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Abstract Snowpack in mountainous areas often provides water storage for summer and fall, especially in
the Western United States. In situ observations of snow properties in mountainous terrain are limited by cost and
effort, impacting both temporal and spatial sampling, while remote sensing estimates provide more complete
spacetime coverage. Spatial estimates of fractional snow covered area (fSCA) at 30m are available every

16 days from the series of multispectral scanning instruments on Landsat platforms. Daily estimates at 463m
spatial resolution are also available from the Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument on the Terra satellite. Fusing Landsat and MODIS fSCA images creates high resolution daily spatial
estimates of fSCA that are needed for various uses: to support scientists and managers interested in energy and
water budgets for water resources and to understand the movement of animals in a changing climate. Here, we
propose a new machine learning approach conditioned on MODIS fSCA, as well as a set of physiographic
features, and fit to Landsat fSCA over a portion of the Sierra Nevada USA. The predictions are daily 30m fSCA.
The approach relies on two stages of spatially-varying models. The first classifies fSCA into three categories
and the second yields estimates within (0, 100) percent fSCA. Separate models are applied and fitted within sub-
regions of the study domain. Compared with a recently-published machine learning model (Rittger, Krock,
et al., 2021), this approach uses spatially local (rather than global) random forests, and improves the
classification error of fSCA by 16%, and fractionally-covered pixel estimates by 18%.

1. Introduction

Snow cover estimates are essential in planning of water supply to anticipate flooding or drought conditions
(Martinec, 1975). It is estimated that one sixth of the world's population depends on snow and ice melt for
their water supply (Hock et al., 2006). Satellite imagery has become an important component of snow water
equivalent estimation (Frei et al., 2012), but satellites differ in spatial and temporal coverage, making it
difficult to utilize imagery from multiple sensors. For a given location, MODIS (Moderate Resolution Imaging
Spectroradiometer) images from the Terra satellite are available daily at 463 m resolution. Comparatively, TM
(Thematic Mapper) images from Landsat 5 and ETM+ (Enhanced Thematic Mapper Plus) images from
Landsat 7 at 30 m are available from each sensor, but only every 16 days for a given location. In principle,
Landsat snow cover estimates can be utilized to produce snow water equivalent estimates, but within the
16 days overpass time, snow can melt, accumulate, and melt again. The Landsat Sentinel Harmonized dataset
(Claverie et al., 2018) provides coverage every 3.5 days on average over the Sierra Nevada USA (Bair
et al., 2022). However, the combined sensor data are only available for more recent years while Landsat data
is available for nearly 40 years. Future missions with a focus on hyperspectral data (Rast & Painter, 2019)
with similar spatial resolutions to Landsat, like the Copernicus Hyperspectral Imaging Mission for the
Environment, the German Aerospace Center's Environmental Mapping and Analysis Program, and the US
NASA Surface Biology and Geology Mission (Turpie et al., 2023) may improve accuracy on days with
observations, but do not provide daily coverage. Thus, there is a need to develop techniques that estimate
snow properties at high resolution daily.

In this work we focus on fractional snow covered area (fSCA) from Terra MODIS and Landsat 5/7 TM/
ETM+, which provide per-pixel percentage of area covered by snow at 463 and 30 m, respectively. Fractional
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snow cover retrievals have used computationally simple methods like the Normalized Differences Snow Index
(NDSI) which identifies snow based on brighter reflectances in the visible than shortwave infrared
(Dozier, 1989). For example, this method is widely used and the basis for NASA's standard snow product
MOD10 (Hall et al., 2002; Salomonson & Appel, 2004). These band ratio techniques do not explicitly account
for the presence of mixed pixels that dominate even down to a few meters (Selkowitz et al., 2014). Newer
approaches that utilize a physically based model and all available visible, near-infrared, and shortwave
infrared wavelength satellite observations using spectral mixture approaches (Painter et al., 2009; Rittger,
Bormann, et al., 2021) have been shown to produce more accurate estimates of snow cover (Aalstad
et al., 2020; Masson et al., 2018; Rittger et al., 2013; Stillinger et al., 2023).

