'.) Check for updates

A ’ I l ADVANCING
nu EARTH AND

= SPACE SCIENCES

JGR Earth Surface

RESEARCH ARTICLE
10.1029/2023JF007326

Key Points:

o WaterGAP3 water model data
overestimate daily runoff variability in
snowmelt-influenced watersheds

e Global relationships between mean
runoff and daily runoff variability
are strongly mediated by snowmelt
fraction

e Topographic drivers of mean runoff,
snowmelt fraction, and daily runoff
variability are best assessed at the
mountain range scale

Supporting Information:

Supporting Information may be found in
the online version of this article.

Correspondence to:

A. M. Forte,
aforte8 @lsu.edu

Citation:

Forte, A. M., & Rossi, M. W. (2024).
Stochastic in space and time: 1.
Characterizing orographic gradients in
mean runoff and daily runoff variability.
Journal of Geophysical Research: Earth
Surface, 129, €2023JF007326. https://doi.
org/10.1029/2023JF007326

Received 4 JUL 2023
Accepted 8 JAN 2024

Author Contributions:

Conceptualization: A. M. Forte, M. W.
Rossi

Data curation: A. M. Forte

Formal analysis: A. M. Forte, M. W.
Rossi

Investigation: A. M. Forte, M. W. Rossi
Methodology: A. M. Forte

Resources: M. W. Rossi

Visualization: A. M. Forte

Writing — original draft: A. M. Forte
Writing — review & editing: A. M.
Forte, M. W. Rossi

© 2024. American Geophysical Union.
All Rights Reserved.

Stochastic in Space and Time: 1. Characterizing Orographic
Gradients in Mean Runoff and Daily Runoff Variability
A. M. Forte! (2 and M. W. Rossi?

'Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA, *Earth Lab, Cooperative
Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA

Abstract Mountain topography alters the phase, amount, and spatial distribution of precipitation. Past
efforts focused on how orographic precipitation can alter spatial patterns in mean runoff, with less emphasis
on how time-varying runoff statistics may also vary with topography. Given the importance of the magnitude
and frequency of runoff events to fluvial erosion, we evaluated whether orographic patterns in mean runoff
and daily runoff variability can be constrained using the global WaterGAP3 water model data. Model

runoff data are validated against observational data in the contiguous United States, showing agreement

with mean runoff in all settings and daily runoff variability in settings where rainfall-runoff predominates.

In snowmelt-influenced settings, runoff variability is overestimated by the water model data. Cognizant of
these limitations, we use the water model data to develop relationships between mean runoff and daily runoff
variability and how these are mediated by snowmelt fraction in mountain topography globally. A global
analysis of topographic controls on hydroclimatic variables using a random forest model was ambiguous.
Instead, relationships between topography and runoff parameters are better assessed at the mountain range
scale. Rulesets linking topography to mean runoff and snowmelt fraction are developed for three mid-latitude
mountain landscapes—British Columbia, European Alps, and Greater Caucasus. Increasing topographic
elevation and relief together leads to higher mean runoff and lower runoff variability due to the increasing
contribution of snowmelt. The three sets of empirical relationships developed here serve as the basis for

a suite of numerical experiments in our companion manuscript (Part 2, Forte & Rossi, 2024a, https://doi.
org.10.1002/2023JF007327).

Plain Language Summary It has long been understood that mountain ranges can have profound
influences on the location and intensity of precipitation, for example, through the formation of rain shadows.
Less clear is how these “orographic effects” are reflected in the details of river runoff, specifically how much
runoff varies from day-to-day. Understanding this variability of runoff is important as differences in variability
directly influence how rivers respond to changes in rock uplift rate. Here, we use results from a global water
model integrated with topography data to explore how runoff variability is related to topography in high relief
landscapes. Consistent with prior work, we find and expand on the observation that mean runoff and runoff
variability are inversely correlated and that the nature of their relation fundamentally depends on how much
runoff comes from snowmelt as opposed to rain. In turn, both mean runoff and the importance of snowmelt are
positively correlated with aspects of topography. Our results imply that incorporating variability into models of
coupled developing orographic patterns in runoff and landscape evolution is critical and we identify a simple
framework within which to develop such models. Examples of these models are presented in a companion work
(Part 2, Forte & Rossi, 20244, https://doi.org.10.1002/2023JF007327).

1. Introduction

Weather systems develop over the course of hours to weeks depending on their size (e.g., Trenberth et al., 2003),
while landscapes evolve over millennia and longer. Climatic drivers of the long-term evolution of mountain
belts (Whipple, 2009) are impeded by this mismatch in timescale. Modeling weather and hydrology over long
timescales is a substantial computational challenge (e.g., Shen et al., 2021), and thus the choices made in the
representation of the hydroclimate are often baked into the simplified process laws we use to construct landscape
evolution models. For fluvial landscapes, the most widely used model for river incision and relief develop-
ment is the stream power model (Howard, 1994; Whipple & Tucker, 1999). The details of this model have been
expounded elsewhere (e.g., see reviews in Kirby & Whipple, 2012; Lague, 2014; Whipple & Tucker, 1999;
Whipple et al., 2022; Whittaker, 2012) and we present a more complete synopsis in Part 2 (Forte & Rossi, 2024a).
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In short, the shear stress formulation of stream power asserts that fluvial erosion can be expressed as the product
of three terms: a coefficient describing the efficiency of erosion, drainage area raised to an exponent, and local
slope raised to another exponent. The latter two terms and the ratio of the exponents can be constrained using
topographic data alone (e.g., Wobus et al., 2006), leaving the coefficient of erosion and the value of the slope
exponent to account for a large number of important process parameters including climate. While unpacking the
assumptions underlying generalized forms of stream power have been addressed by many papers (e.g., Kirby &
Whipple, 2012; Lague, 2014; Whipple et al., 2022), we highlight two sets of assumptions of stream power that
motivate our analysis of global runoff data. First, it is common to use a drainage area as a proxy for discharge.
Orographic precipitation (Galewsky, 2009; Roe, 2005) is mimicked in 1D stream power models by adding addi-
tional area dependence on runoff that alters concavity (Roe et al., 2002) and fluvial relief (Roe et al., 2003). In
2D, these basic effects tend to be more ambiguous (Han et al., 2014) and produce discordance between mainstem
and tributary morphology (Leonard & Whipple, 2021). Second, simple stream power typically assumes a charac-
teristic discharge, thus entailing either that erosion thresholds are negligible or that the effects of thresholds are
subsumed within the stream power parameters itself. This latter possibility has now been carefully examined
by changing the temporal scale over which river erosion is modeled (i.e., at the daily scale). By integrating
stream power over the probability distribution of flows above erosional thresholds (Lague et al., 2005; Snyder
et al., 2003; Tucker, 2004; Tucker & Bras, 2000), the response of river profiles to climate is not only embedded in
the coefficient of erosion but also the effective slope exponent (DiBiase & Whipple, 2011; Lague, 2014). While
the roles of both orographic precipitation and stochastic climate in stream power have each generated a lot of
studies on their own, there has been less effort examining them together.

Integrating orographic effects with stochastic runoff into stream power models requires better constraints on how
mean runoff and runoff variability are related (or unrelated) to each other via topography. Prior studies show
that mean runoff and the shape of daily runoff distributions are correlated with each other in rainfall-dominated
systems (Molnar et al., 2006; Rossi et al., 2016). Figure 1b illustrates this for the contiguous United States
using streamflow data from select watersheds where the impact of human disturbance and management has
been minimized (Figure 1a). To select watersheds to motivate and validate the global water model data that
we use for most of this effort (described in greater detail later), we used the Geospatial Attributes of Gages for
Evaluating Streamflow (GAGES-II) reference gauges and the Hydro-Climatic Data Network (HCDN-2009).
HCDN-2009 is a subset of GAGES-II and thus includes a smaller number of sites. Details for the selection of
the stations used for validation are described below along with how we derived the shape parameters of each
distribution. However, note here that the higher shape parameters shown in Figure 1 indicate lower runoff vari-
ability. The empirical data were split into two broad relationships. The separation of the two trends appears to
correspond to mean annual temperatures of around 0-10°C (Figure 1b), which we hypothesize is due to rela-
tively small changes in the fraction of mean annual streamflow that is derived from snowmelt. While prior work
has examined how orographic patterns in the spatial distribution of snow alter stream power predictions (Anders
et al., 2008), we are not aware of any studies showing how snowmelt alters stochastic runoff and stream power
predictions. As such, coupled models of climate and tectonics using stream power (e.g., Beaumont et al., 1992;
Willett, 1999) may be missing important feedback between topographic relief and snowmelt as mountain ranges
Zrow.

