
Pedosphere 31(1): 214–8, 2021
doi:10.1016/S1002-0160(20)60063-7
ISSN 1002-0160/CN 32-1315/P
© 2021 Soil Science Society of China
Published by Elsevier B.V. and Science Press

Letter to the Editor

Global patterns of phosphorus transformation in relation to latitude,
temperature and precipitation

Dear Editor,

Phosphorus (P) is essential and often a limiting nutrient
for biological production on land and in the seas (Elser et
al., 2007). The biologically available P to terrestrial and
aquatic ecosystems ultimately derives from the continental
weathering of rocks on the surface of the earth (Föllmi, 1996;
Ruttenberg, 2003). Rocks are usually classified into three
groups based on their origins: igneous, metamorphic, and
sedimentary rocks. Although tectonic activity continually
cycles the three rocks into each other, igneous rocks are the
primary source rocks because they are formed via cooling
and hardening of lava from the mantle and are a dominant
rock pool, accounting for 65% of the mass, in the crust.
Both sedimentary and metamorphic rocks are considered
as secondary rocks. Sedimentary rocks are formed via ac-
cumulation of sediments derived from the weathering of
pre-existing rocks and erosion of surface soils and often
contain organic material of biological origin. Metamorphic
rocks are formed via subduction of all rock types deep into
the crust where they undergo metamorphisms under high
pressure and temperature. Therefore, all the rocks currently
present in the crust are believed to have first been igneous
from the mantle. All the P that cycles through sedimentary
rocks and biological systems must have been initially derived
from continental weathering of crystalline rocks of igneous
or metamorphic origin (Guidry et al., 2000; Horton, 2015).

The physicochemical characteristics of rock-forming mi-
neral are often used to trace the origin of rock. The igneous
and metamorphic rocks contain minerals that are formed
under high temperature and pressure. In contrast, sedimen-
tary rocks are formed in typical near-surface environments
under low temperature and pressure. Many detritus minerals
in sedimentary rocks are left over from pre-existing igneous
and metamorphic rocks. Therefore, an understanding of the
mineral composition of soil and sediment can provide the
information needed to unlock the weathering processes in
their source regions. The apatite family is the most abundant
in the P-con- taining mineral among all rock types, with
a general chemical composition as represented by the for-
mula Ca10(PO4)6(OH,F,Cl)2. Different geological processes
can induce variations in the OH, F, and Cl contents, resul-
ting in different chemical stability within the apatite family

members (Chang et al., 1998). In igneous rocks, F content
increases as a result of fractional crystallization, and then
fluorapatites become a dominant form (Nash, 1984). Apatites
containing OH and Cl groups are more abundant in less-
fractionated rock types. Sedimentary rocks are dominated by
carbonate fluorapatites (CFAs) or francolites derived from
the substitution of PO4 with CO3 (Nash, 1984; Chang et al.,
1998).

Crystal structure and bonding energy control the che-
mical stability of the apatite family. In fluorapatite, two
crystallographically different Ca atoms occupy different
sites: one in seven-fold and the other in nine-fold coordi-
nation. Each F atom is surrounded by three Ca atoms, and
Ca-O columns are linked with a hexagonal packed sphere
of PO4 group. The lengths of Ca-X (X = F, OH, or Cl)
bond increase from F to OH and further to Cl (0.2311 nm
for Ca-F in fluorapatite, 0.2385 nm for Ca-OH in hydro-
xyapatite, and 0.2759 nm for Ca-Cl in chlorapatite) (Hughes
et al., 1989). This bonding arrangement provides the most
stable structure for fluorapatite. In contrast, the structures
of hydroxyapatite and chlorapatite are stretched; thus, hy-
droxyapatites and chlorapatites are less stable. The chemical
structures suggest that fluorapatites are the most resistant
to weathering attack among the apatite family members.
In contrast, bonding symmetry is distorted in CFAs as a
result of carbonate substitution at phosphate site. This has
been proved experimentally in kinetic studies on dissolution
of igneous fluorapatites (IFAs) and sedimentary CFAs in
aqueous solutions over a range of pH values (Guidry and
MacKenzie, 2003; Chaïrat et al., 2007a, b).

