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Abstract Microphysical observations of precipitating particles are critical data sources for numerical
weather prediction models and remote sensing retrieval algorithms. However, obtaining coherent data sets of
particle microphysics is challenging as they are often unindexed, distributed across disparate institutions, and
have not undergone a uniform quality control process. This work introduces a unified, comprehensive Northern
Hemisphere particle microphysical data set from the National Aeronautics and Space Administration
precipitation imaging package (PIP), accessible in a standardized data format and stored in a centralized, public
repository. Data is collected from 10 measurement sites spanning 34° latitude (37°N–71°N) over 10 years
(2014–2023), which comprise a set of 1,070,000 precipitating minutes. The provided data set includes
measurements of a suite of microphysical attributes for both rain and snow, including distributions of particle
size, vertical velocity, and effective density, along with higher‐order products including an approximation of
volume‐weighted equivalent particle densities, liquid equivalent snowfall, and rainfall rate estimates. The data
underwent a rigorous standardization and quality assurance process to filter out erroneous observations to
produce a self‐describing, scalable, and achievable data set. Case study analyses demonstrate the capabilities of
the data set in identifying physical processes like precipitation phase‐changes at high temporal resolution. Bulk
precipitation characteristics from a multi‐site intercomparison also highlight distinct microphysical properties
unique to each location. This curated PIP data set is a robust database of high‐quality particle microphysical
observations for constraining future precipitation retrieval algorithms, and offers new insights toward better
understanding regional and seasonal differences in bulk precipitation characteristics.

Plain Language Summary Thiswork introduces a newparticlemicrophysics data set that is useful for
improvingweatherpredictionmodelsand inenhancingprecipitationestimation techniques.Thedata set,produced
from National Aeronautics and Space Administration's precipitation imaging package, is comprehensive, well
documented, and easy to access. It includes observations from 10 locations across the Northern Hemisphere over
10 years, providing information on both rain and snow. This information includes details like particle size, speed,
and density, as well as estimates of rainfall and snowfall rates. The data has been standardized and checked for
quality, making it reliable and easy to use. This product is a valuable resource for refining methods to measure
precipitation, and offers new insights into regional and seasonal precipitation patterns.
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1. Introduction
Accurate precipitation estimates are crucial for monitoring the global water‐energy balance, influencing agri-
cultural productivity, informing economic decisions, and fostering ecosystem growth and sustainability (Breu-
gem et al., 2020; Calzadilla et al., 2013; Dagan & Stier, 2020; Gergel et al., 2017; Meyghani et al., 2023; Pörtner
et al., 2019). As global temperatures continue to rise (Arias et al., 2021), Northern Hemisphere (NH) precipitation
patterns are expected to respond in a nonlinear manner, driven by increased poleward atmospheric moisture
transport and modulated by complex atmospheric dynamics (Bintanja & Andry, 2017). While future model
projections agree that total precipitation will increase across high latitude NH regions (with marked enhancements
in interannual variability of 40% by 2100), there exists substantial uncertainty in the distribution and frequency of
rainfall and snowfall events, reinforcing the need for accurate observational techniques to monitor these processes
(Bintanja, 2018; Bintanja et al., 2020). In situ precipitation measurements are high‐quality observational refer-
ences commonly used for these purposes, however manual measurement techniques are time‐consuming (Cau-
teruccio et al., 2021), and the high installation and maintenance costs of automated precipitation gauges results in
a sparse measurement network with large unobserved gaps between sites (Kochendorfer et al., 2022; Mekis
et al., 2018).

Satellite‐based precipitation measurement systems can be used to fill these gaps (e.g., the Tropical Rainfall
Measuring Mission, Kummerow et al., 2000, CloudSat, Stephens et al., 2008, Global Precipitation Measurement
[GPM], Hou et al., 2014, Earth Cloud, Aerosol and Radiation Explorer [EarthCARE], Illingworth et al., 2015).
These systems are able to retrieve estimates of rainfall and/or snowfall over large swaths of the globe due to their
orbit. However, current remote sensing‐based precipitation retrievals strongly rely on assumptions of particle
microphysical properties (e.g., particle size, shape, fall speed, and density) which do not necessarily generalize
well across different regional climates (King et al., 2022; Pettersen, Bliven, et al., 2020;Wood et al., 2013). Biases
in these physical assumptions result in large uncertainties in precipitation rates (Chase et al., 2020; Duffy
et al., 2021; Gilmore et al., 2004; Morrison et al., 2020), with substantial hydrologic consequences to surface
processes as errors propagate through model simulations (Biemans et al., 2009; Falck et al., 2015; King
et al., 2020).

Bayesian retrievals, such as optimal estimation, employ a statistical approach to retrieve precipitation rates from
satellite radar observations through the use of a priori databases of known particle microphysical properties
(L’Ecuyer & Stephens, 2002;Maahn et al., 2020;Munchak &Kummerow, 2011; Rapp et al., 2009). However, the
precision of these retrievals is greatly influenced by the quality and robustness of available a priori training data
sets commonly developed from in situ microphysical observations during ground validation campaigns (Junkins
& John, 2004). A comprehensive database of particle microphysics is therefore a powerful tool to facilitate future
research toward developing more robust precipitation retrievals through an examination of snowfall and rainfall
patterns across multiple years and throughout varying regional climates. Additionally, as demonstrated by Dolan
et al. (2018), studying the spatiotemporal variability of precipitation in these data sets can objectively separate
events by underlying physical and thermodynamic processes (e.g., convective or stratiform precipitation), and
further characterize the dominant precipitating mechanisms within each group (e.g., particle riming, aggregation,
vapor deposition, collision) to identify regional modes of variability.

