
Journal: Soil Biology and Biochemistry 1 
Special Issue: Advances in Modelling Soil Microbial Dynamics 2 

 3 

Aligning theoretical and empirical representations of soil carbon-to-nitrogen 4 

stoichiometry with process-based terrestrial biogeochemistry models 5 
Katherine S. Rocci1, 2, Cory C. Cleveland3, Brooke A. Eastman4, Katerina Georgiou5, A. Stuart Grandy6, 7, 6 
Melannie D. Hartman8, Emma Hauser3, Hannah Holland-Moritz6, 7, Emily Kyker-Snowman9, Derek 7 
Pierson10, Peter B. Reich2, 11, Else P. Schlerman6, 7, William R. Wieder1, 12 8 
 9 
1Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO;  2Institute for Global Change 10 
Biology, University of Michigan, Ann Arbor, MI; 3Department of Ecosystem and Conservation Sciences, 11 
W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT; 4Department of 12 
Biology, West Virginia University, Morgantown, WV; 5Physical and Life Sciences Directorate, Lawrence 13 
Livermore National Laboratory, Livermore, CA; 6Department of Natural Resources and the Environment, 14 
University of New Hampshire, Durham, NH; 7Center of Soil Biogeochemistry and Microbial Ecology 15 
(Soil BioME), University of New Hampshire, Durham NH; 8Natural Resource Ecology Laboratory, 16 
Colorado State University, Fort Collins, CO; 9Carbon Direct, New York, NY; 10Rocky Mountain Research 17 
Station, United States Forest Service, Boise, ID; 11Department of Forest Resources, University of 18 
Minnesota, St. Paul, MN; 12Climate and Global Dynamics Laboratory, National Center for Atmospheric 19 
Research, Boulder, CO 20 

Abstract 21 

 Soil carbon-nitrogen (C:N) stoichiometry acts as a control over decomposition and soil 22 

organic matter formation and loss, making it a key soil property for understanding ecosystem 23 

dynamics and projected ecosystems responses to global environmental change. However, the 24 

controls of soil C:N and how they respond to increasing pressures from global change agents 25 

are not fully understood. The “foundational” controls on soil C:N, namely plant and microbial 26 

C:N, have been used to predict soil C:N, but fail to accurately simulate all ecosystems and may 27 

be insufficient for predictions under global environmental change. We present an “emerging” 28 

representation of controls of soil C:N that includes plant-microbe-mineral feedbacks that have 29 

been shown to regulate soil C:N. We argue that including representation of these emerging 30 

drivers in process-based terrestrial biogeochemistry models, which include biological N fixation, 31 

mycorrhizae, priming, root exudation of organic acids, and mineralogy (including soil texture, 32 

mineral composition, and aggregation), will improve mechanistic representation of soil C:N and 33 
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associated processes. Such improvements will produce models that will better simulate a 34 

variety of ecological states and predict soil C:N when global changes modify plant-microbe-35 

mineral interactions. Here, we align our empirical understanding of controls of soil C:N with 36 

those controls represented in models, identifying contexts where emerging drivers might be 37 

particularly important to represent (e.g., priming and root exudation in nutrient-limited 38 

conditions) and areas of future work.  Additionally, we show that implementing emerging drivers 39 

of soil C:N results in different simulated outcomes at steady state and in response to elevated 40 

atmospheric CO2. Our review and preliminary simulations support the need to incorporate 41 

emerging drivers of soil C:N into process-based terrestrial biogeochemistry models, allowing for 42 

both theoretical exploration of mechanisms and potentially more accurate predictions of land 43 

biogeochemical responses to global change. 44 

1. Introduction 45 

Ecological stoichiometry, the study of the interactions of elements in ecological systems, 46 

is an organizing principle in ecology that provides a theoretical framework to explore how 47 

elements regulate plant growth, decomposition rates, and nutrient cycling at multiple scales 48 

(Elser et al. 2000). In soil, carbon-to-nitrogen (C:N) stoichiometry could be seen as a master 49 

variable that governs the flows of C and N between plants, microbes, and soils. Changes in soil 50 

C:N also reflect changes in soil C and N storage, which modify carbon cycle-climate feedbacks 51 

and nutrient limitation of plant growth, respectively. Further, soil C:N can be indicative of 52 

mechanistic changes in the system and represents the N requirement of C storage, important 53 

for land management aiming to increase soil C storage (Buchkowski et al. 2019, Cotrufo et al. 54 

2019). Indeed, as our understanding of soil organic matter (SOM) dynamics advances, the role 55 

of soil stoichiometry remains an important aspect of ecosystem biogeochemistry (Buchkowski et 56 

al. 2019). Despite this central role and advancing knowledge, the controls of SOM C:N 57 



stoichiometry in process-based models of terrestrial biogeochemistry (“models'' hereafter; 58 

Supplementary Table 1)—which both emerge from and are informed by measurements and 59 

theory (Blankinship et al. 2018)—have remained largely stagnant and mostly consist of the C:N 60 

ratios of plant and microbial inputs. However, numerous recent studies have identified additional 61 

plant, microbial, and physico-chemical controls of SOM C:N stoichiometry that are largely 62 

missing from model formulations (e.g., Cotrufo et al. 2019, Possinger et al. 2020, Song et al. 63 

2022; Amorim et al. 2022). These missing controls likely underlie global patterns in soil C:N and 64 

may be particularly important under global change scenarios where climate change, elevated 65 

CO2, and N enrichment (from fertilization or atmospheric deposition) may alter the availability of 66 

and demand for N (Terrer et al. 2016, Souza et al. 2021). The goal of this perspective is to 67 

evaluate controls of soil C:N with a focus on gaps in both our theoretical understanding and 68 

model formulations. We first describe the foundational representation of soil C:N controls 69 

currently present in most models. Then, we describe an emerging representation of soil C:N 70 

controls, derived from empirical work that is informing a more complete and nuanced theoretical 71 

understanding, with the ultimate goal of aligning this representation with formulations in models. 72 

Finally, we explore how implementing the emerging representation of soil C:N controls could 73 

influence predictions of soil C and N cycling under global change. 74 

2. Foundational Representation of Soil C:N 75 

2.1 Conceptual understanding of soil carbon-to-nitrogen stoichiometry 76 

The influence of plant C:N on soil processes has been recognized for at least forty 77 

years, when lower C:N plant material was found to decompose more quickly than higher C:N 78 

plant material (Melillo et al. 1982, Enriquez et al. 1993). Faster decomposition of lower C:N plant 79 

material occurs, in part, because it is better aligned with the relatively lower and more strongly 80 

constrained C:N ratio of the microbes that decompose it (plant C:N = 9-1160; microbial biomass 81 



C:N = 1-86; Figure 1; Cleveland and Liptzin, 2007). The relative stoichiometric homeostasis of 82 

the soil microbial biomass C:N thus drives soil C and N recycling, where microbes mineralize 83 

excess C or N not used to build their biomass to CO2 and ammonium, respectively. This 84 

process, termed consumer-driven nutrient recycling (Elser and Urabe, 1999), converts relatively 85 

high and variable plant C:N to relatively low and less variable C:N during microbial 86 

decomposition (Tipping et al. 2016). Indeed across multiple ecosystems and data sources we 87 

see a consistent decrease in the C:N stoichiometry of different ecosystem components as highly 88 

variable plant inputs pass through a more stoichiometrically constrained microbial filter to 89 

generate SOM (Figure 1). Previously, SOM was thought to largely consist of variably 90 

decomposed plant material, but it is now largely accepted that SOM also includes microbial 91 

materials that persist due to their physical or chemical inaccessibility to further decomposition 92 

(Cotrufo et al. 2013, Lehmann & Kleber, 2015, Kallenbach et al. 2016). Thus, the stoichiometry 93 

of bulk SOM reflects contributions of both higher C:N plant material and lower C:N microbial 94 

biomass and by-products. The stoichiometry of bulk SOM also depends on the relative 95 

contribution of different SOM fractions (Buchkowski et al. 2019). The relatively low C:N of stable 96 

