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Abstract Nutrient limitation is widespread in terrestrial ecosystems. Accordingly, representations of
nitrogen (N) limitation in land models typically dampen rates of terrestrial carbon (C) accrual, compared with C‐
only simulations. These previous findings, however, rely on soil biogeochemical models that implicitly
represent microbial activity and physiology. Here we present results from a biogeochemical model testbed that
allows us to investigate how an explicit versus implicit representation of soil microbial activity, as represented
in the MIcrobial‐MIneral Carbon Stabilization (MIMICS) and Carnegie‐Ames‐Stanford Approach (CASA) soil
biogeochemical models, respectively, influence plant productivity, and terrestrial C and N fluxes at initialization
and over the historical period. When forced with common boundary conditions, larger soil C pools simulated by
the MIMICS model reflect longer inferred soil organic matter (SOM) turnover times than those simulated by
CASA. At steady state, terrestrial ecosystems experience greater N limitation when using the MIMICS‐CN
model, which also increases the inferred SOM turnover time. Over the historical period, however, warming‐
induced acceleration of SOM decomposition over high latitude ecosystems increases rates of N mineralization
in MIMICS‐CN. This reduces N limitation and results in faster rates of vegetation C accrual. Moreover, as SOM
stoichiometry is an emergent property of MIMICS‐CN, we highlight opportunities to deepen understanding of
sources of persistent SOM and explore its potential sensitivity to environmental change. Our findings
underscore the need to improve understanding and representation of plant and microbial resource allocation and
competition in land models that represent coupled biogeochemical cycles under global change scenarios.

Plain Language Summary Nitrogen limitation of terrestrial ecosystems is common, and crates
feedbacks between aboveground and belowground biogeochemical cycles. We present a novel analysis looking
at how the explicit versus implicit representation of soil microbial activity influences ecosystem carbon and
nitrogen fluxes in a global biogeochemical model. With the microbial explicit model, MIcrobial‐MIneral
Carbon Stabilization‐carbon‐nitrogen, we found increases in the inferred turnover time of soil organic matter
(SOM) that were caused by plant‐soil feedbacks from nitrogen limitation of plant productivity. Over the
historical period, we found that warming‐induced acceleration of SOM decomposition resulted in higher rates of
nitrogen mineralization and vegetation biomass accrual. Collectively, these findings present new opportunities
to investigate plant‐soil interactions with a model that explicitly represents microbial decomposers.

1. Introduction
Terrestrial ecosystems are characterized by widespread nutrient limitation, especially of nitrogen (N; Elser
et al., 2007; LeBauer & Treseder, 2008). These limitations fundamentally shape ecosystem feedbacks between
above‐ and belowground processes (Wardle et al., 2004). Plant investment in belowground carbon (C) allocation
and nutrient acquisition strategies influences soil biogeochemical cycles, notably through the formation and
decomposition of soil organic matter (SOM; Averill et al., 2014). Moreover, microbial biomass is a major driver
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of nitrogen mineralization rates (Li et al., 2019). Thus, shifting patterns of plant and microbial stoichiometry,
allocation, and activity in response to global change drivers will likely influence terrestrial ecosystem responses to
climate change (Wieder, Cleveland, et al., 2015; Zaehle et al., 2015). Accurately capturing these ecological
processes and plant‐soil feedbacks in models that are used for climate change projections remains a challenge.

Part of this uncertainty reflects gaps in our theoretical understanding of plant‐soil feedbacks and their influence on
nutrient availability. Notably, emerging theories emphasize the importance of microbial‐mineral interactions that
govern SOM persistence (Cotrufo et al., 2013; Lehmann et al., 2020; Lehmann & Kleber, 2015). Yet, explicit
representations of microbial activity, microbial functional traits, and the protection of soil C via organo‐mineral
interactions are notably absent from models that are used to project C cycle‐climate feedbacks (Todd‐Brown
et al., 2013). The introduction of global‐scale, microbial explicit soil biogeochemical models has opened new
lines of research (Huang et al., 2018; Sulman et al., 2014; Wieder et al., 2013; Wieder, Grandy, et al., 2015), but
much of the work to date only focuses on the representation of soil C biogeochemistry. Results from ecosystem‐
scale simulations show the potential for models that explicitly simulate microbial‐mineral interactions to advance
understanding of coupled carbon‐nitrogen (CN) dynamics (Eastman et al., 2023; Kyker‐Snowman et al., 2020;
Thum et al., 2019; G. Wang et al., 2020; Y. Zhang et al., 2021). Now, application of microbial explicit CN soil
models is feasible at global scales (Y. Huang et al., 2021; Sulman et al., 2019), although to date analyses of global
terrestrial C and N dynamics from this class of models are sparse.

The current generation of global models consistently show that representing terrestrial nutrient limitation
dampens terrestrial ecosystem responses to elevated CO2 (Thornton et al., 2007; Y. P. Wang et al., 2010; Zaehle
et al., 2010). However, these results come from models that implicitly represent soil microbial activity. Pre-
liminary work with models that explicitly represent microbial activity demonstrate shifts in the timing and
magnitude of ecosystem C fluxes, relative to models that make microbial implicit assumptions (Basile
et al., 2020; Jian et al., 2021; Wieder et al., 2018, 2019). This suggests that models based on distinct underlying
structural assumptions will also generate differences in soil N fluxes that may feedback onto ecosystem pro-
ductivity and response to global change.

We begin to explore these dynamics by coupling two different soil biogeochemical models that represent C and N
biogeochemistry to a common vegetation model. This biogeochemical model testbed allows us to investigate how
alternative soil model assumptions, structures, and parameterizations ultimately influence plant productivity and
ecosystem C storage. This is one of the first global‐scale applications of a microbially explicit model to look at
ecosystem C and N responses at initialization and in historical simulations (see also Dunne et al., 2020; Sulman
et al., 2019). Our objectives are to describe differences in the underlying assumptions of both microbial explicit
and microbial implicit model structures that are applied by the MIcrobial‐MIneral Carbon Stabilization
(MIMICS; Wieder et al., 2014; Wieder, Grandy, et al., 2015) and Carnegie‐Ames‐Stanford Approach (CASA; Y.
P. Wang et al., 2010) soil biogeochemical models, respectively. Subsequently, we describe global scale patterns
of soil biogeochemical states and fluxes that are simulated by MIMICS and CASA under steady‐state conditions.
Finally, we explore the transient biogeochemical response of terrestrial ecosystems over the historical period and
discuss future opportunities for representing CN biogeochemistry with microbial explicit structures in land
models.