The lack of focus on integrating orographic precipitation and stochastic runoff into stream power models is
likely due to data limitations and the dearth of simple hydrological relations that can be upscaled to landscape
evolution timescales. Precipitation observations provide a starting point though simplifying water inputs into
streamflow outputs is riddled with nonlinearities that can be hard to generalize. Rainfall runoff is nonlinear due
to scaling properties within watersheds and dynamic nonlinearities in hillslope runoff generation (e.g., Sivapalan
et al., 2002). Furthermore, the relative contribution of different runoff generation mechanisms (i.e., extreme
precipitation, soil moisture excess, snowmelt) to flood frequency is only beginning to be characterized under
modern climate conditions (e.g., Berghuijs et al., 2019), let alone for time-varying ones. Process-based hydro-
logical models help unpack these nonlinearities for a given setting (Fatichi et al., 2016) but are typically applied
at small spatial scales. Our approach is to use a global water model (Alcamo et al., 2003; D&l et al., 2003) to
help constrain how topography, runoff generation, and streamflow statistics can be generalized for river incision
modeling more broadly.
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Figure 1. Observational stream gauge data used in this study includes (a) gauged sites in the contiguous United States that
are minimally impacted by human management, which are then used to characterize (b) the relationship between mean runoff
and the shape parameters describing daily runoff distributions for each stream gauge. In panel (a), a subset of the reference
stations in the GAGES-II network were used for the water model validation presented below (i.e., filtered HCDN-2009).

In panel (b), two broad trends between mean runoff and daily runoff variability organize around mean annual temperature,
which prior authors have interpreted as reflecting the transition from snowmelt-dominated to rainfall-dominated systems
(Rossi et al., 2016).

2. Background
2.1. Orographic Effects

Topography perturbs the equilibrium structure of the atmosphere by adding roughness, obstructing air masses,
and serving as a heat source (Smith, 1979). The conventional treatment of orographic precipitation in landscape
evolution studies (e.g., Beaumont et al., 1992; Willett, 1999) focuses on the thermodynamic implications of
mountain topography on how precipitation is extracted from the atmosphere via forced ascent. The saturation
vapor pressure of water in air is related to its temperature via the Clausius-Clapeyron equation (see review in
Roe (2005)). As air masses move up and over mountain topography, precipitation on windward slopes increases
as partially saturated air cools during ascent. A “rain shadow” subsequently develops when the relatively drier
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air descends and warms on leeward slopes. This first-order description is well-rooted in atmospheric physics and
observations (Barros & Lettenmaier, 1994). To extend these dynamics to air parcels flowing over more complex
terrain, Smith and Barstad (2004) developed a linear model of orographic precipitation that accounts for atmos-
pheric dynamics, upwind advection, and downslope evaporation. In this context, linearity does not refer to a
single function describing rainfall but is instead a property of the system of differential equations used such that
they are analytically tractable. Because settling velocities of snow are an order of magnitude lower than rain,
this model can be used to examine how snow alters the spatial distribution of water inputs (Anders et al., 2008).
However, one notable limitation to the linear model of orographic precipitation is that it does not account for
the blocking of air by terrain, a nonlinear process that depends on the Brunt-Vaisala frequency describing the
horizontal propagation of waves, horizontal windspeed, and orogen-scale relief (Barros & Lettenmaier, 1994;
Galewsky, 2009; Jiang, 2003). Given that one of the key targets of landscape evolution models is to couple
topography to climate through time, linear models of orographic precipitation are perhaps best suited to smaller
mountain ranges.

Another approach toward characterizing orographic precipitation is to use climatological observations, espe-
cially since the advent of satellite-based remote sensing. For example, the Tropical Rainfall Measuring Mission
(TRMM) was spaceborne for 17 years and provided new insights into complex spatial patterns in rainfall set up
by high topography (e.g., Bookhagen & Burbank, 2006; Bookhagen & Strecker, 2008; Deal et al., 2017; Forte
et al., 2016; Nesbitt & Anders, 2009). One of the key insights from these studies is the central importance of
local relief in driving spatial patterns in rainfall. For example, in the Himalaya, TRMM rainfall revealed two
narrow bands of rainfall that correspond to abrupt physiographic transitions into the Lesser Himalaya and into
the Greater Himalaya, which had not been previously identified (Bookhagen & Burbank, 2006, 2010). As such,
spatial patterns derived from TRMM rainfall are increasingly being used to inform interpretations of river chan-
nel profiles (Adams et al., 2020; Bookhagen & Strecker, 2011; Leonard et al., 2023), though these approaches
typically assume mean rainfall is directly proportional mean runoff. While other remote sensing products like
MODIS can also help constrain snow cover to construct a full water budget (Bookhagen & Burbank, 2010), such
products tend to require temperature-index or process-based hydrological models to reliably estimate snowmelt
contributions to streamflow (Walter et al., 2005).

Given the importance of snowmelt to streamflow in mid-latitude mountain ranges (Barnett et al., 2005; Barnhart
et al., 2016), the difficulty of obtaining direct estimates of snowmelt leads to substantial uncertainty when using
remotely sensed rainfall data as a proxy for runoff. Altering the phase of precipitation can cause up to 100%
reductions in snowmelt contributions to streamflow in settings near the freezing temperature window (Adam
et al., 2009). This has prompted some authors to suggest that climate change driven reductions in snowmelt frac-
tion generally lead to lower streamflow as snowfall gives way to rain (Berghuijs et al., 2014). Such arguments rest
on the premise that snowmelt runoff will lead to higher runoff ratios, all other things being equal, because solid
water is stored in the snowpack and released more slowly than rainfall runoff. Better understanding of orographic
effects on the snowmelt contribution to streamflow in mountain landscapes is sorely needed to improve stream
power models of river incision.

2.2. Stochastic River Incision

Early efforts to integrate stochastic hydrology into stream power models of river incision (Snyder et al., 2003;
Tucker, 2004; Tucker & Bras, 2000) were based on the pioneering work of Eagleson (1978). By simulating rain-
fall events as Poisson distributions of intensities, durations, and inter-storm periods, rainfall events were repre-
sented as rectangular pulses that can be converted to runoff and routed across the landscape in order to evaluate
the impact erosion thresholds on landscape evolution. Complementary efforts by Lague et al. (2005) chose to
simulate streamflow directly at the daily time step using the stochastic “precipiton” model. This model considers
the time travel distribution of the quanta of precipitation that produces runoff and generates daily streamflow
distributions that follow an inverse gamma distribution (Crave & Davy, 2001).

Despite the differences in the hydrologic assumptions made by these early modeling efforts, together they high-
lighted the need for adding stochastic events to stream power in order to interpret the long-term evolution of river
profiles. Under this view, the steady state form of river profiles was no longer a simple function of mean climate,
but instead reflected the complex interplay between the frequency of large flows and erosional thresholds set by
coarse sediment (Shobe et al., 2016) and the detachment of bedrock (Whipple et al., 2000). While the overall
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approach of these efforts was similar, the functional form of probability distributions of streamflow differed. The
use of daily data, while insufficient for short-duration flash floods, balances important tradeoffs in characterizing
magnitude-frequency relationships while also being tractable to simulate over landscape evolution timescales.
Poisson rectangular pulses always generate light-tailed, exponential, daily runoff distributions, while the inverse
gamma distribution is able to produce heavy-tailed distributions that do not have a finite variance, depending on
the value of the shape parameter. There is still an open question as to how heavy-tailed streamflow distributions
truly are (Malamud & Turcotte, 2006; Molnar et al., 2006), though the advantage of adopting these stochastic
frameworks is that they are well-suited to simulating both frequent and infrequent flows and thus determining
the geomorphically effective event (Huang & Niemann, 2006). Rossi et al. (2016) recently suggested that the
stretched exponential, or Weibull, distribution provides a flexible probability distribution that spans light-tailed
to apparently heavy-tailed distributions (Laherrere & Sornette, 1998), and thus is what we choose to fit observed
and model runoff daily runoff data below.

Regardless of how stochastic processes are represented, these early efforts prompted a large number of studies to
take a closer look at whether relationships between long-term erosion rates and river morphology can be better
explained using stochastic-threshold models of river incision (Campforts et al., 2020; Desormeaux et al., 2022;
DiBiase & Whipple, 2011; Forte et al., 2022; Scherler et al., 2017). While success is decidedly mixed, the
general outcome of using stochastic-threshold models has been to provide an alternative interpretation to nonlin-
ear relationships between river channel morphology and long-term erosion rates (Harel et al., 2016; Marder &
Gallen, 2023). In these cases, nonlinear relationships between river morphology and long-term erosion rates arise
because erosional thresholds are exceeded more frequently as erosion rate and relief increase. The climate driver
on river profile evolution is not the annual precipitation itself but how the soil water balance (Deal et al., 2018)
and the hydrologic structure of watersheds (Basso et al., 2023) mediate flood frequency. These concepts place
the central focus on water storage-discharge relationships (Botter et al., 2009; Kirchner, 2009) to condition how
rainfall events are converted to runoff ones. The same kind of framework can be used to account for seasonal
snowmelt contributions to streamflow (Schaefli et al., 2013).

