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Abstract 15 

Climatic history can shape the functioning of soil microbial communities and thus rates of 16 

ecosystem processes such as organic matter decomposition. For example, broad spatial scale 17 

differences in climatic history, such as contrasting precipitation regimes, have been shown to 18 

generate unique microbial functional responses to contemporary moisture conditions. Yet it is an 19 

open question as to whether local differences in soil microclimate similarly influence the 20 

functional potential of decomposer communities. Here, we use a multi-scale approach within and 21 

among two temperate forest field sites to investigate this question. Soils from fifty-four 22 

microsites, that vary in their soil moisture climate-regimes, were used as inocula for a common 23 

leaf litter (Quercus rubra L.) in a controlled, laboratory microcosm study. Microcosms were 24 

placed under dry, mesic and wet lab-moisture conditions and the rate of carbon (C) 25 

mineralization of the litter was measured over 202 days. Our results reveal differences in 26 

decomposition rates under controlled conditions that highlight broad-scale functional differences 27 

between the soil communities at each site. Specifically, we found that C mineralization differed 28 

by as much as two-fold for soil communities when compared between the sites. Our results also 29 

show that functional differences of soil communities are observable within one site but not the 30 

other. In the site where local-scale functional legacies were apparent, the historical soil moisture 31 

microclimate-regimes generated as much as an 89% change in C mineralization rates of the leaf 32 

litter under the same contemporary, lab-imposed moisture conditions. A similar pattern was not 33 

observable in the other site; instead, laboratory moisture conditions explained almost all 34 

variation in C mineralization. Notably, for the site with pronounced local-scale functional 35 

legacies, there was much greater within-site variation in field-soil microsite moisture than at the 36 

site which did not exhibit functional legacies, suggesting that the extent of local-scale variation 37 
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in microclimate may act as control on whether local-scale functional legacies are observed. 38 

Regardless of whether this mechanism does explain our findings, our observations do confirm 39 

those from prior studies where regional-scale moisture-regime differences shape microbial 40 

function, and extend this prior work by providing evidence that pronounced local-scale 41 

differences in soil moisture microclimate-regimes are associated with microbial functional 42 

legacies.  43 

Keywords 44 

Carbon mineralization, functional redundancy, litter decomposition, legacies, microbial 45 

community function, scale, soil moisture, temperate forests  46 
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Introduction 47 

Soil heterotrophic microorganisms produce carbon dioxide as they metabolize decomposing 48 

organic material for energy and growth (Swift et al., 1979). As biological agents that mediate 49 

decomposition, their activities contribute substantially to the fluxes of carbon (C) from terrestrial 50 

ecosystems to the atmosphere (Falkowski et al., 2008; Bond-Lamberty and Thomson, 2010). Soil 51 

temperature, moisture, and litter quality are important controls on decomposition rates (Aerts, 52 

1997; Parton et al., 2007) and are consequently represented in soil biogeochemical models. 53 

These models are used to understand and project how decomposition rates respond to changing 54 

environmental conditions, and the inclusion of microbial biomass and community traits as 55 

additional controls on organic matter decomposition reflect growing evidence that their influence 56 

on decomposition rates extends beyond those mediated directly by abiotic controls (Glassman et 57 

al., 2018; Maynard et al., 2018). These modeling efforts have revealed that the way in which 58 

microbes are represented can strongly influence projected changes in soil organic matter flux 59 

rates and pool sizes (Schimel and Weintraub, 2003; Wang et al., 2013; Wieder et al., 2015b; 60 

Abramoff et al., 2018; Fatichi et al., 2019). 61 

There is now a wealth of empirical evidence that the abiotic environment shapes both the 62 

structure and function of microbial communities. In experimental manipulations and across 63 

environmental gradients, past abiotic regimes of temperature (Karhu et al., 2014; Romero-64 

Olivares et al., 2017), moisture (Evans and Wallenstein, 2012, 2014; Hawkes et al., 2017), and 65 

litter input quality (Keiser et al., 2011) have been observed to shape contemporary microbial 66 

function (Strickland et al., 2015; Crowther et al., 2019). Additionally, the abiotic historical 67 

legacies of these regimes on microbial community function can be persistent. For example, 68 

Hawkes et al. (2020) showed that within a regional precipitation gradient, 4.5 years of 69 
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manipulated rainfall did not significantly shift microbial community function. Instead, soil 70 

respiration responses to the rainfall manipulation continued to reflect the community’s ‘climate 71 

origin’. These findings suggest that persistent functional legacies in biotic communities may 72 

constrain local ecosystem responses to environmental change, yet it is unclear in which 73 

environments and at which scales these legacies manifest (Baveye et al., 2018; Ladau and Eloe-74 

Fadrosh, 2019). 75 

Climatic variables are known to vary at both macro- and micro-scales. For instance, soil 76 

moisture regimes often vary substantially in space both across and within sites. In forests, spatial 77 

variation in soil moisture at local scales (m to km) can be equal in magnitude, or even exceed, 78 

variation in site-mean soil moisture among sites arrayed across regional climate gradients 79 

(Bradford et al., 2014, 2017; Loescher et al., 2014). Variables including topography, soil 80 

properties and plant traits interact to produce microscale heterogeneity in moisture 81 