SOM pools (e.g., mineral-associated organic matter or MAOM) results from the greater 97 

contribution of microbial material (von Lutzow et al. 2007), whereas the higher C:N of particulate 98 

organic matter (POM) is due to greater contributions of structural plant material (von Lutzow et 99 

al. 2007, Haddix et al. 2016; Figure 1a). This theoretical understanding informed a “foundational 100 

representation” of soil stoichiometry that guides conceptual models, where plant C:N drives 101 

SOM C:N variability and nutrient recycling, while microbial C:N constrains it. (Figure 2a). 102 

Additionally, environmental variables like temperature, moisture, and nutrient availability that 103 

control rates of microbial decomposition impact the balance between plant and microbial 104 

contributions to SOM C:N (Wieder et al. 2009), suggesting that changes to climate, nutrient 105 

pollution (e.g., N deposition), and environmental conditions may change the controls of soil C:N 106 

in the future. 107 



     108 

 109 
Figure 1. (a) Empirically derived C:N ratios of different ecosystem components showing a narrowing of 110 
C:N ratios along the plant-microbe-soil continuum. Filled circles depict arithmetic means and small points 111 
arrayed as histograms depict individual observations. Data sources: coarse woody debris (Weedon et al., 112 
2009); leaves (Dynarski et al., 2023); fresh litter and standing roots (NEON, 2023); fungal biomass 113 
(Zhang & Elser, 2017); microbial biomass (Xu et al., 2013); organic and mineral soil (Tipping et al., 2016); 114 
MAOM and POM (MAOM = mineral-associated organic matter; POM = particulate organic matter; 115 
Georgiou et al, 2022a). B) Conceptual depiction of the foundational representation of the decomposition 116 
process (funnel) that transforms relatively high plant C:N to relatively lower soil C:N, due to contribution of 117 
both plant and microbial materials to bulk SOM, with expected changes in the C:N ratio during this 118 
process. Earth with global change processes at bottom depicts uncertainty in the ability of the drivers 119 
above to simulate soil C:N under novel environmental conditions and thus the need to incorporate 120 
additional drivers of soil C:N beyond plant and microbe C:N. 121 
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 123 
Figure 2. Conceptual illustration showing foundational and emerging representations of the controls on 124 
C:N stoichiometry. (a) In the foundational representation, relatively high C:N plant material (green) 125 
combines with relatively low C:N microbial inputs (blue) to create the distribution of soil C:N values. 126 
Because plants have a wider range of C:N than microbes, plant C:N drives wider variation in soil C:N 127 
while microbial contributions constrain soil C:N, hence the right-skew of the histogram depicting soil C:N 128 
variation. In the foundational representation, this plant-centric focus is depicted as a “top-down” view of 129 
the soil C:N. (b) In the emerging representation, additional drivers of soil C:N that are typically absent 130 
from foundational representation of soil C:N are depicted (circular vignettes). Additional factors that may 131 
influence soil C:N can be broadly grouped into plant and microbe feedbacks and soil physico-chemical 132 
effects, and include the specific drivers of biological nitrogen fixation, mycorrhizae, priming, root 133 
exudates, and mineralogy (including soil texture, mineral composition, and aggregation). These drivers 134 
act through a diversity of mechanisms and thus can differentially influence C:N in ways that may be 135 
unrelated to initial plant C:N. This potential for variation in soil C:N due to the emerging drivers is depicted 136 
as shifts in the soil C:N histogram. In the emerging representation, this focus on processes occurring in 137 
the soil is depicted with a “bottom-up” view that emphasizes plant-microbe-mineral interactions. 138 

 139 
2.2 Implementation of foundational representation in models 140 

Most current ecosystem biogeochemistry models (e.g. DayCent, PnET, or TEM) and 141 

land models that are used for global-scale projections (e.g. CLM, JSBACH, or LPJ-Guess; 142 

Davies-Barnard et al. 2020, Kou-Giesbrecht et al. 2023) are structured and parameterized with 143 

the foundational representation of soil C:N (Supplementary Table 1). Under these assumptions, 144 

simulated rates of soil C and N cycling reflect formulations of pool-specific turnover times, donor 145 



and receiver pool stoichiometry, and C use efficiency (CUE, which determines the fraction of 146 

heterotrophic respiration; Parton et al. 1993, Parton et al. 1994, Thornton and Rosenbloom, 147 

2005). Nitrogen mineralization versus immobilization occurs to balance donor pool transfers of 148 

C and N with receiver pool stoichiometry. Generally, these models implicitly represent microbial 149 

activity (Schimel 2001), using environmentally sensitive first-order kinetics to define the turnover 150 

of litter and soil organic matter pools. The microbially-implicit modeling approach typically 151 

simulates down-regulation of decomposition rates when inorganic N availability is limiting, which 152 

generally occurs during transfers of material from high C:N litter to low C:N soil organic matter 153 

pools (Lee et al. 1992, Metherell et al. 1993, Parton et al. 1993, Bonan et al. 2013, Thomas et 154 

al. 2015). By contrast, models that explicitly represent microbial activity do not by default exhibit 155 

down-regulation of decomposition rates because of N limitation. For example, Kyker-Snowman 156 

et al. (2020) included overflow respiration of donor-pool C when N availability fails to meet the 157 

stoichiometric demands of decomposer biomass. This approach also eliminates the need to 158 

directly parameterize soil stoichiometry. Instead, soil C:N emerges from the relative contribution 159 

of microbial by-products (with a lower C:N ratio and narrower range) and plant detritus that 160 

bypasses the microbial filter and enters different SOM pools (Sulman et al. 2017, Zhang et al. 161 

2021, Eastman et al. 2023). This is exemplified in the microbially-explicit model MIMICS-CN, 162 

where soil C:N is strongly influenced by plant input chemistry and which we use in case studies 163 

throughout this paper (Figure 3). Despite differences in how soil C:N is determined in 164 

microbially-implicit vs -explicit approaches, both approaches rely on the foundational 165 

representation of soil C:N. 166 



 167 

      168 
Figure 3. (a) Wiring diagram for MIMICS-CN model, which we use in case studies throughout this paper. 169 
Briefly, litter inputs (I) are split into metabolic and structural pools (LITm and LITs) which are decomposed 170 
by microbial communities having copiotrophic and oligotrophic growth strategies (MICr and MICK, 171 
respectively), where both litter (fi) and microbial turnover (T) can contribute to the physicochemically 172 
stabilized and chemically stabilized soil organic matter pools (SOMp and SOMc, respectively), and SOMp 173 
and SOMc contribute to an available SOM pool (SOMa) that can be accessed by microbes. Detailed 174 
description of the model can be found in Kyker-Snowman et al. (2020) building upon Wieder et al. (2014). 175 
(b) MIMICS-CN simulations of bulk soil C:N in a hypothetical temperate deciduous forest where only the 176 
chemical quality (defined as the C:N ratio and lignin content) of litterfall inputs to surface soils are 177 
modified.  178 
      179 
 180 



Model formulations that implement the foundational representation do represent           181 

dynamic flows of C and N during field decomposition, but falter in certain ecosystems (i.e. 182 

tundra and arid grasslands) and generally underestimate variation in soil C:N (Parton et al. 183 

2007, Bonan et al. 2013, Kyker-Snowman et al. 2020, Juice et al. in review). The accuracy and 184 

reliability of these models are insufficient for simulating the full spectrum of ecosystems and 185 

may falter under novel environmental conditions (e.g., global environmental change; Figure 1b, 186 

bottom; Wieder et al. 2019). For example, recent research shows that interactions between 187 

plants, microbes, and the soil matrix strongly regulate soil C and N cycling, and consequently 188 

SOM C:N stoichiometry (e.g., Keiluweit et al. 2015, Jilling et al. 2018, Possinger et al. 2020, 189 

Daly et al. 2021, Terrer et al. 2021). Representing these mechanisms is paramount for 190 

improving mechanistic representation of soil C:N and predicting changes in soil C:N under 191 

global change. 192 

3. Emerging representation of soil C:N 193 

The empirical evidence of important drivers beyond plant and microbe C:N that shape 194 

soil C:N ratios informs an “emerging representation” of the controls of soil C:N variation (Figure 195 

