

1       **Hawai'ián coral holobionts reveal algal and prokaryotic host**  
2       **specificity, intraspecific variability in bleaching resistance, and**  
3       **common interspecific microbial consortia modulating thermal**  
4       **stress responses**

5       **Laura Núñez-Pons<sup>1,2\*</sup>, Ross Cunning<sup>3</sup>, Craig Nelson<sup>4</sup>, Anthony Amend<sup>5</sup>, Emilia M. Sogin<sup>6</sup>,**  
6       **Ruth Gates<sup>7</sup>, Raphael Ritson-Williams<sup>8</sup>**

7

8       *1 Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa*  
9       *Comunale, 80121 Napoli, Italy*

10      *2 NBFC, National Biodiversity Future Center, Palermo 90133, Italy*

11      *3 Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200*  
12      *South Lake Shore Drive, Chicago, IL 60605, USA.*

13      *4 Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, USA*

14      *5 Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822,*  
15      *USA*

16      *6 Molecular and Cell Biology, University of California Merced, Merced, CA, USA*

17      *7 Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA*

18      *8 College of Arts and Sciences, The Heart of Santa Clara University, Vari Hall 500 El Camino*  
19      *Real Santa Clara, CA 95053, USA*

20

21      \*Corresponding author: laura.nunezpons@szn.it

22      Contributing authors: rrunning@sheddaquarium.org, craig.nelson@hawaii.edu,  
23      amend@hawaii.edu, esogin@ucmerced.edu, rgates@hawaii.edu, rritson-  
24      williams@calacademy.org

25

26      **Abstract**

27 Historically, Hawai'i had few massive coral bleaching events, until two consecutive heatwaves  
28 in 2014–2015. Consequent mortality and thermal stress were observed in Kane'ohe Bay  
29 (O'ahu). The two most dominant local species exhibited a phenotypic dichotomy of either  
30 bleaching resistance or susceptibility (*Montipora capitata* and *Porites compressa*), while the  
31 third predominant species (*Pocillopora acuta*) was broadly susceptible to bleaching. In order to  
32 survey shifts in coral microbiomes during bleaching and recovery, 50 colonies were tagged and  
33 periodically monitored. Metabarcoding of three genetic markers (16S rRNA gene ITS1 and  
34 ITS2) followed by compositional approaches for community structure analysis, differential  
35 abundance and correlations for longitudinal data were used to temporally compare  
36 Bacteria/Archaea, Fungi and Symbiodiniaceae dynamics. *P. compressa* corals recovered faster  
37 than *P. acuta* and *Montipora capitata*. Prokaryotic and algal communities were majorly shaped  
38 by host species, and had no apparent pattern of temporal acclimatization. Symbiodiniaceae  
39 signatures were identified at the colony scale, and were often related to bleaching susceptibility.  
40 Bacterial compositions were practically constant between bleaching phenotypes, and more  
41 diverse in *P. acuta* and *M. capitata*. *P. compressa*'s prokaryotic community was dominated by a  
42 single bacterium. Compositional approaches (via microbial balances) allowed the identification  
43 of fine-scale differences in the abundance of a consortium of microbes, driving changes by  
44 bleaching susceptibility and time across all hosts. The three major coral reef founder-species in  
45 Kane'ohe Bay revealed different phenotypic and microbiome responses after 2014–2015  
46 heatwaves. It is difficult to forecast, a more successful strategy towards future scenarios of  
47 global warming. Differentially abundant microbial taxa across time and/or bleaching  
48 susceptibility were broadly shared among all hosts, suggesting that locally, the same microbes  
49 may modulate stress responses in sympatric coral species. Our study highlights the potential of  
50 investigating microbial balances to identify fine-scale microbiome changes, serving as local  
51 diagnostic tools of coral reef fitness.

52

53

54 **Keywords**

55 Coral microbiome, thermal bleaching, compositional analysis, microbial balances,

56 Symbiodiniaceae ITS2 profiles.

57

58        **1. Introduction**

59

60        Microbial symbioses play critical roles in the ecology and evolution of corals  
61 (Ainsworth et al., 2020; Bourne et al., 2016). The majority of research on microbial  
62 communities in corals has focused on single celled dinoflagellates in the family  
63 Symbiodiniaceae (zooxanthellae), since these symbionts play a large role in coral health and  
64 nutrition (Baker, 2003; Sampayo et al., 2008; D'Angelo, 2015). Less studied are the populations  
65 of Bacteria, Archaea and even Fungi that associate with corals forming the coral holobiont  
66 (Bourne et al., 2016). As seawater temperatures increase, coral bleaching is occurring more  
67 frequently around the world, which is a stress-induced disruption of symbiosis between the host  
68 and symbiotic algae, causing a “bleached” pale-to-white appearance of affected colonies  
69 (Douglas 2003). Bleached corals, depleted of symbiotic algae (Fitt et al., 2001; Jokiel 2004;  
70 Falkowski et al., 1984) may effectively starve until the symbiosis is reestablished (Baker 2001).  
71 Resistance and recovery following bleaching are highly variable both among and within coral  
72 species, and may be influenced by environmental factors (e.g., light, temperature, symbiont  
73 availability), as well as traits of the host and its associated microbial communities (Edmunds  
74 1994; Fitt et al., 2001; Baird et al., 2009; Grottoli et al., 2014; Conti-Jerpe et al., 2020;  
75 Ainsworth and Gates, 2016). Additionally, the coral animal may be able to switch to  
76 heterotrophy to mitigate starvation, and recover faster due to the accumulation of lipids  
77 (Grottoli et al., 2006; Hughes and Grottoli 2013; Wall et al., 2019; Conti-Jerpe et al., 2020);  
78 while genetic and epigenetic processes may also promote stress resilience (Edmunds 1994; Fitt  
79 et al., 2001; Grottoli et al., 2014; Baird et al., 2009; Putnam and Gates 2015).

80        The diversity of Symbiodiniaceae in relation to coral bleaching has been researched for  
81 over 30 years (Rowan and Powers 1991; van Oppen and Medina 2020), as different genotypes  
82 have different physiological responses to abiotic conditions (Baker 2003; Sampayo et al., 2008).  
83 For instance, there are thermally tolerant symbionts (e.g., *Cladocopium thermophilum*,  
84 *Durusdinium glynnii*, *D. trenchii*) that increase bleaching resistance of coral hosts (Baker 2001;

85 Berkelmans and van Oppen 2006, Sampayo et al., 2008; Fisher et al., 2012; Hume et al., 2015;  
86 Silverstein et al., 2015). The majority of coral species associate with a single species of  
87 Symbiodiniaceae (LaJeunesse et al., 2018; Howells et al., 2020), but some are capable of  
88 hosting multiple species and/or genera within one coral colony (Rowan et al., 1997; Baker  
89 2003; Gardner et al., 2019; Hume et al., 2019, 2020). These two strategies are illustrated in  
90 three dominant sympatric corals found in Hawai'i, with *Porites compressa* only presenting  
91 *Cladocopium* C15, *Pocillopora acuta* combining *C. pacificum/C. latusorum* (C1d/C42), and  
92 *Montipora capitata* hosting either *Cladocopium* C31 or *Durusdinium glynnii*, or both  
93 simultaneously in the same colonies (LaJuenesse et al., 2004; Innis et al., 2018; Stat et al., 2013;  
94 Turnham et al., 2021). There is some evidence of symbiont shuffling in some coral species  
95 (Baker 2001, Cunning et al., 2015), but this may occur rarely or not at all in others, as reported  
96 in *Pocillopora* spp. (McGinley et al., 2012) and *M. capitata* (Cunning et al., 2016). This  
97 inflexibility could be intrinsic of those holobionts, or due to the particular conditions of  
98 disturbance and recovery not favoring Symbiodiniaceae rearrangements.

99 Beyond Symbiodiniaceae, patterns of symbiosis with microorganisms forming the coral  
100 holobiont are less understood (Amend et al., 2012; Ainsworth and Gates, 2016; Boilard et al.,  
101 2020). The coral prokaryotic microbiome is thought to have a core component (Ainsworth et al.,  
102 2015; Hernandez-Agreda et al., 2017), as well as a set of unique microbes (Hernandez-Agreda  
103 et al., 2018), and rare dynamic taxa that can vary in individuals even within species (Epstein et  
104 al., 2019). Stability in coral microbial associations may be beneficial or deleterious, depending  
105 on the context (Ainsworth and Gates, 2016). Community shifts involving increases in  
106 opportunistic, potentially pathogenic taxa and decreases in beneficial taxa, have been observed  
107 during induced and natural bleaching stress (Bourne et al., 2005; Littman et al., 2011); including  
108 studies on *P. compressa* (Vega Thurber et al., 2009) and *Pocillopora* (Tout et al., 2015). Other  
109 work has shown that microbial stability may either promote thermal tolerance (Ziegler et al.,  
110 2017; Epstein et al., 2019; Gardner et al., 2019), and/or hamper acclimatization, with deleterious  
111 effects on the host (Pogoreutz et al., 2018). As with Symbiodiniaceae, prokaryotic associates

112 may include taxa able to confer stress tolerance to the holobiont (van Oppen and Medina 2020;  
113 Ainsworth et al., 2020).

114 In 2014 and 2015, there were repeated massive bleaching episodes in the Hawaiian  
115 archipelago (Ritson-Williams and Gates 2020). These thermal stress events prompted us to  
116 survey the fate of coral microbiomes (Symbiodinaceae, Archaea/Bacteria, Fungi) over time  
117 during and after the heatwaves in the field. In Kane‘ohe Bay, Oahu, both *Montipora capitata*  
118 and *Porites compressa* had bleaching susceptible *vs* bleaching resistant phenotypes, while only  
119 bleaching susceptible colonies of *P. acuta* were observed. All these three dominant species were  
120 monitored and sampled throughout a year. There has been extensive research on these coral  
121 species in Hawaii (e.g., Putnam and Gates 2015; Cunning et al., 2016; Wall et al., 2019;  
122 Matsuda et al., 2020; Ritson-Williams and Gates 2020; Innis et al., 2018), however, there is  
123 little information about their associated microbiota (e.g., Salerno et al., 2011; Shore-Maggio et  
124 al., 2015; Epstein et al., 2019). This study quantifies temporal dynamics in coral microbiomes  
125 using amplicon sequencing of multiple gene regions for multiple microbial compartments,  
126 coupled with compositional data analysis, to track symbiont shifts in multiple bleaching  
127 phenotypes within and among coral species. We further inspect for microbial sentinels within  
128 the coral holobionts able to diagnose fluctuations from healthy to distressed/diseased states.

129

130

131

132 **2. Materials and Methods**

133

134 **2.1. Study site and sampling**

135 Consecutive coral bleaching events occurred in Hawai‘i during the late summers of  
136 2014 and 2015 (Ritson-Williams and Gates 2020). The present study focused on corals from  
137 Reef 25 in the central portion of Kane‘ohe Bay, O‘ahu Island (N 21.461, W 157.823). In  
138 October 2014, 20 colonies of *Montipora capitata* (Mcap) and 20 *Porites compressa* (Pcom)

139 were tagged as adjacent pairs (ten totally bleached and ten non-bleached –fully dark brown,  
140 hereinafter referred to as “B” and “NB” colonies respectively for each species); along with ten  
141 colonies of fully bleached *Pocillopora acuta* (Pacu, there were no individuals of *P. acuta* that  
142 did not bleach). All tagged colonies came from 4–5 m depth, and were 50 in total (n = 10 for  
143 each sample group: Mcap\_B, Mcap\_NB, Pcom\_B, Pcom\_NB, and Pacu \_B). One coral  
144 fragment (1.5 cm long) was repeatedly sub-sampled from every tagged coral on five occasions:  
145 M0 = Month 0 – October (24<sup>th</sup>) 2014; M1 = Month 1 – November (24<sup>th</sup>) 2014; M3 = Month 3 –  
146 January (14<sup>th</sup>) 2015; M6 = Month 6 – May (6<sup>th</sup>) 2015; and M12 = Month 12 – September (15<sup>th</sup>)  
147 2015, yielding a total of 250 coral fragments (Fig. 1). Covariates used in downstream analyses  
148 are given in Table S1. Coral fragments (~ 1 cm<sup>3</sup>) were collected at each time point by  
149 snorkelers, placed in individual sterile bags and snap-frozen in liquid N within 1 minute of  
150 collection. All fragments were maintained at -80 °C until processed.

151

## 152 **2.2. DNA extraction, library preparation, and sequencing**

153 DNA from coral fragments was extracted using PowerSoil® DNA Isolation Kit (Mo  
154 Bio Laboratories) following manufacturer’s instructions. Amplicon sequencing of ribosomal  
155 RNA (rRNA) target gene markers for three microbial sets: Bacteria/Archaea (16S), Fungi  
156 Internal Transcribed Spacer 1 (ITS1) and Symbiodiniaceae (ITS2) was performed in three  
157 separate multiplexed runs. Due to technical issues, DNA samples from month M12 (Sept 2015)  
158 could not be sequenced for the ITS2 marker. Illumina protocol was applied with a two-PCR  
159 approach and two dual-index strategy (Caporaso et al., 2012; Kozich et al., 2013). Primer sets  
160 used were: bacterial/archaeal specific primers for V<sub>4</sub> region (*Escherichia coli* position: 515–  
161 806) of the small-subunit ribosomal RNA (16S) gene (515F –GTGYCAGCMGCCGCGTAA  
162 Parada et al., 2016 and 806R –GGACTACNVGGTWTCTAAT Apprill et al., 2015); ITS-  
163 DinoF (GTGAATTGCAGA ACTCCGTG) and ITS2rev2 (CCTCCGCTTACTTATATGCTT  
164 (Franklin et al., 2012) targeting the ITS2 for Symbiodiniaceae library; and fungi-specific  
165 primers ITS1F (CTTGGTCATTTAGAGGAAGTAA;Gardes and Bruns, 1993) and ITS2R-  
166 CoralBetter (GTGARCCAAGAGATCCRTT; designed in the present study) for ITS1.

167 Amplifications were performed in 25  $\mu$ l reactions with NEBNext® Q5® Hot Start HiFi PCR  
168 Master Mix (New England Biolabs, Inc.), 0.8  $\mu$ l BSA (Bovine Serum Albumin; 20 mg/ml), 1 $\mu$ l  
169 of each 5  $\mu$ M primer, and 1.5 $\mu$ l of template. Reactions were under the thermocycling profile: 98  
170 °C for 2 min, then 28 cycles of 98 °C for 15 s, 53 °C for 30 s, 72 °C for 30 s, final extension at  
171 72 °C for 2 min. The second Index PCR to attach dual indexes and Illumina sequencing adapters  
172 used forward primers with the 5'-3' Illumina i5 adapter (AATGATACGGCGACCAACCGA  
173 GATCTACAC), an 8–10bp barcode and a primer pad; and reverse fusion primers with 5'-3'  
174 Illumina i7 adapter (CAAGCAGAAGACGGCATACGAGAT), an 8–10 bp barcode, a primer  
175 pad. Reactions were made in 25  $\mu$ l with 0.5  $\mu$ l of each 5  $\mu$ M primer, and 1 $\mu$ l of corresponding  
176 products from first amplicon PCR reactions diluted (1:30), and with a temperature regime of: 98  
177 °C for 2 min, then 28 cycles of 98 °C for 15 s, 55 °C for 30 s, 72 °C for 30 s, final extension at  
178 72 °C for 2 min. The PCR products were purified and pooled equimolar on Just-a-Plate™ 96  
179 PCR Purification and Normalization Kit plates following manufacturer's instructions (Charm  
180 Biotec). Paired-end sequencing was performed on an Illumina MiSeq sequencer 2 x 300 flow  
181 cell at 10 pM at Core Lab, Hawai'i Institute of marine Biology (USA).

182

### 183 **2.3. Bioinformatics analysis**

#### 184 **2.3.1 Sequence processing for 16 S V<sub>4</sub> and ITS1 sets**

185 Fastq files containing demultiplexed 16S–V<sub>4</sub> and ITS1 paired-end reads were imported  
186 into QIIME2 v.2020.11 (Bolyen et al., 2019). DADA2 (Callahan et al., 2016) was used for  
187 “denoising” 16S data in paired-end mode. The ITS1 region was first extracted using ITSxpress  
188 (Rivers et al., 2018). Only forward reads as in Pauvert et al., (2019) were denoised in single-end  
189 mode with DADA2 (Callahan et al., 2016), and filtered from non fungal ITS sequences (Tables  
190 S2A and S2B). Taxonomic annotation was performed using a pre-trained Naïve Bayes classifier  
191 (sklearn (Bokulich et al., 2018a, 2018c) against SILVA reference (99% identity) database v.128  
192 (Quast et al., 2013; Yilmaz et al., 2014) trimmed to span the V<sub>4</sub> region (291 bp) for the 16S  
193 data. While for the ITS1 set, UNITE reference database (v. 1.12.2017) was customized adding

194 outgroup metazoan sequences from NCBI to check for host co-amplification (as in McGee et  
195 al., 2019; Supplementary Material S1).

196

197 **2.3.2. Sequence processing for ITS2 set**

198 Demultiplexed paired-end reads from the ITS2 Symbiodiniaceae marker were submitted  
199 to SymPortal (SymPortal.org; Hume et al., 2019) to obtain ITS2 type profile predictions,  
200 reflecting the “defining intragenomic [sequence] variants” (DIVs) in order of their relative  
201 abundance. Absolute abundance counts tables for ITS2 type profiles and underlying ITS2  
202 sequences were formatted and imported into QIIME2 v.2020.11 (Bolyen et al., 2019) for  
203 downstream analyses (Supplementary Material S1; and Table S2C).

204

205 **2.3.3. Microbial community analysis**

206 16S ASVs and ITS2 sequence compositions were analyzed using DEICODE  
207 (<https://library.qiime2.org/plugins/deicode/19/>) diversity method based on Aitchison distances  
208 and robust principal component analysis (RPCA) for compositional data (Aitchison 1982;  
209 Martino et al. 2019). Standard diversity distance metrics that do not account for  
210 compositionality of data were also computed on QIIME2 v.2020.11 (Bolyen et al., 2019).  
211 Statistics were calculated using q2-diversity adonis for multi-factor permutational multivariate  
212 analysis of variance (PERMANOVA). The most informative formula in the model for the 16S  
213 data was “Species\*TimePoint+Bleaching”, while “Species\*Bleaching” was the most explicative  
214 for ITS2. Pairwise comparisons for single covariates were run with q2-beta-group-significance.  
215 In all cases permutations were set to 999, and tests corrections significance to  $q$  value  $> 0.05$   
216 (i.e., FDR adjusted  $p$  value; Supplementary Material S1).

