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The Gorkha earthquake on April 25th, 2015 was a long anticipated, low-angle thrust-faulting event on the shal-
low décollement between the India and Eurasia plates. We present a detailed multiple-event hypocenter reloca-
tion analysis of the Mw 7.8 Gorkha Nepal earthquake sequence, constrained by local seismic stations, and a
geodetic rupture model based on InSAR and GPS data. We integrate these observations to place the Gorkha earth-
quake sequence into a seismotectonic context and evaluate potential earthquake hazard.

Major results from this study include (1) a comprehensive catalog of calibrated hypocenters for the Gorkha

Keywords:
Gj;‘ffha earthquake earthquake sequence; (2) the Gorkha earthquake ruptured a ~150 x 60 km patch of the Main Himalayan Thrust
Aftershocks (MHT), the décollement defining the plate boundary at depth, over an area surrounding but predominantly north

of the capital city of Kathmandu (3) the distribution of aftershock seismicity surrounds the mainshock maximum
slip patch; (4) aftershocks occur at or below the mainshock rupture plane with depths generally increasing to the
north beneath the higher Himalaya, possibly outlining a 10-15 km thick subduction channel between the over-
riding Eurasian and subducting Indian plates; (5) the largest Mw 7.3 aftershock and the highest concentration of
aftershocks occurred to the southeast the mainshock rupture, on a segment of the MHT décollement that was
positively stressed towards failure; (6) the near surface portion of the MHT south of Kathmandu shows no after-
shocks or slip during the mainshock. Results from this study characterize the details of the Gorkha earthquake
sequence and provide constraints on where earthquake hazard remains high, and thus where future, damaging
earthquakes may occur in this densely populated region. Up-dip segments of the MHT should be considered to be

high hazard for future damaging earthquakes.
Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Rupture model
Himalaya tectonics

1. Introduction slip during the mainshock. Results from this study characterize the de-

tails of the Gorkha earthquake sequence, provide constraints on the

In this paper we calculate rupture characteristics of the 25 April 2015
Mw 7.8 Gorkha, Nepal mainshock and determine multiple-event
relocated hypocenters for the aftershock sequence using a combined
network of local, regional and global seismic stations (Dixit et al.,
2015; Adhikari et al., 2015; Hayes et al., 2015). We find that aftershocks
occur in regions surrounding the mainshock rupture maximum slip at
depths consistent with the Main Himalayan Thrust (MHT) and below
in the subducting Indian plate. In addition, the near surface portion of
the MHT south of Kathmandu is primarily absent of aftershocks and
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geodynamics of the India-Eurasia continental collision zone, and sug-
gest where earthquake hazard remains high in this densely populated
region.

1.1. Tectonic setting

Approximately 65 million years ago, final subduction of Tethyan
oceanic crust occurred as the northward converging Indian plate collid-
ed with the southern margin of Eurasia at a relative rate of 40-50 mm/yr
(Dewey et al.,, 1988; Dewey and Burke, 1973; Bilham et al., 1997). Since
the initiation of continental-collision, continued shallow underthrusting
of the Indian lithosphere beneath Eurasia (Nelson and the project

0040-1951/Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INDEPTH team, 1996; Makovsky and the project INDEPTH team, 1996;
Makovsky et al., 1997; McNamara et al., 1997; Schulte-Pelkum et al.,
2005; Nabelek et al., 2009; Caldwell et al., 2013) caused nearly
2500 km of crustal shortening resulting in the high elevations of the
Himalaya mountain range (>5000 m), as well as the thickened crust
(60-70 km) (Molnar, 1988) and eastward extrusion of the Tibetan
Plateau lithosphere along major left-lateral strike-slip faults (Molnar
and Tapponnier, 1975; Avouac and Tapponnier, 1993; McNamara
etal, 1994) (Fig. 1).

In addition to spectacular topography, continental collision along the
India-Eurasia plate boundary has produced numerous great
earthquakes (M8 +) throughout history (Bilham, 1995). Most recently,
on 25 April 2015, the Mw 7.8 Gorkha earthquake ruptured a ~150 x
60 km section of the MHT that initiated beneath the Gorkha region of
central Nepal at on a low-angle thrust fault dipping at 11° north that
propagated eastward beneath Kathmandu (Hayes et al,, 2015). This seg-
ment of the MHT has experienced several damaging earthquakes (1833,
1866, 1988) and is adjacent to segments to the northwest that ruptured
in 1505 (Bilham, 1995) and to the southeast that ruptured in the 1934
Nepal-Bihar M8.1 earthquake (Fig. 1) (Sapkota et al., 2013).

1.2. Impact

The mainshock rupture was predominantly north of the capital city
of Kathmandu, and caused very strong levels of shaking (MMI IX)
resulting in hundreds of thousands of collapsed and damaged structures
($7 billion U.S. of economic losses) and loss of life (~8800 fatalities,
22,000 injuries) in Kathmandu and surrounding districts (Dixit et al.,
2015). The shaking also caused significant loss of life through secondary
hazards such as thousands of landslides in the steep-walled river and
glacial valleys of the Himalaya (Collins and Jibson, 2015) and large
(M6 +) aftershocks at both ends of the mainshock rupture.

