

Susceptibility of new soil organic carbon to mineralization during dry-wet cycling in soils from contrasting ends of a precipitation gradient

Roland C. Wilhelm^{1,*}, Laurel Lynch^{1,2}, Tara M. Webster^{1,3}, Steffen Schweizer⁴, Thiago M. Inagaki^{4,5}, Malak M. Tfaily^{6,7}, Ravi Kukkadapu⁶, Carmen Hoeschen⁴, Daniel H. Buckley¹ and Johannes Lehmann^{1,5,8}

¹ School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 USA

² Department of Soil and Water Systems, University of Idaho, Moscow, Idaho 83844 USA

³ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309 USA

⁴ Chair of Soil Science, TUM School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 2, 85354 Freising, Germany

⁵ Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany

⁶ Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352

⁷ Department of Environmental Science, The University of Arizona, Tucson, AZ 85721

⁸ Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, New York 14853 USA

*Corresponding Author: Dr. Roland C. Wilhelm

School of Integrative Plant Science,
306 Tower Rd,
Cornell University,
Ithaca, NY
14853

+1 607-262-1650
rcw239@cornell.edu

Abstract

1 The persistence of soil organic carbon (SOC) is influenced by soil physicochemical properties,
2 organic matter quality, and climatic conditions that govern its vulnerability to microbial activity.
3 We compared the susceptibility of newly formed SOC to mineralization in two soils (Andosols)
4 that developed under contrasting precipitation regimes. Soil from the high rainfall region
5 ('high_{rain}') had higher SOC and lower iron concentrations than soils exposed to less rainfall
6 ('low_{rain}'). We amended soils with ¹³C-labeled carbohydrates and measured the amount of
7 substrate-derived SO¹³C mineralized when exposed to dry-wet cycling following months-long
8 incubations. We hypothesized that susceptibility would differ due to iron content and mineralogy,
9 initial SOC, substrate solubility (cellulose versus glucose amendment), and microbial substrate use
10 efficiency (SUE). We found that SO¹³C was less susceptible to dry-wet cycling when more ¹³C
11 was assimilated into microbial biomass and co-localized with mineral surfaces than when co-
12 localized with existing organo-mineral surfaces, according to microscale NanoSIMS imaging.
13 Considerably less SO¹³C was susceptible to mineralization in the ferrihydrite-rich (low SOC)
14 low_{rain} soil than the leached (high SOC) high_{rain} soil when C was added as either glucose (7.3-fold
15 less C mineralized) or cellulose (15.2-fold less). The SUE of glucose was comparable to cellulose
16 in low_{rain} soil where SO¹³C was less water soluble and coprecipitated with ferrihydrite, and used
17 half as efficiently as cellulose in high_{rain} soil. Our results show that the susceptibility of newly
18 formed SOC to mineralization is modified by the effects of bioavailability on microbial
19 metabolism and the availability of mineral surfaces for forming new organo-mineral complexes.

20 **Key words:** Precipitation gradient, carbon susceptibility, carbon use efficiency, iron mineralogy,
21 NanoSIMS, Birch effect.

1. Introduction

22 The persistence of soil organic carbon (SOC) depends on the physicochemical and
23 biological factors that affect the probability and rate of mineralization (Schmidt et al., 2011;
24 Dynarski et al., 2020; Lehmann et al., 2020). Interrelated ecosystem properties, such as climate
25 and geochemistry, co-govern SOC susceptibility to microbial mineralization, enabling some soils
26 to maintain higher concentrations of SOC than others (Schmidt et al., 2011; Rasmussen et al.,
27 2018; Hall et al., 2020; Abramoff et al., 2021; Heckman et al., 2022). Precipitation patterns
28 regulate the bell-shaped relationship between soil moisture and decomposition rates that drive soil
29 carbon cycling (Schuur and Matson, 2001; Derner and Schuman, 2007; Meier and Leuschner,
30 2010; Berthrong et al., 2012; Chang et al., 2014). While high levels of precipitation may cause
31 SOC to accumulate, due to oxygen-limitation, higher levels of precipitation also accelerate
32 leaching and cause the loss of mineral phases that could otherwise stabilize soil organic matter
33 (Torn et al., 1997; Thompson et al., 2011; Kleber et al., 2015; Kramer and Chadwick, 2018;
34 Possinger et al., 2020). Feedbacks between precipitation, soil geochemistry, and microbial activity
35 complicate the dynamics of SOC cycling, creating spatiotemporal variation in SOC persistence
36 that is difficult to predict.

37 Natural precipitation gradients provide opportunities to contrast the relative influences of
38 climate-driven soil properties on SOC persistence. Previous research at the Kohala Mountain
39 transect, Hawai'i, demonstrated that iron and SOC concentrations co-governed the long-term SOC
40 persistence (Grant et al., 2022). At Kohala Mountain, subsoil OM tended to co-localize with Fe-
41 oxides on soil particles where rainfall was low (40% of the OM in the observed areas) and far less
42 (5% of OM) where rainfall had leached iron from soils (Inagaki et al., 2020). The age of bulk SOC
43 was also much younger in iron-depleted soils relative to non-leached soils at equivalent depth,
44 suggesting a link between iron mineralogy and the rate of SOC turnover. Yet, soils from higher

45 rainfall regions had accumulated substantially more SOC, ostensibly due to more frequent water
46 saturation and reduced rates of decomposition (Grant et al., 2022). It remains unclear how these
47 contrasting soil properties influence the cycling of new OM inputs. Here, we used soils sourced
48 from the Kohala transect to probe the relative importance mineralogy, SOC content, and microbial
49 activity play in determining the susceptibility of new organic carbon inputs to mineralization.

50 Several biological, chemical, and thermal measures of the potential susceptibility of SOC
51 to mineralization are used to estimate its turnover rate (Paul et al., 2006; Plante et al., 2011;
52 Gregorich et al., 2015). Soil respiration provides the most direct measure of SOC susceptibility,
53 but conventional respiration measurements do not capture important dynamics affecting OM
54 turnover in soil (Six et al., 2004; Bernal et al., 2016). Soil drying and rewetting stimulates
55 respiration, eliciting a phenomenon known as the ‘Birch Effect.’ Although we lack a complete
56 mechanistic understanding of the Birch effect, major drivers include soil processes, such as SOC
57 remobilization, organo-mineral bond dissolution, aggregate dispersion, induced mortality and
58 biomass turnover, and the reintroduction of occluded OM and microbes (Unger et al., 2010; Evans
59 et al., 2016; Fraser et al., 2016). Here, we used dry-wet cycling, and the resulting Birch effect, to
60 assess SOC susceptibility to mineralization in a manner aligned with environmental exposures in
61 mesic systems.

62 The efficiency by which organic carbon is converted, or sequentially cycled, into microbial
63 biomass is an important aspect of soil OM formation that modulates the persistence of SOC
64 (Miltner et al., 2012; Cotrufo et al., 2013; Liang et al., 2017; Woolf and Lehmann, 2019). Substrate
65 use efficiency (SUE) can be estimated for individual carbon sources and is measured in biomass
66 produced per unit substrate consumed ($C_{biomass} / (C_{biomass} + C_{respired})$). SUE is correlated with soil
67 moisture and organic matter quality (Manzoni et al., 2012, 2018; Öquist et al., 2017; Butcher et

68 al., 2020), which differ across precipitation gradients (Saiz et al., 2012; Campo and Merino, 2016).
69 Importantly, SUE can be used to approximate the efficiency of individual populations, whole
70 communities, or as an integrated measure of the overarching influences of ecosystem properties
71 (SUE_E) that affect carbon cycling over longer timescales, beyond the lifespan of an individual
72 organism (Geyer et al., 2016). Here, we use SUE_E as a measure of the efficiency of microbial
73 metabolism under environmental conditions that reflect ecosystem properties, such as soil
74 mineralogy and resource availability.

75 Understanding the factors governing SOC persistence is a fundamental challenge for soil
76 science. In this study, we investigated the susceptibility of new SO¹³C to mineralization following
77 a months-long incubation and exposure to dry-wet cycling. We compared two soils (Andosols)
78 that developed under contrasting precipitation regimes on Hawai'i. Soil from the lower rainfall
79 region ('low_{rain}') had lower existing SOC and higher total iron and ferrihydrite concentrations than
80 soil from the higher rainfall region ('high_{rain}'). Soils were incubated with either ¹³C-labeled glucose
81 (soluble) or cellulose (insoluble) to probe the effect of substrate bioavailability on microbial
82 metabolism. Our objective was to evaluate several factors that influence SOC susceptibility
83 including: (i) mineralogy, with a focus on iron minerals, (ii) SOC content, and (iii) microbial SUE_E.
84 We hypothesized that iron concentrations would negatively correlate with SOC susceptibility via
85 organo-mineral interactions (Huang and Hall, 2017; Rasmussen et al., 2018; Inagaki et al., 2020).
86 We also hypothesized that the insoluble carbohydrate (cellulose) would be cycled at a lower SUE_E
87 than glucose, as in Öquist et al. (2017), because of the additional energy costs of enzymes required
88 in polymer degradation (Manzoni et al., 2012). We employed high-resolution techniques
89 (NanoSIMS) to characterize fine-scale patterns underlying differences in mineral- and organo-
90 associated SOC. These methods allowed us to track the fate of substrate-derived carbon and to

91 investigate the relative importance of mineral versus microbial properties affecting the
92 susceptibility of SOC to mineralization.

2. Materials and Methods

2.1 Soil collection and characterization

Representative soil samples were collected from two sites on opposite ends ('low_{rain}' and 'high_{rain}') of a precipitation gradient located within the Pu'u Eke forest reserve (20.0783 N, 155.7289 W) on the Kohala volcano (Island of Hawai'i, USA). Soils within each site possess similar properties and have been studied extensively to probe relationships among soil properties and carbon cycling (Chadwick et al., 2003; Grant et al., 2019, 2022; Inagaki et al., 2020). Mean annual temperatures ranged from 15 °C to 24 °C, and sites differed by ~ 400 mm of annual rainfall (Table 1), as determined using the Online Rainfall Atlas of Hawai'i (Giambelluca et al., 2013). Sites were selected based on previous work showing short-range order iron minerals were less abundant in high_{rain} sites (Kramer et al., 2012; Inagaki et al., 2020). Both soils are classified as Andosols and are derived from highly weathered, 350,000-year-old Pololu basaltic volcanic rock. Low_{rain} sites were primarily characterized by grassland vegetation with mixed ohia (*Metrosideros polymorpha* Gaudich, evergreen myrtle), while high_{rain} sites were primarily forested with hapu'u (*Cybotium* spp. (tree fern) and uluhe *Dicranopteris linearis* (false staghorn fern)).

