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Abstract Residential sector emissions of aerosols, primarily from solid fuels burned for cooking and
heating purposes, are high in black carbon, a component that absorbs radiation efficiently across a
wideband of wavelengths. Mitigation of residential sector emissions has been suggested as a method to
rapidly reduce anthropogenic global warming. This study presents model results from a regional model
with coupled chemistry, aerosols, and dynamics over an East Asian domain for January 2014 to
investigate the radiative effects of residential sector emissions. Model results are evaluated against
surface measurements of particulate matter and remote sensing products, comparing well but with a
high aerosol optical depth bias over Sichuan and low single scattering albedo over many locations. We
calculate effective radiative forcing of residential sector aerosols at the top of the atmosphere of
+1.22 W/m? over Eastern China, +1.04 W/m? due to shortwave and +0.18 W/m? due to longwave
forcing. We decompose the shortwave forcing into component parts and find the direct radiative effect is
the dominant component (+0.79 W/m?), with a smaller contribution from semidirect effects

(+0.54 W/m?) partly countered by negative indirect effects (—0.29 W/m?). The effective radiative forcing
varies from 0.20 to 1.97 W/m? across a reasonable range of black carbon to total carbon emission ratios
for the residential sector. Overall, this study shows that mitigation of the residential sector is likely a
viable method to locally reduce short-term atmospheric warming in China, but efforts are needed to
reduce uncertainty in composition of residential sector emissions to be confident in this conclusion.

1. Introduction

Atmospheric aerosols affect regional weather and climate through interactions with radiation and clouds,
with the net impacts being sensitive to the chemical composition, size, and spatial distribution of the aerosol
population (Boucher et al., 2013; J. Haywood & Boucher, 2000; Lee et al., 2016). Aerosols can both scatter
and absorb solar radiation, resulting in the direct radiative effect (DRE). Black carbon (BC) is the aerosol
component that absorbs the most radiation (Bond et al., 2013). Reducing BC emissions has therefore been
proposed as a method to more rapidly reduce the impact of anthropogenic climate change compared to
mitigation of long-lived greenhouse gasses (Anenberg et al., 2012; Jackson, 2009; Ramanathan &
Carmichael, 2008; Shindell et al., 2012). However, BC is usually coemitted with other primary aerosol
species, such as organic carbon (OC), and precursors to secondary aerosol species that predominantly scatter
radiation (Bond et al., 2013). Aerosols also interact with clouds: By acting as cloud condensation nuclei
(CCNs), aerosols adjust cloud optical properties and lifetime, causing the aerosol indirect effects (AIEs;
Lohmann & Feichter, 2005; Myhre et al., 2013). The absorption of radiation also affects cloud formation
causing adjustments to the aerosol-radiation interaction radiative forcing, also known as the semidirect
radiative effect (SDRE; Allen & Sherwood, 2010; Koch & Del Genio, 2010; Ramanathan et al., 2001).
Overall, aerosols are thought to have a net negative radiative forcing (cooling) effect on the world's climate,
but with a high degree of spatial heterogeneity and the greatest contribution to uncertainty in estimates of
anthropogenic radiative forcing (Myhre et al., 2013).
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Emissions from the residential sector contribute substantially to the atmospheric aerosol burden, particu-
larly where solid fuels are used for cooking and heating. In China, the residential sector contributes approxi-
mately 51% and 81% of total anthropogenic BC and OC emissions, respectively (Li et al., 2017). Aerosol
emissions from inefficient cookstoves are important contributors to indoor and ambient air pollution,
increasing premature mortality in adults and children (Archer-Nicholls, Carter, et al., 2016; Chafe et al.,
2014; Cohen et al., 2017; Lelieveld et al., 2015; Liu et al., 2016; Naeher et al., 2007). The high BC content
of residential emissions means that mitigation of this sector may also reduce short-term anthropogenic
warming (Anenberg et al., 2012; Unger et al., 2010). However, aerosol emissions from the residential sector
are subject to large uncertainties in their magnitude and composition (Akagi et al., 2011; Carter et al., 2016;
Coffey et al., 2017; Secrest et al., 2017; Stockwell et al., 2015; Zhang et al., 2009). This combination of high
uncertainty and high impact is driving research into improving estimates of residential sector emissions
(Klimont et al., 2017; Zhang et al., 2018) and better understanding of their impacts on climate (Butt et al.,
2016; Gao et al., 2018; Lacey & Henze, 2015; Li et al., 2015).

The impact of aerosols on climate is generally calculated using numerical model simulations of the atmo-
sphere (e.g., Butt et al., 2016; Lacey & Henze, 2015; Unger et al., 2010). It is essential to perform global simu-
lations over many decades to understand the long-term impact of aerosols on the Earth's climate, which
limits such simulations to coarse (>100 km) spatial resolution. In recent years regional models, such as
the Weather Research and Forecasting model with Chemistry (WRF-Chem; Grell et al., 2005) have enabled
the detailed investigation of aerosol-radiation and aerosol-cloud interactions over specific parts of the world
at higher (<60 km) horizontal resolutions (Archer-Nicholls, Lowe, et al., 2016; Chapman et al., 2009; Fast
et al., 2006; Grell et al., 2011; Saide et al., 2012; Yang et al., 2011), including over East Asia where large emis-
sions of air pollutants cause high aerosol loadings and strong local radiative forcings (Chen et al., 2014; Gao
et al., 2016, 2018; Huang et al., 2015; Yao et al., 2017).