Currently, no satellite product can be used to produce daily fSCA with 30 m spatial resolution, hence several
studies have focused on data fusion methods to downscale daily MODIS images to achieve comparable
resolution to Landsat images. Berman et al. (2018) propose using a dynamic time warping algorithm to build a
snow year curve from a target year and a query year. Another method used in Landsat and MODIS data fusion
is the spatial and temporal adaptive reflectance fusion model (STARFM; Gao et al., 2006). Apart from the
fSCA product, Landsat and MODIS data fusion have been applied to various remote sensing products such as
land surface temperature (Hutengs & Vohland, 2016; Weng et al., 2014) and vegetation index products (Li
et al., 2021). In Hutengs and Vohland (2016), the authors used a random forest to downscale land surface
temperature from 1 km MODIS images to 250 m; the random forest approach was able to outperform a widely
used algorithm for sharpening thermal imagery (TsHARP). Data fusion methods can be categorized into three
avenues according to Hazaymeh and Hassan (2015): (a) models using spatial-temporal adaptive reflectance-
fusion (STARFM), (b) unmixing data fusion models (U-STARFM), and (c) sparse representation based
spatiotemporal reflectance fusion (SPSTFM) models. A detailed comparison of each method is given in
Hazaymeh and Hassan (2015). While each method has pros and cons, a major barrier is the high computa-
tional expense given the large area covered in our study extent, discussed below. Also, some models are
unable to perform well in heterogeneous land cover types (Hazaymeh & Hassan, 2015).

Several machine learning techniques have been used in fSCA estimation in past literature. Czyzowska-
Wisniewski et al. (2015) and Dobreva and Klein (2011) use artificial neural networks (ANNs) for fSCA
estimation in complex forested environments while Kuter (2021) implements random forests and support
vector regression for fSCA from MODIS Terra data in European Alps and compares performance to that of
ANNSs and multivariate adaptive regression spline techniques. A significant problem with implementing such
machine learning techniques is the increased volume of training data required when implementing them in a
large and diverse study area over a long period of time. Luan et al. (2022) introduced an m-day dynamic
strategy into the random forest training. However, as the authors point out, extending the aforementioned
strategy to the global scope is challenging due to the increased training data volume; hence, the authors
suggest training spatially local models independently, which is the main and novel focus of our proposed
method in this paper.

Our objective is to spatially downscale daily MODIS fSCA images to the same resolution as Landsat. We
focus on a study region that was explored previously in Rittger, Krock, et al. (2021), a subset of the Sierra
Nevada USA. Rittger, Krock, et al. (2021) propose a two-stage machine learning approach to downscaling
MODIS estimates of fSCA to the spatial resolution of Landsat. Conditioning on MODIS fSCA estimates and
other physiographic features in the study area, the first stage in their model is a classification random forest
that predicts whether a given pixel has zero snow, is entirely covered by snow, or is fractionally covered. The
second stage uses a regression random forest to predict the amount of fractional snow cover for the latter class.
We propose a generalization of the approach of Rittger, Krock, et al. (2021) that draws inspiration from a
portion of the spatial statistics literature. In particular, we investigate the notion of locally-varying fitted
models. The model of Rittger, Krock, et al. (2021) is fit using data from the entire study domain. We refer to
this as a “global” approach in that all available data may be used for model training. We propose dividing the
domain into sub-regions, and fitting model components separately within each sub-region, or window; this
results in a “local” approach in that only geographically nearby data are used to train the model in a given sub-
region. The main benefit of this approach is that nearby information tends to be most useful when predicting
at a given location. Such an idea is not unusual in the remote sensing literature; other authors have
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implemented a windowing concept to address the spatial variability of geographical features. For example, Wu
et al. (2012) and Gevaert and Garcia-Haro (2015) use a moving window centered at each pixel to identify
similar neighboring pixels within the window. The authors assign feature weights based on spatial Euclidean
distance before using such neighboring pixels in a prediction model focused on normalized difference
vegetation index (NDVI). As far as we are aware, our proposal is the first localized machine learning al-
gorithm for combining Landsat and MODIS estimates of fSCA.

The paper is organized as follows: Section 2 introduces the two-stage machine learning approach; Section 3
describes the data set and geographical information used in the study, while Section 4 discusses estimation.
Section 5 contains results comparing our model to the global model of Rittger, Krock, et al. (2021) and Section 6
closes the paper with suggestions of future directions for research.

