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Abstract Solar Energetic Particles (SEPs) form a critical component of Space Weather. The complex,
intertwined dynamics of SEP sources, acceleration, and transport make their forecasting very challenging. Yet,
information about SEP arrival and their properties (e.g., peak flux) is crucial for space exploration on many
fronts. We have recently introduced a novel probabilistic ensemble model called the Multivariate Ensemble of
Models for Probabilistic Forecast of Solar Energetic Particles (MEMPSEP). Its primary aim is to forecast the
occurrence and physical properties of SEPs. The occurrence forecasting, thoroughly discussed in a preceding
paper (MEMPSEP-I by Chatterjee et al., 2024a, https://doi.org/10.1029/2023sw003568), is complemented by
the work presented here, which focuses on forecasting the physical properties of SEPs. The MEMPSEP model
relies on an ensemble of Convolutional Neural Networks, which leverage a multi-variate data set comprising
full-disc magnetogram sequences and numerous derived and in-situ data from various sources (MEMPSEP-III
by Moreland et al., 2024, https://doi.org/10.1029/2023SW003765). Skill scores demonstrate that MEMPSEP
exhibits improved predictions on SEP properties for the test set data with SEP occurrence probability above
50%, compared to those with a probability below 50%. Results present a promising approach to address the
challenging task of forecasting SEP physical properties, thus improving our forecasting capabilities and
advancing our understanding of the dominant parameters and processes that govern SEP production.

Plain Language Summary Solar Energetic Particles (SEPs) are important for understanding space
weather. SEPs are hard to predict because they come from various sources and go through complicated
processes. However, knowing when and how intense SEPs are in space is crucial for things like space
exploration. In this work, we created a new model called MEMPSEP to help predict when and what the
properties of these SEPs will be when they are detected. We used data from different sources to train the model
on how to make these predictions. The results show that MEMPSERP is better at predicting the properties of SEPs
when the chances of them happening are more than 50%. This is a significant step forward in improving our
ability to forecast SEPs and understanding the factors that influence them in space.

1. Introduction

Solar energetic particles (SEPs) are an integral component of Space Weather. SEPs in the inner heliosphere
comprise different origins, acceleration, and transport mechanisms that alter their properties significantly (see
review by Desai and Giacalone (2016)). SEPs are generally classified into two main classes, impulsive and
gradual, which correspond to the way SEPs are accelerated. Impulsive SEPs (ISEPs) are generated during
explosive flare phases (Reames, 1999), while gradual SEPs (GSEPs) are produced by diffusive acceleration
processes at traveling interplanetary (IP) shocks (Cane, 1988), which are associated with the expulsion of coronal
mass ejections (CMEs), or develop at corotating IP structures (e.g., Gosling & Pizzo, 1999; Mason et al., 2008).
Although both ISEPs and GSEPs exhibit distinct properties when considered individually, the majority of SEP
events observed in the heliosphere display a combination of both properties, with large event-to-event variability.
This is attributed to the complex environment surrounding the origin (Mason et al., 2004; Desai et al., 2006;
Dayeh et al., 2009), acceleration (e.g., Desai et al., 2016), and propagation (e.g., Mason et al., 2012) of SEPs,
leading to three unresolved primary concerns, with a mounting body of work continuing to understand these
major processes (see review by Zhang et al. (2021) and references therein).

The first issue pertains to the origin of SEPs. Observations of exceptionally rare solar wind elements in SEP
events provide compelling evidence that CME-driven IP shocks selectively accelerate material from a
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suprathermal pool consisting of heated solar wind, coronal material, remnants of solar transient events, and more
(see Gloeckler, 2003; Desai et al., 2006; Mason et al., 2004; Dayeh et al., 2009, 2017; Alterman et al., 2023;
Wijsen et al., 2023). Quantifying the contributions of these different seed populations to SEPs is crucial for
understanding the variability observed from one event to another. The second challenge lies in understanding the
acceleration of SEPs. Diffusive shock acceleration (DSA) is considered the primary candidate of SEP acceler-
ation at IP shocks, comprising the shock-drift mechanism at quasi-perpendicular shocks (Decker, 1981), and the
first-order Fermi mechanism at quasi-parallel shocks (Lee, 1983); however, observations showed that theory can
only explain certain behaviors of SEPs and does not provide a universal explanation for a plethora of mixed cases.
The third aspect requiring attention is SEP transport. Scattering within the IP medium plays a significant role in
shaping SEP observations at 1 au. Studies have revealed evidence of heavy-ion scattering by Alfven waves
generated by streaming protons accelerated at shocks, indicating that IP scattering is sometimes dominated by a
dynamic wave spectrum rather than a universal background spectrum (e.g., Ng et al., 1999; Tylka et al., 2005).
Work by Cohen et al. (2005); Desai et al. (2016); Mason et al. (2006) attributed SEP rigidity-dependent scattering
as particles propagate through the corona and IP medium, or to substantial cross-field diffusion near the Sun.
However, SEP scattering alone does not fully account for the puzzling variability observed in SEP properties at
1 au.