In this study, we use the WRF-Chem model to investigate the radiative impact of residential sector aerosol
emissions over China. The model is run for a monthlong case study in January 2014, when emissions due to
the residential sector were high due to the contribution of heating emissions (for details on how the contri-
bution of the residential sector to aerosol pollution in China changes through the year, please see Archer-
Nicholls, Carter, et al., 2016). Model output is evaluated against surface observations and remote sensing
products. We calculate the top-of-the-atmosphere (TOA) effective radiative forcing (ERF) of residential sec-
tor emissions over East Asia and break it down into component parts due to the DRE, AIE, and SDRE. We
further test the sensitivity of our results to the uncertainty in emitted BC fraction by building on Lacey and
Henze (2015), who derived a range of BC to total carbon emission ratios (BC:TC) from a literature review of
measurements of BC and OC emission factors from cookstoves and used radiative forcing scaling factors to
estimate the impact of this uncertainty on the global surface temperature. We apply the same emission frac-
tionation as Lacey and Henze (2015) but use an online coupled model at higher resolution instead of a global
off-line model to give a more detailed evaluation of the sensitivity of the regional climate in China to aerosol
composition. We find a high sensitivity between uncertainty in BC content of residential sector emissions
and their radiative forcing, with implications for potential mitigation strategies.

2. Materials and Methods
2.1. Model Description

The WRF-Chem model simulations in this study use the same domain and physical parameterizations as
described by Archer-Nicholls, Carter, et al. (2016). However, to better represent aerosol interactions with
radiation and clouds, we use the expanded Model for Ozone and Related Tracers gas-phase chemical
mechanism (Emmons et al., 2010) with the four-bin Model for Simulating Aerosol Interactions and
Chemistry (MOSAIC) aerosol scheme with aqueous chemistry (Zaveri et al., 2008), which includes some
secondary organic aerosol (SOA) formation (Knote et al., 2014, 2015). MOSAIC uses a sectional represen-
tation of aerosol sizes, which enables the simulation of size distribution and number density of aerosols,
critical parameters for calculating aerosol optical properties (Barnard et al., 2010) and their capacity to
act as CCN and activate in clouds (Abdul-razzak & Ghan, 2002). The model is run with feedbacks
between the chemistry and meteorology, allowing the aerosol fields to influence meteorological condi-
tions through interactions with radiation and clouds, and vice versa (Chapman et al., 2009). One
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limitation of the current WRF-Chem model is that aerosol particles cannot act as CCN in clouds simu-
lated by the convective parameterization (the Grell 3-D scheme; Grell & Freitas, 2014; Grell & Devenyi,
2002). To explicitly resolve all clouds, the model must be run at high resolution (typically <4 km; Archer-
Nicholls, Lowe, et al., 2016; Grell et al., 2011; Saide et al., 2012), which limits studies to short simulations
(days). In this study, we choose to use a 27-km domain to make running simulations for a full
month feasible.

China suffers from its worst air pollution events in wintertime due to the combination of meteorological con-
ditions (Zhang et al., 2015; Zheng et al., 2015) and high residential sector emissions from heating (Carter
et al., 2016; Streets et al., 2003). The month of January is therefore chosen as the study period when the great-
est contribution of residential sector emissions to aerosol burden nationally is likely to occur, to maximize
the strength of the signal. Model runs are conducted from 26 December 2013 to 1 February 2014, with output
over January used for analysis. The year 2014 was chosen to be run in order to have good coverage from the
China National Environmental Monitoring Center (CNEMC, http://www.cnemc.cn/) data set to evaluate
surface PM, 5 against, as described in Archer-Nicholls, Lowe, et al. (2016). The model domain is made up
of 51 vertical levels and 200 x 155 cells at 27-km horizontal grid spacing over East Asia.

Meteorological initial and boundary conditions are derived from the European Center for Medium Weather
Forecasts operational model analyses and products at 6-hourly intervals with horizontal grid spacing of
0.141° (http://www.ecmwf.int/), while chemical and aerosol boundary conditions are derived from the
Model for Ozone and Related Tracers global chemical transport model (Emmons et al., 2010). The meteor-
ological fields are reinitialized every 24 hr at 00:00 UTC (08:00 LT) to constrain dynamical divergence
between scenarios, using the chemical and aerosol fields from the previous time step. The model is run
for 36 hr after each reinitialization, giving a 12-hr overlap period where the previous leg is used for analysis
while the next leg spins up.

2.2. Emission Scenarios

We use version 2.2 of the Emission Database for Global Atmospheric Research created as a part of the
Hemispheric Transport of Air Pollutants providing monthly anthropogenic emissions representative of
the year 2010, the most recent available when the simulations were conducted (Janssens-Maenhout et al.,
2012, 2015). The Emission Database for Global Atmospheric Research created as a part of the
Hemispheric Transport of Air Pollutants inventory is itself a gridded MOSAIC of regional inventories, using
the Multi-Resolution Emission Inventory for China (MEIC; http://www.meicmodel.org/), part of the MIX
inventory for Asia (Li et al., 2017). The MEIC emissions for each sector are calculated bottom-up using activ-
ity factors and emission factors for different technologies derived from a wide range of data sources (Li et al.,
2017; Zhang et al., 2007, 2009).