3. Data Sets

Our overarching goal is to better parameterize 1D models of fluvial profile evolution that account for both stochas-
tic events and orographic controls on runoff generation. Model development is the focus of our companion manu-
script (Forte & Rossi, 2024a). The focus of this manuscript is on developing empirical relationships between
topography and daily runoff statistics in mountain settings. Note that runoff and streamflow, that is, discharge, are
not synonymous terms. For empirical data, streamflow data are typically what is measured and runoff is inferred
by normalizing the data by drainage area. For water model data, runoffs are simulated directly. We primarily rely
on three data sets: (a) a daily global water model derived from climate reanalysis data (WaterGAP3 data includ-
ing daily runoff), (b) observational stream gauge data from the contiguous United States (HCDN-2009 daily
streamflow), and (c) near global topographic data (SRTM-90 and derived HydroSHEDS v1 gridded elevation).

3.1. Hydrology Data

Because streamflow data availability and quality are globally variable, we sought a single global runoff data set
that could be used to interrogate modern relationships among topography, snowmelt, and runoff. We used the
Water Global Assessment and Prognosis (WaterGAP3), the most recent version of a 20+ year old global water
model (Alcamo et al., 2003; Dol et al., 2003). WaterGAP3 improves on prior versions by increasing the spatial
resolution from the original 0.5°-0.25° pixel size (Eisner, 2015) and is one model included in the Earth2Observe
Water Resource Reanalysis project (Schellekens et al., 2017). These model data have broad utility (e.g., Schmied
et al., 2014), including for parameterization of stochastic-threshold incision models of river incision (Campforts
et al., 2020). For this analysis, we downloaded the global, 20-year, daily time series from the Earth2Observe
portal (www.earth2observe.eu; last accessed 8 April 2022) spanning from 1 January 1980 to 31 December 1999.
Daily data represent the mean value of each variable for each day.

For each pixel and day, WaterGAP3 contains a large number of input and derived hydro-parameters, includ-
ing precipitation, runoff, discharge, and evapotranspiration. We primarily focus on the derived runoff variables
from WaterGAP3 but also briefly consider temperature and precipitation. Daily average surface temperature
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is not distributed with WaterGAP3, so we rely on another reanalysis product of identical resolution from the
Earth2Observe set, namely SURFEX-TRIP (Decharme et al., 2010, 2013). Surface temperature data are used to
help interpret variations within the WaterGAP3 runoff data. Runoff data are subdivided into three components in
WaterGAP3: surface runoff (R)), subsurface runoff (R ), and snowmelt (R, ), where total daily runoff (R)) is the
sum of the three. In the original WaterGAP3 data set, all of these components of runoff are denoted by the varia-
ble “Q.” We do not use this notation here given the common association of Q with discharge [L3/f] as opposed to
runoff [L/t]. For each pixel across the time-series, we calculated mean daily runoff (R,), mean daily precipitation (
P), means of each of the three runoff components (R, Ry, Rym), and Weibull shape (c) and scale (R) parameters
of the daily total runoff distributions (see Section 4.1 for details). Given our interest in probing the importance of
snowmelt, we also calculated the fraction of runoff contributed by snowmelt (SF), where:

|

SF = = 1

R

Similarly, we calculate baseflow fraction of runoff (BF), where:

x|

BF = ?” 2)
1

that we use to exclude watersheds with a substantial groundwater component from its daily fluxes.

To validate model runoff data, we used observational streamflow data from the Hydro-Climatic Data
Network—2009 (HCDN-2009) (Lins, 2012). These 743 stream gauges were identified by the USGS to be high
quality, long, continuous records for watersheds with minimal impact by humans (e.g., due to landcover change,
dams, and diversions). We downloaded streamflow data from the National Water Information System server
for the dates between 1 January 1980 and 31 December 1999, to compare directly with the WaterGAP3 data.
During the processing of individual HCDN-2009 time series data, any day that included provisional data or
data where there was an extra qualifier on the quality (e.g., “ICE”) was removed and treated as NaN data. We
characterize the completeness of the time series by dividing the number of days with reliable data by the total
number of days. Because HCDN-2009 stream gauges are a subset of the reference stations in the Gages for
Evaluating Streamflow version II (GAGES-II) network, we were able to use watershed boundaries provided by
Falcone (2011) to calculate watershed-averaged properties and normalize streamflow by drainage area. This latter
calculation was used as an estimate for daily runoff. Processing and validation of the WaterGAP3 runoff model
against HCDN-2009 observations is described in Section 4.2.

3.2. Topography Data

Because we are focused on how hydroclimatic parameters vary with topography in mountain settings, it is
necessary to pair the WaterGAP3 data with a global topographic data set. We largely used the HydroSheds v1,
15-arcsecond, digital elevation model (DEM) that is derived from SRTM elevation data (Lehner et al., 2008).
We also used the higher resolution SRTM-90 data (Farr et al., 2007) for watershed delineation when validating
WaterGAP3 against HCDN-2009 data. The HydroSheds v1 topographic data are used for two purposes: (a) to
screen for portions of the global surface where orographic feedbacks with climate are relevant, and (b) to develop
empirical relationships between topography and runoff statistics. With respect to data screening, we only used
WaterGAP3 data where the mean elevations are greater than 250 m above sea level and where local reliefs are
greater than 500 m. To calculate local relief at a fixed scale, we first reprojected the global geographic DEM
into an equal area cylindrical projection and then calculated local relief within a 2.5 km radius circular moving
window. This is a scale that prior studies have shown to linearly correlate with river channel steepness (e.g.,
DiBiase et al., 2010), and thus we expect it to be well suited to developing empirical relationships between river
morphology and local relief. After the relief calculation, we projected the data back into the original WGS 84
geographic coordinate system to facilitate calculation and comparisons with the rest of the data sets that were
also in geographic coordinate systems. The initial screening of the WaterGAP3 data using local relief is then
further filtered to exclude pixels where baseflow (Equation 2) exceeds 0.25, with an eye toward minimizing the
confounding factor of large groundwater contributions. To develop relationships between topography and runoff
statistics, we record minimum, mean, and maximum elevations within a WaterGAP3 pixel and the mean local
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relief within a WaterGAP3 pixel as calculated from the enclosed 60 HydroShed pixels (i.e., there are 60 Hydro-
Shed pixels within each WaterGAP3 pixel).

4. Data Analysis

To develop empirical relationships between topography and runoff statistics from WaterGAP3, it was first impor-
tant to figure out at which scale such relationships might emerge. To this end, we conduct both a global analysis
and a set of regional ones that broadly correspond to the mountain range scale. These empirical relationships
serve as the basis for the model development and analysis we conduct in Part 2 (Forte & Rossi, 2024a). There
are four main steps to the data analysis: (a) Characterization of statistical parameters for daily runoff; (b) Vali-
dation of WaterGAP3 model derived parameters with HCDN-2009 stream gage observations; (c) Global assess-
ment of topographic controls on runoff, runoff variability, and snowmelt fraction; and (d) Development of
regionally-based relationships between topographic metrics and runoff statistics.

4.1. Daily Distributions

A number of probability distributions have been considered for the problem of bedrock river incision,
including exponential (Snyder et al., 2003; Tucker, 2004), power law (Molnar et al., 2006), inverse gamma
(Campforts et al., 2020; DiBiase & Whipple, 2011; Lague et al., 2005; Scherler et al., 2017) and Weibull
(Forte et al., 2022; Rossi et al., 2016) distributions. We follow Rossi et al. (2016) and use a two-parameter
Weibull distribution to fit the right tail of the daily runoff distribution above a threshold value. Choosing
thresholds to fit empirical distributions is a notoriously vexing challenge (e.g., Dupuis, 1998) and makes
it more challenging to implement in numerical models (see Forte & Rossi, 2024a), though it enables better
fidelity to the observed right tail. For this analysis, the threshold is treated as a third parameter that is held
constant across sites to enable comparison of fit parameters. Above the threshold, distributions are described
by a shape parameter (c,) that describes daily variability and a scale (x,) parameter related to the mean of the
distribution, where:

cx—1 i
pdf(x; xo, ¢x) = O (i) exp‘l("/xo) x 3
X0 \ Xo

Because we are only fitting the right tail of the distribution, the parametric mean and the empirical mean need
not match. The mismatch between the two is a measure of how well tail fitting is able to represent the full
distribution. We use the fit parameters to characterize both daily precipitation (p,, ¢,) and daily runoff (r,, c,).
Interpretations of fit parameters primarily focus on the shape parameter because it describes the right tail of
daily values, which we colloquially refer to as the variability. Larger values of ¢, indicate lower variability (i.e.,
smaller relative differences between daily runoff values), where ¢, = 1 is equivalent to the exponential distri-
bution. The need for three parameters and the inability to analytically integrate the product of this distribution
with stream power is not ideal, posing important challenges to numerical simulations of bedrock rivers (Forte
& Rossi, 2024a).

