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Abstract The use of in‐situ digital sensors for water quality monitoring is becoming increasingly common
worldwide. While these sensors provide near real‐time data for science, the data are prone to technical
anomalies that can undermine the trustworthiness of the data and the accuracy of statistical inferences,
particularly in spatial and temporal analyses. Here we propose a framework for detecting anomalies in sensor
data recorded in stream networks, which takes advantage of spatial and temporal autocorrelation to improve
detection rates. The proposed framework involves the implementation of effective data imputation to handle
missing data, alignment of time‐series to address temporal disparities, and the identification of water quality
events. We explore the effectiveness of a suite of state‐of‐the‐art statistical methods including posterior
predictive distributions, finite mixtures, and Hidden Markov Models (HMM). We showcase the practical
implementation of automated anomaly detection in near‐real time by employing a Bayesian recursive approach.
This demonstration is conducted through a comprehensive simulation study and a practical application to a
substantive case study situated in the Herbert River, located in Queensland, Australia, which flows into the
Great Barrier Reef. We found that methods such as posterior predictive distributions and HMM produce the best
performance in detecting multiple types of anomalies. Utilizing data from multiple sensors deployed relatively
near one another enhances the ability to distinguish between water quality events and technical anomalies,
thereby significantly improving the accuracy of anomaly detection. Thus, uncertainty and biases in water quality
reporting, interpretation, and modeling are reduced, and the effectiveness of subsequent management actions
improved.

Plain Language Summary Digital sensors are commonly used to monitor water quality in rivers and
streams, providing real‐time data for scientific purposes. However, these sensors are prone to technical
anomalies that can affect data reliability and statistical analyses. We propose a framework for detecting
anomalies in sensor data from stream networks by leveraging spatial and temporal relationships to improve
detection rates. Our framework includes effective methods for handling missing data, aligning time‐series, and
identifying water quality events. We evaluate advanced statistical methods demonstrating the practical
implementation of automated anomaly detection in near‐real time. We validate our framework through
simulations and a case study in the Herbert River, Queensland, Australia. Results show the effectiveness of the
suggested methods in detecting various anomalies. This reduction in uncertainty and biases improves water
quality reporting, interpretation, and management actions.

1. Introduction
Water‐quality monitoring data are used to better understand and manage natural and anthropogenic impacts on
water resources and aquatic ecosystems (Altenburger et al., 2019). In stream and river networks, the monitoring of
high‐frequency water‐quality data often relies on digital sensors, which can be expensive, costing thousands of
dollars for a single site (Queensland Government, 2022b). Consequently, monitoring efforts are typically
localized, with sensors predominantly deployed at the system (Leigh, Kandanaarachchi, et al., 2019). This
provides little information about water‐quality dynamics in the upper reaches of the catchment, making it difficult
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for land managers to identify pollutant sources and/or encourage practice change from private landholders.
However, recent advances in sensor technology have led to lower‐cost options, including new sensors currently
under development (Great Barrier Reef Foundation, 2022). These cost‐effective sensors offer a valuable op-
portunity to collect dense spatial and temporal data from stream networks in near‐real time (e.g., Isaak
et al., 2017).

While there are evident advantages to employing in‐situ sensors for water quality monitoring, it is crucial to
acknowledge the significant challenges associated with their use. In‐situ sensors are susceptible to various
technical issues that can be challenging to identify and mitigate (Hill & Minsker, 2010). These issues encompass
calibration errors, biofouling, and battery failure, all of which can introduce inaccuracies into the collected data.
We refer to these as technical anomalies, but they have also been referred to as “outliers,” “inaccuracies,” or
“special causes of variation.” Some of the most common technical anomalies in water quality data include large
and sudden positive or negative spikes, which are referred to as point anomalies (Chandola et al., 2009).
Additionally, anomalies can manifest as periods of unusually low or high variability, drift, or shifts in the data,
which are known as collective or persistent anomalies (Leigh, Alsibai, et al., 2019). If these anomalies are not
properly addressed, they can have detrimental effects on statistical inference, leading to biased estimates and
impacting the spatial and temporal autocorrelation structures (Barnett & Lewis, 1984; Congdon, 2019). There-
fore, it is imperative to employ robust statistical methods that can effectively distinguish technical anomalies from
natural water quality events. By doing so, high‐frequency spatio‐temporally dense data from in‐situ sensors can
be utilized to provide valuable insights into water quality dynamics for both management and research purposes.

Another challenge is that catchment water quality is spatially and temporally dynamic at intermediate and broad
scales (Peterson et al., 2013). For example, sudden increases in water level, sediment and nutrient concentrations
may be observed at multiple sites after extreme weather events (e.g., flooding, heavy rain and increased runoff), or
at neighboring time lags as water moves downstream. Not surprisingly, water quality data collected in streams
often exhibit spatial (Cressie et al., 2006; Garreta et al., 2010; Peterson et al., 2006) and temporal correlation
(Leigh, Kandanaarachchi, et al., 2019), which tends to increase with the spatial and temporal density of data
(Isaak et al., 2017; Steel et al., 2016; E. Money et al., 2009; Jackson et al., 2018; Santos‐Fernandez et al., 2022).

Generally, spatial, geo‐referenced and time‐series observations are considered anomalous when they differ
substantially from their non‐anomalous neighbors (Chandola et al., 2009; Fotheringham & Rogerson, 2008). The
challenge in stream systems is that data exhibit unique patterns of spatial dependency due to the branching
structure of the network, longitudinal connectivity, directional flow and water volume, which must be accounted
for (Cressie et al., 2006; Jackson et al., 2018; O’Donnell et al., 2014; Peterson et al., 2013).

Anomaly detection in time‐series, spatial, and spatio‐temporal data has been extensively studied in the literature.
Numerous examples can be found in various fields such as climate data analyses (Costa & Soares, 2009; Resch
et al., 2023), transportation (Djenouri et al., 2019; Shi et al., 2018), and intrusion detection (Wang et al., 2017;
Zhang et al., 2020). Methods such as local outlier factor (LOF) (Bosman et al., 2017), leave‐one‐out cross‐
validation kriging methods, extreme value theory approaches (Kandanaarachchi & Hyndman, 2021), change‐
point detection (Tveten et al., 2022), and Hidden Markov models (HMM) (Li et al., 2017) have been proposed
to identify spatial and temporal outliers. Some approaches have also been proposed to identify anomalies in data
sets from stream networks where temporal dependence exist. Popular methods include autoregressive models
(e.g., autoregressive integrated moving average (ARIMA) (Leigh, Alsibai, et al., 2019), vector autoregression
models (VAR), machine learning methods (e.g., artificial neural networks (ANN), random forests, Long Short
Term Memory) (Jones et al., 2022; Rodriguez‐Perez et al., 2020).) However, little work has focused on detecting
anomalous data accounting simultaneously for spatial and temporal variation in stream‐network contexts, with
consideration of the unique spatial relationships found in river networks.

To tackle the complex challenges in water quality monitoring, it is crucial to adopt suitable modeling frameworks
that can address the following key aspects: (a) Distinguishing water quality events from technical anomalies, (b)
Incorporating spatial and temporal autocorrelation to capture the underlying processes and patterns of interest
more accurately, (c) Recursive update models as new data becomes available over time.