In China, the majority of residential aerosol emissions are due to inefficient combustion of solid coal and bio-
fuels for cooking and heating purposes, contributing some 51% and 81% of total BC and OC emissions,
respectively (Li et al., 2017). Other contributions to the residential sector includes emissions from other fuel
sources, such as liquified petroleum gas, and other activities, such as lighting (Klimont et al., 2017). The type
of fuel burned and corresponding emission factors vary across China: In the South and West biofuels such as
wood and agricultural waste are used, while in the North coal usage is more common. The temporal activity
of these emissions is determined based on a parameterizations (Bond et al., 2007; Streets et al., 2003) that
modify the residential sector emissions based on monthly average temperature by province such that emis-
sions peak over winter due to the additional contribution of heating (Archer-Nicholls, Carter, et al., 2016).
Note that because emissions are calculated for the whole year then modulated by sector to give monthly
varying emissions, relative ratios of different emission components from the residential sector do not change
over the year. Each sector also follows a different diurnal profile for emission flux (Olivier et al., 2003), and
vertical mixing is applied to the power sector following Wang et al. (2010).

We also include emissions from nonanthropogenic sources. Emissions of biogenic compounds are calculated
online using the Model of Emissions of Gases and Aerosols from Nature (version 2; Guenther et al., 2012).
Open fire emissions from wildfires, agricultural, and prescribed burnings are taken from the Fire
Inventory from National Center for Atmospheric Research (version 1.5; Wiedinmyer et al., 2011).
Biogenic and biomass burning emission sources are less significant over the winter time period studied:
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Table 1 ) . . Agricultural fires in East Asia are most prevalent in late spring and
Table of Model Simulation Scenarios Conducted for Study autumn (J. Li et al., 2016) and biogenic emissions are strongest in summer
Scenario Residential emissions BC:TC? ratio (@) (Guenther et al., 2012).
BASE True Standard (0.24) Four emission scenarios are simulated as summarized in Table 1. The
Eg&isc Fralse L Né OAl ) BASE scenario uses all anthropogenic emissions, while NORES excludes
rue ow (0.15 — . . P .
FHOETRG — High (0.33) emissions from the residential sector. To test sensitivity to the uncertainty

in the fraction of BC emissions, the average black carbon to total carbon

Note. HIGHBC = high BC:TC ratio.

(BC:TC) ratio of residential sector emissions is changed to a “high BC:

TC ratio” (HIGHBC) of 0.33 and a “low BC:TC ratio” (LOWBC) of 0.15,
respectively, compared to an average in the BASE scenario of 0.24. The range in BC:TC ratios is one standard
deviation above and below the mean of multiple measurements of OC and BC emissions from field and
laboratory measurements of cookstoves from across the world, including four targeting specific fuels used
in China, as compiled by Lacey and Henze (2015). While new measurements of BC and OC emission factors
from cookstoves and other residential sources have been conducted since the publication of Lacey and
Henze (2015), incorporating these new data does not have a significant impact on the mean and standard
deviation of the collective data (see Figure S1 in the supporting information). What limited measurements
of residential emissions that have been conducted show a wide range of BC:TC emission ratios (Bond
et al., 2013; Coffey et al., 2017; Lacey & Henze, 2015); the range used for this study covers a valid representa-
tion given current understanding. The average BC:TC of emissions from the MEIC inventory, used as part of
EDGAR_HTAP inventory in the study, is 0.24, the same as the average from Lacey and Henze (2015) despite
being independently developed. The review by Bond et al. (2013) shows that BC:TC ratios from energy
sources (including both biofuel and fossil fuel use) from different emission inventories range from 0.22 to
0.36 over China. A recent study by Zhang et al. (2018) found emissions of BC from rural biomass and coal
use in China to be 640 + 245 Gt/year, a range of uncertainty that is equivalent to that tested in this study.
We therefore use the same range as in Lacey and Henze (2015) to enable comparability with their study.

The residential sector emissions of BC and OC are scaled at each grid point via

« 0]
Erespc = ErespcX 024, (1)
* 1-o
Eges.oc = Eres,ocX 1-024) 2)

where @ is the new BC:TC emission ratio (0.33 and 0.15 for HIGHBC and LOWBC scenarios, respectively).

While we acknowledge that there is uncertainty in the total amount of carbon emissions from the residential
sector, these experiments have been designed to test sensitivity to the aerosol BC fraction only. As the aver-
age BC:TC ratio over China in the EDGAR_HTAP base inventory is 0.24, the same as the average in Lacey
and Henze (2015), the HIGHBC and LOWBC scenarios have the same total emitted primary aerosol mass as
the BASE scenario over China. However, due to variations in emission factors, there are small, unavoidable
differences in emitted aerosol mass in some regions (see Figures S2 and S3). Another consequence of this
approach is that we cannot scale OC emissions by some factor (typically between 1.4 and 2.1; Turpin &
Lim, 2001) to give total organic aerosol mass accounting for associated hydrogen and oxygen. The scaling
of OC emissions would result in greater total primary aerosol emissions in the LOWBC scenario and nega-
tive emissions of “other inorganics” (calculated as the remaining primary PM, s emissions after removing
BC and organic aerosol emissions), which in turn would prevent us from testing the sensitivity to the emitted
BC fraction only. However, the lack of OC emission scaling should have little impact on the conclusions
drawn from this study, as the physical properties of OC and other inorganic aerosols are similar within
the MOSAIC aerosol mechanism. This omission has no impact on the amount of SOA generated.