2. Proposed Downscaling Method

This section discusses a new machine learning approach for modeling fractional snow cover area (fSCA). We
begin with a review of an extant approach, followed by our proposed generalization. Rittger, Krock, et al. (2021)
propose a two-stage random forest model for downscaling daily estimates of fSCA from MODIS to the spatial
resolution of Landsat. Let Y(s,7) € [0, 100] represent fSCA (in percent) for a spatial location s € D in the domain
of interest, D, on day ¢. The model is

0, X(s,1) = no snow
Y(s,1) = {f(s,0), X(s,t) = some snow (1)
100, X(s,t) = full snow

where X(s, ) is a categorical variable determining whether Y (s, ¢) falls into the classes of no snow (no snow), snow
within (0, 100) percent (some snow), or a fully-covered snow pixel (full snow). Rittger, Krock, et al. (2021)
modeled X(s, ) as a classification random forest with features including the MODIS estimate of fSCA, as well as
other physiographic and climatic variables. If X(s,f) = some snow for a given location, Rittger, Krock
et al. (2021) additionally modeled f(s, ) as a regression random forest, conditioned on the MODIS estimate of
fSCA, as well as other physiographic and climatic variables. The combination of the two random forests explains
the “two stage” algorithm. In preliminary analyses, Rittger, Krock et al. (2021) found that the two stage approach
produced superior estimates of fSCA over a single random forest model for the full distribution within [0,100].
Because the random forests are fit with data from the entire domain D, we refer to the model of Rittger, Krock,
et al. (2021) as a “global” model.

We propose generalizing the model of Rittger, Krock, et al. (2021) to allow for locally-adaptive models. In
particular, suppose the study domain D can be represented as a disjoint union of subsets Dy, ..., Dy such that

US; 1 D; = D. The proposed model is then

0, X,(s,t) = no snow
Y(s,1) = {£:(s,0), X,(s,t) = some snow 2)
100, X,(s, 1) = full snow

where d € {1,2,...,N}. In the proposed model (2), we follow Rittger, Krock, et al. (2021) by modeling {X,(s, )}
as classification random forests, and {]fi(s, t)} as regression random forests, but critically we only use data from D;
to train the model for X;(s,7) and f(s, ). At any given point in the domain, our model is still a two-stage random
forest approach, but the behavior of the random forests are allowed to change over the domain; we refer to the
proposed model as a “local” model to distinguish it from (1).

This idea of locally-varying random forests warrants some further discussion. In the spatial statistics literature, the
notion of spatially-varying models has been around for many decades; for example, Haas (1990) used a moving
window to locally estimate a spatial model that was used for spatial prediction. In our setup we are not directly
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Figure 1. MODIS and Landsat study extent in the southern Sierra Nevada

region.

concerned with spatial prediction, but rather allowing the model to adapt to
(potential) locally-varying relationships between features and the response.
Other authors (Gelfand et al., 2003) use a single regression-based model, but
allow the coefficients to vary over space; our approach uses more powerful
machine learning models, but incorporates the notion of local variation.

In a global model (1), the component random forests are trained using data
from the entire domain. If geographic coordinates are included as a feature
(e.g., latitude and longitude), then in principle the tree-based nature of a
global random forest would allow it to adapt to the same spatially-varying
characteristics as a local random forest. However, in our testing (see the re-
sults section), the local forest implementation substantially outperforms the
global fit.

3. Fractional Snow Cover Area Data

To illustrate our approach, we focus on the same study area of Rittger, Krock,
etal. (2021), located in the southern part of the Sierra Nevada mountain range,
covering about 17,375 square miles (45,000 square kilometers), accounting
for about 10% of the state of California as shown in Figure 1. Elevation within
this region varies from sea level to about 4,000 m above sea level. Low
elevation land is covered in shrubs and forests while high elevation regions
have rocky mountains (Homer et al., 2015). Snowfall in this region starts in
late fall and ends in spring but at high elevations snow cover lasts into early
summer or can last all year.

Our study used data from Landsat 5 TM (Thematic Mapper) and Landsat 7 ETM+ (Enhanced Thematic
Mapper Plus) instruments. Throughout we will refer to the estimates of fSCA from sensors flown on Landsat

platforms simply as Landsat. Additionally we used data from MODIS Terra, which we will simply refer to as

MODIS. Figure 2 shows an example day of the fractional snow cover area (fSCA) estimates from Landsat and

MODIS on 18 February 2009 in the Sierra Nevada. Landsat shows finer spatial variation whereas the coarser
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Figure 2. Fractional snow cover percentage (fSCA) from Landsat and MODIS on 18 Feb 2009 over a portion of the southern
Sierra Nevada mountains. 0% fSCA appears as gray and missing data are shown in black. Sub-regions selected for model