In this paper, we present a comprehensive particle microphysics data set derived from a series of video dis-
drometers developed and built by National Aeronautics and Space Administration (NASA) called precipitation
imaging packages (PIPs). The PIP instruments examined here were deployed at 10 locations across the NH with
observations beginning in 2014, to provide high‐quality estimates of particle microphysics at minute‐timescales
(Cooper et al., 2022; Houze et al., 2017; Lerber et al., 2017; Mariani et al., 2022; Munchak et al., 2022;
Pettersen, Bliven, et al., 2020; Pettersen, Kulie, et al., 2020; Pettersen et al., 2021; Shates et al., 2021; Tiira
et al., 2016). The resulting data set is: (a) packaged into a common, Climate and Forecast (CF)‐compliant,
accessible data format using the network Common Data Form (NetCDF‐4) which is underlain by the Hier-
archical Data Format version 5 (HDF5) for storing scientific data in a tabular form; (b) temporally standardized
with minute‐scale observations of particle size distributions (PSDs), vertical velocity distributions (VVDs),
effective density distributions (rho), an equivalent density particle mass retrieval (eD) and derived snowfall and
rainfall rates in daily files; and (c) quality controlled to remove erroneous data points, with improved alignment
between PIP product levels.
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The paper is organized as follows:

1. Introduce PIP study sites, along with the measurement capabilities of the PIP and its associated data products
2. Describe how PIP data was processed, quality controlled and standardized when converted into NetCDF‐4

files
3. Analyze case studies using the PIP and ancillary data to highlight physical processes, and examine bulk

precipitation characteristics to illustrate regional differences
4. Discuss how this data can be used in a handful of research and operational applications
5. Summarize the data curation methodology and highlight the strengths and limitations of the curated PIP

data set

2. Data Sources
2.1. Study Sites

PIP measurements are collected from 10 different locations in six countries across the NH spanning 34° latitude
from 37°N to 71°N (Figure 1a). Observations are retrieved from instruments installed at a combination of both
long‐term measurement sites, and temporary field campaigns. Each study site is briefly discussed in this section,
including descriptions of their regional topography and climate. Temporal coverage across all sites spans 14
January 2014 to 31 August 2023, with all observational periods illustrated in the Figure 1b for intercomparison.
Additionally, Table 1 provides a summary of site‐specific details including their respective data coverage periods,
elevation, latitude and longitude, and additional reference sources.

Figure 1. (a) Northern Hemisphere map showing the location of each study site; and (b) Gantt chart of the final available observational sample from each location.

Table 1
Summary Descriptions of the Precipitation Imaging Package Study Sites Incorporated Into This Data Set

Name ID Location Lat (°N) Lon (°E) Elev. (m) Coverage Precip. mins. Size (Mb) Reference

SMEAR‐ii FIN Hyytiälä, Finland 61.845 24.287 150 2014/01/14–2022/05/19 353,700 687 Hari et al. (2013)

Marquette MQT Michigan, USA 46.532 − 87.548 426 2015/01/01–2023/08/31 363,001 804.3 Pettersen, Kulie, et al. (2020)

Iqaluit YFB Nunavut, Canada 63.747 − 68.542 12 2017/05/11–2019/08/19 75,718 166.1 Mariani et al. (2022)

North Slope NSA Alaska, USA 71.323 − 156.612 8 2018/10/24–2023/07/18 152,091 305.9 Verlinde et al. (2016)

OLYMPEX OLY Washington, USA 47.97 − 123.58 1,603 2015/02/03–2016/02/14 17,816 57.2 Houze et al. (2017)

HiLAMS HAK Haukeliseter, Norway 59.81 7.21 991 2016/12/07–2017/04/26 9,039 23.9 Schirle et al. (2019)

HiLAMS KIS Kiruna, Sweden 67.84 20.41 425 2017/09/21–2018/05/21 25,676 66.7 Schirle et al. (2019)

ICE‐POP ICP South Korea 37.665 128.7 789 2018/01/07–2018/04/24 19,781 39.7 Petersen et al. (2016)

IMPACTS IMP Connecticut, USA 41.807 − 72.294 150 2021/09/15–2023/04/16 27,248 47.4 L. A. McMurdie et al. (2022)

Gaylord APX Michigan, USA 44.908 − 84.719 446 2022/01/01–2023/04/17 25,807 74.6 Pettersen, Kulie, et al. (2020)
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2.1.1. Long‐Term Installations

Data from the Finland (FIN) site was sourced from the Hyytiälä Forest Research Station (61.845°N, 24.287°E) in
southern Finland. Established between 1994 and 1996, the University of Helsinki's Department of Forest Sciences
has overseen the research station as part of the Station for Measuring Ecosystem Atmosphere Relations (SMEAR‐
ii) campaign (Petäjä et al., 2016). This campaign is dedicated to continuously gathering detailed data on regional
atmospheric fluxes, storage, and concentrations within the land ecosystem‐atmosphere interface (Hari
et al., 2013). Positioned at roughly 150 m.a.s.l., the station is located in the middle of a forest clearing sheltered by
the surrounding trees approximately 20 m from the PIP (Aaltonen et al., 2012; Lerber et al., 2017). Due to the
influence of the treeline, the wind conditions at Hyytiälä are typically moderate or low (the median wind speed
(WS) for snowfall events spanning 2014–2022 is 1.3 m/s). Adjacent forests predominantly feature boreal mixed‐
coniferous trees, interspersed with small lakes and wetlands. The area's long‐term average yearly temperature
stands at +3.5°C, with February as the coldest month (− 7.7°C) and July being the hottest (+16°C). From 1981 to
2010, the annual precipitation averaged 71 cm, comprising rain during warm periods and snow in winter. The 30‐
year mean winter maximum snow depth at this location is approximately 47 cm (Drebs et al., 2002). Since its
installation in January 2014, the FIN PIP has been in continuous operation and observations are ongoing (Lerber
et al., 2017; Tiira et al., 2016).

PIP data from the Marquette, Michigan (MQT) site was sourced from the National Weather Service (NWS)
Marquette office, located in Michigan's Laurentian Great Lakes region (Kulie et al., 2021; Pettersen, Kulie,
et al., 2020). This NWS office is positioned 13 km southwest from Lake Superior, set on a gently rising slope at
426m.a.s.l. surrounded by amixed northern hardwood‐conifer forest (46.532°N, − 87.548°E; (Shates et al., 2023)).
The PIP is situated in a flat, open field adjacent to the office, in an area specifically maintained by the NWS for
monitoring snowaccumulation. TheGreat Lakes region is known for its consistent cold‐season snowfalls, typically
resulting from broad, vertically deep synoptic‐scale storms, or localized convective lake effect snow processes
(Kulie et al., 2021). The site also frequently experiences precipitation driven by atmospheric rivers moving across
the region, leading to enhanced precipitation rates and cold‐season rain events (Mateling et al., 2021). Average
winter lows are − 6°C, summer highs average 19°C, and the site records a winter snow accumulation ranging from
250 to 500 cm (Pettersen, Kulie, et al., 2020). The PIP was installed at MQT in 2014 and has been operating
continuously through present (Pettersen, Bliven, et al., 2020; Pettersen et al., 2021). While the nearby Gaylord,
Michigan (APX) data is not collected from a long‐term installation, it is sourced from a PIP at another more inland
Michigan NWS site approximately 100 km to the southeast of Marquette in the lower peninsula (44.908°N,
− 84.719°E, 446 m.a.s.l.), in an area that experiences an average of 378 cm of accumulated snowfall each winter.
The APX PIP is installed seasonally from November to April starting in 2021 through present.