2.3. Calculation of Radiative Effects

Calculating the radiative effects of aerosols follows the same methodology as described in Archer-Nicholls,
Lowe, et al. (2016). Briefly, Mie calculations are first used to calculate aerosol optical properties. The com-
plex refractive index of each aerosol bin is approximated using the Maxwell-Garnett method whereby aero-
sols are assumed to contain randomly distributed BC spheres among a mixture of all other components
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(Bohren & Huffman, 1983, chapter 8). This approximation avoids the known biases of volume-averaging and
external mixing rules (Bond et al., 2006).

Radiative transfer is calculated at four shortwave wavelengths (300, 400, 600, and 1,000 nm) and 16 long-
wave wavelengths using the Rapid Radiative Transfer Model for Global applications parameterization
(Tacono et al., 2000). We use double-radiation calls to calculate “clean-sky” diagnostic radiation fluxes,
which ignore aerosol-radiation interactions but include the effects of clouds, in addition to full radiation
fluxes, which include the effects of both aerosols and clouds. The radiative forcing due to residential aerosol
emissions is calculated as the difference in shortwave and longwave radiation flux at the TOA between the
BASE and NORES scenarios (ASW1,,, and ALWJ,,, respectively). A positive value means that the residen-
tial emission source results in more radiation being absorbed than would occur if there were no residential
emissions, resulting in warming of the atmosphere. Following the methods of Ghan et al. (2012), as imple-
mented in WRF-Chem by Archer-Nicholls, Lowe, et al. (2016), we use the clean-sky and full radiative fluxes
to decompose ASW%O » into three components: (1) those due to aerosol-radiation interactions (or DRE), (2)
those due to rapid responses to aerosol direct radiative forcing (the SDRE), and (3) those due to aerosol mod-
ification of cloud optical properties and lifetime (the AIE).

Since the model simulations have their meteorological fields reinitialized every 24 hr and the boundary con-
ditions are driven an independent global model, the local aerosol radiative forcings do not affect large-scale
dynamics or ocean temperatures and should therefore not be confused with the long-term “stratospherically
adjusted radiative forcing” as defined by the Intergovernmental Panel on Climate Change (Myhre et al.,
2013). However, the aerosol fields do cause rapid readjustments in atmospheric temperature, water vapor,
and cloud fields. The net aerosol radiative forcing (ASW1,, ) is therefore closest to the Intergovernmental
Panel on Climate Change definition of ERF. The necessarily limited time scale and area of our regional
model runs do mean the results presented are not exactly equivalent to ERF as calculated by global climate
models but are informative in demonstrating the short-term local impacts of aerosols on weather and
climate.

2.4. Description of Observational Datasets

The CNEMC (http://www.cnemc.cn/) provides an extensive network of air quality monitoring stations con-
sisting of approximately 900 sites in 187 cities across China during the period of study. Each station measures
PM, s, PM;4, NO,, CO, Os, and SO,. For this study, daily average surface PM, s concentrations are used for
model evaluation. For instances where multiple sites fall within the same WRF-Chem grid cell, observa-
tional data are averaged prior to comparison. Data were downloaded from http://pm25.in/, a direct mirror
site of CNEMC. For more detail and previous analysis of the data set, please see, for example, Rohde and
Muller (2015).

To evaluate the optical properties of aerosol in the WRF-Chem simulations, we compare model output with
various remote sensing products. Model output with data from the Moderate Resolution Imaging
Spectroradiometer (MODIS; Remer et al., 2005) instrument on board the Terra satellite. The product used
was the Aerosol Optical Thickness at 550 nm for both ocean (best) and land (corrected) at 1" resolution
(MODO08_M3_v6) mean for the month of January 2014. The data set was downloaded from the Level-1
and Atmosphere Archive & Distribution System Distributed Active Archive Center, located in the
Goddard Space Flight Center in Greenbelt, Maryland: ladsweb.modaps.eosdis.nasa.gov/ (last accessed 3
December 2018). For comparison, we used the WRF-Chem diagnostic extinction at 550-nm variable
summed through the atmospheric column to give aerosol optical depth (AOD) at 550 nm.

To further evaluate the absorption of the aerosol model fields, we compare against several Aerosol Robotic
Network (AERONET) sites across China (N. Holben et al., 2001). For comparison, we used the Version 3
Direct Sun and Inversion Algorithm for AOD, single scattering albedo (SSA) and absorbing aerosol optical
depth (AAOD), all at 440 nm (Andrews et al., 2017). To compare against the model, AOD and SSA were cal-
culated at 440 nm using the WRF-Chem diagnostic variables at 400 and 600 nm using the Angstrém expo-
nent also calculated between the range 400-600 nm. SSA was calculated as an extinction-weighted column
average. The AAOD, defined as the fraction of AOD that absorbs radiation, was calculated as

AAOD = AODx(1—SSA) ?3)
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Figure 1. Comparison of average surface PM; s from BASE (a) and NORES (b) model scenarios with observations from the CNMEC database over January 2014.
(c) and (d) show normalized mean bias factor (NMBF) between the BASE and NORES runs, respectively, with observations at each measurement site. Red colors
indicate locations where the model is biased high, blue where the model is biased low, and green where model and observations are similar.