At each sampling site, soil profiles were excavated by hand and sampled by genetic horizon from 0.25 to 0.42 m below the soil surface (Grant et al., 2019, 2022). Samples were collected in April of 2016 and stored field-moist in plastic bags at 4 °C until analysis in February of 2017. The two soils differed in pH, total SOC, total N, the C/N ratio, $\delta^{15}\text{N}$ of total N, and $\delta^{13}\text{C}$ of total C (Table 1). Total metals in soils were measured by microwave digestion with $\text{HNO}_3/\text{HCl}/\text{HF}$ using an Ethos Milestone Microwave Digester (methodological details in the Supporting Information, SI). Low_{rain} soil had greater amounts of iron than high_{rain} soil (26% and 14%, respectively) but

114 similar amounts of aluminum (Table 1). An analysis of bulk soil mineralogy and iron speciation
115 were conducted using powder X-ray diffraction (XRD) and variable temperature ^{57}Fe -Mössbauer
116 spectroscopy (see SI for details). Mössbauer spectroscopy was also used to identify the
117 composition of crystalline Fe-oxide mineral oxide suite, the nature of ferrihydrite-organic matter
118 coprecipitates, and Fe-containing silicate minerals, according to previously described methods
119 (Eusterhues et al., 2008; Chen et al., 2015; Noor and Thompson, 2022).

120 *2.2 Soil microcosm experiment*

121 Three replicate soil microcosms were prepared for each soil by adding 12 g dry weight
122 (d.w.) field soil to 60-mL serum vials and adjusting to 50% water holding capacity (WHC).
123 Microcosms were pre-incubated at room temperature (23°C) for one week to minimize any initial
124 differences in the concentration of easily mineralizable SOC. Soils were then amended at a rate of
125 0.3 mg C per g d.w. soil (~0.8% increase in total SOC) with ^{13}C -labeled glucose (99 atom % ^{13}C ;
126 Sigma-Aldrich) or bacterial cellulose (99 atom % ^{13}C), manufactured as previously described
127 (Pepe-Ranney et al., 2016). After amendment, microcosms were vortexed at low intensity for ~ 5
128 seconds to mix soil and carbohydrate substrate, then crimp sealed with rubber stoppers and
129 incubated at 23°C in the dark. Respiration was monitored by sampling headspace approximately
130 every 12 h (glucose) or 24 h (cellulose) until the production of $^{13}\text{CO}_2$ subsided, and then at
131 diminishing intervals from every 1 to 3 days. Using a gas-tight syringe, 200- μL of headspace gas
132 was transferred into evacuated 2-mL vials and analyzed by GC/MS (Shimadzu GCMS-QP2010S),
133 and the headspace was flushed with filtered air after each sampling. The quantity of $^{12}\text{CO}_2$ (m/z
134 44) and $^{13}\text{CO}_2$ (m/z 45) was determined by GC-MS using a set of standards. Contributions to $^{13}\text{CO}_2$
135 from the natural abundance of ^{13}C present in existing SOC were subtracted based on estimations
136 from the net $^{12}\text{CO}_2$ and $\delta^{13}\text{C}$ of SOC in each soil. The expected variation in natural ^{13}C abundance
137 among SOC pools was negligible relative to the enrichment level of ^{13}C derived from our

138 uniformly ^{13}C -labeled substrates. Initial incubations were concluded once the rate of $^{13}\text{CO}_2$
139 respiration was similar across a three-day period between low_{rain} and high_{rain} soil, according to
140 each substrate: ~ 42 days for glucose and 88 - 110 days for cellulose.

141 *2.3 SOC susceptibility test*

142 At the end of the incubation period, five grams (d.w.) of each sample were transferred to a
143 new serum vial and subjected to three consecutive rounds of dry-wet cycling to test SOC
144 susceptibility. We define the susceptibility of substrate-derived SO ^{13}C as the net amount of $^{13}\text{CO}_2$
145 produced during the 72 h post-wetting of each cycle. Specifically, the higher the net $^{13}\text{CO}_2$ flux
146 produced in the period following the three consecutive drying and re-wetting cycles – the more
147 susceptible the SO ^{13}C . For each dry-wet cycle, microcosms were air dried in a laminar flow hood
148 for 24 h (to 25-30% WHC) and rewetted back to 50% WHC. The amount of $^{13}\text{CO}_2$ produced was
149 measured using the sample methods described above. The net $^{13}\text{CO}_2$ respired following dry-
150 wetting was normalized to the amount of substrate ^{13}C remaining in the soil, which was calculated
151 from the cumulative $^{13}\text{CO}_2$ respired at the end of the initial experiment. Each subsequent dry-wet
152 cycle was initiated when the rate of $^{13}\text{CO}_2$ flux had reached background levels prior to initiating
153 drying, which was comparable among each soil type and substrate amendment (~12 additional
154 hrs).

155 *2.4 Microbial substrate use efficiency*

156 Microbial biomass carbon and nitrogen were calculated as the difference between paired
157 chloroform-fumigated and non-fumigated subsamples, as previously described (Lynch et al.,
158 2018). Total C and $\delta^{13}\text{C}$ were measured using lyophilized extracts run on an elemental analyzer
159 (Carlo Erba NC2500, Lancashire, UK) coupled to an isotope-ratio mass spectrometer (Finnigan
160 MAT Delta Plus; Thermo Electron Corporation, Bremen, Germany) at the Cornell University
161 Stable Isotope Laboratory. We applied a two-source mixing model (Post, 2002) to assess the

162 relative contribution of native SO^{12}C versus ^{13}C -cellulose or ^{13}C -glucose to microbial biomass C
163 as described in SI. Microbial SUE, estimated as an ecosystem property (SUE_E ; Geyer et al., 2016)
164 and defined by the partitioning of ^{13}C substrate between growth and respiration:

165 **equation** $\text{SUE}_E = ^{13}\text{MB} / (^{13}\text{MB} + ^{13}\text{CO}_2)$

166 where ^{13}MB represents the fraction of ^{13}C -substrate assimilated in microbial biomass ($\text{g} \cdot \text{C g d.w.}$
167 soil^{-1}), and $^{13}\text{CO}_2$ represents the fraction of ^{13}C -substrate converted to CO_2 ($\text{g} \cdot \text{C g d.w. soil}^{-1}$) at
168 the end of the incubation period for each substrate and soil. We did not measure the K_{ec} of these
169 soils directly and therefore did not apply a correction factor following previous recommendations
170 (Dictor et al., 1997; Weintraub et al., 2007).

171 *2.5 Analysis of water-soluble and iron-associated carbon*

172 Total dissolved organic C (DOC) concentrations were determined for 2 g d.w. soil of pre-
173 and post-incubation soils as previously described (Weintraub et al., 2007) with full details in the
174 SI. DOC was measured using a Shimadzu TOC-L (Shimadzu Scientific Instruments, Inc. Kyoto,
175 Japan). At the end of the incubation, iron-associated SOC was extracted from microcosm soils
176 using oxalate or hydroxylamine hydrochloride (HH; Coward et al., 2017) with KCl as reference.
177 Oxalate and HH dissolve iron minerals, but unlike oxalate, HH is not C based, permitting
178 downstream C analyses. Soils were finely ground with a mortar and pestle and extracted at a 1:40
179 ratio with either 0.25 M HH, 0.2 M ammonium oxalate (adjusted to pH 3 with 0.2 M oxalic acid),
180 or 0.2 M KCl. Soil solutions were shaken for 4 h (180 rpm), centrifuged for 20 min at 1,000 rpm,
181 and filtered through 0.45- μm glass fiber filter papers (Advantec GC-50). Total DO ^{13}C and DO ^{12}C
182 were measured in HH and KCl extracts at the UC Davis Stable Isotope Facility. Oxalate extracts
183 were not measured due to the confounding effects of oxalate-C. The recovery of iron and aluminum

184 for all extracts was measured by Inductively Coupled Plasma Atomic Emission Spectrometry with
185 a Thermo iCAP 6500 (Thermo Fischer Scientific, Waltham, MA).

186 *2.6 Determining mineral- and organo-associated SO¹³C with NanoSIMS*

187 After incubation, the microscale localization of ¹³C on soil particles was imaged using a
188 NanoSIMS 50L instrument (CAMECA, Gennevilliers, France) at the Technical University of
189 Munich. Soil particles were deposited on Si wafers where regions of interest (30 x 30 μ m),
190 containing between one and five microaggregates (~ 5 - 20 μ m diameter), were randomly identified
191 using SEM imaging. Four to eight regions of interest were scanned per sample, with an average of
192 67 microaggregates imaged per treatment. Regions were rasterized with the Cs⁺ primary ion beam
193 (ca. 2 pA) with an ion impact energy of 16 keV and spot size of ~150 nm. We measured the
194 secondary ions of ¹²C⁻, ¹³C⁻, ¹⁶O⁻, ¹²C¹⁴N⁻, ²⁷Al¹⁶O⁻, and ⁵⁶Fe¹⁶O⁻ during scanning. The instrument
195 was tuned at high mass resolution to separate mass isobars accurately (e.g., ¹³C⁻ versus ¹²C¹H).
196 Secondary ions that escaped the sample surface were recorded using a dwell time of 1 ms \cdot pixel⁻
197 ¹ with 256 \times 256 pixels for a 30 \times 30 μ m field of view and 40 planes per measurement. Details on
198 sample preparation, NanoSIMS imaging, and total particles / surface area imaged are provided in
199 the SI. Data were normalized to total particle area since the total particle area imaged differed due
200 to natural variation in particle sizes (Table S1).

201 A control sample containing non-amended field soil was measured for each sample to
202 account for instrument stability and instrumental fractionation. The NanoSIMS measurements
203 were analyzed using image analysis and multi-channel machine-learning segmentation that
204 integrated a variety of image features (i.e., intensity, texture and gradient) in all isotope
205 distributions (Figure S1), as previously described (Schweizer et al., 2018). This enabled
206 identification and quantification of non-enriched, native OM (yielding high counts for C and N
207 species), the native OM associated with the amended ¹³C-enriched substrate (OM co-localized

208 ^{13}C), as well as mineral-dominated surfaces with substrate-derived ^{13}C enrichment (mineral co-
209 localized ^{13}C). Segmentation was used to quantify the overlap of ^{13}C -enriched spots with mineral-
210 dominated and OM-dominated surfaces (Figure S1e). Further details about image processing and
211 segmentation are provided in the SI.

