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Abstract

Soil carbon-nitrogen (C:N) stoichiometry acts as a control over decomposition and soil
organic matter formation and loss, making it a key soil property for understanding ecosystem
dynamics and projected ecosystems responses to global environmental change. However, the
controls of soil C:N and how they respond to increasing pressures from global change agents
are not fully understood. The “foundational” controls on soil C:N, namely plant and microbial
C:N, have been used to predict soil C:N, but fail to accurately simulate all ecosystems and may
be insufficient for predictions under global environmental change. We present an “emerging”
representation of controls of soil C:N that includes plant-microbe-mineral feedbacks that have
been shown to regulate soil C:N. We argue that including representation of these emerging
drivers in process-based terrestrial biogeochemistry models, which include biological N fixation,
mycorrhizae, priming, root exudation of organic acids, and mineralogy (including soil texture,

mineral composition, and aggregation), will improve mechanistic representation of soil C:N and
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associated processes. Such improvements will produce models that will better simulate a
variety of ecological states and predict soil C:N when global changes modify plant-microbe-
mineral interactions. Here, we align our empirical understanding of controls of soil C:N with
those controls represented in models, identifying contexts where emerging drivers might be
particularly important to represent (e.g., priming and root exudation in nutrient-limited
conditions) and areas of future work. Additionally, we show that implementing emerging drivers
of soil C:N results in different simulated outcomes at steady state and in response to elevated
atmospheric CO.. Our review and preliminary simulations support the need to incorporate
emerging drivers of soil C:N into process-based terrestrial biogeochemistry models, allowing for
both theoretical exploration of mechanisms and potentially more accurate predictions of land

biogeochemical responses to global change.

1.Introduction

Ecological stoichiometry, the study of the interactions of elements in ecological systems,
is an organizing principle in ecology that provides a theoretical framework to explore how
elements regulate plant growth, decomposition rates, and nutrient cycling at multiple scales
(Elser et al. 2000). In soil, carbon-to-nitrogen (C:N) stoichiometry could be seen as a master
variable that governs the flows of C and N between plants, microbes, and soils. Changes in soil
C:N also reflect changes in soil C and N storage, which modify carbon cycle-climate feedbacks
and nutrient limitation of plant growth, respectively. Further, soil C:N can be indicative of
mechanistic changes in the system and represents the N requirement of C storage, important
for land management aiming to increase soil C storage (Buchkowski et al. 2019, Cotrufo et al.
2019). Indeed, as our understanding of soil organic matter (SOM) dynamics advances, the role
of soil stoichiometry remains an important aspect of ecosystem biogeochemistry (Buchkowski et

al. 2019). Despite this central role and advancing knowledge, the controls of SOM C:N
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stoichiometry in process-based models of terrestrial biogeochemistry (“models" hereafter;
Supplementary Table 1)—which both emerge from and are informed by measurements and
theory (Blankinship et al. 2018)—have remained largely stagnant and mostly consist of the C:N
ratios of plant and microbial inputs. However, numerous recent studies have identified additional
plant, microbial, and physico-chemical controls of SOM C:N stoichiometry that are largely
missing from model formulations (e.g., Cotrufo et al. 2019, Possinger et al. 2020, Song et al.
2022; Amorim et al. 2022). These missing controls likely underlie global patterns in soil C:N and
may be particularly important under global change scenarios where climate change, elevated
CO2, and N enrichment (from fertilization or atmospheric deposition) may alter the availability of
and demand for N (Terrer et al. 2016, Souza et al. 2021). The goal of this perspective is to
evaluate controls of soil C:N with a focus on gaps in both our theoretical understanding and
model formulations. We first describe the foundational representation of soil C:N controls
currently present in most models. Then, we describe an emerging representation of soil C:N
controls, derived from empirical work that is informing a more complete and nuanced theoretical
understanding, with the ultimate goal of aligning this representation with formulations in models.
Finally, we explore how implementing the emerging representation of soil C:N controls could

influence predictions of soil C and N cycling under global change.

2.Foundational Representation of Soil C:N

2.1 Conceptual understanding of soil carbon-to-nitrogen stoichiometry

The influence of plant C:N on soil processes has been recognized for at least forty
years, when lower C:N plant material was found to decompose more quickly than higher C:N
plant material (Melillo et al. 1982, Enriquez et al. 1993). Faster decomposition of lower C:N plant
material occurs, in part, because it is better aligned with the relatively lower and more strongly

constrained C:N ratio of the microbes that decompose it (plant C:N = 9-1160; microbial biomass
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C:N = 1-86; Figure 1; Cleveland and Liptzin, 2007). The relative stoichiometric homeostasis of
the soil microbial biomass C:N thus drives soil C and N recycling, where microbes mineralize
excess C or N not used to build their biomass to CO2 and ammonium, respectively. This
process, termed consumer-driven nutrient recycling (Elser and Urabe, 1999), converts relatively
high and variable plant C:N to relatively low and less variable C:N during microbial
decomposition (Tipping et al. 2016). Indeed across multiple ecosystems and data sources we
see a consistent decrease in the C:N stoichiometry of different ecosystem components as highly
variable plant inputs pass through a more stoichiometrically constrained microbial filter to
generate SOM (Figure 1). Previously, SOM was thought to largely consist of variably
decomposed plant material, but it is now largely accepted that SOM also includes microbial
materials that persist due to their physical or chemical inaccessibility to further decomposition
(Cotrufo et al. 2013, Lehmann & Kleber, 2015, Kallenbach et al. 2016). Thus, the stoichiometry
of bulk SOM reflects contributions of both higher C:N plant material and lower C:N microbial
biomass and by-products. The stoichiometry of bulk SOM also depends on the relative
contribution of different SOM fractions (Buchkowski et al. 2019). The relatively low C:N of stable
SOM pools (e.g., mineral-associated organic matter or MAOM) results from the greater
contribution of microbial material (von Lutzow et al. 2007), whereas the higher C:N of particulate
organic matter (POM) is due to greater contributions of structural plant material (von Lutzow et
al. 2007, Haddix et al. 2016; Figure 1a). This theoretical understanding informed a “foundational
representation” of soil stoichiometry that guides conceptual models, where plant C:N drives
SOM C:N variability and nutrient recycling, while microbial C:N constrains it. (Figure 2a).
Additionally, environmental variables like temperature, moisture, and nutrient availability that
control rates of microbial decomposition impact the balance between plant and microbial
contributions to SOM C:N (Wieder et al. 2009), suggesting that changes to climate, nutrient
pollution (e.g., N deposition), and environmental conditions may change the controls of soil C:N

in the future.
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Figure 1. (a) Empirically derived C:N ratios of different ecosystem components showing a narrowing of
C:N ratios along the plant-microbe-soil continuum. Filled circles depict arithmetic means and small points
arrayed as histograms depict individual observations. Data sources: coarse woody debris (Weedon et al.,
2009); leaves (Dynarski et al., 2023); fresh litter and standing roots (NEON, 2023); fungal biomass
(Zhang & Elser, 2017); microbial biomass (Xu et al., 2013); organic and mineral soil (Tipping et al., 2016);
MAOM and POM (MAOM = mineral-associated organic matter; POM = particulate organic matter;
Georgiou et al, 2022a). B) Conceptual depiction of the foundational representation of the decomposition
process (funnel) that transforms relatively high plant C:N to relatively lower soil C:N, due to contribution of
both plant and microbial materials to bulk SOM, with expected changes in the C:N ratio during this
process. Earth with global change processes at bottom depicts uncertainty in the ability of the drivers
above to simulate soil C:N under novel environmental conditions and thus the need to incorporate
additional drivers of soil C:N beyond plant and microbe C:N.