training are indicated by blue squares.
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resolution of MODIS tends to smooth out fine scale variation. We apply spectral mixture analysis, specifically
the Snow Covered Area and Grain Size (SCAG) model (Painter et al., 2003, 2009) to Landsat data. For
MODIS we use spatially and temporally complete (STC) fSCA derived from the MODIS based SCAG
implementation, MODSCAG. MODIS fSCA is available daily while Landsat fSCA is available every 16 days.
We use the same subset of days from 2000 to 2011 for which pairs of MODIS and Landsat data are available
and used in Rittger, Krock, et al. (2021). From this period, 167 days are obtained that approximately equally
sample the different seasons within a year. Satellite images often are affected by cloud cover which makes part
or the entire image unusable on certain days. For Landsat, areas affected by cloud cover on a given day are
manually removed from the analysis. We used Landsat 5 and 7 scenes with up to 35% cloudiness. This initial
training dataset biased Landsat observations to non-winter months. After visual inspection, some of these were
removed, while many of them were hand-masked to remove clouds, resulting in the final set of data used. This
approach allowed for better training data by both including a balanced number of Landsat data across months
(days of the year) and excluding the use of automated cloud discrimination on single images, which typically
have both errors of commission and omission. Clouds were masked by hand using RGB composites in which
snow appears cyan and clouds white. In addition to the differences in color, the texture of the image allows
one to discriminate snow from clouds. A gap-filling and smoothing technique was used to automatically
discriminate cloud cover in MODIS images, which is fully described in previous literature (Rittger
et al., 2020). Geographical features such as elevation, slope, aspect, average windspeed, barrier distances
(from the northwest, southwest and west), and pixel distance to the ocean in the southwest and west directions
are considered as covariates based on their fSCA predictive ability highlighted in Bair et al. (2016, 2018) and
Fassnacht et al. (2012). In particular, the selected features are the same as in Rittger, Krock, et al. (2021).
Elevation (height above sea level) ranges from sea level to approximately 4,000 m within our study area.
Slope in degrees is computed using the digital elevation map. Aspect ranges from —1 to 360°, with —1 given
for flat areas. Average windspeed ranges from O to 24 m/s. Barrier distances from northwest, southwest and
west directions (nw. barrierdist, sw. barrierdist, and w. barrierdist, respectively) are the elevation differences
between a given pixel and the highest pixel in a particular direction, in meters. Finally, pixel distances to the
ocean in the southwest and west directions (sw. waterdist and w. waterdist, respectively) are used to account
for the distance to the Pacific Ocean, where winter storms originate. These features have a high spatial
variation within our study area, hence, we anticipate that incorporating geographical features in the model may
account for some local variation in fSCA that daily MODIS is unable to provide. In addition to these
physiographic features and MODIS, we include a day of year predictor similar to Rittger, Krock, et al. (2021).

4. Estimation

In this section we discuss the estimation approach for both the component classification and regression random
forests. The local model additionally requires choice of the subdomains {D,-}?Ll . Although training samples differ,
both global and local models are fit using standard techniques for random forests.

4.1. Model Estimation

Random forests combine a number of decision trees in classification or regression problems (Breiman, 2001).
Briefly, a random forest is generated by fitting different decision trees to training data. Individual trees are fit in a
stepwise fashion by splitting the feature domain into hyperrectangles; the feature and value over which the split
occurs is chosen to minimize a training statistic. Splitting is continued until a minimum node size is reached. The
final forest predictor is created by combining the predictions from each component tree.

In both the global and local models, the first stage is to use a classification forest to classify fSCA into K = 3
factors (no snow, some snow or full snow). The split decision at node m is made based on minimizing the Gini
index (G,,) . Let N,, be the total number of data points at node m representing the feature region R,, and let p,; be
the empirical probability of class k = 1,...,K in the region R,,. That is, if there are n;, number of points of class k
data in region R, then p,;, = m/N,,. The Gini index value at node m is then

Gy =

M

K
ﬁmk(1 _ﬁmk) =1- Zﬁmkz' (3)
k=1
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The second stage is a regression forest component in both global and local models. The regression forest is fit in a
similar fashion, but using mean squared error as the objective statistic.

In our implementation, we use the ranger package (Wright et al., 2020) in R to implement fast random forest
algorithms with 100 trees and randomly choose from [\/ﬁj number of variables as candidates to split at each node
(Hastie et al., 2009), where p = 11 is the total number of predictors in both classification and regression forests.
For a fair comparison of model performance between global and local approaches, model hyperparameters were
kept consistent with Rittger, Krock, et al. (2021).

4.2. Sub-Region Choice

The global model uses data from the entire study domain D, while the local model fits different random
forests over each subdomain {Di}?’:]. In principle these subdomains can be of any shape, or can stratify the
study domain in any way as long as they are disjoint. We opt to use regular squares for the shape of our
subdomains, effectively splitting the study domain into uniform tiles or blocks; however, the choice of the size
of these blocks remains a question.