217

218 **2.3.4. Longitudinal, differential abundance and co-occurrence cross networks analyses**

219 By simultaneously analyzing our samples across all time points, meaningful signals  
220 may be lost at a particular time point. Also, having more than one measurement per subject in  
221 temporal/longitudinal or paired samples experiments violates independency assumptions

222 between samples of Kruskal-Wallis tests. Therefore, pairwise PERMANOVA comparisons  
223 were run for each timepoint by species. Further pertinent methods for differential abundance  
224 (Morton et al. 2019; Fedarko et al. 2020), longitudinal analyses –including pairwise  
225 differences/distances, linear-mixed-effects (LME) (Bokulich et al. 2018b), and co-occurrence  
226 cross network analyses that take into account repeated measurements and data compositionality  
227 (Shaffer 2020; Shannon et al., 2003) were performed as described in Supplementary Material  
228 S1.

229 R (RStudio) was applied for additional statistics and plotting (<http://www.r-project.org>).  
230

231

232

233 **3. Results**

234

235 **3.1 Bacteria/Archaea composition based on 16S rRNA gene data**

236 ***3.1.1 Alpha and beta diversity***

237 Pacu and Mcap corals reported higher bacterial diversity, richness and evenness  
238 (Shannon, Observed and Pielou's evenness) indexes compared to Pcom (Fig. 2, Fig. S3.1;  
239 Kruskal–Wallis  $H=137.94$ ,  $p < 0.001$ ,  $p = 5.56 \times 10^{-18}$ ). Alpha diversity did not yield significant  
240 differences within species between B vs NB colonies in Mcap and Pcom, or across time points  
241 in any species (Tables S4; Supplementary Material S2 and S3).

242 Differences in beta diversity were found by Species, reporting different microbial  
243 communities in the three host species, and in the interaction Species\*TimePoint; while Mcap  
244 and Pacu were more diverse from Pcom for all metrics (PERMANOVA 999 permutations,  
245 significance set to  $p < 0.05$ ; Tables S5). Since Bacterial composition was mostly determined by  
246 host species, according to all alpha and beta diversity indexes, downstream analyses were  
247 performed within species, to test for changes over time in all three species, and between  
248 bleached and non-bleached colonies in Mcap and Pcom. Based on Aitchison distances, bacterial

249 composition varied in Mcap NB between M12 and M0, and from M12 with respect to the other  
250 months according to Jaccard (Supplementary Material S2 and S3; Tables S6, S7). No significant  
251 longitudinal trend was found in beta diversity across nor between timepoints in any B vs NB  
252 corals (Tables S6, S7, Supplementary Material S2 and S3).

253

254 **3.1.2 Bacterial/Archaeal community compositions**

255 A total of 1257 ASVs were distributed in 979 Mcap, 523 Pcom, and 737 Pacu  
256 associated taxa. Taxonomy annotation at the genus level yielded 331, 211 and 279 bacterial and  
257 archaeal genera; this was out of a total of 93, 99 and 40 coral colony fragments belonging to  
258 Mcap, Pcom and Pacu respectively. In Mcap corals a bacterial strain within order Myxococcales  
259 made up > 50% relative abundance in 35 % of the samples. Other dominant genera were  
260 *Acinetobacter* –with preponderance of *A. calcoaceticus*, and *Endozoicomonas*. The least diverse  
261 bacterial communities were found in Pcom, predominantly composed of *Endozoicomonas*. A  
262 single phylotype in this genus accounted for > 90% in relative abundance in 65 % of Pcom  
263 samples. Other representative taxa were *Acinetobacter*, *Candidatus Amoebophylus*, and order  
264 Myxococcales. Pacu was dominated by Proteobacteria, with one strain covering > 50% relative  
265 abundance in 43 % of the samples. Most contributing genera included *Acinetobacter* (chiefly *A.*  
266 *calcoaceticus*) and *Candidatus Amoebophylus*, and there was a large proportion of unclassified  
267 taxa. In variable abundances, *Pseudomonas*, *Bacillus*, *Staphylococcus*, *Synechococcus*,  
268 *Lawsonella* and unidentified strains in Myxococcales were found in all three species. While,  
269 *Micrococcus*, *Corynebacteria*, *Turicella*, *Cyanobium*, *Brevundimonas*, *Maritimonas*,  
270 *Aerococcus* and *Geobacillus* were more linked to Mcap and Pdam (Fig. 2; Supplementary  
271 Material S2 and S3). All coral species shared 237 taxa (19 %), with Mcap sharing more taxa  
272 with Pacu (542; 43 %), than with Pcom (395; 31 %), and Pcom and Pacu sharing the least  
273 proportion of phylotypes (282; 22 %). The largest number of unique taxa was recorded in Mcap  
274 (279), followed by Pacu (149) and Pcom (83).

275

276 **3.1.3. Phylotype-wise differential abundance analysis of 16S rRNA gene data**

277 The importance (i.e., fold change) of each ASV in relation to the covariates TimePoint  
278 (month after bleaching, M0–M12) and Bleaching susceptibility (B vs NB) was calculated in  
279 separate analyses within species to create microbial balances.

280 In Mcap the most informative balance defining longitudinal changes in B vs NB  
281 microbiomes consisted of fifteen ASVs in genera: *Endozoicomonas*, *Acinetobacter*,  
282 *Pseudomonas* in the numerator; and *Micrococcus*, *Synechococcus*, *Staphylococcus*, *Lawsonella*,  
283 *Bacillus* and order Myxococcales, in the denominator (91 out of 93 samples retained). In M0  
284 and M6 NB colonies (ranked to numerator taxa) exhibited significantly higher log-ratios than B  
285 (associated to denominator phylotypes; Welch's tests,  $p < 0.05$ ). In M1 and M3, NB had lower  
286 log-ratios than B colonies, but the differences were not significant. In M1 and M3, *Bacillus* was  
287 not detected as differential taxa, and *Synechococcus* lost relevance in M6 (Material S4, Tables  
288 S8). Longitudinally, for this microbial balance, Mcap\_B had higher log-ratio rankings in M3  
289 compared with M6 and M12; whereas Mcap\_NB displayed lower log-ratios in all time points  
290 with respect to M0 (LME;  $p < 0.05$ ; Fig. 3).

291 Differentially abundant taxa in the balance of Pcom comprised two *Endozoicomonas*  
292 strains in the numerator, along with fluctuating taxa in *Candidatus Amoebophilus*,  
293 *Acinetobacter calcoaceticus*, *Pseudomonas stutzeri*, *Synechococcus*, *Roseitalea*; over  
294 *Staphylococcus*, *Micrococcus*, Neisseriaceae and five *Endozoicomonas* in the denominator  
295 (Material S4, Tables S8). Pcom\_B corals revealed higher log-ratios in M1, with respect to  
296 Pcom\_NB (Welch's tests,  $p < 0.05$ ; Material S4, Tables S8). Longitudinally, Pcom\_B displayed  
297 higher log-ratios in M1 in comparison to M0 and M6 (LME;  $p < 0.05$ ), instead Pcom\_NB  
298 showed stability across time points (LME;  $p > 0.05$ ; Fig. 3, Material S4, Tables S8). Further  
299 longitudinal analyses can be found in Supplementary Material S2.

300 The most discriminative microbial balance of Pacu comprised fifteen taxa assigned to:  
301 *Endozoicomonas*, *Cyanobium*, *Acinetobacter*, *Pseudomonas*, *Neisseriaceae* in the numerator;  
302 and *Micrococcus*, *Lawsonella*, *Synechococcus*, *Bacillus*, *Staphylococcus* in the denominator (39  
303 out of 40 samples kept). M0 colonies had lower log-ratios with respect to all the other time  
304 points (LME;  $p < 0.05$ ; Tables S8; Fig. 3).

305 The longitudinal behavior (over time) of bacterial genera represented in the above  
306 microbial balances for the three host species were inspected in trajectory plots using centered  
307 log ratio (CLR) abundances. The investigated genera included: *Endozoicomonas*, *Acinetobacter*,  
308 *Bacillus*, *Candidatus Amoebophilus*, *Cyanobium*, *Lawsonella*, *Micrococcus*, *Pseudomonas*,  
309 *Staphylococcus*, *Synechococcus* and *Roseitalea*. Phylotypes included in the differential balances  
310 appertaining to family Neisseriaceae and order Myxococcales, but not assigned to genus level,  
311 were not included in this analysis (see Fig. 3, and Supplementary Material S2 for detailed  
312 interpretations).

313

314

315 **3.2. Fungi composition based on ITS1 data**

316 Untargeted host co-amplification was a major constraint in characterizing fungal  
317 communities, despite the new primer designed to bypass metazoan DNA. We found 94.8 %  
318 coral co-amplification, retrieving only 5.2 % overall fungal sequences. The rate of co-  
319 amplification varied among species, with *P. compressa* displaying the largest untargeted co-  
320 amplification (98.4 %), followed by *M. capitata* (95.6 %), and *P. acuta* (56 %) (Supplementary  
321 Material S2). The most represented fungal species retrieved were *Malassezia restricta*, *M.*  
322 *globosa*, *Hortaea\_werneckii*, *Aspergillus penicillioides*, *Phellinus gilvus*. No further statistical  
323 analysis was performed due to insufficient/uneven diversity coverage.

324

325

326 **3.3. Symbiodiniaceae composition based on ITS2 data**

327 **3.3.1. Symbiodiniaceae ITS2 type profiles**

328 ITS2 type profiles were 29 in total, 27 belonging to the genus *Cladocopium* and 2 to  
329 *Durusdinium*. Their associations with corals depended on host species, bleaching susceptibility,  
330 and their interaction (PERMANOVA 999 permutations,  $p < 0.05$ ). Certain coral colonies were  
331 stable over time in Symbiodiniaceae composition, but others experienced temporal shifts

332 without a clear pattern (Tables S9). *Cladocopium* profiles were dominant in the three host  
333 species. Only one type profile was shared between Mcap and Pacu (C1d), the rest (95 %) were  
334 only found in single host species. Mcap had the most varied profiling –10 *Cladocopium*, 2  
335 *Durusdinium*, and were the only corals harboring *Durusdinium* types. Pcom and Pacu reported  
336 10 and 7 distinct unshared *Cladocopium* profiles respectively (Fig. 4). The resistant phenotypes  
337 Mcap\_NB reported 9 *Cladocopium* and 2 *Durusdinium* profiles, as compared to Mcap\_B with 5  
338 and 1 respectively. *Durusdinium* profiles always occurred mixed with *Cladocopium* in 4–5  
339 Mcap\_NB colonies per time point. Pcom\_B displayed more assorted type profiles across  
340 individuals within each time point than Pcom\_NB. Mcap\_B corals acquired more varied ITS2  
341 profiling with time –including a *Durusdinium* profile acquired in one Mcap\_B colony in M6,  
342 but this effect was not statistically supported. With the exception of one sample in Mcap\_B and  
343 one in Pcom\_N both in M6, the presence of mixed ITS2 type profiles was only ascertained in  
344 Mcap\_NB colonies with an incidence of 48% (Fig. 4).

345

### 346 3.3.2. *Underlying Symbiodiniaceae ITS2 sequence composition*

347 Our corals contained 173 *Cladocopium* and 28 *Durusdinium* ITS2 sequences ( $\geq 1\%$   
348 abundance). By coral species and bleaching susceptibility the number of different *Cladocopium*  
349 / *Durusdinium* sequences was higher in NB colonies in Mcap (Mcap\_B 51 / 20 vs Mcap\_NB 80  
350 / 28), as opposed to Pcom that showed more sequence variability in B (Pcom\_B 82 / 3 vs  
351 Pcom\_NB 62 / 3); while Pacu reported 19 / 5.

352 Within the same coral species, ITS2 profiles shared common major sequences  
353 (predominant DIVs within type profiles), and were distinguished by other major and minor  
354 sequences (nonmajor DIVs, Fig. 4). Across different host species, ITS2 profiles did not share  
355 major sequences. Major *Cladocopium* DIVs designating profiles in *M. capitata* were C31 and  
356 C17d, in *P. compressa* C15, and in *P. acuta* C1d. *Durusdinium* major DIVs were D4 and D1,  
357 followed by D6, only represented as major sequences in *M. capitata*. Variations in ITS2 profiles  
358 within the same colonies across time points were therefore due to the loss, gain or substitution  
359 of minor sequences prompting a shift in profile assignment (Fig. 4).

360 ITS2 sequence compositions confirmed the observed pattern of ITS2 profiles, highly  
361 structured by host species and bleaching susceptibility, with no consistent temporal shifts. In the  
362 RPCA biplots Mcap showed differences in B vs NB colonies at M0, M1 and M3, being D1, D4  
363 and D6 the most correlated DIVs with NB. Pcom revealed dissimilarity  
364 between B vs NB colonies at M0, and here D6, C15cc, C3, 70890\_C and C3dg were major  
365 drivers of NB clustering, versus C15id and 70894\_C associated to B (Fig. 5 and PERMANOVA  
366 999 permutations,  $p < 0.05$ , Tables S10, S11, S12; Supplementary Material S2 and S3).

367

### 368 **3.3.3. Phylotype-wise differential abundance analysis of ITS2 data**

369 Selection of the 43% most differentially abundant ITS2 sequences in relation to  
370 covariates TimePoint (M0–M12) and Bleaching susceptibility (B vs NB) in *M. capitata* yielded  
371 23 numerator and 23 denominator phylotypes (keeping 90.78 % samples). This balance  
372 discriminated Mcap\_B with higher log-ratios from Mcap\_NB corals in all time points.  
373 Numerator DIVs associated to Mcap\_B included some C31, a few C17, C21 and other  
374 *Cladocopium* DIVs; denominator DIVs correlated to Mcap\_NB comprised 55 % *Durusdinium*  
375 DIVs (D4, D1, D6, D1ab, D3h) along with a few C17 and C21 among other *Cladocopium* DIVs  
376 (Fig. 5; Tables S13).

377 In *P. compressa*, the top 25 % differential ITS2 sequences (maintaining 91.25 %  
378 samples) resulted in 12 phylotypes (C3 and other *Cladocopium* DIVs) in the numerator  
379 correlated Pcom\_B colonies, and 12 denominator phylotypes (several C15 and other  
380 *Cladocopium* DIVs) associated to Pcom\_NB in M0 and M1. In M3 and M6, when corals  
381 recovered colouration, Pcom\_B and Pcom\_NB corals recorded similar log-ratios (Fig. 5; Tables  
382 S13).

383 In *P. acuta* the model with the co-variate “TimePoint” was uninformative with respect  
384 to the null model (adding “1” in the formula), indicating no response of Symbiodiniaceae across  
385 time.

386 Log-ratios in the balances of differentially abundant ITS2 sequences tracked  
387 longitudinally over time had no significant shifts in any species (LME;  $P<[z] < 0.05$ ;  
388 Supplementary Material S5, Tables S13).

389

### 390 **3.4. Cross networks between 16S rRNA gene ASVs and ITS2 profiles**

391 Co-occurrence cross networks illustrated potential interaction patterns among bacteria  
392 and Symbiodiniaceae, allowing to detect changes in coral microbiomes' structure. In Mcap\_B a  
393 simple network in M0 formed by two C31 *Cladocopium* ITS2 profiles and few bacteria,  
394 increased conspicuously in bacterial nodes from M1 to M6, together with the addition of  
395 another C31 and a *Durusdinium* D4/D1 nodes in M3 and M6. Mcap\_NB started with a complex  
396 network composed by four C31, two C17d/C31 and two D4/D1 profiles connected with dense  
397 agglomerations of bacteria. The network became less complex in M1 and M3, with the  
398 exclusion of two C31 profiles; and acquired more bacterial nodes again over M6, with the re-  
399 inclusion of C31 nodes and exclusion of a C17d/C31 node. Pcom\_B started with three C15  
400 profiles connected to few bacteria. Bacterial nodes increased over M1 with the addition of a  
401 C15 profile, and declined in M6 with the removal of a C15 node. Pcom\_NB networks  
402 maintained three C15 profiles and few bacteria nodes over M0–M3. In M6 a C1d profile was  
403 added, but bacterial nodes and edges diminished. Network complexity increased in Pacu\_B  
404 from M0–M1, with the increase of C1d profiles from three to four nodes, and with a progressive  
405 increment of bacterial nodes over M1–M6. Co-occurrence interconnections were predominant  
406 over co-exclusion, except in Mcap\_B at M1 and Pacu\_B at M3. Networks in susceptible-B  
407 colonies in the three species displayed increased positive interactions during bleaching  
408 recovery. Whereas, in resistant-NB corals the number of interactions decreased in Mcap\_NB, or  
409 fluctuated in Pcom\_NB. Consistently, Pcom\_B and Pcom\_NB maintained smaller networks  
410 (fewer nodes and edges) than the rest, with the punctual exception of Mcap\_B in M0 (Fig. 6;  
411 Supplementary Material S2 for detailed results).

412

413

414        4. Discussion

415

416        Historically, massive coral bleaching in Hawaiian ecosystems was unusual, until 1996  
417        (Bahr et al., 2015). The consecutive heatwaves of 2014 and 2015 in Kane‘ohe Bay allowed us  
418        to track temporal shifts in bleaching susceptible and resistant coral microbiomes *in situ*, during  
419        and after the bleaching peaks. Pcom\_B corals recovered faster (after ~2.5 months) than Pacu\_B  
420        (~3 months), and Mcap\_B (~6 months), according to color scores (Ritson-Williams and Gates  
421        2020), yet actual Symbiodineaceae densities could have been regained faster (Cunning et al.,  
422        2016). Prokaryotes, in turn, were expected to exhibit more rapid responses to stressors, due to  
423        their fast generation times (Ziegler et al., 2017; Glasl et al., 2017; Pogoreutz et al., 2018).

424        Algal and prokaryotic communities in our corals followed a species-specific pattern,  
425        frequent in sympatric populations (Gardner et al., 2019; Howells et al., 2020), whereas  
426        intraspecific Symbiodiniaceae signatures were identified at the colony scale (Rouzé et al.,  
427        2019). Mcap had the most variable ITS2 profiling, followed by Pcom and Pacu, whilst  
428        Symbiodiniaceae composition was influenced by bleaching susceptibility. Algal-genotypes  
429        conferring different bleaching resistance in conspecific hosts may appertain to the same genus,  
430        as in Pcom (Sampayo et al., 2008), or to different ones as in Mcap (Berkelmans and van Oppen  
431        2006; Gardner et al., 2019). But also, susceptibility can be independent from symbiont-type  
432        (Smith et al., 2017; Howells et al., 2020).

433        Bacterial compositions were more diverse in Mcap and Pacu than in Pcom, and were  
434        practically constant between bleaching phenotypes. Microbial stability after natural thermal  
435        disturbance has been reported in corals undergoing sub-bleaching (Epstein et al., 2019) and  
436        bleaching (Gardner et al., 2019). While, community shifts were documented after induced stress  
437        (Bourne et al., 2005; Vega Thurber et al., 2009; Littman et al., 2011; Ziegler et al., 2016). In our  
438        corals, certain bacterial-ASVs/ Symbiodiniaceae-DIVs were differentially abundant across time  
439        and/or bleaching susceptibility, highlighting the potential of fine-scale microbiome changes in  
440        coral resilience (Glasl et al., 2017; Ziegler et al., 2019; Epstein et al., 2019). Below we discuss

441 the dynamics of coral microbiomes during the process of bleaching and recovery in the different  
442 host species.