2. Materials and Methods
2.1. Biogeochemical Model Testbed and Forcing

Simulations presented here build on the C‐only version of the biogeochemical model testbed, which couples the
CASA vegetation model with the CASA or MIMICS soil biogeochemical models (Wieder et al., 2018, 2019).
Additional developments to represent soil CN biogeochemistry in site‐level simulations with MIMICS‐CN are
provided in Kyker‐Snowman et al. (2020). Here we present a global application of MIMICS‐CN that connects
with representation of vegetation nutrient limitation and soil N transformations that are also applied in CASA‐
CNP (Y. P. Wang et al., 2010). We compare global‐scale results of vegetation and soil pools and fluxes from
simulations with C‐only and CN configurations of both MIMICS and CASA soil biogeochemical models. As this
work builds on an extensive body of literature, including ecosystem scale simulations with the biogeochemical
model testbed presented by Eastman et al. (2023), we largely highlight modifications that were implemented in
the development and evaluation of global scale simulations with MIMICS‐CN in the biogeochemical model
testbed.
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The biogeochemical model testbed requires daily inputs of gross primary production (GPP), air temperature, soil
temperature, and soil moisture. We generated these boundary conditions by running a historical simulation of the
Community Land Model, version 5, with satellite phenology (CLM5‐SP) that was driven with atmospheric
forcing from the Global Soil Wetness Program, version 3 (GSWP3, see Lawrence et al., 2019). Our previous work
with the biogeochemical model testbed used an older version of CLM (version 4.5) and CRU‐NCEP forcing
(Wieder et al., 2018). Comparison of CLM model versions and forcing data are described in Lawrence
et al. (2019) and Bonan et al. (2019). Daily history files from the nominal two degree‐resolution CLM5‐SP
simulations were processed to generate the required meteorological forcings, or met files, that are needed to
run the biogeochemical model testbed (see technical documentation in will wieder & melanniehartman, 2023).
This processing step involves calculating depth weighted mean daily soil temperature along with volumetric
liquid and frozen soil water content for the top six soil layers that are simulated by CLM5 (roughly corresponding
to 0–50 cm depth). The met files also include daily GPP, air temperature, and N deposition that are simulated by
CLM5 and required to run CASA‐CNP. Additional input data needed to run the biogeochemical model testbed
include soil texture (sand and clay fraction) and dominant plant functional type (PFT) distributions, which are also
taken from CLM5 surface data sets.

Initial conditions in the biogeochemical model testbed were generated by spinning up vegetation and soil C pools
by cycling over simulation years from (1901–1920) until steady‐state conditions were reached. We did this in four
model experiments: for C‐only and CN versions of both MIMICS and CASA that were coupled to the CASA
vegetation model. GPP was identical in all four of these simulations. Net primary production (NPP) and litterfall
fluxes were identical for both the MIMICS‐C and CASA‐C simulations, reflecting autotrophic respiration pa-
rameterizations in the CASA‐C vegetation model. Nitrogen limitation of NPP, however, reduced litterfall fluxes
in the MIMICS‐CN and CASA‐CN experiments—reflecting differences in the N limitation experienced by
plants, given the feedback from different soil biogeochemical models. Specifically, when daily inorganic N pools
are less than 1g N m− 2, the CASA vegetation model increases autotrophic respiration fluxes, thereby reducing
NPP. Differences in steady‐state initial conditions are described in Section 3.1. Subsequently we ran transient
simulations over the historical period from 1901 to 2014 for each of our four model experiments, with results
described in Section 3.2. We did not run the biogeochemical model testbed with transient land use or land cover
change.

2.2. MIMICS‐CN

In this section we describe highlights of this global‐scale implementation of CN biogeochemistry in MIMICS and
provide relevant information about underlying assumptions and approaches taken in the MIMICS and CASA soil
models. Notable features of MIMICS include the representation of metabolic and structural litter pools (LITm and
LITs), explicit representation of fast and slow growing microbial functional groups (MICr and MICK), and the
representation of physicochemically protected, chemically protected, and available SOM pools (SOMp, SOMc,
and SOMa; Figure 1). A similar wiring diagram and description for the CASA‐CN model is included in Figure S1
in Supporting Information S1.

The basic structure of MIMICS‐CN is described in Kyker‐Snowman et al. (2020) and Eastman et al. (2023) and
has not been changed from previous versions of MIMICS‐C (Wieder, Cleveland, et al., 2015). As in our previous
work (Wieder et al., 2018, 2019), MIMICS‐CN uses temperature‐sensitive reverse Michaelis‐Menten kinetics to
describe microbial community catabolic capacity (blue lines, Figure 1), which determine rates of litter and SOM
decomposition that are modified by soil liquid water availability. MIMICS‐CN also represents microbial growth
efficiency that controls the fate of C and N fluxes in soils through microbial carbon use efficiency, nitrogen use
efficiency, and microbial turnover (CUE, NUE, and τ, respectively; green lines, Figure 1), which are a function of
substrate quality and microbial functional groups. Microbial necromass fluxes from each microbial functional
group are allocated to different SOM pools, which vary as a function of soil clay content and litter quality (orange
lines, Figure 1). Litter quality is inversely related to the allocation of microbial residues ( fc) that enter the
chemically protected (SOMc) pool. Soil clay content controls allocation to and turnover ( fp and D, respectively)
of the physicochemically protected (SOMp) pool in MIMICS.

Litterfall inputs (I) in MIMICS and CASA are partitioned into litter pools based on chemical quality, specifically
the weighted average lignin:N ratio of all litter inputs determines the fraction of metabolic litter ( fMET) as in
Parton et al. (1987) and applied by Wieder et al. (2014). One notable difference, however, is that fluxes from the
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decay of coarse woody debris are transferred into structural litter pools in MIMICS, thus the lignin:N ratio
associated with this flux is also included in the calculation of fMET. By contrast, fluxes of coarse woody debris in
CASA are transferred directly to SOM pools and, therefore, not included in the CASA calculation of fMET. In
MIMICS‐CN we hold the stoichiometry of the metabolic litter inputs (and therefore the LITm pool) constant,
assuming that this relatively labile litter flux has a high chemical quality (C:N = 15). Thus, the C:N of structural
litter inputs (and the LITs pool) varies to conserve total N inputs from litterfall (Kyker‐Snowman et al., 2020). A
fraction of litter inputs bypasses the litter, and therefore microbial biomass pools, in MIMICS ( fi, Figure 1). The
current parameterization of the model assumes a larger fraction of low quality, structural litter inputs are passed
directly to the chemically protected SOM pool, which we think of as being analogous to a particulate organic
matter (POM) pool (POM; fi,struc = 0.3, or 30% of structural litter inputs). By contrast, relatively little metabolic
litter directly contributes to the formation of physicochemically protected SOM, which we consider to be more
like a mineral associated organic matter pool (MAOM; fi,met = 0.005, or 0.5% of metabolic litter inputs). This
change was made with the representation of N biogeochemistry in MIMICS‐CN for site‐level simulations by
Kyker‐Snowman et al. (2020) to increase the C:N ratio of bulk SOM pools, and also applied for global scale
MIMICS‐C andMIMICS‐CN runs presented here. Lower input rates and turnover times to SOMp pools were also
implemented in the parameterization of MIMICS‐CN presented here to achieve longer turnover times of this
MAOM‐like pool (Pierson et al., 2022; Wieder et al., 2019; H. Zhang et al., 2020).

The microbial functional groups represented in MIMICS are intended to represent functional trait tradeoffs be-
tween microbial growth rates (blue lines in Figure 1) and microbial growth efficiency and turnover (green lines in
Figure 1) (Schimel & Schaeffer, 2012; Wieder et al., 2014). The model parameters reflect assumptions that a fast‐
growing microbial functional group (MICr) has a greater affinity for organic matter substrates with higher
chemical quality (LITm) but has a lower CUE than a slower growing microbial functional group (MICK), which
has a greater affinity for low chemical quality substrates (LITs) (Wieder et al., 2018).

