

1 Journal: Soil Biology and Biochemistry
2 Special Issue: Advances in Modelling Soil Microbial Dynamics

3

4 **Aligning theoretical and empirical representations of soil carbon-to-nitrogen 5 stoichiometry with process-based terrestrial biogeochemistry models**

6 Katherine S. Rocci^{1, 2}, Cory C. Cleveland³, Brooke A. Eastman⁴, Katerina Georgiou⁵, A. Stuart Grandy^{6, 7},
7 Melannie D. Hartman⁸, Emma Hauser³, Hannah Holland-Moritz^{6, 7}, Emily Kyker-Snowman⁹, Derek
8 Pierson¹⁰, Peter B. Reich^{2, 11}, Else P. Schlerman^{6, 7}, William R. Wieder^{1, 12}

9

10 ¹Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO; ²Institute for Global Change
11 Biology, University of Michigan, Ann Arbor, MI; ³Department of Ecosystem and Conservation Sciences,
12 W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT; ⁴Department of
13 Biology, West Virginia University, Morgantown, WV; ⁵Physical and Life Sciences Directorate, Lawrence
14 Livermore National Laboratory, Livermore, CA; ⁶Department of Natural Resources and the Environment,
15 University of New Hampshire, Durham, NH; ⁷Center of Soil Biogeochemistry and Microbial Ecology
16 (Soil BioME), University of New Hampshire, Durham NH; ⁸Natural Resource Ecology Laboratory,
17 Colorado State University, Fort Collins, CO; ⁹Carbon Direct, New York, NY; ¹⁰Rocky Mountain Research
18 Station, United States Forest Service, Boise, ID; ¹¹Department of Forest Resources, University of
19 Minnesota, St. Paul, MN; ¹²Climate and Global Dynamics Laboratory, National Center for Atmospheric
20 Research, Boulder, CO

21 **Abstract**

22 Soil carbon-nitrogen (C:N) stoichiometry acts as a control over decomposition and soil
23 organic matter formation and loss, making it a key soil property for understanding ecosystem
24 dynamics and projected ecosystems responses to global environmental change. However, the
25 controls of soil C:N and how they respond to increasing pressures from global change agents
26 are not fully understood. The “foundational” controls on soil C:N, namely plant and microbial
27 C:N, have been used to predict soil C:N, but fail to accurately simulate all ecosystems and may
28 be insufficient for predictions under global environmental change. We present an “emerging”
29 representation of controls of soil C:N that includes plant-microbe-mineral feedbacks that have
30 been shown to regulate soil C:N. We argue that including representation of these emerging
31 drivers in process-based terrestrial biogeochemistry models, which include biological N fixation,
32 mycorrhizae, priming, root exudation of organic acids, and mineralogy (including soil texture,
33 mineral composition, and aggregation), will improve mechanistic representation of soil C:N and

34 associated processes. Such improvements will produce models that will better simulate a
35 variety of ecological states and predict soil C:N when global changes modify plant-microbe-
36 mineral interactions. Here, we align our empirical understanding of controls of soil C:N with
37 those controls represented in models, identifying contexts where emerging drivers might be
38 particularly important to represent (e.g., priming and root exudation in nutrient-limited
39 conditions) and areas of future work. Additionally, we show that implementing emerging drivers
40 of soil C:N results in different simulated outcomes at steady state and in response to elevated
41 atmospheric CO₂. Our review and preliminary simulations support the need to incorporate
42 emerging drivers of soil C:N into process-based terrestrial biogeochemistry models, allowing for
43 both theoretical exploration of mechanisms and potentially more accurate predictions of land
44 biogeochemical responses to global change.

45 1. Introduction

46 Ecological stoichiometry, the study of the interactions of elements in ecological systems,
47 is an organizing principle in ecology that provides a theoretical framework to explore how
48 elements regulate plant growth, decomposition rates, and nutrient cycling at multiple scales
49 (Elser et al. 2000). In soil, carbon-to-nitrogen (C:N) stoichiometry could be seen as a master
50 variable that governs the flows of C and N between plants, microbes, and soils. Changes in soil
51 C:N also reflect changes in soil C and N storage, which modify carbon cycle-climate feedbacks
52 and nutrient limitation of plant growth, respectively. Further, soil C:N can be indicative of
53 mechanistic changes in the system and represents the N requirement of C storage, important
54 for land management aiming to increase soil C storage (Buchkowski et al. 2019, Cotrufo et al.
55 2019). Indeed, as our understanding of soil organic matter (SOM) dynamics advances, the role
56 of soil stoichiometry remains an important aspect of ecosystem biogeochemistry (Buchkowski et
57 al. 2019). Despite this central role and advancing knowledge, the controls of SOM C:N

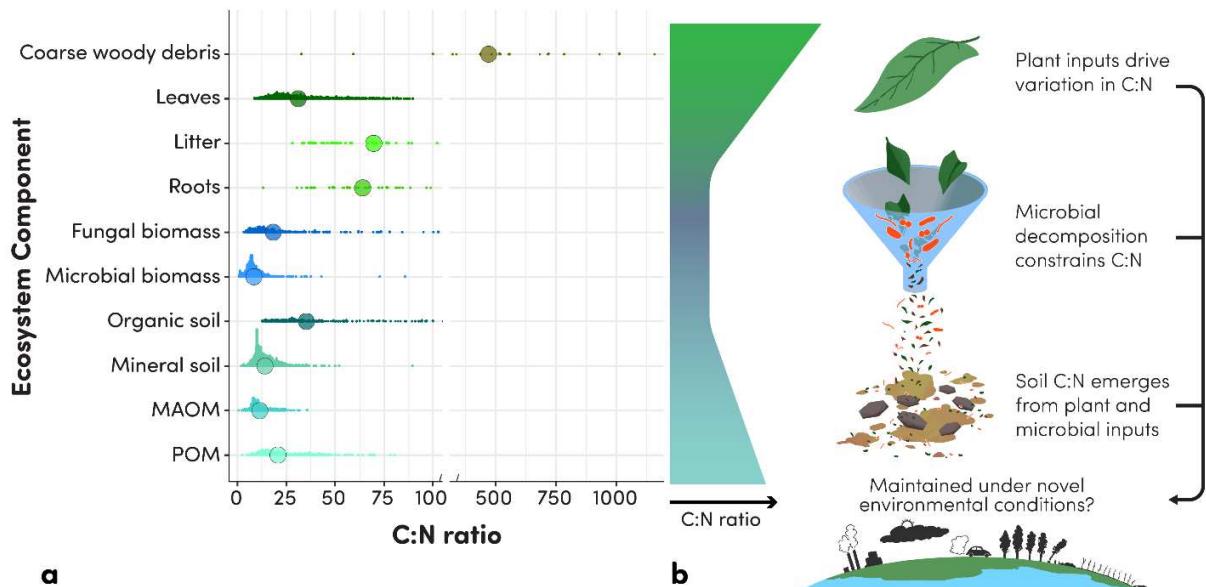
58 stoichiometry in process-based models of terrestrial biogeochemistry (“models” hereafter;
59 Supplementary Table 1)—which both emerge from and are informed by measurements and
60 theory (Blankinship et al. 2018)—have remained largely stagnant and mostly consist of the C:N
61 ratios of plant and microbial inputs. However, numerous recent studies have identified additional
62 plant, microbial, and physico-chemical controls of SOM C:N stoichiometry that are largely
63 missing from model formulations (e.g., Cotrufo et al. 2019, Possinger et al. 2020, Song et al.
64 2022; Amorim et al. 2022). These missing controls likely underlie global patterns in soil C:N and
65 may be particularly important under global change scenarios where climate change, elevated
66 CO₂, and N enrichment (from fertilization or atmospheric deposition) may alter the availability of
67 and demand for N (Terrer et al. 2016, Souza et al. 2021). The goal of this perspective is to
68 evaluate controls of soil C:N with a focus on gaps in both our theoretical understanding and
69 model formulations. We first describe the foundational representation of soil C:N controls
70 currently present in most models. Then, we describe an emerging representation of soil C:N
71 controls, derived from empirical work that is informing a more complete and nuanced theoretical
72 understanding, with the ultimate goal of aligning this representation with formulations in models.
73 Finally, we explore how implementing the emerging representation of soil C:N controls could
74 influence predictions of soil C and N cycling under global change.

75 2. Foundational Representation of Soil C:N

76 2.1 *Conceptual understanding of soil carbon-to-nitrogen stoichiometry*

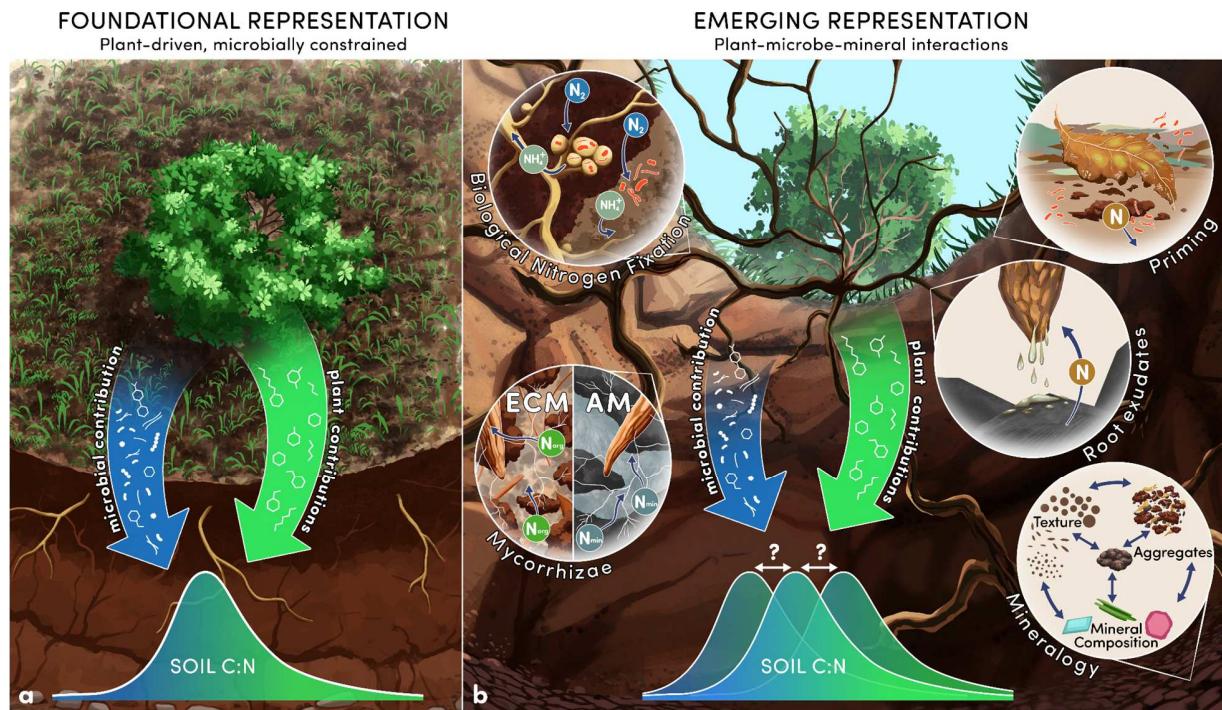
77 The influence of plant C:N on soil processes has been recognized for at least forty
78 years, when lower C:N plant material was found to decompose more quickly than higher C:N
79 plant material (Melillo et al. 1982, Enriquez et al. 1993). Faster decomposition of lower C:N plant
80 material occurs, in part, because it is better aligned with the relatively lower and more strongly
81 constrained C:N ratio of the microbes that decompose it (plant C:N = 9-1160; microbial biomass

82 C:N = 1.86; Figure 1; Cleveland and Liptzin, 2007). The relative stoichiometric homeostasis of
83 the soil microbial biomass C:N thus drives soil C and N recycling, where microbes mineralize
84 excess C or N not used to build their biomass to CO_2 and ammonium, respectively. This
85 process, termed consumer-driven nutrient recycling (Elser and Urabe, 1999), converts relatively
86 high and variable plant C:N to relatively low and less variable C:N during microbial
87 decomposition (Tipping et al. 2016). Indeed across multiple ecosystems and data sources we
88 see a consistent decrease in the C:N stoichiometry of different ecosystem components as highly
89 variable plant inputs pass through a more stoichiometrically constrained microbial filter to
90 generate SOM (Figure 1). Previously, SOM was thought to largely consist of variably
91 decomposed plant material, but it is now largely accepted that SOM also includes microbial
92 materials that persist due to their physical or chemical inaccessibility to further decomposition
93 (Cotrufo et al. 2013, Lehmann & Kleber, 2015, Kallenbach et al. 2016). Thus, the stoichiometry
94 of bulk SOM reflects contributions of both higher C:N plant material and lower C:N microbial
95 biomass and by-products. The stoichiometry of bulk SOM also depends on the relative
96 contribution of different SOM fractions (Buchkowski et al. 2019). The relatively low C:N of stable
97 SOM pools (e.g., mineral-associated organic matter or MAOM) results from the greater
98 contribution of microbial material (von Lutzow et al. 2007), whereas the higher C:N of particulate
99 organic matter (POM) is due to greater contributions of structural plant material (von Lutzow et
100 al. 2007, Haddix et al. 2016; Figure 1a). This theoretical understanding informed a “foundational
101 representation” of soil stoichiometry that guides conceptual models, where plant C:N drives
102 SOM C:N variability and nutrient recycling, while microbial C:N constrains it. (Figure 2a).
103 Additionally, environmental variables like temperature, moisture, and nutrient availability that
104 control rates of microbial decomposition impact the balance between plant and microbial
105 contributions to SOM C:N (Wieder et al. 2009), suggesting that changes to climate, nutrient
106 pollution (e.g., N deposition), and environmental conditions may change the controls of soil C:N
107 in the future.



109
110
111
112
113
114
115
116
117
118
119
120
121

Figure 1. (a) Empirically derived C:N ratios of different ecosystem components showing a narrowing of C:N ratios along the plant-microbe-soil continuum. Filled circles depict arithmetic means and small points arrayed as histograms depict individual observations. Data sources: coarse woody debris (Weedon et al., 2009); leaves (Dynarski et al., 2023); fresh litter and standing roots (NEON, 2023); fungal biomass (Zhang & Elser, 2017); microbial biomass (Xu et al., 2013); organic and mineral soil (Tipping et al., 2016); MAOM and POM (MAOM = mineral-associated organic matter; POM = particulate organic matter; Georgiou et al, 2022a). B) Conceptual depiction of the foundational representation of the decomposition process (funnel) that transforms relatively high plant C:N to relatively lower soil C:N, due to contribution of both plant and microbial materials to bulk SOM, with expected changes in the C:N ratio during this process. Earth with global change processes at bottom depicts uncertainty in the ability of the drivers above to simulate soil C:N under novel environmental conditions and thus the need to incorporate additional drivers of soil C:N beyond plant and microbe C:N.