443

444 **4.1. *Pocillopora acuta***

445 Pacu had the highest bleaching incidence, and was associated with eight fluctuating  
446 Symbiodiniaceae C1d-profiles. This agreed with the C1d-dominance described for this species  
447 in Hawai'i (LaJeunesse et al., 2004). Predicted profiles dominated by C1d and C42.2 likely  
448 reflect the preponderance of mixed *Cladocopium pacificum* and *C. latusorum* (Turnham et al.,  
449 2021). Lack of acclimatization patterns agrees with stabilities of dominant symbionts in  
450 pocilloporids under thermal stress. Whilst, profile shifting driven by minor ITS2-sequences  
451 shifts, is presumably matching with background genotype variability reported in previous  
452 studies (Stat et al., 2009; McGinley et al., 2012; Epstein et al., 2019). In other geographies,  
453 higher bleaching thresholds have been reported in populations harboring *Durusdinium glynnii*  
454 (previously D1) (Glynn et al., 2001; Wham et al., 2017; Brener-Raffalli et al., 2018; Li et al.,  
455 2021; Zhou et al., 2021), or in chunky (versus fine) morphotypes, even when presenting C1d  
456 (Smith et al., 2017; Epstein et al., 2019). Therefore, the bleaching incidence observed in Pacu  
457 could rely on a combination of having fine morphology and *Cladocopium*-profiles, both  
458 correlated to higher susceptibilities (Smith et al., 2017).

459 Bacterial communities were dominated by phylum Proteobacteria, followed by  
460 Bacteroidetes, Actinobacteria, Firmicutes and Cyanobacteria, similar to pocilloporids from  
461 other regions; whereas, Family Amoebophilaceae (mostly *Candidatus Amoebophylus*) and  
462 genus *Acinetobacter* (largely *A. calcoaceticus*) were more preeminent, and *Endozoicomonas*  
463 less abundant in Pacu (Bourne and Munn 2005; Tout et al., 2015; Brener-Raffalli et al., 2018; Li  
464 et al., 2021; Zhou et al., 2021, but see Epstein et al., 2019; Osman et al., 2020). Prokaryotic  
465 community, in terms of overall alpha and beta diversity, did not show significant changes over  
466 time, as in other surveys involving coral bleaching (Pogoreutz et al., 2018; Gardner et al.,  
467 2019). Nonetheless, microbial rearrangements could be detected via balances of differentially  
468 abundant taxa, revealing lower log-ratios in corals at the bleaching peak M0. Upon recovery

469 (M1–M12) Pacu was correlated to *Endozoicomonas*, *Cyanobium*, *Acinetobacter*, *Pseudomonas*  
470 and *Neisseriaceae*, whereas bleached colonies in M0 were associated to *Micrococcus*,  
471 *Lawsonella*, *Synechococcus*, *Bacillus* and *Staphylococcus*. Likewise, cross co-occurrence  
472 networks showed an increase in node complexity and positive interconnections from M1. This  
473 implied that sparse interactions between bacteria and Symbiodiniaceae during thermal stress,  
474 increased in number as algal cells repopulated in the recovery process after M0, yielding larger  
475 networks.

476 Recovery in Pacu happened after 2–3 months (Ritson-Williams and Gates 2020);  
477 probably thanks to heterotrophic feeding (Lyndby et al., 2020; Dobson et al., 2021) and,  
478 microbiome rearrangements in early recovery phases (Santos et al., 2014; Ziegler et al., 2017).  
479

480 **4.2. *Montipora capitata***

481 Mcap colonies were associated with *Cladocopium* and *Durusdinium* symbionts. At the  
482 DIV level C31, C17 and C21 were predominant genotypes in both B and NB corals, while D4,  
483 D1, D6, D1ab and D3h characterized NB colonies, in agreement with recent studies (Matsuda  
484 2021). Bleaching resistant Mcap\_NB colonies contained either pure C or mixed D/C profiles  
485 (50 % of the times), and were different from susceptible Mcap\_B, which contained basically C-  
486 profiles. Adjacent colonies never shared the same ITS2-profile. In both bleaching phenotypes,  
487 six colonies (66 %) maintained their corresponding dominant profiles, the remaining (three)  
488 experienced temporal shifts, in agreement with Cunning et al. (2016). C31-C17d-C31.1-C31a-  
489 C21-C31f-C17e-C311-C21ac might represent a thermosensitive ITS2-profile, as 8 out of 9  
490 Mcap\_B bleached colonies in M0 contained this profile, whilst its presence in Mcap\_NB (1–2  
491 colonies) was always in combination with D-profiles. In purity or mixed, D-genotypes provide  
492 thermal resistance in *M. capitata*, but colonies with C-profiling also demonstrated stress-  
493 tolerance (Cunning et al., 2016). Our analyses based on ITS2-types (Hume et al., 2019)  
494 identified different *Cladocopium* profiles, in comparison to previous surveys reporting solely  
495 C31-genotype (LaJeunesse et al., 2004; Stat et al., 2013; Cunning et al., 2016), which could  
496 resolve the disparate stress-resistance of Mcap\_NB vs Mcap\_B. In one exception though, two

497 colonies containing the same profile (C31/C17d-C21-C31.9-C21ac-C17e-C31h-C31i) at M0,  
498 one underwent bleaching and the other one not, suggesting multiple factors (including different  
499 microenvironments affecting these corals) other than symbiont type regulating thermal  
500 tolerance. Mcap\_B and Mcap\_NB maintained different Symbiodiniaceae compositions, based  
501 on profiles and underlying ITS2-sequences, while colony heterogeneity in bleached Mcap\_B  
502 increased with time, with no clear stabilization pattern. Actually, only one colony acquired a  
503 partial *Durusdinium* profile at M6, supporting the low prevalence of symbiont shuffling  
504 described in this species (Cunning et al., 2016).

505 Prokaryotic communities were dominated by Proteobacteria (Family P3OB-24, Order  
506 Myxococcales), and by genera *Acinetobacter* (largely *A. calcoaceticus*) and *Endozoicomonas*.  
507 In general, they matched with *M. capitata* microbiomes, characterized by the presence of  
508 Cyanobacteria and Deinococcus-Thermus, and low abundance of *Vibrio* (Shore-Maggio et al.,  
509 2015; Beurmann et al., 2018). Even if non statistically significant, increased alpha diversities  
510 observed in Mcap\_B at M1 and M3 may suggest microbial rearrangements after thermal-stress  
511 (Vega Thurber et al., 2009; Tout et al., 2015; McDevitt-Irwin et al., 2017), or seasonal  
512 fluctuations in Mcap\_NB at M6 (Cunning et al., 2016). Log-ratio rankings of differentially  
513 abundant taxa were higher in Mcap\_NB with respect to Mcap\_B at M0 and M6. At these two  
514 time points of symbiont depletion: bleaching peak (M0) and seasonal algal downturn (M6; as in  
515 Cunning et al., 2016), Mcap\_NB was ranked to numerator taxa –*Endozoicomonas*,  
516 *Acinetobacter* and *Pseudomonas*; whereas bleached Mcap\_B were correlated to denominator  
517 taxa –Myxococcales, *Lawsonella*, *Micrococcus*, *Synechococcus*, *Bacillus* and *Staphylococcus*.  
518 Cross networks became more complex in Mcap\_B from M1 to M6, as algal densities recovered  
519 (M1–M3), and bacteria established interactions with Symbiodiniaceae. Instead, Mcap\_NB  
520 showed higher network complexity in M0 compared to bleached Mcap\_B colonies, reflecting  
521 stress response rearrangements between thermo-tolerant algal and prokaryotic symbionts during  
522 the heatwave.

523 *M. capitata* was found to rely on heterotrophy to compensate for energy losses when  
524 experimentally bleached (Grottoli et al., 2006). Mcap did not evidence such trophic plasticity,

525 and would have regained symbiont populations at expense of biomass resources by January  
526 2015 (Wall et al., 2019; Ritson-Williams and Gates 2020), in agreement with the microbial  
527 outcomes.

528

529 **4.3. *Porites compressa***

530 ITS2-profiling in Pcom revealed C15-dominance, in accordance with older surveys on  
531 *Porites compressa* (LaJeunesse et al., 2004). Pcom\_NB and Pcom\_B corals held distinct  
532 Symbiodiniaceae patterns 70–90 % of the times, across M0–M12. While, other characteristics  
533 in the holobiont or microenvironmental variabilities causing different stress conditions, should  
534 explain why 20 % adjacent Pcom\_B and Pcom\_NB colonies sharing the same profiles had  
535 different susceptibilities in M0. During the peak of the heatwave in Oct-2014 (M0) Pcom\_NB  
536 associated to DIVs C15cc and D6, and more often to the ITS2 profile C15-C5ci-C15cc-C15cl-  
537 C15n-C15cj-C15l, which could represent a thermotolerant symbiont-type found in 7 out of 10  
538 resistant colonies, and in only one susceptible Pcom\_B. Accordingly, this profile was less  
539 prevailing in M6 (May 2015), coinciding with a period of minor thermal disturbances and lower  
540 symbiont abundances (Brown et al., 1999; Cunning et al., 2015). C15-genotypes with higher  
541 temperature tolerance were already described associating to *Porites* spp. from the Great Barrier  
542 Reef (Fisher et al., 2012). Dissimilarities in ITS2-sequences between Pcom\_B and Pcom\_NB  
543 tended to vanish after M1, reflecting algal rearrangements linked to recovery from this time  
544 point. This concurs with coral photo-physiology data supporting intense symbiont repopulation  
545 (elevated cell mitosis and photopigment synthesis) from Nov (Wall et al., 2019; Matsuda et al.,  
546 2020; Ritson-Williams and Gates 2020).

547 Bacterial communities in Pcom were less diverse than in the other hosts, accounting for  
548 many low abundance taxa, and ~ 90 % predominance of a single *Endozoicomonas* microbe. The  
549 bacterial community structures were relatively constant, across bleaching phenotypes and time.  
550 Salerno et al. (2011) also found stable microbiomes in *P. compressa* under mild thermal  
551 treatments; whereas Vega Thurber et al. (2009) observed switches from healthy to pathogenic  
552 microbiota after intense high temperature exposures. Both of these thermal stresses were

553 administered in an experimental setting. In our field data the prevalent ASV  
554 (694df3c7f8b6b66c922ed51a965d75d0a) matched with a symbiont (Oceanospirillaceae-OTU  
555 C7-A01: FJ930289.1; Supplementary Material S2) broadly documented in *Porites* spp.  
556 (including *P. compressa* from Maui) and other hermatypic corals from Australia, Hawai‘i, and  
557 Bermuda (Speck and Donachie 2012), suggesting a conserved large-scale partnership with  
558 corals (Neave et al., 2016). Coral-microbiomes dominated by one or few *Endozoicomonas*  
559 phylotypes were described to have microbial inflexibility in stress responses (Pogoreutz et al.,  
560 2018). In our susceptible Pcom\_B corals dominated by one *Endozoicomonas* strain though, the  
561 microbial balance composed by two *Endozoicomonas* (the predominant ASV above and another  
562 congeneric strain), *Candidatus Amoebophilus*, *Acinetobacter calcoaceticus*, *Pseudosmonas*  
563 *stutzeri*, *Synechococcus* and *Roseitalea* phylotypes; over five antagonistic *Endozoicomonas*  
564 strains, *Micrococcus*, *Staphylococcus* and Neisseriaceae taxa, pinpointed a longitudinal  
565 discontinuity of increased log-ratios in Pcom\_B at M1. Microbial communities of bleaching  
566 resistant Pcom\_NB phenotypes, in contrast, remained stable and dominated by  
567 *Endozoicomonas*. Different from Pogoreutz and co-workers (2018) findings, the relative  
568 microbial inflexibility of Pcom and *Endozoicomonas* predominance, could afford benefits in  
569 terms of resistance or faster recovery during thermal stress responses.

570 Pcom was characterized by small cross networks with mild fluctuations between  
571 heatwaves, reflecting a much simpler microbial community. Increased edge complexity at M1  
572 in Pcom\_B again suggests a rapid recovery response, with reliance on few bacterial ASVs; as  
573 compared to Mcap\_B and Pacu\_B, reflecting larger bacterial consortia participating in the  
574 recovery. Reduced trophic plasticity, and intense loss of Symbiodiniaceae and photosynthetic  
575 pigments might obligate Pcom\_B to regain symbionts faster, at high biomass investment with  
576 respect to the other species (Wall et al., 2019; Matsuda et al., 2020). Furthermore, intense algal  
577 repopulation in Pcom\_B from October–November 2014 was correlated with low symbiont  $\delta^{15}\text{N}$   
578 (Wall et al., 2019), and assimilation of  $^{15}\text{N}$  depleted sources, possibly derived from diazotroph  
579 bacteria via  $\text{N}_2$  fixation (Lesser et al., 2007; Cardini et al., 2015; Bednarz et al., 2017). Indeed,

580 differentially abundant taxa ranked to recovering Pcom\_B included various diazotroph taxa (see  
581 below).

582

583 **4.4. Differentially abundant bacterial taxa defining temporal shifts in bleaching  
584 recovery**

585 Coral microbiomes in the present study revealed minor community disruption in  
586 response to heatwaves. Similar outcomes were reported previously, together with increases in  
587 potentially beneficial (Santos et al., 2014; Epstein et al., 2019). One bacterial group widely  
588 associated to corals and documented to display diversified tolerances and/or functional traits to  
589 stress conditions is *Endozoicomonas* (Bourne et al., 2005; Vega Thurber et al., 2009; Littman et  
590 al., 2011; Neave et al., 2016; McDevitt-Irwin et al., 2017; Pogoreutz et al., 2018; Ziegler et al.,  
591 2016, 2017, 2019; Epstein et al., 2019). In our corals, saving an initial decline in Mcap\_B at  
592 M0, this genus displayed preponderance throughout bleaching stress, in agreement with other  
593 studies (Ziegler et al., 2016; Pogoreutz et al., 2018; Epstein et al., 2019). *Endozoicomonas*  
594 symbionts are proposed to play three kinds of functions: 1) nutrient acquisition/provision –  
595 carbon, nitrogen, sulphur, methane recycling, amino acid production,  
596 dimethylsulfoniopropionate (DMSP) metabolism; 2) microbiome modulation –quorum-sensing;  
597 and 3) promotion of host health –antimicrobial activity, pathogens exclusion (Neave et al.,  
598 2016, 2017). DMSP produced by Symbiodiniaceae and sulfur-derivatives from certain  
599 prokaryotes (*Endozoicomonas*, *Acinetobacter*, *Pseudomonas*, *Vibrio*) provide a selective  
600 environment structuring bacterial populations (Raina et al., 2010). Hence, upon the downturn of  
601 DMSP production throughout bleaching/stress episodes, high abundances of *Endozoicomonas*  
602 might modulate microbiomes steadiness (Ziegler et al., 2016; Pogoreutz et al., 2018; Epstein et  
603 al., 2019). Further, diazotroph bacteria contribute to homeostasis during bleaching and sub-  
604 bleaching recovery after thermal stress (Santos et al., 2014; Epstein et al., 2019), by suppling  
605 limiting nitrogen to Symbiodiniaceae (Lesser et al., 2007; Olson et al., 2009; Cardini et al.,  
606 2015; Bednarz et al., 2017). Indeed, many differentially abundant taxa positively ranked to our  
607 recovering corals included diazotrophs and/or DMSP-metabolizing bacteria: e.g.,

608 *Endozoicomonas*, *Acinetobacter calcoaceticus*, *Pseudomonas stutzeri*, *Cyanobium* (Lalucat et  
609 al., 2006; Lesser et al., 2007; Olson et al., 2009; Raina et al., 2010). High occurrence of  
610 *Acinetobacter* spp. and *Endozoicomonas* spp. is frequently documented in healthy and bleached  
611 Scleractinia, implying synergistic roles in fitness (Cai et al., 2018). Another recently described  
612 symbiont in coral holobionts is *Candidatus Amoebophilus*, an intracellular associate of  
613 unicellular eukaryotes, like Symbiodiniaceae or amoebae, with undefined role (Huggett and  
614 Apprill 2018; Epstein et al., 2019). Differential phylotypes in this genus were correlated to algal  
615 repopulation, particularly in Pcom\_B. Bleaching entails loss of major nourishment inputs and  
616 photoprotection, and corals therefore implement compensatory strategies (Fitt et al., 2001). For  
617 instance, bleached corals have been observed to reinforce feeding on planktonic diazotrophs and  
618 preferentially on nitrogen-rich *Synechococcus* cyanobacteria (Meunier et al., 2019).  
619 Accordingly, bleached colonies and incipient recovery stages in this study were associated to  
620 *Synechococcus*; but interestingly also to differential phylotypes with potential UV-absorbing  
621 properties, like *Bacillus*, *Staphylococcus* (Ravindran et al., 2013), *Micrococcus* (Arai et al.,  
622 1992), and the already mentioned Cyanobacteria –*Cyanobium*, *Synechococcus* (Sinha et al.,  
623 2001). Notably, *Bacillus* and *Staphylococcus* strains within the coral mucus have demonstrated  
624 to increase their UV-absorbance range in response to elevated temperatures, likely protecting  
625 bleached colonies from excessive irradiation prior to recovery (Ravindran et al., 2013).  
626 *Lawsonella* was another genus frequently associated with bleached corals here. Despite little  
627 information exists on marine representatives, it could involve opportunistic/transient microbes,  
628 as those described in certain human abscesses (Bell et al., 2016). Differentially abundant taxa  
629 were broadly shared between Mcap and Pacu, and partially matching with Pcom –this last  
630 chiefly influenced by *Endozoicomonas* spp. This outcome is appealing, and suggests that locally  
631 the same players may modulate stress responses in different coral species. Thus, understanding  
632 the dynamics of differentially abundant microbial consortia in correlation with bleaching and  
633 recovery, could provide regional indicators to forecast the fate of sympatric corals to upcoming  
634 (Glasl et al., 2017). Furthermore, certain strains could be proposed as “probiotics” to improve  
635 coral resistance (Peixoto et al., 2017).

636

637

638 **5. Conclusions**

639

640 Prokaryotic and algal microbiomes differed among the three coral species. Despite the  
641 recovery of the bleached individuals, there was no apparent pattern of temporal acclimatization.  
642 Symbiodiniaceae shifts were found by bleaching phenotype in Mcap and Pcom, probably  
643 contributing to resistance. Compared to previous work, ITS2-type profiling (Hume et al., 2019)  
644 allowed us to disentangle higher intraspecific resolution within Symbiodiniaceae diversity.  
645 Whilst compositional analyses (Morton et al., 2019) on the other, permitted the identification of  
646 fine-scale differences in the abundance of certain ASVs/DIVs driving changes by bleaching  
647 susceptibility and time within each host, despite overall stability of the communities. Fungal  
648 associates remain unexplored, until better methods can address host co-amplification and  
649 improve taxonomic identifications (Amend et al., 2012).