2b). We use the word “emerging” to explicitly acknowledge that many of the processes we 196 

describe below are already recognized as important for soil C:N in some subfields of soil 197 

science and represented in some models. However, we aim to clarify the importance of and 198 

collate these “emerging drivers” so that they can be aligned with model assumptions. We group 199 

these emerging drivers into plant and microbe feedbacks and soil physico-chemical effects that 200 

are absent from the foundational representation of soil C:N. The foundational representation 201 

considers plants and microbes as drivers of variability in soil C:N, and does not consider how 202 

soil C:N might feed back on the quantity and quality of plant inputs and subsequent microbial 203 

activity nor how minerals could act as a filter on soil C:N stoichiometry. Plant, microbial, and soil 204 



physico-chemical drivers have the potential, at least in certain circumstances, to improve the 205 

mechanistic representations of modeled soil C:N, even if they do not alter predictions of spatial 206 

variation in soil C:N. We review the empirical evidence for the importance of these emerging 207 

drivers and whether they align with assumptions in models. We focus on drivers that are 208 

evidenced as empirically important because adding additional processes to models can require 209 

additional input data, parameter optimization, and computational costs. Thus, there must be 210 

careful consideration of the balance between model complexity and realism when adding 211 

additional processes to models. We note that no one model is likely able to represent all of the 212 

processes we discuss below, but that representing the emerging drivers in some models will 213 

allow for research questions better tailored to systems where a given driver is particularly 214 

important. 215 

3.1 Plant and microbe feedbacks 216 

3.1.1 Biological Nitrogen Fixation 217 

Biological N fixation represents a process that could influence soil C:N in ways not 218 

captured in the foundational representation of soil C:N controls. N fixation occurs through two 219 

general pathways: as plant symbiotic N fixation, where N is fixed for direct plant use via a 220 

symbiotic relationship with root-nodulating bacteria, and as “free-living” N fixation, where N is 221 

fixed by both autotrophic and heterotrophic bacteria that occupy a diversity of non-vascular plant 222 

niches (e.g., soil, leaf litter, wood, etc.; Vitousek et al. 2013, Cleveland et al. 2022). Both forms 223 

contribute new N inputs that enhance relative plant and soil N content, and thus may be 224 

hypothesized to reduce soil C:N (Vitousek et al. 1987, Vitousek and Walker, 1989, Adams et al. 225 

2016, Gou et al. 2023). However, experimental and empirical studies have shown that invasion 226 



and/or introduction of N-fixing plants can have positive, negative, or neutral effects on soil C:N 227 

(Johnson and Curtis, 2001, Liao et al. 2008). 228 

Although N fixation has been implemented in many models, it is commonly simulated 229 

using phenomenological relationships between empirically derived N fixation rates and net 230 

primary production or evapotranspiration (Wieder et al. 2015, Meyerholt et al. 2016). Symbiotic 231 

N fixation (alone) is most often included in models as an addition of N to the plant pool. By 232 

contrast, when free-living N fixation is included in models, it is often represented as an addition 233 

of N to the mineral N pool (Metherell et al. 1993, Reed et al. 2011, Hartman et al. 2018, 234 

Lawrence et al. 2019). These formulations of N fixation could promote increased microbial 235 

activity and subsequent input to SOM pools when microbial growth is associated with increased 236 

labile plant material and reduced microbial N limitation, such as in CORPSE-FUN, thereby 237 

reducing SOM C:N (Sulman et al. 2017).  238 

More mechanistic implementations of N fixation could more accurately simulate how N 239 

fixation shapes SOM C:N stoichiometry. Potential model improvements include representations 240 

of non-symbiotic, rather than solely symbiotic, N inputs, N fixation inputs based on both C 241 

supply and N demand (rather than one or the other), and benchmarking against new and 242 

emerging empirical estimates of global N fixation (Vitousek et al. 2013, Davies-Barnard and 243 

Friedlingstein, 2020). Improved model representations of N fixation would further advance 244 

models that simulate N fixation using a resource optimization strategy, which are currently the 245 

most advanced representations of N fixation (e.g., GFDL-LM3-BNF, CLM5, and CABLE; Fisher 246 

et al. 2010, Shi et al. 2016, Lawrence et al. 2019, Peng et al. 2020, Kou-Giesbrecht et al. 2021). 247 

Given that increasing atmospheric CO2 concentrations are hypothesized to favor N fixation over 248 

much of the world (Novotny et al. 2007, Hungate et al. 2009, Nasto et al. 2019), improved 249 

representations of N fixation in models may be critical for accurately simulating soil C:N under 250 

global change. 251 



3.1.2 Mycorrhizae 252 

Mycorrhizal type and associated plant traits influence soil C:N stoichiometry and nutrient 253 

cycling through differences in their nutrient acquisition strategies. Ericoid- and ectomycorrhizal- 254 

(ECM) dominated ecosystems typically have higher litter and soil C:N ratios and slower rates of 255 

nutrient cycling compared to arbuscular mycorrhizal- (AM) dominated ecosystems (Phillips et al. 256 

2013, Averill et al. 2014). The direct connections between plant litter quality and soil 257 

stoichiometry are captured by the plant-to-soil pathway in the foundational representation of soil 258 

C:N. However, mycorrhizae allow for a two-way relationship between plants and soil. As 259 

mycorrhizae receive C from plant roots, they can either produce enzymes to mine nutrients from 260 

SOM (ECM) or expand their hyphal network to more efficiently exploit soil inorganic N (AM; 261 

Brzostek et al. 2013, Midgley et al. 2016, Tedersoo and Bahram, 2019). Strategies related to 262 

these different nutrient economies may be particularly important for biogeochemistry in forest 263 

ecosystems, which can vary in the relative abundance of mycorrhizal types, and in ecosystems 264 

experiencing shifts in plant species composition, such as shrub encroachment in the Arctic 265 

(Wookey et al. 2009). Yet, explicit representations of these plant-mycorrhizal relationships are 266 

largely missing from models. 267 

Some attempts have been made to represent plant-mycorrhizal relationships in models 268 

with variations in belowground plant C inputs across mycorrhizal type and soil N availability 269 

(Baskaran et al. 2017, Sulman et al. 2017, He et al. 2018, Shi et al. 2019, Huang et al. 2022). 270 

Overall, these modeling experiments show that incorporating mycorrhizae increases model-271 

observation agreement of soil C stocks and C:N ratios. Meanwhile, they suggest that simulating 272 

plant-mycorrhizal relationships may constrain the impacts of climate change on soil 273 

biogeochemistry and plant productivity. For example, as nutrient demand increases with 274 

elevated CO2, ECM associations allow plants to mine SOM for N, enhancing plant productivity 275 

to a greater extent than AM systems that are less likely to mine N from SOM (Terrer et al. 276 



2021). At the same time, this process typical of ECM-dominated ecosystems can increase 277 

competition between ECM and free-living saprotrophs, reducing the overall decomposition of 278 

SOM by saprotrophs and increasing soil C stocks and C:N ratios (Averill et al. 2014). Thus, 279 

incorporating these plant-mycorrhizal associations into models may also capture the divergent 280 

responses of forest ecosystems with different mycorrhizal associations to global changes like 281 

elevated CO2 (Sulman et al. 2019), as has been observed at Free-Air Carbon Enrichment 282 

(FACE) sites (Terrer et al. 2016).  283 

 284 

3.1.3 Plant priming of soil microbial activity 285 

Soil priming, the accelerated decomposition of SOM via inputs of plant C, is a process 286 

with complex mechanistic underpinnings and highly variable responses to global changes 287 

(reviewed in Bernard et al. 2022). In some cases, plant priming may align with the foundational 288 

understanding of the plant-soil-stoichiometric continuum, where greater decomposition of fresh 289 

plant input increases microbial contributions to SOM and lowers soil C:N (Chen et al. 2014). 290 

However, at least three mechanisms may drive soil responses that likely differ from what is 291 

captured using foundational representations of soil C:N. First, higher soil microbial activity under 292 

priming may simultaneously accelerate decomposition rates of C-rich POM (in addition to 293 

decomposition of fresh plant input), reducing bulk C stocks and decreasing soil C:N (Bernard et 294 

al. 2022). Second, in nutrient-limited conditions, selective mining of N from SOM can occur 295 

when soil microbes use labile plant exudates as an energy source and preferentially immobilize 296 

N or N-rich material from SOM, thereby increasing SOM C:N (Chen et al. 2014, Hicks et al. 297 