Fluorapatites have been found to be the most common
member of apatite family in the igneous rocks. As an early-
formed, ubiquitous accessory mineral, IFAs are the principal
repository of P in all igneous rocks. During weathering
processes, IFAs are dissolved to release phosphate ions in
aqueous solution, which are rapidly adsorbed to metal (Fe,
Mn, Al, and Ca) oxides contained in soil and sediment or are
assimilated into microbial and plant biomass. As soil ages,
P might be transformed into CFAs and refractory organic P
(Walker and Syers, 1976).

Based on the chronosequence of pedogenesis studies
performed in New Zealand, Walker and Syers (1976) de-
veloped a conceptual model to simulate temporal changes
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in soil P pools as a function of soil age. They postulated
that at the beginning of soil development, all soil P is in
primary mineral forms, mainly as calcium phosphate. As soil
develops over time, the primary minerals weather rapidly and
transform to occluded, non-occluded, and organic P, while
total soil P declines due to leaching. Their model prediction
suggested that at the late stage of soil development, soil P
is low and is dominated by organic and occluded P. This
conceptual model has been validated by numerous chronose-
quence studies in various ecosystems. Among these studies,
the most convincing is the one demonstrating changes in soil
P in the islands of Hawaii with soil age spanning thousands
to millions of years as the volcanic islands were formed by
the movement of the Pacific Plate over a stationary hotspot,
a convective plume in the mantle, for millions of years,
but under a similar subtropical oceanic climate (Crews et
al., 1995; Vitousek et al., 1997; Chadwick et al., 1999).
However, it should be noted that in all these chronosequence
studies, the total apatite family was quantified as the so-
called primary mineral P or apatite P since their sequential
extraction methods used for fractionation of soil P pools did
not distinguish between IFA and sedimentary CFA.

Sequential extraction has been an essential tool in all
chronosequence studies to identify the forms of particulate P
in soil and their evolution as a result of continental weathering
and soil development on the surface of earth. It is a selective
leaching procedure based on chemical reactivity of different
solid P phases. The Hedley sequential extraction method has
been widely used in the soil community (Hedley et al., 1982;
Cross and Schlesinger, 1995; Tiessen and Moir, 2008; Yang
and Post, 2011; Hou et al., 2016, 2018a). In this method,
soil P sequential extraction consists of five steps. In the first
step, anion resin is used to extract exchangeable inorganic
phosphate, followed by treatment with NaHCO3 solution
(pH 8.5) to extract inorganic and organic P. In the third step,
0.1 mol L−1 NaOH solution is used for Fe and Al-bound P
(occluded P), followed by treatment with 1 mol L−1 HCl
solution for biogenic and detrital apatites. The final step is
the digestion of residual solid sample in a strong acid with
oxidants added to decompose refractory organic P. Many
variations of this method currently used in soil analysis do
not include a weak acid extraction step; thus, different forms
of calcium phosphate, all together, are dissolved in a strong
acid (i.e., 1.0 mol L−1 HCl or 0.5 mol L−1 H2SO4). The
caveat of these is, therefore, not making any distinction
between biogenic/authigenic apatites and fluorapatites of
igneous and metamorphic origins.

In order to quantify the authigenic CFA pool in marine
sediments, Ruttenberg (1992) developed a sequential extrac-
tion method, the SEDEX method, in which a buffer solution
of NH4Ac (pH 4) extraction step is added to dissolve biogenic
apatites before using 1 mol L−1 HCl to extract crystalline
detrital apatites. The added step is Step 3 in the flow diagram
in Fig. 1. The advantage of this method over the Hedley

method is its ability to distinguish between CFA and detrital
apatite of igneous or metamorphic origin (IFA). In the Hed-
ley method, CFAs and IFAs are extracted together in a single
strong acid step and are collectively called primary mineral
P (Hou et al., 2018a). Although both CFAs and IFAs contain
Ca and P as major elemental components, they have different
biogeochemical origins and reactivities. Only the SEDEX
method can separately quantify CFAs and IFAs in soil and
sediment samples. Since IFAs are the primary P form in
the igneous rocks at the beginning of weathering processes
and their contents decrease progressively during the course
of rock weathering and soil development, the absolute IFA
content reflects the unweathered primary mineral P pool.
All other forms of P are the products of transformation from
original IFAs during weathering and soil development. The
abundance of IFA relative to total P (TP) therefore reflects
the status and extent (intensity and duration) of weathering
in the study regions. In the subduction zone, IFAs remain
in sediment, representing the pool of P escaping the bio-
geochemical cycle at the surface of earth, and eventually
subduct into the mantle during rock tectonic cycles.