Data from Iqaluit (YFB) were sourced from the Canadian Arctic Weather Science (CAWS) super‐site (Joe
et al., 2020), operated by Environment and Climate Change Canada in Iqaluit, Nunavut's capital (63.747°N,
− 68.542°E, 12 m.a.s.l.). The primary goal of CAWS is to enhance meteorological observations in the Canadian
Arctic, aiding in forecasting and the evaluation of numerical weather prediction models. The measurement site is
located in a valley overlooking Frobisher Bay, approximately 200 m from the city's airport runway on flat,
permafrost terrain (Chou et al., 2022). YFB is influenced by various synoptic storms that originate across the
Arctic, with the most common storm tracks emerging over the western Arctic or the Prairies (Mariani et al., 2022).
Throughout the year, Iqaluit undergoes significant temperature variations, typically ranging from − 35°C to
+20°C, and experiences nearly 21 hr of sunlight or darkness during polar day or night periods. Being coastal,
YFB is set within an Arctic‐tundra setting, marked by icy terrains, rolling hills, and a dry, desert‐like climate,
receiving 20 cm of rainfall and 229 cm of snowfall, annually (Joe et al., 2020). The YFB PIP was installed in
September 2014 and was updated to the same software version used by the other PIPs (i.e., v.1701) in May 2017,
with which it operated under until August 2019.

The North Slope Alaska (NSA) site, situated in Utqiaġvik along Alaska's northern coast adjacent to the Arctic
Ocean, is a high Arctic research facility under the Atmospheric Radiation Measurement program of the U.S.
Department of Energy (DOE;Wendler et al., 2017). Positioned North of the Arctic Circle, Utqiaġvik is among the
world's northernmost settlements and the farthest North in the U.S. NSA's mission is to offer detailed observations
of high latitude cloud and radiative processes, making it a hub for Arctic atmospheric and ecological studies
(Verlinde et al., 2016). As one of the cloudiest places on Earth, the site hosts a range of instruments focusing on
cloud processes (Stamnes et al., 1999), and maintains a vast data archive of precipitation observations from the
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PIP. Utqiagvik's tundra climate is predominantly cold and dry with short, cool summers, and prolonged, freezing
winters. Throughout the year, temperatures usually range between − 28 and 9°C, seldom dropping below − 38°C
or exceeding 15°C. Despite its arid nature, with less than 15 cm of rainfall annually, Utqiaġvik's snowfall has been
increasing, averaging 120 cm annually based on the 1991–2020 records. The NSA PIP was installed in October
2018 and has been operational until present.

2.1.2. Limited Field Campaigns

PIP data were also collected from the International Collaborative Experiments for Pyeongchang 2018 Olympic
and Paralympic Winter Games (ICE‐POP or ICP) campaign from January to April 2018 in South Korea (Helms
et al., 2022). ICP was a field validation campaign aiming to generate comprehensive ground and airborne pre-
cipitation data sets to support the physical verification of precipitation retrieval algorithms used by NASA's GPM
satellite constellation (Skofronick‐Jackson et al., 2015). ICP data were sourced from two South Korean sites
(denoted KO1 and KO2 in the PIP data set) with the objective of studying severe winter weather patterns across
complex terrain and improving short‐term weather predictions for these events (Petersen et al., 2016). The two
sites, situated roughly 12 km apart, were (a) KO1: the BKC (Bokwang‐ri Community center; 37.738°N,
128.756°E, 175 m.a.s.l.) positioned 15 km from the eastern coast, and (b) KO2: the MHS (Mayhills Supersite;
37.665°N, 128.7°E, 789 m.a.s.l.), situated in a mountainous region further inland (Kim et al., 2021). Given its
coastal proximity and humid continental climate, the area experiences temperatures that range from 1°C in
January to 25.8°C in August, while the lows vary from − 4.6°C in January to 20.5°C in August. The region re-
ceives 131 cm of precipitation on average annually, with the majority falling during the winter as snow
(Chandrasekar et al., 2019).

The Olympic Mountains Experiment (OLYMPEX or OLY) is another GPM GV campaign that provided PIP
observations for this data set. Conducted in Washington State's Olympic Peninsula from November 2015 to
February 2016, data from OLYwere sourced from the Hurricane Ridge site (47.97°N, − 123.58°E, 1,603 m.a.s.l.),
located roughly 18 km South of the Salish sea coastline in an alpine environment (Houze et al., 2017). Char-
acterized by an active winter storm season, the area experiences moisture‐laden systems progressing from the
nearby Pacific Ocean, sweeping over the coast, and moving into the Olympic Mountains (Houze et al., 2017;
Purnell & Kirshbaum, 2018; Zagrodnik et al., 2021). Annually, the region accumulates precipitation varying from
250 cm along the coast to 450 cm within its forested mountainous zones, with the bulk of this precipitation falling
between November and April. While temperatures at lower elevations are generally cool to moderate, they can
occasionally fall below freezing to produce solid precipitation. Higher terrains get blanketed with significant
snow, with Hurricane Ridge receiving 30–35 feet of snow on years when strong storm systems are moving across
the region (NPS, 2018).