1.3. Aftershocks
Nearly 700 aftershocks were recorded on the Nepal Department of

Mines and Geology (DMG) National Seismological Network (NSN) in
the months following the Gorkha mainshock (Mw 7.3 2015-04-25

06:11:25 (UTC)) (Adhikari et al., 2015; Dixit et al., 2015; Hayes et al.,
2015) with two of the largest aftershocks (mb 6.1 2015-04-25
06:15:22 (UTC), Mw 6.6 2015-04-25 06:45:21 (UTC)) within the
first hour of the sequence, at either end of the mainshock rupture
(Figs. 1 and 2). The second largest aftershock (Mw 6.7 2015-04-26
07:09:10.670 UTC) occurred one day later on the northeastern end of
the rupture and 16 days later, in same region, the largest aftershock oc-
curred (Mw 7.3 2015-05-12 07:05:19 (UTC)) (Figs. 1 and 2). In close
proximity and within the same hour another large aftershock was reg-
istered (Mw 6.3 2015-05-12 07:36:54 (UTC)). The combined large af-
tershocks caused dozens of additional deaths and extensive damage to
buildings in eastern Nepal.

Key issues of this earthquake sequence are the relatively high mag-
nitude Mw 7.3 aftershock and the low magnitude-frequency distribu-
tion (b-value = 0.8) suggesting enrichment in large magnitude
earthquakes relative to the global average (b-value = 1) (Adhikari
et al,, 2015).

1.4. Data instrumentation

Fig. 1 shows the distribution of local and regional seismic stations
used to improve upon the U.S. Geological Survey (USGS) National Earth-
quake Information Center (NEIC) single-event hypocenters in the 2015
Mw 7.8 Gorkha, Nepal, earthquake sequence. In most cases, seismic
phase picks were obtained from the Nepal DMG NSN and USGS NEIC
combined catalog (COMCAT) earthquake catalogs. Phase picks were
made on short-period seismic stations of the Nepal DMG NSN that are
distributed regionally throughout Nepal (Adhikari et al., 2015), USGS
strong-motion NetQuakes sensors that located in the Kathmandu Valley
(Dixit et al.,, 2015) and additional global network broadband stations
obtained from the USGS NEIC real-time earthquake processing system
(Buland et al., 2009).

Additional seismic phase arrivals were manually picked on the local
Nepal National Society for Earthquake Technology (NSET) N-SHAKE sta-
tions when available (Fig. 3a). In the weeks following the Mw 7.8
Gorkha earthquake, USGS scientists, supported by U.S. Agency for Inter-
national Development (USAID) Office of Foreign Disaster assistance
(OFDA), deployed to Nepal in order to install aftershock recording
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Fig. 1. Seismic station and regional tectonic map showing U. S. Geological Survey (USGS) National earthquake information center (NEIC) single-event epicenters as circles colored by depth.
Nepal DMG NSN stations are shown as red triangles (Adhikari et al,, 2015), U.S. Geological Survey NetQuakes sensors are shown as cyan triangles, global stations used by the USGS NEIC
(I0.EVN) shown as a blue triangle, and N-SHAKE stations are shown as yellow triangles. Major plate boundaries and the MFT are shown as red lines (Berryman et al., 2014). Also shown are
approximate epicenters (stars) and rupture areas (blue lines) for historic earthquakes in 1505, 1833 and 1934.
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Fig. 2. Magnitude vs time for all 672 A, B, C, and D quality earthquakes. Two M > 6 aftershocks occurred within 1 h of the 25 April 2015 mainshock. Seventeen days after the mainshock on
12 May 2015 the largest Mw 7.3 aftershock occurred with a M > 6 aftershock within the same hour. Aftershocks have significantly decreased in magnitude and frequency since May 2015.

sensors and conduct a variety of damage and hazard assessment studies
(Hough, 2015; Dixit et al., 2015; Collins and Jibson, 2015; Hayes et al.,
2015; Moss et al.,, 2015). A significant accomplishment of the USAID
OFDA deployment was improvement of the N-SHAKE network with dis-
tribution of additional Quake Catcher Network (QCN) (Cochran et al.,
2009) micro-electro-mechanical system accelerometers in collabora-
tion with Nepal NSET. In 2014, NSET installed a small number of QCN
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Fig. 3. (a) 2015 April 25 Mw 7.8 Pg arrivals recorded at N-SHAKE station QC.311523 and
USGS Netquake station NQ.KATNP, roughly 70 km away from the epicenter in
Kathmandu (Fig. 1). (b) Velocity model fit to the local and regional phases (Pg, Sg, Pn,
Sn) travel times. (c) AK135 global model (red), Local velocity model determined in this
study (black) and starting velocity model from Monsalve et al. (2008) (green).

Onavi-B 16-bit instruments as a pilot study to test the feasibility of
using low-cost strong-motion sensors to improve monitoring in the
Kathmandu Valley of Nepal.

In addition, a new sensor was installed at the USGS Netquakes sta-
tion (NQ.KATNP) since it had not reported data in nearly two years.
Triggers, including the Mw 7.8 mainshock, were recorded in the sensor
memory and retrieved for manual arrival-time picking (Fig. 3a) and
strong ground motion studies (Dixit et al.,, 2015). The older sensor was
repaired and then installed at a new location (NQ.KNSET, Fig. 1) for
use by the USGS NEIC real-time earthquake monitoring system.