(Vanderlinden et al., 2012), but how microclimatic variation imprints historical legacies on the 82 

functioning of microbial communities appears largely unknown. Yet within-site moisture 83 

regimes have been linked to patterns in fungal composition and function (van der Wal et al., 84 

2015; Štursová et al., 2016), enzyme activities (Baldrian et al., 2010, Baldrian, 2014) and litter 85 

decomposition (Bélanger et al., 2019) suggesting that microclimate, as well as macroclimate, 86 

regimes may influence how microbial community function responds to contemporary and future 87 

variation in environmental conditions. 88 

In this study we take an experimental approach to disentangle whether the climatic 89 

regime influences decomposition rates via direct effects on microbial activities only, or 90 

additionally via indirect effects mediated by functional legacies that are embedded within the 91 

climate regime. We first look for evidence that site-level macroclimate regimes generate 92 
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microbial communities that function distinctly. Second, we test competing hypotheses, the first 93 

of which is based on the idea that microclimate variation within sites does not generate 94 

functional legacies because they would be overwhelmed by rates of local dispersal of microbes 95 

and/or materials (e.g., decomposing leaves; Allison and Martiny 2008; Nemergut et al. 2013). 96 

Alternatively, high within-site heterogeneity in microclimate could allow functional legacies to 97 

manifest at local scales, generating microbial communities with distinct functional responses to 98 

contemporary moisture conditions. Our laboratory microcosm approach established and 99 

controlled three contemporary soil moisture regimes, imposed on a common leaf litter inoculated 100 

with soil microbial communities sourced from local-scale spatial gradients in soil moisture 101 

regime found within two forest sites within a regional climate gradient. We repeatedly measured 102 

carbon mineralization of the litter for 202 days.  103 

Materials and Methods 104 

Microsite characteristics and sampling 105 

We worked at two forest sites, ~650 km apart, that are part of the National Ecological 106 

Observation Network (NEON), which splits the continental United States into 20 ecoclimate 107 

domains to monitor ecosystems under environmental change across time and space (Keller et al., 108 

2008). Both sites are temperate deciduous forests that spanned from the mid-Atlantic domain 109 

(SCBI: Smithsonian Conservation Biological Institute, Front Royal, VA) to the Northeast 110 

domain (HARV: Harvard Forest, Petersham, MA). The two sites have different climate and soil 111 

characteristics (Table 1) and differ in the degree to which soil moisture varies within each site 112 

(Fig. 1). Within each forest site we established twenty-seven microsites (1 m2) around the 113 

perimeter of the eddy-flux tower footprint, which covers about 1.3 km2. 114 
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Microsites were on average 46 m apart from the next nearest microsite with the closest 115 

two microsites being 18 m apart and the two microsites furthest from one another being 1,389 m 116 

apart within a site. We chose microsites that varied in topographic position (e.g., ridge versus 117 

valley bottom) to capture heterogeneity in microsite conditions. Microclimate measurements 118 

were taken at three discrete time points over a 10-month period from December 2019 to 119 

September 2020. Temperature was measured at 5 cm depth for soil and 1 cm depth for the litter 120 

layer using a hand-held thermometer. Soil volumetric moisture was measured in the field using a 121 

time domain reflectometry (TDR) probe, inserted at a 45° angle to ~5 cm depth, in addition to 122 

gravimetric moisture measured in the lab. These discrete point measurements were intended to 123 

capture relative differences in soil characteristics over space, specifically for soil moisture, which 124 

has often been described as temporally stable where relative moisture differences in sampled 125 

locations persist over time (Vachaud et al., 1985; Brocca et al., 2010; Penna et al., 2013). In our 126 

study, temporal stability calculated through Spearman’s rank-order correlation reveals high 127 

temporal stability in gravimetric soil moisture (rs > 0.73) for the three point measurements over 128 

the year, confirming that point measurements are useful for characterizing spatial patterns in soil 129 

variables such as relative moisture regimes (Vanderlinden et al., 2012).  130 

Leaf litter was collected at peak litter fall in November 2019 across all of the microsites. 131 

Due to its presence across both sites, northern red oak (Quercus rubra L.) litter was pooled to 132 

create a common litter substrate and air dried. The Q. rubra leaves were ground to 2 mm using a 133 

Wiley mill, further mixed to homogenize the sample, and then autoclaved twice at 121 °C at 15 134 

psi for 20 min, following the approach of Strickland et al. (2009a, b; Keiser et al. 2011) to 135 

sterilize the litter. The top 5 cm of soil was sampled with a 2-cm dia. corer at each microsite in 136 

December 2019 for HARV and January 2020 for SCBI. Five to ten cores were taken per 137 
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microsite, passed through a 4-mm sieve, then homogenized and stored at 4 °C until their use as 138 

the microbial community inoculum (see next section). 139 

Soils were similarly sampled at each microclimate measurement point. Specifically, 140 

gravimetric soil moisture (GWC) was measured by drying soils for 24 h at 105 °C and is 141 

reported as the percent water contained in field fresh soil. Water holding capacity (WHC) was 142 

measured for the soils and sterilized litter by allowing saturated samples to drain for 2 h in 143 