122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142
143
144

145

FOUNDATIONAL REPRESENTATION EMERGING REPRESENTATION

Plant-driven, microbially constrained Plant-microbe-mineral interactions
A . A—— -

Oon

%n
‘}u b,

=
3
o)
A
3
(3
)
)

ial contri

m"c\’obl

Y
’

-\/‘\ \\
g

~ o

“\'\cf"b‘a‘

A
©
7

S Composition

Q,
SOILC:N N O\ gy

Figure 2. Conceptual illustration showing foundational and emerging representations of the controls on
C:N stoichiometry. (a) In the foundational representation, relatively high C:N plant material (green)
combines with relatively low C:N microbial inputs (blue) to create the distribution of soil C:N values.
Because plants have a wider range of C:N than microbes, plant C:N drives wider variation in soil C:N
while microbial contributions constrain soil C:N, hence the right-skew of the histogram depicting soil C:N
variation. In the foundational representation, this plant-centric focus is depicted as a “top-down” view of
the soil C:N. (b) In the emerging representation, additional drivers of soil C:N that are typically absent
from foundational representation of soil C:N are depicted (circular vignettes). Additional factors that may
influence soil C:N can be broadly grouped into plant and microbe feedbacks and soil physico-chemical
effects, and include the specific drivers of biological nitrogen fixation, mycorrhizae, priming, root
exudates, and mineralogy (including soil texture, mineral composition, and aggregation). These drivers
act through a diversity of mechanisms and thus can differentially influence C:N in ways that may be
unrelated to initial plant C:N. This potential for variation in soil C:N due to the emerging drivers is depicted
as shifts in the soil C:N histogram. In the emerging representation, this focus on processes occurring in
the soil is depicted with a “bottom-up” view that emphasizes plant-microbe-mineral interactions.

2.2 Implementation of foundational representation in models

Most current ecosystem biogeochemistry models (e.g. DayCent, PnET, or TEM) and
land models that are used for global-scale projections (e.g. CLM, JSBACH, or LPJ-Guess;
Davies-Barnard et al. 2020, Kou-Giesbrecht et al. 2023) are structured and parameterized with
the foundational representation of soil C:N (Supplementary Table 1). Under these assumptions,

simulated rates of soil C and N cycling reflect formulations of pool-specific turnover times, donor



146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

and receiver pool stoichiometry, and C use efficiency (CUE, which determines the fraction of
heterotrophic respiration; Parton et al. 1993, Parton et al. 1994, Thornton and Rosenbloom,
2005). Nitrogen mineralization versus immobilization occurs to balance donor pool transfers of
C and N with receiver pool stoichiometry. Generally, these models implicitly represent microbial
activity (Schimel 2001), using environmentally sensitive first-order kinetics to define the turnover
of litter and soil organic matter pools. The microbially-implicit modeling approach typically
simulates down-regulation of decomposition rates when inorganic N availability is limiting, which
generally occurs during transfers of material from high C:N litter to low C:N soil organic matter
pools (Lee et al. 1992, Metherell et al. 1993, Parton et al. 1993, Bonan et al. 2013, Thomas et
al. 2015). By contrast, models that explicitly represent microbial activity do not by default exhibit
down-regulation of decomposition rates because of N limitation. For example, Kyker-Snowman
et al. (2020) included overflow respiration of donor-pool C when N availability fails to meet the
stoichiometric demands of decomposer biomass. This approach also eliminates the need to
directly parameterize soil stoichiometry. Instead, soil C:N emerges from the relative contribution
of microbial by-products (with a lower C:N ratio and narrower range) and plant detritus that
bypasses the microbial filter and enters different SOM pools (Sulman et al. 2017, Zhang et al.
2021, Eastman et al. 2023). This is exemplified in the microbially-explicit model MIMICS-CN,
where soil C:N is strongly influenced by plant input chemistry and which we use in case studies
throughout this paper (Figure 3). Despite differences in how soil C:N is determined in
microbially-implicit vs -explicit approaches, both approaches rely on the foundational

representation of soil C:N.
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Figure 3. (a) Wiring diagram for MIMICS-CN model, which we use in case studies throughout this paper.
Briefly, litter inputs (1) are split into metabolic and structural pools (LITm and LITs) which are decomposed
by microbial communities having copiotrophic and oligotrophic growth strategies (MICr and MICk,
respectively), where both litter (fi) and microbial turnover (T) can contribute to the physicochemically
stabilized and chemically stabilized soil organic matter pools (SOM, and SOMc, respectively), and SOM,
and SOMc¢ contribute to an available SOM pool (SOM.) that can be accessed by microbes. Detailed
description of the model can be found in Kyker-Snowman et al. (2020) building upon Wieder et al. (2014).
(b) MIMICS-CN simulations of bulk soil C:N in a hypothetical temperate deciduous forest where only the
chemical quality (defined as the C:N ratio and lignin content) of litterfall inputs to surface soils are
modified.
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Model formulations that implement the foundational representation do represent
dynamic flows of C and N during field decomposition, but falter in certain ecosystems (i.e.
tundra and arid grasslands) and generally underestimate variation in soil C:N (Parton et al.
2007, Bonan et al. 2013, Kyker-Snowman et al. 2020, Juice et al. in review). The accuracy and
reliability of these models are insufficient for simulating the full spectrum of ecosystems and
may falter under novel environmental conditions (e.g., global environmental change; Figure 1b,
bottom; Wieder et al. 2019). For example, recent research shows that interactions between
plants, microbes, and the soil matrix strongly regulate soil C and N cycling, and consequently
SOM C:N stoichiometry (e.g., Keiluweit et al. 2015, Jilling et al. 2018, Possinger et al. 2020,
Daly et al. 2021, Terrer et al. 2021). Representing these mechanisms is paramount for
improving mechanistic representation of soil C:N and predicting changes in soil C:N under

global change.

3.Emerging representation of soil C:N

The empirical evidence of important drivers beyond plant and microbe C:N that shape
soil C:N ratios informs an “emerging representation” of the controls of soil C:N variation (Figure
2b). We use the word “emerging” to explicitly acknowledge that many of the processes we
describe below are already recognized as important for soil C:N in some subfields of soll
science and represented in some models. However, we aim to clarify the importance of and
collate these “emerging drivers” so that they can be aligned with model assumptions. We group
these emerging drivers into plant and microbe feedbacks and soil physico-chemical effects that
are absent from the foundational representation of soil C:N. The foundational representation
considers plants and microbes as drivers of variability in soil C:N, and does not consider how
soil C:N might feed back on the quantity and quality of plant inputs and subsequent microbial

activity nor how minerals could act as a filter on soil C:N stoichiometry. Plant, microbial, and soil



205
206
207
208
209
210
211
212
213
214

215

216

217

218

219

220

221

222

223

224

225

226

physico-chemical drivers have the potential, at least in certain circumstances, to improve the
mechanistic representations of modeled soil C:N, even if they do not alter predictions of spatial
variation in soil C:N. We review the empirical evidence for the importance of these emerging
drivers and whether they align with assumptions in models. We focus on drivers that are
evidenced as empirically important because adding additional processes to models can require
additional input data, parameter optimization, and computational costs. Thus, there must be
careful consideration of the balance between model complexity and realism when adding
additional processes to models. We note that no one model is likely able to represent all of the
processes we discuss below, but that representing the emerging drivers in some models will
allow for research questions better tailored to systems where a given driver is particularly

important.

