
1.  Introduction
Dust particles are emitted and suspended in the atmosphere through entrainment by strong winds across erod-
ible surfaces. This process results in the creation of dust events known as blowing dust events or dust storms; 
the latter is considered more severe and is defined by conditions resulting in horizontal visibility below 1 km, 
while blowing dust events are defined by visibility conditions from 1 to 10 km (WMO, 2019). These dust events 
have  an important effect on the atmospheric system, influencing radiation (Lau et al., 2020), cloud formation 
(Chen et al., 2019), and the atmospheric vertical electric field (Ardon-Dryer, Chmielewski, et al., 2022). Air 
quality, human well-being, and human health are also affected, mainly negatively (Ardon-Dryer & Kelley, 2022; 
Tong et al., 2023a, 2023b). Dust in North America is estimated to contribute ∼2.5% (0.3–0.9 Tg) of the global 
dust loading for particles with diameters up to 20 μm (PM20) (Kok et al., 2021), yet some studies estimated much 
higher concentrations as found by Urban et al. (2018), who estimated higher dust emissions just from the Mojave 
Desert (7–15 Tg year −1 for PM20). Further, climate models predict that with increases in aridity, dust events will 
likely increase in the future (Achakulwisut et al., 2018; Brey et al., 2020; Pu & Ginoux, 2017).

Besides monitoring, other challenges exist when characterizing and managing dust levels in the atmosphere. 
At the most basic level, a lack of a consistent, or shared, definition of dust amongst scientists, the public, and 
regulators (Kroepsch & Clifford, 2022; Tong et al., 2022) limits the advancement of dust science, in part because 
of a lack of consensus regarding standard dust measurements. For example, airborne dust is defined in different 
ways. Some studies define dust based on the concentration of PM10 (mass of particles with diameters less than 
10 μm; Lei & Wang, 2014; Eagar et al., 2017). Other studies have used coarse mass (PM10 − PM2.5) (where 
PM2.5 is the mass of particles with diameters less than 2.5 μm; Hand et al., 2017), or the ratio of PM2.5 and PM10 
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(Tong et al., 2017) to indicate dust impacts. Fine dust, based on elemental composition, has also been used to 
characterize dust impacts (e.g., Chow et al., 2015; Hand et al., 2017; Liu et al., 2022; Malm et al., 1994). The 
definition of the severity of the dust impact is another challenge, as “blowing dust event” and “dust storm” are 
often used interchangeably or broadly, which can cause confusion or limit the interpretation of the impacts of 
dust events, especially with respect to health applications (Ardon-Dryer et al., 2023). Another challenge is that 
dust is often dismissed in policy and management decisions (Clifford, 2022). For example, a rule within the 
Clean Air Act allows dust events to be removed from regulatory data sets when considered an “exceptional” 
event (Clifford, 2021). Such data exclusions occur in both rural and urban settings, with fine and coarse particles, 
and while more common in the arid West, are a potential issue across the country. These challenges increase the 
difficulty of accurately tracking spatial and temporal trends in dust and its impacts on air quality.

We highlight three major factors that interfere with accurately estimating the impacts of dust events on air quality. 
These issues likely lead to a gap in knowledge of dust concentration, composition, and size-composition relation-
ships, which limits our understanding of its spatial and temporal air quality impacts and other issues associated 
with and caused by dust across the United States. These three factors are described below.

2.  Large Spatial Gaps in Data Result in Unmonitored Events
Dust data are often based on the impact of dust on particulate matter (PM) measurements of PM2.5 and PM10 
gravimetric mass, which also include contributions from other aerosol species. PM2.5 and PM10 are routinely 
monitored by the United States Environmental Protection Agency (EPA) as part of large-scale monitoring 
networks in mostly urban settings in support of the National Ambient Air Quality Standards (NAAQS). In addi-
tion, the EPA operates the large-scale Chemical Speciation Network (CSN) for health exposure studies (Solomon 
et al., 2014), with sites mainly in urban and suburban settings. Aerosol speciation measurements also occur at 
remote and rural sites by the Interagency Monitoring of Protected Visual Environments (IMPROVE) aerosol 
speciation network for the purpose of monitoring visibility (Malm et al., 1994; see Figure 1a for map of network 
site locations). While the networks often have similar measurement strategies and sampling schedules, they were 
not initially designed as dust monitoring networks. However, combining data from several hundred sites across 
the networks has led to a better understanding of large-scale spatial patterns and seasonality of dust across the 
United States (Aryal & Evans, 2022; Hand et al., 2017, 2019; Tong et al., 2017). Nevertheless, it is clear from 
these studies that the spatial gaps between and within monitoring networks are limiting our knowledge of dust 
impacts on air quality.