Whatman #1 filter paper and then to dry for 24 h at 105 °C. Soil pH was measured by placing 144 

soil in deionized water (1:1 volumetric ratio), followed by measurement of the supernatant with a 145 

benchtop pH meter after 10 min. Microbial biomass was assayed using a modified substrate 146 

induced respiration (SIR) method (Fierer et al., 2003; Strickland et al., 2010) whereby 5 mL of 147 

soil was incubated at 20 °C with autolyzed yeast. After 1 h of gentle shaking, headspaces were 148 

flushed with CO2-free air, and then accumulated headspace CO2 was measured after 4 h with an 149 

infrared gas analyzer (IRGA; Model LI-7000, Li-Cor Biosciences, Lincoln, Nebraska, USA). 150 

SIR biomass is reported as maximum CO2 production normalized by dry weight equivalent of 151 

soil. Volume, as opposed to mass, was used to determine the amount of soil for the SIR 152 

incubations because of marked differences in soil organic matter contents (which causes similar 153 

masses to have very different volumes). Total soil carbon and nitrogen were measured on air-154 

dried soils by grinding, packing in tins and combusting them on an NA1500 CHN Analyzer 155 

(Carlo Erba Strumentazione, Milan, Italy).  156 

Microcosm set-up 157 

Our microcosm design followed published approaches (Strickland et al., 2009a, b; Keiser et al., 158 

2011; Cleveland et al., 2014) that introduce a small amount of soil, to serve as a microbial 159 

inoculum, to a litter environment which serves as the dominant organic substrate across the 160 
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incubation. The approach then standardizes the substrate (i.e., the litter) and varies the microbial 161 

community inoculum, to tease out whether communities function similarly or differently once 162 

placed in a standard environment. Specifically, we used 50-mL centrifuge tubes with 0.25 g of 163 

dry weight equivalent soil from each microsite, which was thoroughly mixed with 1-g dry-164 

weight equivalent and ground Q. rubra litter. Soil-only controls were constructed that contained 165 

~6 g dry-weight equivalent soil, which were used to correct C mineralization fluxes from the leaf 166 

litter by subtracting the C mineralized throughout the experiment from the soil. The estimated 167 

respiration from the soil in the soil-litter microcosms was, at most, 10.6% and the mean was 2.3 168 

± 1.6% (SD) of the cumulative CO2 respired per microcosm. 169 

Three treatments were applied to the soil only and soil+litter microcosms to create 170 

constant moisture regimes (‘Lab Moisture’) that spanned from drier (35% WHC) to mesic (60% 171 

WHC) to wet (100% WHC) conditions. WHC for the litter+soil mixtures was obtained by 172 

measuring WHC for the ground litter and soils as described above and calculating target 173 

moisture content based on the dry mass equivalents for the litter and soil. In total, 162 unique 174 

soil-litter mixtures were created (2 sites × 27 composite soils from each microsite × 3 lab 175 

moisture treatments) and were maintained at target moisture by mass adjustments with weekly 176 

DI-water additions. The additional 162 soil-only microcosms were also incubated under the same 177 

three lab moisture regimes. All microcosms were kept at 20 °C over the course of the 178 

experiment. Carbon mineralization was measured over 202 days by measuring CO2 production in 179 

each microcosm over 24 h at 17 time points (day 1, 6, 9, 13, 20, 27, 34, 43, 50, 64, 78, 92, 105, 180 

120, 141, 168, 202) with the frequency of measurement decreasing over the course of the 181 

experiment. At each time point, a cap with a rubber septum and O-ring was fitted to the top of 182 

the 50-mL tube and the headspace flushed with CO2-free air. After 24 h of incubation, a 5-mL 183 
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sample of gas was taken and used to flush a 1-mL sample loop that was then transferred for 184 

measurement on an IRGA. 185 

To assess variability of C mineralization of the same litter-soil mix under different 186 

conditions, we captured the distribution of responses from a subset of the unique litter-soil mixes 187 

through high replication. This approach can be useful for representing error in measurements and 188 

for propagating parameter uncertainties into modeling frameworks (LeBauer et al., 2013). Here, 189 

one microsite was selected from dry and wet field moisture conditions at each site and replicated 190 

7 times under each treatment (4 soils × 7 replicates × 3 lab moisture treatments = 84 191 

microcosms). Together with the experimental units (164) and soil controls (164), we maintained 192 

408 microcosms across the 202-day experiment.   193 

Data and inferential analysis 194 

Cumulative C mineralization rates were calculated using the area under the curve (‘AUC’) 195 

function in the DescTools package (Signorell, 2021) in the statistical freeware R (R Core Team, 196 

2020). To estimate CO2 evolved from Q. rubra litter, cumulative C mineralization from litter-soil 197 

microcosms were subtracted from soil-only controls for the corresponding microsite soil sample. 198 

Differences in cumulative C mineralization between the two sites and lab moisture treatment 199 

were analyzed using ANOVA and comparisons were assessed using Tukey's honest significance 200 

test. 201 

To directly test the competing hypotheses that decomposer community response to 202 

contemporary moisture conditions are or are not modified by historical soil moisture 203 

microclimate, we used regression to model experimental moisture treatment with known controls 204 

on litter decomposition – via microbial functional legacies – such as field soil moisture, 205 

temperature, and soil pH (Table 2). This causal statistical inferential approach follows Holland 206 
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(1986), where the focus is on identifying the conditional effect size of a causal variable relative 207 

to other known causes (see Bradford et al. 2021). Cumulative respiration response was natural-208 

log transformed to meet assumptions of normality, but results were qualitatively the same with 209 

non-transformed data. We first ran a linear model including only gravimetric soil moisture 210 