Experimenting with different block sizes over the entire study extent is computationally expensive; thus we
extracted four different 1,200 X 1,200 sub-regions from the study domain as shown in Figure 2 and sample block
sizes within these sub-regions. These sub-regions were chosen to span reasonable variation over the available
features, and sample different climatic zones from valleys to high alpine areas. To identify a block size and sample
size choice for the local model, we fit different random forest models within each block, using training samples
only within the block itself.

We define two statistical measures to compare classification model performance for testing and choosing sub-
region size. Classification error (C;) and probabilistic error (P;) for a region d in the study extent are given in
Equations 4 and 5 where N, is the number of testing pixels in each sub-region (after removing data used in the
training process) and s € {1,...,N,}. These validation statistics are computed for each day 7 in our training
set. Calling D, the testing data subset of sub-region D,, and letting X(s,7) denote a predicted value of snow
class under a given model, classification error and probabilistic error are defined by

1

Co=v 20 xension Q)
NdX(x,t)eD,,, [xCe ]
1 N
Pa=r > (1= PX(s.1) (5)
dX(s,)EDy,

where I is the indicator function which takes value 1 when X(s, 1) # X(s, 7) and 0 otherwise, and P(X(s,)) is the
predicted probability of the actual class.

Classification error can be seen to quantify the quality of the point predictions of {no snow, some snow, full
snow } and takes values in [0,1] with O indicating perfect predictions, and one indicating no single prediction is
correct. Probabilistic error also takes values in [0,1] and quantifies the quality of the confidence of the predictions
and is negatively oriented.

For the local classification models, we vary block size from 150 X 150 pixels to 600 X 600 in increments of 50
pixels per side; that is, we increase the block size from blocks with an area of 20.25 km? up to blocks with an area
of 324 km?. Simultaneously, we vary sample percentage (number of pixels sampled over total pixels) from
25% — 45% in 5% increments; samples are drawn completely at random from the block under consideration. This
training sample percentage represents the percentage of data for a given day to be used as part of the training data.
For each training size and block size pair, we compute predictive classification and probabilistic errors for the
testing data within that region; these statistics are then averaged across the four training regions. Figure 3 shows
the averaged classification and probabilistic errors as a function of block and sample size. The most striking
pattern is that, with a larger percentage of training samples, both types of error are reduced. However, perhaps
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Figure 3. Classification and probabilistic error (averaged over four training regions) from the local classification random forest for different block sizes and different

sample size percentages.

somewhat surprisingly, there is not a strong trend in prediction error over block size. In principle, extremely small
blocks would have so little data that the model overfits, whereas extremely large blocks would “smear out” the
local effects of the features. The minimum predictive error values are achieved when block size is 450 X 450
irrespective of the sampling size, and thus for the remainder of this work we use blocks of marginal dimension 450
for the local classification forests. Although there is clear evidence that larger training sample sizes reduce
predictive errors, there is an additional trade off with the computational time required to fit the models; we thus
opt for using 35% of available data to train the classification models, balancing between goodness-of-fit and
predictive accuracy. Assuming complete data are available, this would yield approximately 71,000 training pixels
per available day in each block. In practice, some blocks will have lower training sizes due to missing data.
Appendix A shows each block's class percentage in the training dataset.

In the second stage of the model, we require a regression random forest to predict values of fSCA in (0, 100);
we adopt a similar experimental setup to identify a block choice. In particular, we vary block size from
150 x 150 pixels to 1,000 X 1,000 in increments of 50 pixels per side for each of the four sub-regions, fit a
regression random forest on half of available training data for a given block and record predictive accuracy on
the remaining held-out testing data. The larger possible block size is due to the fact that fewer pixels have
fSCA strictly within (0, 100), and thus potentially a larger block size is necessary to capture sufficient data to
inform the model. If a given day has fewer than 100 available samples, it is removed from the training data.
Note that we do not vary the sample size proportion as in the classification experiment—when training the
classification model, any (non-missing) pixel can be used to train the model whereas for the regression model
only pixels with fSCA strictly in (0, 100) can be used; this represents a substantial decrease in available
training data overall. Figure 4 shows predictive root mean square errors averaged over the four sub-regions as
a function of training block size. Similar to the classification block size study, there is not a strong trend

10.8
1

RMSE
106
()

200 400 600 800 1000

Block Size

Figure 4. Root mean square error (averaged over four training regions) from the local regression random forest experiment
for different block sizes. Values are percent fSCA.
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Figure 5. Daily average classification error and probabilistic error based on We fit both the global and local downscaling models to all 167 available days

the local random forest and global random forest predictions on testing data.

of data. As described in the prior section, subsets of the data are used to train
the model; in this section validation statistics are reported for the held-out
testing data on which the local forests were not trained. If a given day and region has insufficient data to train
the local forest model, in practice we revert to the global model predictions; validation statistics below are given
only for cases where the local model is available.