SEP hazards in the near-Earth environment are of multiple folds. The first and foremost important risk is the
radiation hazard for astronauts in Human spaceflight (e.g., Cucinotta, 2022 and references therein), and pas-
sengers on high-flying polar flight routes (Beck et al., 2005). SEPs are intense ionizing radiation that could have
acute or chronic effects on humans. Acute effects cause radiation sickness that puts astronaut lives at immediate
risk. Chronic dose effects include carcinogenesis, neural damage, and degenerative tissue damage diseases
affecting major organs. In addition to the human element, high-energy penetrating SEPs are known to cause
irreversible malfunctions in spacecraft electronics (e.g., Webb & Allen, 2004). While heavy ions cause most
damage to electronics, protons account for most radiation hazard because they are abundant and can penetrate
easily through spacecraft shielding. To mitigate SEP radiation hazards, space designers rely on models of the
extreme space environment to estimate the radiation protection calculations of instrumentation and crew pro-
tection. This prediction is often done for several years ahead of the anticipated missions. While this task is feasible
for the more-stable and seasonal energetic sources such as the galactic cosmic rays (GCRs) and anomalous cosmic
rays (ACRs), it is not applicable to SEPs, not only because of their transient nature, but also due to the large event-
to-event variability in SEP properties, such as their peak intensities, spectral indices, elemental abundances,
maximum energy attained by particles, etc. Forecasting SEPs (e.g., Dayeh et al., 2010; Kozarev et al., 2010) and
their properties, such as peak flux, event duration, composition, etc., ahead of their arrival is thus critically
informative to mitigate SEP radiation hazards. With the emergence of Machine Learning (ML) algorithms in
space weather applications, physical processes are often ignored at the expense of trend detection and correlation
analysis. While ML shows promising results in predicting space weather events, a complete understanding of the
underlying physics remains challenging. Therefore, it is essential to recognize the importance of utilizing both
ML and traditional physics-based approaches to gain comprehensive insights into space weather phenomena.
Relating SEP characteristics to their precursors has been the subject of substantial research (e.g., Anastasiadis
et al., 2017; Belov et al., 2005; Dayeh et al., 2018; Garcia, 2004a, 2004b; Gopalswamy et al., 2004; Kahler and
Ling (2018); Lara et al., 2003; Lario et al., 2023, Papaioannou et al. (2018); Richardson et al., 2018). This research
revealed correlative relationships that have enabled the development of qualitative predictive models of SEP
phenomena. For instance (Dayeh et al., 2018), explored the parameter space of ESPs with their shock properties
and found that shock speed is directly related to the associated ESP peak, a result that is also reached by Lario
et al. (2023) for a different set of events. Richardson et al., (2018) leveraged CME speeds and magnetic con-
nectivity to estimate the SEP peak proton intensity. Furthermore, Posner, (2007) utilized relativistic electrons to
forecast SEP arrival times and profiles. However, to enhance these predictive models, there is a pressing need for
a comprehensive multivariate analysis that considers all available relevant parameters and interwoven physical
processes, including the conditions of solar eruptions, as also detailed in Bain et al. (2021). This should also
advance the capability to have probabilistic forecast models as opposed to simple binary-outcome models. For a
detailed review of current models, see, Whitman et al. (2022).

Ensemble models enable proper estimation of prediction uncertainty and ultimately improves correct decisions in
critical situations. A new model, the “Multivariate Ensemble of Models for Probabilistic Forecast of Solar En-
ergetic Particles” or MEMPSEDP, has recently been developed and extensively validated (Chatterjee et al., 2024a;
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Table 1

Energy Ranges for SEP Peak Flux

hereafter MEMPSEP-I). Their work also investigates the advantage of uti-
lizing an ensemble of models to produce confident and reliable outcome.