The Haukeliseter (HAK) and Kiruna (KIS) sites played integral roles in the High‐Latitude Measurement of
Snowfall (HiLaMS) campaign (Cooper et al., 2022). This campaign aimed to harness snowflake microphysics
observations to refine surface snow accumulation estimates during the winters of 2016/2017 and 2017/2018 in
Scandinavia (Cooper et al., 2022; Schirle et al., 2019; Shates et al., 2021). Located in Norway's Telemark
region at Haukeliseter on a mountain plateau, the HAK site (59.81°N, 7.21°E, 991 m.a.s.l.) was managed by the
Norwegian Meteorological Institute (Met Norway; Wolff et al., 2015). HAK's isolated alpine tundra region is
characterized by low scrubs and mossy vegetation. Its winter season, spanning October to May, HAK pre-
dominantly experiences snow and sleet accompanied by wind speeds reaching 20 m/s and temperatures
dropping to − 30°C. Conversely, the second HiLaMS site, KIS (67.84°N, 20.41°E, 425 m.a.s.l.) is situated atop
a single‐story building in Kiruna, Sweden, amid a forested landscape and surrounded by proglacial lakes.
Operated by the Luleå University of Technology, the research emphasis at KIS was on delineating snowfall
attributes within a subarctic taiga forest (Schirle et al., 2019). This location was chosen for its frequent, intense
snowfall from September to May, and its stark climatic contrast to Haukeliseter (Cooper et al., 2022). Notably,
the influence of the warmer Atlantic Ocean on this inland site is mitigated by Sweden's tallest mountains,
situated roughly 75 km southwest of Kiruna.

The NASA Investigation of Microphysics and Precipitation for Atlantic Coast‐Threatening Snowstorms (IM-
PACTS or IMP) is the final field campaign used as a source of PIP observations in this study. The objective of
IMPACTS is to analyze wintertime snowstorms and East Coast cyclones, with the specific goal of enhancing
remote sensing capabilities and snowfall forecasts from the observations collected over the winter periods
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(December to March) of 2020–2023 (L. A. McMurdie et al., 2022). The IMP campaign incorporated diverse
observations from sources such as aircraft, satellites, computer simulations, and direct in situ measurements (L.
McMurdie, 2020). Specifically, the in situ PIP data were gathered in an open field near the University of Con-
necticut in Storrs, Connecticut (41.807°N, − 72.294°E, 150 m.a.s.l.). The area features a surrounding mixed
deciduous forest, small lakes and streams, and slowly rolling terrain. In Storrs, summers are comfortably warm,
while winters can be particularly cold and snow laden. Annually, temperatures typically fluctuate between − 8 and
28°C, seldom falling below − 16°C or exceeding 32°C. The site experiences a thorough mix of rain and snow
throughout the year, averaging 125 cm of rainfall and 86 cm of snowfall, attributable to the pronounced seasonal
temperature variations.

2.2. Precipitation Imager

The NASA PIP is a video disdrometer that was developed to succeed the Snowflake Video Imager (SVI)
(Newman et al., 2009). As a disdrometer, the PIP measures PSDs and the velocity of falling hydrometeors, and is
capable of observing both rain and snow with a high degree of accuracy (Pettersen, Bliven, et al., 2020; Pettersen
et al., 2021). Additionally, compared to other similar disdrometers, the PIP is relatively inexpensive (approxi-
mately 7 thousand USD worth of equipment) and easy to deploy, facilitating its use in remote field campaigns.
Images recorded by the instrument can be used to derive microphysical and bulk characteristics of rain and snow
at minute‐scale temporal resolution (Helms et al., 2022).

The PIP instrument (shown in Figure 2a) consists of a high‐speed video camera (shooting at 380 frames per
second at 640 × 480 resolution), aimed directly at a 150‐W halogen lamp positioned 2 m in front of the camera.
The camera has a 64 × 48 mm field of view (FOV) and a focal plane located 1.33 m from the lens. The image
resolution of the device is 0.1 by 0.1 mm, with a minimum particle detection threshold of 0.3 mm equivalent area
diameter. Each PIP is calibrated to the same specifications before being shipped to each study site, to ensure that
all instrument settings are standardized and are comparable between one another. The PIPs used in this work were
all running the same custom software version (v.1701) for processing the raw images from the device into higher‐
level derived products.

One advantage the PIP has over other comparable disdrometers is the wide, 2‐m observation path between the
camera and bulb, which allows for hydrometeors to fall unimpeded from wind turbulence caused by the presence
of the camera equipment in the scene. As hydrometeors fall between the camera and bulb, their shadows are
observed by the camera falling in front of the bright halogen light, allowing for particle shape, size distributions
and fall speeds to be observed when considering consecutive frames. A composite of hydrometers observed by the
PIP at IMP are shown in Figures 2b and 2c including both solid precipitation and sleet.

The PIP software retrieves the mass of each falling particle by coupling particle microphysical observations with
an empirically determined equivalent density relation. This equivalent density relation is determined using a
parameterization that includes boundary conditions of raindrop terminal fall speed theory (Atlas &

Figure 2. (a) Photo of the precipitation imaging package (PIP) deployed at Marquette, Michigan; (b) A composite of solid precipitation observed by the PIP installed at
IMP on 24 December 2021; and (c) A composite of sleet particles observed by the IMP PIP on 17 January 2022.
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Ulbrich, 1977), and empirically derived snowfall properties (Pettersen, Bliven, et al., 2020). The PIP observations
of PSDs and vertical fall speeds in conjunction with the parameterization are used to retrieve the volume
equivalent density (additional details of this parameterization are provided in Pettersen, Bliven, et al., 2020,
Section 2.2.1, and Pettersen et al., 2021, Section 2.4). The mean density value (i.e., eD) is the volume‐weighted
average of the equivalent density distribution of all particles that fall over a one‐minute period. This mean density
can then be used to classify the hydrometeor phase (Pettersen et al., 2021), as well as obtain liquid water
equivalent surface precipitation rates.

2.3. Surface Meteorology

Observations of 2‐m air temperature (°C), air pressure (hPa), relative humidity (%), WS (m s− 1) and wind di-
rection (degrees) have also been collected and made available from each of these study sites alongside the PIP
data. These ancillary meteorologic variables were collected from nearby weather stations operating at each site,
and were converted from their original data formats into NetCDF files with the same metadata conventions and
standards as those used in the PIP products. Packaged into similarly formatted daily files, these observations can
then be analyzed in combination with the PIP data to provide additional context regarding local weather con-
ditions (e.g., Section 4.1). Note that observations of pressure and wind direction were not recorded at Gaylord, and
observations of relative humidity and pressure were not recorded at Haukeliseter. For additional data set details,
including the temporal resolution and data coverage periods for each of these MET products, please see Table 2.