2. Multiple-event relocation: Hypo-centroidal
decomposition method

An initial catalog of Nepal DMG NSN and USGS NEIC single-event hy-
pocenters and phase data were used as starting locations to determine
calibrated multiple-event relocations using the Hypocentroidal Decom-
position (HD). HD is a multiple-event procedure, first developed by
Jordan and Sverdrup (1981), in the same class of methods that include
Joint Hypocentral Determination (Douglas, 1967; Dewey, 1972) and
Double Difference (Waldhauser and Ellsworth, 2000). HD is unique
among these methods in having been developed for obtaining not
only improved relative locations, but also calibrated absolute locations
for an entire cluster of events, with reliable estimates of location uncer-
tainty for each event.

The key feature of the HD algorithm is the decomposition. Decompo-
sition greatly facilitates calibrated location studies through orthogonal
projection operators of the multiple-event relocation problem into
two independent inverse problems. These independent problems
involve (1) the estimation of a set of cluster vectors that describe the lo-
cation and origin time of each event with respect to a reference location
of the hypocentroid that is defined as the geometrical mean of the
current locations and origin times; and (2) inversion for an updated
location and origin time for the hypocentroid in geographic coordinates,
using the relative locations fixed by the cluster vectors and a subset
of arrival-time data deemed most suitable for the problem. Separation
of the problem in this way permits seismologically appropriate
weighting for the two parts of the relocation process, which is critical
for obtaining realistic uncertainties of the individual earthquake hypo-
central parameters.

Arrival time data are weighted inversely to the uncertainty of the
reading. Unlike other location algorithms, which use ad hoc values for
data uncertainties for all samples of a given phase, we take advantage
of the availability of repeated observations of the same phase at the
same station for multiple events in a cluster and use the distribution
of residuals from the observed arrival time data to estimate empirical
arrival-time errors for each station-phase pair represented in the data
set. These empirical arrival-time errors include traditional reading
error, plus all other sources of variability in the residuals. Empirical
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arrival-time errors are estimated with a robust statistical method that
minimizes the influence of outliers, and we then use the empirical er-
rors to identify and eliminate outliers. This is an iterative process,
followed at each step by relocation, repeated until the data set contains
only arrivaltimes that are statistically consistent with the observed
spread of residuals (£ 30). Cluster vectors, that establish the relative lo-
cation of each event with respect to the hypocentroid, are estimated
using all available arrival time data, regardless of phase type or epicen-
tral distance. This is possible because only travel time differences are
used to estimate improved relative relocations, a common feature in
all multiple-event relocation algorithms. Therefore, errors in the theo-
retical travel-time model used to calculate residuals and derivatives
do not propagate significantly into relative location bias.

An important procedure for obtaining calibrated locations for a cluster
of events in the HD method is to locate the hypocentroid of the cluster
using only near-source data. This can be done in several ways (e.g., by ref-
erence to one or more events in the cluster for which very accurate loca-
tions are known independently), but for this study we used arrival time
data at short epicentral distances. In this way we minimize the biasing ef-
fect of the imperfectly known velocity structure in the source region. It is
especially important to avoid the use of Moho-refracted phases (Pn, Sn).
Because of the relatively dense DMG NSN network, we avoided Moho-
refracted phases by restricting the data set used for the hypocentroid to
distances of less than about 60 km and still have a large number of direct
crustal phase arrival times with broad azimuthal coverage.

An advantage of the HD method is its ability to relocate in an abso-
lute sense the poorly constrained hypocenters by tying them to clusters
of aftershocks that are recorded by the denser local network. One disad-
vantage of the HD method, in comparison with other methods of
multiple-event relocation, is that computational effort grows rapidly
with the number of events. To analyze the earthquake sequence of
672 events simultaneously would be impractical, so we divided the se-
quence into five sub-clusters based on station coverage and association
with DMG NSN and USGS NEIC catalogs. Each sub-cluster was calibrated
independently and contains events in all the main regions that were ac-
tive during this sequence and overlap in space and time with the other
two sub-clusters. Therefore, the five sub-clusters can be combined into a
single seamless aftershock sequence. Sub-clusters were compared
closely to ensure that there was no significant bias in location and
depth between the five sub-clusters.

Additional improvement over the USGS NEIC and DMG NSN single-
event hypocenters was achieved by developing a local velocity model.
Starting with the southern 1D model of Monsalve et al. (2008) (Fig. 3)
we forward modeled crust and mantle velocities to reduce the average
travel-time residual for local and regional phase picks (Pg, Pn, Sg, Sn)
(Fig. 3a) while simultaneously inverting for the highest quality hypo-
centers (Fig. 3b). The improved local velocity model (Fig. 3¢, Table S3)
significantly reduces the average travel time-residual relative to the
AK135 global model (Kennett et al., 1995) used to determine USGS
NEIC single-event hypocenters.