Peak 1 Peak 2

Peak 3

Peak 4 Peak 5 MEMPSEP enables forecasting the occurrence of an SEP event and in the

>5 MeV >10 MeV

>30 MeV >60 MeV >100 MeV

case of event forecast, it provides the forecast of its physical properties such
as peak intensity, duration, and elemental composition, among other user-

defined properties. This work complements MEMPSEP-I and describes the
regression branch of MEMPSEP which allows SEP properties forecasting. Section 2 briefly describes the data set,
Sections 3, 4, and 5 describe the ensemble of models setup, Section 6 presents the results, and Section 7 if for
discussion and conclusions.

2. Data Set

The data set used in MEMPSEP development is extensively described in Moreland et al. (2024; hereafter
MEMPSEP-III). The data set is comprised of a large set of parameters from remote (e.g., images) and in situ (e.g.,
time series and pre-eruptive event properties) sources. In this context, ingested data are the “predictors” and the
outcome “targets” are the SEP parameters. The sections below provide a brief description of both.

2.1. Predictors

It has been already established in MEMPSEP-I that both in-situ and remote-sensing parameters are crucial in
reliably forecasting the occurrence of SEPs. We use a sequence of full-disk line-of-sight magnetograms (SoHO/
MDI + SDO/HMI) prior to flare onset as remote-sensing input. For the sequence, we use a sampling interval of
6 hr over a period of 3 days and rebin full-disc magnetograms to a size of 256pixels X 256pixels creating a data
cube of shape 256 X 256 X 13. To homogenize MDI and HMI magnetograms we use a conversion factor of 1.3
(MDI = 1.3*HMI) and clip the field strength within [-1000 G, 1000 G]. This creates a continuous data set with a
longer observational baseline than from a single instrument. We use a set of in-situ properties namely: solar wind
(SW) temperature, SW velocity, SW density, interplanetary magnetic field (IMF) field strength (B), IMF Bx, By
and Bz components, as well as particle fluxes and ratios (Fe/O, H, O, and Fe) calculated prior to every flare onset.
These pre-event quantities describe the suprathermal population prior to the event along with the IP conditions.
We emphasize here that the data is pre-event and the forecasting is thus a true forecast as opposed to nowcasting.
Additionally, we use Wind/Waves radio-burst time-frequency images (432 [time] X 80 [frequency]), L1-
electrons (7-channels of 8640 time points), and X-ray (2-channels of 1441 time points) time series as in-situ
inputs. For details about the data preparation see MEMPSEP-III.

2.2. Targets

We set forecast targets as 7 SEP properties, namely, (i to v) integrated peak flux (in five energy bands
determined from GOES; see Table 1), (vi) onset time of SEP w.r.t. onset of flare (named as “FIrtoSEP dt”) and
(vii) duration of SEPs. It must be noted that the onset time and duration of SEPs named as “evens” are available
only when the peak flux (>10 MeV) exceeds a threshold of 5 p.f.u. within 6 hr from the flare onset. This user-
defined threshold was chosen to ensure that selected events are gradual SEPs and not impulsive or particle
bursts, as well as to optimize the number of positive events while still lying above the instrument back-
ground level. For non-events (e.g., flares or CMEs that do not show a rise in particle flux near Earth above the
pre-defined p.f.u. threshold), we set those parameters to a constant value of 720 hr (see definition of “events"
and “non-events" in MEMPSEP-I paper. Before fitting a model we take the logarithm of targets to minimize the
effect of outliers.

3. Model Description
3.1. Architecture

MEMPSEP workhorse is an ensemble of Convolutional Neural Network (CNN; see LeCun et al. (2015)) ar-
chitecture that ingests multiple inputs such as images, scalar parameters and time series (Figure 1) and forecasts
the indicated 7 SEP properties (i.e., Targets). The CNN processes the input image sequences with repeated 2D
convolution, batch-normalization, non-linear activation and max-pooling. The flattened layers are concatenated
with scalar parameters and features extracted from time series data, and passed through dense (fully connected)
layers to produce the SEP properties. Dropout is used before the last layer causing random disconnections
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Magnetograms
v v

Convolutional Convolutional
layers layers

v v
Fully-Connected Upstream Fully-Connected
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v v

SEP occurrence >
Probability

TA012057

SEP Properties

Figure 1. Convolutional neural network model to perform SEP property regression using feedback from the pre-trained
classification model. We first train the classification branch (for detailed architecture see MEMPSEP-I) depicted in orange
and then freeze weights and biases of that while training the regression branch shown in gray. The outcome of the
classification branch (i.e., the SEP occurrence probability) penalizes the loss function of the regression branch depicted by
the horizontal arrow at the bottom of the figure.

between nodes and the helping in regularization of the model. It must be noted that the temporal information of the
time series data is fused in the initial layers of the CNN and then broken into multiple feature layers that further
passed onto subsequent layers. The model architecture is similar to that of the model for forecasting SEP
occurrence (described in MEMPSEP-I) except for the lack of any non-linear activation at the end. We avoid any
non-linearity after the final layer as activation functions like “ReLU" may cause a dying-ReLLU problem and drive
the model optimization toward all-zero predictions.

