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Historically, Hawai’i had few massive coral bleaching events, until two consecutive heatwaves
in 2014-2015. Consequent mortality and thermal stress were observed in Kane’ohe Bay
(O’ahu). The two most dominant local species exhibited a phenotypic dichotomy of either
bleaching resistance or susceptibility (Montipora capitata and Porites compressa), while the
third predominant species (Pocillopora acuta) was broadly susceptible to bleaching. In order to
survey shifts in coral microbiomes during bleaching and recovery, 50 colonies were tagged and
periodically monitored. Metabarcoding of three genetic markers (16S rRNA gene ITS1 and
ITS2) followed by compositional approaches for community structure analysis, differential
abundance and correlations for longitudinal data were used to temporally compare
Bacteria/Archaea, Fungi and Symbiodiniaceae dynamics. P. compressa corals recovered faster
than P. acuta and Montipora capitata. Prokaryotic and algal communities were majorly shaped
by host species, and had no apparent pattern of temporal acclimatization. Symbiodiniaceae
signatures were identified at the colony scale, and were often related to bleaching susceptibility.
Bacterial compositions were practically constant between bleaching phenotypes, and more
diverse in P. acuta and M. capitata. P. compressa’s prokaryotic community was dominated by a
single bacterium. Compositional approaches (via microbial balances) allowed the identification
of fine-scale differences in the abundance of a consortium of microbes, driving changes by
bleaching susceptibility and time across all hosts. The three major coral reef founder-species in
Kane’ohe Bay revealed different phenotypic and microbiome responses after 2014-2015
heatwaves. It is difficult to forecast, a more successful strategy towards future scenarios of
global warming. Differentially abundant microbial taxa across time and/or bleaching
susceptibility were broadly shared among all hosts, suggesting that locally, the same microbes
may modulate stress responses in sympatric coral species. Our study highlights the potential of
investigating microbial balances to identify fine-scale microbiome changes, serving as local

diagnostic tools of coral reef fitness.
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1. Introduction

Microbial symbioses play critical roles in the ecology and evolution of corals
(Ainsworth et al., 2020; Bourne et al., 2016). The majority of research on microbial
communities in corals has focused on single celled dinoflagellates in the family
Symbiodiniaceae (zooxanthellae), since these symbionts play a large role in coral health and
nutrition (Baker, 2003; Sampayo et al., 2008; D’ Angelo, 2015). Less studied are the populations
of Bacteria, Archaea and even Fungi that associate with corals forming the coral holobiont
(Bourne et al., 2016). As seawater temperatures increase, coral bleaching is occurring more
frequently around the world, which is a stress-induced disruption of symbiosis between the host
and symbiotic algae, causing a “bleached” pale-to-white appearance of affected colonies
(Douglas 2003). Bleached corals, depleted of symbiotic algae (Fitt et al., 2001; Jokiel 2004;
Falkowski et al., 1984) may effectively starve until the symbiosis is reestablished (Baker 2001).
Resistance and recovery following bleaching are highly variable both among and within coral
species, and may be influenced by environmental factors (e.g., light, temperature, symbiont
availability), as well as traits of the host and its associated microbial communities (Edmunds
1994; Fitt et al., 2001; Baird et al., 2009; Grottoli et al., 2014; Conti-Jerpe et al., 2020;
Ainsworth and Gates, 2016). Additionally, the coral animal may be able to switch to
heterotrophy to mitigate starvation, and recover faster due to the accumulation of lipids
(Grottoli et al., 2006; Hughes and Grottoli 2013; Wall et al., 2019; Conti-Jerpe et al., 2020);
while genetic and epigenetic processes may also promote stress resilience (Edmunds 1994; Fitt
et al., 2001; Grottoli et al., 2014; Baird et al., 2009; Putnam and Gates 2015).