212 *2.7 Statistical analyses*

213 All statistical analyses were performed in R (v. 3.4.0) using ANOVA ('aov'), for
214 comparison among multiple factors; Tukey HSD ('TukeyHSD') for pairwise contrasts among
215 multiple factors; t-tests ('t.test') for contrasts between two factors, and the Wilcoxon test
216 ('wilcox.test') when contrasting two factors that did not meet the expectations of normality.

3. Results

217 *3.1 Soil mineralogy and iron composition*

218 According to XRD, both the $\text{high}_{\text{rain}}$ and low_{rain} soils were a mixture of quartz (the dominant
219 crystalline mineral phase), hematite, maghemite, ulvöspinel, ilmenite, anorthite and amorphous or
220 poorly crystalline minerals of varying composition (Figure S2). Low_{rain} soil had a higher
221 proportion of poorly crystalline minerals and broad spectral features concurring with XRD spectra
222 of pure ferrihydrite (Kukkadapu et al., 2003), with interference from amorphous aluminosilicate
223 minerals typical of volcanic soils. Mössbauer spectroscopy measurements confirmed that both
224 soils were contained varying mixtures of hematite, goethite, maghemite, ulvöspinel, ilmenite
225 ($\text{high}_{\text{rain}}$ only), Fe-containing silicates (anorthite), and ferrihydrite-like mineral phases (Figure S3).
226 Spectral modeling indicated that 73% (low_{rain}) and 51% ($\text{high}_{\text{rain}}$) of the total iron pool was
227 ferrihydrite-like, and coprecipitated with SOM at varying C:Fe ratios. In general, the C:Fe ratio in
228 the low_{rain} soil was relatively higher than the $\text{high}_{\text{rain}}$ soil. The composition of the remaining
229 portions of Fe (12-20%) could not be resolved due to the overlapping spectra of phyllosilicates,
230 feldspars, and pyroxenes.

231 3.2 *Respiration and SUE_E*

232 Initial substrate respiration rates ($^{13}\text{CO}_2$) were higher from low_{rain} than high_{rain} soils (Figure
233 1). After a lag of three days, the amount of ^{13}C -glucose respiration from high_{rain} soils surpassed low_{rain}
234 soils, and a greater proportion of the total substrate was ultimately respired (48% from high_{rain}
235 versus 39% from low_{rain}, Figure 1a). The total proportion of ^{13}C -cellulose respiration (~30%) was
236 lower than glucose in both soils. Overall, the respiration of native SOC (i.e., SO ^{12}C) was greater
237 in high_{rain} than low_{rain} soils (Figure 1b). After approximately 60 days, more native SO ^{12}C was
238 respired from cellulose- than glucose-amended soils, producing 1.8- and 2.1-fold more $^{12}\text{CO}_2$ flux
239 from cellulose-amended low_{rain} and high_{rain} soils, respectively (Figure 1b). Initial microbial
240 biomass was an order of magnitude greater in low_{rain} than high_{rain} soils (Table 2), consistent with
241 higher initial rates of respiration. SUE_E was higher for both substrates in the low_{rain} soils, and a
242 greater proportion of substrate-derived ^{13}C was assimilated into biomass in low_{rain} soil. While
243 SUE_E was comparable between substrates in low_{rain} soils, cellulose was consumed with a higher
244 SUE_E than glucose in high_{rain} soils (0.4 versus 0.2, respectively). Overall, SUE_E was more variable
245 between replicates in soils amended with cellulose than glucose.

246 3.3 *Susceptibility of SO ^{13}C*

247 The susceptibility of substrate-derived SO ^{13}C was measured based on the net $^{13}\text{CO}_2$
248 respiration following three dry-wet cycles. More $^{13}\text{CO}_2$ was respired from high_{rain} than low_{rain} soils,
249 indicating a greater susceptibility of new SO ^{13}C to mineralization (Figure 1c). High_{rain} soils
250 amended with glucose were most susceptible to mineralization, with more $^{13}\text{CO}_2$ produced during
251 dry-wet cycling than any other treatment, despite having the highest amount of substrate
252 mineralized prior to dry-wet cycling (Figure 1a). Differences in susceptibility were greater
253 between soil types (ANOVA; $F_1 = 82$; $p < 0.001$) than between substrates, with cellulose-derived
254 SO ^{13}C less susceptible than glucose-derived SO ^{13}C (ANOVA; $F_1 = 23$, $p = 0.001$). Soils with the

255 most microbial biomass (Table 2) at the end of incubation also had the least susceptible SO^{13}C , as
256 indicated by their low $^{13}\text{CO}_2$ production in response to rewetting (Figure 1c).

257 *3.4 Iron-associated and water-soluble SO^{13}C*

258 Contrary to our expectation that HH and oxalate would dissolve similar amounts of iron
259 (Coward et al., 2017), HH solubilized far less iron and aluminum than oxalate (Figure 2). The ^{13}C
260 enrichment of water-soluble and iron-associated solubilized SO^{13}C (in HH extracts) was highest
261 in glucose-amended high_{rain} soils (Figure 3). Total extractable DOC was also greater in high_{rain}
262 soils (Wilcoxon test, $p < 0.001$, Figure S4).

263 *3.5 Spatial co-localization of SO^{13}C*

264 The co-localization of SO^{13}C with mineral- and OM-dominated surfaces was imaged using
265 NanoSIMS (Figure 4a; Figure S1). Large differences in OM-dominated surfaces were observed
266 between high_{rain} soil (40% OM-dominated) and low_{rain} soil (14% OM-dominated; Figure 4b).
267 Low_{rain} soils amended with glucose had the greatest co-localization of ^{13}C with mineral surfaces
268 (Figure 4c) and the least susceptible SO^{13}C (Figure 1c). In high_{rain} soils, most ^{13}C was co-localized
269 with OM-dominated surfaces, reflecting a higher abundance of OM-dominated relative to mineral
270 surfaces (Figure 4c). More glucose- than cellulose-derived ^{13}C was co-localized with mineral
271 surfaces in both soils. Cellulose additions resulted in lower proportions of ^{13}C -enriched surfaces
272 than glucose, suggesting less association of the added substrate with the microaggregates analyzed
273 by NanoSIMS.

4. Discussion

274 Soils with differing edaphic properties (iron mineralogy and total SOC) were selected to
275 evaluate the susceptibility of newly formed SO^{13}C to microbial activity in a soil microcosm
276 experiment. Sourced from contrasting ends of a natural precipitation gradient, these soils capture
277 differences in pedological development, but were not intended to assess variation at the ecosystem

278 scale or by depth. Soluble (^{13}C -glucose) and insoluble (^{13}C -cellulose) substrate was added to each
279 soil and mineralization was measured over several months. We compared the susceptibility of
280 SO^{13}C (i.e., the ^{13}C remaining after substrate respiration had subsided) by measuring the net $^{13}\text{CO}_2$
281 respired following three rounds of dry-wet cycling. We found that SO^{13}C was less susceptible to
282 dry-wet cycling in soil from the lower rainfall region, which had higher iron content, higher SUE_E ,
283 lower pre-existing SOC, and a greater proportion of SO^{13}C co-localized with mineral surfaces
284 (Figure 5). Conversely, $\text{high}_{\text{rain}}$ soil had lower iron content, a higher proportion of mineral surfaces
285 complexed with native OM, and more of the newly derived SO^{13}C was susceptible to
286 mineralization. These findings stress the importance of mineral surfaces for stabilizing SOM inputs
287 (Kleber et al., 2007) and suggest OM-OM bonds are weaker than OM-mineral bonds. These
288 findings support our hypothesis that microbial activity and underlying mineralogy influence the
289 susceptibility of recently formed SOC to dry-wet cycling.

290 *4.1 The impact of climate on soil properties and SOC susceptibility*

291 Low_{rain} soils had more total iron and ferrihydrite, while iron in $\text{high}_{\text{rain}}$ soils was more
292 reduced, consistent with expectations that higher precipitation would lead to water saturation and
293 iron leaching (Thompson et al., 2011; Inagaki et al., 2020). Low_{rain} soils had high concentrations
294 of amorphous / poorly crystalline ferrihydrite, a greater development of ferrihydrite-OM
295 coprecipitates, and more SO^{13}C co-localized with mineral surfaces. These properties corresponded
296 with a reduced susceptibility of SO^{13}C to mineralization, which was lowest in low_{rain} soil,
297 suggesting iron-containing minerals (here, ferrihydrite) promote persistence by protecting SOC
298 from mineralization (Rumpel and Kögel-Knabner, 2011; Kaiser and Kalbitz, 2012). Our findings
299 are consistent with previous research at the site, linking aluminum and iron oxides with C-
300 stabilization in regions of lower precipitation (Inagaki et al., 2020).

301 Our findings suggest that newly formed SOC is less susceptible to microbial degradation
302 when associated with mineral-dominated surfaces than when associated with pre-existing OM.
303 Although high_{rain} soils contained 5-fold more SOC than low_{rain} soils, a greater proportion of SO¹³C
304 was co-localized with OM dominated surfaces and more prone to mineralization. Approximately
305 7.3- (glucose) and 14.7-fold (cellulose) more SO¹³C was respired from high_{rain} than low_{rain}
306 following dry-wet cycling. Notably, the increased susceptibility of SO¹³C in high_{rain} soil was
307 observed even though ~60% of mineral-dominated surfaces were free of OM. This result supports
308 the tendency of new C to co-localize with existing SOC, leading to greater susceptibility to
309 turnover (Vogel et al., 2014; Schweizer et al., 2018). The higher proportion of mineral surface and
310 reactive minerals, like ferrihydrite, in low_{rain} soil appears to reduce the probability of new SO¹³C
311 associating with existing SOC. Thus, spatial differences in microscale co-localization of substrate
312 with OM- or mineral-dominated surfaces can be a factor driving OM turnover.

313 Our method for measuring SO¹³C susceptibility to mineralization, using dry-wet cycling,
314 was chosen to reflect a naturally occurring process termed the Birch effect. The combined
315 influence of biomass, microbial activity and growth dynamics govern the intensity of effect (Unger
316 et al., 2010; Evans et al., 2016; Fraser et al., 2016). Consistent with past findings from precipitation
317 gradients (Manzoni et al., 2012; Butcher et al., 2020), initial microbial biomass and SUE_E differed
318 substantially between our two soils, demonstrating SUE_E was affected by precipitation-related
319 environmental controls. The most susceptible SO¹³C (i.e., greatest Birch effect) coincided with the
320 highest recovery of water-soluble and iron-associated SO¹³C in high_{rain} soil, rewetting increased
321 SO¹³C remobilization by dissolution of organo-mineral bonds and/or dispersing aggregates (Six et
322 al., 2004; Bernal et al., 2016). The extent to which dry-wet cycling can serve as a comprehensive
323 test of SOC susceptibility to mineralization requires further testing. For example, results may be

324 decoupled in systems where dry-wet cycling occurs infrequently (i.e., arid, permafrost, or high-
325 precipitation environments). We therefore require a more mechanistic understanding of the Birch
326 effect to assess its efficacy as a comprehensive measure of SOC susceptibility.