3. Creation of the PIP Data Set
3.1. Data Conversion

To facilitate the efficient and accessible dissemination of PIP observations, we first parse the derived particle
observations from the device and standardize them from a proprietary ASCII format into the more universally
recognized NetCDF‐4 format with associated metadata descriptions of each variable. Developed by the Uni-
versity Corporation for Atmospheric Research, NetCDF is an open standard set of software libraries which allows
for improved sharing of array‐oriented scientific data through enhanced documentation, compression, and dis-
tribution (Rew et al., 2006). This standardization process allows for broader compatibility and easier data sharing
within the academic community. However, to perform this conversion, we must first understand the format of the
raw PIP data and its derived, higher‐order products.

PIP data is provided across four primary levels. The lowest level product (Level 1; L1) includes the raw video data
recorded by the high‐speed camera, where 8‐bit gray‐scale frames from the video are saved in compressed.piv
video formats in 10 minute intervals. The Level 2 product (L2) ingests the compressed L1 videos to produce time‐
stamped particle tables of 36 particle characteristics (containing attributes such as particle position, diameter,
shape properties, and timestamp), for each falling hydrometeor that enters the camera's FOV. The Level 3 product
(L3) ingests the L2 particle tables to track particle movement and, in turn, derive vertical velocity and PSD tables

Table 2
Summary of Available Surface Meteorological Observations Across All Sites Including Measurements of Temperature (t;°C),
Pressure (p; hPa), Relative Humidity (rh; %), Wind Speed (ws; m s− 1) and Wind Direction (wd; Degrees)

Site ID Variables Temporal resolution Coverage Size (Mb)

FIN t, p, rh, ws, wd 11 s 2017/10/24–2023/07/07 219.8

MQT t, p, rh, ws, wd 5 min 2014/01/01–2020/03/01 60.4

YFB t, p, rh, ws, wd 1 min 2017/11/01–2019/08/27 42.1

NSA t, p, rh, ws, wd 1 min 2018/10/24–2023/08/31 150.8

OLY t, p, rh, ws, wd 1 min 2015/11/14–2016/01/17 5.1

HAK t, ws, wd 1 min 2016/10/02–2017/06/15 20.1

KIS t, p, rh, ws, wd 1 min 2017/09/01–2018/05/31 21.3

ICP t, p, rh, ws, wd 1 min 2017/12/31–2018/03/31 6.7

IMP t, p, rh, ws, wd 1 min 2021/12/01–2023/04/11 18.7

APX t, rh, ws 5 min 2022/01/01–2024/01/01 25.7

Earth and Space Science 10.1029/2024EA003538

KING ET AL. 7 of 21



for each minute. Finally, the Level 4 product (L4) uses the information in the L3 tables to produce estimates of
volume‐weighted particle density, phase classification, and snowfall and rainfall rate estimates. Each of these
products are highlighted in red on the left side of the Figure 3 data conversion pipeline.

Following a quality assurance (QA) procedure (elaborated further in Section 3.2), the data is transformed into
daily NetCDF‐4 files adhering to the standard CF conventions (version 1.10). Additionally, the files are com-
pressed using a level 2 deflation flag to optimize for a smaller, chunked file. These converted files are 70%
smaller, on average, when compared to their corresponding unprocessed L3 and L4 data files. For more details
regarding the CF‐1.10 conventions, please see Eaton and Gregory (2022). The conversion processed was applied
to all files at all sites using a combination of bash and Python (version 3.11).

The internal structure of each converted NetCDF file is identical, with latitude, longitude and time variables
containing the spatiotemporal information, a data variable containing one of the L3/L4 PIP products, and bin size
information (i.e., bin_centers, bin_edges) representing different particle diameter bins. A list of all derived PIP
variable names and their descriptions are shown in Table 3. Each daily file has exactly 1,440 time steps (1,440 min
in a day), with 131 bins (up to 26 mm diameter particles) for two‐dimensional (2D) variables. While the vast
majority of observed particles at these locations are much smaller than 26 mm in diameter, we note that large ice‐
based aggregates above 26 mm can sometimes occur and are saturated to the maximum bin size due to PIP camera
visibility limitations. Missing data is marked as NaN. An illustration of the aforementioned 2D distribution var-
iables for the MQT, FIN, and YFB sites, encompassing PSD, VVD, and rho, is shown in Figure 4.

The naming conventions for the converted daily files are delineated below for each site‐year combination. Here,
XXX symbolizes the PIP instrument number allocated to the equipment, while YYYYMMDD denotes the date.
Each filename culminates with the designation: min, rho, psd, or vvd, corresponding to: the one‐dimensional
minute‐scale derived precipitation products, effective density distributions, PSDs, and VVDs, respectively.

Figure 3. Precipitation imaging package (PIP) data conversion pipeline. PIP Level 1–4 data in red on the left, converted network Common Data Form files in blue on the
right, and intermediate processing steps in gray (far right). * Encapsulates additional standardization steps (described in Section 3.2) for improving the consistency of the
final converted data set.

Table 3
Summary Descriptions of the Derived Precipitation Imaging Package Variables

Variable name ID Level Description Units Shape dtype

Effective density distribution rho L3 Mass per unit volume across particles g cm− 3 (1,440, 131) float64

Particle size distribution psd L3 Count of particles by size m− 3 mm− 1 (1,440, 131) float64

Vertical velocity distribution vvd L3 Upward/downward speed of particles m s− 1 (1,440, 131) float64

Rainfall rate rr L4 Precipitation intensity as rain mm hr− 1 (1,440) float64

Snowfall rate nrr L4 Precipitation intensity as snow mm hr− 1 (1,440) float64

Equivalent density eD L4 Derived mass per unit volume g cm− 3 (1,440) float64
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Figure 4. Composite normalized 2D histograms of precipitation imaging package observations from Marquette, Michigan, Finland, and YFB, including particle size
distributions, vertical velocity distributions, and effective density distributions, all plotted as a function of particle mean diameter.
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3.2. Quality Assurance

To produce a high‐quality, error‐free data set, an intermediate QA analysis is performed at each site before
converting the ASCII data into NetCDF. This QA phase consists of three primary steps including (a) temporal
alignment, (b) L4 equivalent density adjustment, and (c) outlier removal.

