provided in Figs. 5-7, respectively. Run ID 46 provides
slightly higher skill than Run ID 4, however, Run ID 43 provides superior skill to both model runs, most notably
for lakes Michigan-Huron and Erie NBS. Model skill is similarly lower for Lake Ontario NBS, owing to the
model’s low skill in estimating runoff in this basin, which may be the result of error propagation being carried
downstream in the model. In light of this, additional research will be carried out to determine the cause of this
low model skill, whether it be from the input data or from the L2SWBM.

The difference in output uncertainty between Run IDs 4, 43, and 46 is provided in Table 7. As previously
noted, additional datasets of water balance components result in lower model uncertainty. Negative values pre-
sented in Table 7 indicate a lower uncertainty in Run ID 4 than in Run IDs 43 and 46, therefore, it is illustrated
that there is more uncertainty when the L2SWBM is run with minimal dataset than with additional water bal-
ance component estimates for over-lake precipitation, over-lake evaporation, and runoff.

SCIENTIFICDATA|  (2024) 11:1243 | https://doi.org/10.1038/s41597-024-03994-7 12


https://doi.org/10.1038/s41597-024-03994-7
https://zenodo.org/records/13883098.
https://zenodo.org/records/13883098.

www.nature.com/scientificdata/

Erie - posterior inferences

3 4 = LeswBM — ECCC.CaPA  —— NWS.MPE —— USACE.GLSHFS -
T A L
£
~ O
o 2 =i = + -+ =|==.=:I'_*+ -

B T e B i =
o - -
4= leswem — ECCC.WCPS GLERLFVCOM —— USACE.GLSHFS ' ' -3
€ . -
E F . == = = =T 2
oA =T = - - 2T . = = [ 7
a e = 'ﬁ-i- e e e L o
3= Loswam —— ECCC.WATFLOOD— USACE.GLSHFS NOAA.NWM ' ' -
£ A L
E -
c = = e = == r
ES = i - _— = = — + -
o - ) et Tz T I e == il P SLEBE S T |
o
— T T T T T - 8
= |2SWBM —— Niagara.Welland.SFD.ADVM. =
] - B -
D A i+ R B £ B
2 T by g g -
g . _|_-|—+ 4+ - T 'I'+_|_-|—|--I——I-_l_ s s B §
~ ©
S - L
] [ g
i : | . g
— 9 T i
2] B
S o] - gy, ey by g by [
o & 7 I N R Pl i - + e + -
o
] T T T T T
T + + + L
£ PRLES U gt . I TPE C S e .
I ] +_|_+-I- 4 34 |T"'- -I--|-_|_ _|_+'I' e -+ a4 L g I_|_T B
K|
T m o
i -3
T T T T T !
2018 2019 2020 2021 2022

Fig. 9 Overview of LZSWBM credible intervals and input datasets for Lake Erie, which includes results for
over-lake precipitation (P), over-lake evaporation (E), lateral tributary inflow (R), connecting channel flow (Q),
diversions(D), and the change in lake storage (AH).

The final means of comparison between the three model runs is their ability to close the monthly water
balance, which is provided in Table 8. Run ID 46, which had limited input data, has an improved capacity for
closing the monthly water balance when compared to Run ID 4. There is therefore a trade-off between improved
model closure, skill, and increased uncertainty when comparing Run IDs 4 and 46. Run ID 43, which included
only models with superior model skill appears to be a good balance between running the L2SWBM with all
available datasets (Run ID 4) and with minimal datasets (Run ID 46). There is a slightly decreased capacity of the
Run ID 43 to close to the water balance for Lake Michigan-Huron, when compared to Run ID 46, however, this
result is small and not statistically significant.

Therefore, Run ID 43 is selected for model configuration and that which is used to develop the final pub-
lished water balance component datasets. Moving forward, new input datasets to the LZ2SWBM will be assessed
for model skill by the Coordinating Committee before they are added to the model and their impact on model
skill, closure, and uncertainty will additionally be evaluated.

Component NBS that closes the water balance is of great benefit to practitioners as it provides reliable forcing
data for hydrological modeling. Figure 8 provides a comparison between NBS_ from the L2SWBM for Run ID 43
compared with NBS; (obtained from CCGLHHD) for 2019, which demonstrates the model’s ability to provide water
balance components that close the water balance. Although only the median and 95% credible intervals are provided
in Fig. 8, it is also important to note that the L2ZSWBM provides an ensemble of plausible water supply scenarios.