In this paper, we present a novel spatio‐temporal anomaly detection approach for water quality data obtained from
arrays of sensors in stream networks. We introduce a pre‐processing framework involving the implementation of
data imputation to efficiently handle missing data, optimal alignment of time series to address disparities in time

A. Villa, Catherine Leigh, Ryan Turner,
Cameron Roberts, Kerrie Mengersen
Funding acquisition: Erin E. Peterson,
Kerrie Mengersen
Investigation: Edgar Santos‐Fernandez,
Jay M. Ver Hoef, Erin E. Peterson,
James McGree, Catherine Leigh,
Ryan Turner, Cameron Roberts,
Kerrie Mengersen
Methodology: Edgar Santos‐Fernandez,
Jay M. Ver Hoef, Erin E. Peterson,
James McGree, Catherine Leigh,
Ryan Turner, Kerrie Mengersen
Project administration: Edgar Santos‐
Fernandez, Erin E. Peterson,
Kerrie Mengersen
Resources: Edgar Santos‐Fernandez, Erin
E. Peterson, Cesar A. Villa, Ryan Turner,
Cameron Roberts, Kerrie Mengersen
Software: Edgar Santos‐Fernandez, Jay
M. Ver Hoef
Supervision: Jay M. Ver Hoef, Erin
E. Peterson, James McGree,
Kerrie Mengersen
Validation: Edgar Santos‐Fernandez, Jay
M. Ver Hoef, Erin E. Peterson,
James McGree, Catherine Leigh,
Ryan Turner, Cameron Roberts,
Kerrie Mengersen
Visualization: Edgar Santos‐Fernandez,
Jay M. Ver Hoef, Kerrie Mengersen
Writing – original draft: Edgar Santos‐
Fernandez, Jay M. Ver Hoef, Erin
E. Peterson, James McGree,
Catherine Leigh, Ryan Turner,
Kerrie Mengersen
Writing – review & editing:
Edgar Santos‐Fernandez, Jay M. Ver Hoef,
Erin E. Peterson, James McGree,
Catherine Leigh, Ryan Turner,
Kerrie Mengersen

Water Resources Research 10.1029/2023WR035707

SANTOS‐FERNANDEZ ET AL. 2 of 24



series, and the identification of water quality events to facilitate the accurate detection of anomalies in spatio‐
temporal data. The Bayesian modeling approach provides posterior predictive distributions for each observa-
tion, which allows the agreement between models and data to be assessed using empirical residuals. Statistical
tools including mixture models and HMMs are then used to detect anomalies in these residuals. The Bayesian
approach is implemented in near real‐time through recursive modeling, which allows the model to update
automatically as new data becomes available. We use a comprehensive simulation study to assess and evaluate the
ability of the methods to detect different types of anomalies. This is followed by a case‐study involving a sensor
network located in the Lower Herbert River in Far North Queensland, Australia, which discharges into the Great
Barrier Reef Lagoon World Heritage Area.

Hereinwe focus on technical anomalies in sensor datawhile taking into accountwater quality events. The approach
introduced in this manuscript has been carefully developed, taking into account the specific characteristics of the
case study. The proposed framework aims to effectively detect anomalies and classify water quality events, but it
also has the potential to be applied to a broad range of environmental monitoring applications. By leveraging the
power of advanced statistical and machine learning techniques, this methodology offers a flexible and scalable
solution for monitoring various types of water quality data, which should ultimately facilitate decision‐making
related to the release of trustworthy data to the public domain and in the maintenance of water in‐situ sensors.

2. Motivating Data Set: Water Quality in Far North Queensland, Australia
2.1. Study Region and Sites

The Herbert River basin in far north Queensland, Australia (Figure 1) has distinct upper and lower catchments.
The upper catchment, in the Southern Atherton Tableland, has an elevation over 1,000 m and an average annual

Figure 1. A sub‐catchment of the Lower Herbert River in Far North Queensland, Australia. The locations correspond to 10
micro site sensors. The width of each plotted stream segment in the figure is scaled in proportion to the Strahler stream order.
We used Albers Equal Area projection centered at 153° longitude, with standard parallels at − 20 and − 40° latitude.
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rainfall just under 1200 mm; whereas the lower catchment is a large coastal delta receiving more than double the
rainfall. The land use in the upper part of the catchment is dominated by grazing while the lower part of the
catchment is dominated by sugarcane and conservation (Queensland Government, 2022a). The monitoring sites
for this study were located in the Stone River sub‐catchment of the Herbert River basin. This particular area is
dominated by sugarcane and conservation as well as a small amount of forestry land use.

Water quality in this area typically changes with rainfall induced by runoff from the catchments. More specifically
at the start of the wet season (October–December), monitoring will observe a first flush phenomenon where high
concentrations of sediment or nutrients will occur with small waterway discharges. Later in the wet season, large
events will also contribute to high concentrations of sediment (Queensland Government, 2022a). However,
confounding occurs if many subsequent rainfall events happen, causing the catchment to become exhausted of
sediment delivery potential and increasing discharge will not necessarily result in increasing concentrations.

2.2. Sensor Installation and Data Collection

We installed 10 Opus TriOS water‐quality sensors (Figure 2) produced by TriOS Mess‐und Datentechnik GmbH
in the branching network of the Herbert River (Figure 1). These Internet of Things (IoT) devices measure among
other parameters stream water level (m) and spectral total suspended solids (TSSeq) (referred as TSS from now
on) (mg/L). Measurements were recorded every 30 min and uploaded via the 4G‐CATM1 mobile network to a
database. Each sensor was installed at the edge of the riverbank in a location best representing that part of the
waterway. This positioning while given potential for edge effects in the data allows for service access during the
majority of flow conditions while maintaining a safe distance from the bed to avoid issues arising from sedi-
mentation. It is important to note that due to this fixed positioning, the probes are only able to measure when the
water level is above the lens path of the probe.

2.3. Anomalies in the Data

In this study, we used time‐series data for TSS and water level collected between 2021‐06‐15 and 2022‐03‐02.
The data set illustrate many of the intrinsic challenges of in‐situ water quality data described in the Introduction,
including missing values, high variability between sites, persistent anomalies and other factors that can
complicate the analysis (Figure 3). A team of water quality specialists from the Queensland Department of
Environment and Science visually assessed the data and created a labeled data set. This data set contains labels of
the technical anomalies in TSS following the framework developed by Leigh, Alsibai, et al. (2019). These

Figure 2. Opus TriOS optical water‐quality sensor (model TLS02 021) produced by TriOS Mess‐und Datentechnik GmbH
Opus (left) and the installation on Broadwater Creek at Day Use Area/Abergowrie State Forest in the Herbert River (site
1,160,115).
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included comparatively large and small sudden spikes (0.131% and 0.164% of the data, respectively), clusters of
spikes (0.040%), periods of anomalously low variability and/or persistent values and constant offsets (e.g., due to
calibration errors (1.089%)), sudden shifts (0.562%), drifts (4.262%) and periods of anomalously high variability
(1.668%). The data set also includes labels of the water events associated with rainfall (ambient conditions
represent 72.308%, while events and sensors out of the water are 14.852% and 12.841% respectively).

The identified sensor anomalies in the data set are generally caused by physical interference that affects the sensor
readings, introducing noise and biases, thereby compromising the accuracy and reliability of the data. Such
interference can manifest as spikes in the data, which may be caused by various factors, including obstructions in
the probe's lens path, such as rocks, organic debris, or living organisms like fish and other fauna.

The sensor installations leverage an attached wiper unit to clean the sensor lens from bio‐fouling and other debris.
However, the failure or malfunction of these units can lead to the wiper blade obstructing the lens path, causing
sudden shifts or high variability in the data. If the wiper unit fails or the wiper blade becomes damaged, bio‐
fouling can accumulate on the lens, resulting in sensor drift. This drift refers to the gradual deviation of sensor
readings from their actual values over time, which typically tends to increase in a monotonic manner.