The first QA step, temporal alignment, ensures that each daily file is time consistent with 1,440 time steps, and
with each day beginning at midnight and ending at 23:59. The raw ASCII files produced by the PIP software only
display entries where there was hydrometeor activity detected at some period in each minute, while this new
format ensures a consistent temporal time step of 1‐min for all files, filled with NaN where data does not exist.
Days with no detected precipitation from the PIP are not included in the final data set.

The second step, the equivalent density adjustment, was applied to the L4 edensity_lwe_rate product that
contain derived estimates of volume‐weighted particle density, rainfall rates and snowfall rates (liquid water
equivalent or LWE) from the PIP. In the automated conversion process used by the PIP software, which
converts information from the L3 particle tables to produce the L4 estimates, we identified a timing issue where
gaps in detected hydrometeors in the L3 product tables resulted in an off‐by‐one‐minute shift in the derived L4
products. Over time, for cases with multiple precipitation gaps, this timing issue leads to a drift of 10–20 min
and ill‐positioned volume‐weighted density, snowfall and rainfall rates by the end of a given day. This timing
offset was corrected‐for using a greedy cross‐correlation timing shift that was applied in 6‐hourly chunks to
each daily file to produce an adjusted_edensity_lwe_rate product. This technique is commonly used in signal
analysis applications, with the goal of finding an optimal offset which maximizes the signal‐to‐noise ratio
between two data sets (Yoo & Han, 2009). This adjustment process was shown to improve overall Pearson
correlations between the L3 and L4 product density estimates by more than 0.1 on average (Figure 5), and
produce more realistic peaks and troughs in snowfall and rainfall rates throughout the day when compared to
independent observations at sites with a collocated Micro Rain Radar (MRR) system (Kneifel et al., 2011;
Peters et al., 2002).

In the third step, outlier removal, we correct each file by masking erroneous observations (e.g., minutes with
negative equivalent density values, equivalent density >1, or unphysical negative snowfall/rainfall rates), and
check that each daily file has at least one non‐NaN entry in it to ensure we aren't providing empty data files. A
manual inspection of each site's summary statistics is also performed to visually identify and remove erroneous
observations from the final data set. Additionally, as was needed in the case of the NSA data, we perform a check
for measurement artifacts in the PIP observations. We found that on some days at NSA, due to assumed external
interference with the device, the PIP would display unphysical large particle counts in the lowest diameter bin,
with tens to hundreds of thousands of particles observed in a single minute. To address this issue, these particle bin
counts were examined for each daily file, and cases where there were more than 2500 particles counted in a single
minute (with this value calculated via a sensitivity test) were flagged as outliers. Isolating and masking these cases
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(approximately 125 days in 2019 at NSA) further enhanced the quality of the final data set and produced much
more physically consistent PSDs, and corresponding L4 products.

4. Analysis
To demonstrate the physical consistency of the PIP data set with independent data sources, we have provided an
analysis of select phase‐transition case studies at MQT, showcasing various PIP‐observed L3 and L4 products
alongside collocated vertical radar measurements, surface meteorologic observations (MET), and reanalysis
estimates from ERA‐5 (Hersbach et al., 2020). Furthermore, we perform a comprehensive site intercomparison of
PIP bulk precipitation features to discern the principal variations in precipitation characteristics across distinct
regional climates.

4.1. MQT Case Studies

4.1.1. Single Phase Transition Event (21 November 2019)

The first phase transition event is a rain‐to‐snow transition that took place 21–22 November 2019 (Figure 6).
Starting at 09:40 UTC until 13:00 UTC, the vertical pointing K‐band MRR detected a strong bright band in
reflectivity and enhanced reflectivity values below 2 km, suggesting a melting layer, consistent with an increase in
particle fall speeds observed in the Doppler velocity field at this altitude. Following this period, the vertical extent
of enhanced reflectivity descends toward the surface until it completely disappears at around 16:00 UTC (first
dashed black line). This period also corresponds to observations of rainfall in the PIP, as measured by the large
particle VVDs and small PSDs with a narrow width, and is consistent with the warm surface/atmospheric
temperatures reported by both the MET and ERA5.

Between 16:00 UTC and 19:30 UTC (second vertical black dashed line), a deep, high‐intensity cell marks the
beginning of the phase transition event. Here, we note a broader distribution of PIP PSDs with larger particles
(snow and ice crystals), lower fall speeds and reduced effective density values. Accordingly, there exists a clear
shift from rainfall to snowfall in the PIP L4 products during this time (i.e., a shift from non‐zero rain‐rate values to
non‐zero non‐rain‐rate values). This period also displays a decreasing surface temperature to 0°C, and a similar
change in the ERA5 atmospheric temperature profile as relatively high wind speeds move a cool air mass over the
measurement site. Following 19:30 UTC until around 09:30 UTC on November 22, we note a relative uniformity
in the PIP PSD, VVD and rho estimates as surface temperatures continue to decrease until reaching − 5°C, and the
precipitation continues to fall as snow until the storm moves away from the site.

4.1.2. Multi‐Phase Transition Event (17 November 2017)

The second phase transition event was a multi‐phase, snow‐to‐rain‐to‐snow transition that took place 17–18
November 2017 (Figure 7). Beginning at around 13:00 UTC on the 17th, a storm system passes over the mea-
surement site dominated by small reflectivity values and small fall speeds as observed by the MRR, with cold

Figure 5. Density scatterplots showing the impact of the particle‐density timing correction when applied to the derived L4 volume‐weighted equivalent density values
(eD) compared to their respective L3 effective density distributions (rho). (a) Original eD v. rho; (b) adjusted eD v. rho; and (c) their difference (adjusted‐original).
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Figure 6. Multipanel showing a phase transitioning event observed by the precipitation imaging package (PIP) at Marquette, Michigan spanning 21–22 November 2019.
This event is highlighted by the two dashed vertical black lines, which depict (a) Micro Rain Radar (MRR) reflectivity; (b) MRRDoppler velocity; (c) PIP PSDs; (d) PIP
VVDs; (e) PIP rho distributions; (f) PIP‐derived snowfall and rainfall rates; (g) ERA5 atmospheric temperature profiles (dashed contours showing the 0‐degree
isotherm); and (h) surface MET observations of 2 m temperature (T), dew point and wind speed.
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temperatures, broad PSD distributions (0.1–5 mm in diameter) and small VVDs (0–1 m/s) observed by the PIP.
These conditions suggest the presence of falling snow, which is also identified in the L4 PIP product during this
period.

