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Abstract

Climatic history can shape the functioning of soil microbial communities and thus rates of
ecosystem processes such as organic matter decomposition. For example, broad spatial scale
differences in climatic history, such as contrasting precipitation regimes, have been shown to
generate unique microbial functional responses to contemporary moisture conditions. Yet it is an
open question as to whether local differences in soil microclimate similarly influence the
functional potential of decomposer communities. Here, we use a multi-scale approach within and
among two temperate forest field sites to investigate this question. Soils from fifty-four
microsites, that vary in their soil moisture climate-regimes, were used as inocula for a common
leaf litter (Quercus rubra L.) in a controlled, laboratory microcosm study. Microcosms were
placed under dry, mesic and wet lab-moisture conditions and the rate of carbon (C)
mineralization of the litter was measured over 202 days. Our results reveal differences in
decomposition rates under controlled conditions that highlight broad-scale functional differences
between the soil communities at each site. Specifically, we found that C mineralization differed
by as much as two-fold for soil communities when compared between the sites. Our results also
show that functional differences of soil communities are observable within one site but not the
other. In the site where local-scale functional legacies were apparent, the historical soil moisture
microclimate-regimes generated as much as an 89% change in C mineralization rates of the leaf
litter under the same contemporary, lab-imposed moisture conditions. A similar pattern was not
observable in the other site; instead, laboratory moisture conditions explained almost all
variation in C mineralization. Notably, for the site with pronounced local-scale functional
legacies, there was much greater within-site variation in field-soil microsite moisture than at the

site which did not exhibit functional legacies, suggesting that the extent of local-scale variation
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in microclimate may act as control on whether local-scale functional legacies are observed.
Regardless of whether this mechanism does explain our findings, our observations do confirm
those from prior studies where regional-scale moisture-regime differences shape microbial
function, and extend this prior work by providing evidence that pronounced local-scale
differences in soil moisture microclimate-regimes are associated with microbial functional
legacies.
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Introduction

Soil heterotrophic microorganisms produce carbon dioxide as they metabolize decomposing
organic material for energy and growth (Swift et al., 1979). As biological agents that mediate
decomposition, their activities contribute substantially to the fluxes of carbon (C) from terrestrial
ecosystems to the atmosphere (Falkowski et al., 2008; Bond-Lamberty and Thomson, 2010). Soil
temperature, moisture, and litter quality are important controls on decomposition rates (Aerts,
1997; Parton et al., 2007) and are consequently represented in soil biogeochemical models.
These models are used to understand and project how decomposition rates respond to changing
environmental conditions, and the inclusion of microbial biomass and community traits as
additional controls on organic matter decomposition reflect growing evidence that their influence
on decomposition rates extends beyond those mediated directly by abiotic controls (Glassman et
al., 2018; Maynard et al., 2018). These modeling efforts have revealed that the way in which
microbes are represented can strongly influence projected changes in soil organic matter flux
rates and pool sizes (Schimel and Weintraub, 2003; Wang et al., 2013; Wieder et al., 2015b;
Abramoff et al., 2018; Fatichi et al., 2019).

There is now a wealth of empirical evidence that the abiotic environment shapes both the
structure and function of microbial communities. In experimental manipulations and across
environmental gradients, past abiotic regimes of temperature (Karhu et al., 2014; Romero-
Olivares et al., 2017), moisture (Evans and Wallenstein, 2012, 2014; Hawkes et al., 2017), and
litter input quality (Keiser et al., 2011) have been observed to shape contemporary microbial
function (Strickland et al., 2015; Crowther et al., 2019). Additionally, the abiotic historical
legacies of these regimes on microbial community function can be persistent. For example,

Hawkes et al. (2020) showed that within a regional precipitation gradient, 4.5 years of
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manipulated rainfall did not significantly shift microbial community function. Instead, soil
respiration responses to the rainfall manipulation continued to reflect the community’s ‘climate
origin’. These findings suggest that persistent functional legacies in biotic communities may
constrain local ecosystem responses to environmental change, yet it is unclear in which
environments and at which scales these legacies manifest (Baveye et al., 2018; Ladau and Eloe-
Fadrosh, 2019).

Climatic variables are known to vary at both macro- and micro-scales. For instance, soil
moisture regimes often vary substantially in space both across and within sites. In forests, spatial
variation in soil moisture at local scales (m to km) can be equal in magnitude, or even exceed,
variation in site-mean soil moisture among sites arrayed across regional climate gradients
(Bradford et al., 2014, 2017; Loescher et al., 2014). Variables including topography, soil
properties and plant traits interact to produce microscale heterogeneity in moisture
(Vanderlinden et al., 2012), but how microclimatic variation imprints historical legacies on the
functioning of microbial communities appears largely unknown. Yet within-site moisture
regimes have been linked to patterns in fungal composition and function (van der Wal et al.,
2015; Stursovd et al., 2016), enzyme activities (Baldrian et al., 2010, Baldrian, 2014) and litter
decomposition (Bélanger et al., 2019) suggesting that microclimate, as well as macroclimate,
regimes may influence how microbial community function responds to contemporary and future
variation in environmental conditions.