In summary, the HD relocation method provides improved hypocen-
ter locations with minimized location bias and realistic estimates of loca-
tion uncertainty for each earthquake. With local seismic stations available
within two focal depths, location and depth uncertainty is improved sig-
nificantly. In other cases uncertainty is greater and depths are often not
changed from the original USGS NEIC or DMG NSN hypocenter. In addi-
tion, relocating earthquakes using HD can reduce, by a factor of 2, the scat-
ter in hypocenter locations determined using single-event methods.
Recent examples of HD applications and additional method details can
be found in McNamara et al. (2014, 2015); and Hayes et al. (2013, 2014).

2.1. HD hypocenter quality, uncertainty and results
We determine relocated hypocenters for a total of 672 earthquakes

in four different quality levels based on hypocenter uncertainty, seismic
station coverage and association between the global USGS NEIC and

local DMG NSN catalogs (Fig. 4, Table S1). We define 74 hypocenters
as quality A that are located using global phase picks available to the
USGS NEIC and local phase picks from the regional Nepal DMG NSN
and NSET N-SHAKE stations located in Kathmandu (Table S2). For
quality A events, origin times are associated within 5 s in both the
DMG NSN (Adhikari et al., 2015) and USGS NEIC COMCAT catalogs
(earthquake.usgs.gov). Quality A relocated hypocenters are within an
epicentral distance of less than two focal depths to the nearest recording
stations and in nine cases have USGS W-phase MTs for depth
constraints. In general, quality A events have epicentral uncertainties
<5 km and depth uncertainty <3 km (Figs. S1 and S2). Similar to quality
A eents, 143 earthquakes are considered quality B were located using
global stations, local and regional phase picks from Nepal DMG NSN
and NSET N-SHAKE stations. The difference with quality A is that quality
B hypocenters are less well constrained because epicentral distances are
greater than two focal depths to the nearest recording stations. In gen-
eral, quality B events have epicentral uncertainties 5-10 km and depth
uncertainty 3-5 km (Figs. S1 and S2).

Hypocenters of 360 earthquakes were classified as quality C from 25
April to 07 June 2016 and were relocated with only Nepal DMG NSN sta-
tion phase picks. In many cases quality C hypocenters are well
constrained with hypocenter uncertainty <10 km (Figs. S1 and S2)
however these events could not be associated, within a 5 s origin time
difference, with any USGS NEIC COMCAT earthquakes. These earth-
quakes are generally smaller magnitude events that were not observed
at distant regional and global stations.

Finally, 76 quality D earthquakes from 25 April 2015 to June 2016
were located with limited local USGS Netquakes and NSET N-SHAKE
station phase picks and/or global networks available to the USGS NEIC
(Figs. S1 and S2). No DMG NSN phase picks are available since the cata-
log is available only through in early November 2015 (Adhikari et al.,
2015). Consequently, the closest global stations consistently available
to the USGS NEIC are the strong motion USGS Netquakes (NQ.KATNP,
NQ.KNSET) stations in Kathmandu and Global Seismograph Network
(GSN) station IC.LSA, nearly 500 km away in southern Tibet. Hypocen-
ters are improved slightly when station I0.EVN, located at Mt. Everest
basecamp (Fig. 1), was available to the USGS NEIC for two weeks follow-
ing the mainshock and when local travel-time picks were observed on
NSET N-SHAKE stations in Kathmandu (Fig. 3a). On average, quality D
events have epicentral and depth uncertainty greater than 10 to 20 km.

2.2. Constraints on hypocenter focal depth

In addition to application of the HD multiple-event relocation meth-
od, hypocenter depths determined in this study are improved over
USGS NEIC single-event hypocenters because of the addition of local
phase picks from the DMG NSN and NSET N-SHAKE stations (Fig. 3a),
and DMG NSN single-event hypocenters due to the use of depth phases
recorded on global network stations. Minimization of travel-time resid-
uals for hypocenters with epicentral distances less than two focal
depths was meticulously applied to constrain quality A depths. Quality
B, C, and D hypocenters were determined by including well-
constrained (quality A) hypocenters as constraints in the HD multiple-
event inversion. The use of a local velocity model also contributes to im-
proved focal depths (Table S3). HD relocated focal depths are on aver-
age shallower by ~5 km assuming the local versus global (AK135)
velocity model (Kennett et al., 1995).

2.3. HD results compared to USGS NEIC and DMG NSN starting hypocenters

We did not locate all earthquakes observed at local seismic stations,
but only those events for which there were a sufficient number of
arrival-time observations and good azimuthal coverage to ensure a
well-constrained hypocenter. Typically, smaller earthquakes (M < 4.0)
were only recorded on a few local stations, making it difficult to deter-
mine location and depth accurately. In general, hypocenters shifted
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several kilometers from the USGS NEIC single-event solutions with un-
certainty reduced by a factor of two for quality A, B and C events. For ex-
ample, the mainshock epicenter has been relocated by approximately
10 km to the northeast (Fig. S1).