650 The three major coral reef founders in Kane’ohe Bay revealed different responses after  
651 2014–2015 heatwaves. Pacu had thorough bleaching susceptibility and recovered  
652 photosynthetic symbionts probably relying on heterotrophy (Lyndby et al., 2020; Dobson et al.,  
653 2021), and microbiome rearrangements in the early recovery phases (Santos et al., 2014; Ziegler  
654 et al., 2017). Mcap and Pcom displayed two bleaching phenotypes, and the susceptible colonies  
655 Mcap\_B revealed greater bleaching resistance and slower recovery at low biomass investment.  
656 Instead, Pcom\_B underwent stronger bleaching (higher pigment loss), faster symbiont  
657 repopulation at higher metabolic expenses, but attained better energetic standing (Wall et al.,  
658 2019; Ritson-Williams and Gates 2020).

659 It is difficult to forecast which of the three strategies will become successful in future  
660 scenarios. Yet, after the recent 2019 heatwave in Hawai’i *P. compressa* demonstrated better  
661 performance than *M. capitata*, suggesting certain acclimatization (Innis et al., 2018; Matsuda et  
662 al., 2020). Similarly, poritid corals from Panamá predicted to be disadvantaged to upcoming

663 climate and anthropogenic disturbances with respect to other co-dominant scleractinians  
664 (Aronson et al., 2014), have demonstrated unexpected resilience (O'Dea et al., 2020).  
665 Cumulative research demonstrates that coral responses to thermal stress are reliant on host  
666 species, geography, and severity/frequency of the events, impeding the elaboration of  
667 generalizations. Notwithstanding this limitation, further understanding on microbial balances,  
668 may allow to identify finer scale taxa dynamics as local indicators of coral reef fitness (Glasl et  
669 al., 2017; Peixoto et al., 2017), serving as diagnostic tools for ecosystem stress.

670

## 671 **Appendix A. Supplementary data**

672 S1. Núñez-Pons et alii S1 SupplementaryMethods: Coral bleaching monitoring.  
673 **Experimental co-variates:** **Table S1.** Experimental co-variates information. **Bioinformatics**  
674 **analysis.** **Sequencing outputs:** **Table S2A.** Sequencing outputs of 16S rRNA gene V<sub>4</sub> reads.  
675 **Table S2B.** Sequencing outputs of ITS1reads. **Table S2C.** Sequencing outputs of ITS2 reads.  
676 **Rarefaction and sequencing depth:** **Table S3A.** Rarefaction information for 16S rRNA data,  
677 **Table S3B.** Rarefaction information for ITS1 data, **Table S3C.** Rarefaction information for  
678 ITS1 data.

679

680 S2. Núñez-Pons et alii S2 SupplementaryResults: Alpha diversity for 16s rRNA gene data.  
681 **Fig. S1.** Alpha diversity. **Beta diversity for 16s rRNA gene data.** **Fig. S2.1.** RPCA  
682 compositional biplot based on Aitchison distances for Mcap. **Fig. S2.2.** RPCA compositional  
683 biplots based on Aitchison distances for Pcom. **Fig. S2.3.** RPCA compositional biplots based on  
684 Aitchison distances for Pacu. **Taxa bar plots at ASV level.** **Fig. S.3.1.** Prokaryotic composition  
685 at the ASV level for Mcap. **Fig. S.3.2.** Prokaryotic composition at the ASV level for Pcom. **Fig.**  
686 **S.3.2.** Prokaryotic composition at the ASV level for Pacu. **Longitudinal approaches.**  
687 **Longitudinal analyses for the 16S rRNA gene data.** **Fig S4.1.** Box plot of pairwise distances  
688 on Jaccard index of 16S data. **Fig S4.2.** Box plot of pairwise distances on Bray Curtis beta index  
689 of 16S data. **Fig S4.3.** Volatility plot on Bray Curtis distances of 16S data from one timepoint to

690 the consecutive. **Fig S4.4.** Volatility based on Bray Curtis distances of 16S data on coral  
691 colonies from any time point respect to M0. **Fig S4.5.** Volatility plot of shared phylotypes of  
692 16S data from any time point respect to M0. **Fig S4.6.** Volatility plot on log-ratio rakings of  
693 microbial bacterial balances formed by differential taxa from one timepoint to the consecutive.  
694 **Fig S4.7.** Volatility on log-ratio rakings of microbial bacterial balances formed by differential  
695 taxa from any time point respect to Month 0. **Longitudinal analyses for the ITS2 data.** **Fig.**  
696 **S4.8.** Volatility plots of first distances with DEICODE of ITS2 sequences from any time point  
697 to Month 0. **Fig. S4.9.** Volatility plots of first distances with Bray Curtis from any time point to  
698 Month 0 for ITS2 sequences. **Fig. 4.10.** Pairwise differences on LogRatios of balances formed  
699 by differential ITS2 sequences in Pcom. **Fig. S4.11.** Pairwise differences on LogRatios of  
700 balances formed by differentially abundant ITS2 sequences between Month 0 and 6. **Fig. 4.12**  
701 Volatility plot of log-ratios ranks of balances formed by differential ITS2 sequences from corals  
702 across time points M0–M6. **Longitudinal trajectories of differential bacterial taxa.** **Fig S5.**  
703 Longitudinal trajectory plots of CLR of differential *Endozoicomonas* microbes in Pcom. **Fungal**  
704 **community inspection.** **Fig. S6.** Taxa bar plots for the ITS1 data annotated at the Kingdom  
705 level. **Cross co-occurrence networks analysis.** **Fig. 6.** Cross co-occurrence networks of ASV  
706 bacteria phylotypes vs ITS2 type profiles with annotated taxonomy. **Genetic BLAST**  
707 **alignment of prevalent *Endozoicomonas*.**

708

709 S3. Núñez-Pons et alii S3 SupplementaryStatsTables: Alpha diversity statistics for 16s  
710 **rRNA gene data.** **Table S4A.** Shannon by coral species. **Table S4B.** Shannon by coral species  
711 and bleaching susceptibility. **Table S4C.** Shannon by coral species, bleaching susceptibility and  
712 time point. **Table S4D.** Observed phylotypes by coral species. **Table S4E.** Observed phylotypes  
713 by coral species and bleaching susceptibility. **Table S4F.** Observed phylotypes by coral species,  
714 bleaching susceptibility and time point. **Table S4G.** Pielou's Evenness by coral species. **Table**  
715 **S4H.** Pielou's Evenness by coral species and bleaching susceptibility. **Table S4I.** Pielou's  
716 Evenness by coral species, bleaching susceptibility and time point. **Beta diversity statistics for**  
717 **16s rRNA gene data.** **Table. 5A:** DEICODE beta diversity across coral species and TimePoint.

718 **Table. 5B:** Bray Curtis beta diversity across coral species and TimePoint. **Table. 5C:** Jaccard  
719 beta diversity across coral species and TimePoint. **Table 6A:** DEICODE by bleaching  
720 susceptibility across time points. **Table 6B:** Bray Curtis by bleaching susceptibility across time  
721 points. **Table 6C:** Jaccard by bleaching susceptibility across time points. **Table 7A:** Beta  
722 diversity comparisons based on DEICODE between bleaching susceptible coral phenotypes.  
723 **Table 7B:** Beta diversity comparisons based on Bray Curtis between bleaching susceptible  
724 coral phenotypes. **Table 7C:** Beta diversity comparisons based on Jaccard between bleaching  
725 susceptible coral phenotypes. **Beta diversity statistics for ITS2 data.** **Table 9A:** DEICODE  
726 beta diversity for ITS2 profiles across species and by Bleaching susceptibility. **Table 9B:** Bray  
727 Curtis beta diversity for ITS2 profiles across species and by Bleaching susceptibility. **Table 9C:**  
728 Jaccard beta diversity for ITS2 profiles across species and by Bleaching susceptibility. **Table**  
729 **10A:** DEICODE beta diversity comparisons of differential ITS2 DIVs sequences across coral  
730 species and by Bleaching susceptibility. **Table 10B:** Bray Curtis beta diversity comparisons of  
731 differential ITS2 DIVs sequences across coral species and by Bleaching susceptibility. **Table**  
732 **10C:** Jaccard beta diversity comparisons of differential ITS2 DIVs sequences across coral  
733 species and by Bleaching susceptibility. **Table 11A:** Beta diversity comparisons based on  
734 DEICODE distances on differential ITS2 DIVs sequences by bleaching susceptibility across  
735 time points. **Table 11B:** Beta diversity comparisons based on Bray Curtis distances on  
736 differential ITS2 DIVs sequences by bleaching susceptibility across time points. **Table 11C:**  
737 Beta diversity comparisons based on Jaccard distances on differential ITS2 DIVs sequences by  
738 bleaching susceptibility across time points. **Table 12A.** Beta diversity comparisons based on  
739 DEICODE distances for differential ITS2 DIVs sequences by bleaching susceptibility and time  
740 point. **Table 12B.** Beta diversity comparisons based on Bray Curtis distances for differential  
741 ITS2 DIVs sequences by bleaching susceptibility and time point. **Table 12C.** Beta diversity  
742 comparisons based on Jaccard distances for differential ITS2 DIVs sequences by bleaching  
743 susceptibility and time point.

744

745 S4. Núñez-Pons et alii S4\_SupplementaryDiffAbundTables16S: Table S8A. Differential  
746 bacterial taxa for Mcap\_B across all time points. **Table S8b.** Differential bacterial taxa for  
747 Mcap\_NB across all time points. **Table S8C.** Differential bacterial taxa for Pcom\_B across all  
748 time points. **Table S8D.** Differential bacterial taxa for Pcom\_NB across all time points. **Table**  
749 **S8E.** Differential bacterial taxa for Pacu\_B across all time points. **Table S8F.** Differential  
750 bacterial taxa Mcap B and NB by time points M0–M12. **Table S8G.** Differential bacterial taxa  
751 Pcom B and NB by time points M0–M12.

752

753 S5. Núñez-Pons et alii S5\_SupplementaryDiffAbundTablesITS2: Table S13A. Differential  
754 ITS2 sequence DIVs for Mcap across all time points. **Table S13B.** Differential ITS2 sequence  
755 DIVs for Pcom across all time points. **Table S13C.** Differential ITS2 sequence DIVs for Pacu  
756 across all time points. **Table S13D.** Differential ITS2 sequence DIVs for Mcap B and NB in  
757 time points M0–M6. **Table S13E.** Differential ITS2 sequence DIVs for Pcom B and NB in time  
758 points M0–M6.

759

#### 760 **CRediT authorship contribution statement**

761 **Laura Núñez-Pons:** Conceptualization; Data curation; Formal analysis; Funding acquisition;  
762 Investigation; Methodology; Project administration; Resources; Software; Supervision;  
763 Validation; Visualization; Writing - original draft. **Ross Cunning:** Methodology; Validation;  
764 Visualization; Writing - review & editing. **Craig Nelson:** Conceptualization; Data curation;  
765 Methodology; Resources; Supervision. **Anthony Amend:** Conceptualization; Methodology;  
766 Resources; Validation. **Emilia M. Sogin:** Methodology; Validation. **Ruth Gates:**  
767 Conceptualization; Funding acquisition; Project administration; Resources. **Raphael Ritson-**  
768 **Williams:** Conceptualization; Investigation; Methodology; Project administration; Resources;  
769 Supervision; Writing - review & editing.

770

#### 771 **Declaration of competing interest**

772 The authors have no conflicts of interest to declare.

773

774 **Acknowledgements**

775 Thanks are due to C. Wall, L. Benz, K. Barrot, for fieldwork assistance; L. Orlando and  
776 D. Pons Romaní for logistics and support, V. Mazzella and L. Pfingsten for formatting handout.  
777 We are thankful to A. Eggers and M. Mizobe from the sequencing facility at the Core Lab in  
778 HIMB. Experiment.com all-or-nothing crowdfunding platform (<https://experiment.com>)  
779 allowed to obtain part of the funding for sequencing related costs, and we acknowledge all the  
780 trustful project backers and supporters (project: <https://experiment.com/projects/stayin-alive-how-do-microbes-help-corals-recover-from-bleaching?s=search>).  
781

782

783 **Author information**

784 **Authors and affiliations**

785 <sup>1</sup> *Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa  
786 Comunale, 80121 Napoli, Italy.*

787 <sup>2</sup> *NBFC, National Biodiversity Future Center, Palermo 90133, Italy*

788       Laura Núñez-Pons: laura.nunezpons@szn.it

789 <sup>3</sup> *Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200  
790 South Lake Shore Drive, Chicago, IL 60605, USA.*

791       Ross Cunning: rcunning@shedd aquarium.org

792 <sup>4</sup> *Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, USA.*

793       Craig Nelson: craig.nelson@hawaii.edu

794 <sup>5</sup> *Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI 96822,  
795 USA.*

796       Anthony Amend: amend@hawaii.edu

797 <sup>6</sup> *Molecular and Cell Biology, University of California Merced, Merced, CA, USA.*

798       Emilia M. Sogin: esogin@ucmerced.edu

799 <sup>7</sup> *Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, HI, USA.*

800       Ruth Gates: rgates@hawaii.edu

801 <sup>8</sup> College of Arts and Sciences, The Heart of Santa Clara University, Vari Hall 500 El Camino  
802 Real Santa Clara, CA 95053, USA.

803 Raphael Ritson-Williams: rritson-williams@calacademy.org

804

805 **Corresponding author**

806 Correspondence to Laura Núñez-Pons: laura.nunezpons@szn.it.

807

808 **Data availability**

809 Sequencing data and associated metadata are available at National Center for  
810 Biotechnology Information (NCBI, Genbank) under BioProject PRJNA791513 for 16S rRNA  
811 gene, BioProject PRJNA794040 for ITS1, and BioProject PRJNA794042 for ITS2 data. Other  
812 data will be made available by contacting the corresponding author.

813

814 **References**

815 Ainsworth T, Gates R. Corals' microbial sentinels. *Science*. 2016;352:1518–19. doi:  
816 [d10.1126/science.aad9957](https://doi.org/10.1126/science.aad9957).

817 Ainsworth T, Krause L, Bridge T, Raina JB, Zakrzewski M, Gates RD et al. The coral core  
818 microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. *ISME J*.  
819 2015;9:2261–74. doi: [10.1038/ismej.2015.39](https://doi.org/10.1038/ismej.2015.39).

820 Ainsworth TD, Renzi JJ, Silliman BR. Positive interactions in the coral macro and microbiome.  
821 *Trends Microbiol*. 2020;28(8):602–4. doi: [10.1016/j.tim.2020.02.009](https://doi.org/10.1016/j.tim.2020.02.009).

822 Aitchison J. The statistical analysis of compositional data. *J. R. Stat. Soc. Ser. B Methodol*.  
823 1982;44(2):139–60. doi: [10.1111/j.2517-6161.1982.tb01195.x](https://doi.org/10.1111/j.2517-6161.1982.tb01195.x).

824 Amend A, Barshis D, Oliver T. Coral-associated marine fungi form novel lineages and  
825 heterogeneous assemblages. *ISME J*. 2012;6:1291–301. doi: [10.1038/ismej.2011.193](https://doi.org/10.1038/ismej.2011.193)

826 Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene  
827 primer greatly increases detection of SAR11 bacterioplankton. *Aquat. Microb. Ecol.*  
828 2015;75(2):129–37. doi: 10.3354/ame01753.

829 Arai T, Nishijima M, Adachi K, Sano H. Isolation and structure of UV absorbing substance  
830 from the marine bacterium *Micrococcus* sp. AK-334. *MBI Report. Marine Biotechnology*  
831 Institute, Tokyo, Japan; 1992; p 88–94.

832 Aronson RB, Hilbun NL, Bianchi TS, Filley TR, McKee BA. Land use, water quality, and the  
833 history of coral assemblages at Bocas del Toro, Panamá. *Mar. Ecol. Prog. Ser.*  
834 2014;504:159–70. doi: 10.3354/meps10765.

835 Bahr KD, Jokiel PL, Toonen RJ. The unnatural history of Kāne'ohe Bay: coral reef resilience in  
836 the face of centuries of anthropogenic impacts. *PeerJ.* 2015;3:e950. doi: 10.7717/peerj.950.

837 Baird AH, Bhagooli R, Ralph PJ, Takahashi S. Coral bleaching: the role of the host. *Trends*  
838 *Ecol. Evol.* 2009;24:16–20. doi: 10.1016/j.tree.2008.09.005.

839 Baker AC. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and  
840 biogeography of *Symbiodinium*. *Annu. Rev. Ecol. Evol. Syst.* 2003;34:661–89. doi:  
841 10.1146/annurev.ecolsys.34.011802.132417

842 Baker AC. Reef corals bleach to survive change. *Nature.* 2001;411:765–6. doi:  
843 10.1038/35081151.

844 Bednarz VN, Grover R, Maguer J-F, Fine M, Ferrier-Pagès C. The assimilation of diazotroph-  
845 derived nitrogen by scleractinian corals depends on their metabolic status. *MBio.*  
846 2017;8:e02058–e02016. doi:10.1128/mBio.02058-16.

847 Bell ME, Bernard KA, Harrington SM, Patel NB, Tucker T-A, Metcalfe M G, et al. *Lawsonella*  
848 *clevelandensis* gen. nov., sp. nov., a new member of the suborder Corynebacterineae  
849 isolated from human abscesses. *Int. J. Syst. Evol. Microbiol.* 2016;66:2929–35. doi:  
850 10.1099/ijsem.0.001122.

851 Berkelmans R, van Oppen MJH. The role of zooxanthellae in the thermal tolerance of corals: a  
852 ‘nugget of hope’ for coral reefs in an era of climate change. *Proc. R. Soc. B.*  
853 2006;273:2305–12. doi: 10.1098/rspb.2006.3567.

854 Beurmann S, Ushijima B, Videau P, Svoboda CM, Chatterjee A, Aeby GS et al. Dynamics of  
855 acute *Montipora* white syndrome: bacterial communities of healthy and diseased *M.*  
856 *capitata* colonies during and after a disease outbreak. *Microbiology* (Reading, Engl.).  
857 2018;164(10):1240-53. doi: 10.1099/mic.0.000699.

858 Boilard A, Dubé CE, Gruet C, Mercière A, Hernandez-Agreda A, Derome N. Defining coral  
859 bleaching as a microbial dysbiosis within the coral holobiont. *Microorganisms*.  
860 2020;8(11):1682. doi:10.3390/microorganisms8111682.

861 Bokulich NA, Dillon M, Bolyen E, Kaehler BD, Huttley GA, Caporaso JG. q2-sample-  
862 classifier: machine-learning tools for microbiome classification and regression. *J. Open*  
863 *Source Softw.* 2018;3:934. doi: 10.21105/joss.00934.

864 Bokulich NA, Dillon MR, Zhang Y, Rideout R, Bolyen E, Li H, et al. q2-longitudinal:  
865 longitudinal and paired-sample analyses of microbiome data. *mSystems*. 2018;3:1–9. doi:  
866 10.1128/mSystems.00219-18.

867 Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing  
868 taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-  
869 classifier plugin. *Microbiome*. 2018;6:1–17. doi: 10.1186/s40168-018-0470-z.