To estimate shape parameters, we follow Wilson and Toumi (2005) and perform a linear fit on the natural log
linearized right tail of the exceedance frequency distribution above a threshold. On the transformed data, the
shape parameter, c,, is the slope of the regression, and the scale parameter, x,, is exp(-intercept/slope) of the
regression. Because parametric fits are sensitive to threshold choice, distribution parameters were calculated
using two thresholds for the daily runoff data: the upper 5% and upper 1% of daily values. These thresholds
reflect a compromise between fitting the majority of flows while also honoring the right tail, the latter of which
dictates the nonlinear relationship between channel steepness and long-term erosion rates. Figures and discus-
sion are based on the 1% threshold for both runoff and precipitation distributions. This corresponds to the event
magnitude that happens 3—4 times per year. While threshold choice did alter the best-fit values for c,, suggesting
that a simple Weibull distribution is not able to fully characterize all cases, this variation in c, did not substantially
alter the relative spatial patterns in the shape of the right tail. Runoff parameters were calculated on both the daily
streamflow data (HCDN-2009) and the daily total runoff data from WaterGAP3. Pixel-based values in Water-
GAP3 are not directly comparable to the watershed-averaged ones in HCDN-2009. In the following section, we
address this challenge in the context of validating water model runoff data against observations.
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4.2. Runoff Parameter Validation

Prior validation of WaterGAP3 data suggests that model data robustly reproduce mean river discharge from
gauging stations (Beck et al., 2017; Eisner, 2015; Schmied et al., 2014, 2020). None of these prior assessments
considered how well daily runoff variability is represented. Given the importance of daily runoff variability to
bedrock river incision modeling, it is thus important to assess the extent to which shape parameters calculated
from WaterGAP3 are consistent with those observed at stream gauges. For the sake of comparison, we first
screened the HCDN-2009 network using the same topographic criteria used to screen WaterGAP3. Namely, we
excluded watersheds where catchment relief (i.e., maximum minus minimum elevation within the catchment) is
less than 500 m and where mean elevation is less than 250 m. Of the retained sites, we also imposed the additional
criterion that HCDN-2009 daily runoff records are >95% complete within the WaterGAP3 time period (1 January
1980-31 December 1999). We also removed data that occur on leap days because these days are not calculated
in the WaterGAP3 time series.

Once candidate HCDN-2009 stations were identified for validation, we needed to process the WaterGAP3 data
to enable fair comparison. The first approach uses the mean runoff and runoff variability parameters calcu-
lated for each pixel in WaterGAP3. By oversampling these raster data sets of stochastic parameters to 1.5 s per
pixel, HCDN-2009 watershed boundaries were used to calculate spatially averaged values of runoff parameters.
While this treatment may be valid for small HCDN-2009 watersheds of similar scale to the WaterGAP3 pixels,
this calculation may be problematic for larger watersheds where runoff should be routed downstream. As such,
the second approach uses watershed boundaries to clip and route the WaterGAP3 data for each day within the
20-year time series. The mean runoff and shape parameter of the routed data are then calculated for the daily
routed data at the river outlet. For this computationally intensive approach, we used TopoToolbox (Schwanghart
& Scherler, 2014) to: (a) acquire SRTM-90 DEMs for each watershed via the OpenTopography API, (b) project
each DEM to the Universal Transverse Mercator projection, (c) clip each day of the WaterGAP3 data to the
watershed boundary and resample to the resolution of the DEM, (d) route discharge through the basin to build a
time series of daily runoff at the outlet of each watershed, and (e) calculate mean runoff and shape parameters
for the outlet time series.

4.3. Global Analysis

After understanding the strengths and limitations of WaterGAP3, these model data were used to identify the
strongest predictors of mean runoff and daily runoff variability globally. The global analysis used two comple-
mentary approaches: (a) Develop relationships between mean runoff and variability (e.g., Molnar et al., 2006;
Rossi et al., 2016) in a way that can account for the potential influence of snowmelt, and (b) Use unsupervised
machine learning to probe the WaterGAP3 data and help identify strong predictors of mean runoff, snowmelt,
and runoff variability.

For the first approach, we used the snowmelt fraction (Equation 1) to partition the filtered WaterGAP3 data (see
Section 3.1) into bins. Within each bin, we fit both a linear and a power law function relating mean runoff and the
shape parameters of each pixel within that bin. This approach was motivated by empirical (Rossi et al., 2016) and
ecohydrological modeling (Deal et al., 2018) studies that show how climatically driven gradients in daily runoff
variability differ between rainfall-runoff and snowmelt-runoff regimes. For example, Rossi et al. (2016) showed
that watersheds with lower snowmelt contributions were better described by a power law relationship between
mean runoff and its associated Weibull shape parameter. In contrast, regions with higher snowmelt contributions
showed a more linear relationship between these parameters. To compare the fits of both functions, we consider
both the RMSE and the reduced chi-square statistic under the view that minimization of RMSE and/or reducing
the chi-square statistic closer to one should indicate the “better” fit to the data.

In the second approach, we consider a larger suite of hydroclimatological, topographic, and geographic variables.
Random forest regression (RFR) was used to assess the relative importance of potential predictor variables with
respect to a given “target” variable (Gromping, 2009). Target variables are hydroclimatic ones chosen based on
their potential relevance to the relationship between mean runoff and runoff variability (i.e., mean temperature,
mean precipitation, mean runoff, daily runoff variability, and snowmelt fraction). The list of predictor variables is
broader and varied according to each target. Predictor variables included topographic (mean elevation, maximum
elevation, mean local relief), geographic (latitude), and hydroclimatic (mean temperature, mean precipitation,
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Figure 2. Global mean runoff from the WaterGAP3 water model
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snowmelt fraction) variables. We also attempted to thin predictor variables
and remove what amounts to duplicates, for example, as described in the
results, latitude is the primary predictor of mean annual temperature and thus
for other RFRs, we only include MAT as opposed to both MAT and latitude.
Ultimately, we are not interested in the prediction per se but to use the RFR
to help identify which variables emerge as the most viable candidates linking
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mean runoff, snowmelt fraction, and daily runoff variability. In particular, we

sought to discover which and whether any of the topographic metrics can be

60°E  120°E  180°|] | used to generalize hydroclimatic relationships that may co-evolve with grow-
ing topography. To perform the RFR, we used the RandomForestRegressor

within SciKit-Learn, using the default values and a seed for the random state

and bounds the geographic extent of the validation data used. The three of 0.
smaller colored boxes show the geographic extent of the three mid-latitude
regional case studies introduced in Section 4.4. 4.4. Regional Cases

As we discuss in the context of our findings below, the global analysis revealed

that generalizable relationships between topography and hydroclimatology
were difficult to isolate at this largest spatial scale. While the global analysis reinforced the notion that the snowmelt
fraction mediates the relationship between mean runoff and daily runoff variability, scatter in these relationships
clearly reflect the geographic diversity of montane hydrology. Furthermore, the lack of unambiguous topographic
predictors that could be used to build rules for co-evolving stochastic parameters with the growth of mountain
ranges limits the utility of the results from the global analysis to the application of 1D bedrock river incision mode-
ling (Forte & Rossi, 2024a). As such, we identified relationships between topography and stochastic runoff specific
to individual mountain ranges, where differences in regional climate and geography can be partially accounted for.
To begin this regional analysis, we started at first at the global scale and used a 2° rectangular moving window to
calculate the Spearman's rank correlation coefficient between candidate topographic variables and hydroclimato-
logical variables. The topographic variables considered were the same as in the global analysis (mean elevation,
maximum elevation, and mean local relief). The hydroclimatic variables we focused on were mean runoff and snow-
melt fraction, the latter of which can be linked to daily runoff variability using relationships from the global analysis.
We opt to focus on snowmelt fraction instead of daily runoff variability directly because one of the hypotheses we
are trying to test in the 1D river incision modeling (Forte & Rossi, 2024a) is how and whether snowmelt dynamics
alter interpretations of stream power based analyses of river profiles. The results of the rank correlation analysis
were used as the basis of selecting three regions where well-defined relationships can be developed between topog-
raphy and hydroclimate. Specifically, these regional cases focus on the mid-latitude mountains of British Columbia,
the European Alps, and the Greater Caucasus (Figure 2), where snowmelt contributes a sizable fraction of daily
streamflow.