(‘Field Soil Moisture’), treatment (‘Lab Moisture’), and their interaction (Reduced Model, Table 211 

S1). A second-order term for Lab Moisture was included because of the expectation that 212 

microbial communities will have a unimodal response, where mesic (60% WHC) conditions will 213 

have the highest mineralization rates (Howard and Howard, 1993). We ran ‘Lab Moisture’ as a 214 

continuous variable to allow comparison with ‘Field Soil Moisture’ at the same scale and assess 215 

relative effect sizes. Variables were standardized by subtracting the mean and dividing by one 216 

standard deviation to allow comparison of relative effects when adding variables with different 217 

units. When we included site in the models, variables were standardized by subtracting the mean 218 

and dividing by two standard deviations to assess continuous and binary predictors (‘Site’) on the 219 

same scale (Gelman, 2008). 220 

 Among the reduced and full models, we iteratively included and omitted interactions and 221 

non-correlated variables to explore the degree to which the effect sizes of our variables of 222 

interest (‘Field Soil Moisture’ and ‘Lab Moisture’) were influenced by model structure (Fig. S1). 223 

This sensitivity analysis approach is tailored to test the robustness of the absolute and relative 224 

causal effect sizes of the predictors of interest, in light of the fact that ecological outcomes are 225 

multi-causal and conditional, with plausible causative variables typically non-orthogonal (see  226 

Hobbs et al. 2012 and Bradford et al. 2019). The variables used in the model for both sites and 227 

for each site included soil pH, soil temperature, litter temperature, and soil bulk density. In 228 

addition to including variables that were not or only marginally correlated with field soil 229 
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moisture, we examined how inferences about soil moisture regime might be influenced by 230 

related microsite conditions such as total soil organic C (TOC) concentration and microbial 231 

biomass that also can influence microbial function. Unstandardized model results and those of 232 

the sensitivity analyses are included in the supplementary material (Table S2; Figs. S1-2). R 233 

package ‘tidyverse’ (Wickham et al., 2019) was used to process data and for visualization; 234 

‘jtools’ (Long, 2020), ‘interactions’ (Long, 2019), and ‘sjPlot’ (Lüdecke, 2021) were used to 235 

report and visualize model analyses. 236 

Results 237 

Site comparisons 238 

We found functional differences between soil communities from the two sites, but the strength of 239 

the difference was dependent on contemporary moisture conditions (Table 2). Specifically, 240 

cumulative C mineralization in the dry conditions was 110.3 ± 5.1 mg C g-1 litter (mean ± SE) 241 

for the SCBI soils, which is 97% higher than the cumulative mineralization observed for the 242 

HARV soil communities (55.7 ± 2.5 mg C g-1 litter; Fig. 2d). In mesic conditions, SCBI 243 

communities mineralized only 24% more litter C than the corresponding HARV communities 244 

(74.1 ± 3.5 mg C g-1 litter compared to 59.7 ± 2.0 mg C g-1 litter), whereas under the wet 245 

conditions, mean cumulative mineralization for SCBI was 4% higher than HARV (53.8 ± 1.4 mg 246 

C g-1 litter compared to 51.9 ± 1.3 mg C g-1 litter; Fig. 2f). 247 

The differences between the sites and among the lab treatments were underlain by 248 

differences in temporal dynamics over the 202-day incubation, which translated to different 249 

cumulative mineralization rates (Fig. 2d-f). Carbon mineralization rates from leaf litter increased 250 

and peaked in all treatments across the first six to nine days of the incubations (Fig. 2). 251 

Decomposer communities from HARV across treatments exhibited a single peak respiration after 252 
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six to nine days. SCBI communities exhibited a second, delayed increase in respiration that 253 

varied in magnitude and length depending on laboratory treatment: dry conditions produced a 254 

large response which began at day 43 and peaked at day 105 (Fig. 2a); mesic conditions 255 

exhibited a second, smaller peak at 27 days (Fig. 2b); and the wet conditions had a second peak 256 

at day 34 that was similar in magnitude to the first peak (Fig. 2c). These secondary peaks in C 257 

mineralization rates for the SCBI soils in the two drier lab treatments meant that the expectation 258 

that cumulative respiration rates would peak at 60% WHC – as they did for HARV soil inocula 259 

(Figs. 2d-f) – was not realized for the SCBI soil communities. Instead, the main effect of lab 260 

moisture treatment for the both-sites model was negative (Table 2). Notably, however, the 261 

standardized coefficient for the interaction between lab moisture and the field moisture 262 

conditions was approximately three-fourths the size of the lab moisture main effect (Both Sites, 263 

Table 2). This large interaction effect most likely arose because in the dry and mesic lab 264 

treatments, drier soils from SCBI resulted in higher cumulative mineralization than from wetter 265 

soils from HARV, whereas the wet treatment had similar cumulative fluxes when the two sites 266 

were compared (Figs. 2d-f). The large coefficient for Site was likely driven by these high 267 

cumulative mineralization rates for SCBI inocula in the dry and mesic lab-moisture treatments, 268 

which overall led to higher cumulative mineralization (across all lab treatments) for SCBI versus 269 