In this study we take an experimental approach to disentangle whether the climatic
regime influences decomposition rates via direct effects on microbial activities only, or
additionally via indirect effects mediated by functional legacies that are embedded within the

climate regime. We first look for evidence that site-level macroclimate regimes generate
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microbial communities that function distinctly. Second, we test competing hypotheses, the first
of which is based on the idea that microclimate variation within sites does not generate
functional legacies because they would be overwhelmed by rates of local dispersal of microbes
and/or materials (e.g., decomposing leaves; Allison and Martiny 2008; Nemergut et al. 2013).
Alternatively, high within-site heterogeneity in microclimate could allow functional legacies to
manifest at local scales, generating microbial communities with distinct functional responses to
contemporary moisture conditions. Our laboratory microcosm approach established and
controlled three contemporary soil moisture regimes, imposed on a common leaf litter inoculated
with soil microbial communities sourced from local-scale spatial gradients in soil moisture
regime found within two forest sites within a regional climate gradient. We repeatedly measured
carbon mineralization of the litter for 202 days.

Materials and Methods

Microsite characteristics and sampling

We worked at two forest sites, ~650 km apart, that are part of the National Ecological
Observation Network (NEON), which splits the continental United States into 20 ecoclimate
domains to monitor ecosystems under environmental change across time and space (Keller et al.,
2008). Both sites are temperate deciduous forests that spanned from the mid-Atlantic domain
(SCBI: Smithsonian Conservation Biological Institute, Front Royal, VA) to the Northeast
domain (HARV: Harvard Forest, Petersham, MA). The two sites have different climate and soil
characteristics (Table 1) and differ in the degree to which soil moisture varies within each site
(Fig. 1). Within each forest site we established twenty-seven microsites (1 m?) around the

perimeter of the eddy-flux tower footprint, which covers about 1.3 km?.



115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

Microsites were on average 46 m apart from the next nearest microsite with the closest
two microsites being 18 m apart and the two microsites furthest from one another being 1,389 m
apart within a site. We chose microsites that varied in topographic position (e.g., ridge versus
valley bottom) to capture heterogeneity in microsite conditions. Microclimate measurements
were taken at three discrete time points over a 10-month period from December 2019 to
September 2020. Temperature was measured at 5 cm depth for soil and 1 cm depth for the litter
layer using a hand-held thermometer. Soil volumetric moisture was measured in the field using a
time domain reflectometry (TDR) probe, inserted at a 45° angle to ~5 cm depth, in addition to
gravimetric moisture measured in the lab. These discrete point measurements were intended to
capture relative differences in soil characteristics over space, specifically for soil moisture, which
has often been described as temporally stable where relative moisture differences in sampled
locations persist over time (Vachaud et al., 1985; Brocca et al., 2010; Penna et al., 2013). In our
study, temporal stability calculated through Spearman’s rank-order correlation reveals high
temporal stability in gravimetric soil moisture (rs > 0.73) for the three point measurements over
the year, confirming that point measurements are useful for characterizing spatial patterns in soil
variables such as relative moisture regimes (Vanderlinden et al., 2012).

Leaf litter was collected at peak litter fall in November 2019 across all of the microsites.
Due to its presence across both sites, northern red oak (Quercus rubra L.) litter was pooled to
create a common litter substrate and air dried. The Q. rubra leaves were ground to 2 mm using a
Wiley mill, further mixed to homogenize the sample, and then autoclaved twice at 121 °C at 15
pst for 20 min, following the approach of Strickland et al. (2009a, b; Keiser et al. 2011) to
sterilize the litter. The top 5 cm of soil was sampled with a 2-cm dia. corer at each microsite in

December 2019 for HARV and January 2020 for SCBI. Five to ten cores were taken per
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microsite, passed through a 4-mm sieve, then homogenized and stored at 4 °C until their use as
the microbial community inoculum (see next section).