The posterior inferences of the final 1,000,000 iteration model from 2018 to 2022 and their associated 95%
credible intervals are provided in Fig. 9 for Lake Erie. Plots of posterior inferences of over-lake precipitation (P),
over-lake evaporation (E), lateral tributary inflow (R), connecting channel flow (Q), diversions (D), and change
in lake storage (AH) for lakes Superior, Michigan-Huron, and Ontario are provided in Figs. $22-5S24. In each
of the five plots included in Fig. 9, the model’s 95% credible intervals are superimposed with the input water
balance component datasets. These highlight the differences in input data which are most apparent for over-lake
precipitation, over-lake evaporation, and runoff, due to the numerous input datasets for these water balance
components. Additionally, the seasonal patterns of the lakes are illustrated in all the presented water balance
components in the figure. Of note, the high-water events of 2019 and 2020 are illustrated through peak changes
in lake storage in these years.

The L2SWBM will continue to be used operationally by the Great Lakes Coordinating Committee
(CCGLHHD), additional datasets of water balance parameters will continue to be added as they become

SCIENTIFICDATA|  (2024) 11:1243 | https://doi.org/10.1038/s41597-024-03994-7 13


https://doi.org/10.1038/s41597-024-03994-7

www.nature.com/scientificdata/

Percent Difference (Run ID 4 to 43) | Percent Difference (Run ID 4 to 46)
Lake Superior Diversion (Long Lac/Ogoki) —0.58% 0.21%
Lake Superior Detention Storage —3.36% —17.37%
Lake Superior Over-Lake Evaporation 10.84% —70.23%
Lake Superior Component NBS —7.29% —41.60%
Lake Superior Outflow —1.72% 0.12%
Lake Superior Over-Lake Precipitation —36.28% —39.00%
Lake Superior Lateral Tributary Inflow —20.72% —79.09%
Lake Michigan-Huron Diversion (Chicago) —0.78% —0.21%
Lake Michigan-Huron Detention Storage —6.61% —20.36%
Lake Michigan-Huron Over-Lake Evaporation 8.14% —75.29%
Lake Michigan-Huron Component NBS —13.08% —45.94%
Lake Michigan-Huron Outflow —0.56% 4.79%
Lake Michigan-Huron Over-Lake Precipitation —49.57% —50.53%
Lake Michigan-Huron Later Tributary Runoff —20.47% —77.51%
Lake Erie Diversion (Welland Canal and New York State Barge Canal) | 0.12% 0.64%
Lake Erie Detention Storage —4.75% —16.44%
Lake Erie Over-Lake Evaporation 2.92% —77.75%
Lake Erie Component NBS —14.45% —58.13%
Lake Erie Outflow —2.03% —14.70%
Lake Erie Over-Lake Precipitation —26.86% —16.22%
Lake Erie Lateral Tributary Runoff —25.76% —110.63%
Lake Ontario Detention Storage —4.18% —14.25%
Lake Ontario Over-Lake Evaporation 7.40% —176.51%
Lake Ontario Component NBS —21.31% —86.31%
Lake Ontario Outflow —2.78% —18.92%
Lake Ontario Over-Lake Precipitation —28.93% —16.13%
Lake Ontario Lateral Tributary Runoff —30.11% —104.30%

Table 7. Summary of change in uncertainty between experimental Run ID 4 and Run IDs 43 and 46.

Lake Superior | Lake Michigan-Huron | Lake Erie | Lake Ontario
Monthly Water Balance Closure (Run ID 4) 0.97 0.83 0.94 0.68
Monthly Water Balance Closure (Run ID 43) | 0.96 0.88 0.94 0.78
Monthly Water Balance Closure (Run ID 46) | 1.00 0.93 0.93 0.78

Table 8. Summary of monthly model closure between experimental Run ID 4 and Run IDs 43 and 46.

available and model improvements will continue. The LZSWBM continues to be valuable tool to provide water
balance components and uncertainty in the Great Lakes Basins that reconcile the water balance. Future research
will focus on understanding and improving the model skill in Lake Ontario runoff.

Code availability

The code for the L2SWBM model can be accessed on GitHub at the following link: https://github.com/cc-
hydrosub/L2SWBM/tree/master/L2SWBM_Nature2023. This provides the current R code used to run the model
and a template configuration file used to set model parameters. Also included are the .RData files that include the
2000 plausible water balance scenarios that were established through this study. The L2SWBM uses R programming
software and requires ‘rjags’ package to run the model, as described in the Background and Summary sections.
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