The diversity of Symbiodiniaceae in relation to coral bleaching has been researched for
over 30 years (Rowan and Powers 1991; van Oppen and Medina 2020), as different genotypes
have different physiological responses to abiotic conditions (Baker 2003; Sampayo et al., 2008).
For instance, there are thermally tolerant symbionts (e.g., Cladocopium thermophilum,

Durusdinium glynnii, D. trenchii) that increase bleaching resistance of coral hosts (Baker 2001;
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Berkelmans and van Oppen 2006, Sampayo et al., 2008; Fisher et al., 2012; Hume et al., 2015;
Silverstein et al., 2015). The majority of coral species associate with a single species of
Symbiodiniaceae (LaJeunesse et al., 2018; Howells et al., 2020), but some are capable of
hosting multiple species and/or genera within one coral colony (Rowan et al., 1997; Baker
2003; Gardner et al., 2019; Hume et al., 2019, 2020). These two strategies are illustrated in
three dominant sympatric corals found in Hawai’i, with Porites compressa only presenting
Cladocopium C15, Pocillopora acuta combining C. pacificum/C. latusorum (C1d/C42), and
Montipora capitata hosting either Cladocopium C3lor Durusdinium glynnii, or both
simultaneously in the same colonies (LaJuenesse et al., 2004; Innis et al., 2018; Stat et al., 2013;
Turnham et al., 2021). There is some evidence of symbiont shuffling in some coral species
(Baker 2001, Cunning et al., 2015), but this may occur rarely or not at all in others, as reported
in Pocillopora spp. (McGinley et al., 2012) and M. capitata (Cunning et al., 2016). This
inflexibility could be intrinsic of those holobionts, or due to the particular conditions of
disturbance and recovery not favoring Symbiodiniaceae rearrangements.

Beyond Symbiodiniaceae, patterns of symbiosis with microorganisms forming the coral
holobiont are less understood (Amend et al., 2012; Ainsworth and Gates, 2016; Boilard et al.,
2020). The coral prokaryotic microbiome is thought to have a core component (Ainsworth et al.,
2015; Hernandez-Agreda et al., 2017), as well as a set of unique microbes (Hernandez-Agreda
et al., 2018), and rare dynamic taxa that can vary in individuals even within species (Epstein et
al., 2019). Stability in coral microbial associations may be beneficial or deleterious, depending
on the context (Ainsworth and Gates, 2016). Community shifts involving increases in
opportunistic, potentially pathogenic taxa and decreases in beneficial taxa, have been observed
during induced and natural bleaching stress (Bourne et al., 2005; Littman et al., 2011); including
studies on P. compressa (Vega Thurber et al., 2009) and Pocillopora (Tout et al., 2015). Other
work has shown that microbial stability may either promote thermal tolerance (Ziegler et al.,
2017; Epstein et al., 2019; Gardner et al., 2019), and/or hamper acclimatization, with deleterious

effects on the host (Pogoreutz et al., 2018). As with Symbiodiniaceae, prokaryotic associates
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may include taxa able to confer stress tolerance to the holobiont (van Oppen and Medina 2020;
Ainsworth et al., 2020).

In 2014 and 2015, there were repeated massive bleaching episodes in the Hawaiian
archipelago (Ritson-Williams and Gates 2020). These thermal stress events prompted us to
survey the fate of coral microbiomes (Symbiodininaceae, Archaea/Bacteria, Fungi) over time
during and after the heatwaves in the field. In Kane‘ohe Bay, Oahu, both Montipora capitata
and Porites compressa had bleaching susceptible vs bleaching resistant phenotypes, while only
bleaching susceptible colonies of P. acuta were observed. All these three dominant species were
monitored and sampled throughout a year. There has been extensive research on these coral
species in Hawaii (e.g., Putnam and Gates 2015; Cunning et al., 2016; Wall et al., 2019;
Matsuda et al., 2020; Ritson-Williams and Gates 2020; Innis et al., 2018), however, there is
little information about their associated microbiota (e.g., Salerno et al., 2011; Shore-Maggio et
al., 2015; Epstein et al., 2019). This study quantifies temporal dynamics in coral microbiomes
using amplicon sequencing of multiple gene regions for multiple microbial compartments,
coupled with compositional data analysis, to track symbiont shifts in multiple bleaching
phenotypes within and among coral species. We further inspect for microbial sentinels within

the coral holobionts able to diagnose fluctuations from healthy to distressed/diseased states.