Soils were similarly sampled at each microclimate measurement point. Specifically,
gravimetric soil moisture (GWC) was measured by drying soils for 24 h at 105 °C and is
reported as the percent water contained in field fresh soil. Water holding capacity (WHC) was
measured for the soils and sterilized litter by allowing saturated samples to drain for 2 h in
Whatman #1 filter paper and then to dry for 24 h at 105 °C. Soil pH was measured by placing
soil in deionized water (1:1 volumetric ratio), followed by measurement of the supernatant with a
benchtop pH meter after 10 min. Microbial biomass was assayed using a modified substrate
induced respiration (SIR) method (Fierer et al., 2003; Strickland et al., 2010) whereby 5 mL of
soil was incubated at 20 °C with autolyzed yeast. After 1 h of gentle shaking, headspaces were
flushed with CO»-free air, and then accumulated headspace CO> was measured after 4 h with an
infrared gas analyzer (IRGA; Model LI-7000, Li-Cor Biosciences, Lincoln, Nebraska, USA).
SIR biomass is reported as maximum CO> production normalized by dry weight equivalent of
soil. Volume, as opposed to mass, was used to determine the amount of soil for the SIR
incubations because of marked differences in soil organic matter contents (which causes similar
masses to have very different volumes). Total soil carbon and nitrogen were measured on air-
dried soils by grinding, packing in tins and combusting them on an NA1500 CHN Analyzer
(Carlo Erba Strumentazione, Milan, Italy).

Microcosm set-up
Our microcosm design followed published approaches (Strickland et al., 2009a, b; Keiser et al.,
2011; Cleveland et al., 2014) that introduce a small amount of soil, to serve as a microbial

inoculum, to a litter environment which serves as the dominant organic substrate across the



161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

incubation. The approach then standardizes the substrate (i.e., the litter) and varies the microbial
community inoculum, to tease out whether communities function similarly or differently once
placed in a standard environment. Specifically, we used 50-mL centrifuge tubes with 0.25 g of
dry weight equivalent soil from each microsite, which was thoroughly mixed with 1-g dry-
weight equivalent and ground Q. rubra litter. Soil-only controls were constructed that contained
~6 g dry-weight equivalent soil, which were used to correct C mineralization fluxes from the leaf
litter by subtracting the C mineralized throughout the experiment from the soil. The estimated
respiration from the soil in the soil-litter microcosms was, at most, 10.6% and the mean was 2.3
+ 1.6% (SD) of the cumulative CO; respired per microcosm.

Three treatments were applied to the soil only and soil+litter microcosms to create
constant moisture regimes (‘Lab Moisture’) that spanned from drier (35% WHC) to mesic (60%
WHC) to wet (100% WHC) conditions. WHC for the litter+soil mixtures was obtained by
measuring WHC for the ground litter and soils as described above and calculating target
moisture content based on the dry mass equivalents for the litter and soil. In total, 162 unique
soil-litter mixtures were created (2 sites X 27 composite soils from each microsite x 3 lab
moisture treatments) and were maintained at target moisture by mass adjustments with weekly
DI-water additions. The additional 162 soil-only microcosms were also incubated under the same
three lab moisture regimes. All microcosms were kept at 20 °C over the course of the
experiment. Carbon mineralization was measured over 202 days by measuring CO; production in
each microcosm over 24 h at 17 time points (day 1, 6, 9, 13, 20, 27, 34, 43, 50, 64, 78, 92, 105,
120, 141, 168, 202) with the frequency of measurement decreasing over the course of the
experiment. At each time point, a cap with a rubber septum and O-ring was fitted to the top of

the 50-mL tube and the headspace flushed with CO»-free air. After 24 h of incubation, a 5-mL
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sample of gas was taken and used to flush a 1-mL sample loop that was then transferred for
measurement on an [IRGA.

To assess variability of C mineralization of the same litter-soil mix under different
conditions, we captured the distribution of responses from a subset of the unique litter-soil mixes
through high replication. This approach can be useful for representing error in measurements and
for propagating parameter uncertainties into modeling frameworks (LeBauer et al., 2013). Here,
one microsite was selected from dry and wet field moisture conditions at each site and replicated
7 times under each treatment (4 soils x 7 replicates x 3 lab moisture treatments = 84
microcosms). Together with the experimental units (164) and soil controls (164), we maintained
408 microcosms across the 202-day experiment.

Data and inferential analysis

Cumulative C mineralization rates were calculated using the area under the curve (‘AUC’)
function in the DescTools package (Signorell, 2021) in the statistical freeware R (R Core Team,
2020). To estimate CO; evolved from Q. rubra litter, cuamulative C mineralization from litter-soil
microcosms were subtracted from soil-only controls for the corresponding microsite soil sample.
Differences in cumulative C mineralization between the two sites and lab moisture treatment
were analyzed using ANOVA and comparisons were assessed using Tukey's honest significance
test.