5. Results
5.1. Validation of WaterGAP3

Figure 3 summarizes the results from our validation of WaterGAP3 model data against historical observations
from select HCDN-2009 stream gages. The mean values for both data sets plot around the 1:1 line without
obvious bias (Figure 3a), lending support to prior assessments (e.g., Beck et al., 2017; Eisner, 2015; Schmied
et al., 2014, 2020). However, scatter around this relationship shows that a >25% mismatch in mean values is not
unusual. In general, simple spatial averaging (closed symbols) performs almost as well as the computationally
intensive routed approach (open symbols), though routing matters for individual cases. From this, we conclude that
the HCDN-2009 watersheds are at the appropriate scale for WaterGAP3 validation and that downstream scaling
of streamflow statistics is not strongly influencing our parameter estimates. This is perhaps not surprising given
that the filtered set of HCDN-2009 watersheds used are relatively small (interquartile range of 105-542 km?),
well within the average pixel size of the WaterGAP3 data and typically smaller than the mountain range scale.
For lower values of the shape parameter (i.e., higher runoff variability), the correspondence between the obser-
vations and the water model is acceptable (Figure 3b). However, for most watersheds, the shape parameters from
WaterGAP?3 are less than their empirical counterparts (Figures 3b and 3d) except at higher shape parameters (i.e.,
lower daily runoff variability). In these cases, WaterGAP3 values are systematically lower than the HCDN-2009
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Figure 3. Comparison of WaterGAP3 runoff parameters against selected HCDN-2009 stream gage data, colored by the log
of the drainage area of individual gaged basins: (a) Mean runoff values, (b) Shape parameters of daily distributions, (c) Mean
and shape residuals with respect to 1:1 line, and (d) Shape residuals against mean annual temperatures for each watershed.
Open squares represent arithmetic means of WaterGAP3 values within watershed boundaries. Closed and colored circles
route daily WaterGAP3 data to generate a time series that is then used to calculate fit parameters. Dashed lines in the upper
panels indicate a 1:1 relationship between the water model and gaged data, whereas dashed lines in the lower panels reflect a
0 residual value.

gage data. This implies that WaterGAP3 tends to overestimate variability for these watersheds. For the lower vari-
ability watersheds, the routed version of WaterGAP3 slightly improves water model performance (Figure 3b) but
does not remove the systematic bias. The residuals of the mismatch between the HCDN-2009 and WaterGAP3
values do not reveal a relationship between the mean and variability (Figure 3c), which might occur if the Water-
GAP3 model was systematically altering storage-release relationships in hydrographs (e.g., due to limitations
in how hydrologic processes are represented in the model). However, comparison of the residuals of the shape
parameter to the mean annual temperature the watershed (Figure 3d) indicates one possible interpretation for
why variability in lower variability watersheds is overestimated in the WaterGAP3 data. The majority of lower
variability basins tend to occur in colder settings, suggesting the possibility that snowmelt processes are not
being adequately represented in the WaterGAP3 data. This result supports the argument that WaterGAP3 could
benefit from improving the partitioning of runoff into fast and slow components (Eisner, 2015). The direction of
the mismatch is consistent with the notion that snow storage and release may not be fully resolved in WaterGAP3
data even though mean runoff is well represented in the water model.

While systematic differences between model and empirical estimates of daily runoff variability is an important
limitation to consider, we continue to use WaterGAP3 as our base data set for a few reasons: (a) It is globally
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Figure 4. Density plots show the relationship between the shape parameter and mean runoff for the filtered WaterGAP3 data: (a—o) Plots binned by snowmelt fraction
in increments of 0.05 up to 0.75 snowmelt. (p) The last panel is for the remaining data that have >0.75 snowmelt. In all panels, both a power law and linear fit are
shown. The better fit is shown using a solid line and is based on having a lower RMSE. Results are the same if using the reduced chi-square statistic. Black dots are
HCDN-2009 watersheds filtered in the same way. For HCDN-2009 data, the snowmelt fraction was taken from WaterGAP3 data.

uniform, allowing for the comparison of stochastic runoff in diverse settings, and (b) The systematic bias in vari-
ability has been quantified so that its effects can be considered. Importantly, the bias in WaterGAP3 estimates of
daily runoff variability leads to a conservative estimate of the dynamics we are examining in our 1D modeling of
bedrock river incision (Forte & Rossi, 2024a). Because hypothesized orographic feedback induce lower runoff
variability as a mountain range grows, thereby increasing the degree of nonlinearity between channel steepness
and erosion rate, it is preferable for the underlying rules setting these feedback to overestimate variability than
the alternative.

5.2. Global Relationships (Relating Mean and Variability)

Figures 4 and 5 summarize the results for how the parametric fit parameters relate to mean runoff after binning
the data by snowmelt fraction. Across all bins, WaterGAP3 data show that mean runoffs are inversely related
to daily runoff variability, consistent with prior studies (e.g., Molnar et al., 2006; Rossi et al., 2016). The large
gridded WaterGAP3 data set allowed us to more systematically explore these relationships at relatively fine
(5%) intervals of snowmelt fraction (Figure 4). Each subpanel in Figure 4 is a heatmap showing the density of
WaterGAP3 observations of how the best-fit shape parameters relate to the empirical mean. Regressions on the
pixel-level data are shown (solid lines show the better fit between linear and power law regressions). HCDN-2009
observational data are also shown as points for reference. Figure 4 demonstrates that it would be difficult to
constrain these relationships using observational data alone because the representation of different snowmelt

FORTE AND ROSSI

11 of 24

85UB01 7 SUOWIWIOD BA1ER.D 3ot [dde auy Aq peusenob aJe sejoie O ‘8sn JO Sa|nJ 10} Afeiqi8UlUO A1 UO (SUORIPUOD-PUR-SLLIBI W00 A3 1M AReiq Ul JUO//Sciy) SUORIPUOD pue S | 8u) 88S *[5202/20/82] Uo A%eiqiauluo AB]iM ‘80,wwiod JO uewedsd BeoN Aq 922004r€202/620T 0T/I0pwo0o" A im Akeiqpuiuo'sqndnfe;/sdny woly pepeojumod ‘€ ‘v202 ‘TT0669TZ



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Earth Surface 10.1029/2023JF007326

Snowmelt Fraction < 0.35 Snowmelt Fraction > 0.35

2.5 103

103
A

g
<)
|

102 102

&)
|
.

Density

<)
!
.

10! 10

WaterGAP3 Shape Parameter
o
WaterGAP3 Shape Parameter

HCDN-2009 « HCDN-2009

T T T T 100 0.0 T T T T 100
0 2 4 6 8 10 0 2 4 [ 8 10

WaterGAP3 Runoff [mm/day] WaterGAP3 Runoff [mm/day]

0.0

103

Snowmelt Fraction < 0.35 - Snowmelt Fraction > 0.35
C IO e Ly e

102 102

Density

10! 10

WaterGAP3 Scale Parameter
WaterGAP3 Scale Parameter

HCDN-2009 o HCDN-2009

T 100 T 100
0 5 10 15 10 15

Scale Estimated from WaterGAP3 Mean Scale Estimated from WaterGAP3 Mean

Figure 5. Density plots showing relationships among the scale and shape parameters of parametric fits with the mean
runoff observed for the filtered WaterGAP3 data. (a) Relationship between mean runoff and shape of the right tail for pixels
where the snowmelt fraction is <0.35. (b) Relationship between mean runoff and shape of the right tail for pixels where

the snowmelt fraction is >0.35. Because parametric fits include a threshold, the mean of the distribution cannot be directly
inferred from scale parameters. (c) Relationship between the scale parameters fit to the data versus those implied from the
empirical mean for pixels where the snowmelt fraction is <0.35. (d) Relationship between the scale parameters fit to the
data versus those implied from the empirical mean for pixels where the snowmelt fraction is >0.35. Black dots are HCDN-
2009 watersheds filtered in the same way. The strongest regressions from Figure 4 (a and b) and Figure S1 in Supporting
Information S1 (c and d) subpanels are shown for reference.

fractions can be sparse, especially at higher snowmelt fractions. More importantly, it shows that the functional
form of the relationship between the mean and variability changes from sublinear to linear with increasing snow-
melt fraction. Using Figure 4 as our guide, we identified a snowmelt fraction of 0.35 as the transition where
sublinear relationships give way to linear relationships. Note that this transition is higher than the 10% snowmelt
threshold used to delineate snowmelt from rainfall-runoff dominated watersheds in Rossi et al. (2016). This
disparity likely arises from two factors. First, that prior analysis focused on the snow fraction of precipitation
and not the snowmelt fraction of runoff. Second, the sparsity of observations at higher snowmelt fractions in the
HCDN-2009 data is not sufficient to define such a threshold.

To more succinctly summarize these findings, Figures 5a and 5b show the same plots by binning the data above
and below a threshold snowmelt fraction of 0.35. The best of the regression lines from Figure 4 are also plotted
for reference. Figures 5a and 5b highlight that individual regressions largely cluster around each other, especially
in the domain where they are well constrained by data. It also shows that the relative spread of parameter values
is smaller when there is a high fraction of snowmelt. The linear relationships shown at higher snowmelt fractions
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(Figure 5b) strongly underestimate the value of the shape parameter as estimated from gaged basins, consistent
with validation results (Figure 3b). However, empirical observations still suggest a linear relationship between the
empirical mean runoff and the shape of the daily runoff distribution at higher snowmelt fractions.