While digital sensors are generally less susceptible to electrical interference, an insufficient power supply can
result in constant values being reported due to the probe relying on memory. On the other hand, the level sensors
used in these installations are more analog and can be susceptible to electrical interference, often due to poor
grounding connections. In such instances, high variability or negative values may be produced, depending on the
specific error mechanism. Some of these anomalies are very challenging for identification using traditional
methods. For instance, in location 1,160,116, there were two long periods of sensor drift (in purple). Similarly, in
location 1,160,119, there was a sudden shift on the mean of the process (light green) and a period of high
variability.

3. Spatio‐Temporal Models
In this section, we introduce a spatio‐temporal model that we use to describe stream network data. Consider S
unique spatial locations on a stream network where sensors are installed. Repeated water quality measurements

Figure 3. Time series of total suspended solids (TSS) data and anomalies. Anomalous data points are colored according to eight types. NA refers to non‐anomalous data.
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(e.g., turbidity, nitrate, conductivity or water level) are collected at all spatial locations and at regular time points
t = 1,2,… ,T, producing spatio‐temporal stream network data. Let yt be an S × 1 vector of random variables
observed at time t at spatial locations s = 1,2,… S.

Several statistical models have been proposed to capture spatio‐temporal dependence in stream network data,
including those suggested by E. S. Money et al. (2009), Jackson et al. (2018), Tang and Zimmerman (2020), and
Santos‐Fernandez et al. (2022). In this work, we follow the approach of Santos‐Fernandez et al. (2022); Santos‐
Fernandez et al. (2023) where the following vector auto‐regressive spatial linear model is used to describe po-
tential spatio‐temporal dependencies in steam data.

[yt∣yt− 1, Xt, Xt− 1, β, Φ1, Σ, σ20] =N (μt, Σ + σ20I), (1)

μt = Xtβ +Φ1 ( yt− 1 − Xt− 1β), (2)

where yt − 1 is the process at time t − 1, X = [X1, X2, … , XT] where each Xt is a S × p design matrix of p
covariates at time t, and β is a vector of regression coefficients of length p. The total spatial variance‐covariance of
yt can be written as Σ + σ20I. Here σ20I incorporates the unstructured error term, where σ20 is known as the nugget
effect and I is the identity matrix. The notationN(, ) is the probability density function for the multivariate normal
distribution.

In Equation 2, the mean μt is expressed as a vector autoregression of order one, VAR(1), where Φ1 is a S × S
square transition matrix with diagonal parameters ϕs that determine the magnitude of first‐order temporal
autocorrelation. Note that this model can be extended to include more complex autocorrelation terms, for further
details see Santos‐Fernandez et al. (2022). By setting Σ and Φ1 to zero and neglecting the temporal and spatial
correlation, we can derive the conventional linear regression model.

Studies in the literature have investigated spatial correlation in stream data, with research conducted among others
by Cressie et al. (2006); Ver Hoef et al. (2006); E. Money et al. (2009); Garreta et al. (2010); Steel et al. (2016);
Jackson et al. (2018); Tang and Zimmerman (2020). These approaches allow information to be borrowed from
neighboring sites, which is crucial in identifying anomalies in spatio‐temporal data. We can express the spatial
covariance matrix Σ of dimension S × S using a mixture approach (Ver Hoef & Peterson, 2010), that describes
multiple patterns of spatial autocorrelation often found in data collected on streams:

Σ = CED + CTU + CTD = σ2eRe (αe) + σ2uRu (αu) + σ2dRd (αd). (3)

Here, CED is a standard geostatistical covariance matrix based on Euclidean distance. The terms CTU and CTD are
tail‐up and tail‐down covariance matrices based on stream distance.

The parameters σ2e , σ2u and σ2d are the partial sills, and analogous parameters αe, αu, αd are the spatial range pa-
rameters. Similarly,Re,Ru andRd are the correlation matrices. Several variations of this model can be fit using the
R statistical software (R Core Team, 2022) package SSNbayes (Santos‐Fernandez et al., 2023). Here we fit a fully
Bayesian model in Stan (Stan Development Team, 2018) to estimate the posterior distribution via MCMC. A
reproducible example demonstrating the use of the SSNbayes package for anomaly detection is available on
https://www.kaggle.com/code/edsans/anomaly‐detection‐using‐ssnbayes/notebook.

Tail‐up/tail‐down covariance models are formulated by integrating a kernel function over a white noise process
that is strictly upstream/downstream of a given site. The tail of the moving‐average function points upstream in
the tail‐up model, and downstream in the tail‐down model. In the tail‐up model, autocorrelation is confined to
sites that are connected by flow, while in the tail‐down model, spatial dependence can still exist even between
sites that are not directly connected by flow. In the tail‐up and tail‐down models, the distance is restricted to the
stream network, which captures unique spatial relationships produced by the branching network structure, lon-
gitudinal connectivity, flow volume and flow direction of stream networks. See (Ver Hoef et al., 2006; Ver Hoef
& Peterson, 2010) for more details.

The estimation of spatial covariance matrices involves estimating the partial sill and range distributions. To model
these parameters, we employ flat uniform priors for both spatial components. Additionally, we set an upper bound
of four times the maximum distance between observations in the river network for the range parameter. The
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temporal structure is defined by the matrix Φ, and we adopt a uniform prior ranging from −1 to 1 to model the
diagonal autoregressive parameter.

3.1. Bayesian Approaches for Spatio‐Temporal Data

To implement the above model within a Bayesian framework we use the Bayes theorem, which involves the
computation of the posterior distribution for the parameters of interest θ = {β, α, σ., Φ, σ0} :

f (θ|y) =
f (y|θ) f (θ)

∫ f (y|θ) f (θ)dθ
, (4)

where f (θ) represents the prior distribution for θ and f (y|θ) is the likelihood of the data y given θ.

Model goodness‐of‐fit can be assessed by comparing the data ( yt) to the predictions obtained via posterior
predictive distributions, which measure the agreement between the assumed model and the observed data. The
ability to identify observations that significantly deviate from the predictions is especially useful for detecting
anomalies in the data (Gelman & Hill, 2006). The fitted vector autoregression spatial stream‐network model is
used to generate the posterior predictive distribution (PPD), ( ŷt) , which is obtained from the observed response
variable ( yt) and covariates for the observed and predicted data (Xt and X̂t ) by marginalizing over the likelihood
as follows:

p( ŷt ∣yt, Xt, X̂t) =∫ p( ŷt ∣θ, X̂t) p(θ∣yt, Xt) dθ, (5)

where θ is a vector of estimated parameters from the fitted model (i.e., posterior distributions). Note that the
vector yt may contain missing values, which may occur for various reasons. These missing values are imputed
using the posterior predictive distributions integrated into our Bayesian inference approach.

The vectors Xt and X̂t are the same when we produce predictions for the observed data points. The model pre-
diction error or empirical residual for an observation ys,t at location s and time t is then es,t = ys,t − ŷs,t, where ŷs,t
is calculated based on a summary of location of the posterior predictive distribution such as the posterior mean.