HARV inocula. 270 

Harvard Forest, MA – HARV 271 

Functional differences among the soil decomposer communities, associated with the field 272 

moisture conditions from where they were sourced, were similarly observed when the HARV 273 

data were considered independent of the SCBI data. Specifically, there was a main effect of field 274 

soil moisture and an interactive effect with lab moisture treatment (Table 2). The imposed lab 275 
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moisture regime did not have a strong effect, but the relatively large, negative second-order Lab 276 

Moisture term reflects the observation that the highest cumulative mineralization rates were 277 

under mesic moisture conditions. The effect of field soil moisture and the interaction with lab 278 

moisture treatment drove the majority of variation in this site as indicated by the standardized 279 

coefficient terms. Notably, the ‘Field Soil Moisture’ terms reveal that the soil communities from 280 

across the different microsite moisture regimes at the HARV site are functionally distinct. 281 

Notably, these functional differences had a larger effect on the observed mineralization rates than 282 

the lab-imposed moisture conditions.  283 

The interaction term appeared to be associated with the fact that soil communities 284 

sourced from drier microsites had lower cumulative mineralization rates under the drier lab 285 

moisture treatment, whereas for soil communities sourced from the wettest microsites cumulative 286 

mineralization was lowest under the wettest lab moisture treatment (Fig. 3a). These dynamics 287 

meant that the field moisture regime had a strong positive effect on cumulative respiration rates 288 

for the dry lab treatment, but a much shallower slope for the wet lab treatment (Fig. 3a). The 289 

slope for the mesic lab treatment was intermediate but, again, communities sourced from 290 

increasingly moist microclimate regimes had higher cumulative respiration rates than those 291 

sourced from drier field regimes (Fig. 3a). Using the regressions from Table 2 and Fig 3, we 292 

estimated the effect size that history of soil moisture had on contemporary responses. In dry lab 293 

conditions (Fig. 3a), communities from the wetter end of the moisture gradient mineralized 89% 294 

more litter C than soils from drier microclimate regimes: 39.0 ± 3.7 mg C g-1 litter compared to 295 

73.6 ± 3.9 mg C g-1 litter. Under mesic conditions (Fig. 3a), communities sourced from wetter 296 

microclimates mineralized 50% more than dry microclimates: 48.2 ± 2.8 mg C g-1 litter 297 

compared to 72.0 ± 2.9 mg C g-1 litter. The wet lab treatment (Fig 3a, blue solid-line) resulted in 298 
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soils from the wettest microclimates mineralizing 14% more C compared to soils from drier 299 

microclimates: 48.7 ± 3.9 mg C g-1 litter compared to 55.4 ± 4.2 mg C g-1 litter. Notably, the 300 

within-site variation across the field soil moisture gradient is comparable to the differences in 301 

mineralization rates between sites under dry conditions: 89% difference within HARV vs. 97% 302 

between sites. Further, the difference in cumulative respiration from the microsite communities 303 

that were incubated under mesic lab conditions were higher within the HARV site than between 304 

the two forest sites (50% variation within HARV microsites vs. 24% variation between HARV 305 

and SCBI sites).  306 

Smithsonian Conservation Biological Institute, VA – SCBI 307 

Decomposer communities from the SCBI site were not influenced by their local historical 308 

moisture regimes (Table 1, Fig 3b). The slopes for cumulative respiration for lab moisture 309 

treatments were not significantly different suggesting that there were no within-site differences 310 

in microbial function. Standardized effect size estimates for field soil moisture ranged from 0 to 311 

0.10 which indicates that there is potentially a positive association of field soil moisture regime 312 

with cumulative C mineralization, but the interaction between lab and field moisture essentially 313 

had a slope of zero (Table 2). As a result, the lab-based moisture treatments accounted for nearly 314 

all of the variation in cumulative C mineralization that was observed (SCBI: ‘Lab Moisture’, 315 

Table 2, Fig. 3b). Dry conditions resulted in mineralization rates of 110 ± 5.1 mg C g-1 litter 316 

(mean ± SE): 49% higher than mesic conditions (74.1 ± 3.5 mg C g-1 litter) and 105% higher 317 

than wet conditions (53.8 ± 1.4 mg C g-1 litter).  318 

Model structural sensitivity 319 

Given that the microsites from where we sourced the soil communities differed in more than 320 

moisture, we evaluated how other microenvironmental predictors that might influence microbial 321 
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community functioning affected our interpretation of field moisture history as a causal variable. 322 

We explored how the addition of factors not strongly correlated with soil moisture, such as soil 323 

pH and soil temperature, affected the coefficient estimates of interest (Table 2). For the both site 324 

model, HARV, and SCBI models, coefficient sizes for ‘Field Soil Moisture’ remained relatively 325 

unchanged compared to a reduced model with only ‘Field Soil Moisture’ and ‘Lab Moisture’ 326 

(Table S1). Microbial biomass and TOC were highly correlated with field soil moisture 327 

(respectively, r = 0.67 and 0.89 for HARV and 0.68 and 0.91 for SCBI; SI Tables 3, 4), with 328 

variance inflation factors (VIF) > 2 when included in main effects models. For the models 329 

including both sites and only HARV, the inclusion of these variables continued to not affect the 330 

sign and magnitude of the ‘Field Soil Moisture’ effects (Fig. S1c). In the model specified for 331 