Fig. 1 Flow diagram of solid phase P fractionation (5 steps, S1–S5) using
the SEDEX method (Ruttenberg, 1992; Zhang and Lanning, 2018) for
soil and sediment samples: a solid sample (0.5 g, ground to < 125 µm)
is sequentially extracted with 50 mL solutions of increasing reactivity at
25 ◦C, and at the end of the extraction step, particles are separated from
solution. The vertical arrows indicate the sequence of extraction with the
particulate residue from a previous step, and the horizontal arrows indicate
the required P measurements in solution phase after separation by filtration.
Dissolved organic P is calculated as the difference between total dissolved
P (TDP) and dissolved inorganic P (DIP). CFA = carbonate fluorapatite;
IFA = igneous fluorapatite.

Many previous studies have shown the effect of soil
age on P transformation at ecosystem scales. These studies
focused on the time dependence and kinetic nature of the
weathering processes at local scales. Some recent studies
have shown the effect of climate on P transformation at
regional scales (Filippelli and Souch, 1999; Zhang et al.,
2005; Feng et al., 2016; Siebers et al., 2017), and analyses
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of global soil available P data using the Hedley method have
demonstrated that soil available P is significantly affected by
climate (Siebers et al., 2017; Hou et al., 2018b). Because
of the inherent limitations of the Hedley method mentioned
above, global patterns of P transformation in relation to
climate forcing remain elusive. Here, we compiled an inde-
pendent SEDEX dataset from the literature to identify the
patterns of P transformation at the global scale in relation to
climatic indices, such as absolute latitude (AL), mean annual
temperature (MAT), and mean annual precipitation (MAP).
This study will reveal how changes in TP, CFA, and IFA
pools are related to climate conditions at the global scale.

The data used in this study were compiled from the
published studies citing Ruttenberg (1992) through the Web
of Science and Google Scholar search engines. To ensure
data comparability, we used only data from the studies
that reported solid phase P speciation analysis using the
SEDEX method of Ruttenberg (1992) and the subsequent
modifications (e.g., Zhang et al., 2004, 2010; Zhang and
Lanning, 2018). The advantage of these methods is the
separation of IFAs from CFAs, as the former were the
primary mineral and the latter are a weathering product. To
discount the effect of anthropogenic influence on the natural P
cycle, we limited our data to those studies which were located
in the natural ecosystems on land and coastal waters in the
continental shelf and did not include data from agricultural
lands and aquatic systems that have been subjected to the
impact of fertilizer application and wastewater discharge. To
be representative of contemporary conditions on the surface
of earth at a time scale of centuries, only samples taken from
surface soil and sediment were used. In total, the database
was drawn from 40 studies encompassing soils from North
America (Levy and Schlesinger, 1999), Australia (Samadi
and Gilkes, 1998), and Asia (Akhtar et al., 2014; Mehmood
et al., 2018), deserts soils from Asia (Guo et al., 2011),
Africa (Hudson-Edwards et al., 2014), and North America
(Zhang et al., 2018), and sediments from rivers including the
Amazon River (Berner and Rao, 1994), the Yangtze River
(Rao and Berner, 1997; He et al., 2009; Hou et al., 2009; Ran
et al., 2016), and the Yellow River (Yao et al., 2016), lakes
(Njenga, 2005; Song et al., 2013), and estuarine and coastal
waters (Ruttenberg and Berner, 1993; Vink et al., 1997;
Eijsink et al., 2000; Schenau and De Lange, 2001; Liu et
al., 2004, 2016; Zhang et al., 2004, 2010, 2016; Fang et al.,
2007; Monbet et al., 2007; Virtasalo and Kotilainen, 2008;
Yu et al., 2012; Berbel and Braga, 2014; Cong et al., 2014;
Meng et al., 2014; Zhuang et al., 2014; Song and Liu, 2015;
Yang et al., 2016, 2017, 2018; Kang et al., 2017; Sudheesh
et al., 2017; Bastami et al., 2018). Surface sediment samples
contain soil particles derived from the recent erosion of
adjacent land surfaces; therefore, they contain the integrated
weathering signals from the drainage basins of the studied
rivers at a contemporary time scale. The sampling locations
are shown in Fig. 2. The MAT and MAP data for each