To directly test the competing hypotheses that decomposer community response to
contemporary moisture conditions are or are not modified by historical soil moisture
microclimate, we used regression to model experimental moisture treatment with known controls
on litter decomposition — via microbial functional legacies — such as field soil moisture,

temperature, and soil pH (Table 2). This causal statistical inferential approach follows Holland
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(1986), where the focus is on identifying the conditional effect size of a causal variable relative
to other known causes (see Bradford et al. 2021). Cumulative respiration response was natural-
log transformed to meet assumptions of normality, but results were qualitatively the same with
non-transformed data. We first ran a linear model including only gravimetric soil moisture
(‘Field Soil Moisture’), treatment (‘Lab Moisture’), and their interaction (Reduced Model, Table
S1). A second-order term for Lab Moisture was included because of the expectation that
microbial communities will have a unimodal response, where mesic (60% WHC) conditions will
have the highest mineralization rates (Howard and Howard, 1993). We ran ‘Lab Moisture’ as a
continuous variable to allow comparison with ‘Field Soil Moisture’ at the same scale and assess
relative effect sizes. Variables were standardized by subtracting the mean and dividing by one
standard deviation to allow comparison of relative effects when adding variables with different
units. When we included site in the models, variables were standardized by subtracting the mean
and dividing by two standard deviations to assess continuous and binary predictors (‘Site’) on the
same scale (Gelman, 2008).

Among the reduced and full models, we iteratively included and omitted interactions and
non-correlated variables to explore the degree to which the effect sizes of our variables of
interest (‘Field Soil Moisture’ and ‘Lab Moisture’) were influenced by model structure (Fig. S1).
This sensitivity analysis approach is tailored to test the robustness of the absolute and relative
causal effect sizes of the predictors of interest, in light of the fact that ecological outcomes are
multi-causal and conditional, with plausible causative variables typically non-orthogonal (see
Hobbs et al. 2012 and Bradford et al. 2019). The variables used in the model for both sites and
for each site included soil pH, soil temperature, litter temperature, and soil bulk density. In

addition to including variables that were not or only marginally correlated with field soil
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moisture, we examined how inferences about soil moisture regime might be influenced by
related microsite conditions such as total soil organic C (TOC) concentration and microbial
biomass that also can influence microbial function. Unstandardized model results and those of
the sensitivity analyses are included in the supplementary material (Table S2; Figs. S1-2). R
package ‘tidyverse’ (Wickham et al., 2019) was used to process data and for visualization;
‘jtools’ (Long, 2020), ‘interactions’ (Long, 2019), and ‘sjPlot’ (Liidecke, 2021) were used to
report and visualize model analyses.

Results

Site comparisons

We found functional differences between soil communities from the two sites, but the strength of
the difference was dependent on contemporary moisture conditions (Table 2). Specifically,
cumulative C mineralization in the dry conditions was 110.3 £5.1 mg C g! litter (mean + SE)
for the SCBI soils, which is 97% higher than the cumulative mineralization observed for the
HARYV soil communities (55.7 £2.5 mg C g'! litter; Fig. 2d). In mesic conditions, SCBI
communities mineralized only 24% more litter C than the corresponding HARV communities
(74.1 £ 3.5 mg C g'! litter compared to 59.7 £ 2.0 mg C g'! litter), whereas under the wet
conditions, mean cumulative mineralization for SCBI was 4% higher than HARV (53.8 £ 1.4 mg
C g'! litter compared to 51.9 £ 1.3 mg C g'! litter; Fig. 2f).

The differences between the sites and among the lab treatments were underlain by
differences in temporal dynamics over the 202-day incubation, which translated to different
cumulative mineralization rates (Fig. 2d-f). Carbon mineralization rates from leaf litter increased
and peaked in all treatments across the first six to nine days of the incubations (Fig. 2).

Decomposer communities from HARV across treatments exhibited a single peak respiration after

12
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six to nine days. SCBI communities exhibited a second, delayed increase in respiration that
varied in magnitude and length depending on laboratory treatment: dry conditions produced a
large response which began at day 43 and peaked at day 105 (Fig. 2a); mesic conditions
exhibited a second, smaller peak at 27 days (Fig. 2b); and the wet conditions had a second peak
at day 34 that was similar in magnitude to the first peak (Fig. 2¢). These secondary peaks in C
mineralization rates for the SCBI soils in the two drier lab treatments meant that the expectation
that cumulative respiration rates would peak at 60% WHC — as they did for HARV soil inocula
(Figs. 2d-f) — was not realized for the SCBI soil communities. Instead, the main effect of lab
moisture treatment for the both-sites model was negative (Table 2). Notably, however, the
standardized coefficient for the interaction between lab moisture and the field moisture
conditions was approximately three-fourths the size of the lab moisture main effect (Both Sites,
Table 2). This large interaction effect most likely arose because in the dry and mesic lab
treatments, drier soils from SCBI resulted in higher cumulative mineralization than from wetter
soils from HARYV, whereas the wet treatment had similar cumulative fluxes when the two sites
were compared (Figs. 2d-f). The large coefficient for Site was likely driven by these high
cumulative mineralization rates for SCBI inocula in the dry and mesic lab-moisture treatments,
which overall led to higher cumulative mineralization (across all lab treatments) for SCBI versus
HARY inocula.