2. Materials and Methods

2.1.Study site and sampling
Consecutive coral bleaching events occurred in Hawai’i during the late summers of
2014 and 2015 (Ritson-Williams and Gates 2020). The present study focused on corals from
Reef 25 in the central portion of Kane‘ohe Bay, O’ahu Island (N 21.461, W 157.823). In

October 2014, 20 colonies of Montipora capitata (Mcap) and 20 Porites compressa (Pcom)
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were tagged as adjacent pairs (ten totally bleached and ten non-bleached —fully dark brown,
hereinafter referred to as “B” and “NB” colonies respectively for each species); along with ten
colonies of fully bleached Pocillopora acuta (Pacu, there were no individuals of P. acuta that
did not bleach). All tagged colonies came from 4-5 m depth, and were 50 in total (n = 10 for
each sample group: Mcap_B, Mcap_NB, Pcom_B, Pcom_NB, and Pacu _B). One coral
fragment (1.5 cm long) was repeatedly sub-sampled from every tagged coral on five occasions:
MO = Month 0 — October (24" 2014; M1 = Month 1 — November (24"") 2014; M3 = Month 3 —
January (14™) 2015; M6 = Month 6 — May (6™) 2015; and M12 = Month 12 — September (15%)
2015, yielding a total of 250 coral fragments (Fig. 1). Covariates used in downstream analyses
are given in Table S1. Coral fragments (~ 1 c¢cm?) were collected at each time point by
snorkelers, placed in individual sterile bags and snap-frozen in liquid N within 1 minute of

collection. All fragments were maintained at -80 °C until processed.

2.2.DNA extraction, library preparation, and sequencing

DNA from coral fragments was extracted using PowerSoil® DNA Isolation Kit (Mo
Bio Laboratories) following manufacturer’s instructions. Amplicon sequencing of ribosomal
RNA (rRNA) target gene markers for three microbial sets: Bacteria/Archaea (16S), Fungi
Internal Transcribed Spacer 1 (ITS1) and Symbiodiniaceae (ITS2) was performed in three
separate multiplexed runs. Due to technical issues, DNA samples from month M12 (Sept 2015)
could not be sequenced for the ITS2 marker. Illumina protocol was applied with a two-PCR
approach and two dual-index strategy (Caporaso et al., 2012; Kozich et al., 2013). Primer sets
used were: bacterial/archaeal specific primers for V4 region (Escherichia coli position: 515—
806) of the small-subunit ribosomal RNA (16S) gene (515F -GTGYCAGCMGCCGCGGTAA
Parada et al., 2016 and 806R —GGACTACNVGGGTWTCTAAT Apprill et al., 2015); ITS-
DinoF (GTGAATTGCAGA ACTCCGTG) and ITS2rev2 (CCTCCGCTTACTTATATGCTT
(Franklin et al., 2012) targeting the ITS2 for Symbiodiniaceae library; and fungi-specific
primers ITS1F (CTTGGTCATTTAGAGGAAGTAA;Gardes and Bruns, 1993) and ITS2R-

CoralBetter (GTGARCCAAGAGATCCRTT; designed in the present study) for ITSI.
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Amplifications were performed in 25 pl reactions with NEBNext® Q5® Hot Start HiFi PCR
Master Mix (New England Biolabs, Inc.), 0.8 pl BSA (Bovine Serum Albumin; 20 mg/ml), 1ul
of each 5 uM primer, and 1.5ul of template. Reactions were under the thermocycling profile: 98
°C for 2 min, then 28 cycles of 98 °C for 15 s, 53 °C for 30 s, 72 °C for 30 s, final extension at
72 °C for 2 min. The second Index PCR to attach dual indexes and Illumina sequencing adapters
used forward primers with the 5°-3’ Illumina i5 adapter (AATGATACGGCGACCACCGA
GATCTACAC), an 8—10bp barcode and a primer pad; and reverse fusion primers with 5°-3’
Illumina 17 adapter (CAAGCAGAAGACGGCATACGAGAT), an 8-10 bp barcode, a primer
pad. Reactions were made in 25 pl with 0.5 ul of each 5 uM primer, and 1pl of corresponding
products from first amplicon PCR reactions diluted (1:30), and with a temperature regime of: 98
°C for 2 min, then 28 cycles of 98 °C for 15 s, 55 °C for 30 s, 72 °C for 30 s, final extension at
72 °C for 2 min. The PCR products were purified and pooled equimolar on Just-a-Plate ™ 96
PCR Purification and Normalization Kit plates following manufacturer’s instructions (Charm
Biotec). Paired-end sequencing was performed on an Illumina MiSeq sequencer 2 x 300 flow

cell at 10 pM at Core Lab, Hawai’i Institute of marine Biology (USA).