Due to lack of level 2 data over the period studied, we had to use level 1.5 data, which have been screened for
clouds but have greater associated uncertainties that should be acknowledged (Andrews et al., 2017). Data
were downloaded from https://aeronet.gsfc.nasa.gov/cgi-bin/webtool_inv_v3 (last accessed 3 August
2018). Due to limited data over the time period studies (January 2014), only four sites were deemed to have
sufficient data to be worth analyzing. The locations of the four sites are plotted in Figure S4.

3. Model Evaluation
3.1. Surface PM, 5

Monthly average PM, s from BASE and NORES model scenarios is compared with the CNEMC database in
Figure 1. PM, s concentrations in the HIGHBC and LOWBC scenario are similar to the BASE scenario
(Figure S2). Bias between the model and observations is calculated using the normalized mean bias factor
(NMBF), as defined by (Yu et al., 2006):

. O .
NMBF = =1, if M>0,and NMBF = 1- . if M<O,

oll Z
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Figure 2. Aerosol optical depth aerosol optical depth (AOD) (a) at 550 nm averaged over month of January from Moderate Resolution Imaging Spectroradiometer
(MODIS) Terra satellite MODO08_M3 product. January 2014 average AOD for BASE (b) and NORES (c) scenarios.

where M~ and O™ are the mean modeled and observed values, respectively. In the BASE scenario (Figure 1c),
the model is biased low in the remote regions of West and North-West China, which are dominated by dust
aerosols (S. Chen et al., 2014). It is also biased low compared to many of the sites in Eastern China, where
there are many large cities with high anthropogenic emissions. Over much of the rest of China, the BASE
simulation compares well with surface observations of PM, s. The NORES scenario is biased low for surface
PM, s over much of the country (Figure 1d), emphasizing the importance of including residential sector
emissions to accurately simulate the aerosol burden over China.

3.2. Aerosol Optical Properties

Modeled AOD is compared against the MODIS AOD product from the Terra satellite (Remer et al., 2005) for
the month of January 2014 in Figure 2. Details of the data used for evaluation are given in the section S3.
AOD for the HIGHBC and LOWBC scenarios are almost identical to the BASE scenario, showing little sen-
sitivity to the composition of the aerosol (Figure S5). While the overall magnitude of AOD in the BASE
model output is comparable to that observed by MODIS, there is a low model bias over Northern China
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and the Eastern seaboard, and a high bias around Sichuan and central China. Interestingly, the BASE sce-
nario has similar surface PM, 5 to observations over the Western Sichuan province (Figure 1), where it also
overestimates AOD compared to the MODIS data (Figure 2). This discrepancy highlights that surface PM, s
is not the only factor driving AOD. Either the model has too much aerosol in the vertical column above this
region or errors in calculations of aerosol optical properties are causing a high AOD bias. The low bias in
AOD Northern and Eastern China also correlates with a low bias in PM, s and may be due to underestima-
tion of emissions, the misrepresentation of distribution or speciation of emissions, underestimation of sec-
ondary aerosol formation, not enough water associated with aerosols, poor aerosol optical property
calculations, or a combination of these factors.

To further evaluate the optical properties of aerosols in the modeling domain, in Figure 3 we compare model
output with data from the AERONET (Andrews et al., 2017; Holben et al., 1998) at several sites for which
data were available over the time period (see section S3 and Figure S4). Statistics calculated include mean
bias (MB), mean absolute gross error, and correlation coefficient (R) as defined in Yu et al. (2006). Due to
limited available data, these results are only valid over the sites analyzed and may not be representative of
the rest of China. The model simulations generally compare well to AERONET observations, but there
are some systematic biases. AOD is lower in the BASE scenario compared to observations. AOD in the
HIGHBC and LOWBC scenarios is very similar to BASE, but significantly lower in NORES. The BASE model
runs are also low in SSA compared to observations, meaning that the modeled aerosol is more radiatively
absorbing than that observed. SSA is lower still in the HIGHBC scenario and closer to observations in the
LOWBC and NORES scenarios, showing that the variation in BC content of residential sector emissions
has a large impact on how radiatively absorbing the aerosol population is. However, even in the LOWBC
and NORES scenarios, where there is significantly less BC aerosol, the model runs are still biased slightly
low in SSA (Figures 3h and 3k). The BASE scenario does compare well for AAOD (Figure 2c); in fact, the
MB is negligible. However, it is likely the model is generating a good result for the wrong reasons: the low
biases for AOD and SSA roughly cancel each other out given how AAOD is defined in equation (3).
Nonetheless, the comparison suggests that the model is representing the net radiative impact of the aerosol
layer well.