Harvard Forest, MA — HARV

Functional differences among the soil decomposer communities, associated with the field
moisture conditions from where they were sourced, were similarly observed when the HARV
data were considered independent of the SCBI data. Specifically, there was a main effect of field

soil moisture and an interactive effect with lab moisture treatment (Table 2). The imposed lab
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moisture regime did not have a strong effect, but the relatively large, negative second-order Lab
Moisture term reflects the observation that the highest cumulative mineralization rates were
under mesic moisture conditions. The effect of field soil moisture and the interaction with lab
moisture treatment drove the majority of variation in this site as indicated by the standardized
coefficient terms. Notably, the ‘Field Soil Moisture’ terms reveal that the soil communities from
across the different microsite moisture regimes at the HARYV site are functionally distinct.
Notably, these functional differences had a larger effect on the observed mineralization rates than
the lab-imposed moisture conditions.

The interaction term appeared to be associated with the fact that soil communities
sourced from drier microsites had lower cumulative mineralization rates under the drier lab
moisture treatment, whereas for soil communities sourced from the wettest microsites cumulative
mineralization was lowest under the wettest lab moisture treatment (Fig. 3a). These dynamics
meant that the field moisture regime had a strong positive effect on cumulative respiration rates
for the dry lab treatment, but a much shallower slope for the wet lab treatment (Fig. 3a). The
slope for the mesic lab treatment was intermediate but, again, communities sourced from
increasingly moist microclimate regimes had higher cumulative respiration rates than those
sourced from drier field regimes (Fig. 3a). Using the regressions from Table 2 and Fig 3, we
estimated the effect size that history of soil moisture had on contemporary responses. In dry lab
conditions (Fig. 3a), communities from the wetter end of the moisture gradient mineralized 89%
more litter C than soils from drier microclimate regimes: 39.0 £ 3.7 mg C g'! litter compared to
73.6 £ 3.9 mg C g'! litter. Under mesic conditions (Fig. 3a), communities sourced from wetter
microclimates mineralized 50% more than dry microclimates: 48.2 2.8 mg C g'! litter

compared to 72.0 £2.9 mg C g! litter. The wet lab treatment (Fig 3a, blue solid-line) resulted in
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soils from the wettest microclimates mineralizing 14% more C compared to soils from drier
microclimates: 48.7 + 3.9 mg C g'! litter compared to 55.4 + 4.2 mg C g'! litter. Notably, the
within-site variation across the field soil moisture gradient is comparable to the differences in
mineralization rates between sites under dry conditions: 89% difference within HARV vs. 97%
between sites. Further, the difference in cumulative respiration from the microsite communities
that were incubated under mesic lab conditions were higher within the HARYV site than between
the two forest sites (50% variation within HARV microsites vs. 24% variation between HARV
and SCBI sites).

Smithsonian Conservation Biological Institute, VA — SCBI

Decomposer communities from the SCBI site were not influenced by their local historical
moisture regimes (Table 1, Fig 3b). The slopes for cumulative respiration for lab moisture
treatments were not significantly different suggesting that there were no within-site differences
in microbial function. Standardized effect size estimates for field soil moisture ranged from O to
0.10 which indicates that there is potentially a positive association of field soil moisture regime
with cumulative C mineralization, but the interaction between lab and field moisture essentially
had a slope of zero (Table 2). As a result, the lab-based moisture treatments accounted for nearly
all of the variation in cumulative C mineralization that was observed (SCBI: ‘Lab Moisture’,
Table 2, Fig. 3b). Dry conditions resulted in mineralization rates of 110 + 5.1 mg C g™! litter
(mean + SE): 49% higher than mesic conditions (74.1 + 3.5 mg C g'! litter) and 105% higher
than wet conditions (53.8 + 1.4 mg C g'! litter).

Model structural sensitivity

Given that the microsites from where we sourced the soil communities differed in more than

moisture, we evaluated how other microenvironmental predictors that might influence microbial
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community functioning affected our interpretation of field moisture history as a causal variable.
We explored how the addition of factors not strongly correlated with soil moisture, such as soil
pH and soil temperature, affected the coefficient estimates of interest (Table 2). For the both site
model, HARV, and SCBI models, coefficient sizes for ‘Field Soil Moisture’ remained relatively
unchanged compared to a reduced model with only ‘Field Soil Moisture’ and ‘Lab Moisture’
(Table S1). Microbial biomass and TOC were highly correlated with field soil moisture
(respectively, r = 0.67 and 0.89 for HARV and 0.68 and 0.91 for SCBI; SI Tables 3, 4), with
variance inflation factors (VIF) > 2 when included in main effects models. For the models
including both sites and only HARYV, the inclusion of these variables continued to not affect the
sign and magnitude of the ‘Field Soil Moisture’ effects (Fig. S1c). In the model specified for
SCBI, the inclusion of TOC modified the coefficient for field soil moisture but it remained
insignificant and close to zero (Fig. Sle). Across all models, we lastly substituted measures of
field soil moisture taken at different times, and the mean value of these over the three time
points. Soil moisture across sampled time points provided coefficient estimates that support our
conclusions (Figs. S2a-e). In short, our results appeared relatively insensitive to model structural
and parameter assumptions, suggesting that the coefficient estimates for ‘Field Soil Moisture’
and ‘Lab Moisture’ were robust.