We begin with validation of the first stage classification models. Figure 5 shows validation statistics from the
proposed local classification random forest method compared to the global random forest approach. Classi-
fication and probabilistic errors are computed on testing data over the entire study extent for each day.
Figure 6 displays the same values but as a function of day of year. Keep in mind that, although plotted over
day of year, each validation day comes from a (potentially) different year in the period 2000-2011. The
November to May time period (days 1-150 and 300-356) shows the most variation in prediction between the
two models as this is the time frame where new snow is deposited in the Sierra Nevada. During the summer
months irrespective of the model used, fSCA is predicted with nearly 0% error as there is no snow cover on
these days. However, the probabilistic error illustrates that the local model is substantially more confident in
the most-likely class probabilities. Table 1 shows the classification and probabilistic errors averaged over
167 days for the entire study area. Average classification error is reduced from approximately 8.4% to 7.1% (a
16% improvement) while average probabilistic error is reduced from approximately 20% to 8.7% (a 57%
improvement). Since there is a variation in prediction performance during summer months versus winter
months, we see a high standard deviation in probabilistic and classification errors from both models. Together
these results suggest there is substantial improvement using the local approach over the global approach for
fSCA classification.

Sensitivity (percent of true positives) and specificity (percent of true negatives) are common additional
measures of classification model goodness-of-fit. Figure 7 shows a time series of sensitivity and specificity for
each class (zero percent snow, between zero and one hundred percent, and one hundred percent) with values
computed for each day. Across the board it is clear that the local model has superior sensitivity and specificity
compared to the global model, with particular improvement in the middle class across the year. The first row
of graphs of sensitivity indicate that 0% snow cover category are mostly correctly predicted between both
models, as sensitivity is close to one. However, summer and fall months from June to October have lower
overall sensitivity in both the 0—100% class and 100% snow cover class due to the imbalance in snow

Classification Error
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Figure 6. Same as Figure 5, by day of year. Classification error and probabilistic error shown as points with a spline smoother solid line.
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Table 1

Average Classification and Probabilistic Error for Global and Local Models

Along With Their Standard Deviation

classification frequencies during these months because the majority of the
pixels have no snow. Even for these difficult cases, the local model has
higher sensitivities compared to the global model. Similar results are re-

Classification error

Probabilistic error  1lected in the specificity graphs in the second row of Figure 7; during the

Global Random Forest

Local Random Forest

0.0837 (0.0719)
0.0705 (0.0620)

summer months pixels that do not belong to the 0% snow cover category
0.2037 (0.0519)

0.0874 (0.0574)

are incorrectly classified as 0% snow cover due to the imbalance in class
frequencies during these months, while the local model mitigates this effect

over the global model. During winter and spring months, sensitivity and
specificity are both high for the boundary classes in both models. Appendix B shows the actual proportion of
fSCA in each class for each day to better understand the class imbalance due to seasonality. Overall, the local
model performs as well as, or better than, the global model across all seasons and class predictions. Next we
consider the second stage of the model in predicting values within (0, 100).

We turn to validation of the second stage model that predicts values in the interval (0, 100) percent fSCA. In
order to disentangle the predictive abilities of the classification and regression stages of the model, we only
calculate error statistics conditionally on true values, predicted values from the global model, and predicted
values from the local model being in (0, 100); otherwise some predictive improvement using the local model
may simply be due to a better classification of being in class (0, 100) as opposed to a superior prediction of
values within this class. Figure 8 shows the root mean squared error (RMSE) for predictions of values in (0,
100) for the local and global models' second stages, with a smoothing spline to show trends. Clearly there is
substantial improvement across the year in predicting values within this class using the local model over the
global model. On average, on the fSCA scale the RMSE is reduced by approximately 3%, relative to the
global model this an approximate 18% improvement. Comparing Figures 7 and 8 we see that higher RMSEs
reflect seasonal loss in sensitivity and specificity.