The biases in AOD and SSA can be explained if there are missing processes in the model or errors in calcula-
tion of aerosol optical properties. Realistically resolving the mixing state of BC with other aerosol species is a
key computational challenge (Kodros et al., 2018; Matsui et al., 2013). We use a Maxwell-Garnett approxima-
tion, which avoids the known biases of a volume-mixing or external-mixing rules (Barnard et al., 2010).
Explicit simulation of BC mixing state in aerosol particles has recently been shown to have a large impact
on the sensitivity to BC radiative forcing (Matsui et al., 2018); however, inclusion of this capability is beyond
the scope of this study. WRF-Chem also assumes organic aerosol is nonabsorbing, even though recent evi-
dence suggests some (known as brown carbon [BrC]) partially absorbs SW radiation (Andreae & Gelencs,
2006; Lack et al., 2012; Yao et al., 2017). BrC has been identified from residential sources, but there is large
uncertainty related to the optical properties and atmospheric aging of BrC (Chen et al., 2017; Stockwell et al.,
2015; Sun et al., 2017). However, the inclusion of BrC would lower SSA, increasing the magnitude of the cur-
rent biases. Finally, the model likely underestimates the contribution of SOA, and there is mounting evi-
dence that some heterogeneous chemical processes, not currently represented in WRF-Chem, enhance
secondary aerosol formation and are critical for forming the winter haze events observed in North and
East China (Chen et al., 2016; Gao et al., 2017; Li et al., 2018; Zhang et al., 2015). Overall, these added pro-
cesses would likely increase simulated AOD and SSA, which would reduce the biases of the BASE scenario
compared with AERONET observations (Figure 3), but would not necessarily change the conclusions of this
study since residential emissions would similarly add BC to the aerosol population, increasing the absorp-
tion of aerosols relative to the NORES scenario.

4. Results

Aerosols can influence local weather systems and climate through their interactions with radiation and
clouds. Whether an aerosol layer has a positive of negative DRE, as seen from the TOA, depends on both
the SSA of the aerosols and the albedo of the surface the aerosol layer is over (Haywood & Shine, 1995).
However, in either case an absorbing aerosol layer will always reduce incident radiation at the surface,
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Figure 3. Scatterplots comparing daily average derived aerosol optical data from Aerosol Robotic Network (AERONET) sites in China with Weather Research and
Forecasting model with Chemistry (WRF-Chem) model data over the month of January 2014. Dashed black line shows 1:1 line between model and observations.
Comparing aerosol optical depth (AOD) at 440 nm (left column), single scattering albedo (SSA) at 440 nm (middle column), and absorbing aerosol optical

depth (AAOD) at 440 nm (right column) for each of the four scenarios: (a—c) BASE, (d-f) high BC:TC ratio (HIGHBC), (g-i) low BC:TC ratio (LOWBC), (j-1) and
NORES. Legend for each panel shows means and standard deviation for observations and model, mean bias (MB), mean absolute gross error (MAGE), and
Pearson's correlation coefficient (R; Yu et al., 2006).

cooling the lowest levels of the atmosphere, and absorb more radiation through the atmospheric column
(Figure 4). In each of the scenarios with residential emissions (BASE, HIGHBC, and LOWBC), there is a
decrease in downwelling surface radiation and an increase in radiation absorbed by the atmospheric
column compared to the scenario with no residential emissions (NORES). The surface reduction in SW
radiation is greatest in the HIGHBC scenario, but this scenario also absorbs the most radiation in the
atmospheric column. The mitigation of residential emissions may therefore be perceived as an increase in
surface temperature, even if the net energy absorbed by the atmosphere is decreased.

The ERF of residential sector emissions is calculated as the difference in TOA radiative flux between the
scenarios with residential emissions (BASE, HIGHBC, and LOWBC) and the run without (NORES).
Results are summarized in Table 2, showing average ERFs of the residential sector over the whole
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Figure 4. Difference in downwelling SW radiation at surface between BASE and NORES (a), high BC:TC ratio (HBC) and NORES (b), and low BC:TC ratio (LBC)
and NORES scenarios (c). Difference in SW radiation absorbed by atmospheric column between BASE and NORES (d), HBC and NORES (e), and LBC and NORES
scenarios (f). Figures show average values for the month of January 2014.

domain (ignoring the outmost five grid cells in each direction to avoid boundary effects) and over the “East
China” region of the of the domain (20°N 100°E and 45°N 120°E). As the East China region covers the
whole land area where most residential emissions in China occur, avoiding the North Eastern part of
India, and encompasses the majority of the Chinese population, the rest of the analysis will focus on this
subregion (shown in Figure S4).

The shortwave (ASW1,,) effects of aerosol attributable to the residen-

Tabl tial sector dominate over the longwave (ALW1,,) effects. The average
able 2

Average ERFs (in W/mz) at TOA Relative to NORES Scenario Averaged Over
Whole Domain (Excluding the five Outermost Grid Cells in Each Dimension)
and Over East China Region of Domain (20°N 100°E to 45°N 120°E, shown
in Figure S4)

ASWl,, from the BASE scenario is +1.04 W/m” over East China,
showing that residential sector aerosol emissions have a local net warming
impact on the atmosphere. The absorbing BC components of residential
sector emissions overwhelms the scattering effects of coemitted primary

BASE HIGHBC LOWBC species such as OC and secondary aerosol forming species such as SO,

Whole East  Whole Fast  Whole East and NOx (although the residential sector is a small source of NOx and

Region domain China domain China domain China SO relative to industry, power, and transport; Li et al., 2017). The magni-

Net total  +0.49 4122 4094  +197  —0.09 4020 tude of ASW%OA is greatest over the Sichuan Basin region of China,

+0.45  +1.04  +089  +177 —013 4005 although the model does show a high AOD bias in this region (Figure 2).