sampling site were extracted from original studies or, in
absence of these data, from the WorldClim dataset (version
1.4). Pearson correlation analysis was carried out to quantify
relationships between the contents of different P forms and
AL, MAT, and MAP. As AL is linearly correlated with MAT,
multiple linear regression was used to analyze correlations
between the contents of different P forms and long-term
MAT and MAP.

Fig. 2 Global distribution of samples used in the studies using the SEDEX
method, a sequential extraction method developed by Ruttenberg (1992).

As shown in Fig. 1, the SEDEX dataset contains 40
studies distributed around the globe. These studies encom-
passed natural soils from deserts in Asia, Africa, and North
America and sediments from lakes, rivers, and coastal wa-
ters. The river, lake, and coastal water sediments represent
the integrated records of weathering in the drainage basins.
In this dataset, the contents of TP in soil and sediment
vary from 1.17 µmol g−1 in tropical Indonesia (Levy and
Schlesinger, 1999) to 42.73 µmol g−1 on an Antarctic island
(Berbel and Braga, 2014). In general, TP contents are low
in the tropics and high in the high-latitude regions. The TP
contents increase with AL, showing a significant positive
correlation (R2 = 0.5377, P < 0.001) (Table I, Fig. 3). In
contrast, the TP contents decrease with local MAT, showing
a significant negative correlation (R2 = 0.6031, P < 0.001)
(Table I, Fig. 3). This is consistent with results from pre-
vious regional studies in China, in which high TP contents
were observed in cold, high-latitude regions, particularly in
the frigid Taklamakan Desert, and low TP contents were
observed in hot, tropical regions (Zhang et al., 2005; Feng
et al., 2016).

The TP contents show a negative correlation with local
MAP (R2 = 0.1848, P < 0.001), indicating that high TP
occurs in arid climate regions and low TP is associated with
wet, tropical climate. The decreasing trends in TP with MAT
and MAP are in agreement with an independent dataset
generated using the Hedley method (Hou et al., 2018b). The
global pattern of TP reveals the climate to be a dominant
driving force in continental rock weathering and terrestrial P
cycling. It is well known that high temperature and precipi-
tation enhance rock weathering (Maher and Chamberlain,
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TABLE I

Multiple regression equations obtained and associated R2 and P values
describing the explanatory capability of each model for the relationships of
different P formswith absolute latitude (AL, ∗) andmean annual temperature
(MAT, ◦C) and precipitation (MAP, mm year−1) of the study sites

P form
(y)a)

Equation R2 P value

TP y = 3.231384 + 0.414703AL 0.5377 < 0.001
y = 27.72849 − 0.72982MAT 0.6031 < 0.001
y = 22.74002 − 0.00689MAP 0.1848 < 0.001
y = 27.15295 − 0.77739MAT

+ 0.001311MAP
0.6073 < 0.001

Exch-P y = 0.446073 + 0.012779AL 0.1252 < 0.001
y = 1.13555 − 0.01858MAT 0.0958 < 0.001
y = 0.877341 − 0.00005MAP 0.0024 0.452
y = 1.031572 − 0.02717MAT

+ 0.00237MAP
0.1289 < 0.001

Fe-P y = − 0.40926 + 0.074153AL 0.3503 < 0.001
y = 3.748385 − 0.11717MAT 0.3167 < 0.001
y = 3.37243 − 0.00151MAP 0.1816 < 0.001
y = 3.9452 − 0.1009MAT

− 0.00045MAP
0.3266 < 0.001

CFA y = 0.701953 + 0.126958AL 0.3438 < 0.001
y = 8.135391 − 0.21947MAT 0.3720 < 0.001
y = 7.379517 − 0.00278MAP 0.2059 < 0.001
y = 8.468898 − 0.19191MAT