SCBI, the inclusion of TOC modified the coefficient for field soil moisture but it remained 332 

insignificant and close to zero (Fig. S1e). Across all models, we lastly substituted measures of 333 

field soil moisture taken at different times, and the mean value of these over the three time 334 

points. Soil moisture across sampled time points provided coefficient estimates that support our 335 

conclusions (Figs. S2a-e). In short, our results appeared relatively insensitive to model structural 336 

and parameter assumptions, suggesting that the coefficient estimates for ‘Field Soil Moisture’ 337 

and ‘Lab Moisture’ were robust. 338 

To understand how unique experimental units might vary if they themselves were 339 

replicated, we replicated microcosms from one wet and one dry microsite within each site (4 340 

microsites × 3 treatments × 8 replicates). Variation within these subsamples had a median 341 

coefficient of variation (COV) of 12%, which was consistently lower than the variation within 342 

treatments and site groupings except for a single highly-replicated SCBI community under dry 343 

conditions. Overall, within-replicate variation in C mineralization was about half that of within-344 
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site variation across treatments providing confidence that our conclusions about laboratory 345 

moisture treatment and microsite legacy effects are robust to potential within-replicate variation 346 

in observed C mineralization rates.  347 

Discussion 348 

Numerous studies report that soil communities sampled from sites with different precipitation 349 

regimes (and hence assumed differences in soil moisture regimes) exhibit functionally distinct 350 

responses to contemporary moisture conditions (Evans and Wallenstein, 2012; Hawkes et al., 351 

2017). Our site-level findings contribute a further empirical example where our two sites, HARV 352 

and SCBI, had distinct C mineralization time-courses and cumulative fluxes across different lab-353 

imposed moisture regimes (Fig. 2). This finding supports regional studies that observe that 354 

microbial responses to new conditions can be shaped by environmental history (Evans and 355 

Wallenstein, 2012; Averill et al., 2016; Hawkes et al., 2017; Glassman et al., 2018). We 356 

additionally asked whether these macroscale functional differences were exhibited at local, 357 

within-site scales. We found evidence for both of our hypotheses where, in one site (HARV), 358 

historical microsite conditions were associated with differences in cumulative C mineralization. 359 

Whereas in the other site (SCBI) only lab-imposed moisture conditions drove differences in C 360 

mineralization with no evidence of within-site differences in functioning.  361 

Differences in microbial function emerge from multiple controls such as environmental 362 

history and contemporary conditions. We specifically asked how within-site heterogeneity in soil 363 

moisture regimes might generate microbial functional differences. In HARV, soils sourced from 364 

wetter microclimates mineralized more litter C than soils from drier microclimates across all lab-365 

imposed moisture conditions (Fig. 3a). This effect was stronger for the dry and mesic lab 366 

moisture conditions compared to the wet lab conditions (Table 3; Fig. 3a). Results from this site 367 
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suggest historical legacies of soil moisture shape the functioning of communities at local scales, 368 

reflecting similar functional patterns across regional precipitation gradients where historically 369 

wetter sites exhibit higher respiration rates (Hawkes et al., 2017, 2020). Whereas dispersal 370 

limitation, landscape heterogeneity and adaptation can play a role in functional divergence across 371 

broad spatial extents (Talbot et al., 2014; Strickland et al., 2015; Maynard et al., 2019), patterns 372 

revealed here also suggest that within-site, spatial heterogeneity in environmental conditions can 373 

generate functionally different microbial communities. 374 

Drier moisture regimes can lead to lower microbial biomass but select for taxa that are 375 

more resistant to moisture stress and lead to higher functional ability under stressful conditions 376 

(Lennon et al., 2012; Maynard et al., 2019; Lustenhouwer et al., 2020). This broad scale pattern 377 

was observed between the two sites, where the SCBI soil communities, that generally experience 378 

a drier soil moisture regime (Fig. 1), also exhibited much higher mineralization rates than the 379 

HARV soil communities under dry lab-moisture conditions (Figs. 2d, 3). However, the highest 380 

mineralization rates for the HARV soil communities were always observed for communities 381 

sourced from wetter microclimates, and the greatest among-community sensitivity to 382 

contemporary moisture conditions was observed under dry lab conditions (Fig. 3a). This within-383 

site pattern observed at HARV was distinct from the within-site SCBI pattern (Fig. 3), and these 384 

within-site patterns were distinct from the patterns observed between sites. Collectively, our 385 

results suggest that functional differences observed among sites at regional scales do not 386 

necessarily translate to finer scales, raising the possibility that mechanisms that generate 387 

microbial functional differences at one scale might be distinct to mechanisms operating at 388 

another scale. 389 
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In contrast to the HARV observations, within the SCBI site we observed functionally 390 

equivalent decomposer communities where C mineralization rates were driven almost entirely by 391 

the lab moisture conditions (Table 2; Fig. 3b). Both forest sites experience similar amounts of 392 

annual precipitation, but the warmer mean climate of SCBI contributes to lower soil moisture 393 

values and a narrower spatial range in field-soil moisture regimes (Fig. 1, Table 1; CV = 0.191 394 

for SCBI compared to 0.261 for HARV). Although results from SCBI do not show a strong 395 

effect of within-site moisture, as found at HARV, the effect size was still positive (Table 2). This 396 

positive coefficient suggests that there was also a positive effect of field soil moisture regime at 397 

this site, but it had only a small influence on mineralization rates. The microbial functional 398 

response of the SCBI soil communities to lab moisture conditions were, however, unexpected. 399 