3.2. Optimization

To optimize the model's weights and biases we minimize the mean squared error (MSE) loss described by:

l .
MSE = @ZiZf: l(target,- j — predicted, J)z W

where i € {peakl, peak2, peak3, peak4, peak5, onset, duration}, N stands for the number of targets (i.e., 7) and j
runs over a batch of size B. We set B to 10 for training the model. We use a random training-validation split of 4:1
(1020 (non-events) + 680 (events) for training and 255 (non-events) + 170 (events) for validation). We make sure
that there is no temporal leakage between the training and validation set. We stop training the model when the
validation accuracy stops improving (Figure 2). We call this model ‘non-gated". We also make use of SEP
occurrence probability produced by another CNN model depicted in MEMPSEP-I. At this stage, we freeze the
weights and biases that were learned during the optimization of the SEP classification branch and just train the
regression branch penalizing the loss function of the classification outcome through a custom probability-
weighted mean-squared error (PSE) loss described as follows:

1 .
PSE = @ZiZﬁi p; (target;; — predicted, J)z 2

p; represents the predicted SEP occurrence probability by the frozen classification branch for training instance j.
We adapt this approach so that the model is driven to match the target better for the instances that are predicted to
have a higher chance of SEP occurrence. We call this model “gated." Figure 2 shows smaller values of PSE as
compared to MSE as the probability is always less than 1. Also, the gated model shows faster decay of PSE as
compared to MSE in non-gated model for both training and validation. The shaded regions in Figure 2 depict
uncertainty from the ensemble models described in detail in the next section.
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Figure 2. Covergence of loss function with epoch. Left panel depicts mean squared error loss for training and validation set as
a function epoch. Right panel shows PSE loss for training and validation set as a function of epoch. The shaded regions depict
the uncertainty (10th to 90th percentile produced by model ensemble.).

4. Ensemble of Models

The fact that there is a significant class imbalance between SEP events and non-events is widely recognized as a
challenging issue for the effectiveness of Machine Learning-based SEP prediction models (Kasapis et al., 2022).
To address this problem, we adopt a strategy where we create several training and validation sets by combining
substantially diverse non-events with the same set of events. To achieve this, we begin by assessing the distri-
bution of flare peak strength in events using an equal-frequency histogram with 10 bins. Next, we utilize the edges
of these bins to randomly select non-events, aiming for a number that is 1.5 times greater than the number of
events in each bin. This selection process is repeated ten times, ensuring minimal overlap between the chosen non-
events for each bin. We have approximately 850 event samples (85 per bin), and for each draw, we randomly
select around 1275 non-events (approximately 127 per bin). As described in the previous section, 1,275 non-
events are divided into 1020 for training and 255 for validation; 850 events are divided into 680 for training
and 170 for validation. So, in total, for 10 draws, we end up with close to 10,000 non-event samples. These non-
event samples, along with the 850 events, are used to train and validate a model (Figure 2). By doing this, we
create an ensemble of 10 models. This approach is necessary because training
a single model would have resulted in a severe class imbalance of 1 event to

[ Events 15 non-events.

—— SSN/60

5. Design of Test Set

We design a test set for the forecast of SEP occurrence probability (also used
N in MEMPSEP-I) that represents all the flare classes and is not affected by the

VWW'*\I\M_ ../v"lt solar cycle phase in event selection (Figure 3). We select 5 events and 10 non-

] Non-Events events per flare bins for all the 10 bins and also ensure that a year is dropped
stands

—— SSN/30 from random draw When it appears more than % times. Nyears

|| for the number of years shown on the x-axis of Figure 3 (i.e., 16). We also
ensure that the test set events are well separated in time from training and

Ky WY

1998 2000 2002 2004 2006 2008 2010 2012
Year

Figure 3. The top panel of the yearly histogram displays events in sky-blue,
while the bottom panel represents non-events shown in pink. The horizontal
orange line indicates the uniform event count per bin if the events were
evenly distributed. The black curve depicts the smoothed monthly sunspot
number cycle. From the graph, we can observe that event counts do not
follow the modulation of the sunspot number cycle, ensuring an unbiased
estimation of model performance on the test set.

model-ensemble performance. Also note that the test set is chosen before the
selection of the training and validation set. In addition, the model ensemble is

Nw validation sets. This test set allows us to provide an unbiased estimate of

never tuned on the test set.