Microbial stoichiometry in MIMICS‐CN builds on this functional trait framework. We assumed that the higher
catabolic potential (Vmax) of MICr communities requires more nitrogen, resulting in lower microbial biomass C:N
ratios, compared to slower growing copiotrophs. Kyker‐Snowman et al. (2020) assign fixed C:N ratios for MICr

and MICK—6 and 10 respectively, which generally reflects the mean C:N stoichiometry of bacteria and fungi
(Cleveland & Liptzin, 2007). Total microbial biomass stoichiometry, therefore, reflects the relative abundance of
these functional groups. Preliminary results using this approach in the biogeochemical model testbed, however,
produced relatively constrained estimates for ecosystem microbial C:N ratios, compared to results from cross‐
biome syntheses (Cleveland & Liptzin, 2007) and subsequent global extrapolations (Gao et al., 2022; Xu
et al., 2013). Substrate quality, however, influences microbial community composition and stoichiometry (Fanin

Figure 1. Pools of litter, microbial biomass, and soil organic matter (LIT, MIC, and SOM, respectively) that are represented
in the MIcrobial‐MIneral Carbon Stabilization‐carbon‐nitrogen model. Microbial catabolic potential (blue lines) varies with
daily soil temperature and soil moisture and drives the decomposition of litter and SOM.Microbial growth rates (green lines)
are determined by carbon use efficiency, nitrogen use efficiency, and turnover (CUE, NUE, and τ). CUE and NUE contribute
to heterotrophic respiration and nitrogen mineralization fluxes, which occur for all fluxes into microbial biomass pools (but
are not shown for clarity). Microbial necromass is partitioned into SOM pools as a function of soil clay content and litter
quality (orange lines).
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et al., 2013, 2014; Nemergut et al., 2010). Thus, we developed a simple parameterization that modifies the target
microbial biomass stoichiometry as a function of litter quality (Equation 1)

CNtarget = CNbase

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(CNmod/fMET)

√

(1)

where the target CN ratio is the product of the base C:N ratio for copiotrophs and oligotrophs (6 and 10,
respectively) and an empirical function using a CN modifier term (0.4 for these simulations) and fMET (from
litterfall inputs, Figure 1). This parameterization allows for somewhat greater spatial variability in microbial C:N
ratios and is applied in the results presented here. Accordingly, the emergent microbial biomass stoichiometry that
is simulated by MIMICS still reflects the relative abundance of microbial functional groups, but also the in-
fluences of litter quality.

Heterotrophic respiration fluxes in MIMICS are determined by the fluxes of C entering microbial biomass pools
and associated CUE (Figure 1). In MIMICS, CUE varies by microbial functional group (higher for MICK than
MICr, with a particular substrate) and substrate quality (e.g., LITm has a higher CUE than LITs for a given
microbial functional group) (see technical documentation will wieder &melanniehartman, 2023). We assume that
“messy eating” results in a 85% NUE on fluxes entering microbial biomass pools, with the remaining 15% of
decomposed organic N being transferred to the dissolved inorganic nitrogen pool (DIN; models in the testbed do
not simulate individual pools of ammonium and nitrate).

After accounting for these C and N losses from donor pool fluxes (coming from LITm, LITs, or SOMa), MIMICS‐
CN evaluates the stoichiometry of incoming fluxes to the receiver pools (going to MICr or MICK) and their target
stoichiometry. If the C:N ratio of total fluxes into microbial biomass pools is lower than their respective target,
then this excess N is mineralized into the DIN pools. Conversely, if the C:N ratio of inputs to microbial biomass
pools is higher than their respective targets then overflow respiration occurs, with this excess C added to the
heterotrophic respiration flux. With the current model parameterization, microbial functional groups in MIMICS‐
CN are not generally C limited, which is generally consistent with empirical measurements and theoretical un-
derstanding (Soong et al., 2020), so overflow respiration fluxes are very small. Thus, in MIMICS‐CN decom-
position of litter and SOM pools proceeds independent from the size of the inorganic N pool. This approach
differs from assumptions in the CASA soil biogeochemical model, which downregulates heterotrophic activity if
inorganic N pools are <1gN m− 2 (Y. P. Wang et al., 2010). Similar assumptions are made in other soil
biogeochemical models that downregulate decomposition rates under nitrogen limitation (Bonan et al., 2013;
Thomas et al., 2015).

2.3. Analyses

We inferred soil C turnover times as the ratio of total soil C stocks and NPP simulated by the models at each grid
cell at initialization (1901–1920 mean) (Koven et al., 2017). To compare inferred soil C turnover times between
CN and C‐only versions of both soil biogeochemical models we calculated response ratios, which were calculated
as the natural log of the quotient of results from the CN and C‐only versions of MIMICS and CASA; thus,
response ratios of 0 signify that the CN and C‐only versions of the model are identical. We assessed N limitation
as the difference of NPP from CN and C‐only simulations, such that more negative values reflect greater N
limitation. We calculated net ecosystem production (NEP) as the difference of GPP and ecosystem respiration
fluxes; thus, positive values of NEP values reflect net land C uptake. By definition, NEP is zero under steady‐
state, initial conditions.

We compared the latitudinal distribution and global sums for soil biogeochemical states and fluxes that were
simulated by MIMICS and CASA with globally gridded estimates from database products. Specifically, we
included total soil C stocks for 0–1 m depth from the Harmonized World Soils Database, version 1.2 (HWSD;
FAO et al., 2012) that was regridded to a nominal 1° resolution (Wieder et al., 2014), Soil Grids, version 2.0
(Poggio et al., 2021; 500 m resolution was also regridded to a nominal 1° resolution), and the Northern
Circumpolar Soil Carbon Database (NCSCD; Hugelius et al., 2013). We also compared microbial C and mi-
crobial C:N estimates from Xu et al. (2013); (see also Xu et al., 2014) and Serna‐Chavez et al. (2013), hetero-
trophic respiration fluxes derived by Hashimoto et al. (2015), and soil C:N derived from the ratio of organic C and
total N (0–1 m depth) from the Global Soil Data set for use in Earth System Models (GSDE; Shangguan
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et al., 2014).We note that we are comparing steady state model results, intended to represent conditions at the start
of the 20th century (1901–1920 mean state), with observations that are intended to be more representative of
contemporary conditions. For slow turnover pools like bulk SOM, the latitudinal patterns presented here are
unlikely to have appreciably changed over the historical period, but we acknowledge that microbial biomass and
heterotrophic respiration are likely changing more rapidly.

3. Results
3.1. Initial Conditions

For initialization, all simulations received identical fluxes of GPP (106 Pg C yr− 1, global mean 1901–1920;
Table 1). Lower NPP fluxes in MIMICS‐CN and CASA‐CN simulations reflect N limitation on plant growth,
relative to the MIMICS‐C and CASA‐C simulations. MIMICS‐CN simulated greater N‐limitation in boreal
forests (Figure S2 in Supporting Information S1) and had slightly lower NPP globally than results from CASA‐
CN (Table 1). With lower NPP and subsequent litterfall fluxes, steady‐state soil C pools were also lower for CN
versions of MIMICS and CASA than soil C stocks in each models' C‐only counterpart. Initial global soil C stocks
simulated by MIMICS totaled 1,516 and 1,582 Pg C (for CN and C‐only simulations, respectively, including the
sum of all litter, microbial biomass and soil C pools at 0–100 cm depth; Table 1). Initial soil C stocks simulated by
CASA totaled 887 and 997 Pg C (again for CN and C‐only simulations, respectively, Table 1).