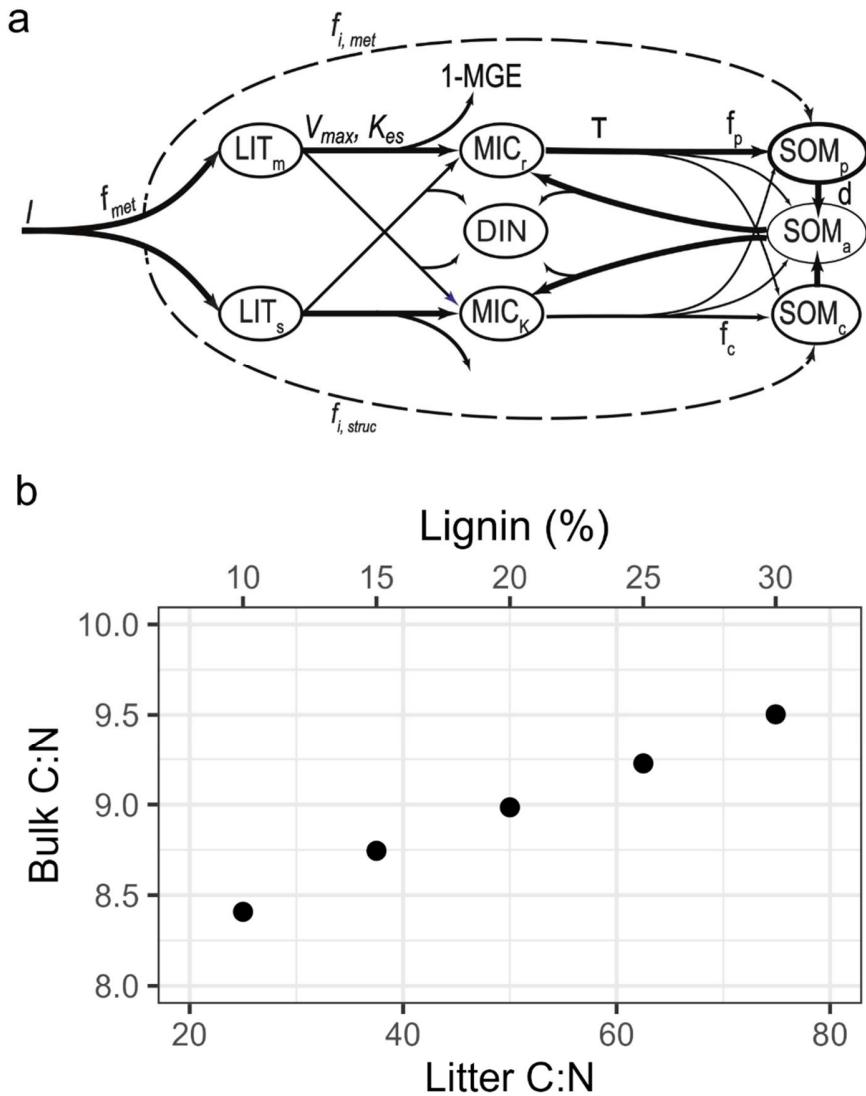
122
123

124 **Figure 2.** Conceptual illustration showing foundational and emerging representations of the controls on
125 C:N stoichiometry. (a) In the foundational representation, relatively high C:N plant material (green)
126 combines with relatively low C:N microbial inputs (blue) to create the distribution of soil C:N values.
127 Because plants have a wider range of C:N than microbes, plant C:N drives wider variation in soil C:N
128 while microbial contributions constrain soil C:N, hence the right-skew of the histogram depicting soil C:N
129 variation. In the foundational representation, this plant-centric focus is depicted as a "top-down" view of
130 the soil C:N. (b) In the emerging representation, additional drivers of soil C:N that are typically absent
131 from foundational representation of soil C:N are depicted (circular vignettes). Additional factors that may
132 influence soil C:N can be broadly grouped into plant and microbe feedbacks and soil physico-chemical
133 effects, and include the specific drivers of biological nitrogen fixation, mycorrhizae, priming, root
134 exudates, and mineralogy (including soil texture, mineral composition, and aggregation). These drivers
135 act through a diversity of mechanisms and thus can differentially influence C:N in ways that may be
136 unrelated to initial plant C:N. This potential for variation in soil C:N due to the emerging drivers is depicted
137 as shifts in the soil C:N histogram. In the emerging representation, this focus on processes occurring in
138 the soil is depicted with a "bottom-up" view that emphasizes plant-microbe-mineral interactions.
139

140 *2.2 Implementation of foundational representation in models*

141 Most current ecosystem biogeochemistry models (e.g. DayCent, PnET, or TEM) and
142 land models that are used for global-scale projections (e.g. CLM, JSBACH, or LPJ-Guess;
143 Davies-Barnard et al. 2020, Kou-Giesbrecht et al. 2023) are structured and parameterized with
144 the foundational representation of soil C:N (Supplementary Table 1). Under these assumptions,
145 simulated rates of soil C and N cycling reflect formulations of pool-specific turnover times, donor

146 and receiver pool stoichiometry, and C use efficiency (CUE, which determines the fraction of
147 heterotrophic respiration; Parton et al. 1993, Parton et al. 1994, Thornton and Rosenbloom,
148 2005). Nitrogen mineralization versus immobilization occurs to balance donor pool transfers of
149 C and N with receiver pool stoichiometry. Generally, these models implicitly represent microbial
150 activity (Schimel 2001), using environmentally sensitive first-order kinetics to define the turnover
151 of litter and soil organic matter pools. The microbially-implicit modeling approach typically
152 simulates down-regulation of decomposition rates when inorganic N availability is limiting, which
153 generally occurs during transfers of material from high C:N litter to low C:N soil organic matter
154 pools (Lee et al. 1992, Metherell et al. 1993, Parton et al. 1993, Bonan et al. 2013, Thomas et
155 al. 2015). By contrast, models that explicitly represent microbial activity do not by default exhibit
156 down-regulation of decomposition rates because of N limitation. For example, Kyker-Snowman
157 et al. (2020) included overflow respiration of donor-pool C when N availability fails to meet the
158 stoichiometric demands of decomposer biomass. This approach also eliminates the need to
159 directly parameterize soil stoichiometry. Instead, soil C:N emerges from the relative contribution
160 of microbial by-products (with a lower C:N ratio and narrower range) and plant detritus that
161 bypasses the microbial filter and enters different SOM pools (Sulman et al. 2017, Zhang et al.
162 2021, Eastman et al. 2023). This is exemplified in the microbially-explicit model MIMICS-CN,
163 where soil C:N is strongly influenced by plant input chemistry and which we use in case studies
164 throughout this paper (Figure 3). Despite differences in how soil C:N is determined in
165 microbially-implicit vs -explicit approaches, both approaches rely on the foundational
166 representation of soil C:N.



167

168

169 **Figure 3.** (a) Wiring diagram for MIMICS-CN model, which we use in case studies throughout this paper.
170 Briefly, litter inputs (l) are split into metabolic and structural pools (LIT_m and LIT_s) which are decomposed
171 by microbial communities having copiotrophic and oligotrophic growth strategies (MIC_r and MIC_k ,
172 respectively), where both litter (f) and microbial turnover (T) can contribute to the physicochemically
173 stabilized and chemically stabilized soil organic matter pools (SOM_p and SOM_c , respectively), and SOM_p
174 and SOM_c contribute to an available SOM pool (SOM_a) that can be accessed by microbes. Detailed
175 description of the model can be found in Kyker-Snowman et al. (2020) building upon Wieder et al. (2014).
176 (b) MIMICS-CN simulations of bulk soil C:N in a hypothetical temperate deciduous forest where only the
177 chemical quality (defined as the C:N ratio and lignin content) of litterfall inputs to surface soils are
178 modified.

179

180

181 Model formulations that implement the foundational representation do represent
182 dynamic flows of C and N during field decomposition, but falter in certain ecosystems (i.e.
183 tundra and arid grasslands) and generally underestimate variation in soil C:N (Parton et al.
184 2007, Bonan et al. 2013, Kyker-Snowman et al. 2020, Juice et al. in review). The accuracy and
185 reliability of these models are insufficient for simulating the full spectrum of ecosystems and
186 may falter under novel environmental conditions (e.g., global environmental change; Figure 1b,
187 bottom; Wieder et al. 2019). For example, recent research shows that interactions between
188 plants, microbes, and the soil matrix strongly regulate soil C and N cycling, and consequently
189 SOM C:N stoichiometry (e.g., Keiluweit et al. 2015, Jilling et al. 2018, Possinger et al. 2020,
190 Daly et al. 2021, Terrer et al. 2021). Representing these mechanisms is paramount for
191 improving mechanistic representation of soil C:N and predicting changes in soil C:N under
192 global change.

193 3. Emerging representation of soil C:N

194 The empirical evidence of important drivers beyond plant and microbe C:N that shape
195 soil C:N ratios informs an “emerging representation” of the controls of soil C:N variation (Figure
196 2b). We use the word “emerging” to explicitly acknowledge that many of the processes we
197 describe below are already recognized as important for soil C:N in some subfields of soil
198 science and represented in some models. However, we aim to clarify the importance of and
199 collate these “emerging drivers” so that they can be aligned with model assumptions. We group
200 these emerging drivers into plant and microbe feedbacks and soil physico-chemical effects that
201 are absent from the foundational representation of soil C:N. The foundational representation
202 considers plants and microbes as drivers of variability in soil C:N, and does not consider how
203 soil C:N might feed back on the quantity and quality of plant inputs and subsequent microbial
204 activity nor how minerals could act as a filter on soil C:N stoichiometry. Plant, microbial, and soil

205 physico-chemical drivers have the potential, at least in certain circumstances, to improve the
206 mechanistic representations of modeled soil C:N, even if they do not alter predictions of spatial
207 variation in soil C:N. We review the empirical evidence for the importance of these emerging
208 drivers and whether they align with assumptions in models. We focus on drivers that are
209 evidenced as empirically important because adding additional processes to models can require
210 additional input data, parameter optimization, and computational costs. Thus, there must be
211 careful consideration of the balance between model complexity and realism when adding
212 additional processes to models. We note that no one model is likely able to represent all of the
213 processes we discuss below, but that representing the emerging drivers in some models will
214 allow for research questions better tailored to systems where a given driver is particularly
215 important.

216 3.1 Plant and microbe feedbacks

217 3.1.1 Biological Nitrogen Fixation

218 Biological N fixation represents a process that could influence soil C:N in ways not
219 captured in the foundational representation of soil C:N controls. N fixation occurs through two
220 general pathways: as plant symbiotic N fixation, where N is fixed for direct plant use via a
221 symbiotic relationship with root-nodulating bacteria, and as “free-living” N fixation, where N is
222 fixed by both autotrophic and heterotrophic bacteria that occupy a diversity of non-vascular plant
223 niches (e.g., soil, leaf litter, wood, etc.; Vitousek et al. 2013, Cleveland et al. 2022). Both forms
224 contribute new N inputs that enhance relative plant and soil N content, and thus may be
225 hypothesized to reduce soil C:N (Vitousek et al. 1987, Vitousek and Walker, 1989, Adams et al.
226 2016, Gou et al. 2023). However, experimental and empirical studies have shown that invasion

227 and/or introduction of N-fixing plants can have positive, negative, or neutral effects on soil C:N
228 (Johnson and Curtis, 2001, Liao et al. 2008).

229 Although N fixation has been implemented in many models, it is commonly simulated
230 using phenomenological relationships between empirically derived N fixation rates and net
231 primary production or evapotranspiration (Wieder et al. 2015, Meyerholt et al. 2016). Symbiotic
232 N fixation (alone) is most often included in models as an addition of N to the plant pool. By
233 contrast, when free-living N fixation is included in models, it is often represented as an addition
234 of N to the mineral N pool (Metherell et al. 1993, Reed et al. 2011, Hartman et al. 2018,
235 Lawrence et al. 2019). These formulations of N fixation could promote increased microbial
236 activity and subsequent input to SOM pools when microbial growth is associated with increased
237 labile plant material and reduced microbial N limitation, such as in CORPSE-FUN, thereby
238 reducing SOM C:N (Sulman et al. 2017).

239 More mechanistic implementations of N fixation could more accurately simulate how N
240 fixation shapes SOM C:N stoichiometry. Potential model improvements include representations
241 of non-symbiotic, rather than solely symbiotic, N inputs, N fixation inputs based on both C
242 supply and N demand (rather than one or the other), and benchmarking against new and
243 emerging empirical estimates of global N fixation (Vitousek et al. 2013, Davies-Barnard and
244 Friedlingstein, 2020). Improved model representations of N fixation would further advance
245 models that simulate N fixation using a resource optimization strategy, which are currently the
246 most advanced representations of N fixation (e.g., GFDL-LM3-BNF, CLM5, and CABLE; Fisher
247 et al. 2010, Shi et al. 2016, Lawrence et al. 2019, Peng et al. 2020, Kou-Giesbrecht et al. 2021).
248 Given that increasing atmospheric CO₂ concentrations are hypothesized to favor N fixation over
249 much of the world (Novotny et al. 2007, Hungate et al. 2009, Nasto et al. 2019), improved
250 representations of N fixation in models may be critical for accurately simulating soil C:N under
251 global change.

252 3.1.2 Mycorrhizae

253 Mycorrhizal type and associated plant traits influence soil C:N stoichiometry and nutrient
254 cycling through differences in their nutrient acquisition strategies. Ericoid- and ectomycorrhizal-
255 (ECM) dominated ecosystems typically have higher litter and soil C:N ratios and slower rates of
256 nutrient cycling compared to arbuscular mycorrhizal- (AM) dominated ecosystems (Phillips et al.
257 2013, Averill et al. 2014). The direct connections between plant litter quality and soil
258 stoichiometry are captured by the plant-to-soil pathway in the foundational representation of soil
259 C:N. However, mycorrhizae allow for a two-way relationship between plants and soil. As
260 mycorrhizae receive C from plant roots, they can either produce enzymes to mine nutrients from
261 SOM (ECM) or expand their hyphal network to more efficiently exploit soil inorganic N (AM;
262 Brzostek et al. 2013, Midgley et al. 2016, Tedersoo and Bahram, 2019). Strategies related to
263 these different nutrient economies may be particularly important for biogeochemistry in forest
264 ecosystems, which can vary in the relative abundance of mycorrhizal types, and in ecosystems
265 experiencing shifts in plant species composition, such as shrub encroachment in the Arctic
266 (Wookey et al. 2009). Yet, explicit representations of these plant-mycorrhizal relationships are
267 largely missing from models.

268 Some attempts have been made to represent plant-mycorrhizal relationships in models
269 with variations in belowground plant C inputs across mycorrhizal type and soil N availability
270 (Baskaran et al. 2017, Sulman et al. 2017, He et al. 2018, Shi et al. 2019, Huang et al. 2022).
271 Overall, these modeling experiments show that incorporating mycorrhizae increases model-
272 observation agreement of soil C stocks and C:N ratios. Meanwhile, they suggest that simulating
273 plant-mycorrhizal relationships may constrain the impacts of climate change on soil
274 biogeochemistry and plant productivity. For example, as nutrient demand increases with
275 elevated CO₂, ECM associations allow plants to mine SOM for N, enhancing plant productivity
276 to a greater extent than AM systems that are less likely to mine N from SOM (Terrer et al.

277 2021). At the same time, this process typical of ECM-dominated ecosystems can increase
278 competition between ECM and free-living saprotrophs, reducing the overall decomposition of
279 SOM by saprotrophs and increasing soil C stocks and C:N ratios (Averill et al. 2014). Thus,
280 incorporating these plant-mycorrhizal associations into models may also capture the divergent
281 responses of forest ecosystems with different mycorrhizal associations to global changes like
282 elevated CO₂ (Sulman et al. 2019), as has been observed at Free-Air Carbon Enrichment
283 (FACE) sites (Terrer et al. 2016).

284

285 3.1.3 Plant priming of soil microbial activity

286 Soil priming, the accelerated decomposition of SOM via inputs of plant C, is a process
287 with complex mechanistic underpinnings and highly variable responses to global changes
288 (reviewed in Bernard et al. 2022). In some cases, plant priming may align with the foundational
289 understanding of the plant-soil-stoichiometric continuum, where greater decomposition of fresh
290 plant input increases microbial contributions to SOM and lowers soil C:N (Chen et al. 2014).
291 However, at least three mechanisms may drive soil responses that likely differ from what is
292 captured using foundational representations of soil C:N. First, higher soil microbial activity under
293 priming may simultaneously accelerate decomposition rates of C-rich POM (in addition to
294 decomposition of fresh plant input), reducing bulk C stocks and decreasing soil C:N (Bernard et
295 al. 2022). Second, in nutrient-limited conditions, selective mining of N from SOM can occur
296 when soil microbes use labile plant exudates as an energy source and preferentially immobilize
297 N or N-rich material from SOM, thereby increasing SOM C:N (Chen et al. 2014, Hicks et al.
298 2020, Na et al. 2022). Third, priming could alter microbial community composition, favoring
299 microbial functional groups that preferentially degrade substrates with high or low C:N ratios
300 (Geyer et al. 2020). Therefore, representation of priming may be particularly important in
301 scenarios where we expect changes to plant input quantity and quality (e.g., changes in plant

302 community composition or allocation) and nutrient limitation (e.g., elevated CO₂, Mason et al.
303 2022).

304 Priming effects are not typically included in first order models because SOM turnover
305 times are only modified by environmental scalars (e.g., temperature and moisture). A notable
306 exception is the ORCHIDEE-PRIM model, which represents priming by modifying turnover times
307 with changes in plant productivity, but only represents C (Guenet et al. 2016). Explicit
308 representation of microbial activity, however, may provide more sophisticated, testable
309 representations of priming mechanisms, including higher turnover rates, microbial N-mining, or
310 preferential degradation of different SOM pools by different microbial functional types (Schimel,
311 2023). Indeed, microbially explicit models may include an emergent representation of priming
312 due to relationships between substrate availability and microbial growth (Schimel, 2023).
313 Current models that specifically simulate priming operate on relatively short or small temporal or
314 spatial scales, with the goal of better understanding the complex interactions of microbes, OM,
315 and minerals and dynamics of priming (Bernard et al. 2022). For example, the SYMPHONY
316 model (Perveen et al. 2014) simulates N-mining in priming, but only at landscape to ecosystem
317 scales. However, the importance of incorporating priming at larger scales is increasingly
318 recognized (Terrer et al. 2021).