2020, Na et al. 2022). Third, priming could alter microbial community composition, favoring 298 

microbial functional groups that preferentially degrade substrates with high or low C:N ratios 299 

(Geyer et al. 2020). Therefore, representation of priming may be particularly important in 300 

scenarios where we expect changes to plant input quantity and quality      (e.g., changes in plant 301 



community composition or allocation) and nutrient limitation (e.g., elevated CO2, Mason et al. 302 

2022). 303 

Priming effects are not typically included in first order models because SOM turnover 304 

times are only modified by environmental scalars (e.g., temperature and moisture). A notable 305 

exception is the ORCHIDEE-PRIM model, which represents priming by modifying turnover times 306 

with changes in plant productivity, but only represents C (Guenet et al. 2016). Explicit 307 

representation of microbial activity, however, may provide more sophisticated, testable 308 

representations of priming mechanisms, including higher turnover rates, microbial N-mining, or 309 

preferential degradation of different SOM pools by different microbial functional types (Schimel, 310 

2023). Indeed, microbially explicit models may include an emergent representation of priming 311 

due to relationships between substrate availability and microbial growth (Schimel, 2023). 312 

Current models that specifically simulate priming operate on relatively short or small temporal or 313 

spatial scales, with the goal of better understanding the complex interactions of microbes, OM, 314 

and minerals and dynamics of priming (Bernard et al. 2022). For example, the SYMPHONY 315 

model (Perveen et al. 2014) simulates N-mining in priming, but only at landscape to ecosystem 316 

scales. However, the importance of incorporating priming at larger scales is increasingly 317 

recognized (Terrer et al. 2021).   318 

3.1.4 Root exudation of organic acids 319 

In addition to root exudates that accelerate microbial activity and N mineralization via 320 

priming, plants also produce exudates that can directly increase SOM availability. Root 321 

exudation of organic acids (e.g., oxalic acid) can directly destabilize MAOM by locally lowering 322 

the pH in the rhizosphere, thereby chelating or competing with previously mineral-bound organic 323 

matter (Keiluweit et al. 2015, Jilling et al. 2018). This effectively promotes faster turnover of 324 

organic matter, as MAOM typically has long turnover times and low C:N ratios (Lavallee et al. 325 

2020). Thus, organic acids may increase the availability of decomposable substrates and 326 



accelerate rates of N mineralization and plant N uptake (Jilling et al. 2018, Daly et al. 2021). 327 

Given the relatively low C:N of MAOM, its decomposition would tend to drive a loss of N-rich 328 

OM and      subsequently increase      the bulk soil C:N ratio.   329 

Currently, depolymerization of SOM by enzymes and decomposers is considered the 330 

rate limiting step for N mineralization (Schimel and Bennet, 2004, Mooshammer et al. 2014), 331 

which ultimately constrains plant N availability and primary production in models. MAOM is often 332 

considered inaccessible to plants and microbes, though recent advances suggest that it may be 333 

an important plant N source (Jilling et al. 2018, Lavallee et al. 2020, Daly et al. 2021). As such, 334 

the direct effects of plant root inputs on the turnover of MAOM is virtually absent in models. 335 

Instead, in most models MAOM-like pools are represented with long turnover times that are 336 

modified by environmental scalars (temperature or moisture) and potentially modified by soil 337 

properties like soil texture or clay content. Very few models actually represent root exudation, 338 

and those that do only partially represent complex priming effects. For example, FUN-CORPSE 339 

only considers mycorrhizal response to exudates (Sulman et al. 2017). The closest 340 

approximation may be from the model ecosys, which simulates root exudation and exchange of 341 

organic C for organic N and P (Grant et al. 2016, Mekonnen et al. 2019, Chang et al. 2020, 342 

Bouskill et al. 2022). However, none of these models represent direct destabilization of MAOM 343 

caused by root exudation of organic acids. Indeed, consideration of mycorrhizae, priming, and 344 

organic acids introduces additional complexities to the emerging representation of soil C:N that 345 

are worth exploring further in models. As a preliminary step towards this exploration, we 346 

investigate the influence of priming, which could both increase or decrease soil C:N, and that of 347 

root exudation of organic acids, which we expect to increase soil C:N, below. 348 



3.1.5 Biotic Case Study: Simulating priming and desorption in the MIMICS-349 

CN model  350 

As a case study, we explored the potential effects of root exudation that causes priming 351 

and desorption (via exudation of organic acids) on steady state pools simulated by the MIMICS-352 

CN model (Kyker-Snowman et al. 2020, Eastman et al. 2023). We use this case study and 353 

those in following sections (sections 3.2.2 and 4.1) to illustrate the potential importance of the 354 

emerging drivers of soil C:N but acknowledge that studies at larger scales and with different 355 

models will be needed to fully evaluate the importance of the emerging drivers for soil C:N. All 356 

experiments were performed in a hypothetical temperate deciduous forest with identical climate, 357 

litterfall inputs, litter quality and soil conditions. In all simulations, we calculated bulk soil C:N 358 

ratios as well as steady state C pools to explore the mechanisms driving changes in bulk soil 359 

C:N. The baseline simulation received root exudates as inputs to the metabolic litter pool (LITm) 360 

with a defined C:N ratio of 15 (Kyker-Snowman et al., 2020). This baseline experiment was 361 

designed to illustrate an implicit representation of root exudation fluxes, which are handled with 362 

the same stoichiometry as relatively labile plant detritus. At steady state, the baseline 363 

experiment simulated a bulk soil C:N ratio of 9.6, total steady state C of 6.4 kgC m-2, microbial 364 

biomass was 1.5% of soil C pools, and 43% of SOM was in the SOMP pool (physico-chemically 365 

protected SOM, which we equate with MAOM; Figure 4). The bulk soil C:N stoichiometry and 366 

fraction of the SOMP pool were lower than median observational estimates (Figure 5, discussed 367 

below), which is consistent with previous work with MIMICS-CN (Kyker-Snowman et al. 2020). 368 

 369 



 370 
Figure 4. Response ratio of C stocks in various pools of MIMICS-CN under priming (blue) and 371 
priming+desorption (yellow) experiments as compared to the baseline (green). Bulk soil C:N ratios for 372 
each experiment are shown in the inset plot. LIT_m = metabolic litter; LIT_s = structural liter; MIC_r = 373 
copiotroph microbial biomass; MIC_K = oligotroph microbial biomass; SOM_p = physically protected 374 
SOM; SOM_c = chemically protected SOM; SOM_a = active SOM. 375 

 376 
In a second “priming” experiment we more explicitly considered the effects of priming via 377 

root exudation by transferring 10% of metabolic litter inputs to the microbially-available SOM 378 

pool (SOMa) at initialization. This simulation was designed to represent potential plant priming of 379 

soil microbes without changing the quantity or chemical quality of plant inputs to soils. This 380 

representation of priming increased total microbial biomass and the relative abundance of 381 

oligotrophic microbes (MICK), which resulted in a slightly higher microbial biomass C:N 382 

compared to the baseline experiment (7.0 vs. 6.9, respectively). In response to priming, 383 

microbial community shifts accelerated decomposition of litter and SOMC pools, relative to the 384 



baseline simulation, which slightly decreased total C stocks and bulk soil C:N ratio (6.2 kgC m-2 385 

and 9.5, respectively; Figure 4). Broadly, these results are consistent with stimulation of 386 

oligotrophic microbial communities that have a competitive advantage over copiotrophic 387 

communities when utilizing more chemically complex substrates (Fontaine et al. 2003). In our 388 

simulations, oligotrophs increased in relative abundance and produced more enzymes that 389 

decompose litter and SOMc (comparable to POM). Yet, the magnitude of the effects on steady 390 

state pools and bulk soil stoichiometry were relatively small. The subtle changes in soil C stocks 391 

and C:N ratio may indicate that either the priming effect does not exert a strong control of 392 

steady-state behavior in the model, or that our simple priming experiment does not capture 393 

more complex priming mechanisms (Hicks et al. 2020, Karhu et al. 2022, Na et al. 2022). 394 