Larger soil C pools in MIMICS‐CN reflect longer inferred soil carbon turnover times than those simulated by
CASA‐CN (Figure 2a). Similar results were reported for the C‐only versions of these models (Wieder et al., 2018)
and reflect parametric and structural differences between the MIMICS and CASA soil biogeochemical models.
The apparent banding in CASA simulations (Figure 2a) result from biome‐specific soil C turnover times of slow
and passive soil C pools, including notably rapid turnover times in agricultural soils (Y. P. Wang et al., 2010).
MIMICS does not share this feature. Instead, longer turnover times simulated by MIMICS emerge from a
common, global parameterization of the model.

The representation of CN biogeochemistry does not meaningfully alter soil C turnover times that are simulated by
CASA‐CN, but it does in MIMICS‐CN (Figure 2b). In colder and drier biomes that are less productive, soil C
turnover times increase in MIMICS‐CN, relative to MIMICS‐C. This occurs because N limitation of NPP reduces
litterfall fluxes (Table 1). Microbial biomass pools in MIMICS, and other simper models, are proportional to
litterfall inputs (Y. P. Wang et al., 2014). Microbial biomass also directly influences litter and soil C turnover
times in models using Michaelis‐Menten kinetics. Indeed, the response ratios of microbial biomass and inferred

Table 1
Summary of Annual Fluxes and States Simulated by MIcrobial‐MIneral Carbon Stabilization (MIMICS) and
Carnegie‐Ames‐Stanford Approach (CASA) Models With Carbon‐Nitrogen (CN) and C Biogeochemistry at Initialization

MIMICS‐CN MIMICS‐C CASA‐CN CASA‐C

GPP (Pg C yr− 1) 106 106 106 106

NPP (Pg C yr− 1) 38.2 42.0 38.9 42.0

HR (Pg C yr− 1) 38.2 42.0 38.9 42.0

Total soil C (Pg C) 1,516 1,582 887 997

Total vegetation C (Pg C) 287 333 298 333

Microbial biomass (Pg C) 13.4 14.8 – –

Relative microbial biomass C (%) 0.88 0.92 – –

Net N mineralization (Tg N yr− 1) 876 – 888 –

Total soil C:N 11.8 – 18.5 –

Microbial C:N 6.8 – – –

Note. Values represent globally integrated means of annual data simulated from 1901 to 1920. By definition, soil hetero-
trophic respiration fluxes (HR) are equal to net primary production (NPP) at initialization. Total soil C includes all litter,
microbial biomass, and soil carbon pools simulated by the models. Relative microbial biomass is the fraction of the total soil
C pool composed of microbial biomass and is shown as the global mean across all vegetated grid cells. Similarly, total soil C:
N and microbial biomass C:N reflect global means for these quantities.
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turnover times with MIMICS‐CN show a strong, negative linear correlation (Figure 2c). Thus, longer soil C
turnover times in MIMICS‐CN resulted from N limitation of plant production that reduced microbial biomass
pools and slowed turnover times, especially across high latitude ecosystems (Figure 2d).

All models show a latitudinal distributions of soil C stocks that agree reasonably well with observationally
derived estimates (Figure 3a) and global soil C stocks to 1 m depth (1,690 Pg C from SoilGrids and 1,260 Pg C for
the HWSD; Table 1). Microbial biomass carbon totals 13.1 and 14.8 Pg C globally in MIMICS‐CN andMIMICS‐
C, respectively (Table 1). Global extrapolations from observational syntheses estimate microbial biomass C
ranging from 14.6 to 23.2 Pg C (0–100 cm depth; Serna‐Chavez et al., 2013; Xu et al., 2013). Both versions of
MIMICS simulate larger microbial biomass pools in high latitude ecosystems, which fall within the large un-
certainty from observationally upscaled estimates (Figure 3b). Globally, relative microbial biomass C (microbial
C as a percent of total soil C stocks) is roughly 0.9% in MIMICS (Table 1), which is lower than observationally
derived estimates of 1.2% from Serna‐Chavez et al., 2013 (Figure 3c). Notably, MIMICS underestimates relative
microbial biomass pools in temperate and tropical forests, compared with observationally derived estimates.
Heterotrophic respiration fluxes that are simulated by MIMICS and CASA generally match latitudinal patterns
from database estimates reported by Hashimoto et al. (2015; Figure 3d). At steady state, heterotrophic respiration
fluxes are equal to NPP (Table 1). As such, this observational target provides more information about the quality
of input data (here GPP derived from CLM and subsequent NPP calculated by the CASA vegetation model) than
it does about heterotrophic respiration fluxes that are simulated by any of the soil biogeochemical models.

Figure 2. Inferred soil C turnover times as a function of mean annual air temperature (a) for all grid cells for the MIcrobial‐
MIneral Carbon Stabilization‐carbon‐nitrogen model (MIMICS‐CN) and Carnegie‐Ames‐Stanford Approach (CASA‐CN)
simulations (blue and orange points, respectively) and (b) the difference in turnover times in CN configurations compared to
the C‐only versions of each model. Soil C turnover is calculated as the ratio of total soil C stocks and Net primary production
(NPP) simulated by the models at initialization (1901–1920 mean). In MIMICS (c) the microbial biomass C response ratio in
each grid cell is negatively correlated with the soil C turnover time response ratio. Response ratios are calculated at the
natural log of the quotient of initial gridcell results fromMIMICS‐CN andMIMICS‐C. The (d) soil C turnover time response
ratio in MIMICS‐CN is greatest in high‐latitude ecosystems that also show stronger N limitation of NPP.
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Figure 3.
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Soil stoichiometry is prescribed for each PFT in CASA‐CN, which produces high soil C:N ratios in semi‐tropic,
arid regions (Figure 3e). By contrast, the soil stoichiometry simulated by MIMICS‐CN is an emergent property of
the model. Both models demonstrate a relatively good match with global observations from Shangguan et al.
(2014; Figure 3e), although MIMICS‐CN underestimates soil C:N ratios across boreal forests and, to a lesser
extent, in the tropics. MIMICS‐CN predicts a latitudinal gradient in soil stoichiometry that largely reflects dif-
ferences in microbial biomass and litterfall stoichiometry (Figure 4). Microbial biomass stoichiometry in
MIMICS‐CN is flexible within narrow ranges (see methods), but is also dependent on the relative abundance of
microbial functional types (fast vs. slow). This approach produces global estimates of microbial C:N ratios of 6.8
(Table 1), which are close to observationally based upscaled estimates reported by Xu et al. (2013; global mean
microbial C:N = 7.6), but lower than estimates from Gao et al. (2022; global mean microbial C:N = 10;
Figure 3f).

The C:N ratio of SOM, microbial biomass, and litterfall fluxes that are simulated by MIMICS‐CN are highest in
boreal forests and lower in the tropics, especially in grassland and savanna regions (Figures 4a–4c). The stoi-
chiometry of litter inputs as well as soil moisture control the relative abundance of fast versus slow microbial
functional groups in the model. Accordingly, forests and arid regions tend to have a lower relative abundance of
fast growing, copiotrophic microbes (Figure 4d). This largely reflects litter quality control over microbial
community composition in the current parameterization of MIMICS‐CN.