Specifically, communities under dry lab conditions had higher C mineralization than 400 

communities under mesic and wet moisture lab conditions (Fig. 2 and 3b). This empirical result 401 

provides further evidence that microbial respiration does not always peak at mesic moisture 402 

conditions (Moyano et al., 2013). A potential explanation for the drier conditions under which 403 

we observed the peak is that, in leaf litter, constraints on C mineralization rates due to lower 404 

moisture may be smaller than in soil due to better gas and nutrient diffusion in dense litter packs. 405 

Nevertheless, the peak mineralization for the SCBI communities was still drier than for the 406 

HARV communities. Whereas we did not uncover the specific mechanisms explaining this 407 

observation, adaptation to drier conditions across the two sites and within SCBI reflect evidence 408 

from other systems where drier sites exhibit higher functional potentials. For example, Averill et 409 

al. (2016) found that enzyme potentials were linked to historical precipitation and soil moisture, 410 

with historically drier sites exhibiting stronger enzyme activity and sensitivity to moisture. 411 

Similarly, in our study, historical moisture regimes beget unique functional microbial responses 412 
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that can lead to deviations from the typical unimodal response of mineralization to contemporary 413 

moisture conditions.  414 

Models that represent explicitly how microorganisms mediate decomposition aim to 415 

explore how changes in environmental conditions affect microbes and in turn the rates of the 416 

biogeochemical processes they mediate (Wang et al., 2013; Wieder et al., 2013; Abramoff et al., 417 

2018). These process-based models are an ideal framework for querying how functional legacies 418 

might affect rates. Our study is a starting point in addressing how functional legacies between 419 

and within sites might affect biogeochemical rates as moisture changes seasonally and 420 

interannually through climate change. For example, these models typically assume a unimodal 421 

moisture response, such that increasing moisture increases decomposition up to a threshold 422 

where decomposition rate decreases again (Davidson et al., 2012). We did observe this pattern at 423 

HARV, for the lab moisture treatments that were imposed, but not at SCBI suggesting that 424 

functional legacies create context-dependency in how contemporary moisture controls litter-C 425 

mineralization rates. Certainly, our data still support the assumption that contemporary moisture 426 

exerts strong direct control on mineralization rates, but equally our lab experiment provides 427 

further justification for field experiments that address how historical moisture regimes modify 428 

these contemporary responses. Experimental studies that tease out microbial functional effects 429 

from other environmental effects can help quantify the influence of functional microbial 430 

differences on contemporary biogeochemical process rates (Hawkes et al., 2017; Glassman et al., 431 

2018). When partnered with process-based models that represent microbial functional 432 

differences, such experimental observations can help inform how functional differences might 433 

affect biogeochemical process rates under new conditions (Wieder et al., 2015a; Hall et al., 2018; 434 

Malik et al., 2020; Wang and Allison, 2021).  435 
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As more research focuses on the role of microbial biogeography, diversity and its relation 436 

to ecosystem function, our data reveal that the nature of these relationships are likely to be 437 

strongly scale- and context-dependent. Certainly, our data contribute to previous findings that 438 

historical contingencies shape contemporary functioning when sites are compared at regional 439 

scales. As such, they bolster expectations that measuring community functional potentials at the 440 

regional scale captures community adaptation to climatic drivers at similar scales (Strickland et 441 

al., 2015; Maynard et al., 2019). Yet our data also reveal that pronounced differences in field 442 

microclimate regime equally can affect microbial function under contemporary moisture 443 

conditions, in a manner distinct from those observed to arise because of macroclimate regimes. 444 

These scale dependencies might be expected to generate unique, non-linear, emergent responses 445 

of biogeochemical process rates to changing moisture conditions at regional scales, highlighting 446 

the importance of evaluating their influence on projections of climate change impacts on C 447 

cycling.  448 
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Table 1 Site characteristics. Soil data are from the microsites within each site. Values represent 675 

the mean of the microsites and standard deviation is displayed in parentheses for %C, %N, C:N, 676 

Soil Moisture, Soil pH, and Microbial Biomass. 677 

 Unit Harvard Forest, MA 
(HARV) 

Smithsonian Conservation 
Biological Institute, VA 
(SCBI) 

Coordinates  (42.54, -72.17) (38.89, -78.14) 

Elevation m a.s.l. 351 361 

Mean Annual 
Temperature 
 

℃ 8 13 

Mean Annual 
Precipitation 
 

mm 976 1054 

Soil C  % 23.9 (11.9) 8.0 (3.2) 

Soil N % 0.9 (0.4) 0.6 (0.4) 

C:N  unitless 26.8 (3.1) 14.4 (1.8) 

Soil Moisture  % 57.4 (15.0) 37.6 (7.2) 

Soil pH unitless 4.2 (0.3) 6.8 (0.5) 

Microbial Biomass µg CO2-C hr-1 
g-1 dry soil 

9.0 (4.2) 8.7 (6.4) 

Dominant Tree 
Species 

 Red oak (Quercus 

rubra), White pine 
(Pinus strobus L.), Red 
maple (Acer rubrum L.) 