However, this simple priming experiment captures priming-induced directional changes in 395 

microbial community composition and soil C:N that are consistent with theoretical expectations, 396 

suggesting that more work is needed to evaluate whether the magnitude of these changes are 397 

appropriate.  398 

 In a third “priming+desorption” experiment, we considered the potential role of organic 399 

root acids liberating MAOM. Here, we repeated the priming experiment, but also increased the 400 

desorption rate of SOMP (comparable to MAOM) by 10% relative to the baseline simulation. 401 

Increasing the desorption rate decreased the size of the SOMP pool relative to both the baseline 402 

and priming experiments. As the SOMP pool in MIMICS has a relatively low C:N ratio, reducing 403 

the size of this soil fraction increases bulk soil C:N ratios slightly above baseline values (9.7; 404 

Figure 4). Again, the changes in total soil C stocks and C:N stoichiometry associated with this 405 

simplistic consideration of organic acids liberating MAOM are relatively small, but the direction 406 

of these changes are in line with theoretical expectations (Keiluweit et al. 2015, Jilling et al. 407 

2018). This experiment also underscores the data and knowledge gaps associated with the 408 

extent to which organic acids from root exudates may accelerate desorption of MAOM (Jilling et 409 

al. 2021). It is technically challenging to quantify these fluxes even in lab incubations with 410 



artificial roots at sub-millimeter scales (Keiluweit et al. 2015) and scaling these insights to larger, 411 

more field-relevant scales remains speculative. Progress likely requires a more advanced 412 

empirical understanding and representation of soil physico-chemical properties and their 413 

influences of SOM dynamics.   414 

3.2 Soil physico-chemical effects 415 

3.2.1 Mineralogy  416 

Three interrelated factors provide a robust 'bottom-up', soil-driven regulation of soil C:N 417 

ratio: soil texture, mineral composition, and aggregation. Texture, which describes the relative 418 

proportions of sand, silt, and clay particles, is known to impact the C:N stoichiometry of SOM 419 

because charged clay surface particles can form stable associations with charged moieties like 420 

amino groups (Jilling et al. 2018), leading to N enrichment in clay fractions compared to sand 421 

fractions (Haddix et al. 2016, Amorim et al. 2022). Increased clay content increases total 422 

surface charge and surface area available for organo-mineral interactions that form MAOM. 423 

MAOM is often defined as the size fraction associated with silt and clay (Leuthold et al. 2022). 424 

Thus, as this fraction increases, we expect more organic matter to accumulate in MAOM with 425 

comparatively low C:N ratio. However, silt may contain primary particles, have substantially less 426 

surface charge, and be a microsite for accumulating fungal residues with relatively high C:N 427 

ratios (Six et al. 2006, von Lutzow et al. 2007). These factors can lead to variation in the 428 

relationship between MAOM fractions and soil C:N ratios that depend upon the relative 429 

proportions of silt and clay and at the same time their geochemical properties.  430 

Some studies indicate that N-rich organic compounds may be preferentially adsorbed by 431 

certain types of soil colloids (Kaiser and Zech, 2000, Kleber et al. 2005, Mikutta et al. 2010, Yu 432 

et al. 2013, Jilling et al. 2018, Zhao et al. 2020), potentially accounting for variable C:N ratios 433 



depending on mineral composition. Recent studies show sorption of both N-rich microbial 434 

products and N-free aromatic compounds to soil mineral surfaces (Kramer et al. 2017, Kopittke 435 

et al. 2018, Gao et al. 2021). This variation in sorption may arise from variation in surface 436 

charge or nano-scale topographic characteristics of minerals (Vogel et al. 2014). Iron (Fe) and 437 

aluminum (Al) may be uniquely strong binding agents in soils rich in these minerals (e.g., 438 

Andisols). These soils exhibit preferential binding of low C:N SOM in organo-metal 439 

nanocomposites (<2 µm) and associations between N-rich compounds and ferrihydrite (an Fe 440 

mineral) concentrations (Asano et al. 2018, Zhao et al. 2020). Importantly, Fe content has been 441 

shown to be negatively associated or uncorrelated with clay content in certain environments, 442 

indicating the unique influence of Fe minerals (Rasmussen et al. 2018, Zhao et al. 2020). Soil 443 

pH can also interact with mineral composition, through controlling the relative importance of 444 

select SOM stabilization mechanisms (e.g., organo-metal complexation in acidic soils to 445 

exchangeable calcium in basic soils; Rasmussen et al. 2018). For example, the amount of 446 

pedogenic oxide-hydroxides affects the density of hydroxyl-groups and the formation of mineral 447 

associations via ligand exchange; pH can affect the protonation of these hydroxyl-groups and 448 

thereby the propensity for ligand exchange (Kleber et al. 2015). Thus, pH interacts with mineral 449 

type to drive relative sorption of C or N, potentially driving N-enrichment in Fe and Al minerals in 450 

humid and acidic environments and in phyllosilicates in dry and basic environments. 451 

The texture and mineral composition of soil also regulate soil aggregation, which is 452 

another control over soil C:N ratios (Schweizer et al. 2023). Aggregates are clusters of soil 453 

particles (sand, silt, clay) held together by various organic and inorganic binding agents. 454 

Aggregation processes influence the types of organic matter stabilized and the corresponding 455 

C:N ratios vary based on the aggregate size, formation, and binding mechanisms, all of which 456 

depend on numerous factors, including mineral and organic C content, faunal activity, and land 457 

cover (Elliott 1986, Fonte et al. 2007, An et al. 2010, Maaß et al. 2015, Haddix et al. 2020). For 458 

instance, it is known that microaggregates (< 250 µm) accumulate N-rich compounds, primarily 459 



derived from microbial sources, and efficiently form MAOM (Fulton-Smith and Cotrufo, 2019). In 460 

contrast, larger macroaggregates (> 250 µm) typically form around POM with high C:N ratios 461 

(Six et al. 2000). Roots and certain fungal hyphae also stabilize macroaggregates, and in the 462 

process their biomass becomes somewhat protected from decomposition within the aggregate 463 

(Graf and Frei, 2013, Lehmann et al. 2020). Tillage and other destabilizing forces that break 464 

apart larger aggregates speed up the decomposition of POM. This favors the accumulation of 465 

smaller, more resistant, and stable aggregates filled with lower C:N ratio SOM, ultimately 466 

resulting in lower bulk soil C:N (Grandy and Robertson, 2007). 467 

In most soil biogeochemical models, minerals can indirectly control bulk soil 468 

stoichiometry by modulating the proportion and persistence of organic matter in mineral-469 

associated pools. Given the ubiquity of measurements, most models use soil texture as a proxy 470 

for mineral sorptive capacity (Rasmussen et al. 2018, Sulman et al. 2018, Georgiou et al. 2021). 471 

In particular, some models use clay content (e.g., MIMICS and CORPSE; Wieder et al. 2019a), 472 

while many others use the sum of clay and silt content (e.g., Millennial, COMISSION, MEMS; 473 

Abramoff et al. 2018, Aherns et al. 2020, Zhang et al. 2021). Mineral-associated OM pools in 474 

most models are primarily composed of microbial byproducts and necromass with relatively low 475 

C:N ratios, and to a lesser degree from direct sorption of dissolved or particulate organic matter; 476 

thus, texture ultimately acts as a control of bulk soil C:N stoichiometry. Only a subset of models 477 

currently represent mineral composition effects via equations relating pH and MAOM – namely, 478 

the Millennial, ecosys, and MEMS models (Grant et al. 2012, Zhang et al. 2021, Abramoff et al. 479 

2022, this issue). The Millennial and COMISSION models also include broad classes of 480 

mineralogy by separating soils into low- and high-activity minerals, based on whether soils are 481 

dominated by 1:1 or 2:1 clays, respectively (Aherns et al. 2020, Abramoff et al. 2022, this issue). 482 

Aggregation is a possible pathway for mineral control over soil C:N that only two C-only models 483 

have incorporated. Both AggModel and Millennial allow for both POM and MAOM to be 484 

captured in aggregates, whereas AggModel represents the hierarchy of micro- and macro-485 



aggregates and Millennial has a single aggregate pool (Segoli et al. 2013, Abramoff et al. 2018). 486 