327 *4.2 SUE_E and SO¹³C susceptibility*

328 We observed the lowest susceptibility of SO¹³C where conditions facilitated efficient
329 microbial-processing of new ¹³C-substrates. Microbial communities in low_{rain} soils had the highest
330 relative SUE_E (0.6) and least susceptible SO¹³C for both substrates. Communities inhabiting
331 high_{rain} soils utilized cellulose with a relatively high SUE_E (0.4) and microbial processing of
332 cellulose corresponded with significantly lower susceptibility of SO¹³C. These results suggest that
333 soil conditions favoring high SUE_E should diminish the susceptibility of SOC to mineralization
334 and promote SOC persistence, supporting prior evidence (Kallenbach et al., 2015).

335 We also compared the effect of substrate bioavailability on SUE_E using two model
336 carbohydrates, glucose (soluble) and cellulose (insoluble), that are metabolized through the same
337 central metabolism of cells. We hypothesized that glucose would yield higher SUE_E than cellulose
338 based on a prior comparison (Öquist et al., 2017) and the expected influence of the energetic costs
339 of extracellular enzyme production (Manzoni et al., 2012), but observed the opposite result. The
340 disparity with Öquist et al. (2017) may reflect differences in incubation length (eight days versus
341 several months), since measuring SUE over longer periods integrates a broader range of soil
342 properties that affect efficiency, such as changes in environmental conditions, resources, and the
343 diversity and succession (biomass turnover) of microbial communities (Manzoni et al., 2012;
344 Geyer et al., 2016, 2020; Domeignoz-Horta et al., 2020; Buckeridge et al., 2022). Yet, our result
345 is consistent with the finding that glycogen, a branched glucose polymer, was metabolized at
346 higher SUE than glucose in soil even when incubations were short (32 hr; Bölscher et al., 2016),

347 and with the general observation that SUE decreases when substrate bioavailability increases, as
348 shown in the lower SUE of glucose at higher soil amendments (Schneckenberger et al., 2008).

349 Relative differences in SUE_E and $SO^{13}C$ susceptibility to mineralization likely result from
350 differences in growth strategies employed by microorganisms encountering substrates with
351 varying degrees of bioavailability (Barnett et al., 2022). In general, slower-growing microbial
352 communities exhibit higher SUE (Roller and Schmidt, 2015); therefore, it stands to reason that
353 slower-growing, cellulose-degrading populations would exhibit higher SUE_E , since the processing
354 rates of extracellular enzymes limit growth. Conversely, the lower SUE_E exhibited during the
355 metabolism of glucose illustrates the relatively higher energetic costs associated with zymogenous
356 growth relative to extracellular enzyme activity (Manzoni et al., 2012). We observed this trend
357 despite cellulose-amended soils incubating for significantly longer than glucose-amended soils
358 (+46-64 days), which we expect would reduce SUE_E through sequential biomass turnover.

359 Alternatively, it is possible the initial assimilation of cellulosic-C into biomass occurred
360 more gradually than glucose, offsetting differences in turnover from longer incubations, as
361 suggested by the substrate respiration curves in Figure 1A. In this case, the comparable SUE_E
362 observed for glucose and cellulose in low_{rain} soils is unexpected. According to Mössbauer and
363 NanoSIMS results, we speculate that the bioavailability of glucose C may have decreased due to
364 co-localization with ferrihydrite-rich mineral surfaces, leading to similar SUE_E as cellulose.
365 Conceivably, the degradation of mineral-associated $SO^{13}C$ requires similar adaptations as those
366 required for accessing insoluble organic matter, such as a dependence on extracellular enzymes.
367 This could explain why ferrihydrite-rich soil selected for specialized surface-adhering bacteria
368 (e.g., *Caulobacter*) in a study comparing the influence of mineral types on rhizodeposition

369 (Whitman et al., 2018). Hence, organo-mineral interaction may favor specialized microbial
370 communities with slower growth rates and higher SUE_E even when soluble C is added.

371 Differences in the initial microbial biomass between our soils may have also affected
372 SUE_E. Soils with more biomass tend to consume added glucose at a higher SUE, generating more
373 stable SO¹³C (Geyer et al., 2020), consistent with our findings, where low_{rain} soil amended with
374 glucose had the highest starting biomass, greatest SUE_E, and lowest SO¹³C susceptibility.
375 Similarly, microbial communities sourced from regions with historically low precipitation tend to
376 have higher SUE (Buckeridge et al., 2020). It is important to note that our method for measuring
377 SUE_E did not measure the contribution of microbial residues (i.e., non-biomass SOC) to the
378 efficiency quotient, which can be significant (Geyer et al., 2020; Shao et al., 2021), nor could it
379 resolve the effects of biomass recycling over time.

380 *4.3 Respiration of native SOC*

381 While the primary aim of our study was to investigate how climate and soil properties
382 affect the susceptibility of newly formed SO¹³C to mineralization, we observed differences in the
383 rate turnover of pre-existing SOC between substrates. Relative to glucose, cellulose amendment
384 produced two-fold greater mineralization of existing SO¹²C, resulting in the mineralization of 600
385 and 1,000 $\mu\text{g C} \cdot \text{g}^{-1}$ d.w. in low_{rain} and high_{rain} soils, respectively. Without water-only controls,
386 we cannot determine whether cellulose amendment elicited a positive priming response or whether
387 glucose suppressed decomposition rates. Yet, the difference in SO¹²C mineralized between
388 cellulose-amended soils was far greater than the amount of negative priming expected from
389 glucose, which ranges between 10 - 50 $\mu\text{g g}^{-1}$ d.w. soil (Mason-Jones and Kuzyakov, 2017), and
390 was within the upper ranges of positive priming reported from cellulose (450 $\mu\text{g g}^{-1}$ d.w. soil;
391 Perveen et al., 2019). Notably, the addition of cellulose caused the greatest mineralization of pre-
392 existing SOC from high_{rain} soil which had a higher initial SOC concentration.

393 Paradoxically, we found that both substrate-derived and native SOC were most susceptible
394 to mineralization during dry-wet cycling in soils with the greatest natural accumulation of SOC.
395 The susceptibility of SOC in $\text{high}_{\text{rain}}$ soil coincided with lower initial microbial biomass, lower
396 SUE_{E} , and lower iron content. These results suggest the accumulation of SOC at the $\text{high}_{\text{rain}}$ site
397 was driven by prevailing climatic conditions that govern primary production and microbial activity
398 dynamics, namely the control of moisture on decomposition rates. However, experimental
399 perturbation revealed the susceptibility of newly added C to dry-wet cycling, possibly resulting
400 from the tendency of new SOC to associate with existing OM-dominated surfaces and from less
401 efficient substrate assimilation into microbial biomass.

5. Conclusions

402 We characterized the relationships between SOC susceptibility to mineralization during
403 dry-wet cycling and climate-driven changes in soil physicochemical and biological properties
404 using two soils from contrasting ends of a precipitation gradient. SO^{13}C derived from the microbial
405 processing of ^{13}C -substrates was more stable in soil from the low rainfall region, where substrates
406 were more likely to be converted into microbial biomass and associated with mineral surfaces
407 (Figure 5). We attribute these trends to differences in the bioavailability of SO^{13}C , which governed
408 differences in microbial metabolism and substrate use efficiency, and which were linked to the
409 likelihood of stabilization via organo-mineral associations. Our findings suggest that the
410 susceptibility of SOC to mineralization is governed by coupled processes that link microbial
411 metabolism with the physicochemical protection of soil carbon.

Abbreviations

412 DOC: dissolved organic carbon
413 HH: hydroxylamine hydrochloride
414 $\text{high}_{\text{rain}}$: field site receiving highest levels of precipitation
415 low_{rain} : field site receiving lowest levels of precipitation

416 MB: microbial biomass
417 NanoSIMS: nanoscale secondary ion mass spectrometry
418 SOC: soil organic carbon
419 SO¹³C: soil organic carbon derived from ¹³C-labeled substrate
420 SUE: microbial substrate use efficiency
421 SUE_E: a SUE measurement over long periods of time - integrates broader environmental influences
422 OM: organic matter
423 XRD - X-ray diffraction

Author contributions

424 RCW contributed to the overall study design, specifically the susceptibility assay, and
425 performed data analysis, research, and writing. LL contributed to the overall study design,
426 measured SUE, performed data analysis, and made major contributions to writing. TMW
427 contributed to the overall study design, coordinated experiments, performed data analysis, and
428 made major contributions to research and writing. SAS performed NanoSIMS imaging and data
429 analysis and contributed to writing. TMI performed NanoSIMS and data analysis and prepared
430 Figure 5. MT contributed to data analysis. RK performed the Mössbauer analysis and
431 interpretation. CH performed NanoSIMS analysis and interpretation. DHB and JL guided all
432 research efforts, including study design, analyses, interpretation, and writing.

Acknowledgements

433 This work was supported by the U.S. Department of Energy (DOE) Office of Biological &
434 Environmental Research Genomic Science Program under award number DE-SC0016364. We
435 acknowledge the support of Ingrid Kögel-Knabner and the Technical University Munich – Institute
436 for Advanced Study, funded by the German Excellence Initiative (and the EU Seventh Framework
437 Programme under grant agreement n° 291763). We thank the German Research Foundation (DFG)
438 for the financial support for the NanoSIMS instrument (KO 1035/38-1). We thank Katherine Grant
439 and Louis A. Derry for providing soil samples. We are grateful to Rosalie Chu, Kelly Hanley, and
440 Mark Bowden for running FT-ICR-MS, extractions, and XRD, respectively. FTICR-MS was
441 supported by the DOE Office of Science Graduate Student Research (SCGSR) program awarded
442 to LML, administered by the Oak Ridge Institute for Science and Education (ORISE) under
443 contract number DE-SC0014664. Mössbauer spectroscopy and XRD was performed at the
444 Environmental Molecular Sciences Laboratory (User Proposal 47803) which is part of the DOE at
445 the Pacific Northwest National Laboratory.