319 3.1.4 Root exudation of organic acids

320 In addition to root exudates that accelerate microbial activity and N mineralization via
321 priming, plants also produce exudates that can directly increase SOM availability. Root
322 exudation of organic acids (e.g., oxalic acid) can directly destabilize MAOM by locally lowering
323 the pH in the rhizosphere, thereby chelating or competing with previously mineral-bound organic
324 matter (Keiluweit et al. 2015, Jillion et al. 2018). This effectively promotes faster turnover of
325 organic matter, as MAOM typically has long turnover times and low C:N ratios (Lavallee et al.
326 2020). Thus, organic acids may increase the availability of decomposable substrates and

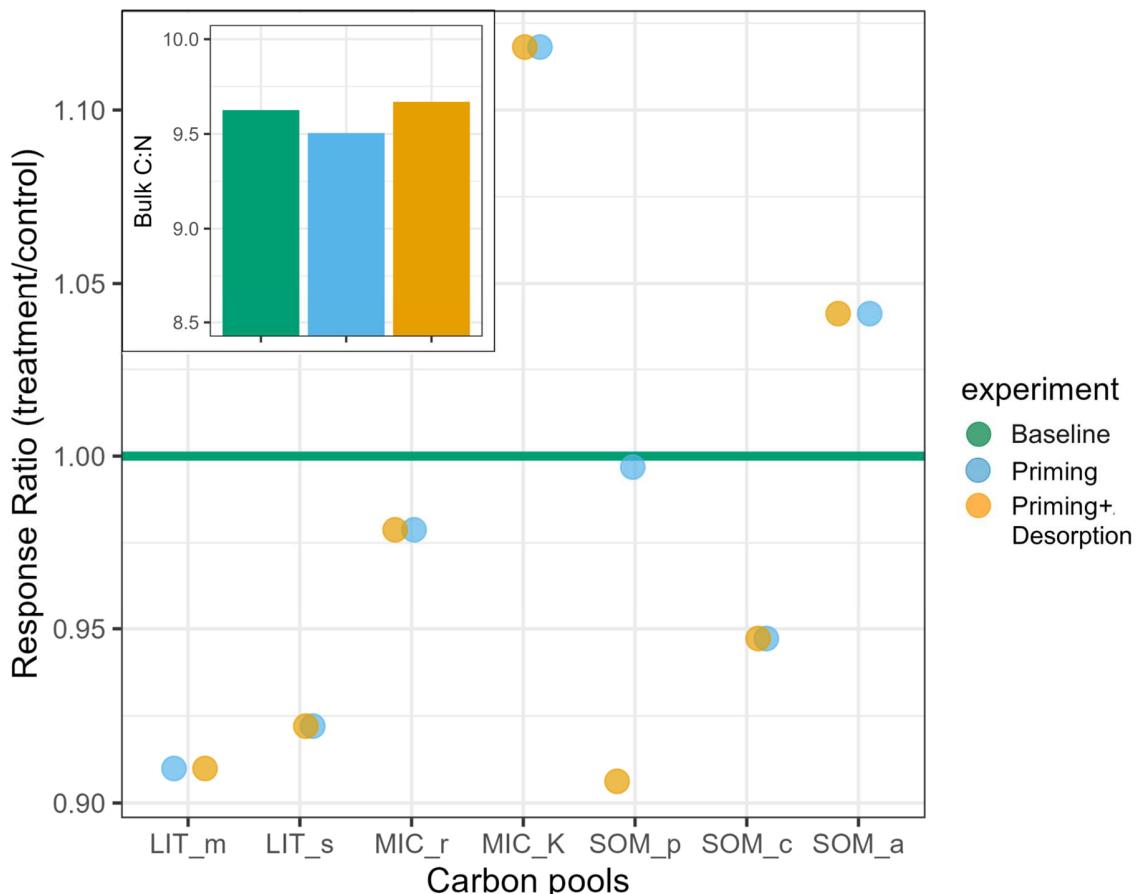
327 accelerate rates of N mineralization and plant N uptake (Jilling et al. 2018, Daly et al. 2021).

328 Given the relatively low C:N of MAOM, its decomposition would tend to drive a loss of N-rich
329 OM and subsequently increase the bulk soil C:N ratio.

330 Currently, depolymerization of SOM by enzymes and decomposers is considered the
331 rate limiting step for N mineralization (Schimel and Bennet, 2004, Mooshammer et al. 2014),
332 which ultimately constrains plant N availability and primary production in models. MAOM is often
333 considered inaccessible to plants and microbes, though recent advances suggest that it may be
334 an important plant N source (Jilling et al. 2018, Lavallee et al. 2020, Daly et al. 2021). As such,
335 the direct effects of plant root inputs on the turnover of MAOM is virtually absent in models.
336 Instead, in most models MAOM-like pools are represented with long turnover times that are
337 modified by environmental scalars (temperature or moisture) and potentially modified by soil
338 properties like soil texture or clay content. Very few models actually represent root exudation,
339 and those that do only partially represent complex priming effects. For example, FUN-CORPSE
340 only considers mycorrhizal response to exudates (Sulman et al. 2017). The closest
341 approximation may be from the model ecosys, which simulates root exudation and exchange of
342 organic C for organic N and P (Grant et al. 2016, Mekonnen et al. 2019, Chang et al. 2020,
343 Bouskill et al. 2022). However, none of these models represent direct destabilization of MAOM
344 caused by root exudation of organic acids. Indeed, consideration of mycorrhizae, priming, and
345 organic acids introduces additional complexities to the emerging representation of soil C:N that
346 are worth exploring further in models. As a preliminary step towards this exploration, we
347 investigate the influence of priming, which could both increase or decrease soil C:N, and that of
348 root exudation of organic acids, which we expect to increase soil C:N, below.

349 3.1.5 Biotic Case Study: Simulating priming and desorption in the MIMICS-
350 CN model

351 As a case study, we explored the potential effects of root exudation that causes priming
352 and desorption (via exudation of organic acids) on steady state pools simulated by the MIMICS-
353 CN model (Kyker-Snowman et al. 2020, Eastman et al. 2023). We use this case study and
354 those in following sections (sections 3.2.2 and 4.1) to illustrate the potential importance of the
355 emerging drivers of soil C:N but acknowledge that studies at larger scales and with different
356 models will be needed to fully evaluate the importance of the emerging drivers for soil C:N. All
357 experiments were performed in a hypothetical temperate deciduous forest with identical climate,
358 litterfall inputs, litter quality and soil conditions. In all simulations, we calculated bulk soil C:N
359 ratios as well as steady state C pools to explore the mechanisms driving changes in bulk soil
360 C:N. The baseline simulation received root exudates as inputs to the metabolic litter pool (LIT_m)
361 with a defined C:N ratio of 15 (Kyker-Snowman et al., 2020). This baseline experiment was
362 designed to illustrate an implicit representation of root exudation fluxes, which are handled with
363 the same stoichiometry as relatively labile plant detritus. At steady state, the baseline
364 experiment simulated a bulk soil C:N ratio of 9.6, total steady state C of 6.4 kgC m^{-2} , microbial
365 biomass was 1.5% of soil C pools, and 43% of SOM was in the SOM_p pool (physico-chemically
366 protected SOM, which we equate with MAOM; Figure 4). The bulk soil C:N stoichiometry and
367 fraction of the SOM_p pool were lower than median observational estimates (Figure 5, discussed
368 below), which is consistent with previous work with MIMICS-CN (Kyker-Snowman et al. 2020).
369



370
371
372
373
374
375
376

Figure 4. Response ratio of C stocks in various pools of MIMICS-CN under priming (blue) and priming+desorption (yellow) experiments as compared to the baseline (green). Bulk soil C:N ratios for each experiment are shown in the inset plot. LIT_m = metabolic litter; LIT_s = structural litter; MIC_r = copiotroph microbial biomass; MIC_K = oligotroph microbial biomass; SOM_p = physically protected SOM; SOM_c = chemically protected SOM; SOM_a = active SOM.

377
378
379
380
381
382
383
384

In a second “priming” experiment we more explicitly considered the effects of priming via root exudation by transferring 10% of metabolic litter inputs to the microbially-available SOM pool (SOM_a) at initialization. This simulation was designed to represent potential plant priming of soil microbes without changing the quantity or chemical quality of plant inputs to soils. This representation of priming increased total microbial biomass and the relative abundance of oligotrophic microbes (MIC_K), which resulted in a slightly higher microbial biomass C:N compared to the baseline experiment (7.0 vs. 6.9, respectively). In response to priming, microbial community shifts accelerated decomposition of litter and SOM_c pools, relative to the

385 baseline simulation, which slightly decreased total C stocks and bulk soil C:N ratio (6.2 kgC m⁻²
386 and 9.5, respectively; Figure 4). Broadly, these results are consistent with stimulation of
387 oligotrophic microbial communities that have a competitive advantage over copiotrophic
388 communities when utilizing more chemically complex substrates (Fontaine et al. 2003). In our
389 simulations, oligotrophs increased in relative abundance and produced more enzymes that
390 decompose litter and SOM_C (comparable to POM). Yet, the magnitude of the effects on steady
391 state pools and bulk soil stoichiometry were relatively small. The subtle changes in soil C stocks
392 and C:N ratio may indicate that either the priming effect does not exert a strong control of
393 steady-state behavior in the model, or that our simple priming experiment does not capture
394 more complex priming mechanisms (Hicks et al. 2020, Karhu et al. 2022, Na et al. 2022).
395 However, this simple priming experiment captures priming-induced directional changes in
396 microbial community composition and soil C:N that are consistent with theoretical expectations,
397 suggesting that more work is needed to evaluate whether the magnitude of these changes are
398 appropriate.

399 In a third “priming+desorption” experiment, we considered the potential role of organic
400 root acids liberating MAOM. Here, we repeated the priming experiment, but also increased the
401 desorption rate of SOM_P (comparable to MAOM) by 10% relative to the baseline simulation.
402 Increasing the desorption rate decreased the size of the SOM_P pool relative to both the baseline
403 and priming experiments. As the SOM_P pool in MIMICS has a relatively low C:N ratio, reducing
404 the size of this soil fraction increases bulk soil C:N ratios slightly above baseline values (9.7;
405 Figure 4). Again, the changes in total soil C stocks and C:N stoichiometry associated with this
406 simplistic consideration of organic acids liberating MAOM are relatively small, but the direction
407 of these changes are in line with theoretical expectations (Keiluweit et al. 2015, Jilling et al.
408 2018). This experiment also underscores the data and knowledge gaps associated with the
409 extent to which organic acids from root exudates may accelerate desorption of MAOM (Jilling et
410 al. 2021). It is technically challenging to quantify these fluxes even in lab incubations with

411 artificial roots at sub-millimeter scales (Keiluweit et al. 2015) and scaling these insights to larger,
412 more field-relevant scales remains speculative. Progress likely requires a more advanced
413 empirical understanding and representation of soil physico-chemical properties and their
414 influences of SOM dynamics.

415 3.2 Soil physico-chemical effects

416 3.2.1 Mineralogy

417 Three interrelated factors provide a robust 'bottom-up', soil-driven regulation of soil C:N
418 ratio: soil texture, mineral composition, and aggregation. Texture, which describes the relative
419 proportions of sand, silt, and clay particles, is known to impact the C:N stoichiometry of SOM
420 because charged clay surface particles can form stable associations with charged moieties like
421 amino groups (Jilling et al. 2018), leading to N enrichment in clay fractions compared to sand
422 fractions (Haddix et al. 2016, Amorim et al. 2022). Increased clay content increases total
423 surface charge and surface area available for organo-mineral interactions that form MAOM.
424 MAOM is often defined as the size fraction associated with silt and clay (Leuthold et al. 2022).
425 Thus, as this fraction increases, we expect more organic matter to accumulate in MAOM with
426 comparatively low C:N ratio. However, silt may contain primary particles, have substantially less
427 surface charge, and be a microsite for accumulating fungal residues with relatively high C:N
428 ratios (Six et al. 2006, von Lutzow et al. 2007). These factors can lead to variation in the
429 relationship between MAOM fractions and soil C:N ratios that depend upon the relative
430 proportions of silt and clay and at the same time their geochemical properties.

431 Some studies indicate that N-rich organic compounds may be preferentially adsorbed by
432 certain types of soil colloids (Kaiser and Zech, 2000, Kleber et al. 2005, Mikutta et al. 2010, Yu
433 et al. 2013, Jilling et al. 2018, Zhao et al. 2020), potentially accounting for variable C:N ratios

434 depending on mineral composition. Recent studies show sorption of both N-rich microbial
435 products and N-free aromatic compounds to soil mineral surfaces (Kramer et al. 2017, Kopittke
436 et al. 2018, Gao et al. 2021). This variation in sorption may arise from variation in surface
437 charge or nano-scale topographic characteristics of minerals (Vogel et al. 2014). Iron (Fe) and
438 aluminum (Al) may be uniquely strong binding agents in soils rich in these minerals (e.g.,
439 Andisols). These soils exhibit preferential binding of low C:N SOM in organo-metal
440 nanocomposites (<2 μ m) and associations between N-rich compounds and ferrihydrite (an Fe
441 mineral) concentrations (Asano et al. 2018, Zhao et al. 2020). Importantly, Fe content has been
442 shown to be negatively associated or uncorrelated with clay content in certain environments,
443 indicating the unique influence of Fe minerals (Rasmussen et al. 2018, Zhao et al. 2020). Soil
444 pH can also interact with mineral composition, through controlling the relative importance of
445 select SOM stabilization mechanisms (e.g., organo-metal complexation in acidic soils to
446 exchangeable calcium in basic soils; Rasmussen et al. 2018). For example, the amount of
447 pedogenic oxide-hydroxides affects the density of hydroxyl-groups and the formation of mineral
448 associations via ligand exchange; pH can affect the protonation of these hydroxyl-groups and
449 thereby the propensity for ligand exchange (Kleber et al. 2015). Thus, pH interacts with mineral
450 type to drive relative sorption of C or N, potentially driving N-enrichment in Fe and Al minerals in
451 humid and acidic environments and in phyllosilicates in dry and basic environments.

452 The texture and mineral composition of soil also regulate soil aggregation, which is
453 another control over soil C:N ratios (Schweizer et al. 2023). Aggregates are clusters of soil
454 particles (sand, silt, clay) held together by various organic and inorganic binding agents.
455 Aggregation processes influence the types of organic matter stabilized and the corresponding
456 C:N ratios vary based on the aggregate size, formation, and binding mechanisms, all of which
457 depend on numerous factors, including mineral and organic C content, faunal activity, and land
458 cover (Elliott 1986, Fonte et al. 2007, An et al. 2010, Maaß et al. 2015, Haddix et al. 2020). For
459 instance, it is known that microaggregates (< 250 μ m) accumulate N-rich compounds, primarily

460 derived from microbial sources, and efficiently form MAOM (Fulton-Smith and Cotrufo, 2019). In
461 contrast, larger macroaggregates ($> 250 \mu\text{m}$) typically form around POM with high C:N ratios
462 (Six et al. 2000). Roots and certain fungal hyphae also stabilize macroaggregates, and in the
463 process their biomass becomes somewhat protected from decomposition within the aggregate
464 (Graf and Frei, 2013, Lehmann et al. 2020). Tillage and other destabilizing forces that break
465 apart larger aggregates speed up the decomposition of POM. This favors the accumulation of
466 smaller, more resistant, and stable aggregates filled with lower C:N ratio SOM, ultimately
467 resulting in lower bulk soil C:N (Grandy and Robertson, 2007).

468 In most soil biogeochemical models, minerals can indirectly control bulk soil
469 stoichiometry by modulating the proportion and persistence of organic matter in mineral-
470 associated pools. Given the ubiquity of measurements, most models use soil texture as a proxy
471 for mineral sorptive capacity (Rasmussen et al. 2018, Sulman et al. 2018, Georgiou et al. 2021).
472 In particular, some models use clay content (e.g., MIMICS and CORPSE; Wieder et al. 2019a),
473 while many others use the sum of clay and silt content (e.g., Millennial, COMISSION, MEMS;
474 Abramoff et al. 2018, Aherns et al. 2020, Zhang et al. 2021). Mineral-associated OM pools in
475 most models are primarily composed of microbial byproducts and necromass with relatively low
476 C:N ratios, and to a lesser degree from direct sorption of dissolved or particulate organic matter;
477 thus, texture ultimately acts as a control of bulk soil C:N stoichiometry. Only a subset of models
478 currently represent mineral composition effects via equations relating pH and MAOM – namely,
479 the Millennial, ecosys, and MEMS models (Grant et al. 2012, Zhang et al. 2021, Abramoff et al.
480 2022, this issue). The Millennial and COMISSION models also include broad classes of
481 mineralogy by separating soils into low- and high-activity minerals, based on whether soils are
482 dominated by 1:1 or 2:1 clays, respectively (Aherns et al. 2020, Abramoff et al. 2022, this issue).
483 Aggregation is a possible pathway for mineral control over soil C:N that only two C-only models
484 have incorporated. Both AggModel and Millennial allow for both POM and MAOM to be
485 captured in aggregates, whereas AggModel represents the hierarchy of micro- and macro-

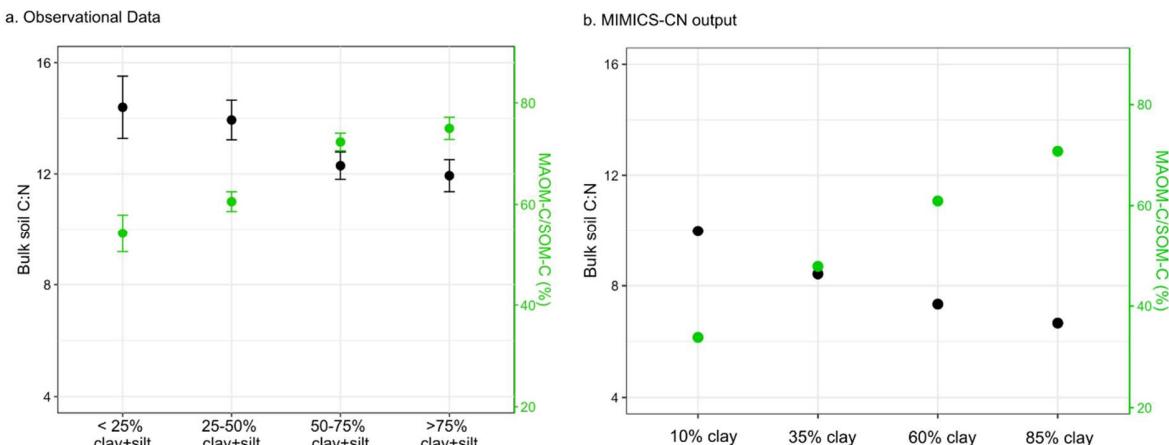
486 aggregates and Millennial has a single aggregate pool (Segoli et al. 2013, Abramoff et al. 2018).
487 While neither AggModel nor Millennial currently considers N, protection of POM in aggregates
488 might allow for higher C:N POM pools to persist, effectively increasing soil C:N. The frameworks
489 developed in these models could someday help to understand the relationship between soil C:N
490 and aggregate formation. To gain a preliminary understanding of the role of mineralogy in
491 shaping soil C:N ratios we evaluate the relationships between SOM fractions, mineral variables,
492 and soil C:N in both empirical data and models.