Soil texture and litter stoichiometry interact to determine the soil C:N ratios that are simulated by MIMICS‐CN
(Figure 5). For a given litter quality, higher clay fraction results in lower soil C:N ratios. For a given clay fraction,
decreasing litter quality (higher litterfall C:N ratios) results in higher soil C:N ratios that are simulated by
MIMICS. Both occur in MIMICS because increasing litter quality and clay content also increase the fraction of
SOM that persists in the physicochemically protected SOM pool of the model (SOMp). By contrast, CASA‐CN
parameterized soil stoichiometry based on PFT, resulting in higher soil C:N ratios than those simulated by
MIMICS‐CN (Figure 3e), but without evidence of the soil properties and litter quality effects on SOM stoichi-
ometry (Figure 5b).

3.2. Transient Response

Global GPP simulated by CLM5 increased from 106 Pg C yr− 1 at the start of the 20th century to 125 Pg C y− 1 by
the end of the historical period (here 2014). This led to an increase in NPP simulated by all the models, with the C‐
only models showing a slightly higher increase in NPP than the CN models (Table 2, Figure 6a, Figure S3 in
Supporting Information S1). These increases in productivity and modest climate warming drove accelerated rates
of heterotrophic respiration and net N mineralization in both models (Figures 6c and 6d). On balance, CASA
simulations show accumulations of soil organic C and a more robust land C sink thanMIMICS simulations, which
indicate soil C losses and weaker (or neutral) land C uptake over the historical period (Figures 6e and 6f; Figure
S3 in Supporting Information S1).

At initialization, MIMICS‐CN showed slightly stronger N‐limitation of NPP than CASA‐CN (Table 1; Figure S2
in Supporting Information S1). Over the historical period, N limitation increased in both models, but more so in
CASA‐CN (Figure 6b). Greater vegetation C accumulation in MIMICS‐CN, compared to CASA‐CN (Table 2)
was fueled by changes in soil biogeochemistry. Over the historical period, MIMICS‐CN simulated larger increase
in heterotrophic respiration and net N mineralization that resulted in soil C losses and a weak to neutral land C
sink compared to CASA‐CN, which accumulated soil C over this time and showed a stronger land C sink
(Table 2; Figures 6c and 6f, Figure S3 in Supporting Information S1). Notably, MIMICS also simulated greater
interannual variability in global C and N fluxes, compared to CASA simulations, despite receiving identical
climate forcings (Figures 6b–6d).

Figure 3. Zonal mean plots for MIcrobial‐MIneral Carbon Stabilization and Carnegie‐Ames‐Stanford Approach simulations (blue and orange lines, respectively) with
coupled carbon‐nitrogen (CN) biogeochemistry and C‐only configuration (solid and dashed lines, respectively) and relevant observations (black lines with gray shading
showing ±1 standard deviation of mean). Panels show (a) soil C stocks (kgC m− 2, 0–100 cm depth), (b) soil microbial biomass C stocks (gC m− 2, 0–100 cm depth),
(c) relative microbial biomass C (microbial C as a percent of total soil C stocks) (d) soil heterotrophic respiration fluxes (gC m− 2 yr− 1), (e) soil organic matter C:N ratio,
and (f) microbial biomass C:N ratios. See methods for references of observations used in this analysis.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004156

WIEDER ET AL. 9 of 21



A closer look at regional dynamics helps illuminate differences in MIMICS versus CASA simulations. Here we
focus on the mean climatology of daily results simulated over a boreal forest region in Northern Europe (60–70°N
and 0–100°E) at initialization (1901–1905 mean) and at the end of the historical period (2010–2014 mean). At
steady state, MIMICS is more N limited than CASA (both globally and in this region; Figure S2 in Supporting
Information S1, Figure 7). Over the historical period, however, MIMICS‐CN becomes less N limited, largely
because of temperature driven increases in SOM turnover and increases in N mineralization rates at high latitudes
(Figure 7; Figure S3 in Supporting Information S1).

In our region of focus, mean NPP simulated during the model initialization period was 217 versus
265 gC m− 2 yr− 1 for MIMICS‐CN and CASA‐CN, respectively (Figure 7a; dashed lines). Low soil inorganic N
concentrations simulated by both models caused this N limitation (Figures 7c and 7e). Collectively, these results
illustrate differences in model sensitivities to cold soil temperatures that characterize the region. For most of the
year, frozen soils more strongly limit microbial activity in MIMICS‐CN, resulting in lower heterotrophic
respiration and N mineralization fluxes in the boreal winter, spring, and fall, but higher rates during the warmer
summer months (Figures 7b, 7d, 7f). Notably, annual heterotrophic respiration fluxes are equal to NPP fluxes that
are simulated by both models at initialization; therefore, initial NEP equals zero for both models, but differences
in the environmental sensitivities of MIMICS and CASA results in distinct seasonal climatologies of the timing of
these fluxes during the year.

By the end of the historical period, differences in annual productivity that are simulated by the two models are
reduced (Figure 7). Annual NPP totaled 291 versus 313 gC m− 2 yr− 1 in MIMICS‐CN and CASA‐CN, respec-
tively; an increase of 34% and 18%, relative to their initial rates. Concurrently, in both models, warmer soil
temperatures and higher productivity accelerate soil biogeochemical transformations. By the end of the historical
period, annual heterotrophic rates increased by 30% and 14% in MIMICS‐CN and CASA‐CN, respectively, while
net N mineralization rates increased by 39% and 20%, relative to their initial rates. These larger increases in N
mineralization rates in MIMICS‐CN reflect increases in SOM turnover as well as lower soil C:N ratio, compared
to the CASA‐CN simulations. In both models, this increases inorganic N availability, decreases the extent of N
limitation, and fuels greater NPP. Although MIMICS‐CN shows a stronger acceleration of NPP and HR fluxes
over this domain, it still has dampened terrestrial C uptake (regional mean NEP = 9.1 and 10.0 gC m− 2 yr− 1 in
MIMICS‐CN and CASA‐CN, respectively). By comparison NEP fluxes over this domain for C‐only models show
much larger spread (regional mean NEP = − 12.0 and 10.9 gC m− 2 yr− 1 of MIMICS‐C and CASA‐C, respec-
tively). Thus, inclusion of coupled CN biogeochemistry dampens the net carbon cycle response of both models

Figure 4. Spatial distribution of mean (a) soil C:N, (b) microbial biomass C:N, (c) litterfall C:N, and (d) the relative abundance of MICr:MICK that were simulated by the
MIcrobial‐MIneral Carbon Stabilization‐carbon‐nitrogen model at initialization (1901–1920).
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over the historical period, relative to the C‐only models, a result that is also evident in our global results
(Figure 6f).