Fig. 4 shows a map of 217 quality A and B hypocenters along three
cross-sections. HD relocated epicenters moved on average 10 to 15 km
to the northeast relative to the USGS NEIC single-event epicenters
(Fig. S1) and are distributed in a distinct NW to SE elongated ellipse
to the north of Kathmandu. At the western end of the sequence
(Fig. 4 A-A’), the Mw 7.8 (HD depth = 8.0 km, NEIC depth = 15 km,
MT depth = 10 km) mainshock and Mw 6.6 (HD depth = 8.5 km,
NEIC depth = 10 km, MT depth = 15 km) aftershocks are located at
depths consistent with the MHT décollement (Lavé and Avouac,
2000). Smaller aftershocks occur on deeper structures forming a U
shape to maximum depths of 25-30 km. Aftershocks in the central re-
gion of the sequence generally form two distinct northern and southern
bands (Fig. 4 B-B’) that dip towards each other to depths of 30 km. The
region to the east (Fig. 4 C-C’) contains the highest concentration of
earthquakes and the largest Mw 7.3 and 6.7 aftershocks. The Mw 7.3 af-
tershock is located downdip of the Mw 7.8 mainshock at a depth along
the MHT décollement defining the plate boundary (HD depth = 12 km,
NEIC depth = 15 km, MT depth = 28 km). Aftershocks in the eastern
region range in depth from 5 to 30 km and form a more shallow U
shape than observed in profiles to the west.

HD relocated focal depths using a local velocity model tend to be
more shallow than the NEIC single-event focal depths using the
AK135 global model. HD relocated focal depths are also more shallow
than the USGS W-phase MT due to use of the AK135 global velocity
model and the difference in depth between the moment release versus
the rupture initiation location (hypocenter).

2.4. Comparison with other studies

Fig. 5 shows comparisons with results from two recent studies by
Nepal DMG NSN (Adhikari et al., 2015) and the Institute of Tibetan
Plateau Research, Chinese Academy of Sciences (Bai et al., 2016). Our
observations broadly agree with those of previous aftershock studies
(Adhikari et al., 2015; Bai et al., 2016), although our catalog better re-
solves the earthquake depths and the absence of seismicity in the pri-
mary regions mainshock rupture due to use of a local velocity model
and a combination of local and global phase picks.

Hypocenters determined in this study are on average 5 to 10 km
deeper and move 5 to 15 km over a broad range of azimuths from the
results of Adhikari et al., (2015). Hypocenters determined in this study
are on average 5 to 15 km deeper and move 5 to 20 km in a narrow
range of southwestern azimuths from the results of Bai et al., (2016).
In addition, inclusion of local observations constrains aftershocks to
greater depths as compared to earlier USGS NEIC investigations reliant
primarily on regional and teleseismic data (Hayes et al., 2015).

Station coverage is considerably improved in our study over the Bai
etal., (2016) study since the nearest stations are located over 500 km to

[4}]
O

the northeast of the Gorkha sequence in southern Tibet. Station cover-
age is also improved in our study over Adhikari et al., (2015) since hypo-
centers are not constrained with teleseismic arrivals (including depth-
phases) recorded at stations in the global networks available to the
USGS NEIC. We also removed significant outliers from the DMG NSN
phase picks and developed a local velocity model that contributed to re-
duced travel-time residuals and hypocenter uncertainty (Fig. 3).

3. Geodetic slip model

In addition to improving aftershock locations, we mapped the spatial
extent of finite fault slip from the April 25, 2015 Mw 7.8 Gorkha earth-
quake using a combination of space-based and in-situ geodetic observa-
tions. We analyzed four co-seismic interferometric synthetic aperture
radar (InSAR) interferograms from the ALOS-2 L-band satellite and the
Radarsat-2 C-band satellite (Hayes et al., 2015; Lindsay et al., 2015).
These images spanned the time period February 2 to May 3, 2015, all
prior to the May 12, 2015 Mw 7.3 aftershock. Both strip map and
swath imaging modes were available from these sensors, and together
they provided a complete image of the co-seismic displacement pattern,
including the distinct subsidence and uplift lobes that are characteristic
of a shallowly dipping thrust fault. We downsampled each interfero-
gram to a computationally feasible number of observations (~10> obser-
vations from each interferogram) and estimated the noise covariance
structure of the resampled interferograms (Lohman and Simons,
2005; Lohman and Barnhart, 2010). Line-of-sight radar observations
of the mainshock were further supplemented by GPS observations
from 15 continuous stations. We generated static offsets from daily
GPS point position solutions processed by the University of Nevada
Reno Geodetic Laboratory (see Data and Resources). Where available,
we used time series spanning the period January 1, 2010 up to May
11,2015 one day before the Mw 7.3 aftershock. Static co-seismic offsets
and associated uncertainties for all three-displacement components
were generated using the time series analysis methodology of
Langbein (2004). This approach estimates both long-term displacement
velocity and static displacement at a known earthquake origin time, and
it accounts for temporally correlated noise in the GPS time series thus,
providing a more realistic estimate of uncertainties that can be obtained
through weighted least-squares fitting (e.g., Murray et al., 2014).