While neither AggModel nor Millennial currently considers N, protection of POM in aggregates 487 

might allow for higher C:N POM pools to persist, effectively increasing soil C:N. The frameworks 488 

developed in these models could someday help to understand the relationship between soil C:N 489 

and aggregate formation. To gain a preliminary understanding of the role of mineralogy in 490 

shaping soil C:N ratios we evaluate the relationships between SOM fractions, mineral variables, 491 

and soil C:N in both empirical data and models.  492 

3.2.2 Physico-chemical Case study: Evidence for proxy variable inclusion in 493 

models  494 

For almost 30 years, soil scientists have called for correspondence between measured 495 

and modeled pools of SOM (Christensen et al. 1996, Elliot et al. 1996, Blankenship et al. 2018) 496 

and, increasingly, models are formulated to model measurable pools of SOM from physical 497 

fractionations (Luo et al., 2014; Abramoff et al. 2018, Robertson et al. 2019). MAOM, 498 

operationally defined as the pool associated with silt and clay, is expected to preferentially 499 

contain microbial residues and consequently have a relatively low C:N ratio (Grandy at el. 2007, 500 

Lavallee et al. 2020), presumably leading to positive associations between silt+clay content and 501 

MAOM content, and negative associations of each of these with soil C:N. However, the strength 502 

of silt and clay control of stabilization of organic matter and, consequently, soil C:N, especially 503 

as compared to other mineralogical factors, remains contentious in theoretical and empirical 504 

work and variable in model formulations (Bailey et al. 2017; Rasmussen et al. 2018, Sulman et 505 

al. 2018, Wieder et al. 2018). 506 

We explored the potential strength of silt and clay control, as well as several proxy 507 

variables as emerging indicators of mineral effects on C:N stoichiometry in models and in 508 

observational synthesis data, namely Georgiou et al. (2022a, b) and the Soils Data 509 



Harmonization database (SoDaH; Wieder et al. 2021). Using Georgiou et al. (2022a), we found 510 

soil C:N was lower in soils with higher proportions of silt+clay (Figure 5a). These silt+clay-rich 511 

soils were also associated with a greater proportion of C in MAOM (Figure 5a), consistent with 512 

theoretical understanding of MAOM (Lavallee et al. 2020). This observation is already captured 513 

in MIMICS-CN (Figure 5b) and could likely be demonstrated with other models that use SOM 514 

pool structures that represent MAOM and POM (e.g., MEMS, Millennial, and CORPSE; Sulman 515 

et al. 2017, Zhang et al. 2021, Abramoff et al. 2022, this issue). These findings support calls for 516 

further work benchmarking modeled SOM pools to measured ones (Berardi et al. 2020). 517 

Currently, this benchmarking has only been carried out for a few models with and without these 518 

measurable pools explicitly represented (Zimmerman et al. 2007, Zhang et al. 2021). Given 519 

strong relationships between SOM pools and soil C:N, greater benchmarking efforts are likely to 520 

improve confidence in simulations of soil C:N as well as soil biogeochemistry more broadly. 521 

 522 
Figure 5. Bulk soil stoichiometry (C:N ratio; left y-axis, black points) and percentage of bulk soil organic 523 
carbon that is mineral-associated (right y-axis; green points) across different soil texture regimes. (a) Soil 524 
texture regimes are summarized by ranges in clay plus silt percentages. Points and error bars represent 525 
means ± 95% confidence intervals on the mean from an observational synthesis of soil fractions 526 
consisting of > 1200 measurements (n = 166, 388, 411, and 261 in the < 25%, 25-50%, 50-75%, >75% 527 
clay + silt content regimes, respectively). (b) MIMICS-CN output for a hypothetical temperate deciduous 528 
forest for soils with different amounts of clay, which is the controlling variable for sorption in MIMICS-CN, 529 
rather than silt+clay. MAOM-C/SOM-C is calculated from MIMICS output as 530 
SOMp/(SOMa+SOMc+SOMp)*100%. 531 
 532 



While our data suggest that bulk soil C:N is partly controlled by soil texture, the utility of 533 

other proxies for mineralogy is underexplored. To investigate the relevance of other 534 

mineralogical factors, we compared drivers of soil C:N in the SoDaH database to those in model 535 

simulations. For the observational data, we filtered the SoDaH database to isolate topsoil (< 20 536 

cm) data from studies that measured soil C:N and litter C:N. We generated model data by 537 

running global simulations of a microbially-explicit (MIMICS-CN; Kyker-Snowman et al. 2020) 538 

and a microbially-implicit (CASA-CNP; Wang et al. 2010) model forced with the same globally-539 

gridded forcing data in a biogeochemical testbed (Wieder et al. 2018; detailed in Supplementary 540 

Material A). We then used multiple linear regressions (MLRs) to determine which variables 541 

emerged as important relative drivers of measured (SoDaH) and modeled (MIMICS-CN and 542 

CASA-CNP) soil C:N (detailed in Supplementary Material A). We analyze these below as 543 

qualitative comparisons, given the different geographic extents and data coverage between the 544 

observational data and models. For both measured and modeled data, we considered a three-545 

factor MLR with mean annual temperature (MAT), clay content, and litter C:N as predictors for 546 

measured or modeled soil C:N. We also considered a seven-factor MLR with additional 547 

mineralogical factors as predictors for measured soil C:N, to evaluate which of these may be 548 

missing from model formulations (Table 1). For the three-factor MLRs, MIMICS-CN reasonably 549 

captured the relative importance of drivers in the SoDaH database whereas CASA-CNP 550 

depicted lower relative importance of clay, likely because it uses clay+silt to compute passive C 551 

formation, and higher relative importance of litter C:N, aligning with the more foundational 552 

representation of soil C:N (Table 1). Notably, the CASA-CNP MLR likely had a very low R2 value 553 

because it has prescribed ranges for the C:N of various pools and bulk C:N stems from the 554 

balance across those pools, exemplifying how fixed pool C:N fails to capture important drivers of 555 

soil C:N. In contrast with the three-factor MLRs, the seven-factor MLR with all possible proxies 556 

identifies clay, Fe, Al, and pH as the strongest relative drivers of measured soil C:N (Table 1). 557 

This suggests mineral composition, with Fe, Al, and pH as proxies, in addition to soil texture 558 



(e.g., clay), are important drivers of soil C:N relative to the variables considered here. However, 559 

mineral composition control of organic matter stabilization, and consequently soil C:N, is 560 

represented in few models (Aherns et al. 2020, Abramoff et al. 2022, this issue).   561 

Table 1. Results from multiple linear regression (MLR) analyses of a subset of the SoDaH database and 562 
model outputs (Supplementary Material A). The dependent variable in each model is observed or 563 
modeled soil C:N. Relative importance percentages show the percentage of the total variance explained 564 
by each statistical model that a given individual variable explains. “NA” indicates a variable that was not 565 
included in a given model. Greener cells have higher relative importance percentages. MAT is mean 566 
annual temperature; MAP is mean annual precipitation; Fe_ox, Al_ox, and Si_ox, and Fe_dith, Al_dith, 567 
and Si_dith, are oxalate-extractable and dithionite-extractable iron, aluminum and silica, respectively.  568 

        Relative importance percentage 

MLR type n R2 AIC MAT Clay 

Litter 

C:N MAP Depth pH Fe_ox Al_ox Si_ox Fe_dith Al_dith Si_dith 

SoDaH 

observations 239 0.28 607 20.9% 46.5% 32.6% NA NA NA NA NA NA NA NA NA 

SoDaH 

observations 239 0.52 386 9.7% 15.5% 9.4% 8.7% 1.9% 10.5% 4.5% 9.3% 4.9% 11.1% 12.5% 1.8% 

MIMICS-CN 

model 2697 0.80 3318 31.1% 31.4% 37.5% NA NA NA NA NA NA NA NA NA 

CASA-CNP 

model 2697 0.06 7500 32.7% 2.8% 64.6% NA NA NA NA NA NA NA NA NA 

 569 

The concept of a “mineral filter” (Mikutta et al. 2019) acting as a bottom-up control of 570 