References

446 Abramoff, R.Z., Georgiou, K., Guenet, B., Torn, M.S., Huang, Y., Zhang, H., Feng, W.,
447 Jagadamma, S., Kaiser, K., Kothawala, D., Mayes, M.A., Ciais, P., 2021. How much carbon
448 can be added to soil by sorption? *Biogeochemistry* 152, 127–142. doi:10.1007/s10533-021-
449 00759-x

450 Barnett, S.E., Youngblut, N.D., Koechli, C.N., Buckley, D.H., 2022. Multi-substrate DNA stable
451 isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. *PNAS*.

452 Bernal, B., Mckinley, D.C., Hungate, B.A., White, P.M., Mozdzer, T.J., Megonigal, J.P., 2016.
453 Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new
454 labile organic inputs. *Soil Biology and Biochemistry* 98, 85–94.
455 doi:10.1016/j.soilbio.2016.04.007

456 Berthrong, S.T., Piñeiro, G., Jobbágy, E.G., Jackson, R.B., 2012. Soil C and N changes with
457 afforestation of grasslands across gradients of precipitation and plantation age. *Ecological
458 Applications* 22, 76–86. doi:10.1890/10-2210.1

459 Bölscher, T., Wadsö, L., Börjesson, G., Herrmann, A.M., 2016. Differences in substrate use
460 efficiency: impacts of microbial community composition, land use management, and
461 substrate complexity. *Biology and Fertility of Soils* 52, 547–559. doi:10.1007/s00374-016-
462 1097-5

463 Buckeridge, K.M., Creamer, C., Whitaker, J., 2022. Deconstructing the microbial necromass
464 continuum to inform soil carbon sequestration. *Functional Ecology* 1–15. doi:10.1111/1365-
465 2435.14014

466 Buckeridge, K.M., Mason, K.E., McNamara, N.P., Ostle, N., Puissant, J., Goodall, T., Griffiths,
467 R.I., Stott, A.W., Whitaker, J., 2020. Environmental and microbial controls on microbial
468 necromass recycling, an important precursor for soil carbon stabilization. *Communications
469 Earth & Environment* 1, 1–9. doi:10.1038/s43247-020-00031-4

470 Butcher, K.R., Nasto, M.K., Norton, J.M., Stark, J.M., 2020. Physical mechanisms for soil
471 moisture effects on microbial carbon-use efficiency in a sandy loam soil in the western
472 United States. *Soil Biology and Biochemistry* 150, 107969.
473 doi:10.1016/j.soilbio.2020.107969

474 Campo, J., Merino, A., 2016. Variations in soil carbon sequestration and their determinants along
475 a precipitation gradient in seasonally dry tropical forest ecosystems. *Global Change Biology*
476 22, 1942–1956. doi:10.1111/gcb.13244

477 Chadwick, O.A., Gavenda, R.T., Kelly, E.F., Ziegler, K., Olson, C.G., Crawford Elliott, W.,
478 Hendricks, D.M., 2003. The impact of climate on the biogeochemical functioning of
479 volcanic soils. *Chemical Geology* 202, 195–223. doi:10.1016/j.chemgeo.2002.09.001

480 Chang, R., Jin, T., Lü, Y., Liu, G., Fu, B., 2014. Soil carbon and nitrogen changes following
481 afforestation of marginal cropland across a precipitation gradient in Loess Plateau of China.
482 *PLoS ONE* 9, 1–12. doi:10.1371/journal.pone.0085426

483 Chen, C., Kukkadapu, R., Sparks, D.L., 2015. Influence of Coprecipitated Organic Matter on
484 Fe²⁺(aq)-Catalyzed Transformation of Ferrihydrite: Implications for Carbon Dynamics.
485 *Environmental Science and Technology* 49, 10927–10936. doi:10.1021/acs.est.5b02448

486 Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K., Paul, E., 2013. The Microbial
487 Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition
488 with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?
489 *Global Change Biology* 19, 988–995. doi:10.1111/gcb.12113

490 Coward, E.K., Thompson, A.T., Plante, A.F., 2017. Iron-mediated mineralogical control of
491 organic matter accumulation in tropical soils. *Geoderma* 306, 206–216.
492 doi:10.1016/j.geoderma.2017.07.026

493 Derner, J.D., Schuman, G.E., 2007. Carbon sequestration and rangelands: A synthesis of land
494 management and precipitation effects. *Journal of Soil and Water Conservation* 62, 77–85.

495 Dictor, M.C., Tessier, L., Soulard, G., 1997. Reassessment of the K_(ec) coefficient of the
496 fumigation-extraction method in a soil profile. *Soil Biology and Biochemistry* 30, 119–127.
497 doi:10.1016/S0038-0717(97)00111-9

498 Domeignoz-Horta, L.A., Pold, G., Liu, X.J.A., Frey, S.D., Melillo, J.M., DeAngelis, K.M., 2020.
499 Microbial diversity drives carbon use efficiency in a model soil. *Nature Communications*
500 11, 1–10. doi:10.1038/s41467-020-17502-z

501 Dynarski, K.A., Bossio, D.A., Scow, K.M., 2020. Dynamic Stability of Soil Carbon: Reassessing
502 the “Permanence” of Soil Carbon Sequestration. *Frontiers in Environmental Science* 8.
503 doi:10.3389/fenvs.2020.514701

504 Eusterhues, K., Wagner, F.E., Häusler, W., Hanzlik, M., Knicker, H., Totsche, K.U., Kögel-
505 Knabner, I., Schwertmann, U., 2008. Characterization of ferrihydrite-soil organic matter
506 coprecipitates by X-ray diffraction and Mössbauer spectroscopy. *Environmental Science
507 and Technology* 42, 7891–7897. doi:10.1021/es800881w

508 Evans, S., Dieckmann, U., Franklin, O., Kaiser, C., 2016. Synergistic effects of diffusion and
509 microbial physiology reproduce the Birch effect in a micro-scale model. *Soil Biology and
510 Biochemistry* 93, 28–37. doi:10.1016/j.soilbio.2015.10.020

511 Fraser, F.C., Corstanje, R., Deeks, L.K., Harris, J.A., Pawlett, M., Todman, L.C., Whitmore,
512 A.P., Ritz, K., 2016. On the origin of carbon dioxide released from rewetted soils. *Soil
513 Biology and Biochemistry* 101, 1–5. doi:10.1016/j.soilbio.2016.06.032

514 Geyer, K., Schnecker, J., Grandy, A.S., Richter, A., Frey, S., 2020. Assessing microbial residues
515 in soil as a potential carbon sink and moderator of carbon use efficiency. *Biogeochemistry*
516 151, 237–249. doi:10.1007/s10533-020-00720-4

517 Geyer, K.M., Kyker-Snowman, E., Grandy, A.S., Frey, S.D., 2016. Microbial carbon use
518 efficiency: accounting for population, community, and ecosystem-scale controls over the
519 fate of metabolized organic matter. *Biogeochemistry* 127, 173–188. doi:10.1007/s10533-
520 016-0191-y

521 Giambelluca, W.T., Chen, Q., G.A., F., Price, P.J., Chen, Y.L., Chu, P.S., Eischeid, J.K.,
522 Delparte, M.D., 2013. Online rainfall atlas of Hawai‘i. *Bulletin of the American
523 Meteorological Society* 94, 313–316. doi:10.1175/BAMS-D-11-00228.1

524 Grant, K.E., Galy, V. v, Chadwick, O.A., Derry, L.A., 2019. Thermal oxidation of carbon in
525 organic matter rich volcanic soils : insights into SOC age differentiation and mineral
526 stabilization. *Biogeochemistry* 144, 291–304. doi:10.1007/s10533-019-00586-1

527 Grant, K.E., Galy, V. v, Haghipour, N., Eglinton, T.I., Derry, L.A., 2022. Persistence of old soil
528 carbon under changing climate: The role of mineral-organic matter interactions. *Chemical
529 Geology* 587, 120629. doi:10.1016/j.chemgeo.2021.120629

530 Gregorich, E.G., Gillespie, A.W., Beare, M.H., Curtin, D., Sanei, H., Yanni, S.F., 2015.
531 Evaluating biodegradability of soil organic matter by its thermal stability and chemical

532 composition. *Soil Biology and Biochemistry* 91, 182–191.
533 doi:10.1016/j.soilbio.2015.08.032

534 Hall, S.J., Ye, C., Weintraub, S.R., Hockaday, W.C., 2020. Molecular trade-offs in soil organic
535 carbon composition at continental scale. *Nature Geoscience* 13, 687–692.
536 doi:10.1038/s41561-020-0634-x

537 Heckman, K., Hicks Pries, C.E., Lawrence, C.R., Rasmussen, C., Crow, S.E., Hoyt, A.M., von
538 Fromm, S.F., Shi, Z., Stoner, S., McGrath, C., Beem-Miller, J., Berhe, A.A., Blankinship,
539 J.C., Keiluweit, M., Marín-Spiotta, E., Monroe, J.G., Plante, A.F., Schimel, J., Sierra, C.A.,
540 Thompson, A., Wagai, R., 2022. Beyond bulk: Density fractions explain heterogeneity in
541 global soil carbon abundance and persistence. *Global Change Biology* 28, 1178–1196.
542 doi:10.1111/gcb.16023

543 Huang, W., Hall, S.J., 2017. Elevated moisture stimulates carbon loss from mineral soils by
544 releasing protected organic matter. *Nature Communications* 8. doi:10.1038/s41467-017-
545 01998-z

546 Inagaki, T.M., Possinger, A.R., Grant, K.E., Schweizer, S.A., Mueller, C.W., Derry, L.A.,
547 Lehmann, J., Kögel-Knabner, I., 2020. Subsoil organo-mineral associations under
548 contrasting climate conditions. *Geochimica et Cosmochimica Acta* 270, 244–263.
549 doi:10.1016/j.gca.2019.11.030

550 Kaiser, K., Kalbitz, K., 2012. Cycling downwards - dissolved organic matter in soils. *Soil
551 Biology and Biochemistry* 52, 29–32. doi:10.1016/j.soilbio.2012.04.002

552 Kallenbach, C.M., Grandy, A.S., Frey, S.D., Diefendorf, A.F., 2015. Microbial physiology and
553 necromass regulate agricultural soil carbon accumulation. *Soil Biology and Biochemistry*
554 91, 279–290. doi:10.1016/j.soilbio.2015.09.005

555 Kleber, M., Eusterhues, K., Keiluweit, M., Mikutta, C., Mikutta, R., Nico, P.S., 2015. Mineral-
556 organic associations: formation, properties, and relevance in soil environments, in:
557 *Advances in Agronomy*. Elsevier Ltd, pp. 1–140. doi:10.1016/bs.agron.2014.10.005

558 Kleber, M., Sollins, P., Sutton, R., 2007. A conceptual model of organo-mineral interactions in
559 soils: Self-assembly of organic molecular fragments into zonal structures on mineral
560 surfaces. *Biogeochemistry* 85, 9–24. doi:10.1007/s10533-007-9103-5

561 Kramer, M.G., Chadwick, O.A., 2018. Climate-driven thresholds in reactive mineral retention of
562 soil carbon at the global scale. *Nature Climate Change* 8, 1104–1108. doi:10.1038/s41558-
563 018-0341-4

564 Kramer, M.G., Sanderman, J., Chadwick, O.A., 2012. Long-term carbon storage through
565 retention of dissolved aromatic acids by reactive particles in soil. *Global Change Biology*
566 18, 2594–2605. doi:10.1111/j.1365-2486.2012.02681.x

567 Kukkadapu, R.K., Zachara, J.M., Frederickson, J.K., Smith, S.C., Dohnalkova, A.C., Russell,
568 C.K., 2003. Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and
569 anoxic conditions. *American Mineralogist* 88, 1903–1914.