4. Anomaly Detection Methods
Several statistical approaches can be used to detect anomalies in stream data once a spatio‐temporal model is fit,
and the posterior predictive distribution and the prediction errors have been computed using the estimated pa-
rameters. Here we consider four different approaches including the (a) posterior predictive approach, (b) finite
mixture approach, (c) hidden Markov modeling approach, and (d) autoregressive integrated moving average
method. Importantly, these approaches are all considered unsupervised, meaning that they do not require a data set
containing labeled anomalies and non‐anomalous/normal data. Unsupervised models provide multiple benefits,
since labeled data sets are often unavailable for new data sources or monitoring sites, and are time consuming to
generate manually. In addition, labeled data sets may not be transferable to new sites or time periods if they have
been generated under different environmental conditions.

4.1. Method 1: Posterior Predictive Approach

The first approach we introduce is obtained via the posterior predictive distribution from Equation 5. Specifically,
this approach is reasonable as it compares the predicted values from the model with the associated uncertainty to
the observed data, and is based on the assumption that anomalous observations will have a low probability under
the fitted model (Murphy, 2012). This method is expected to be effective in identifying spikes in the data and
sudden changes in the mean of the process. The steps to implement this approach are as follows:

Steps:

1. We define anomalous observations as those that fall outside the 95% highest posterior density or posterior
prediction interval (HDI). This significance level will be utilized in both the simulation and the case study.
Note that tighter limits should be used if the data are expected to have a large proportion of anomalies.
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2. Exclude these anomalous observations from the data.
3. In one of our approaches we iterate steps 1–2 twice. Anomalies identified in both the first and second iterations
are combined, flagged, and used to compute the performance measures.

For this study, we considered up to two iterations, to ensure that we did not exclude too many observations, but
other alternatives are possible (Weisberg, 2013). Our first approach (iter_1) only involves fitting the model and no
data are excluded (i.e. only uses step 1); whereas in the second case (iter_2), the model is fitted again, after
removing the anomalous observations (steps 1, 2, 3 and 1). Note that this is in accordance with control chart
methodologies where existing outliers are removed while estimating the control limits (Montgomery, 2020). This
method considers the uncertainty in the process and can produce a probabilistic score for each observation being
an anomaly, which allows observations to be flagged (e.g., data not included in the 80% HDI).

Next, we concentrate on a range of statistical methods based on the residual es,t obtained using the mean of the
posterior distributions. However, these approaches can be extended to use the samples from the Markov chain
Monte Carlo (MCMC) simulations. That is, the proposed approach would enable the implementation of fully
Bayesian anomaly detection methods, utilizing all the samples drawn from the posterior distribution instead of
relying on the point estimates of the residuals.

4.2. Method 2: Finite Mixture Approach

Mixtures are statistical models that are particularly useful to describe response variables from a population
composed of different groups or is generated under different conditions (Gelman et al., 1995). Mixtures and other
clustering‐based methods have been widely used to detect anomalies (Chandola et al., 2009). In these settings, we
assess heterogeneity in the residuals to identify anomalous data, especially when shifts in the mean of the process
occurs. Latent observed groups in the residuals could indicate the presence of anomalous data. Anomalous data
are expected to fall outside the range of the typical distribution and reside in the tails, indicating the existence of
different latent classes. These anomalous groups may have different statistical properties compared to the non‐
anomalous data, such as a higher variance or a different statistical distribution.

To implement this approach, we propose the following steps.

1. First, we need to determine the appropriate number of clusters or components (e.g., K = 3). This can be done
by inspecting the distribution of the residuals. For example, three components could be used if we expect
anomalies above and below the mean.

2. Let zs,t be the cluster membership of the observed residual es,t at location s and time t, and
zs,t ∼ categorical(1/K) and Z denotes the number of clusters.

3. Fit the Bayesian mixture model es,t|zs,t ∼ N (μzs,t, σzs,t) , which produces a cluster membership as well as
estimates of the mean and variance for each cluster.

4. Inspect the resulting clusters to identify anomalous components, which are typically characterized by ob-
servations found in the tails of the residual distribution and are likely to contain fewer observations than the
main cluster(s) representing the non‐anomalous data.

4.3. Method 3: Hidden Markov Model Approach

In a hidden Markov model (HMM), the response variable is determined by a hidden Markov process, where the
state at time t depends only on the state at the previous time point t − 1 (Zucchini & MacDonald, 2009). The
HMM model can be defined by δ = (A, B, π) , where A and B are the transition probability matrix and emission
probability matrix, respectively, and π is the initial state probability. The transition probability matrix gives the
probability distribution of observed variables given the hidden states of the model, while the emission probability
matrix describes the probability distribution of observed variables conditional on the state.

This model is often referred to as dependent or dynamical mixtures and is employed with time series data. Our
proposed modeling framework involves the consideration of two or more unknown latent states (L), such as
normal and anomalous, and we seek to compute the probability of each observation belonging to these states.
Under this model, it is assumed that the process transitions between the latent states using a transition probability
matrix.
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Conditional on the state lt, the distribution of the residual et is assumed to be normally distributed with a mean μlt
and a variance σ2l . The HMM approach is commonly used in situations where data come from multiple latent
states, such as non‐anomalous and anomalous states.

et|lt =N (μlt, σ
2
l ), (6)

where N(, ) is the probability density function of the normal distribution.

To implement this approach, the following two steps are used:

1. Fit a HMM model with L = 2 or more components.
2. Use the component's membership to identify potential anomalies.

Our method is implemented using a Bayesian approach, which assigns each observation a probability of
belonging to either the anomalous or non‐anomalous cluster. This approach provides flexibility in the allocation
of observations to different states. We have also incorporated the assumption of unequal variances between the
clusters.

4.4. Method 4: Autoregressive Integrated Moving Average (ARIMA) (Benchmark Method)

An ARIMA approach (Leigh, Alsibai, et al., 2019) is purely temporal, meaning that it does not account for spatial
correlation, and is used to benchmark the spatio‐temporal methods proposed here. An appropriate ARIMAmodel
was obtained for each time series using the auto.arima function in R from the forecast package (Hyndman
& Khandakar, 2008) which finds the best model based on AIC. Observations were considered anomalous if they
fell outside of the 95% prediction interval. Following Leigh, Alsibai, et al. (2019), the general ARMA model can
be described as:

yt = c + ϕ1 yt− 1 +⋯ + ϕm yt− m + θ1ϵt− 1 +⋯ + θqϵt− q + ϵt (7)

where c is a constant term, ϕ1,… ,ϕp are scalar autoregressive coefficients of the m terms, θ1,… ,θq are the
coefficients of the q moving average terms ϵt − 1,… ,ϵt − q are the errors at times t − 1 through t − q.

5. Simulation Study
The methods previously presented are largely unexplored in the detection of technical anomalies in spatio‐
temporal stream network data. Hence, we performed a simulation study to assess the suitability of methods 1–
4 under several scenarios found in real‐world applications including in our case study.

To begin, we generated simulated data sets using the following steps.

1. The installation and maintenance of TSS and nitrate sensors entail a considerable financial cost, and conse-
quently, monitoring programs in Queensland, Australia, typically have fewer than 30 sensors per catchment.
Despite this limited number of sensors, it is still possible to achieve a reasonable and realistic spatial coverage
that exhibits spatial correlation in the network. The use of a limited number of sensors is a common scenario in
environmental monitoring, and it poses several challenges such as optimal sensor placement and data sparsity
issues. Accordingly, we created artificial stream networks made up of 150 segments and S = 30 spatial lo-
cations representing water quality sensors. This was undertaken via using the function createSSN() in the SSN
R software package (Ver Hoef et al., 2014). Figure 4 shows a simulated stream network with 30 spatial lo-
cations across the first four time points.