4. Discussion
With common boundary conditions, the addition of coupled CN biogeochemistry to the MIMICS and CASA soil
biogeochemical models produces global‐scale results that are largely comparable with their respective C‐only
versions (Table 1). Steady‐state soil C pools and turnover times that are simulated by MIMICS and CASA
still show notable differences in their global sums and latitudinal distribution (Figures 2 and 3). Furthermore,
simulation of coupled CN biogeochemistry dampens the C cycle response in transient simulations. Increasing N
limitation in CASA‐CN resulted in lower rates of vegetation C accrual over the historical period, compared with

Figure 5. Soil texture and litter quality effects on soil C:N ratio that are simulated in (a) MIcrobial‐MIneral Carbon
Stabilization‐carbon‐nitrogen (MIMICS‐CN) but not (b) Carnegie‐Ames‐Stanford Approach (CASA‐CN). MIMICS‐CN
assumes that clay content and litterfall chemistry interact to determine bulk soil C:N ratios. By contrast, CASA‐CN applies a
biome‐specific soil stoichiometric parameterization and does not reflect influences of soil texture or litter quality on soil C:N
ratios. Coarse woody debris stoichiometry is considered in the litterfall C:N ratio in MIMICS‐CN, but not in CASA‐CN,
which produces different litterfall stoichiometry estimates between the two models. The color bars used here match the one
used in Figure 4c.
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the C‐only simulations (Table 2, Figure 6); a finding that is consistent with previous modeling studies (Thornton
et al., 2007; Y. P. Wang et al., 2010; Zaehle et al., 2010). By contrast, vegetation C accrual in MIMICS‐CN nearly
matched the MIMICS‐C version of the model (Table 2). This occurred because higher rates of N mineralization
were fueled by warming‐induced accelerations of SOM decomposition over high latitude ecosystems during the
historical period (Figures 6 and 7, Figure S2 in Supporting Information S1 see also Wieder et al., 2018). Thus,
simulating CN biogeochemistry attenuated high latitude soil C losses that were simulated by MIMICS over the
historical period, which increased cumulative NEP, relative to MIMICS‐C.

Collectively, differences between MIMICS and CASA are larger than the effects of considering CN biogeo-
chemistry in the respective models (see also Wieder et al., 2018; Wieder et al., 2019). Differences in model
parameterizations and model structures are responsible for these findings, and should be explored in future
research (Luo et al., 2016; Pierson et al., 2022; Shi et al., 2018; Y. P. Wang et al., 2021; H. Zhang et al., 2020). For
example, more focused parameter calibration activities should reduce differences in steady‐state soil C turnover
time and stoichiometry between models (Figures 3 and 4). Subsequent transient responses to environmental
perturbations, therefore, would more precisely identify biogeochemical outcomes that are related to differences in
model structural assumptions. Although work presented here cannot definitively quantify the role of parametric
versus model structural uncertainty in our results, we discuss some of the theoretical differences between explicit
and implicit representations of microbial activity and their potential influence on emergent properties of the
biogeochemical system.

The relatively subtle differences between C and CN versions CASA and MIMICS reflect the use of common
boundary conditions in our simulations. Specifically, forcing the CASA vegetation model with the same GPP
prevents soil N feedbacks from altering total ecosystem carbon inputs to each grid cell, thereby muting potential C
cycle responses that are related to soil N biogeochemistry. More broadly, the similarity between C and CN
versions of the models reflect the independent conceptualization and parameterization of respective C‐only
configurations, with subsequent addition of nitrogen biogeochemistry using stoichiometric constraints. This
“carbon‐first” development is common in terrestrial biogeochemical models (see Thomas et al., 2015), but it may
reduce potential N feedbacks on the existing C‐based framework of the models. In the approach taken in
MIMICS, however, the simulated bulk soil C:N ratios are a more emergent property of the model, instead of static
input parameters.

In the discussion that follows, we describe how our results highlight differences in the underlying assumptions of
MIMICS and CASA. Subsequently, we discuss the advantages and drawbacks of using SOM C:N stoichiometry
as an emergent property in soil biogeochemical models. Finally, we explore implications and future directions for
applying microbial explicit structures to explore coupled C‐nutrient dynamics in land models.

Table 2
Summary of the Change in Annual Fluxes and States Simulated by MIcrobial‐MIneral Carbon Stabilization (MIMICS) and
Carnegie‐Ames‐Stanford Approach (CASA) Models With Carbon‐Nitrogen (CN) and C Biogeochemistry at the End of the
Historical Period

Δ in fluxes and states MIMICS‐CN MIMICS‐C CASA‐CN CASA‐C

GPP (Pg C yr− 1) 15.5 15.5 15.5 15.5

NPP (Pg C yr− 1) 5.5 5.6 5.5 5.6

HR (Pg C yr− 1) 5.4 5.7 4.5 4.9

Total soil C (Pg C) − 14 − 24 7 6

Total vegetation C (Pg C) 27 28 25 28

Microbial biomass (Pg C) 1.2 1.2 – –

Relative microbial biomass C (%) 0.1 0.1 – –

Net N mineralization (Tg N yr− 1) 119 – 107 –

Total soil C:N − 0.07 – − 0.03 –

Microbial C:N − 0.03 – – –

Note. Values represent global sums and means of annual data from 1995 to 2014 subtracted by those calculated at initiali-
zation in Table 1.
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Figure 6. Change in global ecosystem fluxes and states simulated by MIcrobial‐MIneral Carbon Stabilization and Carnegie‐Ames‐Stanford Approach (blue and orange
lines, respectively) with C and CN biogeochemistry (dashed and solid lines, respectively). Panels show changes in global annual (a) net primary production (NPP),
(b) nitrogen limitation of NPP (difference of CN and C simulations), (c) soil heterotrophic respiration, (d) net nitrogen mineralization (only for CN simulations), (e) total
soil C, and (f) cumulative net ecosystem production. In all plots, the change is calculated as the difference between annual global means from the historical simulation
and the initial (1901–1920) global mean.

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004156

WIEDER ET AL. 13 of 21



4.1. Underlying Model Assumptions

The representation of CN biogeochemistry does not modify the steady‐state turnover time of SOM pools that are
represented by CASA, but it does in MIMICS (Figure 2). Models that implicitly represent microbial activity
assume that the turnover time of SOM pools are determined by the inherent biochemical quality of substrates and
modified by environmental scalars (Luo et al., 2016; Schimel, 2001). Accordingly, CASA simulations show no
change in the inferred soil C turnover times with coupled CN biogeochemistry. By contrast, models that explicitly
represent microbial activity assume that SOM turnover times are influenced by the size and activity of microbial
biomass pools. This has important implications for both steady‐state soil C pools, as well as seasonal dynamics of
heterotrophic respiration (Basile et al., 2020; Jian et al., 2021) and N mineralization fluxes in microbially‐explicit
models like MIMICS (Figure 7).

Microbial biomass pools in MIMICS both build and decay SOM. The size of microbial biomass pools simulated
in the model are proportional to litterfall C inputs (Wieder, Grandy, et al., 2015). Nitrogen limitation of NPP
reduces litterfall, which also reduces microbial biomass pools that are simulated by MIMICS‐CN (Table 1;
Figure 3). Across all gridcells globally, the response of soil C turnover times in MIMICS‐CN is negatively
correlated with these changes in microbial biomass (Figure 2c). Thus, N limitation of NPP in the MIMICS‐CN
simulations reduces microbial biomass C and microbial catabolic potential to decompose SOM. This results in
longer soil C turnover times, relative to the MIMICS‐C simulations in MIMICS‐CN. We see the largest effects of

Figure 7. Mean annual cycle of ecosystem fluxes and states simulated by MIcrobial‐MIneral Carbon Stabilization and
Carnegie‐Ames‐Stanford Approach (blue and orange lines, respectively) with coupled carbon‐nitrogen biogeochemistry at
the start (1901–1905; dashed line) end of the historical simulation (2010–2014; solid lines) over Northern Europe (60–70°N
and 0–100°E). Panels show the annual cycle in the regionally averaged (a) net primary production (NPP), (b) soil
temperature, (0–50 cm) (c) mineral N stocks, (d) heterotrophic respiration, (e) N limitation of NPP, and (f) net N
mineralization rates.
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N‐limitation on NPP across high latitude ecosystems (Figure S2 in Supporting Information S1), where N effects
on SOM turnover times are also most pronounced (Figure 2).