493 3.2.2 Physico-chemical Case study: Evidence for proxy variable inclusion in
494 models

495 For almost 30 years, soil scientists have called for correspondence between measured
496 and modeled pools of SOM (Christensen et al. 1996, Elliot et al. 1996, Blankenship et al. 2018)
497 and, increasingly, models are formulated to model measurable pools of SOM from physical
498 fractionations (Luo et al., 2014; Abramoff et al. 2018, Robertson et al. 2019). MAOM,
499 operationally defined as the pool associated with silt and clay, is expected to preferentially
500 contain microbial residues and consequently have a relatively low C:N ratio (Grandy et al. 2007,
501 Lavallee et al. 2020), presumably leading to positive associations between silt+clay content and
502 MAOM content, and negative associations of each of these with soil C:N. However, the strength
503 of silt and clay control of stabilization of organic matter and, consequently, soil C:N, especially
504 as compared to other mineralogical factors, remains contentious in theoretical and empirical
505 work and variable in model formulations (Bailey et al. 2017; Rasmussen et al. 2018, Sulman et
506 al. 2018, Wieder et al. 2018).

507 We explored the potential strength of silt and clay control, as well as several proxy
508 variables as emerging indicators of mineral effects on C:N stoichiometry in models and in
509 observational synthesis data, namely Georgiou et al. (2022a, b) and the Soils Data

510 Harmonization database (SoDaH; Wieder et al. 2021). Using Georgiou et al. (2022a), we found
 511 soil C:N was lower in soils with higher proportions of silt+clay (Figure 5a). These silt+clay-rich
 512 soils were also associated with a greater proportion of C in MAOM (Figure 5a), consistent with
 513 theoretical understanding of MAOM (Lavallee et al. 2020). This observation is already captured
 514 in MIMICS-CN (Figure 5b) and could likely be demonstrated with other models that use SOM
 515 pool structures that represent MAOM and POM (e.g., MEMS, Millennial, and CORPSE; Sulman
 516 et al. 2017, Zhang et al. 2021, Abramoff et al. 2022, this issue). These findings support calls for
 517 further work benchmarking modeled SOM pools to measured ones (Berardi et al. 2020).
 518 Currently, this benchmarking has only been carried out for a few models with and without these
 519 measurable pools explicitly represented (Zimmerman et al. 2007, Zhang et al. 2021). Given
 520 strong relationships between SOM pools and soil C:N, greater benchmarking efforts are likely to
 521 improve confidence in simulations of soil C:N as well as soil biogeochemistry more broadly.



522
 523 **Figure 5.** Bulk soil stoichiometry (C:N ratio; left y-axis, black points) and percentage of bulk soil organic
 524 carbon that is mineral-associated (right y-axis; green points) across different soil texture regimes. (a) Soil
 525 texture regimes are summarized by ranges in clay plus silt percentages. Points and error bars represent
 526 means \pm 95% confidence intervals on the mean from an observational synthesis of soil fractions
 527 consisting of > 1200 measurements (n = 166, 388, 411, and 261 in the < 25%, 25-50%, 50-75%, >75%
 528 clay + silt content regimes, respectively). (b) MIMICS-CN output for a hypothetical temperate deciduous
 529 forest for soils with different amounts of clay, which is the controlling variable for sorption in MIMICS-CN,
 530 rather than silt+clay. MAOM-C/SOM-C is calculated from MIMICS output as
 531 SOMp/(SOMa+SOMc+SOMp)*100%.

532

533 While our data suggest that bulk soil C:N is partly controlled by soil texture, the utility of
534 other proxies for mineralogy is underexplored. To investigate the relevance of other
535 mineralogical factors, we compared drivers of soil C:N in the SoDaH database to those in model
536 simulations. For the observational data, we filtered the SoDaH database to isolate topsoil (< 20
537 cm) data from studies that measured soil C:N and litter C:N. We generated model data by
538 running global simulations of a microbially-explicit (MIMICS-CN; Kyker-Snowman et al. 2020)
539 and a microbially-implicit (CASA-CNP; Wang et al. 2010) model forced with the same globally-
540 gridded forcing data in a biogeochemical testbed (Wieder et al. 2018; detailed in Supplementary
541 Material A). We then used multiple linear regressions (MLRs) to determine which variables
542 emerged as important relative drivers of measured (SoDaH) and modeled (MIMICS-CN and
543 CASA-CNP) soil C:N (detailed in Supplementary Material A). We analyze these below as
544 qualitative comparisons, given the different geographic extents and data coverage between the
545 observational data and models. For both measured and modeled data, we considered a three-
546 factor MLR with mean annual temperature (MAT), clay content, and litter C:N as predictors for
547 measured or modeled soil C:N. We also considered a seven-factor MLR with additional
548 mineralogical factors as predictors for measured soil C:N, to evaluate which of these may be
549 missing from model formulations (Table 1). For the three-factor MLRs, MIMICS-CN reasonably
550 captured the relative importance of drivers in the SoDaH database whereas CASA-CNP
551 depicted lower relative importance of clay, likely because it uses clay+silt to compute passive C
552 formation, and higher relative importance of litter C:N, aligning with the more foundational
553 representation of soil C:N (Table 1). Notably, the CASA-CNP MLR likely had a very low R^2 value
554 because it has prescribed ranges for the C:N of various pools and bulk C:N stems from the
555 balance across those pools, exemplifying how fixed pool C:N fails to capture important drivers of
556 soil C:N. In contrast with the three-factor MLRs, the seven-factor MLR with all possible proxies
557 identifies clay, Fe, Al, and pH as the strongest relative drivers of measured soil C:N (Table 1).
558 This suggests mineral composition, with Fe, Al, and pH as proxies, in addition to soil texture

559 (e.g., clay), are important drivers of soil C:N relative to the variables considered here. However,
 560 mineral composition control of organic matter stabilization, and consequently soil C:N, is
 561 represented in few models (Aherns et al. 2020, Abramoff et al. 2022, this issue).

562 **Table 1.** Results from multiple linear regression (MLR) analyses of a subset of the SoDaH database and
 563 model outputs (Supplementary Material A). The dependent variable in each model is observed or
 564 modeled soil C:N. Relative importance percentages show the percentage of the total variance explained
 565 by each statistical model that a given individual variable explains. “NA” indicates a variable that was not
 566 included in a given model. Greener cells have higher relative importance percentages. MAT is mean
 567 annual temperature; MAP is mean annual precipitation; Fe_{ox}, Al_{ox}, and Si_{ox}, and Fe_{dith}, Al_{dith},
 568 and Si_{dith}, are oxalate-extractable and dithionite-extractable iron, aluminum and silica, respectively.

		Relative importance percentage																	
MLR type	n	R ²	AIC	Litter										Fe _{ox}	Al _{ox}	Si _{ox}	Fe _{dith}	Al _{dith}	Si _{dith}
				MAT	Clay	C:N	MAP	Depth	pH	Fe _{ox}	Al _{ox}	NA	NA						
SoDaH observations	239	0.28	607	20.9%	46.5%	32.6%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
SoDaH observations	239	0.52	386	9.7%	15.5%	9.4%	8.7%	1.9%	10.5%	4.5%	9.3%	4.9%	11.1%	12.5%	1.8%				
MIMICS-CN model	2697	0.80	3318	31.1%	31.4%	37.5%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
CASA-CNP model	2697	0.06	7500	32.7%	2.8%	64.6%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

569
 570 The concept of a “mineral filter” (Mikutta et al. 2019) acting as a bottom-up control of
 571 SOM composition is supported overall by our analyses (i.e. the high relative importance of silt
 572 and clay, pH and specific extractable metals; Figure 5; Table 1). Although the patterns observed
 573 here do not definitively justify incorporating new mineral-related variables or processes into
 574 models, they could be explored further in models or in field or lab experiments. Field
 575 experiments could be used to explore possible mechanistic relationships between pH and
 576 mineral composition. Using such a relationship, pH is an easily measured variable that could be
 577 used to improve models, for example by making the model coefficient of clay stabilization
 578 dependent on pH, as in the MEMS (Zhang et al. 2021) and Millennial (Abramoff et al. 2022, this
 579 issue) models. The relative importance of dithionite-extractable Fe and Al in driving soil C:N in
 580 our results also supports the importance of mineral composition. Increased use of chemical

581 extractions, which are more expensive and less widely measured, may be useful in identifying
582 the specific minerals (e.g. Fe and Al oxides) that stabilize low C:N microbial residues
583 (Rasmussen et al. 2018). More widespread measurements of specific soil mineralogy coupled
584 to detailed mechanistic studies exploring the affinities of different minerals for N-enriched
585 organic moieties (e.g. amino acids) may provide clarity about the role of edaphic factors in
586 filtering SOM and soil C:N. These measurements would allow proxies like pH and soil Fe and Al
587 oxides to be included in models as external parameters, used during model initialization, or
588 even dynamic state variables, as has been done for redox reactions (Maggi et al. 2008; Rizzo et
589 al. 2014; Calabrese & Porporato, 2019). Representing dynamic pH or mineralogy could be
590 particularly important under variable soil moisture, N or heavy metal pollution, or when
591 considering how pedogenic processes influence organic matter stabilization at millennial
592 timescales. Better representation of mineralogy, as well as the plant and microbial drivers
593 above, will be key for models' ability to predict soil C:N under global change.

594 4. Implications for Studying Global Change

595 Global changes, such as rising atmospheric CO₂, N deposition, and changing climate
596 influence the entire plant-soil system. For example, elevated CO₂ generally increases and N
597 deposition generally decreases the C:N of vegetative tissues and litter entering the soil system
598 (Yang et al. 2011, Sardans et al. 2012, Yue et al. 2017, Sun et al. 2020). While these changes
599 to vegetation C:N stoichiometry will likely introduce numerous feedbacks in the plant-soil
600 system, the net effects of these opposing influences are not well characterized. Models are
601 valuable tools for exploring the trajectories of these global changes and understanding the
602 possible large-scale implications of variable controls of soil stoichiometry for C and N dynamics
603 (Wieder et al. 2019b). Examining elevated CO₂ and N deposition in coupled C-N models
604 therefore presents a good opportunity to evaluate our foundational versus emerging

605 representations of the controls of soil C:N stoichiometry. Importantly, other global changes, such
606 as changes in temperature and moisture, land use change, and increases in wildfire occurrence
607 and severity, will likely influence soil C:N differently under the foundational versus emerging
608 representations but we focus on elevated CO₂ and N deposition here for brevity (Sistla et al.
609 2014, Pellegrini et al. 2018, Sun et al. 2021).

610 4.1 Elevated CO₂

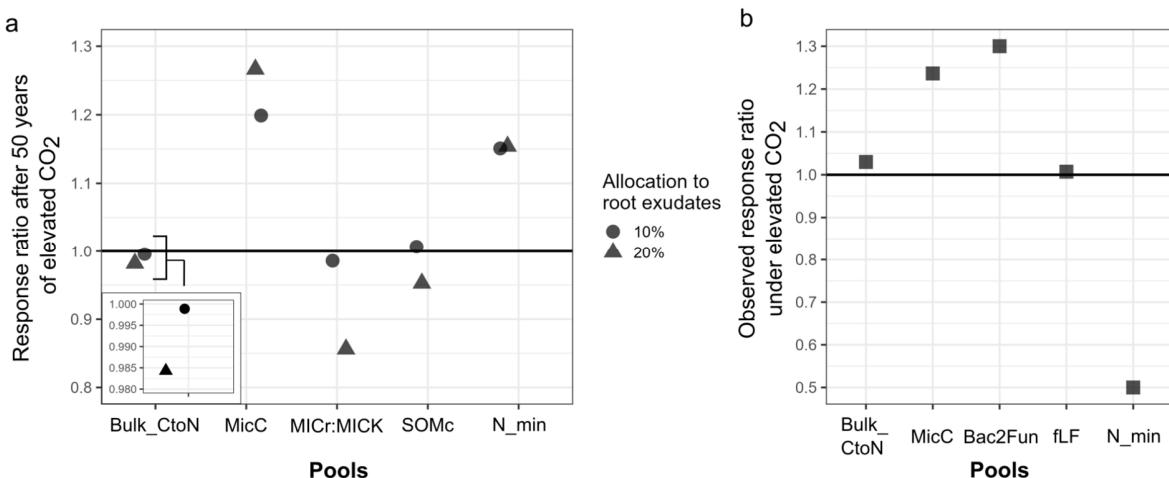
611 As atmospheric CO₂ rises, plant tissue C:N ratios typically increase (Cotrufo et al. 1998,
612 Wang et al. 2021, Gojon et al. 2022), altering the chemistry of litter inputs to the soil system.
613 Higher litterfall C:N ratios appear to reduce decomposition rates and soil N availability, possibly
614 inducing progressive N limitation of vegetation growth (Luo et al. 2004, Liang et al. 2016, Craine
615 et al. 2018, Mason et al. 2022). Simultaneously, under elevated CO₂ plants can shift allocation
616 patterns to potentially mitigate N limitation (Phillips et al. 2009). To increase N uptake, plants
617 increase C allocation to roots and root exudates that both directly enhance plant nutrient
618 access, while also stimulating soil microbial activity that mineralizes nutrients (Phillips et al.
619 2011, Cheng et al. 2012, Terrer et al. 2016). Both litter chemistry and plant C allocation changes
620 under elevated CO₂ could increase soil C:N through greater incorporation of high C:N plant
621 material and N mining from N-rich SOM, respectively (De Graaf et al. 2006, Phillips et al. 2011).
622 However, N could also be mined from higher C:N SOM pools, like POM, that are more
623 accessible to microbes, thereby reducing bulk soil C:N (Sulman et al. 2014). Thus, the relative
624 influence of litter chemistry and root exudation effects on soil C:N are uncertain but likely
625 important for a better mechanistic understanding of ecosystem responses to elevated CO₂.

626 However, accurately capturing ecosystem biogeochemical responses to elevated CO₂
627 remains challenging for land models (Zaehle et al. 2013, Davies-Barnard et al. 2020, Eastman
628 et al. 2023, Hauser et al. 2023). Part of this challenge lies in simulating appropriate plant and

629 soil responses to elevated CO₂ and their interactions. To explore potential soil biogeochemical
630 responses to elevated CO₂ we conducted a series of idealized model experiments with MIMICS-
631 CN. Building on the steady-state results presented in the biotic case study (section 3.1.5; Figure
632 4), we ran a series of 50-year transient simulations for the priming treatment under a pair of
633 elevated CO₂ scenarios. In the first experiment we represented elevated CO₂ as a 20% step
634 increase in net primary production (NPP) and a 10% increase in litterfall C:N, relative to the
635 “ambient” conditions under which the models were initialized (Norby et al. 2005, Wang et al.
636 2021). For the second experiment we repeated these step increases in productivity and litterfall
637 C:N, but also increased allocation of C to root exudates from 10% to 20% of metabolic litterfall
638 inputs, without increasing the total amount of inputs, to evaluate the influence of this emerging
639 driver. For brevity we calculated the response ratio of different soil pools and fluxes simulated
640 by MIMICS-CN after 50 years under elevated CO₂ divided by their initial “ambient” state.