2. We selected a common covariance structure to model spatial dependence by means of a exponential tail‐down
model. To specify this structure, we used the following spatial parameters: partial sill, which represents the
variance after accounting for the nugget effect, with a value of σ2TD = 3 (this value was selected based on case
study from Santos‐Fernandez et al., 2022); the spatial range (defines the rate of decay in the covariance as a
function of the separation distance) αTD = 10 (see Equation 3), and nugget effect σ20 = 0.1 (Equation 1).

3. We considered three covariates for the mean response which were arbitrarily generated from three standard
normal covariates plus an intercept ( p = 4) at every spatial location with regression coefficients:
{β1, β2, β3} = {1,0, − 1} for the slopes and the intercept β0 = 10.
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4. The spatio‐temporal data were generated additively:
a. First, a response variable ywas simulated from a spatial stream‐network process (at time point t = 1) using

y = Xβ + v, where v ∼ N(0, Σ).
b. Next, we defined a temporal process based on an autoregressive function of order one, AR(1), with
ϕ = 0.80 and included T = 120 time points. We generated the time series data using the corAR1 function
from the nlme package (Pinheiro et al., 2020).

c. We added the temporal variation (plus some random variationN(0, 1)) to the spatial process simulated in
(a), resulting in a spatio‐temporal stream network data set.

5. To create anomalies, we first defined qini = 0.05, which represents the initial probability of an observation at
time t at a spatial location s being an anomaly. Within the time series, a binary indicator d representing the start
of an anomaly was created at each location s and time t:

dst ∼ Bern(qini) {
0 = non‐anomalous,

1 = anomalous.
(8)

The binary indicator is also shown in Figure 4 in the spatial context of the network.

Figure 4. The artificial stream network with 30 spatial locations and observations at the first four time points. Technical water quality anomalies are shown in red and
normal data are blue. The relative flow volume for each stream segment is proportional to the width of the gray line.
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6. We considered four types of anomalies according to observed data in the case study introduced in the moti-
vating data set and reported in the literature (Leigh, Alsibai, et al., 2019). This included (a) moderate/large
sudden spikes, (b) anomalously high variability, (c) a shift in the mean, and (d) drift; each with the same initial
probability of occurrence.

7. For each ds,t = 1 we simulated the persistence of the anomaly (i.e., number of consecutive observations with
anomalous data) using a Poisson distribution nd ∼ Poisson(λ) with rate 0.8, which determines subsequent
anomaly indicators ds,t+ 1, ds,t+ 2, etc. Persistent anomalies occur for high variability, shift, and drift anomalies,
while spikes are only composed of one observation at a single time point.

8. We defined the observed response variable, yobs, as a mixture distribution:

yobsst =

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yst + ds,tN(5,1) for spikes,

yst + ds,tN(1,5) for high variability,

yst + ds,tN(5,1) for shift,

yst + ds,t(N(5,1)) for drift,

(9)

where (.) represents sort ascending to create a drifting pattern.

A time series representation of the simulated data is shown in Figure 5, where non‐anomalous data are represented
in gray and the different anomaly types are represented with red, purple, green and blue dots. Notice that some
anomalies were one‐off cases (e.g., spikes in location 28), while others persisted through time at a single location
(e.g., drift in location 28). For access to the R code used to reproduce the simulations, please see the Data
Availability Statement.

5.1. Simulation Results

After fitting the spatio‐temporal model from Equation 1, we used approaches 1–4 (PPD, mixtures, HMMs,
ARIMA) to detect the anomalies in the simulated data set. Two iterations were considered for the PDD and the
finite mixtures. We simulated 100 data sets and computed the performance using a variety of model measures
across the different methods.

Figure 5. Time series of anomalous and normal observed data at 30 locations, across the 120 time points. Anomalous data represent drift, high variability, large spikes,
and sudden shifts and non‐anomalous data are labeled as NA.
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The sensitivity of the method (se = TP/ (TP + FN)) measures the ability to detect the true positive (TP)
anomalies when they are present. Here, false negatives (FN) are truly anomalous observations classified as non‐
anomalous. We also calculated the specificity (sp = TN/ (TN + FP)), which measures the ability of the method
to correctly identify normal (non‐anomalous) data when anomalies are absent (TN). The false positives (FP)
occur when non‐anomalous observations are classified as anomalous. The overall accuracy of the method
(acc = (TP + TN)/ (TP + TN + FN + FP)) measures the proportion of correctly identified observations.
However, the data are unbalanced (i.e., few anomalies compared to normal data) and so we also employed the
adjusted or balanced accuracy (accadj) (Brodersen et al., 2010) as the midpoint between the se and the sp. Finally,

we calculated the Matthews correlation coefficient (MCC = TP ⋅TN − FP ⋅FN
(TP+FN) ⋅ (TP+FP) ⋅ (TN+FP) ⋅ (TN+FN)) (Mat-

thews, 1975), which makes use of all the elements of the confusion matrix (containing the number of correct and
incorrect predictions made by the model) to measure the quality of a binary classification.

Model overall performance measure results are provided in Table 1. All of the methods outperformed the
benchmark (i.e., ARIMA) in terms of accuracy, adjusted accuracy, MCC and se. These results indicate that our
spatio‐temporal approaches have a higher efficacy in detecting anomalies compared to the benchmark method.
The PPDmethod tended to have lower sensitivity than the finite mixtures and the HMM. This could be caused due
to the bias in the parameters produced by the anomalies. Removing the anomalies and refitting the model, tended
to produce better performance overall in terms of MCC. The PPD using two iterations and HMM were the best
individual performing method in terms of MCC. A boxplot comparing the performance of the six methods based
on the MCC is presented in Figure 6.

Persistent anomalies, which occur at multiple time points, were challenging for all of the methods to detect
because they affect the estimated parameters (i.e., temporal correlation), causing bias and distorting the pre-
dictions. However, these models captured well the beginning and the end of the anomalous period, which may be
useful for manual quality coding or labeling the whole period as abnormal by water quality specialists.

We calculated performance measures by method and anomaly type to determine whether the methods had a
stronger ability to detect some anomaly types more than others (See Table 2. Large spikes were identified by all
the approaches with high sensitivity, especially by the mixtures (se> 0.99) The PPD seemed to have less pro-
pensity for false positives (1 − sp) and the highest MCC. Anomalies that involved high variability in the data
were better identified using HMM based on MCC and adjusted accuracy. When shifts in the mean occurred, the
HMM also tended to outperform the rest of the methods. Drift was by far the hardest type of anomaly to identify.
Apart from the finite mixtures, the rest of the methods had a low probability of detecting these subtle patterns in
the data (low se). Nevertheless, most of the models tended to detect the beginning of the drift period, which could
be used to automatically flag these patterns in the data set and then manually adjust them. In terms of model
computational complexity, the PPD (iter_1) method is relatively low in complexity since it involves fitting the
spatio‐temporal model only once. The PPD (iter_2) model, on the other hand, has a medium complexity as it
requires fitting the models twice after excluding anomalies in the first iteration. Mixtures and the HMM exhibit
high complexity due to their reliance on residual computation in the spatio‐temporal model and the inherent

Table 1
A Comparison of Model Performance Measures and Qualitative Factors Using ARIMA (Benchmark), PPD (Two Iterations),
Finite Mixtures (Two Iterations) and the HMM Models

Approach se sp acc acc_adj MCC Complex

ARIMA 0.3390 0.9485 0.8690 0.6437 0.3388 Low

PPD (iter_1) 0.3593 0.9707 0.8921 0.6650 0.4272 Low

PPD (iter_2) 0.4849 0.9616 0.9002 0.7232 0.5064 Med

Finite mixtures (iter_1) 0.8896 0.6479 0.6787 0.7687 0.3638 High

Finite mixtures (iter_2) 0.8749 0.6888 0.7124 0.7818 0.3874 High

HMM 0.5587 0.9450 0.8953 0.7519 0.5197 High

Note. Performance measures include sensitivity (se), specificity (sp), accuracy (acc), adjusted accuracy (acc_adj), and the
Matthews correlation coefficient (MCC). Model computational complexity is a subjective measure based on our
perception. In bold, we highlight the best‐performing model.
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challenges associated with handling identifiability issues. This qualitative aspect is critical from both the
implementation and operational perspectives. It guides the decision‐making process toward simpler models when
all methods (PPD, mixtures, and HMM) perform well.