In particular, regions influenced by dust events, as observed from satellites, often do not have PM monitors. 
For example, only 21% of counties in the United States have PM2.5 monitors (Sullivan & Krupnick, 2018), and 
most of the PM monitoring that supports NAAQS and other health exposure studies are in areas with high popu-
lation density, resulting in spatial gaps in many rural areas that often experience dust events (see examples of 
dust events in Figures 1b and 1c, highlighting the large area that was impacted by dust, areas of ∼55,000 km 2 
and ∼85,000 km 2 respectively, that are not captured by any sensors). In recent years, commercially available, 
low-cost air quality sensors have become common, and regulatory agencies started using them to obtain more 
granular information on air quality spatial and temporal distribution (Jaffe et al., 2023). However, the accuracy 
and precision of these sensors need to be characterized (Zheng et  al.,  2018), the sensors require calibrations 
(Ardon-Dryer et al., 2020) and recent work suggests they are unable to accurately characterize coarse particles 
(>2.5 μm) (Jaffe et al., 2023; Kaur & Kelly, 2023; Rueda et al., 2023) and they still contain spatial gaps. These 
spatial gaps limit our ability to fully quantify the number and nature of dust events and their subsequent impacts. 
While satellite observations provide useful spatial and temporal information regarding large dust events, as well 
as identify affected regions void of monitors, satellites cannot replace ground-based monitoring to adequately 
characterize dust impacts on surface air quality, and satellites may miss dust events depending on the timing of 
satellite coverage.

3.  Monitors May Miss Dust Events Due To Particle Size
Dust particle size can range across several orders of magnitude (∼100  nm–100  μm, Ardon-Dryer, Kelley, 
et al., 2022; Neff et al., 2013; Scheuvens & Kandler, 2014). Some of these inhalable particles have serious health 
effects (Martinelli et al., 2013; Tobias et al., 2019). Measurements of PM2.5 or dust concentrations derived from 
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PM2.5 elemental speciation measurements could lead to underestimates of dust impacts on air quality as they 
miss the fraction of dust particles which are often associated with the coarse aerosol mode (PM10–PM2.5), Total 
Suspended Particles (TSP; Neff et al., 2013; Reynolds et al., 2016) or even just of giant mode dust (van der Does 
et al., 2018). Differences in spatial and seasonal variability of reconstructed fine dust and coarse mass suggest 
that knowledge of dust size distribution and coarse mass composition may be critical for understanding and 
reconciling PM2.5 and PM10 data that are influenced by dust events (Hand et al., 2023). Annual mean fine dust 
concentrations from 2016 through 2019 at sites from the IMPROVE network are shown in Figure 2a, compared to 
the annual mean coarse mass at the same sites (Figure 2b). Differences in spatial patterns, especially at sites in the 
central United States, may be due to dust size distribution, or different sources and composition of coarse mass 
(Bondy et al., 2018; Malm et al., 2007). While IMPROVE provides chemicals speciated for PM2.5, no speciation 
information is available for PM10. Without these additional measurements, we can only speculate regarding the 
sources and transport of dust. In addition, biases in fine dust concentrations derived from measurements using 
collocated but different samplers from the CSN and IMPROVE networks are likely due to the sharpness of the cut 
point of the sampler that allows varying amounts of coarse mode dust to be collected on the PM2.5 filter (Gorham 
et al., 2021; Hand et al., 2012, 2023; Solomon et al., 2014).

Figure 1.  (a) Large-scale monitoring networks, including Environmental Protection Agency's federal reference method 
networks for only PM2.5 (orange), only PM10 (green), collocated PM2.5 and PM10 (red), as well as Interagency Monitoring 
of Protected Visual Environments (IMPROVE) sites (PM2.5 and PM10, purple) that were active in 2020. (b) Examples of 
dust events (in pink; based on dust RGB product that contrast dust particles from clouds using channel differencing and the 
infrared thermal channel; Dust RGB, 2023) captured by the GOES-16 satellite over Texas (22 March 2021), and (c) over 
Kansas (15 December 2021), highlighting areas void of sensors, with PM2.5 (orange), PM10 (green), PM2.5 with PM10 (red), 
and IMPROVE sites (purple). Satellite images retrieved from AerosolWatch (https://www.star.nesdis.noaa.gov/smcd/spb/aq/
AerosolWatch/, accessed on 11 February 2023).