641 Increased NPP and litterfall C:N were most influential on soil biogeochemistry when
642 allocation to root exudates also increased, indicating the importance of representing this
643 emerging driver (Figure 6a). Increased C allocation to exudates increased microbial biomass,
644 and particularly that of oligotrophs (reduced MICr:MICK). Oligotrophs preferentially decomposed
645 the high C:N SOMc pool (comparable to POM), thereby slightly reducing bulk soil C:N. Field
646 manipulations also report increased microbial biomass and negligible changes in bulk soil C:N
647 responses under elevated CO₂ that are consistent with our model results (Yue et al. 2017, Zou
648 et al. 2023). However, empirical studies also suggest that under elevated CO₂, both the ratio of
649 copiotrophs:oligotrophs and the POM pool increase (Rocci et al. 2021, Sun et al. 2021).
650 Additionally, N mineralization increased in our experiments under elevated CO₂ (Figure 6a). This
651 reflects higher rates of litter N inputs (from increased NPP) that occurred with our elevated CO₂
652 experiment but runs contrary to what may be expected under progressive N limitation (Luo et al.
653 2004). Indeed, when we isolated the potential effects of lower litter quality under elevated CO₂,
654 MIMICS-CN showed reduced N mineralization rates, as expected from progressive N limitation

655 (Supplementary Figure 1). We also compare our simulations to the observations from the Duke
 656 free-air CO₂ enrichment (FACE) experiment because this site exhibits the priming responses we
 657 evaluate here. We note that this is intended to be a more qualitative comparison than a rigorous
 658 validation, and note that field measurements were derived from distinct studies under different
 659 periods of elevated CO₂ treatment. We find remarkably similar increases in microbial biomass
 660 and similar minimal responses of bulk C:N and SOMc (comparable to the free light fraction of
 661 SOM) as observed values for our 10% allocation simulations (Figure 6b; Lichter et al., 2005,
 662 Drake et al. 2011). However, as noted above, increased N mineralization and reduced
 663 copiotroph to oligotroph ratio are opposite to observed decreases in N mineralization from a
 664 100-day incubation and increases in the bacterial to fungal ratio (somewhat comparable to the
 665 copiotroph to oligotroph ratio, Figure 6b, Billings and Ziegler, 2005, Feng et al. 2010). Our
 666 experiments highlight that plant-microbe-mineral interactions, represented by priming via root
 667 exudates (an emerging driver), provide a more nuanced assessment of soil C:N responses to
 668 elevated CO₂ but that further investigation is needed to revise structural assumptions or
 669 parameterization of MIMICS-CN, or other models trying to represent the emerging
 670 representation of soil C:N under global change.



671
 672

673 **Figure 6.** (a) MIMICS-CN simulation results showing response ratios after 50 years of elevated CO₂ (year
674 50/year 1) with either 10% (circles) or 20% (triangles) of metabolic litter inputs allocated to root exudates.
675 Elevated CO₂ is implemented as a 20% step increase in net primary production (NPP) and a 10% step
676 increase in litter C:N. Inset shows bulk soil C:N on a finer scale. (b) Observed response ratios to elevated
677 CO₂ from the Duke FACE experiment with data from Billings and Ziegler (2005), Lichter et al. (2005),
678 Feng et al. (2010), and Drake et al. (2011). Note different y-axes. Bulk_CtoN = bulk soil C:N; MicC =
679 microbial C; MICr:MICk = copiotroph-to-oligotroph ratio; SOMc = chemically stabilized soil organic matter;
680 Bac2Fun = bacteria-to-fungi ratio; fLF = free light fraction; N_min = N mineralization.

681

4.2 Nitrogen Deposition

682 While elevated CO₂ drives increases in ecosystem C:N, N deposition, inputs of reactive
683 forms of inorganic and organic N from the atmosphere to ecosystems, might be hypothesized to
684 have the opposite effect. However, ecosystem responses to N deposition are complex and
685 highly variable across broad spatial scales, suggesting N deposition effects might not be so
686 straightforward (Schlesinger, 2009, Kanakidou et al. 2016). With N deposition, plant biomass
687 and shoot:root generally increase and plant shoot, root, and litter C:N generally decrease, which
688 could be expected to favor microbial use of high quality plant material, ultimately favoring
689 MAOM formation and lower SOM C:N (Yang et al. 2011, Averill and Waring, 2018, Sun et al.
690 2020, Feng et al. 2022). In contrast, N deposition could also increase SOM C:N through
691 reduced lignocellulosic enzyme activity, reduced microbial activity via acidification and C
692 limitation, and reduced strength of mineral-OM bonds (Frey et al. 2004, Frey et al. 2014,
693 Carrara et al. 2018, Pan et al. 2020, Ning et al. 2021, Feng et al. 2022). These effects could
694 specifically increase SOM C:N through reduced decomposition of high C:N SOM (Eastman et
695 al. 2022), reduced N-rich microbial input, and desorption of relatively N-rich OM, respectively.
696 The diversity of effects from N deposition have made it difficult to predict consistent drivers of
697 SOM responses to this global change (Averill and Waring, 2018).

698 Unless specifically formulated to do so, models struggle to depict the wide array of
699 effects of N deposition. For example, most models add N deposition to the mineral N pool, and
700 simulations generally show increases in plant productivity and consequently microbial activity.

701 However, N deposition generally reduces microbial activity in empirical studies (Zhang et al.
702 2018). N deposition in models can also modify plant C:N and drive changes in SOM C:N
703 through the foundational representation of soil C:N controls (Figure 2a; Throop et al. 2004).
704 However, most models lack the mechanistic representation for specific enzyme responses,
705 dynamic and influential soil pH, and N-induced changes in sorption, although the MEND model
706 represents specific enzyme groups (Wang et al. 2022). Eastman et al. (2023) tackled the
707 challenge of representing empirical outcomes from a 30-year N deposition experiment in a
708 mixed hardwood forest in two soil biogeochemistry models (MIMICS-CN and CASA-CN)
709 coupled to the same vegetation model (CASA-CNP). In order to capture empirical responses in
710 these models, the authors had to modify the vegetation allocation scheme and decay rate of the
711 SOMc pool (comparable to POM), and even then only the microbially-explicit model (MIMICS-
712 CN) exhibited increased soil C:N as seen in the empirical comparison (Eastman et al. 2022,
713 Eastman et al. 2023). Eastman et al. (2023) demonstrate the difficulty of capturing the multitude
714 of N deposition effects in models and indicate the need to represent plant and microbe
715 feedbacks in models to capture soil C:N responses to N deposition.

716 Nitrogen is not the only nutrient whose availability will likely be modified by global
717 change. Phosphorus (P), in particular, might also shape soil C:N in ways associated with the
718 emerging representation, largely through interactions with C and N (Townsend et al., 2011). For
719 example, N fixation is limited by P availability, such that changing availability of P could modify
720 N fixation with implications for soil C:N (Houlton et al. 2008). Alternatively, under P limitation, N
721 is allocated to production of phosphatase enzymes that break down SOM, potentially causing a
722 “P-mining” effect that could preferentially breakdown high P MAOM and thus increase soil C:N
723 (Treseder and Vitousek, 2001, Spohn, 2020). These N-P interactions are exemplified in CASA-
724 CNP, CLM-CNP and SCAMPS-CNP and could be used to evaluate effects of P addition on soil
725 C:N (Wang et al. 2010, Yang et al. 2014, Pold et al. 2022). Alternatively, added P could
726 directly exchange with C on mineral surfaces to reduce MAOM C:N, which could be formulated

727 in models similarly to acid root exudation (Spohn and Schleuss, 2019, Rocci et al. 2022).
728 Beyond P, experimentally adding potassium and micronutrients slightly increased soil C:N in
729 globally-distributed grasslands but adding sulfur stoichiometry to a static soil formulation did not
730 reduce C cycle uncertainty (Buchkowski et al. 2019, Seabloom et al. 2021). Thus , there is
731 evidence supporting the influence of nutrient interactions on soil C:N, likely through the
732 emerging drivers. This supports the development of models that represent both the emerging
733 drivers and elements beyond C and N.

734 5. Conclusions

735 Foundational representations of soil C:N controls present in most models of soil
736 biogeochemistry are insufficient and could be improved via a more complete, emerging
737 representation of soil C:N controls. These missing emerging controls likely underlie large scale
738 patterns of soil C:N and will likely allow for better predictions of soil C:N responses to global
739 environmental change. The emerging representation of the controls of soil C:N illustrates the
740 tension between simplicity and accurate representation of complex systems in models.
741 Balancing these factors is critical for projecting future biogeochemical and climate outcomes.
742 While the emerging drivers presented have strong empirical support in the literature, there are
743 many other potential additional drivers that can influence soil C:N ratios including
744 photodegradation, microbial physiology, and soil fauna (Moorhead and Callaghan, 1994, de
745 Vries et al. 2013, Mooshammer et al. 2014, Chen et al. 2016). Our review of empirical
746 understanding of the emerging drivers of soil C:N and their representation in models identified
747 research gaps and contexts where drivers might be particularly important. We also showed that
748 implementing the emerging drivers can cause distinct responses of soil C:N to global change.
749 Ultimately, more theoretical, empirical, and modeling studies are needed to establish the relative
750 importance of these emerging drivers for soil C:N stoichiometry and if and how they should be

751 implemented in models. Specifically, current understanding informs the need for future research
752 in the following areas:

753 • Evaluate the feedbacks of different representations of N fixation in models and how
754 these align with empirically expected feedbacks and change soil C:N

755 • With improved representations of N fixation in models, determine impact of increased
756 fixation on soil C:N under elevated CO₂

757 • Use modeling to separately resolve litter quality and N mining/mineralization effects of
758 mycorrhizal fungi on soil C:N

759 • Determine realistic magnitudes of acid root exudation under steady state and global
760 change conditions and their influence on soil C:N

761 • Increase collection of mineral composition data to further investigate the importance of
762 pH and metal controls on MAOM, and subsequently bulk soil C:N

763 • Implement aggregation in a coupled C-N model to evaluate the influence on both
764 biogeochemical cycles

765 • Investigate relative importance of litter quality versus plant allocation under elevated CO₂
766 in a coupled plant-soil model and the implications for soil C:N

767 • Determine the computational cost of adding groups of emerging factors to models to
768 evaluate the feasibility of representing these factors at a global scale

769 **Acknowledgements**

770 We would like to thank artist Elena Hartley/elabarts.com for her illustrations for Figures 1 and 2.
771 We would also like to thank the editor and reviewers for their helpful comments. The workshop
772 in which this work was developed was funded by USDA-NIFA 2020-67019-31395 awarded to
773 WRW. KSR and WRW were supported by the US National Science Foundation (NSF) award
774 1926413. PBR and KSR were supported by Biological Integration Institutes award NSF-DBI-
775 2021898 and the Biosciences Initiative at the University of Michigan. PBR was also supported
776 by NSF Long-Term Ecological Research award DEB-1831944. EPS, ASG, HHM, and WRW
777 were supported by NSF Arctic Systems Science Awards 2031253 and 2031238. HHM was also

778 supported by the NSF EMERGE Biology Integration Institute, award # 2022070. CC and EH
779 acknowledge support from an NSF Research Coordination Network grant to investigate nutrient
780 cycling in terrestrial ecosystems (INCyTE; DEB-1754126).

781 **References**

782 Abramoff, R., Xu, X., Hartman, M., O'Brien, S., Feng, W., Davidson, E., Finzi, A., Moorhead, D.,
783 Schimel, J., Torn, M., 2018. The Millennial model: in search of measurable pools and
784 transformations for modeling soil carbon in the new century. *Biogeochemistry* 137, 51-
785 71.

786 Abramoff, R.Z., Guenet, B., Zhang, H., Georgiou, K., Xu, X., Rossel, R.A.V., Yuan, W., Ciais, P.,
787 2022. Improved global-scale predictions of soil carbon stocks with Millennial Version 2.
788 *Soil Biology and Biochemistry* 164, 108466. This issue.

789 Adams, M. A., Turnbull, T. L., Sprent, J. I., & Buchmann, N., 2016. Legumes are different: Leaf
790 nitrogen, photosynthesis, and water use efficiency. *Proceedings of the National
791 Academy of Sciences*, 11, 15, 4098-4103.

792 Amorim, H.C., Hurtarte, L.C., Souza, I.F., Zinn, Y.L., 2022. C:N ratios of bulk soils and particle-
793 size fractions: Global trends and major drivers. *Geoderma* 425, 116026.

794 An, S., Mentler, A., Mayer, H., Blum, W.E., 2010. Soil aggregation, aggregate stability, organic
795 carbon and nitrogen in different soil aggregate fractions under forest and shrub
796 vegetation on the Loess Plateau, China. *Catena* 81, 226-233.

797 Asano, M., Wagai, R., Yamaguchi, N., Takeichi, Y., Maeda, M., Suga, H., Takahashi, Y., 2018.
798 In Search of a binding agent: Nano-scale evidence of preferential carbon associations
799 with poorly-crystalline mineral phases in physically-stable, clay-sized aggregates. *Soil
800 Systems* 2, 32.

801 Averill, C., Turner, B.L., Finzi, A.C., 2014. Mycorrhiza-mediated competition between plants and
802 decomposers drives soil carbon storage. *Nature* 505, 543–545.
803 doi:10.1038/nature12901

804 Averill, C., Waring, B., 2018. Nitrogen limitation of decomposition and decay: How can it occur?
805 *Global Change Biology* 24, 1417-1427.

806 Bailey, V.L., Bond-Lamberty, B., DeAngelis, K., Grandy, A.S., Hawkes, C.V., Heckman, K.,
807 Lajtha, K., Phillips, R.P., Sulman, B.N., Todd-Brown, K.E., 2018. Soil carbon cycling
808 proxies: Understanding their critical role in predicting climate change feedbacks. *Global
809 Change Biology* 24, 895-905.

810 Baskaran, P., Hyvönen, R., Berglund, S.L., Clemmensen, K.E., Ågren, G.I., Lindahl, B.D.,
811 Manzoni, S., 2017. Modelling the influence of ectomycorrhizal decomposition on plant
812 nutrition and soil carbon sequestration in boreal forest ecosystems. *New Phytologist*,
813 213: 1452-1465. doi.org/10.1111/nph.14213

814 Berardi, D., Brzostek, E., Blanc-Betés, E., Davison, B., DeLucia, E.H., Hartman, M.D., Kent, J.,
815 Parton, W.J., Saha, D., Hudiburg, T.W., 2020. 21st-century biogeochemical modeling:
816 challenges for Century-based models and where do we go from here? *GCB Bioenergy*
817 12, 774-788.

818 Billings, S., Ziegler, S., 2005. Linking microbial activity and soil organic matter transformations in
819 forest soils under elevated CO₂. *Global Change Biology* 11, 203-212.

820 Blankinship, J.C., Berhe, A.A., Crow, S.E., Druhan, J.L., Heckman, K.A., Keiluweit, M.,
821 Lawrence, C.R., Marín-Spiotta, E., Plante, A.F., Rasmussen, C., Schadel, C., Schimel,
822 J.P., Sierra, C. A., Thompson, A., Wagai, R., Wieder, W. R. 2018. Improving

823 understanding of soil organic matter dynamics by triangulating theories, measurements,
824 and models. *Biogeochemistry* 140, 1-13.

825 Bonan, G.B., Hartman, M.D., Parton, W.J., Wieder, W.R., 2013. Evaluating litter decomposition
826 in earth system models with long-term litterbag experiments: an example using the
827 Community Land Model version 4 (CLM 4). *Global Change Biology* 19, 957-974.

828 Bouskill, N.J., Mekonnen, Z., Zhu, Q., Grant, R., Riley, W.J., 2022. Microbial contribution to
829 post-fire tundra ecosystem recovery over the 21st century. *Communications Earth &*
830 *Environment* 3, 26.

831 Brzostek, E.R., Greco, A., Drake, J.E. and Finzi, A.C., 2013. Root carbon inputs to the
832 rhizosphere stimulate extracellular enzyme activity and increase nitrogen availability in
833 temperate forest soils. *Biogeochemistry* 115, 65-76. doi: 10.1007/s10533-012-9818-9

834 Buchkowski, R.W., Shaw, A.N., Shi, D., Smith, G.R., Keiser, A.D., 2019. Constraining Carbon
835 and Nutrient Flows in Soil With Ecological Stoichiometry. *Frontiers in Ecology and*
836 *Evolution* 7, 382. doi: 10.3389/fevo.2019.00382

837 Calabrese, S., Porporato, A., 2019. Impact of ecohydrological fluctuations on iron-redox cycling.
838 *Soil Biology and Biochemistry* 133, 188–195. doi:10.1016/j.soilbio.2019.03.013

839 Carrara, J.E., Walter, C.A., Hawkins, J.S., Peterjohn, W.T., Averill, C., Brzostek, E.R., 2018.
840 Interactions among plants, bacteria, and fungi reduce extracellular enzyme activities
841 under long-term N fertilization. *Global Change Biology* 24, 2721-2734.

842 Chang, K.-Y., Riley, W. J., Crill, P. M., Grant, R. F., Saleska, S. R. 2020. Hysteretic temperature
843 sensitivity of wetland CH₄ fluxes explained by substrate availability and microbial
844 activity. *Biogeosciences* 22, 5849-5860.