The posterior distributions of the regression coefficients obtained from the fitted model indicated that all the
regression parameters were slightly biased, apart from β1 which captured the true value of 1 (Figure A1 in
Appendix A), demonstrating the negative impact of anomalies in the model. The temporal autoregression
parameter, ϕ, was slightly overestimated by the model (Figure A2 in Appendix A). This was also true of the
spatial autoregression parameters; the model underestimated the partial sill, σ2TD = 3, and overestimated the
nugget effect, σ2NUG = 0.1 and the range parameter, αTD = 10 (Figure A3 in Appendix A).

6. Case Study: Analysis and Results
In this section, we delve into the analysis of the motivating data set introduced in Section 2.

6.1. Analysis of Water Level Using IMPALE ‐ A Data Pre‐Processing Framework

First, we will implement a pre‐processing step to enhance the data quality and improve overall performance of
the anomaly detection approaches. The objective of this process is to discern events that can subsequently
serve as covariates in the statistical model, fill in missing covariate data gaps, and evaluate the similarity
among sites.

In this study, we introduce the IMPALE framework, a three‐step approach designed specifically for water level
analysis. IMPALE involves the following steps: IMPute and fill the gaps, ALign the time series, and assess the
relationship and spatial dependence among sensors, and carry out Events identification.

1. Imputation:water level sensors often get out of the water producing unreliable level data. Note that this might
or might not cause anomalies in the other parameters such as TSS as the sensors might be independent. We
start by performing multivariate time series imputation using the R package mtsdi (Junger & de Leon, 2018).
The results from the imputation are shown in Figure 7. An alternative imputation using Bayesian inference can
be implemented using package SSNbayes (Santos‐Fernandez et al., 2023), which allows capturing spatial
dependence and propagating the uncertainty of the prediction on water level into the TSS estimation.

2. Alignment: optimal match and alignment of the time series was obtained using Dynamic Time Warping
(DTW) which minimizes the sum of absolute differences among time series (Senin, 2008). This approach

Figure 6. Comparison of the Matthews correlation coefficient (MCC) in 100 simulated data sets.
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allows clustering sites based on similarity or time series distance (Aghabozorgi et al., 2015). Figure 8 shows
the clusters formed performing DTW (two clusters in blue and green) and dendrograms with the clustering
structure among sites. For the rest of this work and for the sake of simplicity we excluded three sites with very
different behavior and use the seven sites in cluster one. This ensures good spatial association between sites
and will help borrow strength from the neighbors when detecting anomalies. In practice, these three sites can
be analyzed as a separate cluster or individually. Not done here for the sake of space. These sites are geo‐
spatially distinct from the rest, with 1,160,120 serving as the reference upstream site for the Herbert River,
and 1,160,127/1,160,128 located along the southern Stone River catchment. Due to the period of observation
analyzed, it is probable that a significant portion of the rainfall occurred in the lower catchment, leading to a
distinct distribution of rainfall events throughout the time series. Therefore, it is not unexpected to observe
these sites clustering separately from the remaining sites.

3. Events identification:Water quality and discharge events tend to produce higher levels of turbidity, nutrients
and contaminants. It is critical to identify these water quality events as they help differentiating sensor
anomalies (which do not occur across multiple sites at the same periods of time). We used a Multivariate
Hidden Markov Model (Zucchini & MacDonald, 2009) to estimate the latent state of the catchment. This
approach produces “ambient” and “event” labels for the catchment for each time points. We show in Figure 9
the separation of ambient (black) and event (blue). The vertical gray lines are the true water events produced by
water quality specialists assumed the ground truth. Note that on site 1,160,117, no ground truth was produced
during 2022, as no data was available. However, we show the labels for the imputed data from the MHMM.

Table 2
Performance Measures by Anomaly Type, With Models (ARIMA, PPD With Two Iterations, Finite Mixtures With Two
Iterations and the HMM Models) Listed in Increasing Level of Complexity

Anomaly Approach se sp acc acc_adj MCC

large_spike ARIMA 0.8077 0.9489 0.9459 0.8783 0.4360

large_spike Method 1 PPD (iter_1) 0.8183 0.9709 0.9675 0.8946 0.5493

large_spike Method 1 PPD (iter_2) 0.9315 0.9616 0.9609 0.9466 0.5595

large_spike Finite mixtures (iter_1) 0.9939 0.6468 0.6544 0.8203 0.1951

large_spike Finite mixtures (iter_2) 0.9888 0.6885 0.6951 0.8386 0.2120

large_spike HMM 0.9479 0.9454 0.9454 0.9466 0.5027

high_var ARIMA 0.4258 0.9489 0.9276 0.6874 0.2941

high_var Method 1 PPD (iter_1) 0.4534 0.9709 0.9503 0.7122 0.3920

high_var Method 1 PPD (iter_2) 0.5590 0.9616 0.9455 0.7603 0.4271

high_var Finite mixtures (iter_1) 0.7004 0.6468 0.6488 0.6736 0.1401

high_var Finite mixtures (iter_2) 0.7826 0.6885 0.6920 0.7355 0.1943

high_var HMM 0.6489 0.9454 0.9336 0.7971 0.4309

Shift ARIMA 0.2081 0.9489 0.9142 0.5785 0.1383

Shift Method 1 PPD (iter_1) 0.2335 0.9709 0.9372 0.6022 0.2178

Shift Method 1 PPD (iter_2) 0.3824 0.9616 0.9349 0.6720 0.3114

Shift Finite mixtures (iter_1) 0.9173 0.6468 0.6590 0.7820 0.2404

Shift Finite mixtures (iter_2) 0.8260 0.6885 0.6946 0.7572 0.2249

Shift HMM 0.4766 0.9454 0.9237 0.7110 0.3334

Drift ARIMA 0.1592 0.9489 0.9194 0.5541 0.0879

Drift Method 1 PPD (iter_1) 0.1578 0.9709 0.9413 0.5643 0.1308

Drift Method 1 PPD (iter_2) 0.2795 0.9616 0.9366 0.6206 0.2090

Drift Finite mixtures (iter_1) 0.9909 0.6468 0.6593 0.8189 0.2450

Drift Finite mixtures (iter_2) 0.9704 0.6885 0.6988 0.8294 0.2595

Drift HMM 0.3450 0.9454 0.9234 0.6452 0.2185

Note. The best performing method in terms of MCC are highlighted in bold.
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This method was also effective in a site like 1,160,119 that is affected tidal influence. Overall, we found that
the MHMM is effective in the identification of events. The overall accuracy was 87.89%. In total, 80% of the
data points pertaining to events where correctly classified (sensitivity) and the specificity was 89.6% with a
MCC = 62.62. The Brier score, as defined by Brier (1950), was calculated as 1

N∑
N
i=1( fi − oi)

2, where fi
represents the predicted and oi is the observed outcome. In this MHMM analysis, the Brier score was 0.121.