The finite fault slip distributions were generated following the general
methodology of Barnhart et al. (2015). We first inverted the InSAR and
GPS displacements for the best-fitting geometry and location of a single
fault patch with uniform slip in a uniform elastic halfspace using the
Neighbourhood Algorithm (Sambridge, 1999). The Neighbourhood Algo-
rithm was allowed to search a broad model space, resulting in a best-fit
fault geometry that dipped significantly steeper than the USGS W-phase
solution (30°+ versus 11°). This discrepancy arises from the dominating
effect of InSAR observations that primarily image vertical displacements
and manifests as a tradeoff between inferred dip and depth of the fault
plane. To address this, we fixed the dip of the fault plane to the USGS
NEIC W-phase solution (Hayes et al., 2015) and allowed all other model
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Fig. 5. A and B quality HD hypocenter comparisons to previous studies. a) Depth comparison. HD results from this study are generally 5-10 km deeper than Adhikari et al., (2015) (solid
gray) and 5-15 km deeper than Bai et al., (2016) (transparent orange). b) Epicenter comparison. HD epicenters from this study moved by 5-15 km relative to Adhikari et al., (2015) (solid
gray) and 5-20 km from Bai et al., (2016) (transparent orange). c) Epicenter change azimuth comparison. Change azimuths cover a broad range relative to epicenters from Adhikari et al,,
(2015) (solid gray) and are dominantly to the southwest of epicenters in Bai et al., (2016) (transparent orange).
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parameters to vary freely. The best-fit model from this procedure
(strike = 290°, dip = 7°) better approximates the orientation and
depth of the W-phase solution. Furthermore, the RMS residual of this
model for the InSAR observations is similar to more steeply dipping
models (RMS difference of ~3 mm) where the dip and depth of the
fault plane are allowed to vary freely, but the horizontal GPS displace-
ments are fit much better. This demonstrates that a steeply dipping
plane (>30°) is not required to explain the InSAR observations. Nonethe-
less, these tradeoffs highlight the difficulty of inferring the depth of a
nearly horizontal fault plane from primarily vertical surface displace-
ments and motivate the need for accurate fault plane geometries of sub-
duction zones (e.g., Hayes et al., 2012).

We then fixed the best-fit single fault plane solution and extended
the dimensions of the fault along-strike and down-dip. We applied an
automated discretization approach that variably resamples the fault
plane into heterogeneously sized triangles while simultaneously
inverting for rake direction and finite slip in a homogeneous elastic
halfspace (Barnhart and Lohman, 2010). The relative sizes of the trian-
gular fault patches reflect the model resolution (larger patches indicate
poor model resolution, while smaller patches indicate good model res-
olution) and introduce spatially varying regularization to the inverse
problem (Fig. 4). The shallow dip of the responsible fault plane and
the excellent coverage of InSAR observations allows for nearly uniform
model resolution in our slip distribution. We imposed a minimum mo-
ment regularization and allowed the rake direction to vary freely in the
thrust and strike-slip directions.

3.1. Geodetic slip model uncertainty

A common source of uncertainty in finite-fault slip distributions de-
rived from InSAR is correlated atmospheric noise (e.g., Goldstein, 1995;
Emardson et al., 2003; Lohman and Simons, 2005). To capture the biases
introduced by this noise source in our slip distribution, we conduct a
Monte Carlo error propagation analysis (Barnhart and Lohman, 2013).
We add 500 realizations of synthetic noise to the predicted displace-
ments of our best-fit slip distribution, where the synthetic noise has
the same covariance structure as the resampled data. We then invert
each synthetically noisy data set for fault slip using the same regulariza-
tion and fault discretization described above. This procedure produces a
population of fault-slip distributions that vary as a function of the noise
in the observations. From this population, we extract the median, 16th,
and 84th percentile slip distributions to highlight the possible range of
slip distributions that fit the data (Figs. 6, S3 and S4).

3.2. Geodetic slip modeling results

Our slip distributions are broadly consistent with previous studies
that utilized similar observations (Hayes et al., 2015; Zhang et al.,

2015; Avouac et al.,, 2015; Galetzka et al., 2015; Wang and Fialko,
2015; Elliott et al., 2016). Slip propagated unilaterally to the east from
the event epicenter, with the largest static slip values of up to ~8 m oc-
curring immediately north of Kathmandu. Modeled slip distributions in-
dicate a sharp up-dip cutoff of slip near 12.5 km with peak slip values at
15-16 km depth (Fig. 4). These depths are consistent with the W-phase
MT depth of 15 km (Hayes et al., 2015), aftershock depth ranges found
in this study, and slip depths reported by several other recent geodetic
studies (e.g., Avouac et al., 2015; Galetzka et al., 2015; Elliott et al.,
2016) but deeper depths proposed by Wang and Fialko (2015). The sur-
face projection of slip cutoff is robust between all of these studies, dem-
onstrating the distinct blind nature of this event and the lack of moment
that was released within a ~45-50 km wide up-dip portion of the Main
Frontal Thrust (MFT) south of Kathmandu. Additional to the up-dip seis-
mic gap left by this earthquake, there are downdip regions of little to no
slip that are well resolved by our observations northeast of Kathmandu
(Fig. 4). One of these gaps was partially filled by the May 12, 2015 Mw
7.3 aftershock, as evidenced by other slip distributions generated from
InSAR observations (Hayes et al,, 2015; Lindsay et al., 2015).