3.1 Plant and microbe feedbacks

3.1.1 Biological Nitrogen Fixation

Biological N fixation represents a process that could influence soil C:N in ways not
captured in the foundational representation of soil C:N controls. N fixation occurs through two
general pathways: as plant symbiotic N fixation, where N is fixed for direct plant use via a
symbiotic relationship with root-nodulating bacteria, and as “free-living” N fixation, where N is
fixed by both autotrophic and heterotrophic bacteria that occupy a diversity of non-vascular plant
niches (e.g., soil, leaf litter, wood, etc.; Vitousek et al. 2013, Cleveland et al. 2022). Both forms
contribute new N inputs that enhance relative plant and soil N content, and thus may be
hypothesized to reduce soil C:N (Vitousek et al. 1987, Vitousek and Walker, 1989, Adams et al.

2016, Gou et al. 2023). However, experimental and empirical studies have shown that invasion
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and/or introduction of N-fixing plants can have positive, negative, or neutral effects on soil C:N
(Johnson and Curtis, 2001, Liao et al. 2008).

Although N fixation has been implemented in many models, it is commonly simulated
using phenomenological relationships between empirically derived N fixation rates and net
primary production or evapotranspiration (Wieder et al. 2015, Meyerholt et al. 2016). Symbiotic
N fixation (alone) is most often included in models as an addition of N to the plant pool. By
contrast, when free-living N fixation is included in models, it is often represented as an addition
of N to the mineral N pool (Metherell et al. 1993, Reed et al. 2011, Hartman et al. 2018,
Lawrence et al. 2019). These formulations of N fixation could promote increased microbial
activity and subsequent input to SOM pools when microbial growth is associated with increased
labile plant material and reduced microbial N limitation, such as in CORPSE-FUN, thereby
reducing SOM C:N (Sulman et al. 2017).

More mechanistic implementations of N fixation could more accurately simulate how N
fixation shapes SOM C:N stoichiometry. Potential model improvements include representations
of non-symbiotic, rather than solely symbiotic, N inputs, N fixation inputs based on both C
supply and N demand (rather than one or the other), and benchmarking against new and
emerging empirical estimates of global N fixation (Vitousek et al. 2013, Davies-Barnard and
Friedlingstein, 2020). Improved model representations of N fixation would further advance
models that simulate N fixation using a resource optimization strategy, which are currently the
most advanced representations of N fixation (e.g., GFDL-LM3-BNF, CLM5, and CABLE; Fisher
et al. 2010, Shi et al. 2016, Lawrence et al. 2019, Peng et al. 2020, Kou-Giesbrecht et al. 2021).
Given that increasing atmospheric CO: concentrations are hypothesized to favor N fixation over
much of the world (Novotny et al. 2007, Hungate et al. 2009, Nasto et al. 2019), improved
representations of N fixation in models may be critical for accurately simulating soil C:N under

global change.
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3.1.2 Mycorrhizae

Mycorrhizal type and associated plant traits influence soil C:N stoichiometry and nutrient
cycling through differences in their nutrient acquisition strategies. Ericoid- and ectomycorrhizal-
(ECM) dominated ecosystems typically have higher litter and soil C:N ratios and slower rates of
nutrient cycling compared to arbuscular mycorrhizal- (AM) dominated ecosystems (Phillips et al.
2013, Averill et al. 2014). The direct connections between plant litter quality and soll
stoichiometry are captured by the plant-to-soil pathway in the foundational representation of soil
C:N. However, mycorrhizae allow for a two-way relationship between plants and soil. As
mycorrhizae receive C from plant roots, they can either produce enzymes to mine nutrients from
SOM (ECM) or expand their hyphal network to more efficiently exploit soil inorganic N (AM;
Brzostek et al. 2013, Midgley et al. 2016, Tedersoo and Bahram, 2019). Strategies related to
these different nutrient economies may be particularly important for biogeochemistry in forest
ecosystems, which can vary in the relative abundance of mycorrhizal types, and in ecosystems
experiencing shifts in plant species composition, such as shrub encroachment in the Arctic
(Wookey et al. 2009). Yet, explicit representations of these plant-mycorrhizal relationships are
largely missing from models.

Some attempts have been made to represent plant-mycorrhizal relationships in models
with variations in belowground plant C inputs across mycorrhizal type and soil N availability
(Baskaran et al. 2017, Sulman et al. 2017, He et al. 2018, Shi et al. 2019, Huang et al. 2022).
Overall, these modeling experiments show that incorporating mycorrhizae increases model-
observation agreement of soil C stocks and C:N ratios. Meanwhile, they suggest that simulating
plant-mycorrhizal relationships may constrain the impacts of climate change on sail
biogeochemistry and plant productivity. For example, as nutrient demand increases with
elevated CO,, ECM associations allow plants to mine SOM for N, enhancing plant productivity

to a greater extent than AM systems that are less likely to mine N from SOM (Terrer et al.
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2021). At the same time, this process typical of ECM-dominated ecosystems can increase
competition between ECM and free-living saprotrophs, reducing the overall decomposition of
SOM by saprotrophs and increasing soil C stocks and C:N ratios (Averill et al. 2014). Thus,
incorporating these plant-mycorrhizal associations into models may also capture the divergent
responses of forest ecosystems with different mycorrhizal associations to global changes like
elevated CO: (Sulman et al. 2019), as has been observed at Free-Air Carbon Enrichment

(FACE) sites (Terrer et al. 2016).

3.1.3 Plant priming of soil microbial activity

Soil priming, the accelerated decomposition of SOM via inputs of plant C, is a process
with complex mechanistic underpinnings and highly variable responses to global changes
(reviewed in Bernard et al. 2022). In some cases, plant priming may align with the foundational
understanding of the plant-soil-stoichiometric continuum, where greater decomposition of fresh
plant input increases microbial contributions to SOM and lowers soil C:N (Chen et al. 2014).
However, at least three mechanisms may drive soil responses that likely differ from what is
captured using foundational representations of soil C:N. First, higher soil microbial activity under
priming may simultaneously accelerate decomposition rates of C-rich POM (in addition to
decomposition of fresh plant input), reducing bulk C stocks and decreasing soil C:N (Bernard et
al. 2022). Second, in nutrient-limited conditions, selective mining of N from SOM can occur
when soil microbes use labile plant exudates as an energy source and preferentially immobilize
N or N-rich material from SOM, thereby increasing SOM C:N (Chen et al. 2014, Hicks et al.
2020, Na et al. 2022). Third, priming could alter microbial community composition, favoring
microbial functional groups that preferentially degrade substrates with high or low C:N ratios
(Geyer et al. 2020). Therefore, representation of priming may be particularly important in

scenarios where we expect changes to plant input quantity and quality ~ (e.g., changes in plant
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community composition or allocation) and nutrient limitation (e.g., elevated CO», Mason et al.
2022).