845 Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Ditttert, K., Lin, X., Blagodatskaya, E.,
846 Kuzyakov, Y. 2014. Soil C and N availability determine the priming effect: microbial N mining
847 and stoichiometric decomposition theories. *Global Change Biology* 20, 2356-2367.

848 Chen, M., Parton, W.J., Adair, E.C., Asao, S., Hartman, M.D., Gao, W., 2016. Simulation of the
849 effects of photodecay on long-term litter decay using DayCent. *Ecosphere* 7, 12,
850 e01631.

851 Cheng, L., Booker, F.L., Tu, C., Burkey, K.O., Zhou, L., Shew, H.D., Rufty, T.W., Hu, S., 2012.
852 Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated
853 CO₂. *Science* 337, 1084-1087.

854 Cleveland, C.C., Liptzin, D., 2007. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the
855 microbial biomass? *Biogeochemistry* 85, 235-252.

856 Cleveland, C.C., Reis, C.R.G., Perakis, S.S., Dynarski, K.A., Batterman, S.A., Crews, T.E., Gei,
857 M., Gundale, M.J., Menge, D.N.L., Peoples, M.B., Reed, S.C., Salmon, V.G., Soper,
858 F.M., Taylor, B.N., Turner, M.G., Wurzburger, N. 2022. Cryptic nitrogen fixers: An
859 important frontier in terrestrial N cycling research. *Ecosystems* 25, 1653-1669.

860 Cotrufo, M.F., Ineson, P., Scott, A., 1998. Elevated CO₂ reduces the nitrogen concentration of
861 plant tissues. *Global Change Biology* 4, 43-54.

862 Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K., Paul, E., 2013. The Microbial Efficiency-
863 Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil
864 organic matter stabilization: do labile plant inputs form stable soil organic matter? *Global*
865 *Change Biology* 19, 988-995.

866 Cotrufo, M.F., Ranalli, M.G., Haddix, M.L., Six, J., Lugato, E., 2019. Soil carbon storage
867 informed by particulate and mineral-associated organic matter. *Nature Geoscience* 12,
868 12, 989-994.

869 Craine, J.M., Elmore, A.J., Wang, L., Aranibar, J., Bauters, M., Boeckx, P., Crowley, B.E.,
870 Dawes, M.A., Delzon, S., Fajardo, A., 2018. Isotopic evidence for oligotrophication of
871 terrestrial ecosystems. *Nature Ecology & Evolution* 2, 1735-1744.

872 Daly, A.B., Jilling, A., Bowles, T.M., Buchkowski, R.W., Frey, S.D., Kallenbach, C.M., Keiluweit,
873 M., Mooshammer, M., Schimel, J.P., Grandy, A.S., 2021. A holistic framework

874 integrating plant-microbe-mineral regulation of soil bioavailable nitrogen.
 875 Biogeochemistry 154, 211-229.

876 Davies-Barnard, T., Friedlingstein, P., 2020. The global distribution of biological nitrogen fixation
 877 in terrestrial natural ecosystems. *Global Biogeochemical Cycles* 34, 3.

878 Davies-Barnard, T., Meyerholt, J., Zaehle, S., Friedlingstein, P., Brovkin, V., Fan, Y., Fisher,
 879 R.A., Jones, C.D., Lee, H., Peano, D., 2020. Nitrogen cycling in CMIP6 land surface
 880 models: progress and limitations. *Biogeosciences* 17, 5129-5148.

881 De Graaff, M.-A., Van Groenigen, K.J., Six, J., Hungate, B., van Kessel, C., 2006. Interactions
 882 between plant growth and soil nutrient cycling under elevated CO₂: a meta-analysis.
 883 *Global Change Biology* 12, 2077-2091.

884 de Vries, F. T., Thébault, E., Liiri, M., Birkhofer, K., Tsiafouli, M. A., Bjørnlund, L., Bracht
 885 Jørgensen, H., Brady, M. V., Christensen, S., De Ruiter, P., d'Hertefeld, T., Frouz, J.,
 886 Hedlund, K., Hemerik, L., Hol, W. H. G., Hotes, S., Mortimer, S. R., Setälä, H., Sgardelis,
 887 S. P., Uteseny, K., Van der Putten, W. H., Wolters, V., and Bardgett, R. D., 2013. Soil
 888 food web properties explain ecosystem services across European land use systems.
 889 *Proceedings of the National Academy of Sciences* 110, 14296-14301.

890 Drake, J.E., Gallet-Budynek, A., Hofmockel, K.S., Bernhardt, E.S., Billings, S.A., Jackson, R.B.,
 891 Johnsen, K.S., Lichter, J., McCarthy, H.R., McCormack, M.L., 2011. Increases in the flux
 892 of carbon belowground stimulate nitrogen uptake and sustain the long-term
 893 enhancement of forest productivity under elevated CO₂. *Ecology Letters* 14, 349-357.

894 Dynarski, K.A., Soper, F.M., Reed, S.C., Wieder, W.R., Cleveland, C.C., 2023. Patterns and
 895 controls of foliar nutrient stoichiometry and flexibility across United States forests.
 896 *Ecology* 104, e3909.

897 Eastman, B.A., Adams, M.B., Peterjohn, W.T., 2022. The path less taken: Long-term N
 898 additions slow leaf litter decomposition and favor the physical transfer pathway of soil
 899 organic matter formation. *Soil Biology and Biochemistry* 166, 108567.

900 Eastman, B.A., Wieder, W.R., Hartman, M.D., Brzostek, E.R., Peterjohn, W.T., 2023. Can
 901 models adequately reflect how long-term nitrogen enrichment alters the forest soil
 902 carbon cycle? *Biogeosciences Discussions*, preprint.

903 Elliott, E.T., 1986. Aggregate Structure and Carbon, Nitrogen, and Phosphorous in Native and
 904 Cultivated Soils. *Soil Science Society of America Journal* 50, 627-33.

905 Elser, J.J., Sterner, R.W., Gorokhova, E., Fagan, W.F., Markow, T.A., Cotner, J.B., Harrison,
 906 J.F., Hobbie, S.E., Odell, G.M., Weider, L.W., 2000. Biological stoichiometry from genes
 907 to ecosystems. *Ecology Letters* 3, 540-550.

908 Elser, J.J., Urabe, J., 1999. The stoichiometry of consumer-driven nutrient recycling: theory,
 909 observations, and consequences. *Ecology* 80, 735-751.

910 Enríquez, S., Duarte, C.M., Sand-Jensen, K., 1993. Patterns in decomposition rates among
 911 photosynthetic organisms: the importance of detritus C: N: P content. *Oecologia* 94, 457-
 912 471.

913 Feng, H., Guo, J., Peng, C., Kneeshaw, D., Roberge, G., Pan, C., Ma, X., Zhou, D., Wang, W.,
 914 2023. Nitrogen addition promotes terrestrial plants to allocate more biomass to
 915 aboveground organs: A global meta-analysis. *Global Change Biology* 29, 14, 3970-3989.

916 Feng, X., Simpson, A.J., Schlesinger, W.H., Simpson, M.J., 2010. Altered microbial community
 917 structure and organic matter composition under elevated CO₂ and N fertilization in the
 918 duke forest. *Global Change Biology* 16, 2104-2116.

919 Feng, X., Qin, S., Zhang, D., Chen, P., Hu, J., Wang, G., Liu, Y., Wei, B., Li, Q., Yang, Y., 2022.
 920 Nitrogen input enhances microbial carbon use efficiency by altering plant-microbe-
 921 mineral interactions. *Global Change Biology* 28, 16, 4845-4860.

922 Fisher, J.B., Sitch, S., Malhi, Y., Fisher, R.A., Huntingford, C. & Tan, S.Y., 2010. Carbon cost of
 923 plant nitrogen acquisition: a mechanistic, globally applicable model of plant nitrogen
 924 uptake, retranslocation, and fixation. *Global Biogeochemical Cycles*, 24, 1.

925 Fontaine, S., Mariotti, A., Abbadie, L., 2003. The priming effect of organic matter: a question of
926 microbial competition? *Soil Biology and Biochemistry* 35, 837-843.

927 Fonte, S.J., Kong, A.Y., van Kessel, C., Hendrix, P.F., Six, J., 2007. Influence of earthworm
928 activity on aggregate-associated carbon and nitrogen dynamics differs with
929 agroecosystem management. *Soil Biology and Biochemistry* 39, 1014-1022.

930 Frey, S.D., Knorr, M., Parrent, J.L., Simpson, R.T., 2004. Chronic nitrogen enrichment affects
931 the structure and function of the soil microbial community in temperate hardwood and
932 pine forests. *Forest Ecology and Management* 196, 159-171.

933 Frey, S.D., Ollinger, S., Nadelhoffer, K., Bowden, R., Brzostek, E., Burton, A., Caldwell, B.A.,
934 Crow, S., Goodale, C.L., Grandy, A.S., Finzi, A., Kramer, M.G., Lajtha, K., Lemoine, J.,
935 Martin, M., McDowell, W.H., Minocha, R., Sadowsky, J.J., Templer, P.H., Wickings, K.,
936 2014. Chronic nitrogen additions suppress decomposition and sequester soil carbon in
937 temperate forests. *Biogeochemistry Letters* 121, 305-316.

938 Fulton-Smith, S., Cotrufo, M.F., 2019. Pathways of soil organic matter formation from above and
939 belowground inputs in a Sorghum bicolor bioenergy crop. *GCB Bioenergy* 11, 971-987.

940 Gao, D., Bai, E., Yang, Y., Zong, S., Hagedorn, F., 2021. A global meta-analysis on freeze-thaw
941 effects on soil carbon and phosphorus cycling. *Soil Biology and Biochemistry* 159,
942 108283. <https://doi.org/10.1016/j.soilbio.2021.108283>

943 Georgiou, K., Jackson, R.B., Vinodusková, O., Abramoff, R.Z., Ahlström, A., Feng, W., Frouz, J.,
944 Harden, J.W., Pellegrini, A.F., Polley, H.W., Soong, J.L., Riley, W.J., Torn, M.S., 2022a.
945 Synthesis data for manuscript: Global stocks and capacity of mineral-associated soil
946 organic carbon [Data set]. In *Nature Communications* (v1.0). Zenodo.
947 <https://doi.org/10.5281/zenodo.5987415>

948 Georgiou, K., Jackson, R.B., Vinodusková, O., Abramoff, R.Z., Ahlström, A., Feng, W., Harden,
949 J.W., Pellegrini, A.F., Polley, H.W., Soong, J.L., 2022b. Global stocks and capacity of
950 mineral-associated soil organic carbon. *Nature Communications* 13, 1-12.

951 Georgiou, K., Malhotra, A., Wieder, W.R., Ennis, J.H., Hartman, M.D., Sulman, B.N., Berhe,
952 A.A., Grandy, A.S., Kyker-Snowman, E., Lajtha, K., 2021. Divergent controls of soil
953 organic carbon between observations and process-based models. *Biogeochemistry* 156,
954 5-17.

955 Geyer, K., Schnecker, J., Grandy, A.S., Richter, A., Frey, S., 2020. Assessing microbial
956 residues in soil as a potential carbon sink and moderator of carbon use efficiency.
957 *Biogeochemistry* 151, 237-249.

958 Gojon, A., Cassan, O., Bach, L., Lejay, L. & Martin, A. 2022. The decline of plant mineral
959 nutrition under rising CO₂: physiological and molecular aspects of a bad deal. *Trends
960 Plant Sci.* doi:10.1016/j.tplants.2022.09.002

961 Gou, X., Reich, P.B., Qiu, L., Shao, M., Wei, G., Wang, J., Wei, X., 2023. Leguminous plants
962 significantly increase soil nitrogen cycling across global climates and ecosystem types.
963 *Global Change Biology* 29, 14.

964 Graf, F., and Frei, M., 2013. Soil Aggregate Stability Related to Soil Density, Root Length, and
965 Mycorrhiza Using Site-Specific *Alnus Incana* and *Melanogaster Variegatus* s.l.
966 *Ecological Engineering* 57, 314-323.

967 Grandy, A. S., & Robertson, G. P., 2007. Land-Use Intensity Effects on Soil Organic Carbon
968 Accumulation Rates and Mechanisms. *Ecosystems* 10, 1, 59–74.
969 <https://doi.org/10.1007/s10021-006-9010-y>

970 Grandy, A.S., Neff, J.C., Weintraub, M.N., 2007. Carbon structure and enzyme activities in
971 alpine and forest ecosystems. *Soil Biology and Biochemistry* 39, 2701-2711.

972 Grant, R., Baldocchi, D., Ma, S., 2012. Ecological controls on net ecosystem productivity of a
973 seasonally dry annual grassland under current and future climates: Modelling with
974 ecosys. *Agricultural and Forest Meteorology* 152, 189-200.

975 Grant, R.F., Neftel, A., Calanca, P., 2016. Ecological controls on N₂O emission in surface litter
976 and near-surface soil of a managed grassland: modelling and measurements.
977 *Biogeosciences* 13, 3549-3571.

978 Guenet, B., Moyano, F. E., Peylin, P., Ciais, P., Janssens, I. A. 2016. Towards a representation
979 of priming on soil carbon decomposition in the global land biosphere model ORCHIDEE
980 (version 1.9.5.2). *Geoscientific Model Development* 9, 841–855. doi.org/10.5194/gmd-9-
981 841-2016

982 Haddix, M.L., Paul, E.A., Cotrufo, M.F., 2016. Dual, differential isotope labeling shows the
983 preferential movement of labile plant constituents into mineral-bonded soil organic
984 matter. *Global Change Biology* 22, 2301-2312.

985 Haddix, M.L., Gregorich, E.G., Helgason, B.L., Janzen, H., Ellert, B.H., Cotrufo, M.F., 2020.
986 Climate, carbon content, and soil texture control the independent formation and
987 persistence of particulate and mineral-associated organic matter in soil. *Geoderma* 363,
988 114160.

989 Hauser E., Wieder, W.R., Bonan, G.B., Cleveland, C.C., 2023. Flexible foliar stoichiometry
990 reduces the magnitude of the global land carbon sink. *Geophysical Research Letters*
991 [preprint available through ESSOAR] doi: 10.22541/essoar.168167164.40732205/v1. In
992 press.

993 He, H., Meyer, A., Jansson, P. E., Svensson, M., Rütting, T., Klemmedsson, L. 2018. Simulating
994 ectomycorrhiza in boreal forests: implementing ectomycorrhizal fungi model MYCOFON
995 in CoupModel (v5). *Geoscientific Model Development* 11, 725-751.
996 doi.org/10.5194/gmd-11-725-2018

997 Hicks, L. C., Leizeaga, A., Rousk, K., Michelsen, A., Rousk, J.. 2020. Simulated rhizosphere
998 deposits induce microbial N-mining that may accelerate shrubification in the subarctic.
999 *Ecology* 101, 9, e03094. 10.1002/ecy.3094

1000 Houlton, B.Z., Wang, Y.-P., Vitousek, P.M., Field, C.B., 2008. A unifying framework for
1001 dinitrogen fixation in the terrestrial biosphere. *Nature* 454, 327-330.

1002 Huang, W., van Bodegom, P. M., Viskari, T., Liski, J., Soudzilovskaia, N. A., 2022.
1003 Implementation of mycorrhizal mechanisms into soil carbon model improves the
1004 prediction of long-term processes of plant litter decomposition. *Biogeosciences* 19,
1005 1469–1490. doi.org/10.5194/bg-19-1469-2022

1006 Hungate, B.A., Van Groenigen, K.J., Six, J., Jastrow, J.D., Luo, Y., De Graaff, M.A., van Kessel,
1007 C., Osenberg, C.W., 2009. Assessing the effect of elevated carbon dioxide on soil
1008 carbon: a comparison of four meta-analyses. *Global Change Biology* 15, 2020-2034.

1009 Jilling, A., Keiluweit, M., Contosta, A.R., Frey, S., Schimel, J., Schnecker, J., Smith, R.G.,
1010 Tiemann, L., Grandy, A.S., 2018. Minerals in the rhizosphere: overlooked mediators of
1011 soil nitrogen availability to plants and microbes. *Biogeochemistry* 139, 103–122.
1012 doi:10.1007/s10533-018-0459-5

1013 Jilling, A., Keiluweit, M., Gutknecht, J., Grandy, A.S., 2021. Priming Mechanisms Providing
1014 Plants And Microbes Access To Mineral-Associated Organic Matter. *Soil Biology and*
1015 *Biochemistry*, 108265.

1016 Johnson, D.W., Curtis, P.S., 2001. Effects of forest management on soil C and N storage: meta
1017 analysis. *Forest Ecology and Management* 140, 227-238.

1018 Juice, S.M., Ridgeway, J. R., Hartman M.D., Parton, W. J., Berardi D.M., Sulman, B.N., Allen,
1019 K.E., and Brzostek, E.R. In review. Reparameterizing litter decomposition using a
1020 simplified Monte Carlo method improves litter decay simulated by a microbial model and
1021 alters bioenergy soil carbon estimates.