− 0.00076MAP
0.3815 < 0.001

IFA y = 0.252176 + 0.188518AL 0.4053 < 0.001
y = 11.76748 − 0.35448MAT 0.5190 < 0.001
y = 9.077126 − 0.00309MAP 0.1357 < 0.001
y = 11.30591 − 0.39263MAT

+ 0.001051MAP
0.5287 < 0.001

Ref-OP y = 2.356125 + 0.005479AL 0.0023 0.454
y = 2.635391 − 0.00698MAT 0.0014 0.565
y = 1.833148 + 0.000656MAP 0.0421 0.001
y = 2.116317 − 0.04988MAT

+ 0.001182MAP
0.0857 < 0.001

a)TP = total P; Exch-P = exchangeable P; Fe-P = Fe-bound P; CFA =

carbonate fluorapatites or francolite; IFA = igneous fluorapatite; Ref-OP
= refractory organic P.

2014), supplying essential nutrient P to support high bi-
ological productivity. Enhanced chemical weathering and
hydrological transport as well as biological uptake result in
low TP in soil and sediment. Climate-driven soil erosion,
particularly the loss of fine-grained particles, and leaching
of dissolved phosphate and dissolved organic P are major
sinks for terrestrial P reservoirs (Chadwick et al., 2003;
Mishra et al., 2013). As a result, high runoff induced by
heavy precipitation that breaks the transport limitation can
significantly reduce TP content in regions with tropical and
subtropical climate (Maher and Chamberlain, 2014).

The contents of IFAs in soil and sediment vary from 0.17
µmol g−1 in tropical Indonesia (Levy and Schlesinger, 1999)
to 23.72 µmol g−1 on an Antarctic island (Berbel and Braga,
2014). Similar to TP, IFAs are low in the tropics and high
in the high-latitude regions. The IFA contents also increase
with AL, showing a positive correlation (R2 = 0.4053 and
P < 0.001) (Table I, Fig. 3). The abundance of IFAs relative
to TP increases from 24% in the tropics to 44% in the
high-latitude regions. In contrast, IFA contents decrease
with MAT, showing a significant negative correlation (R2 =

0.5190, P < 0.001) (Table I, Fig. 3). This is in agreement
with the observed high IFA contents in cold, high-latitude
regions and low IFA contents in warm, subtropical regions,
e.g., about 0.3 µmol g−1 in Florida Bay, USA (Zhang et al.,
2004). The IFA contents also show a negative correlation
with MAP (R2 = 0.1357, P < 0.001), indicating that the
high IFA contents are associated with arid climate such
as the Loess Plateau of northern China and low IFAs are
associated with wet, tropical climate. The global pattern
of IFAs reveals the climate as a dominant driving force in
continental weathering of IFAs. It is well known that high
temperature enhances weathering and dissolution of IFA to
dissolved phosphate (Guidry and MacKenzie, 2003), which
is immediately assimilated by plants and soil microbes.
Enhanced weathering and biological uptake result in low
IFA content in soil and sediment. Since IFAs typically occur
in fine particles, soil erosion induced by heavy precipitation
can significantly drain IFAs from terrestrial surface.

The CFAs are carbonate-associated apatites of biological
origin and most commonly occur in sedimentary phospho-
rites. In this dataset, the CFA contents vary from 0.23 to
18.77 µmol g−1, typically accounting for about 30% of TP.
Similar to TP and IFAs, CFAs significantly increase with AL
and decreases with MAT and MAP (R2 = 0.3438, 0.3720,
and 0.2059, respectively, P < 0.001) (Table I, Fig. 3). The
Fe-P contents vary from 0.05 to 11.5 µmol g−1, typically
accounting for about 20% of TP. Similar to TP, Fe-P signifi-
cantly increased with AL and decreased with MAT andMAP
(R2 = 0.3503, 0.3167, and 0.1816, respectively, P < 0.001)
(Table I, Fig. 3). The high degree of scatter reflects the ubi-
quitous, variable abundance of iron associated with variation
in bedrock lithology in terrestrial surface environments. The
Fe-P increase with AL is because TP increases with AL. It
seems that TP (or exchangeable P (Exch-P)) controls Fe-P
and available Fe does not regulate the amount of Fe-P. This
has been demonstrated in regional studies, for example, in
Florida Bay, USA (Zhang et al., 2004; Zhang and Huang,
2007).