Priming effects are not typically included in first order models because SOM turnover
times are only modified by environmental scalars (e.g., temperature and moisture). A notable
exception is the ORCHIDEE-PRIM model, which represents priming by modifying turnover times
with changes in plant productivity, but only represents C (Guenet et al. 2016). Explicit
representation of microbial activity, however, may provide more sophisticated, testable
representations of priming mechanisms, including higher turnover rates, microbial N-mining, or
preferential degradation of different SOM pools by different microbial functional types (Schimel,
2023). Indeed, microbially explicit models may include an emergent representation of priming
due to relationships between substrate availability and microbial growth (Schimel, 2023).
Current models that specifically simulate priming operate on relatively short or small temporal or
spatial scales, with the goal of better understanding the complex interactions of microbes, OM,
and minerals and dynamics of priming (Bernard et al. 2022). For example, the SYMPHONY
model (Perveen et al. 2014) simulates N-mining in priming, but only at landscape to ecosystem
scales. However, the importance of incorporating priming at larger scales is increasingly

recognized (Terrer et al. 2021).

3.1.4 Root exudation of organic acids

In addition to root exudates that accelerate microbial activity and N mineralization via
priming, plants also produce exudates that can directly increase SOM availability. Root
exudation of organic acids (e.g., oxalic acid) can directly destabilize MAOM by locally lowering
the pH in the rhizosphere, thereby chelating or competing with previously mineral-bound organic
matter (Keiluweit et al. 2015, Jilling et al. 2018). This effectively promotes faster turnover of
organic matter, as MAOM typically has long turnover times and low C:N ratios (Lavallee et al.

2020). Thus, organic acids may increase the availability of decomposable substrates and
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accelerate rates of N mineralization and plant N uptake (Jilling et al. 2018, Daly et al. 2021).
Given the relatively low C:N of MAOM, its decomposition would tend to drive a loss of N-rich
OMand subsequently increase  the bulk soil C:N ratio.

Currently, depolymerization of SOM by enzymes and decomposers is considered the
rate limiting step for N mineralization (Schimel and Bennet, 2004, Mooshammer et al. 2014),
which ultimately constrains plant N availability and primary production in models. MAOM is often
considered inaccessible to plants and microbes, though recent advances suggest that it may be
an important plant N source (Jilling et al. 2018, Lavallee et al. 2020, Daly et al. 2021). As such,
the direct effects of plant root inputs on the turnover of MAOM is virtually absent in models.
Instead, in most models MAOM:-like pools are represented with long turnover times that are
modified by environmental scalars (temperature or moisture) and potentially modified by soil
properties like soil texture or clay content. Very few models actually represent root exudation,
and those that do only partially represent complex priming effects. For example, FUN-CORPSE
only considers mycorrhizal response to exudates (Sulman et al. 2017). The closest
approximation may be from the model ecosys, which simulates root exudation and exchange of
organic C for organic N and P (Grant et al. 2016, Mekonnen et al. 2019, Chang et al. 2020,
Bouskill et al. 2022). However, none of these models represent direct destabilization of MAOM
caused by root exudation of organic acids. Indeed, consideration of mycorrhizae, priming, and
organic acids introduces additional complexities to the emerging representation of soil C:N that
are worth exploring further in models. As a preliminary step towards this exploration, we
investigate the influence of priming, which could both increase or decrease soil C:N, and that of

root exudation of organic acids, which we expect to increase soil C:N, below.
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3.1.5 Biotic Case Study: Simulating priming and desorption in the MIMICS-

CN model

As a case study, we explored the potential effects of root exudation that causes priming
and desorption (via exudation of organic acids) on steady state pools simulated by the MIMICS-
CN model (Kyker-Snowman et al. 2020, Eastman et al. 2023). We use this case study and
those in following sections (sections 3.2.2 and 4.1) to illustrate the potential importance of the
emerging drivers of soil C:N but acknowledge that studies at larger scales and with different
models will be needed to fully evaluate the importance of the emerging drivers for soil C:N. All
experiments were performed in a hypothetical temperate deciduous forest with identical climate,
litterfall inputs, litter quality and soil conditions. In all simulations, we calculated bulk soil C:N
ratios as well as steady state C pools to explore the mechanisms driving changes in bulk soil
C:N. The baseline simulation received root exudates as inputs to the metabolic litter pool (LITm)
with a defined C:N ratio of 15 (Kyker-Snowman et al., 2020). This baseline experiment was
designed to illustrate an implicit representation of root exudation fluxes, which are handled with
the same stoichiometry as relatively labile plant detritus. At steady state, the baseline
experiment simulated a bulk soil C:N ratio of 9.6, total steady state C of 6.4 kgC m2, microbial
biomass was 1.5% of soil C pools, and 43% of SOM was in the SOMr pool (physico-chemically
protected SOM, which we equate with MAOM; Figure 4). The bulk soil C:N stoichiometry and
fraction of the SOMp pool were lower than median observational estimates (Figure 5, discussed

below), which is consistent with previous work with MIMICS-CN (Kyker-Snowman et al. 2020).
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Figure 4. Response ratio of C stocks in various pools of MIMICS-CN under priming (blue) and
priming+desorption (yellow) experiments as compared to the baseline (green). Bulk soil C:N ratios for
each experiment are shown in the inset plot. LIT_m = metabolic litter; LIT_s = structural liter; MIC_r =
copiotroph microbial biomass; MIC_K = oligotroph microbial biomass; SOM_p = physically protected
SOM; SOM_c = chemically protected SOM; SOM_a = active SOM.

In a second “priming” experiment we more explicitly considered the effects of priming via
root exudation by transferring 10% of metabolic litter inputs to the microbially-available SOM
pool (SOM,) at initialization. This simulation was designed to represent potential plant priming of
soil microbes without changing the quantity or chemical quality of plant inputs to soils. This
representation of priming increased total microbial biomass and the relative abundance of
oligotrophic microbes (MICk), which resulted in a slightly higher microbial biomass C:N
compared to the baseline experiment (7.0 vs. 6.9, respectively). In response to priming,

microbial community shifts accelerated decomposition of litter and SOMc pools, relative to the
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baseline simulation, which slightly decreased total C stocks and bulk soil C:N ratio (6.2 kgC m2
and 9.5, respectively; Figure 4). Broadly, these results are consistent with stimulation of
oligotrophic microbial communities that have a competitive advantage over copiotrophic
communities when utilizing more chemically complex substrates (Fontaine et al. 2003). In our
simulations, oligotrophs increased in relative abundance and produced more enzymes that
decompose litter and SOMc (comparable to POM). Yet, the magnitude of the effects on steady
state pools and bulk soil stoichiometry were relatively small. The subtle changes in soil C stocks
and C:N ratio may indicate that either the priming effect does not exert a strong control of
steady-state behavior in the model, or that our simple priming experiment does not capture
more complex priming mechanisms (Hicks et al. 2020, Karhu et al. 2022, Na et al. 2022).
However, this simple priming experiment captures priming-induced directional changes in
microbial community composition and soil C:N that are consistent with theoretical expectations,
suggesting that more work is needed to evaluate whether the magnitude of these changes are
appropriate.