Because empirical means are not equivalent to the mean value implied by parametric fits, Figure S1 in Supporting
Information S1 reports the mismatch between the scale parameter fit to the data (i.e., above the 1% threshold or
~4 largest floods per year) and the scale parameter implied by the empirical mean. These results are summarized
in Figures 5c and 5d. In general, the parametric fits produce scale parameters that are on par with the empirical
means only at low snowmelt fractions. At higher snowmelt fractions, the parametric fits have much higher scale
parameters than the empirical mean would imply, thereby suggesting that the Weibull distribution is not doing a
good job of describing the full distribution of events. Finding a single distribution to describe empirical data is
a well-known problem and poses unique challenges to simulating runoff distributions over landscape evolution
timescales, a challenge we tackle in Part 2 of this analysis (Forte & Rossi, 2024a). Nevertheless, by treating all the
data in the same way, we show that the functional relationship between daily runoff variability and mean runoff
is highly sublinear at low snowmelt fractions, much like what was shown in previous studies (Molnar et al., 2006;
Rossi et al., 2016). At high snowmelt fraction, the relationship becomes more linear, albeit with the caveat that
the form of the distribution may also be changing. Our estimates of this transition using WaterGAP3 data provide
conservative estimates of orographic feedback on runoff variability where both the mean and snowmelt fraction
are expected to increase as mountain topography grows. It is conservative because biases in the water model data
tend to dampen contrasts between rainfall and snowmelt dominated hydrology, and thus our 1D bedrock river
incision modeling uses rulesets with weaker feedback than might be expected in reality (Forte & Rossi, 2024a).

While analyzing the global water model data was motivated by prior studies that identified an inverse relationship
between mean runoff and daily runoff variability in the contiguous U.S. (Molnar et al., 2006; Rossi et al., 2016),
we felt it also important analyze the global data more generically and explore whether hydroclimatic parameters
can be linked to topography itself. This latter objective is essential to building rules that relate stochastic runoff
parameters to mountain range growth and decay. To this end, we opted to use RFR to partition the relative influ-
ence of topographic, geographic, and hydroclimatic predictors on a small subset of target variables.

5.3. Global Relationships (Random Forest Regression)

Figure 6 summarizes the results of the RFR analysis performed on global filtered WaterGAP3 data. While prin-
cipally interested in understanding the controls on mean runoff (Figures 6e and 6f), daily runoff variability
(Figures 6g and 6h), and snowmelt fraction (Figures 6i and 6j), we also consider influences on other hydrocli-
matological variables that emerged as important determinants of these target variables, specifically mean annual
temperature (Figures 6a and 6b) and mean precipitation (Figures 6¢ and 6d). The results of the RFR are not
particularly surprising but do shed some light on potential causal chains that link mean runoff, snowmelt fraction,
and daily runoff variability as a mountain range grows.

Mean annual temperature and mean precipitation are the two strongest predictors of both mean runoff and snow-
melt fraction, with temperature exerting a stronger influence on snowmelt fraction and precipitation exerting
a stronger influence on runoff. Mean runoff is the strongest predictor of the shape of the daily runoff distri-
bution, perhaps explaining why prior efforts have focused on this relationship (e.g., Molnar et al., 2006; Rossi
et al., 2016).

Importantly, topographic metrics were weak predictors of all three principal targets (mean runoff, snowmelt frac-
tion, and daily runoff variability). This may be due to the fact that topography is expected to exert its influence
via precipitation and temperature. To assess this, we also set mean precipitation and temperature as target varia-
bles in the RFR. The relative predictive power of the three topographic metrics and mean temperature on mean
precipitation is relatively uniform. In contrast, latitude is the strongest predictor of mean temperature, with mean
elevation providing modest predictive power. At this scale of analysis, topography does not appear to emerge as
a strong predictor in the RFR modeling.

To further probe how topographic relationships might be obscured in this global analysis, we binned the pixel-level
data by its mean temperature and precipitation, which emerged above as first-order controls on snowmelt fraction
and mean runoff. We first removed outlier values using the method described by Doane (1976), where bin bounda-
ries are defined after clipping variables to values below the 99.9th percentile. Membership in a given bin was deter-
mined by the mean temperature and precipitation of the pixel in question. Within each temperature-precipitation
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Figure 6. Results from the random forest regression for predicting (a and b) Mean Temperature, (c and d) Mean Precipitation, (e and f) Mean Runoff, (g and h) Runoff
Variability, and (i and j) Snowmelt Fraction. For each target variable, the left plot compares observed versus predicted data (linear fit with R? shown for reference), and
the right plot shows the relative importance of predictors.

FORTE AND ROSSI 14 of 24

85UB01 7 SUOWIWIOD BA1ER.D 3ot [dde auy Aq peusenob aJe sejoie O ‘8sn JO Sa|nJ 10} Afeiqi8UlUO A1 UO (SUORIPUOD-PUR-SLLIBI W00 A3 1M AReiq Ul JUO//Sciy) SUORIPUOD pue S | 8u) 88S *[5202/20/82] Uo A%eiqiauluo AB]iM ‘80,wwiod JO uewedsd BeoN Aq 922004r€202/620T 0T/I0pwo0o" A im Akeiqpuiuo'sqndnfe;/sdny woly pepeojumod ‘€ ‘v202 ‘TT0669TZ



AS~u | .
I Journal of Geophysical Research: Earth Surface 10.1029/2023JF007326
AND SPACE SCIENCES
1.0 1.0 1.0
I3
05 e 05 ¢ 05 o
2 2 @
oo N 00 N 00 ‘g
g s &
-05 =2 -05 = -0.5 §
-1.0 -1.0 -1.0
1.0 1.0 B
05 5 05w 2O 05 9
2 o 5
00 N 00 N 04 0.0 3
g 5 =
05 3 05 05 ©
: ; -1.0 ; ; -1.0 -1.0
5 10 5 10 5 10
Mean Precip [mm/day] Mean Precip [mm/day] Mean Precip [mm/day]

Figure 7. Spearman's rank correlation coefficients within temperature-precipitation bins. (a—c) Coefficients relating topography and mean runoff. (d—f) Coefficients
relating topography to snowmelt fraction. The topographic variables considered were (a and d) mean elevation, (b and e) maximum elevation, and (c and f) local relief.
For all plots, the gray area indicates regions of parameter space with less than 10 observations. Black regions indicate that there were more than 10 observations, but
that the correlation did not exceed the 95% confidence interval. Note that these plots obscure the number of observations in each precipitation—temperature bin. As
such, see Figure 8 to assess the distribution of correlation coefficients within their spatial context.

bin, we calculated Spearman's rank correlation coefficient between one of three topographic metrics (mean eleva-
tion, maximum elevation, and mean local relief) and either the mean runoff or snowmelt fraction. A correlation
coefficient is calculated only if there are at least 10 pixels within a given temperature-precipitation bin and if the
significance of the correlation coefficient exceeds the 95% confidence interval. We used Spearman's rank corre-
lation coefficient because it does not assume a linear correlation.

Figure 7 summarizes the results of the correlation analysis of WaterGAP3 data after binning by mean temperature
and precipitation. The colors in the plots show correlations between topography and mean runoff (top row) and
correlations between topography and snowmelt fraction (bottom row). Green values indicate strong positive corre-
lations, magenta values indicate strong negative correlations, black values indicate weak to no correlation, and gray
values indicate that there were not enough observations in the data set to evaluate the correlation. The patterns in
correlation are somewhat difficult to interpret as clusters of strong positive correlation are often adjacent to clusters
of strong anti-correlation. Topographic predictors of mean runoff show little sensible pattern (Figures 7a—7c), with
a hint of positive correlation between local relief and mean runoff at low values of mean precipitation (Figure 7c).
Topographic predictors of snowmelt fraction are also complex with a band of positive correlation for lower mean
temperatures next to a band of anti-correlation at higher temperatures (Figures 7d—7f). While we hesitate to interpret
these subtle patterns, the snowmelt fraction results do suggest that increasing topographic elevation and relief only
leads to more snowmelt where temperatures are conducive to it, though why this relation has a slope is not obvious.

As we discuss in more depth in the discussion below, the results from the global analysis suggest that there is no
single set of globally applicable “rules” that relate topography to mean runoff and snowmelt fraction. We suspect
this is a consequence of the scale of the analysis (i.e., orographic effects are inherently regional) and the lack of
accounting for the predominant direction of weather systems with respect to topography (i.e., steep topography
is not distinguished as windward vs. leeward). Based on this, we next explore a set of three regional analyses that
show more promise in constraining orographic controls on mean runoff and snowmelt fraction.

5.4. Regional Relationships of Mean Runoff and Daily Runoff Variability

Given the challenge of identifying simple relationships between topography (i.e., mean elevation, maximum
elevation, and mean local relief) and either mean runoff or snowmelt fraction (Figures 6 and 7), we now exam-
ine whether regional relationships between these variables are being obscured by the global treatment. Of the
six relationships shown in Figure 7, the relationship between local relief and mean runoff and the relation-
ship between maximum elevation and snowmelt fraction seemed the most promising when evaluated spatially.
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Figure 8. Relationships among topography, mean runoff, and snowmelt fraction in map view. (a) Mean spearman rank
correlation coefficient within a 2° moving window for mean runoff and local relief. (b) Mean spearman rank correlation
coefficient within a 2° moving window for maximum elevation and snowmelt fraction. After filtering the WaterGAP3 data
for mountain settings (see text for details), only a small area remains. Insets highlight results for the three regional cases
considered.