To understand how unique experimental units might vary if they themselves were
replicated, we replicated microcosms from one wet and one dry microsite within each site (4
microsites x 3 treatments x 8 replicates). Variation within these subsamples had a median
coefficient of variation (COV) of 12%, which was consistently lower than the variation within
treatments and site groupings except for a single highly-replicated SCBI community under dry

conditions. Overall, within-replicate variation in C mineralization was about half that of within-
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site variation across treatments providing confidence that our conclusions about laboratory
moisture treatment and microsite legacy effects are robust to potential within-replicate variation
in observed C mineralization rates.

Discussion

Numerous studies report that soil communities sampled from sites with different precipitation
regimes (and hence assumed differences in soil moisture regimes) exhibit functionally distinct
responses to contemporary moisture conditions (Evans and Wallenstein, 2012; Hawkes et al.,
2017). Our site-level findings contribute a further empirical example where our two sites, HARV
and SCBI, had distinct C mineralization time-courses and cumulative fluxes across different lab-
imposed moisture regimes (Fig. 2). This finding supports regional studies that observe that
microbial responses to new conditions can be shaped by environmental history (Evans and
Wallenstein, 2012; Averill et al., 2016; Hawkes et al., 2017; Glassman et al., 2018). We
additionally asked whether these macroscale functional differences were exhibited at local,
within-site scales. We found evidence for both of our hypotheses where, in one site (HARV),
historical microsite conditions were associated with differences in cumulative C mineralization.
Whereas in the other site (SCBI) only lab-imposed moisture conditions drove differences in C
mineralization with no evidence of within-site differences in functioning.

Differences in microbial function emerge from multiple controls such as environmental
history and contemporary conditions. We specifically asked how within-site heterogeneity in soil
moisture regimes might generate microbial functional differences. In HARYV, soils sourced from
wetter microclimates mineralized more litter C than soils from drier microclimates across all lab-
imposed moisture conditions (Fig. 3a). This effect was stronger for the dry and mesic lab

moisture conditions compared to the wet lab conditions (Table 3; Fig. 3a). Results from this site
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suggest historical legacies of soil moisture shape the functioning of communities at local scales,
reflecting similar functional patterns across regional precipitation gradients where historically
wetter sites exhibit higher respiration rates (Hawkes et al., 2017, 2020). Whereas dispersal
limitation, landscape heterogeneity and adaptation can play a role in functional divergence across
broad spatial extents (Talbot et al., 2014; Strickland et al., 2015; Maynard et al., 2019), patterns
revealed here also suggest that within-site, spatial heterogeneity in environmental conditions can
generate functionally different microbial communities.

Drier moisture regimes can lead to lower microbial biomass but select for taxa that are
more resistant to moisture stress and lead to higher functional ability under stressful conditions
(Lennon et al., 2012; Maynard et al., 2019; Lustenhouwer et al., 2020). This broad scale pattern
was observed between the two sites, where the SCBI soil communities, that generally experience
a drier soil moisture regime (Fig. 1), also exhibited much higher mineralization rates than the
HARY soil communities under dry lab-moisture conditions (Figs. 2d, 3). However, the highest
mineralization rates for the HARV soil communities were always observed for communities
sourced from wetter microclimates, and the greatest among-community sensitivity to
contemporary moisture conditions was observed under dry lab conditions (Fig. 3a). This within-
site pattern observed at HARV was distinct from the within-site SCBI pattern (Fig. 3), and these
within-site patterns were distinct from the patterns observed between sites. Collectively, our
results suggest that functional differences observed among sites at regional scales do not
necessarily translate to finer scales, raising the possibility that mechanisms that generate
microbial functional differences at one scale might be distinct to mechanisms operating at