570 Lehmann, J., Hansel, C.M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., Nunan, N.,
571 Reichstein, M., Schimel, J.P., 2020. Persistence of soil organic carbon caused by functional
572 complexity. *Nature Geoscience* 13, 529–534. doi:10.1038/s41561-020-0612-3

573 Liang, C., Schimel, J.P., Jastrow, J.D., 2017. The importance of anabolism in microbial control
574 over soil carbon storage. *Nature Microbiology* 2, 1–6. doi:10.1038/nmicrobiol.2017.105

575 Lynch, L.M., Machmuller, M.B., Cotrufo, M.F., Paul, E.A., Wallenstein, M.D., 2018. Tracking
576 the fate of fresh carbon in the Arctic tundra : Will shrub expansion alter responses of soil
577 organic matter to warming ? *Soil Biology and Biochemistry* 120, 134–144.
578 doi:10.1016/j.soilbio.2018.02.002

579 Manzoni, S., Capek, P., Porada, P., Thurner, M., Winterdahl, M., Beer, C., Vico, G., Way, D.,
580 2018. Reviews and syntheses : Carbon use efficiency from organisms to ecosystems –
581 definitions, theories, and empirical evidence 5929–5949.

582 Manzoni, S., Taylor, P., Richter, A., Porporato, A., Ågren, G.I., 2012. Environmental and
583 stoichiometric controls on microbial carbon-use efficiency in soils. *New Phytologist* 196,
584 79–91. doi:10.1111/j.1469-8137.2012.04225.x

585 Mason-Jones, K., Kuzyakov, Y., 2017. “Non-metabolizable” glucose analogue shines new light
586 on priming mechanisms: Triggering of microbial metabolism. *Soil Biology and*
587 *Biochemistry* 107, 68–76. doi:10.1016/j.soilbio.2016.12.015

588 Meier, I.C., Leuschner, C., 2010. Variation of soil and biomass carbon pools in beech forests
589 across a precipitation gradient. *Global Change Biology* 16, 1035–1045. doi:10.1111/j.1365-
590 2486.2009.02074.x

591 Miltner, A., Bombach, P., Schmidt-Brücken, B., Kästner, M., 2012. SOM genesis: Microbial
592 biomass as a significant source. *Biogeochemistry* 111, 41–55. doi:10.1007/s10533-011-
593 9658-z

594 Noor, N., Thompson, A., 2022. Localized alteration of ferrihydrite natural organic matter
595 coprecipitates following reaction with Fe(II). *Soil Science Society of America Journal* 1–11.
596 doi:10.1002/saj2.20366

597 Öquist, M.G., Erhagen, B., Haei, M., Sparrman, T., Ilstedt, U., Schleucher, J., Nilsson, M.B.,
598 2017. The effect of temperature and substrate quality on the carbon use efficiency of
599 saprotrophic decomposition. *Plant and Soil* 414, 113–125. doi:10.1007/s11104-016-3104-x

600 Paul, E.A., Morris, S.J., Conant, R.T., Plante, A.F., 2006. Does the Acid Hydrolysis–Incubation
601 Method Measure Meaningful Soil Organic Carbon Pools? *Soil Science of America Journal*
602 1035, 1023–1035. doi:10.2136/sssaj2005.0103

603 Pepe-Ranney, C., Campbell, A.N., Koechli, C.N., Berthrong, S., Buckley, D.H., 2016.
604 Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach
605 to explore cellulose and xylose metabolism in soil. *Frontiers in Microbiology* 7, 1–17.
606 doi:10.3389/fmicb.2016.00703

607 Perveen, N., Barot, S., Maire, V., Cotrufo, M.F., Shahzad, T., Blagodatskaya, E., Stewart, C.E.,
608 Ding, W., Siddiq, M.R., Dimassi, B., Mary, B., Fontaine, S., 2019. Universality of priming
609 effect: an analysis using thirty five soils with contrasted properties sampled from five
610 continents. *Soil Biology and Biochemistry* 134, 162–171. doi:10.1016/j.soilbio.2019.03.027

611 Plante, A.F., Fernández, J.M., Haddix, M.L., Steinweg, J.M., Conant, R.T., 2011. Biological,
612 chemical and thermal indices of soil organic matter stability in four grassland soils. *Soil
613 Biology and Biochemistry* 43, 1051–1058. doi:10.1016/j.soilbio.2011.01.024

614 Possinger, A.R., Bailey, S.W., Inagaki, T.M., Kögel-knabner, I., Dynes, J.J., Arthur, Z.A.,
615 Lehmann, J., 2020. Organo-mineral interactions and soil carbon mineralizability with
616 variable saturation cycle frequency. *Geoderma* 375, 114483.
617 doi:10.1016/j.geoderma.2020.114483

618 Post, D.M., 2002. Using stable isotopes to estimate trophic position: Models, methods, and
619 assumptions. *Ecology* 83, 703–718. doi:10.1890/0012-
620 9658(2002)083[0703:USITET]2.0.CO;2

621 Rasmussen, C., Heckman, K., Wieder, W.R., Keiluweit, M., Lawrence, C.R., Asefaw, A.,
622 Blankinship, J.C., Crow, S.E., Druhan, J.L., Hicks, C.E., Schimel, J.P., Alain, E.M.,
623 Christina, F.P., Berhe, A.A., Blankinship, J.C., Crow, S.E., Druhan, J.L., Hicks Pries, C.E.,
624 Marin-Spiotta, E., Plante, A.F., Schädel, C., Schimel, J.P., Sierra, C.A., Thompson, A.,
625 Wagai, R., 2018. Beyond clay: towards an improved set of variables for predicting soil
626 organic matter content. *Biogeochemistry* 137, 297–306. doi:10.1007/s10533-018-0424-3

627 Roller, B.R.K., Schmidt, T.M., 2015. The physiology and ecological implications of efficient
628 growth. *ISME Journal* 9, 1481–1487. doi:10.1038/ismej.2014.235

629 Rumpel, C., Kögel-Knabner, I., 2011. Deep soil organic matter — a key but poorly understood
630 component of terrestrial C cycle. *Plant and Soil* 338, 143–158. doi:10.1007/s11104-010-
631 0391-5

632 Saiz, G., Bird, M.I., Domingues, T., Schrodt, F., Schwarz, M., Feldpausch, T.E.D.R.,
633 Veenendaal, E., Lloyd, J.O.N., 2012. Variation in soil carbon stocks and their determinants
634 across a precipitation gradient in West Africa. *Global Change Biology* 18, 1670–1683.
635 doi:10.1111/j.1365-2486.2012.02657.x

636 Schmidt, M.W.I.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A.,
637 Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A.C.C., Nannipieri, P., Rasse,
638 D.P., Weiner, S., Trumbore, S.E., Kleber, M., Ko, I., 2011. Persistence of soil organic
639 matter as an ecosystem property. *Nature* 478, 49–56. doi:10.1038/nature10386

640 Schneckenberger, K., Demin, D., Stahr, K., Kuzyakov, Y., 2008. Microbial utilization and
641 mineralization of [14C]glucose added in six orders of concentration to soil. *Soil Biology*
642 and *Biochemistry* 40, 1981–1988. doi:10.1016/j.soilbio.2008.02.020

643 Schuur, E.A.G., Matson, P.A., 2001. Net primary productivity and nutrient cycling across a
644 mesic to wet precipitation gradient in Hawaiian montane forest 431–442.
645 doi:10.1007/s004420100671

646 Schweizer, S.A., Hoeschen, C., Schlüter, S., Kögel-Knabner, I., Mueller, C.W., 2018. Rapid soil
647 formation after glacial retreat shaped by spatial patterns of organic matter accrual in
648 microaggregates. *Global Change Biology* 24, 1637–1650. doi:10.1111/gcb.14014

649 Shao, P., Lynch, L., Xie, H., Bao, X., Liang, C., 2021. Tradeoffs among microbial life history
650 strategies influence the fate of microbial residues in subtropical forest soils. *Soil Biology*
651 and *Biochemistry* 153, 108112. doi:10.1016/j.soilbio.2020.108112

652 Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between
653 (micro)aggregates, soil biota, and soil organic matter dynamics. *Soil and Tillage Research*
654 79, 7–31. doi:10.1016/j.still.2004.03.008

655 Thompson, A., Rancourt, D.G., Chadwick, O.A., Chorover, J., 2011. Iron solid-phase
656 differentiation along a redox gradient in basaltic soils. *Geochimica et Cosmochimica Acta*
657 75, 119–133. doi:10.1016/j.gca.2010.10.005

658 Torn, M.S., Trumbore, S.E., Chadwick, O.A., Vitousek, P.M., Hendricks, D.M., 1997. Mineral
659 control of soil organic carbon storage and turnover. *Nature* 389, 171–173.