2.3. Bioinformatics analysis

2.3.1 Sequence processing for 16 S V4 and ITS1 sets

Fastq files containing demultiplexed 16S—V4 and ITS1paired-end reads were imported
into QIIME2 v.2020.11 (Bolyen et al., 2019). DADA2 (Callahan et al., 2016) was used for
“denoising” 16S data in paired-end mode. The ITS1 region was first extracted using ITSxpress
(Rivers et al., 2018). Only forward reads as in Pauvert et al., (2019) were denoised in single-end
mode with DADA?2 (Callahan et al., 2016), and filtered from non fungal ITS sequences (Tables
S2A and S2B). Taxonomic annotation was performed using a pre-trained Naive Bayes classifier
(sklearn (Bokulich et al., 2018a, 2018c) against SILV A reference (99% identity) database v.128
(Quast et al., 2013; Yilmaz et al., 2014) trimmed to span the V4 region (291 bp) for the 16S

data. While for the ITS1 set, UNITE reference database (v. 1.12.2017) was customized adding
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outgroup metazoan sequences from NCBI to check for host co-amplification (as in McGee et

al., 2019; Supplementary Material S1).

2.3.2. Sequence processing for ITS2 set

Demultiplexed paired-end reads from the ITS2 Symbiodiniaceae marker were submitted
to SymPortal (SymPortal.org; Hume et al., 2019) to obtain ITS2 type profile predictions,
reflecting the “defining intragenomic [sequence] variants” (DIVs) in order of their relative
abundance. Absolute abundance counts tables for ITS2 type profiles and underlying ITS2
sequences were formatted and imported into QIIME2 v.2020.11 (Bolyen et al., 2019) for

downstream analyses (Supplementary Material S1; and Table S2C).

2.3.3. Microbial community analysis

16S ASVs and ITS2 sequence compositions were analyzed using DEICODE

(https://library.qgiime2.org/plugins/deicode/19/) diversity method based on Aitchison distances
and robust principal component analysis (RPCA) for compositional data (Aitchison 1982;
Martino et al. 2019). Standard diversity distance metrics that do not account for
compositionality of data were also computed on QIIME2 v.2020.11 (Bolyen et al., 2019).
Statistics were calculated using q2-diversity adonis for multi-factor permutational multivariate
analysis of variance (PERMANOVA). The most informative formula in the model for the 16S
data was “Species*TimePoint+Bleaching”, while “Species*Bleaching” was the most explicative
for ITS2. Pairwise comparisons for single covariates were run with q2-beta-group-significance.
In all cases permutations were set to 999, and tests corrections significance to g value > 0.05

(i.e., FDR adjusted p value; Supplementary Material S1).

2.3.4. Longitudinal, differential abundance and co-occurrence cross networks analyses
By simultaneously analyzing our samples across all time points, meaningful signals
may be lost at a particular time point. Also, having more than one measurement per subject in

temporal/longitudinal or paired samples experiments violates independency assumptions
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between samples of Kruskal-Wallis tests. Therefore, pairwise PERMANOVA comparisons
were run for each timepoint by species. Further pertinent methods for differential abundance
(Morton et al. 2019; Fedarko et al. 2020), longitudinal analyses —including pairwise
differences/distances, linear-mixed-effects (LME) (Bokulich et al. 2018b), and co-occurrence
cross network analyses that take into account repeated measurements and data compositionality
(Shaffer 2020; Shannon et al., 2003) were performed as described in Supplementary Material
S1.

R (RStudio) was applied for additional statistics and plotting (http://www.r-project.org).