The Ref-OP contents range from 0.22 to 10.1 µmol
g−1, typically accounting for about 20% of TP, vary little
with AL or MAT (P > 0.05), but increase with MAP
(P = 0.001), all showing significant scatter (R2 = 0.0024,
0.0014, and 0.0421, respectively) (Table I, Fig. 3). The
higher Ref-OP contents in the temperate regions reflect
higher biomass in this region, as this P pool is derived from
and accumulated as a result of biological activity. In arid
and semiarid environments, water availability can limit plant
biomass, resulting in a small pool of Ref-OP (Brantley et al.,
2011; Margalef et al., 2017). The increasing trend of Ref-OP
with MAP is in agreement with those of observations.

The Exch-P fraction represents the immediately bioavai-
lable P pool in soil and sediment. This fraction varies from
0.01 to 2.52 µmol g−1, typically accounting for less than
10% of TP. Similar to TP, the Exch-P contents increase
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Fig. 3 Relationships of total P (TP), igneous fluorapatite (IFA), carbonate fluorapatite (CFA) or francolite, Fe-bound P (Fe-P), refractory organic P (Ref-OP),
and exchangeable P (Exch-P) contents with absolute latitude (AL), mean annual temperature (MAT), and mean annual precipitation (MAP), fitted by linear
regression with 95% confidence intervals.

with AL and decrease with MAT with significant scatter
(R2 = 0.1252 and 0.0958, respectively) (Table I, Fig. 3).
The latitude and temperature trends of Exch-P are consistent
with those of TP because the nearly constant proportions of
Exch-P in TP have been observed worldwide. However, the
significant scatter reflects that the other variables such as
chemical composition and particle size of soil and sediment
might also play roles other than TP. In contrast, Exch-P shows
no significant correlation with MAP (a negligible slope of
−0.00005, R2 = 0.0024, P = 0.452) (Table I, Fig. 3).

With limited available SEDEX data, we have provided
a broad-brush picture of global patterns of the terrestrial P
biogeochemical cycle. A linear pattern has been observed
between the P pool and AL, MAT, and MAP. Averaged
latitudinal gradients for different forms of P are shown in
Fig. 4. The pools of TP, IFAs, CFAs, and Fe-P all increase
with increasing AL. The TP contents increase from about 4
µmol g−1 in the tropics to about 36 µmol g−1 in the polar
regions. The IFA pool is dominant from the subtropics to
high-latitude regions, accounting for below 30% of TP in
the subtropics and 42% in the high-latitude regions. The
CFA pool is the second largest, ranging from 2 µmol g−1

in the tropics to 10 µmol g−1 in the polar regions. The
ratios of CFAs to TP vary little with AL from 23% in the
tropics to 30% in the high-latitude regions. The Fe-P pool
accounts for less than 5% of TP in the tropics and about

Fig. 4 Average latitudinal gradients of total P (TP) and five different
forms of P separated using the SEDEX method (Ruttenberg, 1992). TP
= total P; IFA = igneous fluorapatite; CFA = carbonate fluorapatite or
francolite; Fe-P = Fe-bound P; Ref-OP = refractory organic P; Exch-P =
exchangeable P.

15% of TP in the high-latitude regions. The Exch-P pool is
the smallest, but represents the most bioavailable form of P
in the surface environment, varying from 0.5 to 1.5 µmol
g−1 and accounting for 10% of TP in the tropics and 4% of
TP in the high-latitude regions due to relatively high TP in
the cold regions. The Ref-OP pool is the sole fraction that
shows no clear trend with AL. It has a global average content
of 2.6 µmol g−1 and accounts for about 10% of TP in the
temperate and high-latitude regions, but become a significant
P form (30% of TP) in the tropics, where TP is typically
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low. The global patterns shown in Fig. 4 are a result of the
combined actions of physical erosion, chemical weathering,
hydrological transport, biological uptake, and recycling of
various P forms in the earth surface environment. We believe
that the driving force behind all these actions is climate,
which in turn is governed by a latitudinal gradient in the
distribution of solar irradiance energy around the globe.
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