4. Discussion: Implications for geodynamics and earthquake hazard

A combination of high-quality HD aftershock relocations and
mainshock geodetic slip model allows us to further compare aftershock
distribution to the rupture characteristics of the Mw 7.8 and Mw 7.3
earthquakes. The earthquake sequence was most active in the west
and east with aftershocks generally surrounding the region of major
slip (>4 m) during the Mw 7.8 mainshock (Fig. 4). The highest densities
of earthquakes occur ENE of the mainshock rupture in regions of mini-
mum slip, and along the up-dip and down-dip edges of the mainshock
rupture zone in regions of positive Coulomb failure stress change
(ACFS) (Li et al., 2017-in this issue; Hayes et al., 2015). The absence of
aftershocks, along up-dip segments of the mainshock maximum slip re-
gion, is consistent with a deficit of post-event slip (Mencin et al., 2016).

At depth, aftershocks are also likely occurring on activated structures
beneath the mainshock rupture in deeper regions of positive ACFS
(Stein, 1999). The high density of aftershocks ENE of the mainshock
rupture occur updip from the Mw 7.3 aftershock. Few aftershocks locat-
ed within 50 km of the MFT surface trace, which in congruence with our
fault-rupture model, suggests that this portion of the plate interface did
not slip during the Mw 7.8 mainshock.

Fig. 7 is a generalized cross section of the Himalayan thrust system
(after Lavé and Avouac (2000) and Kumar et al., (2006)) through
Kathmandu, showing major faults (Main Frontal Thrust (MFT), Main
Himalayan Thrust (MHT), Main Boundary Thrust (MBT), Main Central
Thrust (MCT)) and the distribution of aftershocks in cross-section.
Also shown are interpreted receiver function common conversion
point (CCP) stacks from Schulte-Pelkum et al. (2005) showing P-wave
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Fig. 6. Mainshock slip versus depth (left) and along strike (right). The black profile reflects the median slip distribution drawn from 500 Monte Carlo simulations (Fig. 5), and the gray

profiles reflect the 16th and 84th percentiles of inferred slip, respectively.
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Fig. 7. Generalized cross section of the Himalayan thrust system through Kathmandu with calibrated aftershock relocations (A quality are light gray circles, B quality shown with 50% trans-
parency) and major faults (black lines) after Lavé and Avouac (2000) and Kumar et al., (2006) (MFT, Main Frontal thrust; MBT, Main Boundary thrust; MCT, Main Central thrust; and MHT,
Main Himalayan thrust). Approximate ruptures for the Mw 7.8 mainshock (gray line) and Mw 7.3 aftershock (dark gray line) shown along the MHT. Relocated aftershocks surround the
region of maximum mainshock slip in cross-section as well as map view, and are primarily located at a depth that corresponds to the shear zone (red and blue lines) and near the boundary
between the upper and lower crust imaged by Schulte-Pelkum et al., (2005) using CCP north-south receiver function component difference stacks (black box inset). Color scale is stacked
radial receiver function amplitude expressed as a percentage of the direct P arrival. Also shown are the CCP stack-interpreted boundary between the upper and lower Indian crust (thin
dashed black line) and the Moho (thick dashed black line). USGS NEIC W-phase moment tensor focal mechanisms shown in profile in light blue (Hayes et al., 2015).

receiver function amplitudes which are interpreted as the major geolog-
ic interfaces in the India-Eurasia continental collision zone and a seismi-
cally anisotropic shear-zone along the MHT.

In general most aftershocks occur within or below the MHT
decollement in a 10-15 km thick depth interval of low-angle reverse
faulting (Fig. 7). Given the similarity in orientation of the focal mecha-
nisms between mainshock and aftershocks, and the coincident location
of the aftershock seismicity with a shear zone previously imaged using
receiver functions (Schulte-Pelkum et al., 2005), we interpret this re-
gion of aftershock activity as a subduction channel where shear defor-
mation occurs within unconsolidated, high pore fluid pressure, viscous
material sandwiched between stronger upper Eurasian and under-
thrusting lower Indian tectonic plates (Vannucchi et al., 2012). A sub-
duction channel in a continental collision zone can be particularly well
developed and thickened due to the large amounts of sediments con-
tributed from two continental plates and stress and fluid pressure is
anomalously high due to the rapid convergence rate in the Eurasia-
India continental collision (45 mm/yr) (von Huene and Scholl, 1991).

Some field studies of exhumed fossil subduction zones support the
model of a several kilometer thick zone with seismic ruptures within
the channel that cross-cut foliation developed within the channel
(Bachmann et al., 2009; Dielforder et al., 2015; Fagereng, 2011;
Angiboust et al., 2015), while others argue for strain localization with mé-
lange fabric ascribed to other deformational processes (Wakabayashi and
Rowe, 2015; Raymond and Bero, 2015; Platt, 2015); the field studies are
usually from ocean-continent collision zones, with differences in the
Himalayan continent-continent collision possible or likely. At the depth
where the Gorkha aftershocks occur, the subduction channel is strong
enough to support earthquakes. Foliation developed in the shallow zone
of seismogenesis (Vannucchi et al., 2012; Bachmann et al., 2009) may
be parallel to the MHT where strain is localized, but may also show high
angles to the MHT, matching the anisotropy observed in receiver func-
tions. Receiver functions are inherently more sensitive to dipping foliation
than subhorizontal foliation (Schulte-Pelkum and Mahan, 2014); hence
the steeper foliation inferred from receiver functions (Schulte-Pelkum
et al., 2005) does not preclude additional MHT-parallel fabric. An MHT-
parallel foliation is consistent with W-phase moment tensor shallow
focal planes determined for the largest earthquakes in the sequence
(Hayes et al., 2015). Farther down-dip the subduction channel is
deforming by ductile shear and has no observed aftershocks. Up-dip at
depths of 0 to 10 km, where the subduction-channel overlaps the MBT

and MFT, we observe very few aftershocks and no mainshock slip in a re-
gion of positive increase in CFS (Hayes et al., 2015).