870 Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Chase J, Cope EK, et al. Reproducible,  
871 interactive, scalable and extensible microbiome data science using QIIME 2. *Nat.*  
872 *Biotechnol.* 2019;37:852–7. doi: 10.1038/s41587-019-0209-9.

873 Bourne DG, Morrow KM, Webster NS. Insights into the coral microbiome: underpinning the  
874 health and resilience of reef ecosystems. *Annu. Rev. Microbiol.* 2016;70:317–40. doi:  
875 10.1146/annurev-micro-102215-095440.

876 Bourne DG, Munn CB. Diversity of bacteria associated with the coral *Pocillopora damicornis*  
877 from the Great Barrier Reef. *Environ. Microbiol.* 2005;7(8):1162–74. doi: 10.1111/j.1462-  
878 2920.2005.00793.x.

879 Brener-Raffalli K, Clerissi C, Vidal-Dupiol J, Adjeroud M, Bonhomme F, Pratlong M et al.  
880 Thermal regime and host clade, rather than geography, drive *Symbiodinium* and bacterial

881 assemblages in the scleractinian coral *Pocillopora damicornis* sensu lato. *Microbiome*.  
882 2018;6:39. doi: 10.1186/s40168-018-0423-6.

883 Brown BE, Dunne RP, Ambarsari I, LeTissier MDA, Satapoomin U. Seasonal fluctuations in  
884 environmental factors and variations in symbiotic algae and chlorophyll pigments in four  
885 Indo-Pacific coral species. *Mar. Ecol. Prog. Ser.* 1999;191:53–69. doi:  
886 10.3354/meps191053.

887 Cai L, Tian RM, Zhou G, Tong H, Wong YH, Zhang W et al. Exploring coral microbiome  
888 assemblages in the South China Sea. *Sci. Rep.* 2018;8:2428. doi:10.1038/s41598-018-  
889 20515-w.

890 Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High  
891 resolution sample inference from amplicon data. *Nat. Methods*. 2016;13:581–3. doi:  
892 10.1038/nmeth.3869.

893 Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-  
894 throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.  
895 *ISME J.* 2012;6:1621–24. doi: 10.1038/ismej.2012.8.

896 Cardini U, Bednarz VN, Naumann MS, van Hoytema N, Rix Z, Foster RA et al. Functional  
897 significance of dinitrogen fixation in sustaining coral productivity under oligotrophic  
898 conditions. *Proc. Biol. Sci.* 2015;282:2257. doi: 10.1098/rspb.2015.2257.

899 Conti-Jerpe IE, Thompson PD, Wong CWM, Oliveira NL, Duprey NN, Moynihan MA et al.  
900 Trophic strategy and bleaching resistance in reef-building corals. *Sci. Adv.*  
901 2020;10:6(15):eaaz5443. doi: 10.1126/sciadv.aaz5443.

902 Cunning R, Ritson-Williams R, Gates RD. Patterns of bleaching and recovery of *Montipora*  
903 *capitata* in Kāne‘ohe Bay, Hawai‘i, USA. *Mar. Ecol. Prog. Ser.* 2016;551:131–9. doi:  
904 10.3354/meps11733.

905 Cunning R, Silverstein RN, Baker AC. Investigating the causes and consequences of symbiont  
906 shuffling in a multi-partner reef coral symbiosis under environmental change. *Proc. R. Soc.*  
907 B. 2015;282:20141725. doi: 10.1098/rspb.2014.1725.

908 D'Angelo C, Hume B, Burt J, Smith EG, Achterberg EP, Wiedenmann J. Local adaptation  
909 constrains the distribution potential of heat-tolerant *Symbiodinium* from the Persian/Arabian  
910 Gulf. *ISME J.* 2015;9:2551–60. doi: 10.1038/ismej.2015.80.

911 Dobson KL, Ferrier-Pagès C, Saup CM, Grottoli AG. The effects of temperature, light, and  
912 feeding on the physiology of *Pocillopora damicornis*, *Stylophora pistillata*, and *Turbinaria*  
913 *reniformis* corals. *Water.* 2021;13(15):2048. doi: 10.3390/w13152048.

914 Douglas AE. Coral bleaching—how and why? *Mar. Pollut. Bull.* 2003;46:385–92. doi:  
915 10.1016/S0025-326X(03)00037-7.

916 Edmunds PJ. Evidence that reef-wide patterns of coral bleaching may be the result of the  
917 distribution of bleaching- susceptible clones. *Mar. Biol.* 1994;121:137–42. doi:  
918 10.1007/BF00349482

919 Epstein HE, Torda G, van Oppen MJ. Relative stability of the *Pocillopora acuta* microbiome  
920 throughout a thermal stress event. *Coral Reefs.* 2019;38:373–86. doi: 10.1007/s00338-019-  
921 01783-y.

922 Falkowski PG, Dubinsky Z, Muscatine L, Porter JW. Light and the bioenergetics of a symbiotic  
923 coral. *Bioscience.* 1984;34:705–9. doi: 10.2307/1309663.

924 Fedarko MW, Martino C, Morton JT, González A, Rahman G, Marotz CA, et al. Visualizing  
925 'omic feature rankings and log-ratios using Qurro. *NAR genom. bioinform.* 2020;2:1–7.  
926 doi: 10.1093/nargab/lqaa023.

927 Fisher PL, Malme MK, Dove S. The effect of temperature stress on coral–*Symbiodinium*  
928 associations containing distinct symbiont types. *Coral Reefs.* 2012;31:473–485. doi:  
929 10.1007/s00338-011-0853-0.

930 Fitt WK, Brown BE, Warner ME, Dunne RP. Coral bleaching: interpretation of thermal  
931 tolerance limits and thermal thresholds in tropical corals. *Coral Reefs.* 2001;20:51–65. doi:  
932 10.1007/s003380100146.

933 Franklin EC, Stat M, Pochon X, Putnam HM, Gates RD. GeoSymbio: a hybrid, cloud-based  
934 web application of global geospatial bioinformatics and ecoinformatics for *Symbiodinium*-

935 host symbioses. *Mol. Ecol. Resour.* 2012;12:369–373. doi: 10.1111/j.1755-  
936 0998.2011.03081.x.

937 Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes--application to  
938 the identification of mycorrhizae and rusts. *Mol. Ecol.* 1993;2(2):113–8. doi:  
939 10.1111/j.1365-294x.1993.tb00005.x.

940 Gardner SG, Camp EF, Smith DJ, Kahlke T, Osman EO, Gendron G. et al. Coral microbiome  
941 diversity reflects mass coral bleaching susceptibility during the 2016 El Niño heat wave.  
942 *Ecol. Evol.* 2019;9(3):938–56. doi: 10.1002/ECE3.4662.

943 Glasl B, Webster NS, Bourne DG. Microbial indicators as a diagnostic tool for assessing water  
944 quality and climate stress in coral reef ecosystems. *Mar. Biol.* 2017;164:1–18. doi:  
945 10.1007/s00227-017-3097-x.

946 Glynn PW, Mate-T JL, Baker AC, Calderón MO. Coral bleaching and mortality in Panamá and  
947 Ecuador during the 1997-1998 El Niño southern oscillation event: spatial/temporal patterns  
948 and comparisons with the 1982-1983 event. *Bull. Mar. Sci.* 2001;69 (1):79–109.

949 Grottoli A, Rodrigues L, Palardy J. Heterotrophic plasticity and resilience in bleached corals.  
950 *Nature.* 2006;440:1186–9. doi: 10.1038/nature04565

951 Grottoli AG, Warner ME, Levas SJ, Aschaffenburg MD. The cumulative impact of annual coral  
952 bleaching can turn some coral species winners into losers. *Glob. Change Biol.*  
953 2014;20:3823–33. doi: 10.1111/gcb.12658.

954 Hernandez-Agreda A, Gates RD, Ainsworth TD. Defining the core microbiome in corals'  
955 microbial soup. *Trends Microbiol.* 2017;25(2):125-40. doi: 10.1016/j.tim.2016.11.003.

956 Hernandez-Agreda A, Leggat W, Bongaerts P, Herrera C, Ainsworth TD. Rethinking the coral  
957 microbiome: simplicity exists within a diverse microbial biosphere. *mBio.*  
958 2018;9(5):e00812-18. doi: 10.1128/mBio.00812-18.

959 Howells EJ, Bauman AG, Vaughan GO, Hume BCC, Voolstra CR, Burt JA. Corals in the  
960 hottest reefs in the world exhibit symbiont fidelity not flexibility. *Mol. Ecol.* 2020;29: 899–  
961 911. doi: 10.1111/mec.15372.

962 Huggett MJ, Apprill A. Coral microbiome database: integration of sequences reveals high  
963 diversity and relatedness of coral-associated microbes. *Environ. Microbiol. Rep.*  
964 2019;11:372–85. doi: 10.1111/1758-2229.12686.

965 Hughes AD, Grottoli AG. Heterotrophic compensation: a possible mechanism for resilience of  
966 coral reefs to global warming or a sign of prolonged stress? *PLoS One.* 2013;8(11):e81172.  
967 doi: 10.1371/journal.pone.0081172.

968 Hume B, D'Angelo C, Smith E, Stevens JR, Burt J, Wiedenmann J. *Symbiodinium*  
969 *thermophilum* sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's  
970 hottest sea, the Persian/Arabian Gulf. *Sci. Rep.* 2015;5:8562. doi: 10.1038/srep08562.

971 Hume BC, Mejia-Restrepo A, Voolstra CR, Berumen ML. Fine-scale delineation of  
972 Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system  
973 demonstrates a prevalence of coral host-specific associations. *Coral Reefs.* 2020;39:583–  
974 601. doi: 10.1007/s00338-020-01917-7.

975 Hume BCC, Smith EG, Ziegler M, Warrington M, Burt JA, LaJeunesse TC et al. SymPortal: A  
976 novel analytical framework and platform for coral algal symbiont next-generation  
977 sequencing ITS2 profiling. *Mol. Ecol. Resour.* 2019;9:1063–80. doi: 10.1111/1755-  
978 0998.13004.

979 Innis T, Cunning R, Ritson-Williams R, Wall CB, Gates RD. Coral color and depth drive  
980 symbiosis ecology of *Montipora capitata* in Kāne`ohe Bay, O`ahu, Hawai`i. *Coral Reefs.*  
981 2018;37(2):423–30. doi:10.1007/s00338-018-1667-0.

982 Jokiel PL. Temperature stress and coral bleaching. In: Rosenberg E, Loya Y, eds. *Coral health*  
983 and disease. Heidelberg: Springer-Verlag 2004;401–25.

984 Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index  
985 sequencing strategy and curation pipeline for analyzing amplicon sequence data on the  
986 MiSeq Illumina sequencing platform. *Appl. Environ. Microbiol.* 2013;79:5112–20. doi:  
987 10.1128/AEM.01043-13.

988 LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR et al.  
989 Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral  
990 Endosymbionts. *Curr. Biol.* 2018;28(16):2570–80.e6. doi: 10.1016/j.cub.2018.07.008.

991 LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW. High diversity and  
992 host specificity observed among symbiotic dinoflagellates in reef coral communities from  
993 Hawaii. *Coral Reefs.* 2004;23:596–603. doi: 10.1007/S00338-004-0428-4.

994 LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW. High diversity and  
995 host specificity observed among symbiotic dinoflagellates in reef coral communities from  
996 Hawaii. *Coral Reefs.* 2004;23:596–603. doi: 10.1007/S00338-004-0428-4.

997 Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ. Biology of *Pseudomonas*  
998 *stutzeri*. *Microbiol. Mol. Biol. Rev.* 2006;70(2):510–547. doi:10.1128/MMBR.00047-05.

999 Lesser MP, Falcon LI, Rodriguez-Roman A, Enriquez S, Hoegh-Guldberg O, Iglesias-Prieto R.  
1000 Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the  
1001 scleractinian coral *Montastraea cavernosa*. *Mar. Ecol. Prog. Ser.* 2007;346:143–52. doi:  
1002 10.3354/meps07008.

1003 Li J, Long L, Zou Y, Zhang S. Microbial community and transcriptional responses to increased  
1004 temperatures in coral *Pocillopora damicornis* holobiont. *Environ. Microbiol.*  
1005 2021;23(2):826–43. doi: 10.1111/1462-2920.15168.

1006 Littman R, Willis BL, Bourne DG. Metagenomic analysis of the coral holobiont during a  
1007 natural bleaching event on the Great Barrier Reef. *Environ. Microbiol. Rep.* 2011;3(6):651–  
1008 60. doi: 10.1111/j.1758-2229.2010.00234.x.

1009 Lyndby NH, Holm JB, Wangpraseurt D, Grover R, Rottier C, Kuhl M et al. Effect of  
1010 temperature and feeding on carbon budgets and O<sub>2</sub> dynamics in *Pocillopora damicornis*.  
1011 *Mar. Ecol. Prog. Ser.* 2020;652:49–62. doi: 10.3354/meps13474.

1012 Martino C, Morton J, Marotz C, Thompson L, Tripathi A, Knight R et al. A novel sparse  
1013 compositional technique reveals microbial perturbations. *mSystems.* 2019;4:1–13. doi:  
1014 10.1128/mSystems.00016-19.

1015 Matsuda S, Huffmyer A, Lenz E, Davidson J, Hancock J, Przybylowski et al. Coral Bleaching  
1016 Susceptibility Is Predictive of Subsequent Mortality Within but Not Between Coral Species.  
1017 Front. Ecol. Evol. 2020;8. doi: 10.3389/fevo.2020.00178.

1018 Matsuda S. The effects of ocean warming on coral symbioses: algal symbiosis establishment,  
1019 bleaching and recovery. Doctoral dissertation. University of Hawai'i (USA)2021;pp234.  
1020 [https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/431a138a-d7ba-4f10-  
1021 bef0-7c6aa938a4cd/content.](https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/431a138a-d7ba-4f10-bef0-7c6aa938a4cd/content.)

1022 McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber R. Responses of coral-associated  
1023 abcterial communities to local and global stressors. Front. Mar. Sci. 2017;4. doi:  
1024 10.3389/fmars.2017.00262.

1025 McGee KM, Eaton WD, Shokralla S, Hajibabaei M. Determinants of soil bacterial and fungal  
1026 community composition toward carbon-use efficiency across primary and secondary forests  
1027 in a costa rican conservation area. Microb. Ecol. 2019;77(1):148–67. doi: 10.1007/s00248-  
1028 018-1206-0.

1029 McGinley MP, Aschaffenburg MD, Pettay DT, Smith RT, LaJeunesse TC, Warner ME.  
1030 *Symbiodinium* spp. in colonies of eastern Pacific *Pocillopora* spp. are highly stable despite  
1031 the prevalence of low-abundance background populations. Mar. Ecol. Prog. Ser.  
1032 2012;462:1–7. doi: 10.3354/meps09914.

1033 Meunier V, Bonnet S, Pernice M, Benavides M, Lorrain A, Gross O et al. Bleaching forces  
1034 coral's heterotrophy on diazotrophs and *Synechococcus*. ISME J. 2019;13:2882–6. doi:  
1035 10.1038/s41396-019-0456-2.

1036 Morton JT, Marotz C, Washburne A, Silverman J, Zaramela LS, Edlund A, et al. Establishing  
1037 microbial composition measurement standards with reference frames. Nat. Commun.  
1038 2019;10:1–11. doi: 10.1038/s41467-019-10656-5.

1039 Neave MJ, Michell CT, Apprill A, Voolstra CR. *Endozoicomonas* genomes reveal functional  
1040 adaptation and plasticity in bacterial strains symbiotically associated with diverse marine  
1041 hosts. Sci. Rep. 2017;7:40579. doi: 10.1038/srep40579.

1042 Neave, MJ, Apprill A, Ferrier-Pagès C, Voolstra CR. Diversity and function of prevalent  
1043 symbiotic marine bacteria in the genus *Endozoicomonas*. *Appl. Microbiol. Biotechnol.*  
1044 2016;100:8315–24. doi: 10.1007/s00253-016-7777-0.

1045 O'Dea, A, Lepore M, Altieri AH, Chan M, Morales-Saldaña JM, Muñoz NH et al. Defining  
1046 variation in pre-human ecosystems can guide conservation: An example from a Caribbean  
1047 coral reef. *Sci. Rep.* 2020;10:2922. doi: 10.1038/s41598-020-59436-y.

1048 Olson ND, Ainsworth TD, Gates RD, Takabayashi M. Diazotrophic bacteria associated with  
1049 Hawaiian *Montipora* corals: diversity and abundance in correlation with symbiotic  
1050 dinoflagellates. *J. Exp. Mar. Biol. Ecol.* 2009;371:140–6. doi: 10.1016/j.jembe.2009.01.012.

1051 Osman EO, Suggett DJ, Voolstra CR, Pettay DT, Clark DR, Pogoreutz C et al. Coral  
1052 microbiome composition along the northern Red Sea suggests high plasticity of bacterial  
1053 and specificity of endosymbiotic dinoflagellate communities. *Microbiome.* 2020;8:1–16.  
1054 doi: 10.1186/s40168-019-0776-5.

1055 Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA  
1056 primers for marine microbiomes with mock communities, time series and global field  
1057 samples. *Environ. Microbiol.* 2016;18(5):1403–14. doi: 10.1111/1462-2920.13023.

1058 Pauvert C, Buée M, Laval V, Edel-Hermann V, Fauchery L, Gautier A, et al. Bioinformatics  
1059 matters: The accuracy of plant and soil fungal community data is highly dependent on the  
1060 metabarcoding pipeline. *Fungal Ecol.* 2019;41:23–33. doi: 10.1016/j.funeco.2019.03.005.

1061 Peixoto RS, Rosado PM, Leite DCA, Rosado AS, Bourne DG. Beneficial microorganisms for  
1062 corals (BMC): proposed mechanisms for coral health and resilience. *Front. Microbiol.*  
1063 2017;8:341. doi: 10.3389/fmicb.2017.00341.

1064 Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Dominance of  
1065 *Endozoicomonas* bacteria throughout coral bleaching and mortality suggests structural  
1066 inflexibility of the *Pocillopora verrucosa* microbiome. *Ecol. Evol.* 2018;8:2240–52. doi:  
1067 10.1002/ece3.3830.

1068 Putnam HM, Gates RD. Preconditioning in the reef building coral *Pocillopora damicornis* and  
1069 the potential for trans-generational acclimatization in coral larvae under future climate  
1070 change conditions. *J. Exp. Biol.* 2015;218:2365–72. doi 10.1242/jeb.123018.

1071 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA  
1072 gene database project: improved data processing and web-based tools. *Nucleic Acids Res.*  
1073 2013;41:590–6. doi: 10.1093/nar/gks1219.

1074 R Core Team. R: a language and environment for statistical computing. *R Found. Stat. Comput.*  
1075 2014. <http://www.r-project.org>.

1076 Raina JB, Dinsdale EA, Willis BL, Bourne DG. Do the organic sulfur compounds DMSP and  
1077 DMS drive coral microbial associations? *Trends Microbiol.* 2010;18(3):101–8. doi:  
1078 10.1016/j.tim.2009.12.002.