another scale.
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In contrast to the HARV observations, within the SCBI site we observed functionally
equivalent decomposer communities where C mineralization rates were driven almost entirely by
the lab moisture conditions (Table 2; Fig. 3b). Both forest sites experience similar amounts of
annual precipitation, but the warmer mean climate of SCBI contributes to lower soil moisture
values and a narrower spatial range in field-soil moisture regimes (Fig. 1, Table 1; CV = 0.191
for SCBI compared to 0.261 for HARV). Although results from SCBI do not show a strong
effect of within-site moisture, as found at HARV, the effect size was still positive (Table 2). This
positive coefficient suggests that there was also a positive effect of field soil moisture regime at
this site, but it had only a small influence on mineralization rates. The microbial functional
response of the SCBI soil communities to lab moisture conditions were, however, unexpected.
Specifically, communities under dry lab conditions had higher C mineralization than
communities under mesic and wet moisture lab conditions (Fig. 2 and 3b). This empirical result
provides further evidence that microbial respiration does not always peak at mesic moisture
conditions (Moyano et al., 2013). A potential explanation for the drier conditions under which
we observed the peak is that, in leaf litter, constraints on C mineralization rates due to lower
moisture may be smaller than in soil due to better gas and nutrient diffusion in dense litter packs.
Nevertheless, the peak mineralization for the SCBI communities was still drier than for the
HARYV communities. Whereas we did not uncover the specific mechanisms explaining this
observation, adaptation to drier conditions across the two sites and within SCBI reflect evidence
from other systems where drier sites exhibit higher functional potentials. For example, Averill et
al. (2016) found that enzyme potentials were linked to historical precipitation and soil moisture,
with historically drier sites exhibiting stronger enzyme activity and sensitivity to moisture.

Similarly, in our study, historical moisture regimes beget unique functional microbial responses
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that can lead to deviations from the typical unimodal response of mineralization to contemporary
moisture conditions.

Models that represent explicitly how microorganisms mediate decomposition aim to
explore how changes in environmental conditions affect microbes and in turn the rates of the
biogeochemical processes they mediate (Wang et al., 2013; Wieder et al., 2013; Abramoff et al.,
2018). These process-based models are an ideal framework for querying how functional legacies
might affect rates. Our study is a starting point in addressing how functional legacies between
and within sites might affect biogeochemical rates as moisture changes seasonally and
interannually through climate change. For example, these models typically assume a unimodal
moisture response, such that increasing moisture increases decomposition up to a threshold
where decomposition rate decreases again (Davidson et al., 2012). We did observe this pattern at
HARYV, for the lab moisture treatments that were imposed, but not at SCBI suggesting that
functional legacies create context-dependency in how contemporary moisture controls litter-C
mineralization rates. Certainly, our data still support the assumption that contemporary moisture
exerts strong direct control on mineralization rates, but equally our lab experiment provides
further justification for field experiments that address how historical moisture regimes modify
these contemporary responses. Experimental studies that tease out microbial functional effects
from other environmental effects can help quantify the influence of functional microbial
differences on contemporary biogeochemical process rates (Hawkes et al., 2017; Glassman et al.,
2018). When partnered with process-based models that represent microbial functional
differences, such experimental observations can help inform how functional differences might
affect biogeochemical process rates under new conditions (Wieder et al., 2015a; Hall et al., 2018;

Malik et al., 2020; Wang and Allison, 2021).
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As more research focuses on the role of microbial biogeography, diversity and its relation
to ecosystem function, our data reveal that the nature of these relationships are likely to be
strongly scale- and context-dependent. Certainly, our data contribute to previous findings that
historical contingencies shape contemporary functioning when sites are compared at regional
scales. As such, they bolster expectations that measuring community functional potentials at the
regional scale captures community adaptation to climatic drivers at similar scales (Strickland et
al., 2015; Maynard et al., 2019). Yet our data also reveal that pronounced differences in field
microclimate regime equally can affect microbial function under contemporary moisture
conditions, in a manner distinct from those observed to arise because of macroclimate regimes.
These scale dependencies might be expected to generate unique, non-linear, emergent responses
of biogeochemical process rates to changing moisture conditions at regional scales, highlighting
the importance of evaluating their influence on projections of climate change impacts on C

cycling.
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Table 1 Site characteristics. Soil data are from the microsites within each site. Values represent

the mean of the microsites and standard deviation is displayed in parentheses for %C, %N, C:N,

Soil Moisture, Soil pH, and Microbial Biomass.

Unit Harvard Forest, MA Smithsonian Conservation
(HARYV) Biological Institute, VA
(SCBI))
Coordinates 42.54, -72.17) (38.89, -78.14)
Elevation m a.s.l. 351 361
Mean Annual °C 8 13
Temperature
Mean Annual mm 976 1054
Precipitation
Soil C % 23.9(11.9) 8.0(3.2)
Soil N % 0.9 0.4) 0.6 (0.4)
C:N unitless 26.8 (3.1) 14.4 (1.8)
Soil Moisture % 57.4 (15.0) 37.6 (1.2)
Soil pH unitless 4.2(0.3) 6.8 (0.5)
Microbial Biomass ug CO-Chr! 9.0 (4.2) 8.7(6.4)
gl dry soil
Dominant Tree Red oak (Quercus Red oak (Quercus rubra),