4.1. Implications for earthquake hazard

The Gorkha earthquake sequence aftershocks occur in low-slip re-
gions surrounding the maximum slip of the mainshock fault model
(Figs 4 and 7). The “locked” updip segment of the MFT and downdip
“creeping” ductile-shear segment of the MHT are in a region with no af-
tershocks, no mainshock slip and positive ACFS increase (Li et al.,
2017-in this issue; Hayes et al,, 2015). Positive ACFS magnitudes of as lit-
tle as 0.1 bar (0.01 MPa) have been shown to be sufficient to encourage
the occurrence of future earthquakes in regions where faults are critical-
ly stressed and close to failure (Stein, 1999). Up-dip segments of the
MHT should be considered high hazard for future damaging
earthquakes.

All of the M6-7 aftershocks occurred in regions with positive ACFS
increases and strongly shaken by the Mw 7.8 mainshock. When signifi-
cant aftershocks occur in regions that received strong shaking during
the mainshock, earthquake hazard is increased due to already damaged
and vulnerable structures. The largest M6-7 aftershocks occurred in the
western and eastern ends of the sequence that experienced strong to se-
vere shaking intensity during the Mw 7.8 mainshock. Several dozen
people were killed as a result of the collapse of vulnerable buildings dur-
ing the Mw 7.3 aftershock.

The Mw 7.8 2015 Gorkha earthquake is a relatively small event in
the seismic cycle of the Himalaya. Much higher magnitude earthquakes
have occurred throughout geologic history as interseismic strain accu-
mulates (Pandey et al., 1995) along the rapidly converging Indian-
Eurasian continental collision boundary (20 mm/yr of convergence
across the Himalaya (Stevens and Avouac (2015)). For example, the
2015 Mw 7.8 Gorkha earthquake sequence is bounded by larger magni-
tude earthquakes to the west in 1505 and the east in 1934 (Hayes et al.,
2015) (Fig. 1). It is possible that the 2015 and 1833 events near
Kathmandu were smaller than the events to the west (1505) and east
(1934) because lateral differences in the wedge structure inhibited rup-
ture to shallow depths. This has been suggested to account for the spa-
tial distribution of earthquake magnitude along the Chilean subduction
zone (Contreras-Reyes et al., 2010). Analysis of wedge structure using
the available stations along the Lesser Himalaya will enable this ques-
tion to be addressed.
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5. Conclusions

This work is a multi-disciplinary effort to understand the Mw 7.8
Gorkha earthquake in the context of tectonic evolution of the Himalaya
and associated seismic hazards. Seismic phase picks from several sources
are used construct a comprehensive catalog of calibrated hypocenters of
the Gorkha earthquake sequence. A geodetic slip model for the Mw 7.8
Gorkha earthquake demonstrating that it ruptured a ~150 km x 60 km
patch of the MHT over an area surrounding but predominantly north of
the capital city of Kathmandu. The distribution of aftershock seismicity
surrounds the mainshock maximum slip patch and is generally limited
to 10-15 km thick shallowly dipping zone at or below the MHT
décollement with depths generally increasing to the north beneath the
higher Himalaya. The largest Mw 7.3 aftershock and the highest concen-
tration of aftershocks occurred east of the mainshock rupture, on a seg-
ment of the MHT décollement that was positively stressed towards
failure (Hayes et al., 2015). We find that the near-surface portion of the
MHT, south of Kathmandu, is primarily absent of aftershocks and slip
during the mainshock. Results from this study characterize the details
of the Gorkha earthquake sequence and provide constraints on where
earthquake hazard remains high. Segments of the MHT, up-dip of the
2015 Gorkha rupture, likely have high hazard for future damaging earth-
quakes in this densely populated and vulnerable region.

6. Data and resources

Quake Catcher Network (http://qcn.caltech.eduy/).

USGS NEIC COMCAT http://earthquake.usgs.gov

USGS event pages an be found here:

Mw7.8  http://earthquake.usgs.gov/earthquakes/eventpage/
us20002926#general_region

Mw7.3  http://earthquake.usgs.gov/earthquakes/eventpage/
us20002ejl#general_region

USGS Netquakes http://earthquake.usgs.gov/monitoring/netquakes/

USGS GSN http://earthquake.usgs.gov/monitoring/gsn/

Nepal DMG NSN http://www.seismonepal.gov.np/index.php?
linkld=58

Nepal NSET http://www.nset.org.np/nset2012/

USAID OFDA https://www.usaid.gov/who-we-are/organization/
bureaus/bureau-democracy-conflict-and-humanitarian-assistance/
office-us

InSAR URL: University of Nevada-Reno Geodetic Laboratory (http://
geodesy.unr.edu
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