3. Results

3.1 Bacteria/Archaea composition based on 16S rRNA gene data
3.1.1 Alpha and beta diversity

Pacu and Mcap corals reported higher bacterial diversity, richness and evenness
(Shannon, Observed and Pielou's evenness) indexes compared to Pcom (Fig. 2, Fig. S3.1;
Kruskal-Wallis H=137.94, p < 0.001, p = 5.56 e-18). Alpha diversity did not yield significant
differences within species between B vs NB colonies in Mcap and Pcom, or across time points
in any species (Tables S4; Supplementary Material S2 and S3).

Differences in beta diversity were found by Species, reporting different microbial
communities in the three host species, and in the interaction Species*TimePoint; while Mcap
and Pacu were more diverse from Pcom for all metrics (PERMANOVA 999 permutations,
significance set to p < 0.05; Tables S5). Since Bacterial composition was mostly determined by
host species, according to all alpha and beta diversity indexes, downstream analyses were
performed within species, to test for changes over time in all three species, and between

bleached and non-bleached colonies in Mcap and Pcom. Based on Aitchison distances, bacterial
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composition varied in Mcap NB between M12 and MO, and from M12 with respect to the other
months according to Jaccard (Supplementary Material S2 and S3; Tables S6, S7). No significant
longitudinal trend was found in beta diversity across nor between timepoints in any B vs NB

corals (Tables S6, S7, Supplementary Material S2 and S3).

3.1.2 Bacterial/Archaeal community compositions

A total of 1257 ASVs were distributed in 979 Mcap, 523 Pcom, and 737 Pacu
associated taxa. Taxonomy annotation at the genus level yielded 331, 211 and 279 bacterial and
archaeal genera; this was out of a total of 93, 99 and 40 coral colony fragments belonging to
Mcap, Pcom and Pacu respectively. In Mcap corals a bacterial strain within order Myxococcales
made up > 50% relative abundance in 35 % of the samples. Other dominant genera were
Acinetobacter —with preponderance of A. calcoaceticus, and Endozoicomonas. The least diverse
bacterial communities were found in Pcom, predominantly composed of Endozoicomonas. A
single phylotype in this genus accounted for > 90% in relative abundance in 65 % of Pcom
samples. Other representative taxa were Acinetobacter, Candidatus Amoebophylus, and order
Myxococcales. Pacu was dominated by Proteobacteria, with one strain covering > 50% relative
abundance in 43 % of the samples. Most contributing genera included Acinetobacter (chiefly A.
calcoaceticus) and Candidatus Amoebophylus, and there was a large proportion of unclassified
taxa. In variable abundances, Pseudomonas, Bacillus, Staphylococcus, Synechococcus,
Lawsonella and unidentified strains in Myxococcales were found in all three species. While,
Micrococcus, Corynebacteria, Turicella, Cyanobium, Brevundimonas, Maritimonas,
Aerococcus and Geobacillus were more linked to Mcap and Pdam (Fig. 2; Supplementary
Material S2 and S3). All coral species shared 237 taxa (19 %), with Mcap sharing more taxa
with Pacu (542; 43 %), than with Pcom (395; 31 %), and Pcom and Pacu sharing the least
proportion of phylotypes (282; 22 %). The largest number of unique taxa was recorded in Mcap

(279), followed by Pacu (149) and Pcom (83).

3.1.3. Phylotype-wise differential abundance analysis of 16S rRNA gene data

11
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The importance (i.e., fold change) of each ASV in relation to the covariates TimePoint
(month after bleaching, MO-M12) and Bleaching susceptibility (B vs NB) was calculated in
separate analyses within species to create microbial balances.

In Mcap the most informative balance defining longitudinal changes in B vs NB
microbiomes consisted of fifteen ASVs in genera: Endozoicomonas, Acinetobacter,
Pseudomonas in the numerator; and Micrococcus, Synechococcus, Staphylococcus, Lawsonella,
Bacillus and order Myxococcales, in the denominator (91 out of 93 samples retained). In MO
and M6 NB colonies (ranked to numerator taxa) exhibited significantly higher log-ratios than B
(associated to denominator phylotypes; Welch’s tests, p < 0.05). In M1 and M3, NB had lower
log-ratios than B colonies, but the differences were not significant. In M1 and M3, Bacillus was
not detected as differential taxa, and Synechoccocus lost relevance in M6 (Material S4, Tables
S8). Longitudinally, for this microbial balance, Mcap_B had higher log-ratio rankings in M3
compared with M6 and M12; whereas Mcap_NB displayed lower log-ratios in all time points
with respect to MO (LME; p < 0.05; Fig. 3).