At 16:30 UTC on the 17th (the first black dashed line), the MRR profile displays a bright band of reflectivity just
below 2 km, with streaks of enhanced reflectivity values extending down toward the surface. The MRR also
displays a pattern similar to the previous case, with increased fall speeds in this region and surface temperatures
above 0°C. As noted in the ERA5 atmospheric temperature profiles, a pocket of warm air is advected across the
region (0° isotherm between 750 hPa and 900 hPa) which triggers the atmospheric phase‐transition. This tran-
sition is clearly captured by the PIP via the narrow PSDs with small particles and large VVDs (along with the non‐
zero rainfall rate noted in the L4 product).

After midnight on the 17th (the second dashed black line), the warm air mass moves away from the site and
surface temperatures drop back down below 0°C. This temperature change triggers the second phase‐transition
event (rain‐to‐snow) as noted by the broader PSDs (0.1–10 mm in diameter), lower VVD values (0–2 m/s),
and reduced effective density estimates (<0.4) after this period. In instances of complex phase transitions, the PIP
data not only aligns well with independent, ancillary data sets (e.g., profiling radar surface measurements, and
reanalysis products), but also offers a more comprehensive view of the fine‐scale particle microphysical processes
occurring during these events at very high temporal resolution.

4.2. Bulk Characteristics

By gathering data over several years and across different continents, we've created a data set that offers a clear
advantage by presenting a comprehensive collection of observations revealing diverse precipitation regimes in
various regional climates. To highlight the broad differences in particle microphysical properties across these
sites, we compare L3 and L4 PIP‐derived characteristics across all years.

First, we examine differences in the shape of each site's snowfall PSDs, modeled using the inverse exponential
function from Equation 1, where N(D) is the particle concentration per unit particle size, N0 is the intercept
parameter, and λ is the slope. Similar to Pettersen, Bliven, et al. (2020), these values are calculated over
contiguous 5‐min intervals throughout each day (a similar temporal scale to the time it takes precipitation pro-
cesses to change) to more easily find a well‐defined solution to the curve. While the inverse exponential fitting
method may not capture all possible snowfall PSDs at each site, as indicated by Duffy and Posselt (2022), who
noted enhancements with a modified gamma function for snowfall aggregates, it remains as the most commonly
used technique in current snowfall studies (Cooper et al., 2017, 2021; Pettersen, Kulie, et al., 2020). Snowfall
cases were selected by constraining the data set to periods with an average rho value below 0.4 (i.e., a low‐density
threshold consistent with snowfall observations, Pettersen et al., 2021) over the 5‐min interval.

N(D) = N0 e(− λD) (1)

The resulting log‐scaled N0 and λ parameters are plotted for each site in the normalized two‐dimensional histo-
grams in Figure 8, wherewe note similar distributions at the geographically adjacentMQT andAPX sites (note that
the MQT distribution is smoother as it has a larger sample), with the highest density around Log10(λ) = − 0.2
(mm− 1), Log10(N0) = 2.5 (m− 3 mm− 1), and a wide range in values (− 0.4 < Log10(λ) < 0.15) (mm− 1),
(1< Log10(N0)< 4) (m− 3 mm− 1). However, there exists large differences in the shape of these distributions. OLY
for instance, displays a bimodal N0‐λ relationship, IMP has a tighter λ distribution and higher slope, and NSA
displays a concentration of small intercept terms. Interestingly, many sites display similar concentrated density
wedges of values around Log10(λ)= − 0.1 (mm

− 1) and Log10(N0)= 1 (m− 3mm− 1) (e.g., atMQT,APX, FIN,NSA,
and KIS), and Log10(λ) = − 0.2 (mm

− 1) and Log10(N0) = 2.5 (m− 3 mm− 1) (e.g., at YFB, FIN, KIS, and MQT).

In examining the Kernel Density Estimation plots for these two parameters across all sites (Figure 9), we can
conduct a more direct comparative analysis of their distributions (Chen, 2017). For instance, a site that commonly
observes both large N0 and λ values often experiences snowfall events with numerous fine‐grained snowflakes,
while a site with both small N0 and λ would more commonly experience events with fewer, but larger particles.

In panel a, we note a general peak in λ between 0.7 and 0.8 (mm− 1) for all sites. However, there are differences
between locations. For instance, OLY displays a bimodal λ distribution with a peak at 0.8 (mm− 1) and another
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Figure 7. Similar to Figure 6 for an example multi‐phase‐transition event at Marquette, Michigan spanning 17–18 November
2017. The dashed vertical black lines depict the locations of the two phase transition events.
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around 1.3 (mm− 1), likely stemming from the diverse forms of precipitation found in a high‐altitude, mountainous
setting adjacent to the ocean (which primarily experienced sleet and rain). HAK also displays a slightly lower
peak and wider distribution shifted to the right, which may be the result of an increased frequency of high‐
intensity, intermittent snowfall events enhanced by the local topography which consists of nearby fjords
(Schirle et al., 2019). We note a similar pattern for the N0 distributions in panel b), with a mostly log‐normal
distribution across all sites centered around a value of 2.5 (m− 3 mm− 1). There exists a slightly lower concen-
tration of smaller particles at NSA, along with the widest distribution noted once again at OLY. ICP displays a
minor right‐shifted distribution with a higher number of smaller particles.

Upon analyzing the full set of L4 products for both rain and snow (comprising minute‐scale equivalent density,
rainfall rate, and LWE snowfall rate) depicted in Figure 10, it is evident that the majority of density values
observed at each site are below 20%, suggesting primarily snowfall occurrences. MQT, FIN, and OLY display a
bimodality in equivalent density below 20%, with one peak just above zero and another at 10%, while the other
sites display a gamma distribution with peaks around 10%. Further, OLY, IMP, MQT, and ICP also exhibit an
increase in frequency at around 60% and 100% from mixed‐phase and liquid precipitation events that occurred at
each site.

Figure 8. Composite 2D histograms of log‐scaled particle size distribution inverse exponential function parameters N0 and λ for each site from Figure 1.