1079 Ravindran J, Kannapiran E, Manikandan B, Francis K, Shruti A, Karunya E et al. UV-absorbing  
1080 bacteria in coral mucus and their response to simulated temperature elevations. *Coral Reefs.*  
1081 2013;32:1043–50. doi: 10.1007/s00338-013-1053-x.

1082 Ritson-Williams R, Gates RD. Coral community resilience to successive years of bleaching in  
1083 Kāne‘ohe Bay, Hawai‘i. *Coral Reefs.* 2020;39. doi: 10.1007/s00338-020-01944-4.

1084 Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD. ITSxpress: software to rapidly trim  
1085 internally transcribed spacer sequences with quality scores for marker gene analysis.  
1086 *F1000Res.* 2018;7:1418. doi: 10.12688/f1000research.15704.1.

1087 Rouzé H, Lecellier G, Pochon X, Torda G, Berteaux-Lecellier V. Unique quantitative  
1088 Symbiodiniaceae signature of coral colonies revealed through spatio-temporal survey in  
1089 Moorea. *Sci. Rep.* 2019;9:7921. doi: 10.1038/s41598-019-44017-5.

1090 Rowan R, Knowlton N, Baker A, Jara J. Landscape ecology of algal symbionts creates variation  
1091 in episodes of coral bleaching. *Nature.* 1997;388:265–9. doi: 10.1038/40843.

1092 Rowan R, Powers DA. A molecular genetic classification of zooxanthellae and the evolution of  
1093 animal-algal symbioses. *Science.* 1991;15:251(4999):1348–51. doi:  
1094 10.1126/science.251.4999.1348.

1095 Salerno JL, Reineman DR, Gates RD, Rappé MS. The effect of a sublethal temperature  
1096 elevation on the structure of bacterial communities associated with the coral *Porites*  
1097 *compressa*. *J. Mar. Biol.* 2010;2011:1–9. doi: 10.1155/2011/969173.

1098 Sampayo EM, Ridgway TM, Bongaerts P, Hoegh-Guldberg O. Bleaching susceptibility and  
1099 mortality of corals are determined by fine-scale differences in symbiont type. *Proc. Nat.*  
1100 *Acad. Sci.* 2008;105:10444–9. doi: 10.1073/pnas.0708049105.

1101 Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS, et al. Climate  
1102 change affects key nitrogen-fixing bacterial populations on coral reefs. *ISME J.*  
1103 2008;8:2272–9. doi: 10.1038/ismej.2014.70.

1104 Shaffer M. SCNIC: sparse cooccurrence network investigation for compositional data. 2020.  
1105 <https://github.com/shafferm/SCNIC>.

1106 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al. Cytoscape: a software  
1107 environment for integrated models of biomolecular interaction networks *Genome Res.*  
1108 2003;13(11):2498–504. doi: 10.1101/gr.1239303.

1109 Shore-Maggio A, Runyon CM, Ushijima B, Aeby GS, Callahan SM. Differences in bacterial  
1110 community structure in two color morphs of the Hawaiian reef coral *Montipora capitata*.  
1111 *Appl. Environ. Microbiol.* 2015;81:7312–8. doi: 10.1128/AEM.01935-15.

1112 Silverstein RN, Cunning R, Baker AC. Change in algal symbiont communities after bleaching  
1113 not prior heat exposure, increases heat tolerance of reef corals. *Glob. Change Biol.*  
1114 2015;21:236–49. doi: 10.1111/gcb.12706.

1115 Sinha RP, Klisch M, Helbling EW, Hader DP. Induction of mycosporine—like amino acids  
1116 (MAAs) in cyanobacteria by solar ultraviolet-B radiation. *J. Photochem. Photobiol. B.*  
1117 2001;60:129–35. doi: 10.1016/s1011-1344(01)00137-3.

1118 Smith H, Epstein H, Torda G. The molecular basis of differential morphology and bleaching  
1119 thresholds in two morphs of the coral *Pocillopora acuta*. *Sci. Rep.* 2017;7:1–12. doi:  
1120 10.1038/s41598-017-10560-2.

1121 Speck M, Donachie SP. Widespread Oceanospirillaceae Bacteria in *Porites* spp. *J. Mar. Biol.*  
1122 2012;1–7. doi:10.1155/2012/746720.

1123 Stat M, Loh WKW, LaJeunesse TC, Hoegh-Guldberg O, Carter DA. Stability of coral–  
1124 endosymbiont associations during and after a thermal stress event in the southern Great  
1125 Barrier Reef. *Coral Reefs*. 2009;28:709–713. doi: 10.1007/s00338-009-0509-5.

1126 Stat M, Pochon X, Franklin EC, Bruno JF, Casey KS, Selig ER et al. The distribution of the  
1127 thermally tolerant symbiont lineage (*Symbiodinium* clade D) in corals from Hawaii:  
1128 correlations with host and the history of ocean thermal stress. *Ecol. Evol.* 2013;3(5):1317–  
1129 29. doi:10.1002/ece3.556

1130 Tout J, Siboni N, Messer LF, et al. Increased seawater temperature increases the abundance and  
1131 alters the structure of natural *Vibrio* populations associated with the coral *Pocillopora*  
1132 *damicornis*. *Front. Microbiol.* 2015;6:432 doi: 10.3389/fmicb.2015.00432.

1133 Turnham KE, Wham DC, Sampayo E, LaJeunesse TC. Mutualistic microalgae co-diversify with  
1134 reef corals that acquire symbionts during egg development. *ISME J.* 2021;15(11):3271–85.  
1135 doi: 10.1038/s41396-021-01007-8.

1136 Van Oppen MJH, Medina M. Coral evolutionary responses to microbial symbioses. *Philos.*  
1137 *Trans. R. Soc. Lond. B.* 2020;375:20190591. doi: 10.1098/rstb.2019.0591.

1138 Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F et al.  
1139 Metagenomic analysis of stressed coral holobionts. *Environ. Microbiol.* 2009;11(8):2148–  
1140 63. doi: 10.1111/j.1462-2920.2009.01935.x.

1141 Wall C, Ritson-Williams R, Popp B, Gates R. Spatial variation in the biochemical and isotopic  
1142 composition of corals during bleaching and recovery. *Limnol. Oceanogr.* 2019;64(5):2011–  
1143 28. doi: 10.1002/lno.11166.

1144 Wham DC, Ning G, LaJeunesse TC. Data from: *Symbiodinium glynnii* sp. nov., a species of  
1145 stress-tolerant symbiotic dinoflagellates from pocilloporid and montiporid corals in the  
1146 Pacific Ocean, Dryad, Dataset 2017. doi: 10.5061/dryad.mg363.

1147 Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “all-  
1148 species Living Tree Project (LTP)” taxonomic frameworks. *Nucleic Acids Res.*  
1149 2014;42:643–8. doi: 10.1093/nar/gkt1209.

1150 Zhou G, Tong H, Cai L, Huang H. Transgenerational effects on the coral *Pocillopora*  
1151 *damicornis* microbiome under ocean acidification. *Microb. Ecol.* 2021;82(3):572–80. doi:  
1152 10.1007/s00248-021-01690-2.

1153 Ziegler M, Grupstra CG, Barreto MM, Eaton M, BaOmar J, Zubier K et al. Coral bacterial  
1154 community structure responds to environmental change in a host-specific manner. *Nat.*  
1155 *Commun.* 2019;10:3092. doi: 10.1038/s41467-019-10969-5.

1156 Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R et al. Coral microbial  
1157 community dynamics in response to anthropogenic impacts near a major city in the central  
1158 Red Sea. *Mar. Pollut. Bull.* 2016;105:629–40. doi: 10.1016/j.marpolbul.2015.12.045.

1159 Ziegler M, Seneca F, Yum L, Garren M, Stocker R, Webster NS et al. Bacterial community  
1160 dynamics are linked to patterns of coral heat tolerance. *Nat. Commun.* 2017;8:14213. doi:  
1161 10.1038/ncomms14213.

1162

1163 **Figure legends**

1164 **Fig. 1.** Map of Kane'ohe (O'ahu) in the Hawai'ian archipelago. Experimental coral sampling  
1165 scheme from tagged corals in the field, where 1.5 cm fragments were collected for each colony  
1166 in all sample groups (n = 10): Mcap\_B, Mcap\_NB, Pcom\_B, Pcom\_NB, and Pacu \_B on five  
1167 occasions during the recovery after the first beaching event: M0: Oct 2014; M1: Nov 2014; M3:  
1168 Jan 2015, M6: May 2015, M12: Sept 2015. Species: Mcap: *Montipora capitata*, Pcom:s *Porites*  
1169 *compressa*, Pacu: *Pocillopora acuta*. Bleaching susceptibility: B: susceptible colonies; NB:  
1170 resistant colonies.

1171

1172 **Fig. 2.** Prokaryotic composition at the genus level (> 0.1 % detection) for the three coral  
1173 species. Bars are collapsed by species, month after bleaching event and bleaching susceptibility  
1174 phenotypes; and grouped for species and bleaching susceptibility. Species: Mcap: *Montipora*  
1175 *capitata*, Pcom:s *Porites compressa*, Pacu: *Pocillopora acuta*. Bleaching susceptibility: B:  
1176 susceptible colonies; NB: resistant colonies. Month after bleaching event: M0: Oct 2014; M1:  
1177 Nov 2014; M3: Jan 2015, M6: May 2015, M12: Aug 2015 (Table S1).

1178

1179 **Fig. 3.** Volatility of the log-ratios of the microbial/bacterial balance representing the differential  
1180 taxa across time for the three coral species, by bleaching susceptibility phenotypes.  
1181 **A)** *Montipora capitata*; **B)** *Pocillopora acuta*; and **C)** *Porites compressa* corals. Numerator  
1182 and denominator taxa forming each balance are shown in each plot grouped at the genus level,  
1183 or the next lowest taxonomic annotation. \*Represents time points with significant dissimilarities  
1184 between B and NB colonies (Welch tests p < 0.05). §Indicates significant divergence on log-  
1185 ratio longitudinally over time (LME; P>[z] < 0.05). **D)** Trajectory plots over time of  
1186 differentially abundant bacterial taxa at the ASV level for the three coral species, by bleaching  
1187 susceptibility phenotypes. Taxa are named by the lowest taxonomical annotation. Double  
1188 dashed lines represent selected numerator taxa, while single dashed lines represent denominator  
1189 taxa within each coral subset. Mcap: *Montipora capitata*, Pcom *Porites compressa*,  
1190 Pacu: *Pocillopora acuta*; NB: Bleaching resistant colonies, B: Bleaching susceptible colonies;

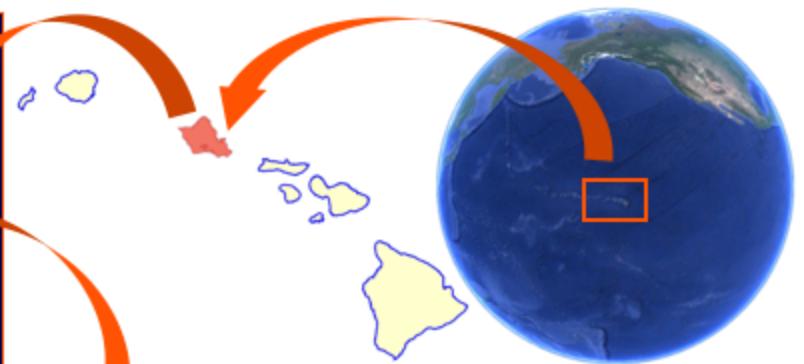
1191 Months after the bleaching event: M0: Oct 2014; M1: Nov 2014; M3: Jan 2015, M6: May 2015,  
1192 M12: Sept 2015.

1193

1194 **Fig. 4.** Symbiodiniaceae community composition of the three coral species across time points –  
1195 0 (M0), 1 (M1), 3 (M3) and 6 (M6) months after the bleaching event, and bleaching  
1196 susceptibility phenotypes –Bleaching susceptible (B) and resistant (NB) colonies. Each column  
1197 represents a coral fragment/sample at each collection point. Microalgal IDs are depicted by the  
1198 relative abundance of ITS2 sequences (> 3 % detection) plotted in the upper bars, and predicted  
1199 ITS2 profiles plotted in the bars below (normalized to 1). **A)** *Montipora capitata* (Mcap); **B)**  
1200 *Porites compressa* (Pcom) ; **C)** *Pocillopora acuta* (Pacu).

1201

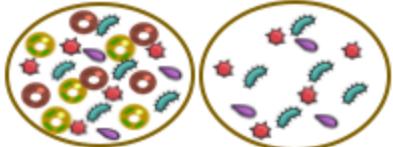
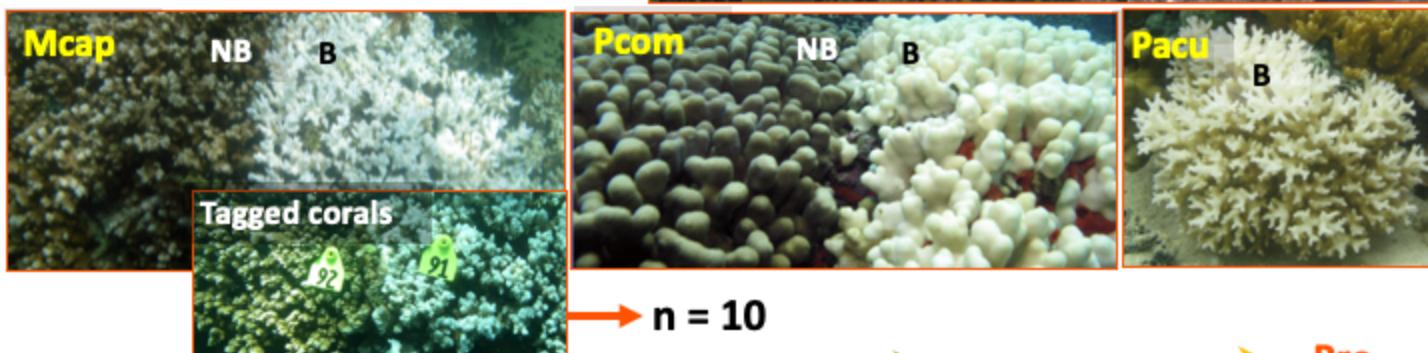
1202 **Fig. 5.** Volatility of the log-ratios of the balance formed by the ITS2 sequences representing the  
1203 top differential phylotypes in two coral species by bleaching susceptibility phenotypes across  
1204 time. **A)** *Montipora capitata*: The balance included 23 top ranked numerator DIVs comprising  
1205 some C31, C17 and C21 and other C DIVs; and 23 top ranked denominator DIVs, formed by  
1206 D4, D1, D6, D1ab and D3h, and a few C17 and C21 among other C DIVs. **B)** *Porites*  
1207 *compressa*: In the balance 12 top ranked numerator DIVs included C3 and other C DIVs; and  
1208 the 12 top ranked denominator DIVs comprised several C15 and other C DIVs. \*Represents  
1209 time points with significant dissimilarities between B and NB colonies (Welch tests  $p < 0.05$ ).


1210 RPCA compositional biplot based on Aitchison distances (DEICODE) of the  
1211 total Symbiodiniaceae ITS2 sequences from coral fragments belonging to two species at four  
1212 time points –0 (M0), 1 (M1), 3 (M3) and 6 (M6) months after the bleaching event. Samples  
1213 (circles) were distinguished by colour according to Bleaching susceptibility.

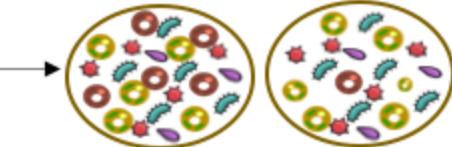
1214 **C)** *Montipora capitata* (Mcap) showed differences in B vs NB colonies at M0, M1 and M3. **D)**  
1215 *Porites compressa* (Pcom) revealed divergencies in B vs NB colonies only at t0  
1216 (PERMANOVA,  $p < 0.05$ ). Ten most relevant DIVs driving differences in the ordination space  
1217 are illustrated by the vectors in each plot.