Explicitly representing microbial activity also influences temporal dynamics of soil biogeochemical fluxes that
are simulated by MIMICS, and other microbial explicit models (Y. Huang et al., 2021). This is evident in the
higher interannual variability of heterotrophic respiration and N mineralization fluxes that are simulated by
MIMICS‐CN (Figure 6). For example, regional biogeochemical fluxes that are simulated by MIMICS‐CN show
higher seasonal amplitude, a larger response to warming over the historical period, and a slight temporal lag in
peak fluxes, relative to the CASA‐CN simulations (Figure 7). Previous work found similar patterns with C‐only
versions of these models (Wieder et al., 2018) that have important implications on global estimates of terrestrial
net ecosystem exchange of CO2 with the atmosphere (Basile et al., 2020). The differences simulated by MIMICS
and CASA, therefore, present opportunities for future studies to consider how changes in microbial physiology
and phenology may impact the temporal dynamics of N mineralization rates and their feedback to ecosystem C
and N fluxes under climate change scenarios.

The mathematical representation of nutrient limitation in land models continues to be challenging (Kou‐Gies-
brecht et al., 2023; Thomas et al., 2015). We recognize that CASA‐CNP applies a relatively simplistic approach to
plant N limitation by downregulating NPP and heterotrophic respiration rates when inorganic N pools are small
(<1g N m− 2; Y. P. Wang et al., 2010). Similar assumptions are made by other microbial implicit soil biogeo-
chemical models, which calculate potential rates of soil biogeochemical fluxes that are downregulated by nutrient
availability (Lawrence et al., 2019; Yang et al., 2019; Zhu et al., 2019). By contrast, potential rates of litter and
SOM decomposition are not downregulated by inorganic N availability in MIMICS‐CN (Kyker‐Snowman
et al., 2020). Instead, if N availability is inadequate to meet microbial stoichiometric demands, then microbes
reduce their effective CUE through overflow respiration fluxes that essentially burn off the excess carbon being
decomposed. Additionally, the target stoichiometry of microbial communities varies as a function of litter quality
in MIMICS‐CN. Thus, the relative abundance of microbial functional groups shifts as a function of litter quality,
but so too do their target C:N ratios (Figure 4; Equation 1). Although this approach still simplifies the diversity of
strategies different decomposers use to meet stoichiometric imbalances between microbial communities and their
resources (Mooshammer et al., 2014; Zechmeister‐Boltenstern et al., 2015), the assumptions made in MIMICS‐
CN are more in line with concepts of microbial trait theory than those in CASA‐CN.

In MIMICS, the size of the microbial biomass pool moderates SOM turnover times, and therefore N minerali-
zation rates (Figure 2c). Accordingly, the relative size of microbial biomass pools, as a fraction of total soil C
stocks, is a useful, first‐order benchmark by which to evaluate microbial explicit models (Fierer et al., 2009;
Serna‐Chavez et al., 2013; Xu et al., 2013). The parameterization of MIMICS simulates larger relative microbial
biomass pools in wetter ecosystems that support higher NPP (tropical and temperate forests) and smaller relative
microbial biomass pools in drier, lower productivity regions (Figure 3c). This pattern aligns well with obser-
vational estimates synthesized by Serna‐Chavez et al. (2013), who similarly found a correlation between moisture
availability and relative microbial biomass C. We note that another synthesis (Xu et al., 2013) reports similar
patterns, but also reports even higher relative microbial biomass C in deserts.

Beyond microbial biomass, cross‐biome differences in microbial traits may ultimately be more valuable for
informing and evaluating models that explicitly represent microbial activity. For example, plant trait variation
across environmental gradients may be critical for representing biotic control (and variation) in terrestrial energy,
water, and biogeochemical fluxes (Butler et al., 2017; Díaz et al., 2022). Similar information about environmental
controls over soil microbial traits will be critical to further developing models that explicitly represent microbial
activity. For example, cross‐system syntheses suggest that the microbial strategies and biogeochemical function
in arid systems may be distinct from more mesic environments (Fierer et al., 2012). Historical climate legacies
may influence the physiological response of microbial communities to environmental change (Bradford
et al., 2021; Evans & Wallenstein, 2014; Hawkes et al., 2020; Polussa et al., 2021). Finally, the phenology of
microbial activity may lead to distinct seasonal shifts in microbial community composition (Lipson &
Schmidt, 2004). In summary, mounting evidence suggests that microbial physiological traits show ecologically
important variability over space and time, but they remain coarsely represented in the global parameterization of
MIMICS‐CN presented here. Thus, we see opportunities to further refine the model structure and parameteri-
zations to improve the representation of microbial community composition and activity.
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4.2. Stoichiometry as an Emergent Property

The stoichiometry of SOM in MIMICS‐CN is an emergent property of the model, presenting opportunities to
investigate model assumptions that produce variations in microbial biomass and SOM stoichiometry across
climate, ecosystem, and edaphic gradients. In MIMICS‐CN we assume that the higher catabolic capacity of fast
growing copiotrophic microbial communities require more N and, therefore, these communities have a lower
microbial biomass C:N ratio than slower growing oligotrophic communities. We also assume that the chemical
quality of litter inputs modifies microbial biomass C:N, similar to assumptions made about litter quality and SOM
stoichiometry in CASA and the CENTURY model (Parton et al., 1993). This results in relatively constrained
estimates of microbial biomass C:N by MIMICS‐CN, consistent with findings from observational syntheses
(Cleveland & Liptzin, 2007; Xu et al., 2013). The spatial variation in microbial stoichiometry that is simulated by
MIMICS is consistent with observationally derived extrapolations across latitudes (Figure 3f; Gao et al., 2022; Xu
et al., 2013) and largely reflects differences in the relative abundance of fast and slow growing microbes and the
chemical quality of litter inputs (Figures 4 and 5). Still, real ecosystems have larger variation in microbial
stoichiometry than the MIMICS‐CN simulations presented here (Kyker‐Snowman et al., 2020), presenting op-
portunities to deepen understanding of the ecological factors that may mediate microbial community stoichi-
ometry within and among ecosystems.

In MIMICS‐CN we not only assume that microbial biomass pools determine rates of decomposition, but also the
formation of persistent SOM (orange lines, Figure 1). Accordingly, the stoichiometry of SOM pools shows a
strong microbial signature, in line with current understanding of SOM formation (Figure 4; Kyker‐Snowman
et al., 2020; Whalen et al., 2022). This results in somewhat narrower latitudinal gradients and spatial variation
in SOMC:N than observationally derived estimates (Figure 3e). Collectively, however, MIMICS‐CNmakes clear
assumptions that litter quality and soil texture are dominant controls over bulk soil C:N ratios that are simulated
across ecosystems (Figure 5). Bulk soil C:N values more broadly reflect the relative abundance of physically
versus chemically protected SOM, as expected theoretically and shown in observational data (Buchkowski
et al., 2019; Cotrufo et al., 2019). For example, we assume clay‐rich soils have a higher proportion of total SOM
stocks in physicochemically protected (MAOM‐like) pools (Grandy & Neff, 2008; Wieder et al., 2014). In
MIMICS‐CN the SOMp pool has a low C:N ratio that reflects the dominant role of microbial residues in forming
this persistent pool of SOM that has long turnover times. By contrast, in sandier soils MIMICS‐CN assumes a
higher proportion of total SOM stocks are in chemically protected (POM‐like) pools. The SOMc pool has a higher
C:N ratio that reflects greater contributions of plant residues. Relative toMIMICS‐C, the parameterization used in
MIMICS‐CN assumes that a greater fraction of structural litter inputs bypass the microbial filter to form SOMc,
which is similar to a POM pool (see also Kyker‐Snowman et al., 2020). This modification was needed to increase
the total soil C:N that is simulated in MIMICS‐CN, although we also recognize that the current parameterization
may overestimate the size of the SOMc pool globally, and especially at high latitudes (Georgiou et al., 2024;
Wieder et al., 2019).