In a third “priming+desorption” experiment, we considered the potential role of organic
root acids liberating MAOM. Here, we repeated the priming experiment, but also increased the
desorption rate of SOMp (comparable to MAOM) by 10% relative to the baseline simulation.
Increasing the desorption rate decreased the size of the SOMp pool relative to both the baseline
and priming experiments. As the SOMp pool in MIMICS has a relatively low C:N ratio, reducing
the size of this soil fraction increases bulk soil C:N ratios slightly above baseline values (9.7;
Figure 4). Again, the changes in total soil C stocks and C:N stoichiometry associated with this
simplistic consideration of organic acids liberating MAOM are relatively small, but the direction
of these changes are in line with theoretical expectations (Keiluweit et al. 2015, Jilling et al.
2018). This experiment also underscores the data and knowledge gaps associated with the
extent to which organic acids from root exudates may accelerate desorption of MAOM (Jilling et

al. 2021). It is technically challenging to quantify these fluxes even in lab incubations with
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artificial roots at sub-millimeter scales (Keiluweit et al. 2015) and scaling these insights to larger,
more field-relevant scales remains speculative. Progress likely requires a more advanced
empirical understanding and representation of soil physico-chemical properties and their

influences of SOM dynamics.

3.2 Soil physico-chemical effects

3.2.1 Mineralogy

Three interrelated factors provide a robust 'bottom-up', soil-driven regulation of soil C:N
ratio: soil texture, mineral composition, and aggregation. Texture, which describes the relative
proportions of sand, silt, and clay particles, is known to impact the C:N stoichiometry of SOM
because charged clay surface particles can form stable associations with charged moieties like
amino groups (Jilling et al. 2018), leading to N enrichment in clay fractions compared to sand
fractions (Haddix et al. 2016, Amorim et al. 2022). Increased clay content increases total
surface charge and surface area available for organo-mineral interactions that form MAOM.
MAOM is often defined as the size fraction associated with silt and clay (Leuthold et al. 2022).
Thus, as this fraction increases, we expect more organic matter to accumulate in MAOM with
comparatively low C:N ratio. However, silt may contain primary particles, have substantially less
surface charge, and be a microsite for accumulating fungal residues with relatively high C:N
ratios (Six et al. 2006, von Lutzow et al. 2007). These factors can lead to variation in the
relationship between MAOM fractions and soil C:N ratios that depend upon the relative
proportions of silt and clay and at the same time their geochemical properties.

Some studies indicate that N-rich organic compounds may be preferentially adsorbed by
certain types of soil colloids (Kaiser and Zech, 2000, Kleber et al. 2005, Mikutta et al. 2010, Yu

et al. 2013, Jilling et al. 2018, Zhao et al. 2020), potentially accounting for variable C:N ratios
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depending on mineral composition. Recent studies show sorption of both N-rich microbial
products and N-free aromatic compounds to soil mineral surfaces (Kramer et al. 2017, Kopittke
et al. 2018, Gao et al. 2021). This variation in sorption may arise from variation in surface
charge or nano-scale topographic characteristics of minerals (Vogel et al. 2014). Iron (Fe) and
aluminum (Al) may be uniquely strong binding agents in soils rich in these minerals (e.g.,
Andisols). These soils exhibit preferential binding of low C:N SOM in organo-metal
nanocomposites (<2 um) and associations between N-rich compounds and ferrihydrite (an Fe
mineral) concentrations (Asano et al. 2018, Zhao et al. 2020). Importantly, Fe content has been
shown to be negatively associated or uncorrelated with clay content in certain environments,
indicating the unique influence of Fe minerals (Rasmussen et al. 2018, Zhao et al. 2020). Soil
pH can also interact with mineral composition, through controlling the relative importance of
select SOM stabilization mechanisms (e.g., organo-metal complexation in acidic soils to
exchangeable calcium in basic soils; Rasmussen et al. 2018). For example, the amount of
pedogenic oxide-hydroxides affects the density of hydroxyl-groups and the formation of mineral
associations via ligand exchange; pH can affect the protonation of these hydroxyl-groups and
thereby the propensity for ligand exchange (Kleber et al. 2015). Thus, pH interacts with mineral
type to drive relative sorption of C or N, potentially driving N-enrichment in Fe and Al minerals in
humid and acidic environments and in phyllosilicates in dry and basic environments.

The texture and mineral composition of soil also regulate soil aggregation, which is
another control over soil C:N ratios (Schweizer et al. 2023). Aggregates are clusters of soil
particles (sand, silt, clay) held together by various organic and inorganic binding agents.
Aggregation processes influence the types of organic matter stabilized and the corresponding
C:N ratios vary based on the aggregate size, formation, and binding mechanisms, all of which
depend on numerous factors, including mineral and organic C content, faunal activity, and land
cover (Elliott 1986, Fonte et al. 2007, An et al. 2010, Maaf et al. 2015, Haddix et al. 2020). For

instance, it is known that microaggregates (< 250 um) accumulate N-rich compounds, primarily
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derived from microbial sources, and efficiently form MAOM (Fulton-Smith and Cotrufo, 2019). In
contrast, larger macroaggregates (> 250 um) typically form around POM with high C:N ratios
(Six et al. 2000). Roots and certain fungal hyphae also stabilize macroaggregates, and in the
process their biomass becomes somewhat protected from decomposition within the aggregate
(Graf and Frei, 2013, Lehmann et al. 2020). Tillage and other destabilizing forces that break
apart larger aggregates speed up the decomposition of POM. This favors the accumulation of
smaller, more resistant, and stable aggregates filled with lower C:N ratio SOM, ultimately
resulting in lower bulk soil C:N (Grandy and Robertson, 2007).

In most soil biogeochemical models, minerals can indirectly control bulk soil
stoichiometry by modulating the proportion and persistence of organic matter in mineral-
associated pools. Given the ubiquity of measurements, most models use soil texture as a proxy
for mineral sorptive capacity (Rasmussen et al. 2018, Sulman et al. 2018, Georgiou et al. 2021).
In particular, some models use clay content (e.g., MIMICS and CORPSE; Wieder et al. 2019a),
while many others use the sum of clay and silt content (e.g., Millennial, COMISSION, MEMS;
Abramoff et al. 2018, Aherns et al. 2020, Zhang et al. 2021). Mineral-associated OM pools in
most models are primarily composed of microbial byproducts and necromass with relatively low
C:N ratios, and to a lesser degree from direct sorption of dissolved or particulate organic matter;
thus, texture ultimately acts as a control of bulk soil C:N stoichiometry. Only a subset of models
currently represent mineral composition effects via equations relating pH and MAOM — namely,
the Millennial, ecosys, and MEMS models (Grant et al. 2012, Zhang et al. 2021, Abramoff et al.
2022, this issue). The Millennial and COMISSION models also include broad classes of
mineralogy by separating soils into low- and high-activity minerals, based on whether soils are
dominated by 1:1 or 2:1 clays, respectively (Aherns et al. 2020, Abramoff et al. 2022, this issue).
Aggregation is a possible pathway for mineral control over soil C:N that only two C-only models
have incorporated. Both AggModel and Millennial allow for both POM and MAOM to be

captured in aggregates, whereas AggModel represents the hierarchy of micro- and macro-
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aggregates and Millennial has a single aggregate pool (Segoli et al. 2013, Abramoff et al. 2018).
While neither AggModel nor Millennial currently considers N, protection of POM in aggregates
might allow for higher C:N POM pools to persist, effectively increasing soil C:N. The frameworks
developed in these models could someday help to understand the relationship between soil C:N
and aggregate formation. To gain a preliminary understanding of the role of mineralogy in
shaping soil C:N ratios we evaluate the relationships between SOM fractions, mineral variables,

and soil C:N in both empirical data and models.