Red oak (Quercus rubra), 
Tulip poplar (Liriodendron 

tulipifera L.), Pignut 
hickory (Carya glabra 

Miller) 
 

Soil Order  Spodosol, Inceptisol, 
Entisol 
 

Alfisol 

n  27 27 

 678 
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Table 2 Model results from a linear regression model of cumulative mineralization rates 679 

including laboratory treatments and microsite soil conditions from within HARV and SCBI sites. 680 

Lab moisture was treated as a continuous variable to allow comparison with field soil moisture. 681 

A second-order lab moisture term was included to capture the unimodal response where mesic 682 

moisture conditions resulted in higher respiration rates. Standardized coefficients with their 683 

standard error in parentheses are shown and were calculated by subtracting the mean and 684 

dividing by 2 × standard deviation (SD) when there were categorical predictors, and one SD 685 

when only continuous predictors were assessed. Unstandardized model results are presented in 686 

supplemental information (Table S2). 687 

 688 
 Both Sites (Full 

Model) 
HARV (Full Model) SCBI (Full Model) 

Predictors Standardized 
Estimates 

Standardized 
Estimates 

Standardized 
Estimates 

(Intercept) 3.91 (0.05)*** 4.08 (0.03)*** 4.22 (0.05)*** 

Site [HARV = 0] 0.48 (0.09)*** na na 
Lab Moisture -0.31 (0.04)*** 0.01 (0.02) -0.30 (0.03)** 
Lab Moisture2 0.03 (0.11) -0.07 (0.03)** 0.09 (0.04)** 
Field Soil Moisture 0.14 (0.05)** 0.08 (0.02)*** 0.03 (0.03) 
Soil pH 0.04 (0.05) 0.02 (0.02) 0.01 (0.03) 
Soil Temperature -0.06 (0.09) 0.00 (0.02) -0.02 (0.03) 
Lab Moisture × 
Field Soil Moisture 

0.25 (0.07)*** -0.04 (0.02)* 0.00 (0.03) 

Observations 162 81 81 
R2 / R2 adjusted 52.7 / 50.5 36.7 / 31.5 62.8 / 59.8 
*P < 0.05, **P < 0.01, ***P < 0.001; na: not applicable 
 689 

690 
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  691 

Figure legends 692 

Fig. 1. Soil moisture variation in sampling points from HARV (a) and SCBI (b) from Spring 693 

2020. Values represent point measurements representative of the spatial range in moisture 694 

regimes. Histogram represents the number of microsites, binned at 2.5% intervals with n = 27 per 695 

site.  696 

 697 

Fig. 2. Litter mineralization rates over 202 days. The upper panels (a-c) are shown here as the 698 

mean carbon mineralization rate (µg CO2-C g-1 litter hr-1) of each time point from litter 699 

microcosms comprised of Quercus rubra litter and decomposer communities from HARV (solid 700 

line) or SCBI (dashed line) sites. Laboratory treatments are presented from left to right of 701 

increasing moisture conditions. Error bars are ±SD (n = 27). Bottom panels (d-f) represent 702 

boxplots of cumulative mineralization over 202 days grouped by site. The median of each site is 703 

within the 25th and 75th percentiles (interquartile range, IQR) shown as horizontal lines with 704 

vertical lines extending to the first observation closest to but not exceeding 1.5*IQR. Each point 705 

represents an observation.  706 

 707 

Fig. 3. Cumulative mineralization (reported as mg CO2-C mineralized g-1 litter) for unique 708 

decomposer communities sourced from within the SCBI (a) and HARV (b) sites. Cumulative 709 

values (for the 202-day incubations) are plotted against microsite soil moisture conditions (% 710 

gravimetric soil moisture) from Spring 2020 and by the three laboratory moisture treatments that 711 

were imposed on each community. Points (n=27 soil inocula per site) represent unique litter-soil 712 

microcosms subjected to 35% of maximum water holding capacity (Dry: red points and quick 713 
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dashed line), 60% of maximum water holding capacity (Mesic: black points and long dashed 714 

line), and 100% of maximum water holding capacity (Wet: blue points and solid line). Note that 715 

the regression lines are not fit to the observations in a univariate manner. Instead, regression 716 

lines were calculated using unstandardized coefficients from the multiple regression models with 717 

non-log transformed cumulative respiration rates but otherwise are identical to models presented 718 

in Table 2. Note the different scales on the Y-axes.  719 

  720 
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Fig. 1 721 

(a) Harvard Forest, MA (HARV) 722 

 723 
(b) Smithsonian Conservation Biological Institute, VA (SCBI)724 

  725 
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Fig. 2 726 

 (a) Dry (35% WHC) (b) Mesic (60% WHC) (c) Wet (100% WHC) 
  

 
Day 

  

    
(d) Dry (35% WHC) (e) Mesic (60% WHC) (f) Wet (100% WHC) 
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Fig. 3 728 

 (a) Harvard Forest, MA (HARV)  (b) Smithsonian Conservation Biological 
Institute, VA (SCBI) 
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