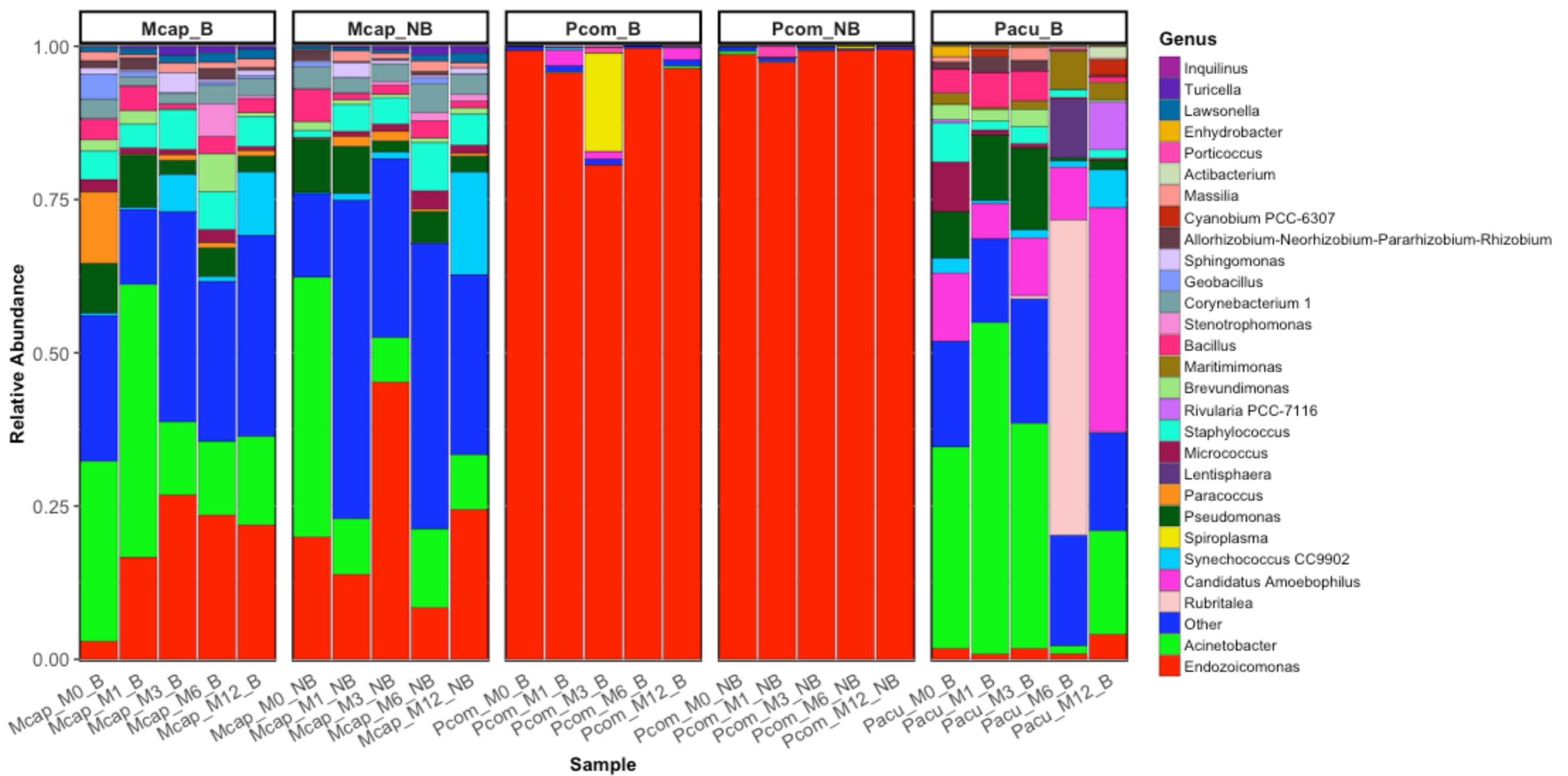

1218

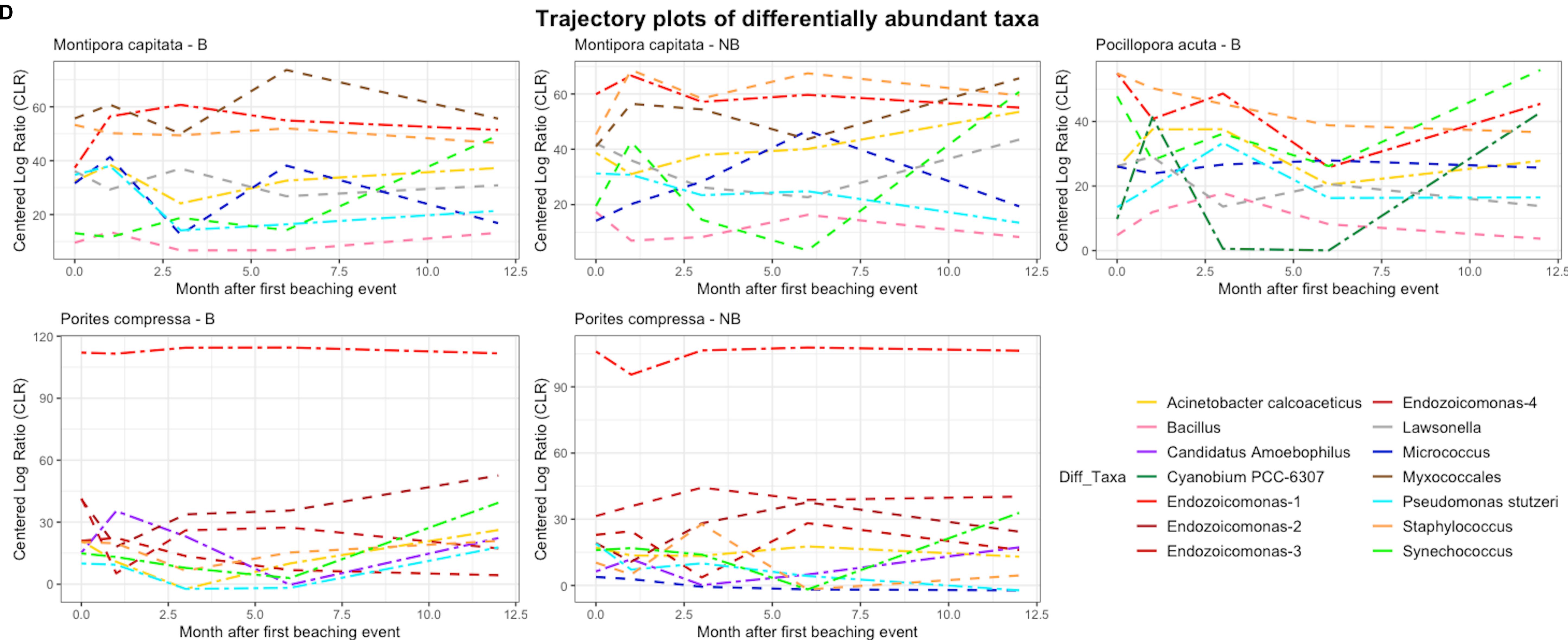
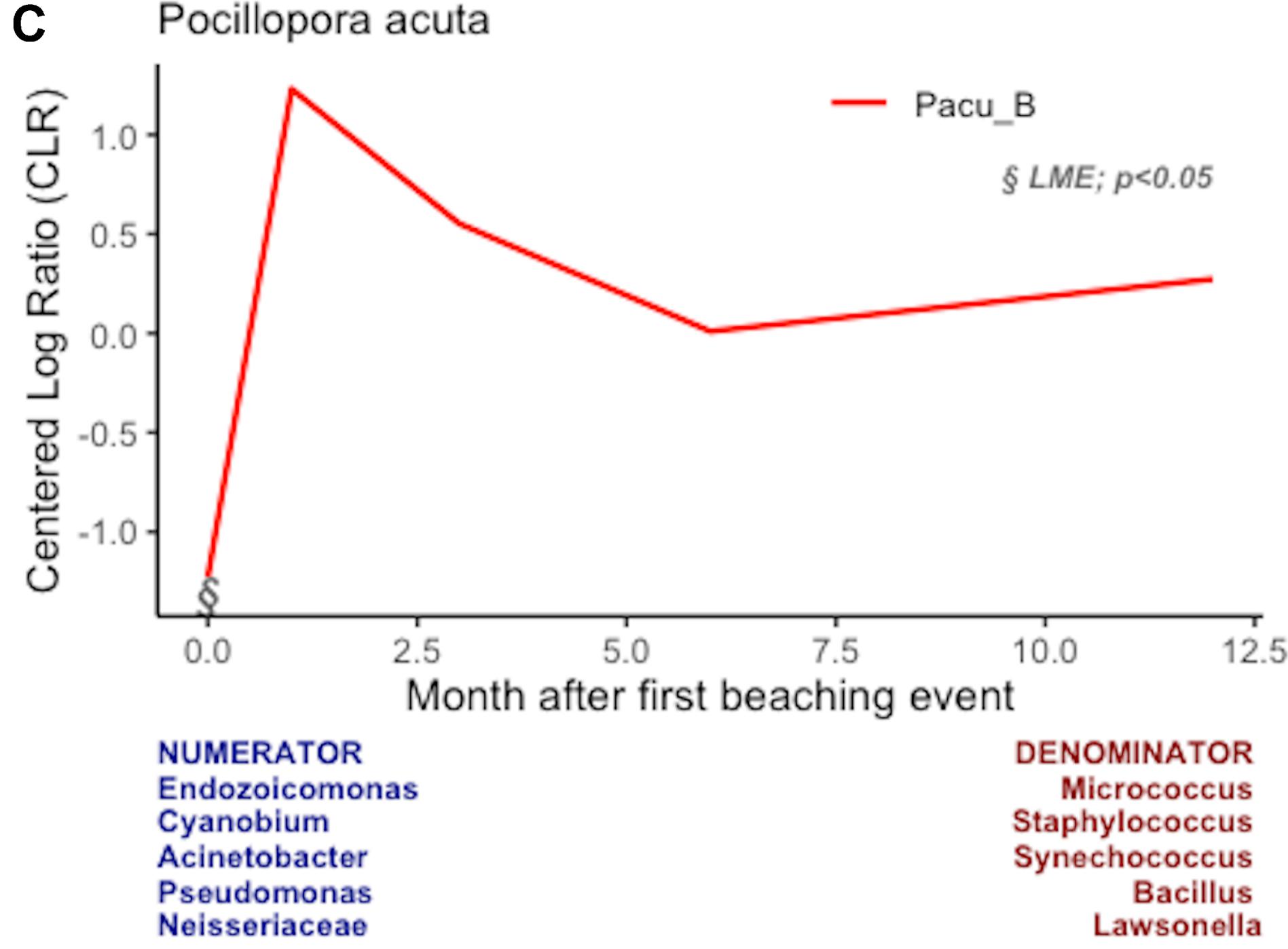
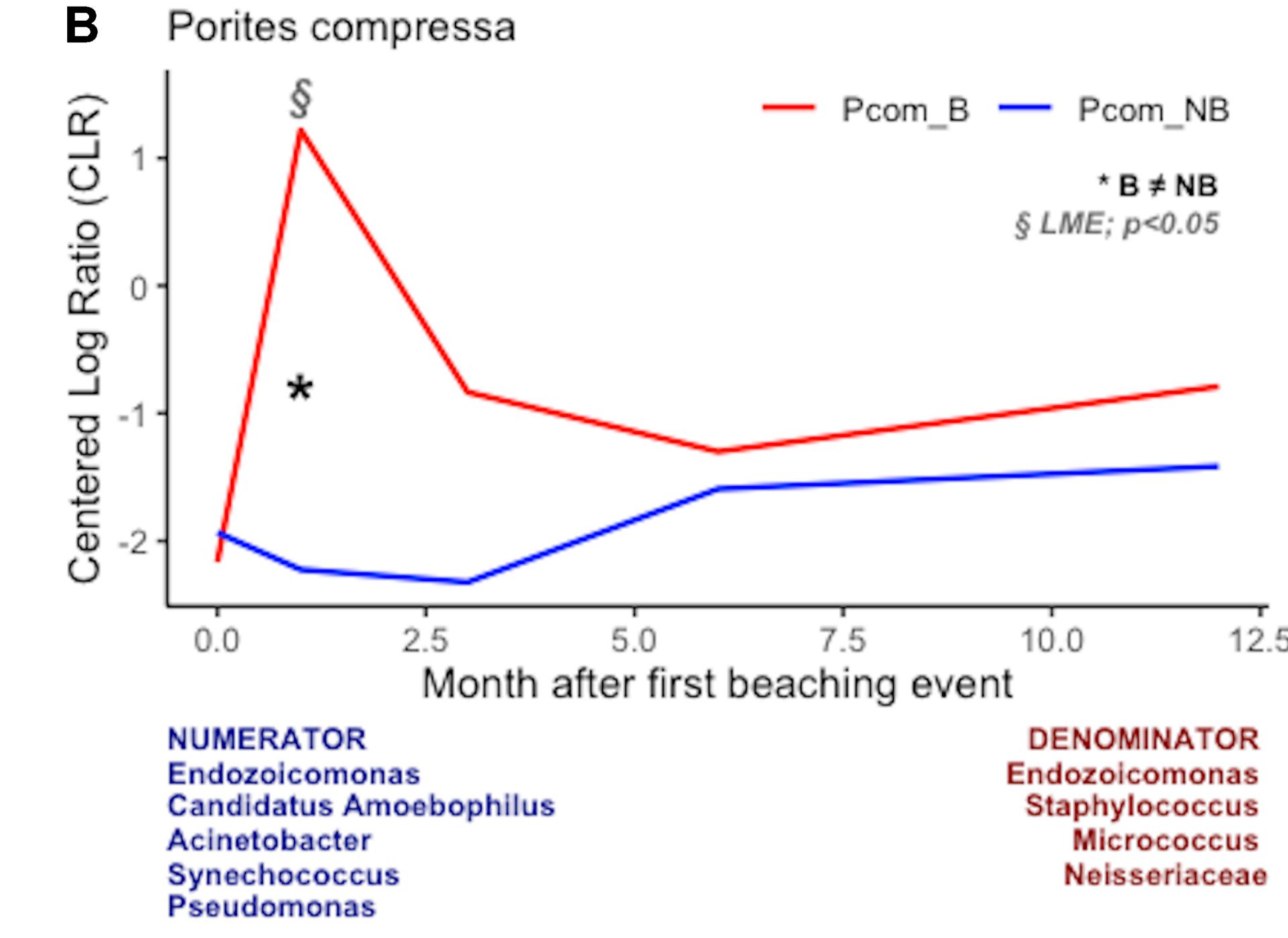
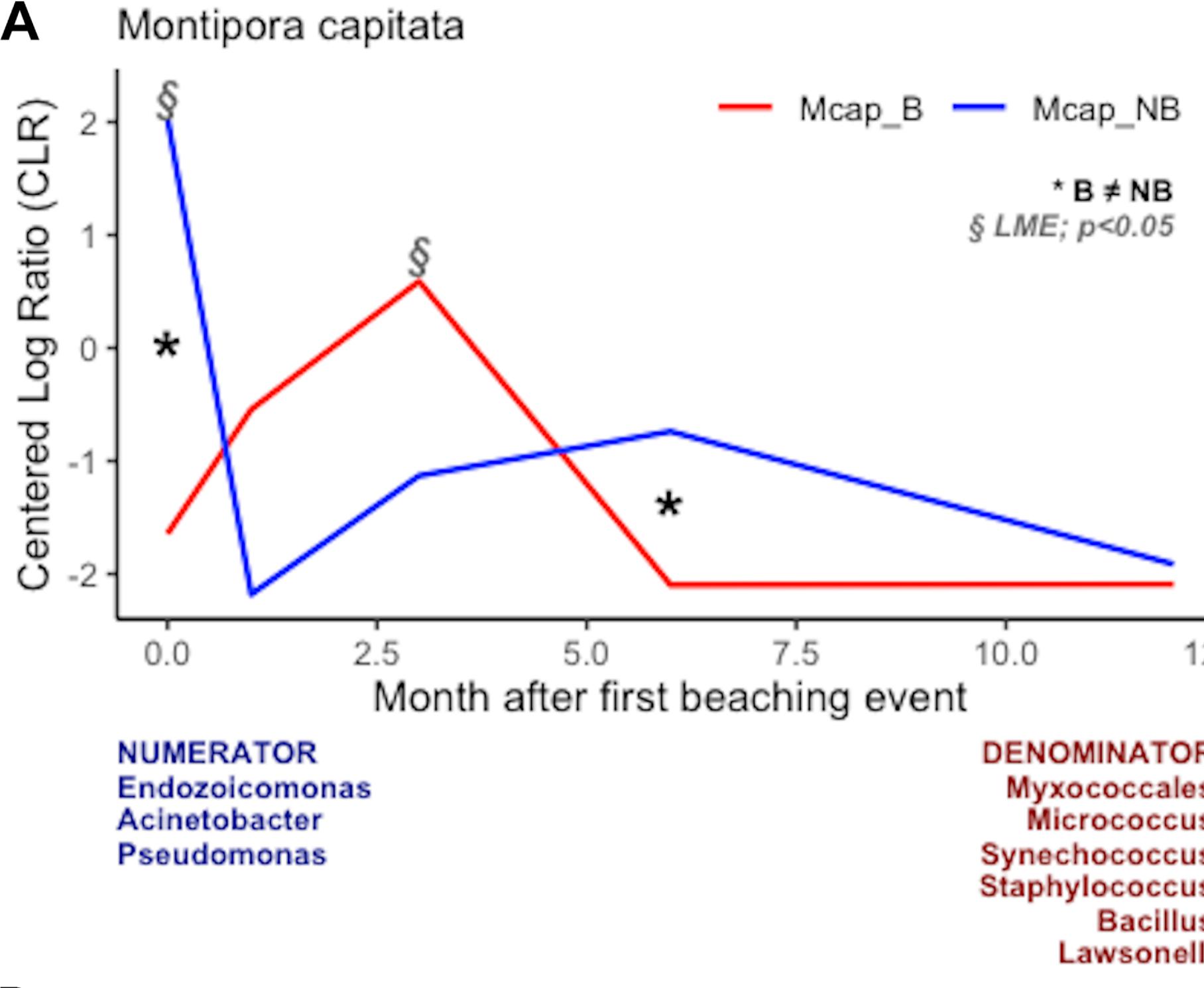
1219 **Fig. 6.** Cross co-occurrence networks of bacteria phylotypes at the ASV level vs ITS2 type  
1220 profiles built on SCNIC for the three coral species, by bleaching susceptibility phenotypes 0  
1221 (Oct 2014 –M0), 1 (Nov 2014 –M1), 3 (Jan 2015 –M3) and 6 (May 2015 –M6) months after the  
1222 bleaching event. Mcap: *Montipora capitata*, Pcom *Porites compressa*, Pacu: *Pocillopora acuta*;  
1223 B: Bleaching susceptible colonies, NB: Bleaching resistant colonies. In the networks bacterial  
1224 ASVs are represented by pink hexagons, Symbiodiniaceae type profiles of  
1225 the *Cladocopium* clade are green circles and *Durusdinium* are orange circles. Negative  
1226 interactions are depicted by red arrows and quantified as red numbers / positive interactions by  
1227 green arrows and green numbers.