6.2. Analysis of Total Suspended Solids (TSS)

We developed a recursive online method for fitting vector autoregressive Bayesian spatio‐temporal regression
models. Details of the general Bayesian recursive model can be found in Särkkä (2013).

We denote the total suspended solids as TSSeq, which is modeled as a function of the water level (level), a binary
variable indicating event versus ambient conditions obtained in previous section (event) and precipitation data
( prec). This can be represented more formally using mathematical notation as:

TSSeq = β0 + β1 ⋅ level + β2 ⋅ event + β3 ⋅ prec (10)

where β0 is an intercept and β1,β2, and β3 are the coefficients associated with each predictor variable. Note that
Equation 10 corresponds to Xtβ in Equation 2.

The data has a temporal resolution of one observation every 30 min. For ease of processing, we organized the data
into monthly batches. This means that we took 1 month of data, fitted the model, estimated the parameters, and
identified anomalies. In each batch of data, we derive posterior predictive distributions for the spatial and tem-
poral parameters (σtd , αtd , and ϕs), along with the regression coefficients (β). The posterior distributions obtained
from each batch of data then served as priors for subsequent batches, allowing for the recursive updating of the
model's parameters.

Batches with anomalous behavior did not inform the estimation of parameters. Specifically, if the ith batch
contained anomalous data, the prior distributions for the subsequent batch were formed from the last non‐
anomalous batch. This approach ensures that the estimated parameters are less influenced by anomalous data
and reduces the bias that may arise from such data.

For more effective online updating and to account for the dynamic change in the environment, models can be
fitted to smaller chunks of data, such as hourly, daily, and weekly intervals. The computational time for fitting
these models for all batches of data was smaller than the frequency of the data (<30 min).

We employed the PPD approach, which demonstrated suitable performance in our simulation study and does not
require fitting additional methods such as mixtures and HMMs. Although we only utilized one iteration to avoid
recomputing the models, we acknowledge that using two iterations may lead to further improvements in per-
formance. However, we maintain that our chosen approach provides a suitable level of accuracy and practicality
for the purposes of this study.

For each observation, we computed the posterior predictive distribution, and identified any observation falling
outside the 95% highest density interval (HDI) as an anomaly. The identified anomalies were highlighted in red in
Figure 10, with the (true) anomalous sections in the data represented with gray vertical lines. As previously
mentioned, the HDI is a credible interval used to measure the uncertainty of the posterior distribution and the
likelihood of observing new data. The 95% HDI, in particular, represents the range of values that contain 95% of
the probability mass for the posterior distribution.

Our model demonstrates suitable performance in detecting drift (in site 1,160,116), sudden shifts, and periods of
high variability (in 1,160,119). Additionally, it accurately identified the constant offset present in 1,160,122.
Overall, using this approach, we were able to identify and highlight the anomalous observations with high
accuracy.

Table 3 presents the performance measures of a spatio‐temporal anomaly detection method for the seven types of
anomalies in TSS data. The performance measures include sensitivity (se), specificity (sp), accuracy (acc),
adjusted accuracy (accadj), Matthews correlation coefficient (MCC), and Brier score.
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The results show that the PPD method performs well in detecting most types of anomalies. Across all anomaly
types, 74% of anomalous observations (in the high‐frequency data) were correctly identified and the accuracy and
adjusted accuracy were 83.6% and 79.2%. Note that the overall sp = 84% (not reported for individual types of
anomaly as they are all the same).

Analyzing by type of anomaly, the highest sensitivity is observed for the constant offset (se = 90%). The highest
overall accuracy and adjusted accuracy are observed for the constant offset type of anomaly, while the highest
MCC is observed for the sensor drift. The Brier score, which measures the accuracy of the method's probability
estimates, is low for all types of anomalies, indicating that the PPD method provides reliable probability esti-
mates. The results in the table indicate that the PPD method is effective in detecting various types of anomalies in
TSS data, making it a valuable tool for online monitoring of water quality in spatio‐temporal stream networks.

We conducted similar analyses on the same catchment using TSS data obtained from low‐cost sensors, which
posed greater challenges for the identification of anomalies. The results of these analyses are presented in
Appendix B.

7. Discussion and Conclusions
Water quality data from in‐situ sensors can be challenging to analyze due to the presence of technical anomalies as
well as water quality events and spatio‐temporal dependencies. Here, we have introduced and successfully
demonstrated a general suite of unsupervised statistical methods to detect technical anomalies in data arrays from
in‐situ sensors used for water‐quality monitoring in stream networks.

Our results show that these tools are suitable for detecting challenging technical anomalies in high‐frequency data
produced by sensor technology. The four approaches discussed were more effective in the identification a range of
anomalies, compared to the ARIMA, which can only describe temporal correlation in the data at individual sites.
These spatially aware models capture events happening simultaneously across multiple locations, allow more
effective data imputation of time series and help identify spatial anomalies. Since these models were set within a

Figure 7. Time series of standardized water level data. Standardization was performed by subtracting the mean and dividing by the standard deviation for each site.
Imputed values are represented in light blue.
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Bayesian framework, we can obtain probabilistic estimates, anomalous scores and quantify the uncertainty in the
data.

The findings of this study were reinforced through a comprehensive simulation study that incorporated various
data sets and types of anomalies. Nonetheless, future investigations could take into account scenarios where the
model assumptions are violated, such as deviations in the temporal structure and non‐linear associations between
the response variable and covariates. These circumstances can help to provide a more complete understanding of
the model's behavior and its robustness under different scenarios of data generation. Therefore, additional
research in these areas could provide valuable insights and enhance the overall applicability of the proposed
methodology.

We chose to implement a spatio‐temporal stream‐network model (Santos‐Fernandez et al., 2022) because the
unique characteristics of streams (e.g., branching network topology, flow connectivity and directionality),
together with high‐frequency sampling tended to produce data with spatial and temporal dependencies. However,
analyzing the empirical residuals from the model fit via finite mixtures and HMMs offers a flexible set of so-
lutions to distinguish anomalous from normal observations, regardless of the initial approach used. For example,
the spatio‐temporal model could be replaced with other approaches that produce predictions, such as Gaussian

Figure 8. Time series of standardized water level data (left) and dendrograms with the clustering structure among sites (right).
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Figure 9. Ambient and events identified in the time series of standardized water level data using a Multivariate Hidden Markov Model (MHMM).

Figure 10. Anomalies identified in the turbidity (TSS) data. The gray vertical lines and shaded areas delineate labeled anomalies (ground truth). Points in red represent
the predicted anomalies from the models.
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additive models (GAMS) (Wood, 2017), time series models (Hyndman & Athanasopoulos, 2018), or machine
learning algorithms (Chandola et al., 2009).