Figure 9. Normalized kernel density estimates of particle size distribution parameters (a) λ; and (b) Log10(N0), for the entire spatiotemporal domain of observations.
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In Figure 10b, the frequency distributions of rainfall rates indicate that sites such as ICP and IMP often expe-
rienced intense rainfall events, whereas sites like KIS and NSA rarely experienced rainfall events exceeding 1 mm
per hour. In Figure 10c, we note that the snowfall rate frequencies group sites into three main categories based on
(a) high intensity events (OLY and ICP); (b) medium intensity events (HAK, MQT, IMP, and YFB); and (c) low
intensity (FIN, KIS, APX, and NSA). The increased variability in KIS and NSA above 2 mm for both snowfall
and rainfall is a consequence of the infrequency of intense precipitation events of either phase at these locations.

5. Applications
We posit that this comprehensive NH PIP data set has great potential for advancing atmospheric precipitation
research in subsequent studies. Incorporating detailed surface observations of macro‐ and microphysical prop-
erties for both rain and snow can notably improve weather prediction models (Morrison et al., 2020; Stoelinga
et al., 2003; Wilson & Ballard, 1999). Additionally, the high temporal resolution in the observed PSDs, VVDs,
and effective density distributions can inform model microphysical parameterizations, thereby improving the
precision of short‐term weather forecasts (Straka, 2009).

Further, this data set could be leveraged for the calibration and validation of remote sensing instruments, and the
development of more robust remote sensing retrieval algorithms. For instance, the precursor systems to the PIP
(i.e., the SVI and Precipitation Video Imager) have previously been effectively used in this context as part of the
GPM Cold Season Precipitation Experiment (GCPEx; (Skofronick‐Jackson et al., 2015)). Remote sensing in-
struments onboard satellites or located at ground‐based stations rely on algorithms to make assumptions about
precipitation phase and subsequent microphysical properties. The PIP data set described here is a robust

Figure 10. Similar to Figure 9, except for L4 products including: (a) the equivalent density mass retrieval estimates; (b) rainfall rates; and (c) snowfall rates.
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observational repository covering diverse geographic and environmental conditions that will serve as a
comprehensive a priori reference for fine‐tuning these algorithms (Cooper et al., 2017; Noh et al., 2011; Wood &
L’Ecuyer, 2021; Wood et al., 2014). Additionally, each PIP site has complementary, collocated instrumentation
(including surface MET observations and vertical profiling radars), which can be leveraged with the PIP data set
for additional environmental context.

This comprehensive PIP data set will also offer new insights into the bulk characteristics of microphysical
properties that govern the formation and evolution of different types of precipitation under varying environmental
and thermodynamic conditions. Understanding these microphysical properties is critically important, as they
impact global precipitation processes and drive the overarching hydrological cycle. For instance, we include an
example in Figure 11 of how the PIP data set can be interrogated to identify modes of precipitation variability in a
manner similar to Dolan et al. (2018), but for snowfall (as opposed to rain).

Passing a set of variables (i.e., N0, λ, effective density (rho), fall speed (Fs), snowfall rate (Sr), and total particle
counts (Nt)) from the PIP data set through a simple primary component analysis, we can extract the primary
components (PCs) which represent the lower‐dimensional embeddings of relationships between the inputs. In this
case, the first three PCs account for 95% of the variability in the entire data set (55%, 24%, 16%, respectively) with
distinct density clusters forming in 2D histograms of each PC in Figures 11a–11c. Examining the Empirical
Orthogonal Functions in Figure 11d, we can evaluate the contributions to explained variability between different
inputs and cluster similar events together. These clusters allow us to characterize the dominant precipitating
mechanisms at different locations by defining groupings that can then be tied back to physical processes using
ancillary data.

6. Conclusion
In this work, we present a comprehensive particle microphysical data set spanning 10 study sites over 10 years.
The data set has been carefully curated and packaged into a widely accessible standardized format, with a
common time‐step and a consistent, CF‐compliant naming pattern. The data set comprises a set of PIP L3
products including PSDs, VVDs, effective density distributions, as well as their corresponding derived PIP L4
products: minute‐scale volume‐weighted density, rainfall and LWE snowfall rate estimates. The QA procedure

Figure 11. Example application of the curated precipitation imaging package data set, where a primary component analysis is applied to all snowing minutes from all
sites, and the derived primary components and empirical orthogonal functions (EOFs) are plotted (in standard anomalies). (a) PC1 v. PC2; (b) PC2 v. PC3; (c) PC3 v.
PC1; and (d) the EOFs for each normalized input feature (note that the sign of each anomaly is arbitrary).
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masked a variety of outlier data points from PIP observation errors, and the temporal alignment step fixed a timing
issue between the L3 and L4 products. The resulting data set displays more physically consistent distributions of
microphysical properties with fewer outliers, and exhibits a consistent one‐minute time step across all days.

The case studies presented here demonstrate the alignment of microphysical properties in this data set with in-
dependent, ancillary variables from collocated profiling radar, surface MET observations, and ERA‐5 reanalysis
data products. Preliminary analysis underscored that while overarching microphysical distributions are similar,
notable variations exist across sites. Such variability is anticipated, given the distinct regional climates observed
across different continents and the wide latitudinal range, leading to a comprehensive data set that encapsulates
diverse snowfall and rainfall patterns. This curated PIP data set acts as a high‐quality reference of over 1 million
precipitating minutes (equivalent to two consecutive years of continuous precipitation) that can be used in future
studies as training data for machine learning models, as an a priori reference data set for Bayesian retrievals, or as
a diverse observational reference to compare modes of precipitation variability at various spatiotemporal scales.
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37yx‐9q53; King & Pettersen, 2023). The data set exists as a series of nested folders containing the converted
NetCDF files for each site‐year combination, with standard CFmetadata conventions. For additional L2 data from
the PIP, or the processed video files, please contact the corresponding author. A README file is also provided in
the aforementioned repository which briefly outlines the dataset structure and extent. Note that while the PIP's
internal proprietary processing codebase for generating the L3 and L4 products is not open source, the dataset
conversion and QA scripts used in this work are freely available for download on our public GitHub repository at
the following location: https://github.com/frasertheking/pip_processing. We have also developed a public API
called pipdb which allows users to easily parse, visualize and manipulate the PIP data set in Python (https://
github.com/frasertheking/pipdb). For additional details regarding the API specifications, please see our refer-
ences on readthedocs at: https://pipdb.readthedocs.io/.
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