ASWio, This radiative impact is highly sensitive to the BC content of residential sec-

ALWl, +0.04  +018  +005 4020  +0.04  +0.15  (or aeroso'l emissions. The HIGHBC sc'enario (Figure 52) exhibits a .stron—

BE WD 0T —0Ed 4l e -0 ger warming oYer t}.le East China reglqn (+1.77 W/m"), whereas in t2he

AIE —012 —0.29 —011 —0.27 013 —0.29 LOWRBC scenario (Figure 5c¢), the effect is largely neutral (+0.048 W/m”).
SDRE +0.25 +0.54 +0.32 +0.66 +0.35 +0.35

Note. ERF = effective radiative forcing; TOA = top of the atmosphere;
HIGHBC = high BC:TC ratio, LOWBC = low BC:TC ratio;
DRE = direct radiative effect; AIE = aerosol indirect effect;
SDRE = semidirect radiative effect. Net total is defined as the sum of A
SW1,, and ALW},,. DRE, SDRE, and AIE are decompositions of the A
SW1, forcing only.

We further decompose ASW%O A into DRE, SDRE, and AIE components in
Figures 5d-51. The majority of the warming in the BASE and HIGHBC
scenarios is due to the DRE (0.79 and 1.37 W/m?1, respectively), whereas
there is no net warming in the LOWBC scenario (—0.01 W/ m?). The AIE is
similar in all of the scenarios (—0.29 W/m?), indicating that aerosol-cloud
interactions are more sensitive to the total aerosol burden than to the BC
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Figure 5. Top row: effective radiative effect of residential emissions calculated as difference in top-of-the-atmosphere SW radiation flux (ASW},,,) between BASE
and NORES (a), high BC:TC ratio (HIGHBC) and NORES (b), and low BC:TC ratio (LOWBC) and NORES (c). Lower figures show decomposition of ASW%O A into
direct radiative effect (direct radiative effect; d—f), aerosol indirect effect (g-i), and semidirect radiative effect (j-1).

content of the aerosol (Figures 5g-5i). The SDRE shows a similar spatial distribution in all three cases, with
most warming over Southwest China, again in regions with both high cloud cover and aerosol burden
(Figures 5j-51). The magnitude of the SDRE effect is greatest in the HIGHBC scenario (0.66 W/m?) and
weakest in the LOWBC scenario (0.35 W/m?). The SDRE is highly varied across the domain compared to
the DRE, negative in many regions, highlighting the complex nature of this effect. However, the similar spa-
tial distribution in BASE, HIGHBC, and LOWBC of the AIE and SDRE shows a strong consistency in short-
term cloud response to aerosol.

Several recent studies, mostly using global models, have focused specifically on the impact of BC and resi-
dential emissions on climate (e.g., Aunan et al., 2009; Butt et al., 2016; Kodros et al., 2015; Lacey &
Henze, 2015). Using the GEOS-Chem model, Lacey and Henze (2015) estimated a total contribution to
net global warming from cookstove emissions of 33 mK with model DRE and parameterized AIE. Using
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the same range of BC:TC emission factors, they also found the range of impacts to span zero. Kodros et al.
(2015) used a cloud-resolving version of GEOS-Chem and estimated the global impacts of annual biofuel
emissions results in an ERF of +0.35 W/m?. Butt et al. (2016) in contrast found the residential sector emis-
sions to have a slightly negative DRE globally using the GLOMAP chemical transport model, with East Asia
being a key region of negative forcing, as well as a strongly negative indirect effect. There are multiple rea-
sons why they found a different result to other publications such as different emission inventory, errors in
optical properties, and assumptions of aerosol size distribution and mixing state. Recently, Gao et al.
(2018) assessed the DRE of multiple sectors over China and India using the WRF-Chem model. They found
the residential sector to have a radiative forcing of 0.97 W/m? over China from both SW and LW, similar to
the 1.22 W/m? from the BASE scenario over the East China region of the domain in this study. Like Gao et al.
(2018), we find the LW forcing is positive but smaller in magnitude to the DRE. However, we also find the
net total impact to be amplified when considering the SDRE and AIE as well, effects that were not consid-
ered by Gao et al. (2018).

5. Conclusions

Emissions from the residential sector are a major source of particulate matter in China, and their removal
would therefore greatly lower the aerosol burden and AOD (Figure 1). The high BC content of residential
emissions produces aerosol particles that absorb SW radiation, lowering the SSA and increasing the
AAOD of the aerosol population. Evaluating the difference in radiative flux at the TOA between the
BASE and NORES simulations shows residential sector emissions cause net instantaneous positive forcing,
as more SW radiation is absorbed by the atmosphere (Figure 4). We further decompose the ERF of aerosols
from residential emissions into DRE, SDRE, and AIE to gain a more detailed understanding aerosol-cloud-
radiation interactions. Overall, the net ERF over East China is 1.22 W/m? with the SW DRE the largest com-
ponent contributing 0.79 W/m? (Table 2). These values are large but comparable to similar studies in the
region. However, the inclusion of cloud responses suggests further warming attributable to the SDRE that
will not have been accounted for by previous studies focusing on the DRE.