Physical models are constructed based on well‐established physical principles that govern processes within river
networks. These models are capable of simulating water quality parameters across diverse environmental con-
ditions, offering a dynamic representation of system behavior. By comparing observed data with model pre-
dictions, physical models can detect discrepancies, potentially identifying anomalies in the data set. An extensive
body of literature has introduced various physical methods for identifying anomalous data and change points in
time series analysis (Housh & Ohar, 2017; Zégre et al., 2010). Since these models can capture intricate in-
teractions and dependencies within the river system, they can complement the capabilities of statistical methods.
However, these physical models can be very difficult to develop, require many parameters (which are often
unidentifiable from available data) and the models can very computationally expensive to form predictions.
Future research endeavors could explore the development of efficient hybrid approaches, merging physical
modeling with Bayesian statistical methods, to achieve enhanced performance and gain deeper insights into water
quality dynamics.

Water quality parameters often are non‐normally distributed and can be affected by censorship or zero‐inflation,
posing a challenge for statistical analysis. To address this issue, current practice involves using log trans-
formations to normalize the data. Alternatively, our modeling framework can be adapted to follow the Gener-
alized Linear Model (GLM) philosophy, which provides a flexible approach to analyzing non‐normal data and
can account for the various distributional characteristics of water quality parameters.

From a practical point of view, using methods such as mixtures and HMMs involves challenging issues such as
the selection of the number of components. This, however, could be approached using common model‐selection
measures such as Akaike information criterion (AIC), Bayesian information criterion (BIC) and widely applicable
information criterion (WAIC) to compare competing models. Other natural extensions of these methods include
multivariate approaches to explain the complex relationships between multiple correlated parameters such as
nitrate, turbidity, and conductivity (Kermorvant et al., 2021). The tools can also be easily extended to build
statistical process control approaches (e.g., multivariate cumulative sum (MCUSUM) or multivariate exponen-
tially weighted moving average (MEWMA) control charts (Montgomery, 2020; Santos‐Fernández, 2013).
Similarly, the PPD Bayesian method can be extended by constructing multivariate credible intervals (Besag
et al., 1995). We are currently exploring multiple variations of these models.

The motivation for developing these methods was primarily for automating the Quality Assurance and Control
(QA/QC) processes for high‐frequency in‐situ data, but they could also be applied retrospectively. For example,
anomalies could be identified and removed during the modeling phase to obtain less biased estimates of the
parameters of interest (e.g., regression coefficients). This is important in cases where data are released for
public use, especially where the presence of anomalies due to sensor issues could reduce confidence in the
quality of the data.

This work opens up new avenues of research, especially around the detection of anomalies in space‐time data in
streams. The outcomes of this research are paramount for the delivery and presentation of environmental near

Table 3
Performance Measures in the Detection of Anomalies in Turbidity Data by Type of Anomaly in the Labeled Data Set and
Overall

Anomaly type Method se sp acc acc_adj MCC Brier

Small spike ppd 0.4530 0.8453 0.6496 0.0381 0.1547

Large spike ppd 0.6774 0.8459 0.7618 0.0595 0.1541

Cluster of spikes ppd 0.8276 0.8461 0.8369 0.0428 0.1539

Sudden shift ppd 0.5940 0.8443 0.7201 0.1024 0.1557

High variability ppd 0.7965 0.8451 0.8213 0.2474 0.1549

Constant offset ppd 0.9017 0.8469 0.8739 0.2361 0.1531

Sensor drift ppd 0.7074 0.8389 0.7768 0.3186 0.1611

All ppd 0.7397 0.8461 0.8363 0.7929 0.4187 0.1637
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real‐time data to the public. As more high‐frequency monitoring data are made available to the general com-
munity, timely detection of the anomalies/errors will be imperative for gaining and maintaining trust and
transparency in the measured data. This is particularly important when data are used to identify sources of water
quality pollutants and demonstrate to landholders the benefits associated with changes in land management
practices. Future research should explore the integration of the statistical models here described with other sta-
tistical quality control tools for high‐frequency data produced by arrays of sensors.

Appendix A: Other Results

Appendix B: Extended Analysis Using Low‐Cost Sensors
In this section we extend the analyses from Section 6 using data from low‐cost sensors. We installed five low‐cost
BlueSpot water‐quality sensors (model TLS02 021; Figure B1) produced by IntelliDesign in the branching
network of the Herbert River. These Internet of Things (IoT) devices measure stream water level (m), specific
conductivity (μS/cm) and turbidity (NTU). Measurements were recorded every 15 min and uploaded via the 4G
mobile network to a database. Each BlueSpot was installed at the edge of the riverbank in a location best rep-
resenting that part of the waterway. The BlueSpot telemetry unit was attached to a star picket anchored to the
ground using cables. The probe itself was suspended in the water column approximately 30 cm above the riverbed
or riverbank depending on where it was installed. We used time‐series data for turbidity and water level collected
between 16‐Feb‐2021 and 04‐Mar‐2021 in this study.

Figure A1. Posterior distribution of the regression coefficients. True values β0 = 10, β1 = 1, β2 = 0 and β3 = − 1.

Figure A2. Posterior boxplot of the autoregression parameter. The true value is ϕ = 0.80.

Figure A3. Posterior distribution of the spatial parameters. True values: σ2TD = 3, αTD = 10, σ2NUG = 0.1.
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B1. Results

We used the best‐performing methods from the simulation study (PPD and HMM) to identify anomalies in water
level and turbidity measurements. We first fit a space‐time model introduced in Equation 1 to identify anomalies
in water level using a temporal and two spatial covariates:

1. Precipitation (in mm) obtained from a monitoring station in the Herbert River. https://water‐monitoring.in-
formation.qld.gov.au/;

2. Proportion of stream with land uses where fertilizer is likely to be used; and
3. Proportion of natural forest cover in the catchment.

The spatial covariates were sourced from the Australian National Environmental Stream Attributes data set (Stein
et al., 2012).

Next we fit a spatio‐temporal stream‐network model for (log) turbidity using the same three covariates described
above, plus the (log) water level. All the methods were then used to predict anomalies.

For illustration, let us consider the turbidity from Bluespot sensor 1, where some anomalous behavior occurred
(Figure B2). In green, we represent the data points (with vertical lines) and periods (with rectangles) where true
technical (sensor) anomalies are present in the labeled data set. In red we represented the predicted anomalies
using the PPD method. Notice the two sudden spikes on the 20‐Feb‐2021 at 19:45 and 21‐Feb‐2021 at 09:15.
There is also a period of high variability (28‐Feb‐2021 to 03‐Mar‐2021) followed by an ongoing drift (3‐Mar‐
2021 16:00) (Figure B2).

Figure B1. Diagram of the BlueSpots used in the Herbert River.
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The two approaches successfully identified the four anomalies in the data, including the start of the drift event.
The PPD model identified the high variability event, in addition to the two sudden spikes and the beginning of the
drift (Figure B2a).

However, the HMMmethod was more sensitive to changes in the process than the other two models (Figure B2c).
Interestingly, the HMM models also identified a true water quality event around 26‐Feb‐2021, which was
observed across the other Bluespot sensors.

Data Availability Statement
Software: The spatio‐temporal stream network models were fit using the R package SSNbayes (Santos‐Fernandez
et al., 2023). R code used to simulate spatio‐temporal stream network data and to incorporate anomalies can be
found at (Santos‐Fernandez, 2023). Data: The Herbert river data set from the case study has been deposited in
Zenodo (Santos‐Fernandez, 2024b). It can also be accessed through the R package herbert (Santos‐Fernan-
dez, 2024a). See https://github.com/EdgarSantos‐Fernandez/herbert.

Figure B2. Time series of turbidity data and anomalies from Bluespot sensor 1 using (a) PPD and (b) HMM. The green vertical lines and shaded areas delineate labeled
anomalies. Points in red represent the predicted anomalies from the models.
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