Potential underestimation in bulk soil C:N ratios that are simulated byMIMICS‐CN also underscore challenges in
understanding plant versus microbial contributions to SOM formation (Simpson et al., 2007; Whalen et al., 2022).
This is especially true for SOM that is protected by minerals and aggregates, which tend to have longer turnover
times. In MIMICS‐CN, we assume that plant‐derived biomolecules have a higher C:N ratio than those that are
microbial‐derived (Cleveland & Liptzin, 2007; Mooshammer et al., 2014), reflecting stoichiometric differences
that may be helpful in evaluating the underlying assumptions in the model. Notably, recent work finds that plant‐
derived biomolecules are abundant within protected SOM, especially in forested ecosystems (Angst et al., 2021).
Elsewhere, Heckman et al. (2023) found that MAOM from humid, forest soils tends to have higher C:N ratios that
is less decomposed than MAOM from drier, grassland ecosystems. Additionally, exo‐enzyme transformation of
plant inputs, as opposed to microbial turnover, may increase OM contribution to MAOM with a more plant‐like
signature (Liang et al., 2017). Collectively, these findings underscore broader uncertainties in quantifying plant
versus microbial contributions to SOM formation (Whalen et al., 2022), but they also suggest that the current
parameterization of MIMICS‐CN may overemphasize the importance of microbial biomass contributions to
protected SOM, which may also explain the underestimation of bulk soil C:N ratios in our results.

In contrast to the emergent stoichiometry that reflects underlying assumptions made in MIMICS‐CN, spatial
variation in soil stoichiometry simulated by CASA‐CN is less nuanced (Figure 5). In models that implicitly
represent microbial activity (including CASA‐CN) receiver pool stoichiometry is parameterized, either with a

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004156

WIEDER ET AL. 16 of 21



fixed value for particular pools (e.g.,; lower C:N targets for the passive pool, ∼11–12, compared to the slow pool,
C:N ∼12–20), that may also vary PFT (Koven et al., 2013; Y. P. Wang et al., 2010). This PFT‐specific
parameterization of SOM stoichiometry results in latitudinal gradients of soil C:N ratios simulated by CASA‐
CN (Figure 3e). Stoichiometric flexibility is achieved through a linear function between soil C:N ratios and
soil mineral N availability, which reduces receiver pool demand for N when mineral N availability is low and
buffers soil C turnover from becoming limited by inorganic N availability (Bonan et al., 2013; Meyerholt &
Zaehle, 2015; Parton et al., 1993; Y. P. Wang et al., 2010). Warmer sites have higher N mineralization rates and
(slightly) lower soil C:N ratios, but in general soil stoichiometry simulated by CASA‐CN largely reflects the PFT‐
specific parameterization applied in the model. While this parameterization of stoichiometric flexibility reflects
foundational understanding of N mineralization, it has recently been suggested that N mineralization may be
limited by desorption of N‐rich MAOM, which is not well represented in MIMICS‐CN or CASA‐CN (Jilling
et al., 2018, 2021; Schimel et al., 2004).

4.3. Implications and Future Directions

Our results illustrate the feasibility of conducting global scale simulations with a microbial explicit soil
biogeochemical model under climate change scenarios. In both MIMICS and CASA simulations the inclusion of
CN biogeochemistry attenuates or dampens the magnitude of ecosystem C responses to climate change over the
historical period. The explicit representation of microbial activity in MIMICS‐CN modifies steady‐state and
transient behavior of the model, relative to MIMICS‐C. For example, by reducing litterfall and microbial biomass
C, representing CN biogeochemistry increases the steady‐state turnover time of SOM that is simulated by
MIMICS‐CN. Moreover, whereas nutrient limitation typically slows down decomposition of SOM pools that are
simulated by microbial implicit models, MIMICS does not share this assumption, allowing for overflow respi-
ration of excess C instead. However, concentration alone may not predict nutrient availability and future model
development could include plant and microbial competition and other mechanisms underlying nutrient
availability.

Beyond this direct consideration of nutrient limitation, shifts in plant and microbial resource allocation in
response to global change drivers are important to consider, but only rudimentarily represented in the biogeo-
chemical model testbed. For example, elevated CO2 and N enrichment can alter plant belowground allocation,
fine root stoichiometry, and microbial community composition (Drigo et al., 2010; Jia et al., 2023; Knops
et al., 2007). Recent evidence shows that belowground C inputs are more efficiently stabilized on mineral surfaces
and in aggregates (Austin et al., 2017; Sokol & Bradford, 2018). At the same time, root exudates and organic acids
can prime decomposition of existing SOM and even destabilize MAOM to accelerate heterotrophic respiration
and ecosystem C losses (Keiluweit et al., 2015; van Groenigen et al., 2014). Thus, the net effects of changing
belowground C inputs on the long‐term persistence of SOM, N mineralization rates, and feedbacks to NPP ul-
timately influence the magnitude and direction of net terrestrial exchange of CO2 with the atmosphere. Current
assumptions made in the biogeochemical model testbed do not easily allow consideration of these dynamics.
Future research will refine understanding of plant‐soil feedbacks and apply these insights in an ensemble of
models that represent coupled CN biogeochemistry.

Finally, by allowing SOM stoichiometry to be an emergent property of the model, we see opportunities to use
MIMICS‐CN to deepen understanding of plant versus microbial sources of persistent SOM (Whalen et al., 2022).
MIMICS‐CN could also be altered to test alternative controls of N mineralization, such as desorption from the N‐
rich MAOM pool (Jilling et al., 2018). Further, soil C:N is a valuable metric for understanding soil C storage, N
availability, and the N requirement of C storage (Averill, 2014; Cotrufo et al., 2019). The emergent stoichiometry
in MIMICS‐CN will allow for exploration of potential sensitivities of soil C:N to environmental change across
gradients in soil properties, ecosystems, and climate, which have been inconsistently documented in observational
studies (Keller et al., 2022; Rocci et al., 2022; Yue et al., 2017). Moreover, theory and measurements point to
organisms' ability to optimize metabolic carbon use efficiency to overcome elemental imbalances between
substrates and organismal stoichiometry (Manzoni et al., 2017). Future work should evaluate if the parameter-
ization of MIMICS‐CN can replicate these observed patterns across terrestrial ecosystems. Overall, applying
coupled CN biogeochemistry in a microbially explicit model at the global scale for the first time allowed us to
evaluate the effect of including microbes explicitly and also N, rather than solely C, which provided insight for
model parameterizations but also future avenues of exploration.
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