6. Regression Results

For every data point on the test set, we acquire the model-ensemble inference
for both ‘non-gated" and ‘gated" regression. We produce scatter-plots of
target versus predicted values of SEP peaks (1-5), FIrtoSEP dt, and SEP
duration and color the points according to the median SEP occurrence
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probability (p) predicted by the model ensemble. We also add different symbols to distinguish between the points
representing SEP “events" and “non-events" ground truths (Figures 4 and 5). We use different metrics to quantify
the regression performance, namely, Pearson Correlation Coefficient (CC), Root Mean Squared Error (RMSE),
and R? score for groups of points having p > 0.5 and p < 0.5 R? score, also known as the coefficient of

Figure 4. Regression of solar energetic particles (SEP) peak flux in different energy bands. Outcome of non-gates and gated models are depicted through left and right
columns respectively. Rows represent different SEP peaks. Each scatter plot depicts the target versus median of predicted values with Model-ensemble on the test set.
The points are colored by the predicted SEP probability through the classification branch. Ground-truth of event class is depicted in different symbols (triangular for
non-events; circular for events). The error bars represent the 25th to 75th percentile of predictions by the model-ensemble. Marginals represent the probability density of
the target and predicted medians for events and non-events.
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Table 2

Skill Scores for Predicted Events and Non-Events (Non-Gated)

Peak 1 Peak 1 Peak 1 Peak 1 Time to SEP SEP duration

p=>205 p<05 p=>05 p<05 p=>205 p<05 p=>05 p<05 p=>05 p<05 p=>05 p<O05

p=0.5
CC 0.83
RMSE 0.68

R? score 0.52

0.48 0.92 0.48 0.92 0.51 0.9 0.5 0.31 0.35 0.09 0.22
0.84 0.53 0.67 0.48 0.55 0.46 0.51 1.44 122 0.82 0.63
0.2 0.76 0.21 0.77 0.22 0.74 0.2 0.04 0.1 —0.02 0.0

Table 3

Skill Scores for Predicted Events and Non-Events (Gated)

Peak 1 Peak 1 Peak 1 Peak 1 Time to SEP SEP duration

p=205 p<05 p>05 p<05 p=>05 p<05 p=>05 p<05 p=>05 p<05 p=>05 p<O05

p =05
CC 0.86
RMSE 0.6

R? score 0.63

0.38 0.94 0.39 0.92 0.42 0.89 0.39 0.3 0.28 0.24 0.2
1.1 0.48 0.81 0.46 0.62 0.44 0.57 1.41 1.75 0.81 0.94
—0.34 0.81 —0.14 0.79 0.02 0.75 0.02 0.07 —0.85 0.01 -1.27

determination and represents the fraction of the variability in the regression target that can be explained by the
model. Thus an R score close to 1 is desirable. An R? score less than or equal to zero is an indicator that the model
is not performing any better than just an average of the regression target.

We observe a general tendency of the points to get closer to the “y = x" line for higher occurrence probabilities.
Except for “FlrtoSEP dt" and “SEP duration" we find higher contrast between the metric corresponding to those
two groups (p > 0.5 and p < 0.5) for “gated" regression (Table 3) as compared to “non-gated" (Table 2). For both
the regression types, we find the CC between the logarithm of the target and the predicted ensemble-median of
SEP peaks to be statistically significant and >0.8. Also, RMSE ranges between 0.44 and 0.68 signifying a factor
of 3-5 difference between target and predicted values. For “non-gated" and “gated" regression, we find a min-
imum R>-score of 0.52 and 0.63 respectively for SEP peaks with p > 0.5.For “FlrtoSEP dt" and “SEP duration" we
generally find worse performance than other regression targets and also observe that the “non-gated" models
perform slightly superior to “gated" ones (Table 3).