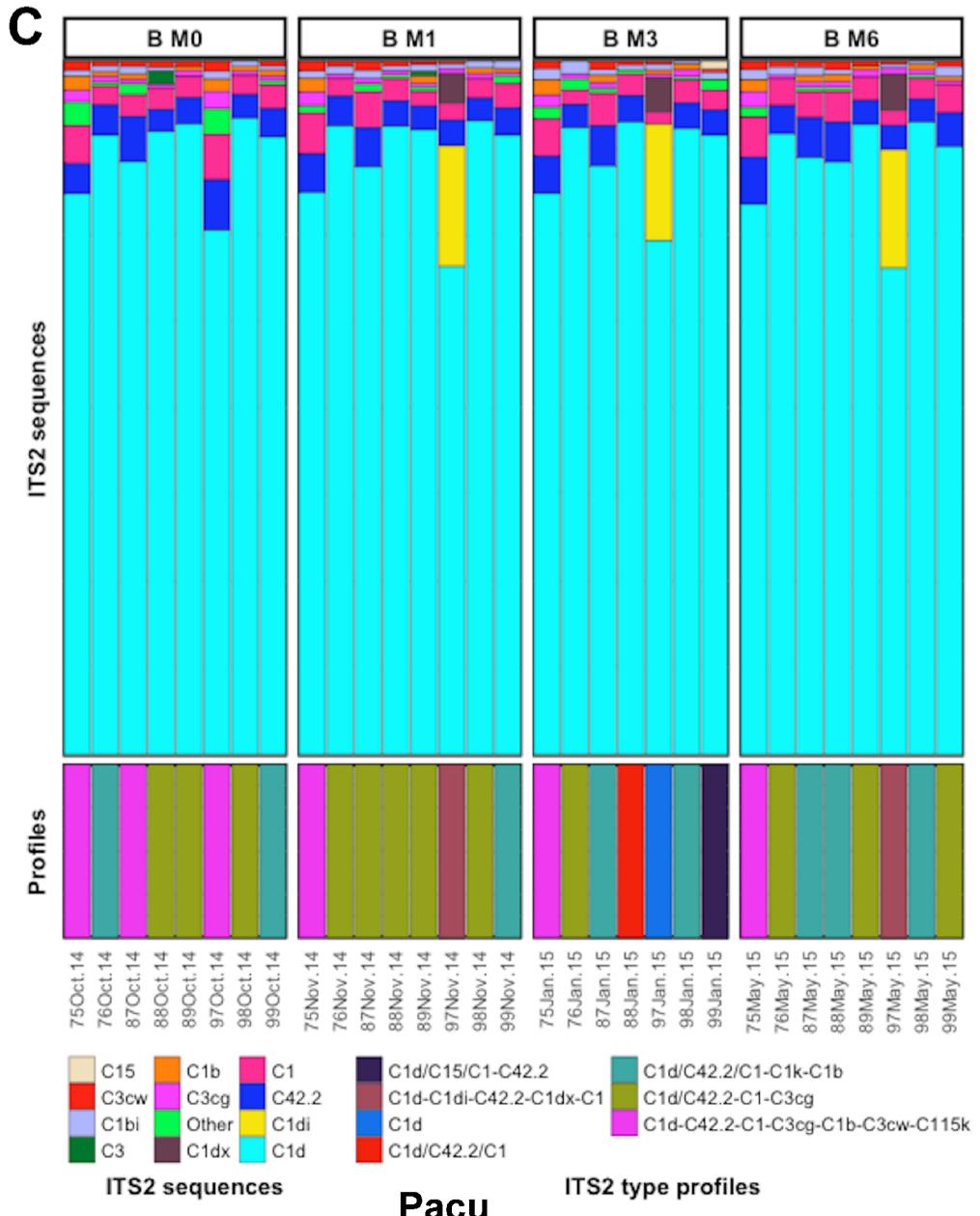
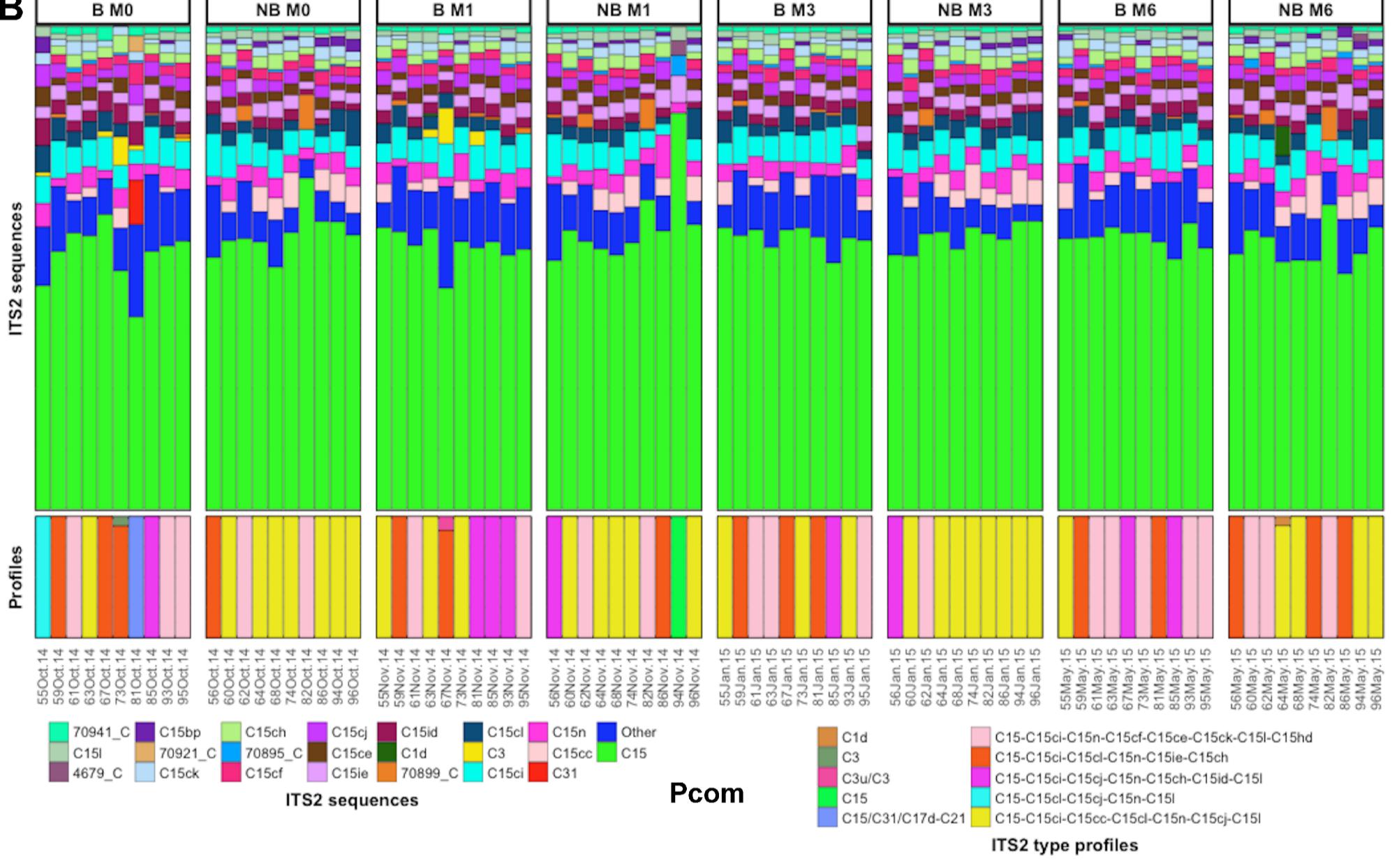
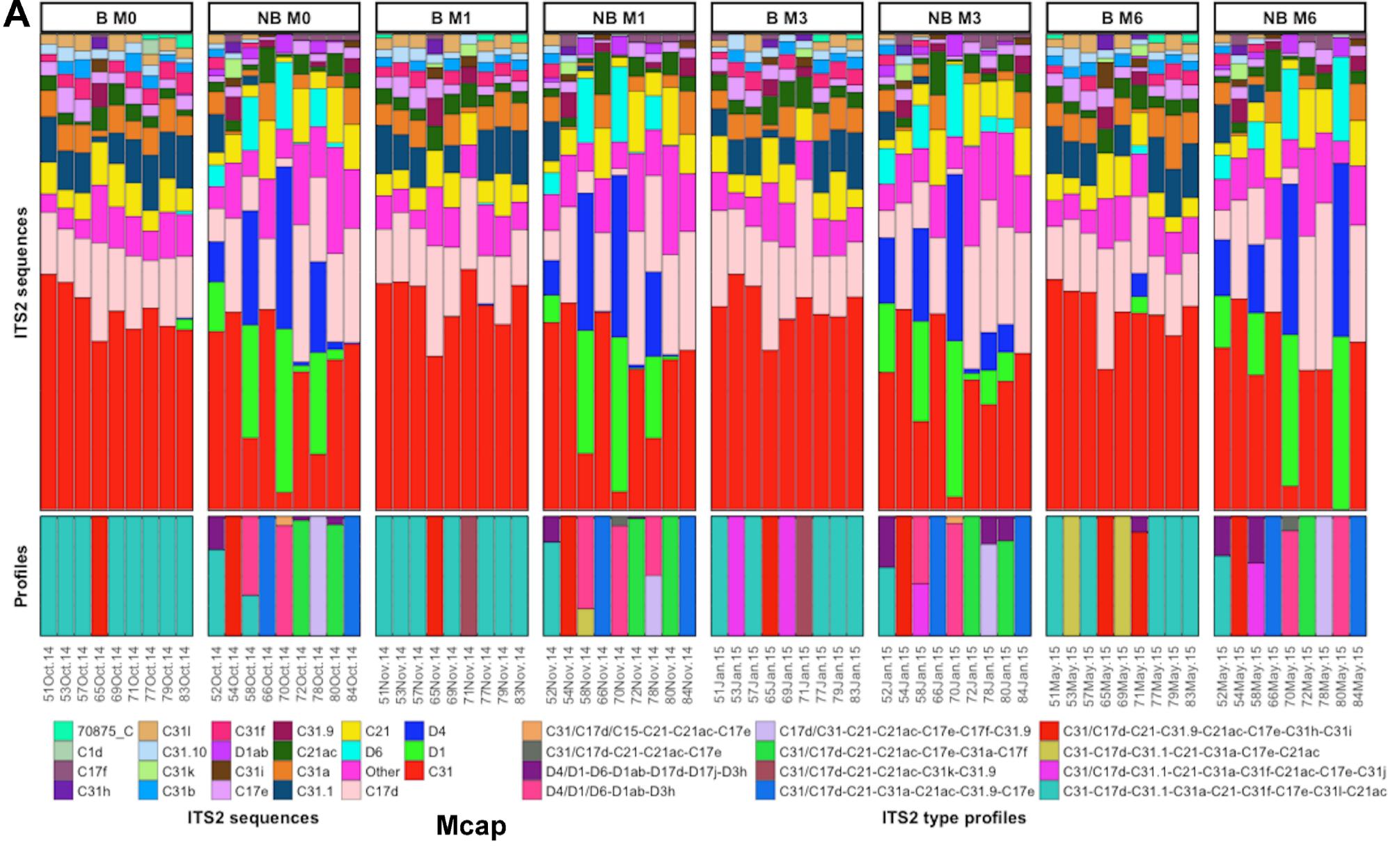


1228

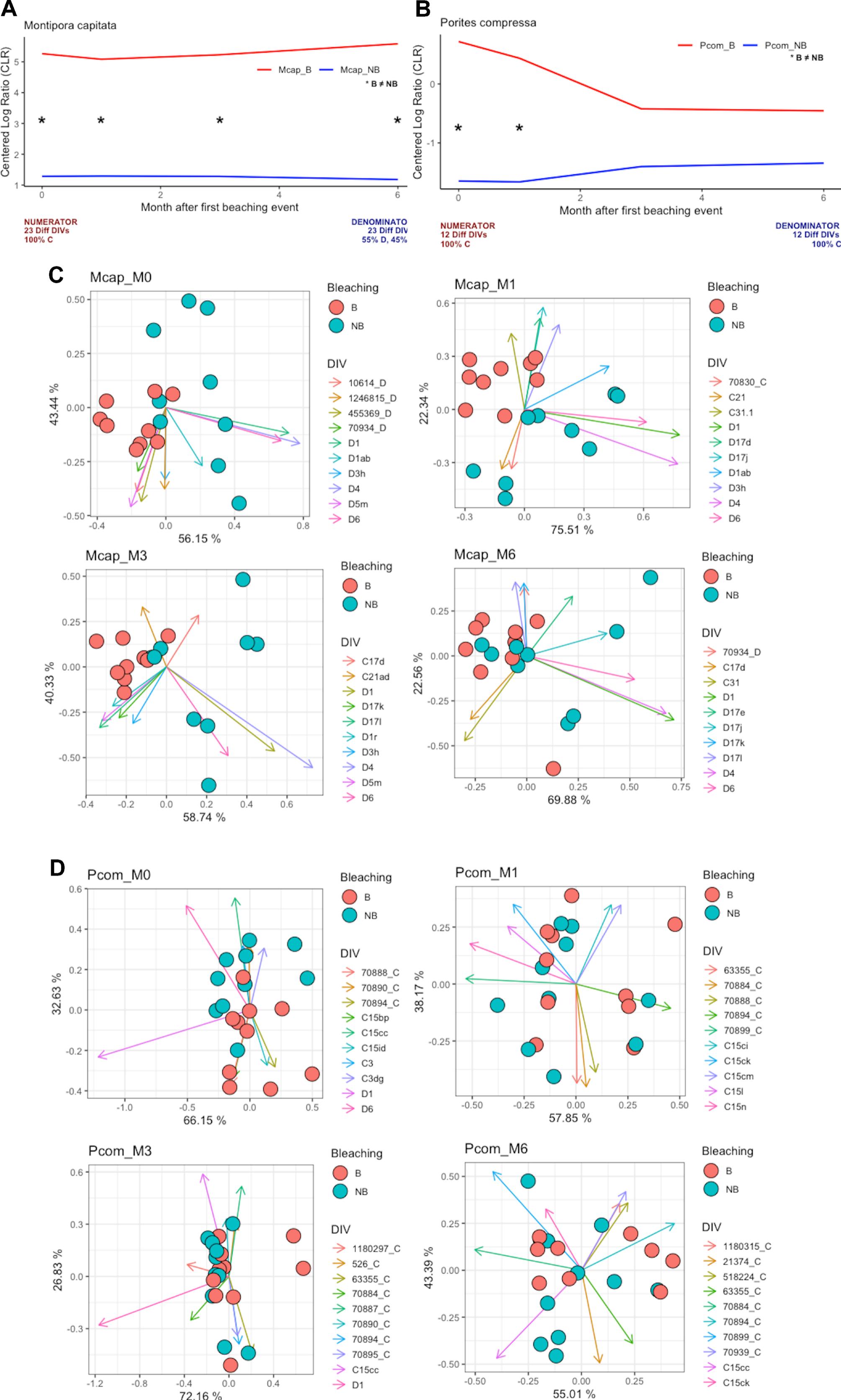


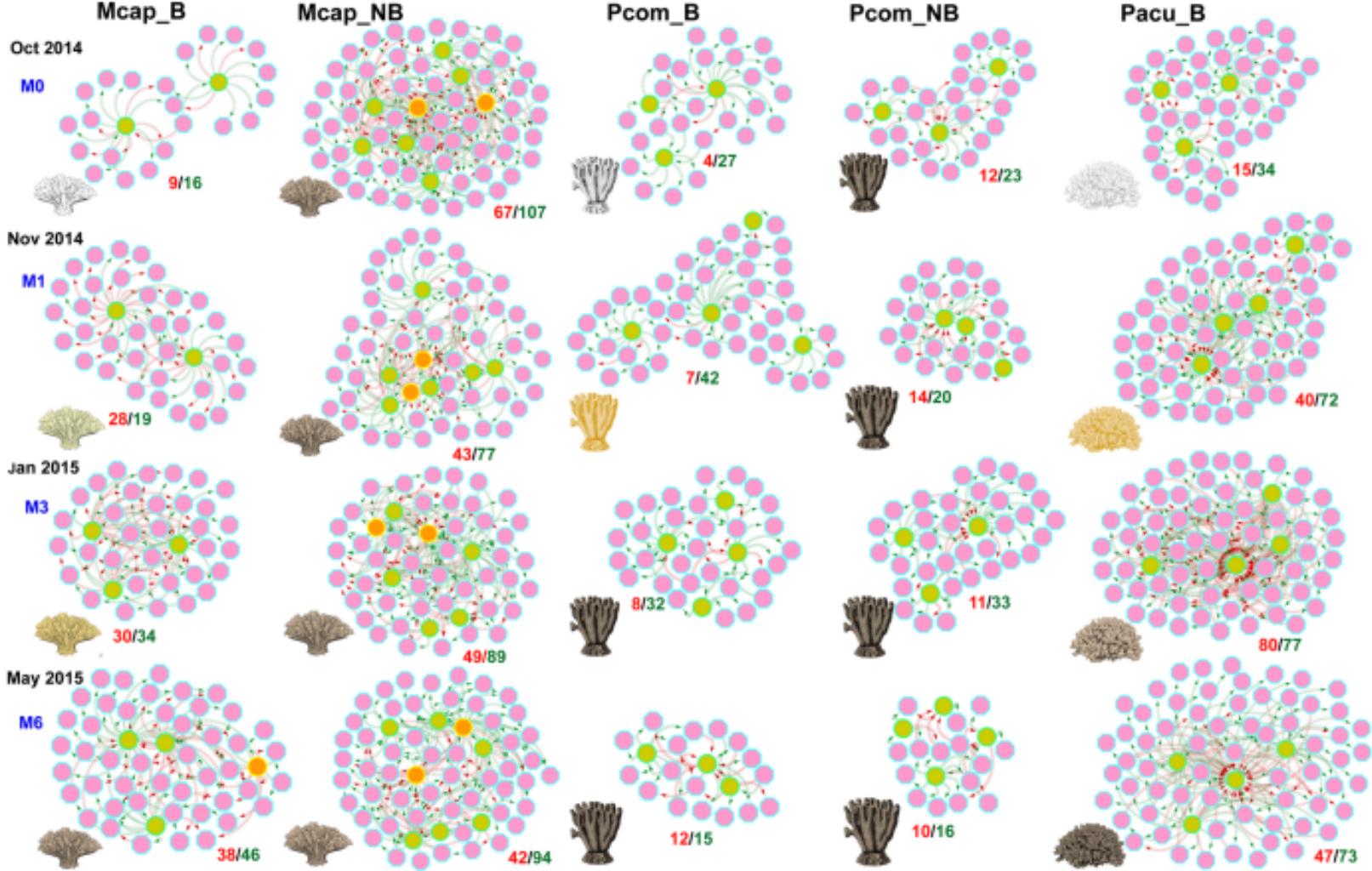

Kane'ohe Bay, Oahu  
(Hawai'i)








### Coral bleaching Oct 2014

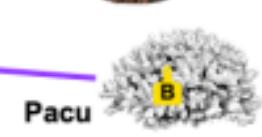
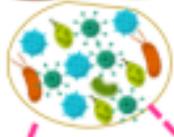
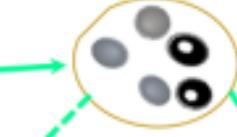
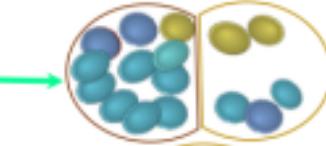
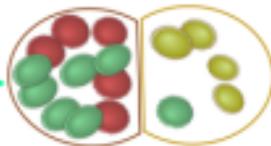
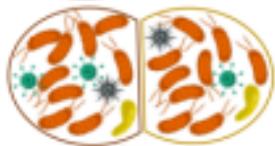
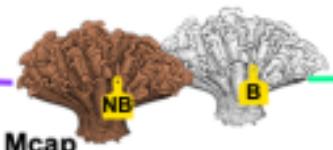


Coral  
microbiomes









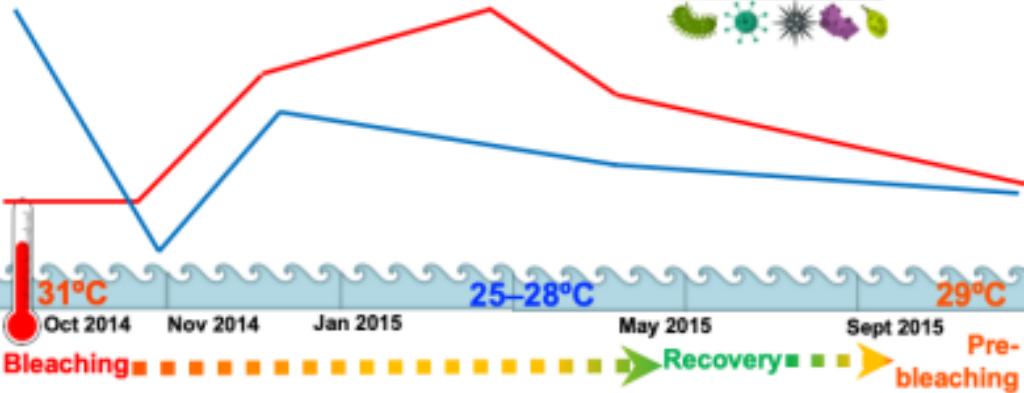












## Prokaryota

## Kane'ohe Bay, Oahu (Hawai'i)

## Symbiodiniaceae




Host  
specificity

Intraspecific  
variability

Bleaching  
susceptibility  
phenotypes

Common interspecific microbial consortia  
modulate thermal stress responses