1022 Kaiser, K., Zech, W., 2000. Sorption of dissolved organic nitrogen by acid subsoil horizons and
1023 individual mineral phases. *Eur J Soil Sci* 51:403–411.
1024 https://doi.org/10.1046/j.13652389.2000.00320.x

1025 Kallenbach, C.M., Frey, S.D., Grandy, A.S., 2016. Direct evidence for microbial-derived soil
1026 organic matter formation and its ecophysiological controls. *Nature Communications* 7,
1027 13630.

1028 Kanakidou, M., Myriokefalitakis, S., Daskalakis, N., Fanourgakis, G., Nenes, A., Baker, A.,
1029 Tsigaridis, K., Mihalopoulos, N., 2016. Past, present, and future atmospheric nitrogen
1030 deposition. *Journal of the Atmospheric Sciences* 73, 2039-2047.

1031 Keiluweit, M., Bougoure, J.J., Nico, P.S., Pett-Ridge, J., Weber, P.K., Kleber, M., 2015. Mineral
1032 protection of soil carbon counteracted by root exudates. *Nature Climate Change* 5, 588-
1033 595.

1034 Kleber, M., Mikutta, R., Torn, M.S., Jahn, R. 2005. Poorly crystalline mineral phases protect
1035 organic matter in acid subsoil horizons. *Eur J Soil Sci* 56, 717-725. <https://doi.org/10.1111/j.1365-2389.2005.00706.x>

1036 Kramer, M.G., Lajtha, K., Aufdenkampe, A.K., 2017. Depth trends of soil organic matter C: N
1037 and ¹⁵N natural abundance controlled by association with minerals. *Biogeochemistry*
1038 136, 237-248.

1040 Kou-Giesbrecht, S., Malyshev, S., Martínez Cano, I., Pacala, S.W., Sheviakova, E.,
1041 Bytnerowicz, T.A., Menge, D.N., 2021. A novel representation of biological nitrogen
1042 fixation and competitive dynamics between nitrogen-fixing and non-fixing plants in a land
1043 model (GFDL LM4. 1-BNF). *Biogeosciences* 18, 4143-4183.

1044 Kou-Giesbrecht, S., Arora, V., Seiler, C., Arneth, A., Falk, S., Jain, A., Joos, F., Kennedy, D.,
1045 Knauer, J., Sitch, S., 2023. Evaluating nitrogen cycling in terrestrial biosphere models:
1046 Implications for the future terrestrial carbon sink. *Earth System Dynamics* 14, 767-795.

1047 Kyker-Snowman, E., Wieder, W.R., Frey, S.D., Grandy, A.S., 2020. Stoichiometrically coupled
1048 carbon and nitrogen cycling in the Microbial-MIneral Carbon Stabilization model version
1049 1.0 (MIMICS-CN v1. 0). *Geoscientific Model Development* 13, 4413-4434.

1050 Lavallee, J.M., Soong, J.L., Cotrufo, M.F., 2020. Conceptualizing soil organic matter into
1051 particulate and mineral-associated forms to address global change in the 21st century.
1052 *Global Change Biology* 26, 261–273. doi:10.1111/gcb.14859

1053 Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic matter. *Nature* 528, 60–
1054 68.

1055 Lehmann, A., Zheng, W., Ryo, M., Soutschek, K., Roy, J., Rongstock, R., Maaß, S., Rillig, M.C.,
1056 2020. Fungal traits important for soil aggregation. *Frontiers in microbiology* 10, 2904.

1057 Leuthold, S.J., Haddix, M.L., Lavallee, J., Cotrufo, M.F., 2022. Physical fractionation techniques,
1058 Reference Module in Earth Systems and Environmental Sciences, Elsevier, ISBN
1059 9780124095489, <https://doi.org/10.1016/B978-0-12-822974-3.00067-7>.

1060 Liang, J., Qi, X., Souza, L., & Luo, Y., 2016. Processes regulating progressive nitrogen limitation
1061 under elevated carbon dioxide: a meta-analysis. *Biogeosciences* 13, 9, 2689-2699.

1062 Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., Chen, J., Li, B., 2008. Altered
1063 ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. *New
1064 Phytologist* 177, 706-714.

1065 Lichter, J., Barron, S.H., Bevacqua, C.E., Finzi, A.C., Irving, K.F., Stemmler, E.A., Schlesinger,
1066 W.H., 2005. Soil carbon sequestration and turnover in a pine forest after six years of
1067 atmospheric CO₂ enrichment. *Ecology* 86, 1835-1847.

1068 Luo, Y., Su, B. O., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., Hungate, B., McMurtrie,
1069 R.E., Oren, R., Parton, W.J., Pataki, D.E., Shaw, R.M., Zak, D.R., Field, C. B., 2004.
1070 Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon
1071 dioxide. *Bioscience* 54, 8, 731-739.

1072 Luo, Z., Wang, E., Fillery, I.R., Macdonald, L.M., Huth, N., Baldock, J., 2014. Modelling soil
1073 carbon and nitrogen dynamics using measurable and conceptual soil organic matter
1074 pools in APSIM. *Agriculture, Ecosystems & Environment* 186, 94-104.

1075 Maaß, S., Caruso, T., Rillig, M.C., 2015. Functional role of microarthropods in soil aggregation.
1076 *Pedobiologia* 58, 59-63.

1077 Maggi, F., Gu, C., Riley, W.J., Hornberger, G.M., Venterea, R.T., Xu, T., Spycher, N., Steefel, C., Miller, N.L., Oldenburg, C.M., 2008. A mechanistic treatment of the dominant soil
1078 nitrogen cycling processes: Model development, testing, and application. *Journal of
1079 Geophysical Research-Biogeosciences* 113.

1080 Mason, R. E., Craine, J. M., Lany, N. K., Jonard, M., Ollinger, S. V., Groffman, P. M., Fulweiler, R.W., Angerer, J., Read, Q.D., Reich, R.B., Templer, P.H., Elmore, A. J., 2022.
1081 Evidence, causes, and consequences of declining nitrogen availability in terrestrial
1082 ecosystems. *Science* 376, 6590, eabh3767.

1083 Mekonnen, Z.A., Riley, W.J., Randerson, J.T., Grant, R.F., Rogers, B.M., 2019. Expansion of
1084 high-latitude deciduous forests driven by interactions between climate warming and fire.
1085 *Nature Plants* 5, 952-958.

1086 Melillo, J.M., Aber, J.D., Muratore, J.F., 1982. Nitrogen and lignin control of hardwood leaf litter
1087 decomposition dynamics. *Ecology* 63, 621-626.

1088 Meyerholt, J., Zaehle, S., Smith, M. J., 2016. Variability of projected terrestrial biosphere
1089 responses to elevated levels of atmospheric CO₂ due to uncertainty in biological
1090 nitrogen fixation. *Biogeosciences* 13, 5, 1491-1518. doi: 10.5194/bg-13-1491-2016.

1091 Midgley, M.G., Phillips, R.P., 2016. Resource stoichiometry and the biogeochemical
1092 consequences of nitrogen deposition in a mixed deciduous forest. *Ecology* 97, 3369–
1093 3377. doi:10.1002/ecy.1595

1094 Mikutta, R., Kaiser, K., Dorr, N., Vollmer, A., Chadwick, O.A., Chorover, J., Kramer, M.G.,
1095 Guggenberger, G., 2010. Mineralogical impact on organic nitrogen across a long-term
1096 soil chronosequence (0.3–4100 kyr). *Geochim Cosmochim Acta* 74, 2142–2164.
1097 <https://doi.org/10.1016/j.gca.2010.01.006>

1098 Mikutta, R., Turner, S., Schippers, A., Gentsc, N., Meyer, S., Condron, L.M., Peltzer, D.A.,
1099 Richardson, S.J., Eger, A., Hempel, G., Kaiser, K., Klotzbücher, T., Guggenberger, G.,
1100 2019. Microbial and abiotic controls on mineral-associated organic matter in soil profiles
1101 along an ecosystem gradient. *Scientific Reports* 9, 1-9.

1102 Moorhead, D.L., Callaghan, T., 1994. Effects of increasing ultraviolet B radiation on
1103 decomposition and soil organic matter dynamics: a synthesis and modelling study.
1104 *Biology and Fertility of Soils* 18, 19-26.

1105 Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S., Richter, A., 2014. Stoichiometric
1106 imbalances between terrestrial decomposer communities and their resources:
1107 Mechanisms and implications of microbial adaptations to their resources. *Frontiers in
1108 Microbiology* 5, 1–10. doi:10.3389/fmicb.2014.00022

1109
1110 Na, M., Yuan, M., Hicks, L.C., Rousk, J., 2022. Testing the environmental controls of microbial
1111 nitrogen-mining induced by semi-continuous labile carbon additions in the subarctic. *Soil
1112 Biology and Biochemistry* 166, 108562.

1113 Nasto, M.K., Winter, K., Turner, B.L., Cleveland, C.C., 2019. Nutrient acquisition strategies
1114 augment growth in tropical N₂-fixing trees in nutrient-poor soil and under elevated CO₂.
1115 *Ecology* 100, e02646.

1116 NEON (National Ecological Observatory Network). Litterfall and fine woody debris production
1117 and chemistry (DP1.10033.001), RELEASE-2023. <https://doi.org/10.48443/gf8z-q297>.
1118 Dataset accessed from <https://data.neonscience.org> on June 2, 2023.

1119 NEON (National Ecological Observatory Network). Root biomass and chemistry, periodic
1120 (DP1.10067.001), RELEASE-2023. <https://doi.org/10.48443/ecq2-af83>. Dataset
1121 accessed from <https://data.neonscience.org> on June 2, 2023.

1122 Ning, Q., Hättenschwiler, S., Lü, X., Kardol, P., Zhang, Y., Wei, C., Xu, C., Huang, J., Li, A.,
1123 Yang, J., 2021. Carbon limitation overrides acidification in mediating soil microbial
1124

1125 activity to nitrogen enrichment in a temperate grassland. *Global Change Biology* 27, 22,
1126 5976-5988.

1127 Norby, R. J., DeLucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford, J.,
1128 McCarthy, H.R., Moore, D.J.P., Ceulemans, R., De Angelis, P., Finzi, A.C., Karnosky,
1129 D.F., Kubiske, M.E., Lukac, M., Pregitzer, K.S., Scarascia-Mugnozza, G.E., Schlesinger,
1130 W.H., Oren, R., 2005. Forest response to elevated CO₂ is conserved across a broad
1131 range of productivity. *Proceedings of the National Academy of Sciences* 102, 50, 18052-
1132 18056.

1133 Novotny, A. M., Schade, J. D., Hobbie, S. E., Kay, A. D., Kyle, M., Reich, P. B., Elser, J. J.,
1134 2007. Stoichiometric response of nitrogen-fixing and non-fixing dicots to manipulations of
1135 CO₂, nitrogen, and diversity. *Oecologia* 151, 687-696.

1136 Pan, S., Wang, Y., Qiu, Y., Chen, D., Zhang, L., Ye, C., Guo, H., Zhu, W., Chen, A., Xu, G.,
1137 Zhang, Y., Bai, Y., Hu, S., 2020. Nitrogen-induced acidification, not N-nutrient,
1138 dominates suppressive N effects on arbuscular mycorrhizal fungi. *Global Change
1139 Biology* 26, 11, 6568-6580.

1140 Parton W. J., Ojima D. S., Cole C. V., and Schimel D. S., 1994. A general model for soil organic
1141 matter dynamics: Sensitivity to litter chemistry, texture and management. In *Quantitative
1142 Modeling of Soil Forming Processes*, SSSA Special Publication (eds. R. B.Bryant, and
1143 R. W. Arnold). SSSA, vol. 39, pp. 147-167.

1144 Parton W. J., Scurlock J. M. O., Ojima D. S., Gilmanov T. G., Scholes R. J., Schimel D. S.,
1145 Kirchner T., Menaut J. C., Seastedt T., Moya E. G., Kamalrut A., and Kinyamario J. I.,
1146 1993. Observations and modeling of biomass and soil organic matter dynamics for the
1147 grassland biome worldwide. *Global Biogeochemical Cycles* 7, 4, 785-809.

1148 Parton, W., Silver, W.L., Burke, I.C., Grassens, L., Harmon, M.E., Currie, W.S., King, J.Y.,
1149 Adair, E.C., Brandt, L.A., Hart, S.C., 2007. Global-scale similarities in nitrogen release
1150 patterns during long-term decomposition. *Science* 315, 361-364.

1151 Pellegrini, A.F., Ahlström, A., Hobbie, S.E., Reich, P.B., Nieradzik, L.P., Staver, A.C.,
1152 Scharenbroch, B.C., Jumpponen, A., Anderegg, W.R., Randerson, J.T., 2018. Fire
1153 frequency drives decadal changes in soil carbon and nitrogen and ecosystem
1154 productivity. *Nature* 553, 194-198.

1155 Peng, J., Wang, Y. P., Houlton, B. Z., Dan, L., Pak, B., Tang, X., 2020. Global Carbon
1156 Sequestration Is Highly Sensitive to Model-Based Formulations of Nitrogen Fixation.
1157 *Global Biogeochemical Cycles* 34, e2019GB006296,
1158 <https://doi.org/10.1029/2019GB006296>.

1159 Perveen, N., Barot, S., Alvarez, G., Klumpp, K., Martin, R., Rapaport, A., Herfurth, D., Louault,
1160 F., Fontaine, S., 2014. Priming effect and microbial diversity in ecosystem functioning
1161 and response to global change: a modeling approach using the SYMPHONY model.
1162 *Global Change Biology* 20, 1174-1190.

1163 Phillips, R.P., Finzi, A.C., Bernhardt, E.S., 2011. Enhanced root exudation induces microbial
1164 feedbacks to N cycling in a pine forest under long-term CO₂ fumigation. *Ecology Letters*
1165 14, 187-194.

1166 Phillips, R. P., Bernhardt, E. S., Schlesinger, W. H., 2009. Elevated CO₂ increases root
1167 exudation from loblolly pine (*Pinus taeda*) seedlings as an N-mediated response. *Tree
1168 Physiology* 29, 12, 1513-1523.

1169 Phillips, R.P., Brzostek, E., Midgley, M.G., 2013. The mycorrhizal-associated nutrient economy:
1170 A new framework for predicting carbon-nutrient couplings in temperate forests. *New
1171 Phytologist* 199, 1, 41-51. doi:10.1111/nph.12221

1172 Possinger, A.R., Zachman, M.J., Enders, A., Levin, B.D., Muller, D.A., Kourkoutis, L.F.,
1173 Lehmann, J., 2020. Organo-organic and organo-mineral interfaces in soil at the
1174 nanometer scale. *Nature Communications* 11, 1-11.

1175 Pold, G., Kwiatkowski, B.L., Rastetter, E.B., Sistla, S.A., 2022. Sporadic P limitation constrains
1176 microbial growth and facilitates SOM accumulation in the stoichiometrically coupled,
1177 acclimating microbe–plant–soil model. *Soil Biology and Biochemistry* 165, 108489.

1178 Reed, S. C., Cleveland, C. C., Townsend, A. R., 2011. Functional ecology of free-living nitrogen
1179 fixation: a contemporary perspective. *Annual Review of Ecology, Evolution, and*
1180 *Systematics* 42, 489–512.

1181 Rizzo, A., Boano, F., Revelli, R., Ridolfi, L., 2014. Decreasing of methanogenic activity in paddy
1182 fields via lowering ponding water temperature: A modeling investigation. *Soil Biology and*
1183 *Biochemistry* 75, 211–222. doi:10.1016/j.soilbio.2014.04.016

1184 Robertson, A.D., Paustian, K., Ogle, S., Wallenstein, M.D., Lugato, E., Cotrufo, M.F., 2019.
1185 Unifying soil organic matter formation and persistence frameworks: the MEMS model.
1186 *Biogeosciences* 16, 1225–1248.

1187 Rocci, K.S., Lavallee, J.M., Stewart, C.E., Cotrufo, M.F., 2021. Soil organic carbon response to
1188 global environmental change depends on its distribution between mineral-associated
1189 and particulate organic matter: A meta-analysis. *Science of the Total Environment* 793.

1190 Rocci, K.S., Barker, K.S., Seabloom, E.W., Borer, E.T., Hobbie, S.E., Bakker, J.D., MacDougall,
1191 A.S., McCulley, R.L., Moore, J.L., Raynaud, X., Stevens, C.J., Cotrufo, M.F., 2022.
1192 Impacts of nutrient addition on soil carbon and nitrogen stoichiometry and stability in
1193 globally-distributed grasslands. *Biogeochemistry* 159, 353–370.

1194 Sardans, J., Penuelas, J., 2012. The role of plants in the effects of global change on nutrient
1195 availability and stoichiometry in the plant-soil system. *Plant Physiology* 160, 1741–1761,
1196 doi:10.1104/pp.112.208785

1197 Schimel, J., 2001. 1.13 - Biogeochemical models: Implicit versus explicit microbiology. In E.-D.
1198 Schulze, M. Heimann, S. Harrison, E. Holland, J. Lloyd, I. C. Prentice & D. S. Schimel
1199 (Eds.), *Global biogeochemical cycles in the climate system* (pp. 177–183). San Diego,
1200 IL: Academic Press.