To understand the ability of the model ensemble to identify “events" and “non-events" as separate populations, we
visualize the probability density of the predicted values and check if there is a significant difference between those
for “non-events" and “events." We perform an independent one-tailed #-test between those and find a significant
difference for all the targets (p-values<0.05; see Table 4) with “non-gated" and “gated" models. Lastly, to
examine the effectiveness of the “gated" model, we plot skill scores as functions of probability threshold for all
regression targets (Figures 6 and 7). We find the “gated" model to cause improvements for most of the SEP peaks
as compared to “non-gated" for higher values of the threshold with a crossover happening at around a probability
of 0.4. For “FlrtoSEP dt" and ‘SEP duration" we find that crossover happening for RMSE and R? scores with
“non-gated" model having slightly superior scores as compared to “gated". Although it should be noted R* score
for those two targets is close to 0 or negative indicating the “gated" and “non-gated" model performance to be no
better that a constant outcome of average target value.

7. Discussion and Conclusions

It can be observed that skills scores for “FlrtoSEP dt" and “SEP duration" are significantly worse than those for
other regression targets. False positives depicted by triangles that are dark (p > 0.5) in the scatterplots play a major
role in worsening the Skill scores for ‘FlrtoSEP dt" and “SEP duration." Even though the model ensemble is able
to predict SEP Peak values for those non-events, there may not be enough information in the inputs to predict such
large values of ‘FlrtoSEP dt" and ‘SEP duration". This could also be the under-represented set of such non-events
in the training set that cross the 5 p.f.u. cutoff for SEP flux (>10 MeV) but takes longer than 6 hr. Thus the model
ensemble tends to wrongly predict shorter “FlrtoSEP dt" and “SEP duration” for those. The “gated" model
producing even smaller values for those targets corresponding to false positives worsens the skill scores further as
compared to “non-gated." Even though we evaluate uncertainties in prediction through the model ensemble, it is
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sep_peak_1

Table 4
p-Values for Independent t-Test Between Predicted Values of Events and Non-Events

Peak 1 Peak 1 Peak 1 Peak 1 Peak 1

Time to SEP SEP duration

Non-gated 0.021 0.023 0.013 0.014 0.008 0.0 0.0
Gated 0.033 0.023 0.019 0.027 0.027 0.001 0.0

unknown when those uncertainties converge. Further investigations are necessary to ensure well-calibrated
uncertainties.

Unlike a model like logistic regression or random forest, MEMPSEP integrates multi-modal data in embedding
space. Due to the nonlinearities involved in the construction of the model and the lack of physical meaning in the
embedding space, it is thus not straight forward to quantify the impact of each observable on the regression
outcome. However, as MEMPSEP is driven by SEP occurrence probability, we have evaluated the impact of
adding in-situ parameters to remote-sensing inputs on classification accuracy and found significant improve-
ments. This is described in detail in MEMPSEP-I.

In summary, we make use of the class imbalance between SEP events versus non-events and train an ensemble of
CNN:s to forecast a set of SEP parameters. The skills scores show that the ensemble is able to make tighter (i.e.,
smaller deviation of the prediction from target) predictions on SEP properties for the test set data points with SEP
occurrence probability > 0.5 as compared to those with probability <0.5. We experiment by applying weightage
to the loss function with occurrence probability and observe improvement as increased contrast between the
metrics for those two probability groups.

With our current data set and approach, the regression results are not as good for “FlrtoSEP dt" and “SEP
duration" as for the remaining properties. In some aspects, this is not surprising. SEP profiles get altered en
route to 1 au by several convoluted processes, including scatterings, diffusion, turbulence, and other effects.
The pre-event predictors are thus part of the puzzle and further physics-based properties relating to transport
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Figure 6. Skill scores versus probability threshold for non-gated and gated regression. The top row depicts a variation of the Pearson correlation coefficient between
predicted and target solar energetic particles (SEP) properties as a function of the probability threshold to filter out points with higher predicted SEP occurrence
probability. The Middle and bottom rows show variations of Root Mean squared Error (RMSE) and R? score respectively as a function of the probability threshold.
Columns depict different SEP properties. The outcomes of “Non-gated" and “Gated" regression models are shown with blue and orange curves respectively.
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Figure 7. Same as Figure 6 except that here the Regression results are shown for solar energetic particles (SEP) peak flux in highest energy range, SEP onset time, and

duration.
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in the IP medium would likely improve the prediction of SEP event durations. This problem should be
minimized further as we acquire more data across the range for each regression target. Also, having the
model-ensemble members trained on a balanced data set, we plan to perform interpretability analysis in the
future to decrypt the inner working of the models. Additionally, we would like to make further refinements
in the generation of model-ensemble in the future and find the convergence point for the estimated
uncertainties.
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available through Zenodo under https://doi.org/10.5281/zenodo.10044864. The codebase developed for this work
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