3.2.2 Physico-chemical Case study: Evidence for proxy variable inclusion in
models

For almost 30 years, soil scientists have called for correspondence between measured
and modeled pools of SOM (Christensen et al. 1996, Elliot et al. 1996, Blankenship et al. 2018)
and, increasingly, models are formulated to model measurable pools of SOM from physical
fractionations (Luo et al., 2014; Abramoff et al. 2018, Robertson et al. 2019). MAOM,
operationally defined as the pool associated with silt and clay, is expected to preferentially
contain microbial residues and consequently have a relatively low C:N ratio (Grandy at el. 2007,
Lavallee et al. 2020), presumably leading to positive associations between silt+clay content and
MAOM content, and negative associations of each of these with soil C:N. However, the strength
of silt and clay control of stabilization of organic matter and, consequently, soil C:N, especially
as compared to other mineralogical factors, remains contentious in theoretical and empirical
work and variable in model formulations (Bailey et al. 2017; Rasmussen et al. 2018, Sulman et
al. 2018, Wieder et al. 2018).

We explored the potential strength of silt and clay control, as well as several proxy
variables as emerging indicators of mineral effects on C:N stoichiometry in models and in

observational synthesis data, namely Georgiou et al. (2022a, b) and the Soils Data
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Harmonization database (SoDaH; Wieder et al. 2021). Using Georgiou et al. (2022a), we found
soil C:N was lower in soils with higher proportions of silt+clay (Figure 5a). These silt+clay-rich
soils were also associated with a greater proportion of C in MAOM (Figure 5a), consistent with
theoretical understanding of MAOM (Lavallee et al. 2020). This observation is already captured
in MIMICS-CN (Figure 5b) and could likely be demonstrated with other models that use SOM
pool structures that represent MAOM and POM (e.g., MEMS, Millennial, and CORPSE; Sulman
et al. 2017, Zhang et al. 2021, Abramoff et al. 2022, this issue). These findings support calls for
further work benchmarking modeled SOM pools to measured ones (Berardi et al. 2020).
Currently, this benchmarking has only been carried out for a few models with and without these
measurable pools explicitly represented (Zimmerman et al. 2007, Zhang et al. 2021). Given
strong relationships between SOM pools and soil C:N, greater benchmarking efforts are likely to

improve confidence in simulations of soil C:N as well as soil biogeochemistry more broadly.

a. Observational Data b. MIMICS-CN output
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Figure 5. Bulk soil stoichiometry (C:N ratio; left y-axis, black points) and percentage of bulk soil organic
carbon that is mineral-associated (right y-axis; green points) across different soil texture regimes. (a) Soil
texture regimes are summarized by ranges in clay plus silt percentages. Points and error bars represent
means * 95% confidence intervals on the mean from an observational synthesis of soil fractions
consisting of > 1200 measurements (n = 166, 388, 411, and 261 in the < 25%, 25-50%, 50-75%, >75%
clay + silt content regimes, respectively). (b) MIMICS-CN output for a hypothetical temperate deciduous
forest for soils with different amounts of clay, which is the controlling variable for sorption in MIMICS-CN,
rather than silt+clay. MAOM-C/SOM-C is calculated from MIMICS output as
SOMp/(SOMa+SOMc+SOMp)*100%.
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While our data suggest that bulk soil C:N is partly controlled by soil texture, the utility of
other proxies for mineralogy is underexplored. To investigate the relevance of other
mineralogical factors, we compared drivers of soil C:N in the SoDaH database to those in model
simulations. For the observational data, we filtered the SoDaH database to isolate topsoil (< 20
cm) data from studies that measured soil C:N and litter C:N. We generated model data by
running global simulations of a microbially-explicit (MIMICS-CN; Kyker-Snowman et al. 2020)
and a microbially-implicit (CASA-CNP; Wang et al. 2010) model forced with the same globally-
gridded forcing data in a biogeochemical testbed (Wieder et al. 2018; detailed in Supplementary
Material A). We then used multiple linear regressions (MLRs) to determine which variables
emerged as important relative drivers of measured (SoDaH) and modeled (MIMICS-CN and
CASA-CNP) soil C:N (detailed in Supplementary Material A). We analyze these below as
qualitative comparisons, given the different geographic extents and data coverage between the
observational data and models. For both measured and modeled data, we considered a three-
factor MLR with mean annual temperature (MAT), clay content, and litter C:N as predictors for
measured or modeled soil C:N. We also considered a seven-factor MLR with additional
mineralogical factors as predictors for measured soil C:N, to evaluate which of these may be
missing from model formulations (Table 1). For the three-factor MLRs, MIMICS-CN reasonably
captured the relative importance of drivers in the SoDaH database whereas CASA-CNP
depicted lower relative importance of clay, likely because it uses clay+silt to compute passive C
formation, and higher relative importance of litter C:N, aligning with the more foundational
representation of soil C:N (Table 1). Notably, the CASA-CNP MLR likely had a very low R? value
because it has prescribed ranges for the C:N of various pools and bulk C:N stems from the
balance across those pools, exemplifying how fixed pool C:N fails to capture important drivers of
soil C:N. In contrast with the three-factor MLRs, the seven-factor MLR with all possible proxies
identifies clay, Fe, Al, and pH as the strongest relative drivers of measured soil C:N (Table 1).

This suggests mineral composition, with Fe, Al, and pH as proxies, in addition to soil texture
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(e.g., clay), are important drivers of soil C:N relative to the variables considered here. However,
mineral composition control of organic matter stabilization, and consequently soil C:N, is

represented in few models (Aherns et al. 2020, Abramoff et al. 2022, this issue).

Table 1. Results from multiple linear regression (MLR) analyses of a subset of the SoDaH database and
model outputs (Supplementary Material A). The dependent variable in each model is observed or
modeled soil C:N. Relative importance percentages show the percentage of the total variance explained
by each statistical model that a given individual variable explains. “NA” indicates a variable that was not
included in a given model. Greener cells have higher relative importance percentages. MAT is mean
annual temperature; MAP is mean annual precipitation; Fe_ox, Al_ox, and Si_ox, and Fe_dith, Al_dith,
and Si_dith, are oxalate-extractable and dithionite-extractable iron, aluminum and silica, respectively.

Relative importance percentage

Litter
MLR type n R? AIC MAT Clay CN MAP Depth pH Fe_ox Al ox Si_ox Fe_dith Al _dith Si_dith

SoDaH
observations 239 028 607 209% 46.5% 326% NA NA NA NA NA NA NA NA NA

SoDaH
observations 239 052 386 97% 155% 9.4% 87% 19% 105% 4.5% 93% 49% 11.1% 125% 1.8%

MIMICS-CN

model 2697 0.80 3318 31.1% 31.4% 375% NA NA NA NA NA NA NA NA NA
CASA-CNP

model 2697 0.06 7500 32.7% 2.8% 646% NA NA NA NA NA NA NA NA NA

The concept of a “mineral filter” (Mikutta et al. 2019) acting as a bottom-up control of
SOM composition is supported overall by our analyses (i.e. the high relative importance of silt
and clay, pH and specific extractable metals; Figure 5; Table 1). Although the patterns observed
here do not definitively justify incorporating new mineral-related variables or processes into
models, they could be explored further in models or in field or lab experiments. Field
experiments could be used to explore possible mechanistic relationships between pH and
mineral composition. Using such a relationship, pH is an easily measured variable that could be
used to improve models, for example by making the model coefficient of clay stabilization
dependent on pH, as in the MEMS (Zhang et al. 2021) and Millennial (Abramoff et al. 2022, this
issue) models. The relative importance of dithionite-extractable Fe and Al in driving soil C:N in

our results also supports the importance of mineral composition. Increased use of chemical