SOM composition is supported overall by our analyses (i.e. the high relative importance of silt 571 

and clay, pH and specific extractable metals; Figure 5; Table 1). Although the patterns observed 572 

here do not definitively justify incorporating new mineral-related variables or processes into 573 

models, they could be explored further in models or in field or lab experiments. Field 574 

experiments could be used to explore possible mechanistic relationships between pH and 575 

mineral composition. Using such a relationship, pH is an easily measured variable that could be 576 

used to improve models, for example by making the model coefficient of clay stabilization 577 

dependent on pH, as in the MEMS (Zhang et al. 2021) and Millennial (Abramoff et al. 2022, this 578 

issue) models. The relative importance of dithionite-extractable Fe and Al in driving soil C:N in 579 

our results also supports the importance of mineral composition. Increased use of chemical 580 



extractions, which are more expensive and less widely measured, may be useful in identifying 581 

the specific minerals (e.g. Fe and Al oxides) that stabilize low C:N microbial residues 582 

(Rasmussen et al. 2018). More widespread measurements of specific soil mineralogy coupled 583 

to detailed mechanistic studies exploring the affinities of different minerals for N-enriched 584 

organic moieties (e.g. amino acids) may provide clarity about the role of edaphic factors in 585 

filtering SOM and soil C:N. These measurements would allow proxies like pH and soil Fe and Al 586 

oxides to be included in models as external parameters, used during model initialization, or 587 

even dynamic state variables, as has been done for redox reactions (Maggi et al. 2008; Rizzo et 588 

al. 2014; Calabrese & Porporato, 2019). Representing dynamic pH or mineralogy could be 589 

particularly important under variable soil moisture, N or heavy metal pollution, or when 590 

considering how pedogenic processes influence organic matter stabilization at millennial 591 

timescales. Better representation of mineralogy, as well as the plant and microbial drivers 592 

above, will be key for models' ability to predict soil C:N under global change. 593 

4. Implications for Studying Global Change  594 

 Global changes, such as rising atmospheric CO2, N deposition, and changing climate 595 

influence the entire plant-soil system. For example, elevated CO2 generally increases and N 596 

deposition generally decreases the C:N of vegetative tissues and litter entering the soil system 597 

(Yang et al. 2011, Sardans et al. 2012, Yue et al. 2017, Sun et al. 2020). While these changes 598 

to vegetation C:N stoichiometry will likely introduce numerous feedbacks in the plant-soil 599 

system, the net effects of these opposing influences are not well characterized. Models are 600 

valuable tools for exploring the trajectories of these global changes and understanding the 601 

possible large-scale implications of variable controls of soil stoichiometry for C and N dynamics 602 

(Wieder et al. 2019b). Examining elevated CO2 and N deposition in coupled C-N models 603 

therefore presents a good opportunity to evaluate our foundational versus emerging 604 



representations of the controls of soil C:N stoichiometry. Importantly, other global changes, such 605 

as changes in temperature and moisture, land use change, and increases in wildfire occurrence 606 

and severity, will likely influence soil C:N differently under the foundational versus emerging 607 

representations but we focus on elevated CO2 and N deposition here for brevity (Sistla et al. 608 

2014, Pellegrini et al. 2018, Sun et al. 2021). 609 

4.1 Elevated CO2 610 

 As atmospheric CO2 rises, plant tissue C:N ratios typically increase (Cotrufo et al. 1998, 611 

Wang et al. 2021, Gojon et al. 2022), altering the chemistry of litter inputs to the soil system. 612 

Higher litterfall C:N ratios appear to reduce decomposition rates and soil N availability, possibly 613 

inducing progressive N limitation of vegetation growth (Luo et al. 2004, Liang et al. 2016, Craine 614 

et al. 2018, Mason et al. 2022). Simultaneously, under elevated CO2 plants can shift allocation 615 

patterns to potentially mitigate N limitation (Phillips et al. 2009). To increase N uptake, plants 616 

increase C allocation to roots and root exudates that both directly enhance plant nutrient 617 

access, while also stimulating soil microbial activity that mineralizes nutrients (Phillips et al. 618 

2011, Cheng et al. 2012, Terrer et al. 2016). Both litter chemistry and plant C allocation changes 619 

under elevated CO2 could increase soil C:N through greater incorporation of high C:N plant 620 

material and N mining from N-rich SOM, respectively (De Graaf et al. 2006, Phillips et al. 2011). 621 

However, N could also be mined from higher C:N SOM pools, like POM, that are more 622 

accessible to microbes, thereby reducing bulk soil C:N (Sulman et al. 2014). Thus, the relative 623 

influence of litter chemistry and root exudation effects on soil C:N are uncertain but likely 624 

important for a better mechanistic understanding of ecosystem responses to elevated CO2.   625 

However, accurately capturing ecosystem biogeochemical responses to elevated CO2 626 

remains challenging for land models (Zaehle et al. 2013, Davies-Barnard et al. 2020, Eastman 627 

et al. 2023, Hauser et al. 2023). Part of this challenge lies in simulating appropriate plant and 628 



soil responses to elevated CO2 and their interactions. To explore potential soil biogeochemical 629 

responses to elevated CO2 we conducted a series of idealized model experiments with MIMICS-630 

CN. Building on the steady-state results presented in the biotic case study (section 3.1.5; Figure 631 

4), we ran a series of 50-year transient simulations for the priming treatment under a pair of 632 

elevated CO2 scenarios. In the first experiment we represented elevated CO2 as a 20% step 633 

increase in net primary production (NPP) and a 10% increase in litterfall C:N, relative to the 634 

“ambient” conditions under which the models were initialized (Norby et al. 2005, Wang et al. 635 

2021). For the second experiment we repeated these step increases in productivity and litterfall 636 

C:N, but also increased allocation of C to root exudates from 10% to 20% of metabolic litterfall 637 

inputs, without increasing the total amount of inputs, to evaluate the influence of this emerging 638 

driver. For brevity we calculated the response ratio of different soil pools and fluxes simulated 639 

by MIMICS-CN after 50 years under elevated CO2 divided by their initial “ambient” state.  640 

Increased NPP and litterfall C:N were most influential on soil biogeochemistry when 641 

allocation to root exudates also increased, indicating the importance of representing this 642 

emerging driver (Figure 6a). Increased C allocation to exudates increased microbial biomass, 643 

and particularly that of oligotrophs (reduced MICr:MICK). Oligotrophs preferentially decomposed 644 

the high C:N SOMc pool (comparable to POM), thereby slightly reducing bulk soil C:N. Field 645 

manipulations also report increased microbial biomass and negligible changes in bulk soil C:N 646 

responses under elevated CO2 that are consistent with our model results (Yue et al. 2017, Zou 647 

et al. 2023). However, empirical studies also suggest that under elevated CO2, both the ratio of 648 

copiotrophs:oligotrophs and the POM pool increase (Rocci et al. 2021, Sun et al. 2021). 649 

Additionally, N mineralization increased in our experiments under elevated CO2 (Figure 6a). This 650 

reflects higher rates of litter N inputs (from increased NPP) that occurred with our elevated CO2 651 

experiment but runs contrary to what may be expected under progressive N limitation (Luo et al. 652 

2004). Indeed, when we isolated the potential effects of lower litter quality under elevated CO2, 653 

MIMICS-CN showed reduced N mineralization rates, as expected from progressive N limitation 654 



(Supplementary Figure 1). We also compare our simulations to the observations from the Duke 655 

free-air CO2 enrichment (FACE) experiment because this site exhibits the priming responses we 656 

evaluate here. We note that this is intended to be a more qualitative comparison than a rigorous 657 

validation, and note that field measurements were derived from distinct studies under different 658 

periods of elevated CO2 treatment. We find remarkably similar increases in microbial biomass 659 

and similar minimal responses of bulk C:N and SOMc (comparable to the free light fraction of 660 

SOM) as observed values for our 10% allocation simulations (Figure 6b; Lichter et al., 2005, 661 

Drake et al. 2011). However, as noted above, increased N mineralization and reduced 662 

copiotroph to oligotroph ratio are opposite to observed decreases in N mineralization from a 663 