Figure 8 summarizes the sign and strength of these relationships for all WaterGAP3 data that meet our selec-
tion criteria. The zoom insets highlight three regions of interest—namely the mid-latitude mountains of Brit-
ish Columbia, the European Alps, and the Greater Caucasus. Each of these mountain ranges receives a large
fraction of its precipitation as snow, with some alpine glaciation under modern climate. In these settings (and
others), there is a relatively strong correlation between local relief and mean runoff across the study area
(Figure 8a-insets), consistent with prior studies (Bookhagen & Burbank, 2006; Bookhagen & Strecker, 2008).
The relationship between maximum elevation and snowmelt fraction is more nuanced (Figure 8b-insets). The
sign of the correlation depends on whether positioned on the windward or leeward side of prevailing weather
systems, whereby windward sides show relatively strong positive correlations. Nevertheless, the most complex
of these three regional sites is the Greater Caucasus, where relationships among maximum elevation, snowmelt
fraction, and runoff generation have been verified using a finer-scale analysis of gauge records and hydroclimatic
data (Forte et al., 2022). Taken together, this gives us confidence that these three locations are prime candidates
for building regional relationships among topography, snowmelt, and runoff statistics. To develop these local
relationships, we consider similar candidate relationships tested on the global scale (Figure 7), specifically mean
runoff or snowmelt fraction as a function of either mean elevation, maximum elevation, or local relief (Figure S2
in Supporting Information S1).

FORTE AND ROSSI

16 of 24

85U0| SUOWILLIOD BAIIERID) 3ol dde 3y} Aq peusench a1e S3joNJe VO ‘88N J0 S3|NJ 10} Aeid178UIIUO AB| 1A UO (SUORIPUOD-PUR-SWLR}/W00™A8 1M AReJq 1 BUIIUO//SHHY) SUORIPUOD puUe SWiS L 84} 88S *[S5202/60/82] U0 ARiqiauliuo AB]IM ‘80:8WoD JO juewiiedsd BeoN Ad 92€/00r€202/620T OT/I0p/W00" A ImAseaqiieutjuo'sgndnBie//sdiy wouj pepeojumod ‘€ ‘#7202 ‘TT0669TZ



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Earth Surface 10.1029/2023JF007326

6. Discussion
6.1. Mean Runoff, Runoff Variability, and Snowmelt

The global analysis of WaterGAP3 data helped solidify interpretations that mean runoff and daily runoff variabil-
ity are inversely correlated. This result was born out both in the RFR (Figure 6) and in the individual regressions
after binning by snowmelt fraction (Figures 4 and 5), thereby supporting findings from prior studies (Molnar
et al., 2006; Rossi et al., 2016). The functional form of the relationship between mean runoff and the shape of the
daily runoff distribution appears to bifurcate at snowmelt fractions around 0.35 (Figure 5). Below this value, the
relationship is highly nonlinear. Above this value, relationships vary but become much more linear. The nonlin-
earity in rainfall-runoff regimes can be interpreted using ecohydrological models where climatic parameters
can exert different relative influences on mean and tail behavior (Deal et al., 2018). The transition to snowmelt
hydrology resulting in lower variability flows (e.g., Pitlick, 1994) is expected due to the effects of both increased
runoff ratios and the slow release of water from storage. That abrupt transition emphasizes the importance of the
phase transition from rain to snow in event-scale runoff variability. The snowmelt fractions where this occurs are
relatively low, suggesting that snowmelt should not be ignored in fluvial erosion models. We also note here that
stochastic-threshold models based on stream power were originally developed for small watersheds (e.g., Lague
et al., 2005; Tucker, 2004). Given our focus on mountain range scales, it is also important to understand how the
spatial footprint of runoff events varies for different runoff generation mechanisms.

To assess the importance of spatial scale to runoff generation, Figure 9 compares the exceedance frequency
of the spatial footprints of precipitation and runoff events in the WaterGAP3 data. The area of each “event”
is determined by finding spatially contiguous objects in the daily data above a given intensity threshold (i.e.,
5-35 mm/day). It should be noted that unlike much of the analysis in previous sections, we do not filter by
“mountainous topography” (i.e., use elevation or relief to filter the data), and are considering events across all
land surfaces. To convert the unprojected pixel-based objects into areas, we multiplied the number of pixels by
the size of a pixel in degrees squared. We then calculated the radius of the circle that equals that area. The radius
of the circle is converted from degrees to km in both latitude and longitude. Because the conversion in longitude
generally differs from the conversion in latitude, this transformation produces an ellipse with area units of km?.
These are the x-coordinates used for plotting the exceedance frequencies (Figures 9a, 9c, 9e, and 9g). Further-
more, for runoff data, we labeled each event as snowmelt or rainfall runoff based on the 0.35 snowmelt fraction
threshold. Because smaller footprints include both rainfall and snowmelt dominated runoff, the right hand panels
(Figures 9b, 9d, 9f, and 9h) show the percentage of daily runoff events that are classified as snowmelt for log
distributed bins of exceedance frequency. Three important insights emerge from this analysis. First, and unsur-
prisingly, higher intensity thresholds produce smaller event areas. Second, at around the 25 mm/day threshold,
the largest area events in runoff and precipitation (i.e., far right tails) are of similar magnitude. Higher thresholds
produce runoff areas larger than comparable frequency precipitation events. Third, the far right tail of the size
distribution of runoff is all snowmelt. Taken together, these results suggest that the relative contribution of snow-
melt runoff becomes increasingly important for larger watersheds and for increasing intensities.

6.2. Importance of Constraining Regional Relationships

While global relationships linking mean runoff and daily runoff variability via topography were elusive, regional
assessment was much more promising. Figure 10 summarizes the kinds of regional rulesets that can be generated
from an analysis like ours. At the regional scale, relationships between local relief and mean runoff emerge,
consistent with other studies focused on explaining spatial patterns in rainfall (e.g., Bookhagen & Burbank, 2006;
Bookhagen & Strecker, 2008). This is thought to arise because high relief corresponds to increased forced lifting
of air masses. Local relief (not shown) and maximum elevation (shown) also correlate with snowmelt fraction,
likely due to the role of high topography increasing the probability that precipitation will fall in the form of
snow. Regardless of the mechanisms, our analysis shows the value of producing regionally constrained links
between mean runoff and snowmelt fraction via topography. To generate Figure 10, the pixel-based correlation
coefficients presented earlier (Figure 8) are summarized into bins of either mean runoff or snowmelt fraction
(y-axes). For each bin, the mean and standard deviation of the correlated topographic metric are shown (local
relief for mean runoff and maximum elevation for snowmelt fraction). Marker sizes are scaled to the number of
observations within a bin. Power law fits for each relationship are shown as lines. In detail, we tested whether
better correlations existed between the hydroclimatic variables of interest (mean runoff and snowmelt fraction)
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Figure 9. Exceedance probability distributions of daily event sizes of different magnitudes: (a and b) 5 mm/day, (¢ and d)
15 mm/day, (e and f) 25 mm/day, and (g and h) 35 mm/day. The left panels show probability plots for both precipitation and
runoff, whereby the latter is color-coded by runoff generation source. After classifying runoff events in this way, the right
panels show what fraction of events are snowmelt dominated within the exceedance probability bins. Note that regardless of
the intensity threshold the largest area runoff events are snowmelt dominated. At higher intensity thresholds, these event sizes
can exceed the largest area precipitation events.
and either mean elevation, maximum elevation, and mean local relief (Figure S2 in Supporting Information S1).
The selected relationships shown in Figure 10, that we also use to parameterize the models in Part 2 (Forte &
Rossi, 2024a), were chosen primarily based on either goodness of fit (i.e., which relationships had the lowest root
mean squared error) or which ones would be more practical to implement in the models developed in Part 2 (Forte
& Rossi, 2024a) when the goodness of fit metrics were similar. Each region is described by its own functional
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Figure 10. Relationships among topography, mean runoff, and snowmelt fraction for the three regional cases (see Figure 8 for locations): (a) British Columbia, (b)
European Alps, and (c) Greater Caucasus. In all three plots, circles are binned mean runoff to local relief, and squares are binned snowmelt fraction to maximum
elevation. Symbols are scaled to the number of observations in the bin and whiskers show one standard deviation. Power law fits for binned data relate local relief and
mean runoff (solid line) and maximum elevation and snowmelt fraction (dashed line). In all three panels, the “Topography” x-axis plots both local relief (solid line) and
maximum elevation (dashed line). These fits serve as the basis for orographic rules used in our complementary model study (Forte & Rossi, 2024a).

relationship, which we interpret as the orographic effects on mean runoff and snowmelt fraction for each moun-
tain range. We suspect that some of the non-monotonic behavior of binned values, especially in the snowmelt
fraction, is a consequence of mixing windward and leeward components of a regional orographic effect (e.g.,
Figure 8), as well as along-strike complexity in precipitation sourcing. Nevertheless, summarizing the data in this
way allows us to build empirically based rules for mean runoff and snowmelt fraction specific to each region.
Together with the observation that the relationship between mean runoff and daily runoff variability abruptly
shifts around snowmelt fractions of 0.35 allows us to drive a stochastic runoff model using regionally informed
parameters from WaterGAP3 in Part 2 of this analysis (Forte & Rossi, 2024a).