Next we consider a visual comparison of the downscaled fSCA images produced by the global and local
models. Figure 9 shows estimated percentage fSCA for MODIS, the global model, the local model and the
validating Landsat image for 18 February 2009. Four subregions are also included at higher resolution for
ease of visual comparison. Subregions 1 and 2 contain Lakes Crowley and Mono, respectively, while
subregions 3 and 4 contain the Upper San Joaquin River Basin and the Owens Valley, respectively. Sub-
regions 3 and 4 illustrate two important aspects of the local model—there is generally better identification of
regions of very high snow cover (i.e., 100% fSCA) using the local model than the global model, which tends
to underpredict fSCA for high values, and the spatial coverage of the local model is generally more accurate.
For example, in Subregion 3, the valley in which the MODIS retrievals show no snow is slightly filled-in
using the global model, whereas the local model predicts high values of snow except at a very narrow center
of the valley, which better agrees with the validating Landsat imagery than the global model. Subregion 4
shows finer details near the snow line (the boundary between regions with and without snow) using the local
model than the global model, which tends to smear out values at this critical boundary. Although both
models improve spatial resolution and accuracy over MODIS, the local model captures more accurate details
in fSCA than the global model can produce. This claim is supported by quantitative statistics such as root
mean squared error (RMSE) within each region—RMSE values for the global model in regions 1-4 are 14.7,
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Figure 7. Model sensitivity and specificity for global random forest and local random forest approaches. Solid line is a smoothing spline while points show actual values.

MAHANTHEGE ET AL.

9 of 15



I ¥edl

M\ Water Resources Research 10.1029/2023WR036162
AND SPACE SCIENCES
g 14.1, 26.0 and 20.4, respectively, while the local model has RMSE values
s of 10.6, 9.3, 12.7 and 13.3, respectively. Local predictions show
& improvement of RMSE between 27% — 51% over the global model in
S these four subregions.
9, | We close this section with an investigation of feature importance in the
g component models. Due to the complex multi-tree nature of random for-
o < ests, it is not straightforward to identify which features yield strong pre-
: dictive power. Feature importance methods for ensembles of trees have
7 been proposed, and typically focus on tracking the reduction in a statistic
o | — E?SSL.R S;‘ﬁﬁ{,"mF?L?:; (e.g., the Gini index for classification, or mean squared error for regres-

0 100

Figure 8. Root mean squared error (RMSE) for the second stage of the local

200
Day of year

300

and global models, predicting values in (0, 100) percent fSCA for the 167
available validation days; dots are values by day of year while the solid line

is a spline smoother to aid the eye.

sion) at each node in each component tree that is achieved when splitting
over a particular feature. The reduction for a given feature is tracked
across all nodes and trees, and is then aggregated into a single value
which, when compared to the other features' aggregate reductions, can be
interpreted as a quantification of that particular feature's relative impor-
tance (Hastie et al., 2009). In Rittger, Krock, et al. (2021), the global
classification forest and global regression forest feature importances are

noted with MODIS, day of year and elevation capturing the main three contributions to improved Gini index
and variance reduction, respectively. For the local model proposed in this work, it is not straightforward to

generalize this notion of feature importance to a global domain. Indeed, with multiple random forests being

spatially distributed over the domain, we instead propose a visual assessment of variable importances that
allows us to track the relative importance of a given covariate over the study domain. We follow Rittger,
Krock, et al. (2021) in using the improvement in Gini index, and reduction in variance, to quantify variable
importances for the classification and regression stages of the model, respectively.
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Figure 10. Rank of variable importance from most important (1) to least important (11) for the first stage classification models.

Figures 10 and 11 show the spatial distribution of the rank of each variable's importance over the study domain.
That is, each sub-region has a fitted random forest with 11 features; the value displayed for any given sub-region
in Figures 10 and 11 is the rank of a given variable for that particular sub-region, ordered from most important
(rank 1) to least important (rank 11). A few comments are in order: first, the number of blocks is different between
these two figures as the block sizes differ for each stage of the model. Second, there are more missing values for
the second stage of the model than the first; this is due to the fact that there are fewer values of percentage fSCA in
(0, 100) to allow for training in some sub-regions within the domain. Some interesting patterns emerge: MODIS
holds the highest predictive value over nearly the entire domain for both stages of the model; however, at low
elevations (i.e., the southwest corner of the domain), MODIS is not as useful for predicting fSCA class. This is
sensible, however, as this valley rarely has snow, in which case the day of year is more predictive. Day of year is
generally the second most important variable throughout the domain, followed by elevation and aspect. Elevation
is generally most important in areas where there is substantial elevation variation, that is, in the mountainous
terrain through the center of the domain. An interesting pattern emerges for aspect, where aspects on the
southwest boundary of the mountain range tend to be more important than those just within the mountain range,
perhaps due to the upslope precipitation effect. Various barrier distances, particularly those measuring distance to
the west or southwest, tend to have higher importance at low elevations in the valley.