581  extractions, which are more expensive and less widely measured, may be useful in identifying
582  the specific minerals (e.g. Fe and Al oxides) that stabilize low C:N microbial residues

583 (Rasmussen et al. 2018). More widespread measurements of specific soil mineralogy coupled
584  to detailed mechanistic studies exploring the affinities of different minerals for N-enriched

585  organic moieties (e.g. amino acids) may provide clarity about the role of edaphic factors in

586 filtering SOM and soil C:N. These measurements would allow proxies like pH and soil Fe and Al
587  oxides to be included in models as external parameters, used during model initialization, or

588 even dynamic state variables, as has been done for redox reactions (Maggi et al. 2008; Rizzo et
589 al. 2014; Calabrese & Porporato, 2019). Representing dynamic pH or mineralogy could be

590 particularly important under variable soil moisture, N or heavy metal pollution, or when

591  considering how pedogenic processes influence organic matter stabilization at millennial

592  timescales. Better representation of mineralogy, as well as the plant and microbial drivers

593 above, will be key for models' ability to predict soil C:N under global change.

se«  4.Implications for Studying Global Change

595 Global changes, such as rising atmospheric CO», N deposition, and changing climate
596 influence the entire plant-soil system. For example, elevated CO: generally increases and N
597  deposition generally decreases the C:N of vegetative tissues and litter entering the soil system
598 (Yang et al. 2011, Sardans et al. 2012, Yue et al. 2017, Sun et al. 2020). While these changes
599  to vegetation C:N stoichiometry will likely introduce numerous feedbacks in the plant-soil

600 system, the net effects of these opposing influences are not well characterized. Models are

601  valuable tools for exploring the trajectories of these global changes and understanding the

602 possible large-scale implications of variable controls of soil stoichiometry for C and N dynamics
603  (Wieder et al. 2019b). Examining elevated COz and N deposition in coupled C-N models

604 therefore presents a good opportunity to evaluate our foundational versus emerging
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representations of the controls of soil C:N stoichiometry. Importantly, other global changes, such
as changes in temperature and moisture, land use change, and increases in wildfire occurrence
and severity, will likely influence soil C:N differently under the foundational versus emerging
representations but we focus on elevated CO. and N deposition here for brevity (Sistla et al.

2014, Pellegrini et al. 2018, Sun et al. 2021).

4.1 Elevated CO»>

As atmospheric COz rises, plant tissue C:N ratios typically increase (Cotrufo et al. 1998,
Wang et al. 2021, Gojon et al. 2022), altering the chemistry of litter inputs to the soil system.
Higher litterfall C:N ratios appear to reduce decomposition rates and soil N availability, possibly
inducing progressive N limitation of vegetation growth (Luo et al. 2004, Liang et al. 2016, Craine
et al. 2018, Mason et al. 2022). Simultaneously, under elevated CO- plants can shift allocation
patterns to potentially mitigate N limitation (Phillips et al. 2009). To increase N uptake, plants
increase C allocation to roots and root exudates that both directly enhance plant nutrient
access, while also stimulating soil microbial activity that mineralizes nutrients (Phillips et al.
2011, Cheng et al. 2012, Terrer et al. 2016). Both litter chemistry and plant C allocation changes
under elevated CO: could increase soil C:N through greater incorporation of high C:N plant
material and N mining from N-rich SOM, respectively (De Graaf et al. 2006, Phillips et al. 2011).
However, N could also be mined from higher C:N SOM pools, like POM, that are more
accessible to microbes, thereby reducing bulk soil C:N (Sulman et al. 2014). Thus, the relative
influence of litter chemistry and root exudation effects on soil C:N are uncertain but likely
important for a better mechanistic understanding of ecosystem responses to elevated CO..

However, accurately capturing ecosystem biogeochemical responses to elevated CO-
remains challenging for land models (Zaehle et al. 2013, Davies-Barnard et al. 2020, Eastman

et al. 2023, Hauser et al. 2023). Part of this challenge lies in simulating appropriate plant and
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soil responses to elevated CO; and their interactions. To explore potential soil biogeochemical
responses to elevated CO. we conducted a series of idealized model experiments with MIMICS-
CN. Building on the steady-state results presented in the biotic case study (section 3.1.5; Figure
4), we ran a series of 50-year transient simulations for the priming treatment under a pair of
elevated CO; scenarios. In the first experiment we represented elevated CO: as a 20% step
increase in net primary production (NPP) and a 10% increase in litterfall C:N, relative to the
“ambient” conditions under which the models were initialized (Norby et al. 2005, Wang et al.
2021). For the second experiment we repeated these step increases in productivity and litterfall
C:N, but also increased allocation of C to root exudates from 10% to 20% of metabolic litterfall
inputs, without increasing the total amount of inputs, to evaluate the influence of this emerging
driver. For brevity we calculated the response ratio of different soil pools and fluxes simulated
by MIMICS-CN after 50 years under elevated CO: divided by their initial “ambient” state.
Increased NPP and litterfall C:N were most influential on soil biogeochemistry when
allocation to root exudates also increased, indicating the importance of representing this
emerging driver (Figure 6a). Increased C allocation to exudates increased microbial biomass,
and particularly that of oligotrophs (reduced MICr:MICK). Oligotrophs preferentially decomposed
the high C:N SOMc pool (comparable to POM), thereby slightly reducing bulk soil C:N. Field
manipulations also report increased microbial biomass and negligible changes in bulk soil C:N
responses under elevated CO: that are consistent with our model results (Yue et al. 2017, Zou
et al. 2023). However, empirical studies also suggest that under elevated CO;, both the ratio of
copiotrophs:oligotrophs and the POM pool increase (Rocci et al. 2021, Sun et al. 2021).
Additionally, N mineralization increased in our experiments under elevated CO: (Figure 6a). This
reflects higher rates of litter N inputs (from increased NPP) that occurred with our elevated CO-
experiment but runs contrary to what may be expected under progressive N limitation (Luo et al.
2004). Indeed, when we isolated the potential effects of lower litter quality under elevated COso,

MIMICS-CN showed reduced N mineralization rates, as expected from progressive N limitation
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(Supplementary Figure 1). We also compare our simulations to the observations from the Duke
free-air COz enrichment (FACE) experiment because this site exhibits the priming responses we
evaluate here. We note that this is intended to be a more qualitative comparison than a rigorous
validation, and note that field measurements were derived from distinct studies under different
periods of elevated CO: treatment. We find remarkably similar increases in microbial biomass
and similar minimal responses of bulk C:N and SOMc (comparable to the free light fraction of
SOM) as observed values for our 10% allocation simulations (Figure 6b; Lichter et al., 2005,
Drake et al. 2011). However, as noted above, increased N mineralization and reduced
copiotroph to oligotroph ratio are opposite to observed decreases in N mineralization from a
100-day incubation and increases in the bacterial to fungal ratio (somewhat comparable to the
copiotroph to oligotroph ratio, Figure 6b, Billings and Ziegler, 2005, Feng et al. 2010). Our
experiments highlight that plant-microbe-mineral interactions, represented by priming via root
exudates (an emerging driver), provide a more nuanced assessment of soil C:N responses to
elevated CO: but that further investigation is needed to revise structural assumptions or
parameterization of MIMICS-CN, or other models trying to represent the emerging

representation of soil C:N under global change.
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Figure 6. (a) MIMICS-CN simulation results showing response ratios after 50 years of elevated CO2 (year
50/year 1) with either 10% (circles) or 20% (triangles) of metabolic litter inputs allocated to root exudates.
Elevated CO: is implemented as a 20% step increase in net primary production (NPP) and a 10% step
increase in litter C:N. Inset shows bulk soil C:N on a finer scale. (b) Observed response ratios to elevated
CO:z2 from the Duke FACE experiment with data from Billings and Ziegler (2005), Lichter et al. (2005),
Feng et al. (2010), and Drake et al. (2011). Note different y-axes. Bulk_CtoN = bulk soil C:N; MicC =
microbial C; MICr:MICK = copiotroph-to-oligotroph ratio; SOMc = chemically stabilized soil organic matter;
Bac2Fun = bacteria-to-fungi ratio; fLF = free light fraction; N_min = N mineralization.