Residential sector emissions are challenging to quantify reliably because of the wide range of imperfect con-
ditions under which fuels are burned, limited emissions measurements (particularly field measurements of
cookstoves being used under realistic conditions), and limited data on activity usage (Carter et al., 2016;
Coffey et al., 2017; Secrest et al., 2017). We probe this uncertainty using sensitivity scenarios with low and
high BC:TC ratio of residential sector emissions, using the range of estimates compiled by Lacey and
Henze (2015). Within this reasonable range of BC:TC emission ratios, the net ERF of residential sector aero-
sol emissions in East China varies from near zero in the LOWBC scenario (0.20 W/m?) to extremely high in
the HIGHBC scenario (1.97 W/m?). The majority of this sensitivity is due to changes in the DRE (increase of
75% from BASE to HIGHBC scenario) and partially due to changes in the SDRE (22% increase). In contrast,
the AIE is largely insensitive to aerosol BC:TC ratio. These results suggest that mitigating residential sector
emissions is a viable option to reduce atmospheric warming in East Asia, but due to the uncertainty in BC
content of residential emissions, we cannot with confidence say this will definitely be the case. This finding
highlights the impotence of understanding aerosol composition as well magnitude of emissions.

Our use of a regional model necessarily limits the study to be only valid for the time period and region stu-
died. In choosing a winter case study, the contribution of residential sector emissions to the aerosol burden is
at its greatest due to the contribution of heating emissions and less competition from other large aerosol
sources (such as agricultural burning). The results presented therefore represent the likely maximum impact
of residential emissions compared to other seasons. In other times of the year, one would expect the compo-
sition of aerosol emissions from the residential sector to change due to the different burn conditions of cook-
ing and heating, but this is not currently represented in emission inventories. Understanding how the impact
of the residential sector changes over the year can be the subject of future study. There may also be further
long-term benefits from reduced coemitted greenhouse gas emissions (Bailis et al., 2015) and reduction in
BC deposition on snow and ice (Lau et al., 2018), impacts which are beyond the scope of this study
to investigate.

Emissions in China are changing rapidly, affecting the conclusions that can be drawn from studies such as
this. While emissions for the year 2010 were the most up-to-date available when conducting the simulations
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for this study, it should be noted that there have been rapid changes to emissions of aerosols and aerosol pre-
cursors in China, particularly post-2013 when new clear-air action policies were introduced. Zheng et al.
(2018) document these changes to the MEIC inventory. Between 2010 and 2014 reductions have been most
rapid for SO, emissions (—27%), largely driven by changes to the power sector, while reductions in OC and
BC emissions from the residential sector have been more modest. Therefore, while accounting for changes in
emissions between 2010 and 2014 would affect the modeled aerosol mass burden and composition, the con-
tribution due to the residential sector would be broadly similar. However, Zheng et al. (2018) also showed
that clean-air policy to switch residential coal use to gas and electricity, implemented after 2013, successfully
reduced BC and OC emissions from the residential sector by approximately —25% and —30%, respectively,
between 2013 and 2017.

Uncertainty in modeling of aerosol radiative forcing is high, particularly relating to the semidirect effects
(also known as rapid adjustments). The semidirect forcing tends to only be positive over limited continental
regions, with the global net effect often negative and therefore acting counter to the positive direct radiative
forcing (Stjern et al., 2017; Y. Yang et al., 2019). The strength of the semidirect effect is also highly variable
between models (Stjern et al., 2017) and nonlinearly dependent on the magnitude of BC emissions (Y. Yang
et al., 2019). We therefore recommend similar studies to this paper are repeated on other regional models to
be confident in the findings.

Mitigation of residential emissions is urgently needed to reduce aerosol loadings in many countries to coun-
ter the severe negative public health impacts of air pollution. Our results suggest that reducing residential
solid fuel use is also a viable approach to reduce short-term local atmospheric warming; that is, there are
potential climate cobenefits. The instantaneous TOA radiative forcing is largely driven by shortwave absorp-
tion by BC, causing a positive DRE. We also find a positive SDRE, as cloud cover is reduced due to increased
BC, while the negative AIE is small over the time and region studied. The ERF is sensitive to the BC content
of residential sector emissions, ranging from near zero to almost double the baseline over a reasonable range
of BC:TC emission ratios. More work is therefore needed to improve carbonaceous emissions from the resi-
dential sector, including detailed lab and on-site measurements of cookstoves being used in real-world con-
texts. In addition, the potential benefits of mitigation of aerosol emissions from the residential sector are
expected to be short term and local, so should not distract from mitigation of long-lived greenhouse gasses.
However, as many households in Northern China burn coal for cooking and heating, and biofuel usage has
also been shown to have a significant carbon footprint (Bailis et al., 2015), mitigation of BC emissions from
the residential sector could be conducted in parallel with wider policy to reduce greenhouse gas emissions.
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