https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch/
https://www.star.nesdis.noaa.gov/smcd/spb/aq/AerosolWatch/
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4.  Sampling Frequency and Duration Limit the Ability to Detect the Impact of Dust 
Events on Air Quality
While some of the EPA federal reference method PM2.5 and PM10 sensors provide hourly values (EPA, 2020), 
most networks collect aerosol on filters for 24 hr every third, sixth, or twelfth day, depending on the site. Given 
these schedules, dust events are often missed. Dust events can happen on time scales of hours or less, and some 
may exceed EPA daily thresholds, which are 35 μg m −3 for PM2.5 and 150 μg m −3 for PM10 (Figure 3). Integrated 
samples or 24-hr averages of hourly data may mask the severity and true impact of these events, leading to a 
low daily threshold (Figure 3a). In a recent study, Ardon-Dryer and Kelley (2022) showed that even hourly PM 
measurements may mask the contribution of PM concentrations during short-duration (sub-hourly) dust events, 
leading to underestimation of the PM concentrations during these short and intense events. While overlooked, 
these short-duration dust events still carry important impacts; studies found that exposure to high PM concen-
trations (of fine and coarse PM), can penetrate the tracheobronchial and alveolar region (Kodros et al., 2018), 
causing health issues including cardiac, cerebrovascular and respiratory diseases and mortality (Alessandrini 
et al., 2013; Malig & Ostro, 2009; Mallone et al., 2011; Martinelli et al., 2013; Pérez et al., 2008). Yet, it is still 
unclear what the health consequences are of such intense but relatively short exposure to dust particles (e.g., acute 
exposure). This raises questions about whether we might need different air quality standards that account for such 
short-duration dust emissions (Bouet et al., 2019), especially as many of the dust events in the United States last 
for an hour or less (Ardon-Dryer et al., 2023).

5.  Moving Forward
Dust can contribute significantly to PM in the United States, especially on a seasonal basis. Current estimates 
suggest that half of the PM2.5 mass during spring in the Southwest is fine dust, and coarse mass can contribute 
more than 70% to PM10 across the West on an annual basis (Hand et al., 2017, 2019, 2023). Others indicate 
on high presence of large particles as measured by the TSP sample (Neff et al., 2013; Reynolds et al., 2016). 

Figure 3.  Hourly gravimetric PM2.5 measurements of dust events measured by the Texas Commission on Environmental 
Quality from Lubbock, Texas with daily values (a) Example of short-term dust events that do not exceed the daily PM2.5 
threshold. (b) Example of the hourly values during longer-term dust events show high daily PM2.5 values.

Figure 2.  2016–2019 Interagency Monitoring of Protected Visual Environments annual mean (a) reconstructed fine (PM2.5) dust (μg m −3) and (b) gravimetric coarse 
mass (PM10 − PM2.5, μg m −3), adapted from Hand et al., 2023.



GeoHealth

ARDON-DRYER ET AL.

10.1029/2023GH000953

5 of 7

However, without consistent, more frequent measurements in dust-influenced regions, these are likely underesti-
mates. Recent studies suggest that dust loading will increase due to climate change (Achakulwisut et al., 2018; Pu 
& Ginoux, 2017) but without additional data, we are limited in our ability to fully characterize its impacts on air 
quality and therefore on health. Even designing appropriate mitigation strategies to reduce its future impacts will 
require accurate characterizations of dust events. The first step is to enhance the monitoring network with addi-
tional monitors that sample more frequently, especially in dust-influenced regions. Consistent measurements of 
particle size and composition would also help characterize the environmental, climate, and human health impacts 
of dust events. Because these additions are likely cost prohibitive, the development and deployment of low-cost 
sensors that can accurately measure coarse PM concentrations during dust events may be a path forward to help 
understand the true impacts of dust on air quality in the United States. These dust-effective low-cost sensors 
could potentially be placed across urban and rural locations, or in existing networks (e.g., Mesonet stations, 
National Wind Erosion Research Network, IMPROVE, National Atmospheric Deposition Program and others; 
USGS,  2023; Webb et  al.,  2016; West Texas Mesonet,  2023), ensuring their information will be distributed 
equitably.
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