4.2 Nitrogen Deposition

While elevated CO- drives increases in ecosystem C:N, N deposition, inputs of reactive
forms of inorganic and organic N from the atmosphere to ecosystems, might be hypothesized to
have the opposite effect. However, ecosystem responses to N deposition are complex and
highly variable across broad spatial scales, suggesting N deposition effects might not be so
straightforward (Schlesinger, 2009, Kanakidou et al. 2016). With N deposition, plant biomass
and shoot:root generally increase and plant shoot, root, and litter C:N generally decrease, which
could be expected to favor microbial use of high quality plant material, ultimately favoring
MAOM formation and lower SOM C:N (Yang et al. 2011, Averill and Waring, 2018, Sun et al.
2020, Feng et al. 2022). In contrast, N deposition could also increase SOM C:N through
reduced lignocellulosic enzyme activity, reduced microbial activity via acidification and C
limitation, and reduced strength of mineral-OM bonds (Frey et al. 2004, Frey et al. 2014,
Carrara et al. 2018, Pan et al. 2020, Ning et al. 2021, Feng et al. 2022). These effects could
specifically increase SOM C:N through reduced decomposition of high C:N SOM (Eastman et
al. 2022), reduced N-rich microbial input, and desorption of relatively N-rich OM, respectively.
The diversity of effects from N deposition have made it difficult to predict consistent drivers of
SOM responses to this global change (Averill and Waring, 2018).

Unless specifically formulated to do so, models struggle to depict the wide array of
effects of N deposition. For example, most models add N deposition to the mineral N pool, and

simulations generally show increases in plant productivity and consequently microbial activity.
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However, N deposition generally reduces microbial activity in empirical studies (Zhang et al.
2018). N deposition in models can also modify plant C:N and drive changes in SOM C:N
through the foundational representation of soil C:N controls (Figure 2a; Throop et al. 2004).
However, most models lack the mechanistic representation for specific enzyme responses,
dynamic and influential soil pH, and N-induced changes in sorption, although the MEND model
represents specific enzyme groups (Wang et al. 2022). Eastman et al. (2023) tackled the
challenge of representing empirical outcomes from a 30-year N deposition experiment in a
mixed hardwood forest in two soil biogeochemistry models (MIMICS-CN and CASA-CN)
coupled to the same vegetation model (CASA-CNP). In order to capture empirical responses in
these models, the authors had to modify the vegetation allocation scheme and decay rate of the
SOMc pool (comparable to POM), and even then only the microbially-explicit model (MIMICS-
CN) exhibited increased soil C:N as seen in the empirical comparison (Eastman et al. 2022,
Eastman et al. 2023). Eastman et al. (2023) demonstrate the difficulty of capturing the multitude
of N deposition effects in models and indicate the need to represent plant and microbe
feedbacks in models to capture soil C:N responses to N deposition.

Nitrogen is not the only nutrient whose availability will likely be modified by global
change. Phosphorus (P), in particular, might also shape soil C:N in ways associated with the
emerging representation, largely through interactions with C and N (Townsend et al., 2011). For
example, N fixation is limited by P availability, such that changing availability of P could modify
N fixation with implications for soil C:N (Houlton et al. 2008). Alternatively, under P limitation, N
is allocated to production of phosphatase enzymes that break down SOM, potentially causing a
“P-mining” effect that could preferentially breakdown high P MAOM and thus increase soil C:N
(Treseder and Vitousek, 2001, Spohn, 2020). These N-P interactions are exemplified in CASA-
CNP, CLM-CNP and SCAMPS-CNP and could be used to evaluate effects of P addition on soil
C:N (Wang et al. 2010, Yang et al. 2014, Pold et al. 2022). Alternatively, added P could

directly exchange with C on mineral surfaces to reduce MAOM C:N, which could be formulated
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in models similarly to acid root exudation (Spohn and Schleuss, 2019, Rocci et al. 2022).
Beyond P, experimentally adding potassium and micronutrients slightly increased soil C:N in
globally-distributed grasslands but adding sulfur stoichiometry to a static soil formulation did not
reduce C cycle uncertainty (Buchkowski et al. 2019, Seabloom et al. 2021). Thus , there is
evidence supporting the influence of nutrient interactions on soil C:N, likely through the
emerging drivers. This supports the development of models that represent both the emerging

drivers and elements beyond C and N.

5.Conclusions

Foundational representations of soil C:N controls present in most models of soil
biogeochemistry are insufficient and could be improved via a more complete, emerging
representation of soil C:N controls. These missing emerging controls likely underlie large scale
patterns of soil C:N and will likely allow for better predictions of soil C:N responses to global
environmental change. The emerging representation of the controls of soil C:N illustrates the
tension between simplicity and accurate representation of complex systems in models.
Balancing these factors is critical for projecting future biogeochemical and climate outcomes.
While the emerging drivers presented have strong empirical support in the literature, there are
many other potential additional drivers that can influence soil C:N ratios including
photodegradation, microbial physiology, and soil fauna (Moorhead and Callaghan, 1994, de
Vries et al. 2013, Mooshammer et al. 2014, Chen et al. 2016). Our review of empirical
understanding of the emerging drivers of soil C:N and their representation in models identified
research gaps and contexts where drivers might be particularly important. We also showed that
implementing the emerging drivers can cause distinct responses of soil C:N to global change.
Ultimately, more theoretical, empirical, and modeling studies are needed to establish the relative

importance of these emerging drivers for soil C:N stoichiometry and if and how they should be
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implemented in models. Specifically, current understanding informs the need for future research

in the following areas:

e Evaluate the feedbacks of different representations of N fixation in models and how
these align with empirically expected feedbacks and change soil C:N

e With improved representations of N fixation in models, determine impact of increased
fixation on soil C:N under elevated CO-

e Use modeling to separately resolve litter quality and N mining/mineralization effects of
mycorrhizal fungi on soil C:N

e Determine realistic magnitudes of acid root exudation under steady state and global
change conditions and their influence on soil C:N

e Increase collection of mineral composition data to further investigate the importance of
pH and metal controls on MAOM, and subsequently bulk soil C:N

e Implement aggregation in a coupled C-N model to evaluate the influence on both
biogeochemical cycles

e Investigate relative importance of litter quality versus plant allocation under elevated CO>
in a coupled plant-soil model and the implications for soil C:N

e Determine the computational cost of adding groups of emerging factors to models to

evaluate the feasibility of representing these factors at a global scale
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