Differentially abundant taxa in the balance of Pcom comprised two Endozoicomonas
strains in the numerator, along with fluctuating taxa in Candidatus Amoebophilus,
Acinetobacter calcoaceticus, Pseudomonas stutzeri, Synechococcus, Roseitalea; over
Staphylococcus, Micrococcus, Neisseriaceae and five Endozoicomonas in the denominator
(Material S4, Tables S8). Pcom_B corals revealed higher log-ratios in M1, with respect to
Pcom_NB (Welch’s tests, p < 0.05; Material S4, Tables S8). Longitudinally, Pcom_B displayed
higher log-ratios in M1 in comparison to MO and M6 (LME; p < 0.05), instead Pcom_NB
showed stability across time points (LME; p > 0.05; Fig. 3, Material S4, Tables S8). Further
longitudinal analyses can be found in Supplementary Material S2.

The most discriminative microbial balance of Pacu comprised fifteen taxa assigned to:
Endozoicomonas, Cyanobium, Acinetobacter, Pseudomonas, Neisseriaceae in the numerator;
and Micrococcus, Lawsonella, Synechococcus, Bacillus, Staphylococcus in the denominator (39
out of 40 samples kept). MO colonies had lower log-ratios with respect to all the other time

points (LME; p < 0.05; Tables S8; Fig. 3).

12



305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

324

325

326

327

328

329

330

331

The longitudinal behavior (over time) of bacterial genera represented in the above
microbial balances for the three host species were inspected in trajectory plots using centered
log ratio (CLR) abundances. The investigated genera included: Endozoicomonas, Acinetobacter,
Bacillus, Candidatus Amoebophilus, Cyanobium, Lawsonella, Micrococcus, Pseudomonas,
Staphylococcus, Synechococcus and Roseitalea. Phylotypes included in the differential balances
appertaining to family Neisseriaceae and order Myxococcales, but not assigned to genus level,
were not included in this analysis (see Fig. 3, and Supplementary Material S2 for detailed

interpretations).

3.2. Fungi composition based on ITS1 data

Untargeted host co-amplification was a major constraint in characterizing fungal
communities, despite the new primer designed to bypass metazoan DNA. We found 94.8 %
coral co-amplification, retrieving only 5.2 % overall fungal sequences. The rate of co-
amplification varied among species, with P. compressa displaying the largest untargeted co-
amplification (98.4 %), followed by M. capitata (95.6 %), and P. acuta (56 %) (Supplementary
Material S2). The most represented fungal species retrieved were Malassezia restricta, M.
globosa, Hortaea_werneckii, Aspergillus penicillioides, Phellinus gilvus. No further statistical

analysis was performed due to insufficient/uneven diversity coverage.

3.3. Symbiodiniaceae composition based on ITS2 data
3.3.1. Symbiodiniaceae ITS2 type profiles

ITS2 type profiles were 29 in total, 27 belonging to the genus Cladocopium and 2 to
Durusdinium. Their associations with corals depended on host species, bleaching susceptibility,
and their interaction (PERMANOVA 999 permutations, p < 0.05). Certain coral colonies were

stable over time in Symbiodiniaceae composition, but others experienced temporal shifts
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without a clear pattern (Tables S9). Cladocopium profiles were dominant in the three host
species. Only one type profile was shared between Mcap and Pacu (C1d), the rest (95 %) were
only found in single host species. Mcap had the most varied profiling —10 Cladocopium, 2
Durusdinium, and were the only corals harboring Durusdinium types. Pcom and Pacu reported
10 and 7 distinct unshared Cladocopium profiles respectively (Fig. 4). The resistant phenotypes
Mcap_NB reported 9 Cladocopium and 2 Durusdinium profiles, as compared to Mcap_B with 5
and 1 respectively. Durusdinium profiles always occurred mixed with Cladocopium in 4-5
Mcap_NB colonies per time point. Pcom_B displayed more assorted type profiles across
individuals within each time point than Pcom_NB. Mcap_B corals acquired more varied ITS2
profiling with time —including a Durusdinium profile acquired in one Mcap_B colony in M6,
but this effect was not statistically supported. With the exception of one sample in Mcap_B and
one in Pcom_N both in M6, the presence of mixed ITS2 type profiles was only ascertained in

Mcap_NB colonies with an incidence of 48% (Fig. 4).