The relationships shown in Figure 10 help explain why the role of topography was so difficult to extract from the
RFR that included these metrics (Figure 6). First, regional relationships relating topography to runoff generation
are quite noisy. While casting runoff parameters as a simple function of topography was our goal, the relatively
coarse resolution of water model data, the lack of distinguishing between windward and leeward slopes, and
hydroclimatic diversity induced by regional climate will each confound simple relationships between topogra-
phy and runoff parameters. Second, while the power law functions decently describe the snowmelt fraction, the
bin-averaged values suggest subtle, non-monotonic relationships with maximum elevation. Third, and perhaps
most importantly, the relationship for each regional setting is distinctly different. Any global analysis would
struggle to parse this difference.

6.3. Implications on Landscape Evolution Studies

Two-way coupled models between climate and tectonics require erosion laws for either river incision, glacial
erosion, or both. Those testing fluvial dynamics are typically built on the stream power model (e.g., Beaumont
etal., 1992; Stolar et al., 2006; Whipple & Meade, 2004; Willett, 1999). Orographic effects in these models focus
on the windward ascent and extraction of precipitation. By setting up a contrast in the efficiency of erosion on
the windward and leeward sides of mountain ranges, mountain belts adjust their width and height in order to
achieve a steady state morphology. The widespread use of stream power in these climate-tectonic models has
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Figure 11. A conceptual model for how orographic controls on runoff variability can be represented in a landscape evolution model. (a) Cartoon showing how
precipitation and runoff generation mechanisms might change as a mountain range grows. (b) Example rules for how topography is translated into more runoff and a
larger snowmelt fraction as topography grows. (c) Relationship between mean runoff and daily runoff variability in response to those rules. In panel (b), the example
ruleset shows that as mountain topography grows, increasing relief leads to more runoff generation on the windward side of a mountain range and increasing elevations
lead to a higher fraction of snowmelt. In panel (c), these topography-runoff relationships translate into a much different relationship between mean runoff and daily
runoff variability that encodes the transition from rainfall- to snowmelt-dominated runoff events.

subsequently motivated many studies to interrogate how orographically induced spatial patterns in precipitation
might alter the long-term evolution of river profiles and relief (Anders et al., 2008; Han et al., 2014; Leonard &
Whipple, 2021; Roe et al., 2002, 2003). At the same time, stream power models are increasingly incorporating
the role of stochastic streamflow and erosion thresholds to interpret river profiles (DiBiase & Whipple, 2011;
Lague, 2014; Lague et al., 2005; Marder & Gallen, 2023; Scherler et al., 2017; Snyder et al., 2003; Tucker, 2004;
Tucker & Bras, 2000). The aim of this study was to integrate these two productive research threads and explore
whether mean runoff, daily runoff variability, and snowmelt fraction can be linked to each other via topographic
elevation and relief. As such, we focused our regional analyses on mid-latitude mountain ranges at or near the
cusp of glaciation, and where snowmelt contributions to streamflow are significant. While this was our focus, it
is worth noting that orographic gradients in stochastic rainfall itself are often poorly constrained. For example, in
tropical settings, there can be complex interactions among rainfall types (e.g., convective, monsoonal) that can
lead to lower elevation peaks in rainfall maxima (Anders & Nesbitt, 2015) than conventional orographic rules
assume, a topic in need of more attention.

Figure 11 is a conceptual diagram illustrating how stochastic runoff parameters might co-evolve with mountain
topography in settings where mountain range relief is sufficient to trigger the transition from rainfall-dominated
to snowmelt-influence runoff but where river incision is still setting the relief structure of the landscape (e.g.,
Whipple et al., 1999). The color coded dots on the schematic mountains in Figure 11a are intended to corre-
spond to the dots on the hypothetical plots relating topography to runoff and snowmelt (Figure 11b) and those
relating mean runoff to daily runoff variability (Figure 11c). On the windward side of mountain ranges, we
expect that the growth of topography will increase mean runoff (Figure 11b solid line) in line with conven-
tional treatments of orographic precipitation (Roe, 2005). This leads to concurrent increases in the frequency
of snowfall and thus the snowmelt contribution to runoff (Figure 11b dashed line). While the snowmelt fraction
has an upper bound of one, in practice, the upper bound we are envisioning in Figure 11b will be less than one
because rain continues to fall at lower elevations and because the temperatures required to enhance very high
snowmelt fractions would also entail a transition to glaciation. The key behavior in this conceptual framework
is that accounting for snowmelt dynamics leads to a markedly different relationship between mean runoff and
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the shape parameter of the daily runoff distribution (Figure 11c). Our global analysis of WaterGAP3 data
suggests that this transition might be abrupt. We identified a snowmelt fraction of ~0.35 corresponds to this
transition, with the important caveat that this is based on a water model data set that tends to produce under-
estimates of the shape parameter (Figure 3b). Furthermore, while the bulk of the data supports the notion that
this transition is relatively abrupt, there are a number of exceptions to this pattern in both the water model
and observational data (Figures 1b, 4, and 5a). These exceptions may be due to uncertainty in the proposed
snowmelt transition or evidence for the numerous other hydrological considerations that can reduce daily
variability in rainfall-dominated regimes (e.g., seasonality, groundwater, drainage basin size). Regardless, the
global analysis reveals that the strength and form of these relationships need to be assessed independently for
any given mountain range (Figure 10). However, by simplifying the hydrology into just two parameters, these
kinds of relationships are well-suited to driving long-term models of river incision (e.g., Lague et al., 2005;
Tucker, 2004) in ways that can be linked to mean climate (DiBiase & Whipple, 2011) and ecohydrology (Deal
et al., 2018).

While we think there is observational evidence for these dynamics in actual landscapes (Forte et al., 2022), we
highlight a few important caveats to generalizing from our large-scale analysis of the WaterGAP3 water model
data. First, this conceptual model is better suited to explaining the windward side of mountain ranges where
precipitation, and thus runoff, is enhanced by topography. To build better rulesets, higher resolution runoff data
sets that honor physiographic transitions and water divides are likely needed. Second, this conceptual model
requires that mean runoff and rare runoff events are linked via some common mechanism. This need not be the
case. For example, recent work in the Colorado Front Range showed how mean runoff was largely driven by
snowmelt throughout the landscape while daily runoff variability was driven by rainfall runoff at lower eleva-
tions in response to thinning soils (Rossi et al., 2020). Such mechanistic controls on mean runoff and daily runoff
variability are at play in all landscapes and may partially explain the wide variance of runoff parameters observed
in our regional rulesets (Figure 10). Third, statistical analyses all assumed independence of daily runoff events,
which is decidedly not true as runoff events, especially large ones, can extend over multiple days (synoptic-scale
storms) to seasons (snowmelt, monsoons). Despite these caveats, this analysis produced empirically-based
runoff parameters that vary in space and time. As such, this provides the minimal constraints needed to integrate
orographic effects with stochastic runoff generation for river profile modeling (Forte & Rossi, 2024a).

7. Conclusions

The results of our global analysis of WaterGAP3 data largely confirm, and significantly expand upon, past results
indicating a negative correlation between mean runoff and daily runoff variability. The form of the relationship
between variability and mean runoff is linked to the fraction of runoff from snowmelt. For snowmelt fractions
<0.35, mean runoff and variability are related by a power law. At higher snowmelt fractions, the two are linearly
related. We also find that snowmelt produces runoff events with a much larger areal extent than rainfall runoff.

Exploration of the extent to which mean runoff, runoff variability, and snowmelt fraction are related to topogra-
phy produces ambiguous results at the global scale. Unsupervised machine learning methods highlight that simple
topographic variables such as mean elevation, maximum elevation, and local relief do not have strong predictive
power for our target hydroclimatological parameters of mean runoff, snowmelt fraction, and daily runoff varia-
bility. Attempts to identify cross-correlations that may mask the role of topography were more suggestive but still
difficult to interpret. Results from the global analysis emphasize that exploring the relationships between topog-
raphy and hydroclimatology requires a regional approach. For three mid-latitude mountain ranges - the European
Alps, Greater Caucasus, and southern British Columbia—we found robust positive relationships between mean
runoff and mean local relief and snowmelt fraction and maximum elevation.

The links between topography, mean runoff, daily runoff variability, and snowmelt fraction highlight that multi-
ple aspects of the hydroclimate of mountain ranges should be expected to evolve as topography grows. Past work
on this topic has primarily focused on the influence of growing topography on the development of orographic
patterns in rainfall. When coupled to tectonic models and simple hydrologic models equating patterns in mean
rainfall to mean runoff, orographic effects have been shown to drive a variety of feedback between surface
processes and tectonics. Our results show how to move beyond mean precipitation or mean runoff when consid-
ering the coupled evolution of topography, tectonics, and climate. Both snowmelt fraction and mean runoff
are expected to increase with growing topography and reduce daily runoff variability, emphasizing the need to
explicitly consider snowmelt dynamics in coupled tectonic—landscape evolution models.
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