1201 Schimel, J., 2023. Modeling ecosystem-scale carbon dynamics in soil: The microbial dimension.
1202 *Soil Biology and Biochemistry* 108948.

1203 Schimel, J.P., Bennett, J., 2004. Nitrogen mineralization: Challenges of a changing paradigm.
1204 *Ecology* 85, 3, 591–602. doi:10.1890/03-8002

1205 Schlesinger, W.H., 2009. On the fate of anthropogenic nitrogen. *Proceedings of the National*
1206 *Academy of Sciences* 106, 203–208.

1207 Seabloom, E.W., Adler, P.B., Alberti, J., Bieder, L., Buckley, Y.M., Cadotte, M.W., Collins,
1208 S.L., Dee, L., Fay, P.A., Firn, J., 2021. Increasing effects of chronic nutrient enrichment
1209 on plant diversity loss and ecosystem productivity over time. *Ecology* 102, e03218.

1210 Segoli, M., De Gryze, S., Dou, F., Lee, J., Post, W.M., Denef, K., Six, J., 2013. AggModel: A soil
1211 organic matter model with measurable pools for use in incubation studies. *Ecological*
1212 *Modelling* 263, 1–9.

1213 Shi, M., Fisher, J.B., Brzostek, E.R. & Phillips, R.P., 2016. Carbon cost of plant nitrogen
1214 acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the
1215 *Community Land Model*. *Global Change Biology* 22, 1299–1314.

1216 Sistla, S.A., Rastetter, E.B., Schimel, J.P., 2014. Responses of a tundra system to warming
1217 using SCAMPS: a stoichiometrically coupled, acclimating microbe–plant–soil model.
1218 *Ecological Monographs* 84, 151–170.

1219 Six, J., Elliott, E.T., Paustian, K., 2000. Soil Macroaggregate Turnover and Microaggregate
1220 Formation: A Mechanism for C Sequestration under No-Tillage Agriculture. *Soil Biology*
1221 & *Biochemistry* 32, 14, 2099–2103. [https://doi.org/10.1016/s0038-0717\(00\)00179-6](https://doi.org/10.1016/s0038-0717(00)00179-6).

1222 Six, J., Frey, S.D., Thiet, R.K., Batten, K.M., 2006. Bacterial and fungal contributions to carbon
1223 sequestration in agroecosystems. *Soil Science Society of America Journal* 70, 555–569.

1224 Song, X., Liu, X., Liang, G., Li, S., Li, J., Zhang, M., Zheng, F., Ding, W., Wu, X., Wu, H., 2022.
1225 Positive priming effect explained by microbial nitrogen mining and stoichiometric
1226 decomposition at different stages. *Soil Biology and Biochemistry*, 108852.

1227 Souza, L.F., Billings, S.A., 2021. Temperature and pH mediate stoichiometric constraints of
1228 organically derived soil nutrients. *Global Change Biology* 28, 4, 1630-1642.

1229 Spohn, M., 2020. Phosphorus and carbon in soil particle size fractions: A synthesis.
1230 *Biogeochemistry* 147, 225-242.

1231 Spohn, M., Schleuss, P.-M., 2019. Addition of inorganic phosphorus to soil leads to desorption
1232 of organic compounds and thus to increased soil respiration. *Soil Biology and*
1233 *Biochemistry* 130, 220-226.

1234 Sulman, B.N., Brzostek, E.R., Medici, C., Sheviakova, E., Menge, D.N.L., Phillips, R.P., 2017.
1235 Feedbacks between plant N demand and rhizosphere priming depend on type of
1236 mycorrhizal association. *Ecology Letters* 20, 1043–1053. doi:10.1111/ele.12802

1237 Sulman, B.N., Phillips, R.P., Oishi, A.C., Sheviakova, E., Pacala, S.W., 2014. Microbe-driven
1238 turnover offsets mineral-mediated storage of soil carbon under elevated CO₂. *Nature*
1239 *Climate Change* 4, 1099-1102.

1240 Sulman, B.N., Sheviakova, E., Brzostek, E.R., Kivlin, S.N., Malyshev, S., Menge, D.N.L.,
1241 Zhang, X., 2019. Diverse Mycorrhizal Associations Enhance Terrestrial C Storage in a
1242 Global Model. *Global Biogeochemical Cycles* 33, 501–523. doi:10.1029/2018GB005973

1243 Sulman, B.N., Moore, J.A.M., Abramoff, R., Averill, C., Kivlin, S.N., Georgiou, K., Sridhar, B.,
1244 Hartman, M.D., Wang, G., Wieder, W., Bradford, M.A., Luo, Y., Mayes, M.A., Morrison,
1245 E.W., Riley, W., Salazar, A., Schimel, J.P., Tang, J., Classen, A.T., 2018. Multiple
1246 models and experiments underscore large uncertainty in soil carbon dynamics.
1247 *Biogeochemistry Letters* 141, 109-123.

1248 Sun, Y., Wang, C., Chen, H. Y. H., Luo, X., Qiu, N., & Ruan, H., 2021. Asymmetric responses of
1249 terrestrial C:N:P stoichiometry to precipitation change. *Global Ecology and*
1250 *Biogeography* 30, 8, 1724–1735. <https://doi.org/10.1111/geb.13343>

1251 Sun, Y., Wang, C., Yang, J., Liao, J., Chen, H.Y., Ruan, H., 2021. Elevated CO₂ shifts soil
1252 microbial communities from K-to r-strategists. *Global Ecology and Biogeography* 30,
1253 961-972.

1254 Sun, Y., Wang, C., Chen, H.Y., Ruan, H., 2020. Responses of C:N stoichiometry in plants, soil,
1255 and microorganisms to nitrogen addition. *Plant and Soil* 456, 277-287.

1256 Tedersoo, L., Bahram, M., 2019. Mycorrhizal types differ in ecophysiology and alter plant
1257 nutrition and soil processes. *Biological Reviews* 94, 1857-1880. doi:10.1111/brv.12538

1258 Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., van
1259 Groenigen, K. J., Keenan, T. F., Sulman, B. N., Stocker, B. D., Reich, P. B., Pellegrini,
1260 A. F. A., Pendall, E., Zhang, H., Evans, R. D., Carrillo, Y., Fisher, J. B., Van Sundert, K.,
1261 Vicca, S., Jackson, R. B., 2021. A trade-off between plant and soil carbon storage under
1262 elevated CO₂. *Nature* 591, 7851, 599-603. doi: 10.1038/s41586-021-03306-8.

1263 Terrer, C., Vicca, S., Hungate, B.A., Phillips, R.P., Prentice, I.C., 2016. Mycorrhizal association
1264 as a primary control of the CO₂ fertilization effect. *Science* 353, 72–74.
1265 doi:10.1126/science.aaf4610

1266 Terrer, C., Vicca, S., Stocker, B.D., Hungate, B.A., Phillips, R.P., Reich, P.B., Finzi, A.C.,
1267 Prentice, I.C., 2018. Ecosystem responses to elevated CO₂ governed by plant–soil
1268 interactions and the cost of nitrogen acquisition. *New Phytologist* 217, 507-522.

1269 Thomas, R.Q., Brookshire, E.N.J., Gerber, S., 2015. Nitrogen limitation on land: How can it
1270 occur in Earth system models? *Global Change Biology* 21, 1777–1793.
1271 doi:10.1111/gcb.12813

1272 Thornton P.E., Rosenbloom N.A., 2005. Ecosystem model spin-up: estimating steady state
1273 conditions in a coupled terrestrial carbon and nitrogen cycle model. *Ecological Modelling*
1274 189, 25–48.

1275 Throop, H.L., Holland, E.A., Parton, W.J., Ojima, D.S., Keough, C.A., 2004. Effects of nitrogen
1276 deposition and insect herbivory on patterns of ecosystem-level carbon and nitrogen
1277 dynamics: results from the CENTURY model. *Global Change Biology* 10, 1092-1105.

1278 Tipping, E., Somerville, C.J., Luster, J., 2016. The C: N: P: S stoichiometry of soil organic
1279 matter. *Biogeochemistry* 130, 117-131.

1280 Townsend, A.R., Cleveland, C.C., Houlton, B.Z., Alden, C.B., White, J.W., 2011. Multi-element
1281 regulation of the tropical forest carbon cycle. *Frontiers in Ecology and the Environment*
1282 9, 9-17.

1283 Treseder, K.K., Vitousek, P.M., 2001. Effects of soil nutrient availability on investment in
1284 acquisition of N and P in Hawaiian rain forests. *Ecology* 82, 946-954.

1285 Vitousek, P. M., Walker, L. R. 1989. Biological invasion by *Myrica faya* in Hawai'i: plant
1286 demography, nitrogen fixation, ecosystem effects. *Ecological Monographs* 59, 3, 247-
1287 265.

1288 Vitousek, P. M., Walker, L. R., Whiteaker, L. D., Mueller-Dombois, D., Matson, P. A., 1987.
1289 Biological invasion by *Myrica faya* alters ecosystem development in Hawaii. *Science*
1290 238, 4828, 802-804.

1291 Vitousek, P.M., Menge, D.N.L., Reed, S.C., Cleveland, C.C., 2013. Biological nitrogen fixation:
1292 rates, patterns and ecological controls in terrestrial ecosystems. *Philosophical
1293 Transactions of the Royal Society B: Biological Sciences* 368, 1-9.

1294 von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E.,
1295 Marschner, B., 2007. SOM fractionation methods: relevance to functional pools and to
1296 stabilization mechanisms. *Soil Biology and Biochemistry* 39, 2183-2207.

1297 Wang, C., Sun, Y., Chen, H. Y. H., Ruan, H., 2021. Effects of elevated CO₂ on the C:N
1298 stoichiometry of plants, soils, and microorganisms in terrestrial ecosystems. *Catena* 201.
1299 doi:10.1016/j.catena.2021.105219.

1300 Wang, G., Gao, Q., Yang, Y., Hobbie, S.E., Reich, P.B., Zhou, J., 2022. Soil enzymes as
1301 indicators of soil function: A step toward greater realism in microbial ecological modeling.
1302 *Global Change Biology* 28, 1935-1950.

1303 Wang, Y. P., Law, R. M., Pak, B., 2010. A global model of carbon, nitrogen and phosphorus
1304 cycles for the terrestrial biosphere. *Biogeosciences* 7, 2261-2282.
1305 https://doi.org/10.5194/bg-7-2261-2010

1306 Weedon, J.T., Cornwell, W.K., Cornelissen, J.H., Zanne, A.E., Wirth, C., Coomes, D.A., 2009.
1307 Global meta-analysis of wood decomposition rates: a role for trait variation among tree
1308 species? *Ecology Letters* 12, 45-56.

1309 Wieder, W.R., Cleveland, C.C., Townsend, A.R., 2009. Controls over leaf litter decomposition in
1310 wet tropical forests. *Ecology* 90, 3333-3341

1311 Wieder, W., Grandy, A., Kallenbach, C., Bonan, G., 2014. Integrating microbial physiology and
1312 physio-chemical principles in soils with the Microbial-MIneral Carbon Stabilization
1313 (MIMICS) model. *Biogeosciences* 11, 3899-3917.

1314 Wieder, W.R., Cleveland, C.C., Lawrence, D.M., Bonan, G.B., 2015. Effects of model structural
1315 uncertainty on carbon cycle projections: biological nitrogen fixation as a case study.
1316 *Environmental Research Letters* 10, 044016.

1317 Wieder, W.R., Pierson, D., Earl, S., Lajtha, K., Baer, S.G., Ballantyne, F., Berhe, A.A., Billings,
1318 S.A., Brigham, L.M., Chacon, S.S., 2021. SoDaH: the SOils DAta Harmonization
1319 database, an open-source synthesis of soil data from research networks, version 1.0.
1320 *Earth System Science Data* 13, 1843-1854.

1321 Wieder, W.R., Sulman, B.N., Hartman, M.D., Koven, C.D., Bradford, M.A., 2019a. Arctic soil
1322 governs whether climate change drives global losses or gains in soil carbon.
1323 *Geophysical Research Letters* 46, 14486-14495.

1324 Wieder, W. R., Lawrence, D.M., Fisher, R.A., Bonan, G.B., Cheng, S.J., Goodale, C.L., Grandy,
1325 A.S., Koven, C.D., Lombardozzi, D.L., Oleson, K.W., Thomas, R.Q., 2019b. Beyond

1326 Static Benchmarking: Using Experimental Manipulations to Evaluate Land Model
 1327 Assumptions. *Global Biogeochemical Cycles* 33, 1289-1309,
 1328 doi:10.1029/2018GB006141.

1329 Wieder, W.R., Hartman, M.D., Sulman, B.N., Wang, Y.P., Koven, C.D., Bonan, G.B., 2018.
 1330 Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical
 1331 models. *Global Change Biology* 24, 1563-157

1332 Wookey, P.A., Aerts, R., Bardgett, R.D., Baptist, F., Bråthen, K.A., Cornelissen, J.H., Gough, L.,
 1333 Hartley, I.P., Hopkins, D.W., Lavorel, S. and Shaver, G.R., 2009. Ecosystem feedbacks
 1334 and cascade processes: understanding their role in the responses of Arctic and alpine
 1335 ecosystems to environmental change. *Global Change Biology* 15, 1153-1172.
 1336 doi.org/10.1111/j.1365-2486.2008.01801.x

1337 Xu, X.F., Thornton, P.E., Post, W.M., 2013. A global analysis of soil microbial biomass carbon,
 1338 nitrogen and phosphorus in terrestrial ecosystems. *Global Ecology and Biogeography*
 1339 22, 737-749.

1340 Yang, Y., Luo, Y., Lu, M., Schädel, C., Han, W., 2011. Terrestrial C: N stoichiometry in response
 1341 to elevated CO₂ and N addition: a synthesis of two meta-analyses. *Plant and Soil* 343,
 1342 393-400.

1343 Yang, X., Thornton, P., Ricciuto, D., Post, W., 2014. The role of phosphorus dynamics in
 1344 tropical forests—a modeling study using CLM-CNP. *Biogeosciences* 11, 1667-1681.

1345 Yu, W.H., Li, N., Tong, D.S., Zhou, C.H., Lin, C.X., Xu, C.Y., 2013. Adsorption of proteins and
 1346 nucleic acids on clay minerals and their interactions: a review. *Appl Clay Sci* 80-81:443-
 1347 452. https://doi.org/10.1016/j.clay.2013.06.003.

1348 Yue, K., Fornara, D.A., Yang, W., Peng, Y., Li, Z., Wu, F., Peng, C., 2017. Effects of three
 1349 global change drivers on terrestrial C: N: P stoichiometry: a global synthesis. *Global
 1350 Change Biology* 23, 2450-2463.

1351 Zaehle, S., Medlyn, B. E., De Kauwe, M. G., Walker, A. P., Dietze, M. C., Hickler, T., Luo, Y.,
 1352 Wang, Y.-P., El-Masri, B., Thornton, P., Jain, A., Wang, S., Warlind, D., Weng, E.,
 1353 Parton, W., Iversen, C. M., Gallet-Budynek, A., McCarthy, H., Finzi, A., Hanson, P. J.,
 1354 Prentice, I. C., Oren, R., Norby, R. J. 2014. Evaluation of 11 terrestrial carbon–nitrogen
 1355 cycle models against observations from two temperate Free-Air CO₂ Enrichment
 1356 studies. *New Phytologist* 202, 3, 803-822. doi: 10.1111/nph.12697.

1357 Zhang, J., Elser, J.J., 2017. Carbon: nitrogen: phosphorus stoichiometry in fungi: a meta-
 1358 analysis. *Frontiers in Microbiology* 8, 1281.

1359 Zhang, T.A., Chen, H.Y., Ruan, H., 2018. Global negative effects of nitrogen deposition on soil
 1360 microbes. *The ISME journal* 12, 1817.

1361 Zhang, Y., Lavallee, J.M., Robertson, A.D., Even, R., Ogle, S.M., Paustian, K., Cotrufo, M.F.,
 1362 2021. Simulating measurable ecosystem carbon and nitrogen dynamics with the
 1363 mechanistically defined MEMS 2.0 model. *Biogeosciences* 18, 3147-3171.

1364 Zhao, Q., Callister, S.J., Thompson, A.M., Kukkadapu, R.K., Tfaily, M.M., Bramer, L.M., Qafoku,
 1365 N.P., Bell, S.L., Hobbie, S.E., Seabloom, E.W., 2020. Strong mineralogic control of soil
 1366 organic matter composition in response to nutrient addition across diverse grassland
 1367 sites. *Science of the Total Environment* 736, 137839.

1368 Zimmermann, M., Leifeld, J., Schmidt, M., Smith, P., Fuhrer, J., 2007. Measured soil organic
 1369 matter fractions can be related to pools in the RothC model. *European Journal of Soil
 1370 Science* 58, 658-667.

1371 Zou, J., Zhang, W., Zhang, Y., Wu, J., 2023. Global patterns of plant and microbial biomass in
 1372 response to CO₂ fumigation. *Frontiers in Microbiology* 14, 1175854.

1373