660 Unger, S., Mágua, C., Pereira, J.S., David, T.S., Werner, C., 2010. The influence of
661 precipitation pulses on soil respiration - Assessing the “Birch effect” by stable carbon
662 isotopes. *Soil Biology and Biochemistry* 42, 1800–1810. doi:10.1016/j.soilbio.2010.06.019

663 Vogel, C., Mueller, C.W., Höschen, C., Buegger, F., Heister, K., Schulz, S., Schloter, M., Kögel-
664 Knabner, I., 2014. Submicron structures provide preferential spots for carbon and nitrogen
665 sequestration in soils. *Nature Communications* 5, 1–7. doi:10.1038/ncomms3947

666 Weintraub, M.N., Scott-Denton, L.E., Schmidt, S.K., Monson, R.K., 2007. The effects of tree
667 rhizodeposition on soil exoenzyme activity , dissolved organic carbon , and nutrient
668 availability in a subalpine forest ecosystem. *Oecologia* 154, 327–338. doi:10.1007/s00442-
669 007-0804-1

670 Whitman, T., Neurath, R., Perera, A., Chu-Jacoby, I., Ning, D., Zhou, J., Nico, P., Pett-Ridge, J.,
671 Firestone, M., 2018. Microbial community assembly differs across minerals in a
672 rhizosphere microcosm. *Environmental Microbiology*. doi:10.1111/1462-2920.14366

673 Woolf, D., Lehmann, J., 2019. Microbial models with minimal mineral protection can explain
674 long-term soil organic carbon persistence. *Scientific Reports* 9, 6522. doi:10.1038/s41598-
675 019-43026-8

Tables

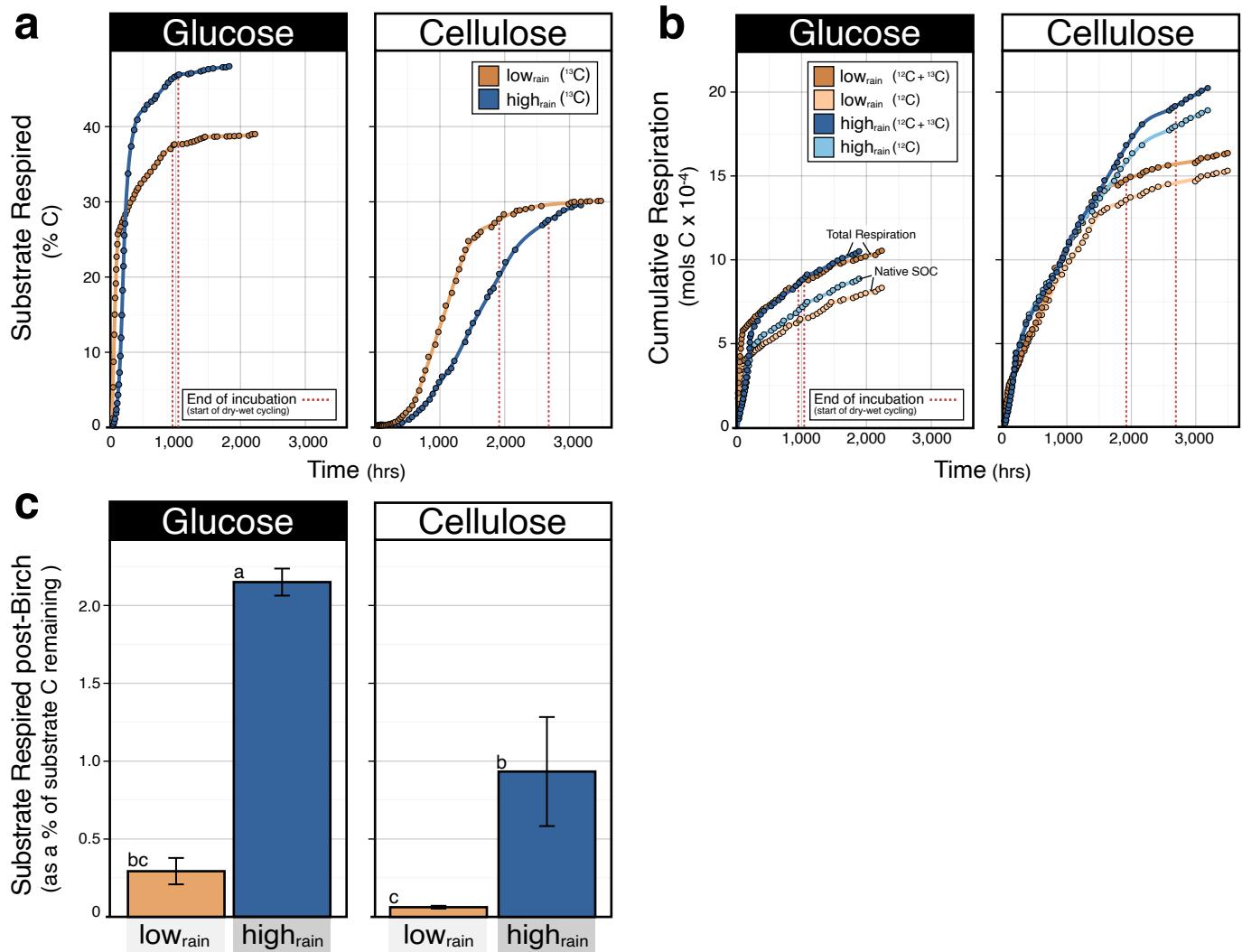
676 **Table 1.** Summary of site and soil characteristics. The δ -values are expressed in per mille and
677 correspond with the $\delta^{15}\text{N}$ of total N, $\delta^{13}\text{C}$ of total C, and $\delta^{13}\text{C}$ of microbial biomass C.

678 **Table 2.** Microbial biomass measurements and substrate use efficiency (SUE_E). All values are the
679 average of replicate soil microcosms. Higher variability in cellulose SUE_E was apparent in the
680 higher standard deviations (\pm). Direct comparison of SUE_E between glucose-amended high_{rain} and
681 low_{rain} soils is possible, since both were incubated for 42-days. Given the unequal incubation length
682 of soils for other conditions, comparison should be interpreted with caution, since SUE_E is
683 expected to decline over time through biomass recycling. Lettering denotes significant differences
684 between high_{rain} and low_{rain} soils for each measurement according to t-tests ($p < 0.05$).

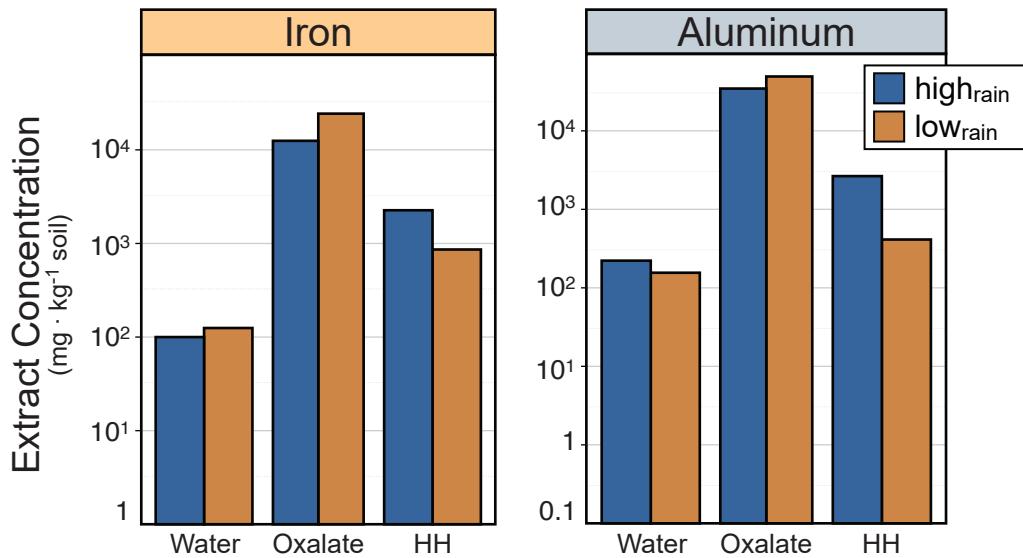
Figures

685 **Figure 1.** Soil amendments of ^{13}C -glucose and ^{13}C -cellulose were mineralized at different rates in
686 low_{rain} and high_{rain} soils. Panel (a) displays the proportion of substrate respired (according to
687 headspace measurements of $^{13}\text{CO}_2$), while panel (b) displays total cumulative respiration, which
688 includes the mineralization of native SOC ($^{12}\text{CO}_2$). The persistence of substrate-derived ('SO ^{13}C ')
689 was lower in high_{rain} soils, based on (c) the cumulative $^{13}\text{CO}_2$ respired in the 72-hr period following
690 three dry-wet cycles normalized to the % of unrespired substrate C. In (a) and (b), the x-axis
691 corresponds to the length of incubation (marked with a red dotted line) plus the period of dry-wet
692 cycling. All analyses were performed on soils sampled at the end of the incubation. In (c), lettering
693 denotes significant differences according to Tukey's HSD test ($p < 0.05$). For reference, 1,000 h
694 is approximately 42 days.

695 **Figure 2.** A comparison of the metal extraction efficacy of oxalate and hydroxylamine
696 hydrochloride (HH) metal-solubilizing soil treatments. Iron and aluminum concentrations in
697 oxalate and HH extracts were compared against water extracts and a saline control extract (KCl).
698 Metal-solubilizing extractions were used to compare the amount of ^{13}C associated with iron /
699 aluminum in high_{rain} and low_{rain} soils. The HH-based extraction was preferred, since HH is not
700 carbon based. Bars are colored by soil type. Duplicate measurements were made for water and
701 oxalate extractions with bars representing the average.


702 **Figure 3.** The addition of ^{13}C -glucose to high_{rain} soil resulted in a significant increase in extractible
703 SO ^{13}C at the end of the incubation relative to low_{rain} soils and soils to which ^{13}C -cellulose was
704 added. DO ^{13}C was determined on the basis of atom % ^{13}C enrichment of lyophilized DOC derived
705 from water soluble (KCl) and iron-associated (hydroxylamine hydrochloride; HH) fractions. The
706 mass of soil extracted was the same across samples and conditions. Lettering denotes significant
707 differences according to Tukey's HSD test ($p < 0.05$).

708 **Figure 4.** Spatial analysis of the co-localization of SO ^{13}C with OM- versus mineral-dominated
709 surfaces using NanoSIMS. In (a), examples of imaged microaggregates illustrating differences in
710 co-localization among low_{rain} and high_{rain} soils incubated with ^{13}C -labeled glucose or cellulose. In
711 (b), differences in the proportion of OM-dominated surfaces are apparent in the segmentation of
712 particle surface area average across 4 to 8 images per treatment and substrate. In (c), a close-up
713 view of the proportion of SO ^{13}C co-localized with mineral- and OM-dominated surfaces between


714 low_{rain} high_{rain}, respectively, from data shown in (b). In (a), the first row of images displays the
715 distribution of O, C, and N in RGB coloring. The second row displays the atom % ¹³C enrichment
716 as a heatmap of ¹³C-enriched and OM-dominated surfaces with the equally scaled ¹⁶O+²⁶CN-
717 distribution showing the particle surface structure in grey. The third row displays the segmentation
718 mask produced by multichannel machine-learning. Further details on the image analysis are
719 provided in the SI and Figure S1.