6. Discussion and Conclusions

In this study we introduce a new machine learning method for downscaling low resolution spatial estimates of
fSCA to a higher resolution. The basic idea relies on segmenting the study domain into disjoint regions, over each
of which a machine learning model is fitted. These segmented models can then downscale low resolution
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Figure 11. Rank of variable importance from most important (1) to least important (11) for the second stage regression models. Note the resolution is coarser than in
Figure 10 due to the coarser gridding of the regression stage.

estimates of fSCA locally, allowing the fitted models to better adapt to local characteristics than a model fit over
the entire study domain.

We apply the proposed model to downscaling fSCA to the 30 m resolution of Landsat using 500 m MODIS
images and physiographic features as model features over a subset of the Southern Sierra Nevada mountain chain.
We compare to the machine learning model of Rittger, Krock, et al. (2021), which is fitted globally—or over the
entire spatial domain, on testing data and find that our proposed local model performs better across the entire
distribution of fSCA. Variable importance measures for the local model indicate that significance of each feature
varies spatially in our study area; such a detailed assessment of features is not straightforward to extract from a
globally fitted ensemble model like the two stage random forest of Rittger, Krock, et al. (2021). Visual assess-
ments indicate that applying this segmented technique does not lead to artificial edges between sub-regions in our
study (not shown).

In a companion work we compared the first classification stage of our model to a set of competing statistical
models (Mahanthege, 2021). In particular, in each domain localized multinomial logistic regression with and
without regularization were fit and then compared against the proposed model. Neither statistical approach
performed better than the proposed localized model, and sometimes performed worse than the global model of
Rittger, Krock, et al. (2021); such results echo those of Rittger, Krock, et al. (2021) who also compared global
logistic regression models to the machine learning approach.
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There are many routes for future research based on our results. Although the current approach captures
uncertainty in the class distributions, a comprehensive assessment of uncertainty for mixed cases would be
an interesting and fruitful research direction. For example, one way to address the input uncertainty is to
sample from the “prior” distribution of inputs and downscale them under the fitted model; this then would
yield an ensemble of downscaled predictions that could be interpreted as samples from a predictive distri-
bution. However, proper and robust uncertainty quantification for highly non-Gaussian variables like fSCA
remains challenging, beckoning further statistical learning research. Alternatively, different distributed ma-
chine learning models may be explored. Extensions explicitly building in space-time information may be
useful, perhaps tracking recent weather events when considering downscaling for a particular date. Although
we utilize spatially-distributed sub-regions, another idea would be to generalize this approach to other
features, perhaps fitting different models along elevation bands, or for different slopes and aspects. Finally,
scaling up an approach such as the proposed to a large domain such as the CONUS is worth considering—
the disjoint nature of the model allows for parallel computation, although experimenting with differing
window sizes may be computationally prohibitive, depending on the domain size. In this work we use a set
of physiographic and other feature variables that are sensible for the Sierra Nevada range; throughout a
domain such as the CONUS we may expect other predictors to be useful, and certainly there is much room
for considering geophysical model output (e.g., numerical weather prediction or reanalysis products) that will
likely be helpful over such a heterogeneous domain. A final note is that over a large domain, we would
expect the proposed locally-varying model to be substantially better than the global model of Rittger, Krock,
et al. (2021) due to spatial heterogeneity.

Appendix A: fSCA Class Percentages in the Training DataSet

In the classification stage, we randomly sampled 35% of available pixels per day from each block to train
each local forest. In Figure Al, we show the percentage of fSCA classes selected to train each block, which
was computed by first summing the number of pixels belonging to each class for all days and dividing by
the total number of training pixels. This gives the distribution of classes used in the training process which is
important to highlight the class imbalance in different blocks. The southwest corner of the domain, which is
the valley, rarely sees snow for most days; hence, we see a very high percentage of class 0 in the training
dataset for blocks within that region. However, in the mountainous region, all three classes were sampled for
most blocks.
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Figure Al. Training dataset fSCA class percentage for each trained block.
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Appendix B: Actual fSCA Class Proportions for Each Day

Figure B1 shows the actual proportion of fSCA classes within the study region for each day in our validation
dataset. On summer days, almost 100% of the data belongs to class 0, while all three classes are present in winter.
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Figure B1. Actual fSCA class proportions for each validation day.

Data Availability Statement

To satisfy NASA open data policies, all data are available in online repositories in GEOTIFF format from Landsat
and MODIS snow cover, predictors from Table 1, and snow cover from the 2-stage random forest model (Rittger,
Bormann, et al., 2021). The 2-stage random forest model is currently on a public repository in GitHub at https://
github.com/ShalMiz/SierraBighorn.
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