100-day incubation and increases in the bacterial to fungal ratio (somewhat comparable to the 664 

copiotroph to oligotroph ratio, Figure 6b, Billings and Ziegler, 2005, Feng et al. 2010). Our 665 

experiments highlight that plant-microbe-mineral interactions, represented by priming via root 666 

exudates (an emerging driver), provide a more nuanced assessment of soil C:N responses to 667 

elevated CO2 but that further investigation is needed to revise structural assumptions or 668 

parameterization of MIMICS-CN, or other models trying to represent the emerging 669 

representation of soil C:N under global change. 670 

 671 

      672 



Figure 6. (a) MIMICS-CN simulation results showing response ratios after 50 years of elevated CO2 (year 673 
50/year 1) with either 10% (circles) or 20% (triangles) of metabolic litter inputs allocated to root exudates. 674 
Elevated CO2 is implemented as a 20% step increase in net primary production (NPP) and a 10% step 675 
increase in litter C:N. Inset shows bulk soil C:N on a finer scale. (b) Observed response ratios to elevated 676 
CO2 from the Duke FACE experiment with data from Billings and Ziegler (2005), Lichter et al. (2005), 677 
Feng et al. (2010), and Drake et al. (2011). Note different y-axes. Bulk_CtoN = bulk soil C:N; MicC = 678 
microbial C; MICr:MICK = copiotroph-to-oligotroph ratio; SOMc = chemically stabilized soil organic matter; 679 
Bac2Fun = bacteria-to-fungi ratio; fLF = free light fraction; N_min = N mineralization. 680 

4.2 Nitrogen Deposition  681 

While elevated CO2 drives increases in ecosystem C:N, N deposition, inputs of reactive 682 

forms of inorganic and organic N from the atmosphere to ecosystems, might be hypothesized to 683 

have the opposite effect. However, ecosystem responses to N deposition are complex and 684 

highly variable across broad spatial scales, suggesting N deposition effects might not be so 685 

straightforward (Schlesinger, 2009, Kanakidou et al. 2016). With N deposition, plant biomass 686 

and shoot:root generally increase and plant shoot, root, and litter C:N generally decrease, which 687 

could be expected to favor microbial use of high quality plant material, ultimately favoring 688 

MAOM formation and lower SOM C:N (Yang et al. 2011, Averill and Waring, 2018, Sun et al. 689 

2020, Feng et al. 2022). In contrast, N deposition could also increase SOM C:N through 690 

reduced lignocellulosic enzyme activity, reduced microbial activity via acidification and C 691 

limitation, and reduced strength of mineral-OM bonds (Frey et al. 2004, Frey et al. 2014, 692 

Carrara et al. 2018, Pan et al. 2020, Ning et al. 2021, Feng et al. 2022). These effects could 693 

specifically increase SOM C:N through reduced decomposition of high C:N SOM (Eastman et 694 

al. 2022), reduced N-rich microbial input, and desorption of relatively N-rich OM, respectively. 695 

The diversity of effects from N deposition have made it difficult to predict consistent drivers of 696 

SOM responses to this global change (Averill and Waring, 2018). 697 

Unless specifically formulated to do so, models struggle to depict the wide array of 698 

effects of N deposition. For example, most models add N deposition to the mineral N pool, and 699 

simulations generally show increases in plant productivity and consequently microbial activity. 700 



However, N deposition generally reduces microbial activity in empirical studies (Zhang et al. 701 

2018). N deposition in models can also modify plant C:N and drive changes in SOM C:N 702 

through the foundational representation of soil C:N controls (Figure 2a; Throop et al. 2004). 703 

However, most models lack the mechanistic representation for specific enzyme responses, 704 

dynamic and influential soil pH, and N-induced changes in sorption, although the MEND model 705 

represents specific enzyme groups (Wang et al. 2022). Eastman et al. (2023) tackled the 706 

challenge of representing empirical outcomes from a 30-year N deposition experiment in a 707 

mixed hardwood forest in two soil biogeochemistry models (MIMICS-CN and CASA-CN) 708 

coupled to the same vegetation model (CASA-CNP). In order to capture empirical responses in 709 

these models, the authors had to modify the vegetation allocation scheme and decay rate of the 710 

SOMc pool (comparable to POM), and even then only the microbially-explicit model (MIMICS-711 

CN) exhibited increased soil C:N as seen in the empirical comparison (Eastman et al. 2022, 712 

Eastman et al. 2023). Eastman et al. (2023) demonstrate the difficulty of capturing the multitude 713 

of N deposition effects in models and indicate the need to represent plant and microbe 714 

feedbacks in models to capture soil C:N responses to N deposition. 715 

Nitrogen is not the only nutrient whose availability will likely be modified by global 716 

change. Phosphorus (P), in particular, might also shape soil C:N in ways associated with the 717 

emerging representation, largely through interactions with C and N (Townsend et al., 2011). For 718 

example, N fixation is limited by P availability, such that changing availability of P could modify 719 

N fixation with implications for soil C:N (Houlton et al. 2008). Alternatively, under P limitation, N 720 

is allocated to production of phosphatase enzymes that break down SOM, potentially causing a 721 

“P-mining” effect that could preferentially breakdown high P MAOM and thus increase soil C:N 722 

(Treseder and Vitousek, 2001, Spohn, 2020). These N-P interactions are exemplified in CASA-723 

CNP, CLM-CNP and SCAMPS-CNP and could be used to evaluate effects of P addition on soil 724 

C:N (Wang et al. 2010, Yang et al. 2014, Pold et al. 2022). Alternatively, added P      could 725 

directly exchange with C on mineral surfaces to reduce MAOM C:N, which could be formulated 726 



in models similarly to acid root exudation (Spohn and Schleuss, 2019, Rocci et al. 2022). 727 

Beyond P, experimentally adding potassium and micronutrients slightly increased soil C:N in 728 

globally-distributed grasslands but adding sulfur stoichiometry to a static soil formulation did not 729 

reduce C cycle uncertainty (Buchkowski et al. 2019, Seabloom et al. 2021). Thus     , there is 730 

evidence supporting the influence of nutrient interactions on soil C:N, likely through the 731 

emerging drivers. This supports the development of models that represent both the emerging 732 

drivers and elements beyond C and N. 733 

5. Conclusions 734 

 Foundational representations of soil C:N controls present in most models of soil 735 

biogeochemistry are insufficient and could be improved via a more complete, emerging 736 

representation of soil C:N controls. These missing emerging controls likely underlie large scale 737 

patterns of soil C:N and will likely allow for better predictions of soil C:N responses to global 738 

environmental change. The emerging representation of the controls of soil C:N illustrates the 739 

tension between simplicity and accurate representation of complex systems in models. 740 

Balancing these factors is critical for projecting future biogeochemical and climate outcomes. 741 

While the emerging drivers presented have strong empirical support in the literature, there are 742 

many other potential additional drivers that can influence soil C:N ratios including 743 

photodegradation, microbial physiology, and soil fauna (Moorhead and Callaghan, 1994, de 744 

Vries et al. 2013, Mooshammer et al. 2014, Chen et al. 2016). Our review of empirical 745 

understanding of the emerging drivers of soil C:N and their representation in models identified 746 

research gaps and contexts where drivers might be particularly important. We also showed that 747 

implementing the emerging drivers can cause distinct responses of soil C:N to global change. 748 

Ultimately, more theoretical, empirical, and modeling studies are needed to establish the relative 749 

importance of these emerging drivers for soil C:N stoichiometry and if and how they should be 750 



implemented in models. Specifically, current understanding informs the need for future research 751 

in the following areas: 752 

● Evaluate the feedbacks of different representations of N fixation in models and how 753 

these align with empirically expected feedbacks and change soil C:N 754 

● With improved representations of N fixation in models, determine impact of increased 755 

fixation on soil C:N under elevated CO2 756 

● Use modeling to separately resolve litter quality and N mining/mineralization effects of 757 

mycorrhizal fungi on soil C:N 758 

● Determine realistic magnitudes of acid root exudation under steady state and global 759 

change conditions and their influence on soil C:N 760 

● Increase collection of mineral composition data to further investigate the importance of 761 

pH and metal controls on MAOM, and subsequently bulk soil C:N 762 

● Implement aggregation in a coupled C-N model to evaluate the influence on both 763 

biogeochemical cycles 764 

● Investigate relative importance of litter quality versus plant allocation under elevated CO2 765 

in a coupled plant-soil model and the implications for soil C:N 766 

● Determine the computational cost of adding groups of emerging factors to models to 767 

evaluate the feasibility of representing these factors at a global scale 768 
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