Species

rubra), White pine
(Pinus strobus L.), Red

Tulip poplar (Liriodendron
tulipifera L.), Pignut

maple (Acer rubrum L.)  hickory (Carya glabra
Miller)
Soil Order Spodosol, Inceptisol, Alfisol
Entisol
n 27 27
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679  Table 2 Model results from a linear regression model of cumulative mineralization rates

680  including laboratory treatments and microsite soil conditions from within HARV and SCBI sites.
681  Lab moisture was treated as a continuous variable to allow comparison with field soil moisture.
682 A second-order lab moisture term was included to capture the unimodal response where mesic
683  moisture conditions resulted in higher respiration rates. Standardized coefficients with their

684  standard error in parentheses are shown and were calculated by subtracting the mean and

685  dividing by 2 x standard deviation (SD) when there were categorical predictors, and one SD

686  when only continuous predictors were assessed. Unstandardized model results are presented in

687  supplemental information (Table S2).

688
Both Sites (Full HARYV (Full Model) SCBI (Full Model)
Model)
Predictors Standardized Standardized Standardized
Estimates Estimates Estimates
(Intercept) 3.91 (0.05)"* 4.08 (0.03)"** 4.22 (0.05)"™*
Site [HARYV = 0] 0.48 (0.09)™" na na
Lab Moisture -0.31 (0.04)"* 0.01 (0.02) -0.30 (0.03)™
Lab Moisture? 0.03 (0.11) -0.07 (0.03)™ 0.09 (0.04)"
Field Soil Moisture 0.14 (0.05)™ 0.08 (0.02)"** 0.03 (0.03)
Soil pH 0.04 (0.05) 0.02 (0.02) 0.01 (0.03)
Soil Temperature -0.06 (0.09) 0.00 (0.02) -0.02 (0.03)
Lab Moisture x 0.25 (0.07)™*" -0.04 (0.02)" 0.00 (0.03)
Field Soil Moisture
Observations 162 81 81
R? / R? adjusted 52.7/50.5 36.7/31.5 62.8/59.8
*P < 0.05, P < 0.01, P < 0.001; na: not applicable
689

690
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Figure legends

Fig. 1. Soil moisture variation in sampling points from HARYV (a) and SCBI (b) from Spring
2020. Values represent point measurements representative of the spatial range in moisture
regimes. Histogram represents the number of microsites, binned at 2.5% intervals with n = 27 per

site.

Fig. 2. Litter mineralization rates over 202 days. The upper panels (a-c) are shown here as the
mean carbon mineralization rate (ug CO2-C g! litter hr'!) of each time point from litter
microcosms comprised of Quercus rubra litter and decomposer communities from HARV (solid
line) or SCBI (dashed line) sites. Laboratory treatments are presented from left to right of
increasing moisture conditions. Error bars are +SD (n = 27). Bottom panels (d-f) represent
boxplots of cumulative mineralization over 202 days grouped by site. The median of each site is
within the 25th and 75th percentiles (interquartile range, IQR) shown as horizontal lines with
vertical lines extending to the first observation closest to but not exceeding 1.5*IQR. Each point

represents an observation.

Fig. 3. Cumulative mineralization (reported as mg CO,-C mineralized g! litter) for unique
decomposer communities sourced from within the SCBI (a) and HARV (b) sites. Cumulative
values (for the 202-day incubations) are plotted against microsite soil moisture conditions (%
gravimetric soil moisture) from Spring 2020 and by the three laboratory moisture treatments that
were imposed on each community. Points (n=27 soil inocula per site) represent unique litter-soil

microcosms subjected to 35% of maximum water holding capacity (Dry: red points and quick
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dashed line), 60% of maximum water holding capacity (Mesic: black points and long dashed
line), and 100% of maximum water holding capacity (Wet: blue points and solid line). Note that
the regression lines are not fit to the observations in a univariate manner. Instead, regression
lines were calculated using unstandardized coefficients from the multiple regression models with
non-log transformed cumulative respiration rates but otherwise are identical to models presented

in Table 2. Note the different scales on the Y-axes.
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722 (a) Harvard Forest, MA (HARYV)
5
4
g 3
82
1
[TT1
0 25 50 75 100
793 Soil moisture (% gravimetric water content)
724 (b) Smithsonian Conservation Biological Institute, VA (SCBI)
8
=6
3 4
(&)
2
[ M
0 25 50 75 100
795 Soil moisture (% gravimetric water content)

36



726

Litter mineralization rate
(ug CO»-C g'!litter hr')

Cumulative litter mineralization
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Fig. 2
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728  Fig. 3

(a) Harvard Forest, MA (HARYV) (b) Smithsonian Conservation Biological
Institute, VA (SCBI)
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