720 **Figure 5.** A graphical summary of results illustrating differences in soil mineral properties, SOC
721 formation, microbial biomass and SUE of the soils from high and low rainfall regions of our
722 precipitation gradient. Overall, our evidence suggests that the persistence of substrate-derived
723 SO¹³C was enhanced by assimilation into microbial biomass and by association with mineral
724 surfaces. These effects were pronounced in low_{rain} soils, where SO¹³C was most persistent.

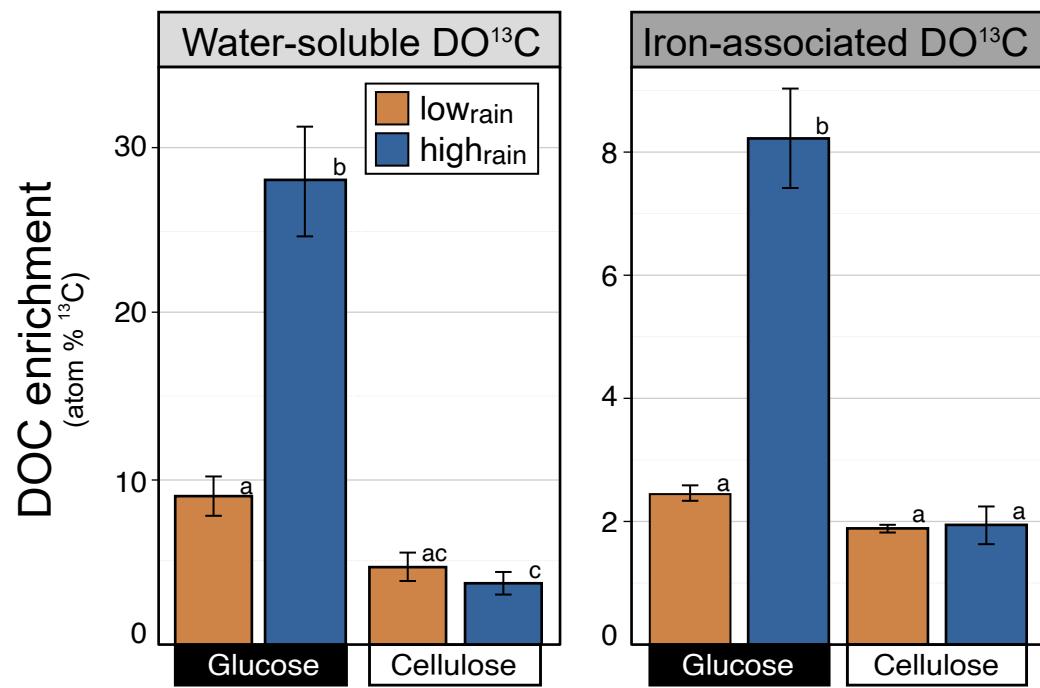

Figure 1.

Figure 2.

Figure 3.

Figure 4.

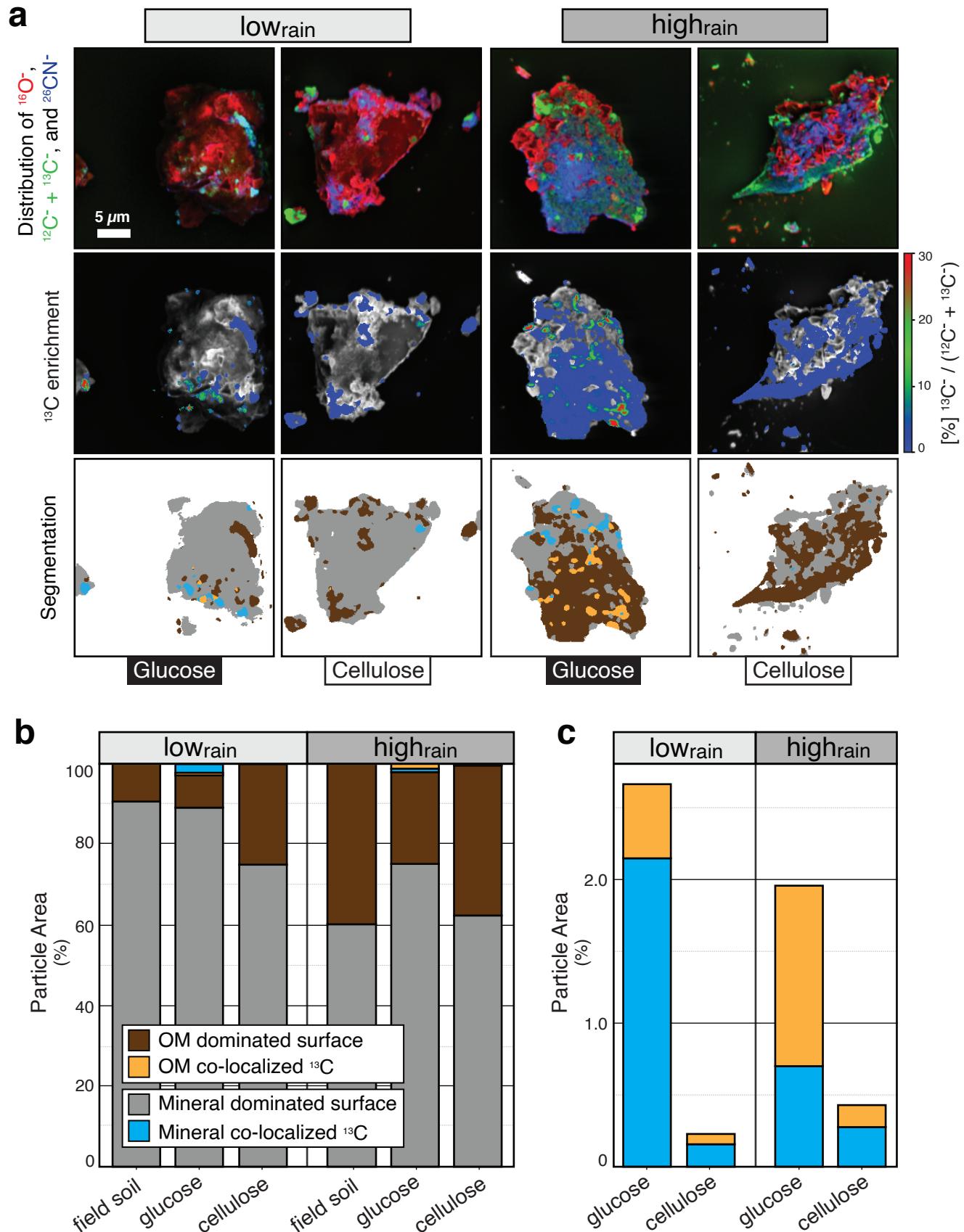
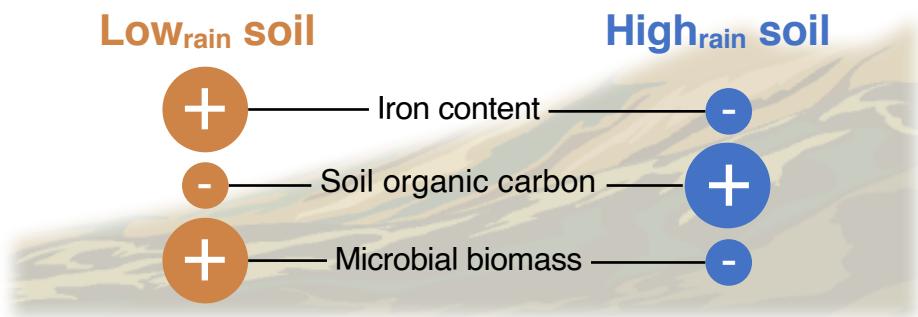
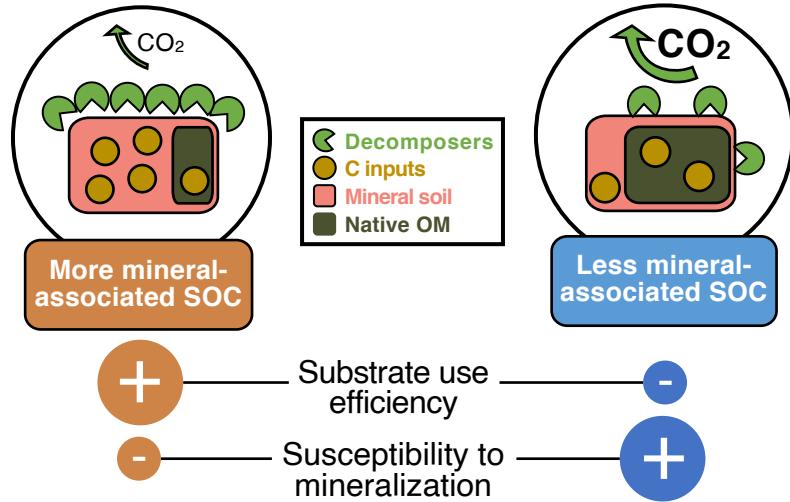




Figure 5.

Properties of Soils from Precipitation Gradient

Summary of Experimental Results

Table 1.

	low_{rain}	high_{rain}
Elevation (m)	1195	1520
Annu. precip. (mm)	1784.1	2286.6
Sample depth (cm)	25-35	36-42
Soil pH	6.30	4.10
Fe (%)	26.2	13.9
Al (%)	36.5	38.8
C (%)	3.94	20.25
N (%)	0.39	0.92
C/N	10.01	21.94
$\delta^{15}\text{N}$ (‰)	6.02	1.08
$\delta^{13}\text{C}$ (‰)	-21.30	-26.82
$\delta^{13}\text{MBC}$ (‰)	-27.84	-18.32

Table 2.

	Initial Biomass (mg C·g ⁻¹ dry soil)	Final Biomass (mg C·g ⁻¹ dry soil)		Substrate-derived Biomass (μ g ¹³ C·g ⁻¹ dry soil)		Substrate Use Efficiency (SUE)	
		Glucose	Cellulose	Glucose	Cellulose	Glucose	Cellulose
low_{rain}	1.13 ^b \pm 0.13	1.18 ^b \pm 0.35	1.06 \pm 0.65	0.58 ^b \pm 0.13	0.44 \pm 0.25	0.59 ^b \pm 0.05	0.56 \pm 0.19
high_{rain}	0.14 ^a \pm 0.01	0.18 ^a \pm 0.06	0.48 \pm 0.40	0.13 ^a \pm 0.05	0.38 \pm 0.40	0.22 ^a \pm 0.08	0.44 \pm 0.29