3.3.2. Underlying Symbiodiniaceae ITS2 sequence composition

Our corals contained 173 Cladocopium and 28 Durusdinium ITS2 sequences (=1%
abundance). By coral species and bleaching susceptibility the number of different Cladocopium
/ Durusdinium sequences was higher in NB colonies in Mcap (Mcap_B 51 /20 vs Mcap_NB 80
/ 28), as opposed to Pcom that showed more sequence variability in B (Pcom_B 82 / 3 vs
Pcom_NB 62 / 3); while Pacu reported 19/ 5.

Within the same coral species, ITS2 profiles shared common major sequences
(predominant DIVs within type profiles), and were distinguished by other major and minor
sequences (nonmajor DIVs, Fig. 4). Across different host species, ITS2 profiles did not share
major sequences. Major Cladocopium DIVs designating profiles in M. capitata were C31 and
C17d, in P. compressa C15, and in P. acuta C1d. Durusdinium major DIVs were D4 and DI,
followed by D6, only represented as major sequences in M. capitata. Variations in ITS2 profiles
within the same colonies across time points were therefore due to the loss, gain or substitution

of minor sequences prompting a shift in profile assignment (Fig. 4).
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ITS2 sequence compositions confirmed the observed pattern of ITS2 profiles, highly
structured by host species and bleaching susceptibility, with no consistent temporal shifts. In the
RPCA biplots Mcap showed differences in B vs NB colonies at MO, M1 and M3, being D1, D4
and D6 the most correlated DIVs with NB. Pcom revealed dissimilarity
between B vs NB colonies at M0, and here D6, Cl5cc, C3, 70890_C and C3dg were major
drivers of NB clustering, versus C15id and 70894 _C associated to B (Fig. 5 and PERMANOVA

999 permutations, p < 0.05, Tables S10, S11, S12; Supplementary Material S2 and S3).

3.3.3. Phylotype-wise differential abundance analysis of ITS2 data

Selection of the 43% most differentially abundant ITS2 sequences in relation to
covariates TimePoint (M0-M12) and Bleaching susceptibility (B vs NB) in M. capitata yielded
23 numerator and 23 denominator phylotypes (keeping 90.78 % samples). This balance
discriminated Mcap_B with higher log-ratios from Mcap_NB corals in all time points.
Numerator DIVs associated to Mcap_B included some C31, a few C17, C21 and other
Cladocopium DIVs; denominator DIVs correlated to Mcap_NB comprised 55 % Durusdinium
DIVs (D4, D1, D6, D1ab, D3h) along with a few C17 and C21 among other Cladocopium DIV
(Fig. 5; Tables S13).

In P. compressa, the top 25 % differential ITS2 sequences (maintaining 91.25 %
samples) resulted in 12 phylotypes (C3 and other Cladocopium DIVs) in the numerator
correlated Pcom_B colonies, and 12 denominator phylotypes (several C15 and other
Cladocopium DIVs) associated to Pcom_NB in MO and M1. In M3 and M6, when corals
recovered colouration, Pcom_B and Pcom_NB corals recorded similar log-ratios (Fig. 5; Tables
S13).

In P. acuta the model with the co-variate “TimePoint” was uninformative with respect
to the null model (adding “1” in the formula), indicating no response of Symbiodiniaceae across

time.
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Log-ratios in the balances of differentially abundant ITS2 sequences tracked
longitudinally over time had no significant shifts in any species (LME; P<[z] < 0.05;

Supplementary Material S5, Tables S13).

3.4. Cross networks between 16S rRNA gene ASVs and ITS2 profiles

Co-occurrence cross networks illustrated potential interaction patterns among bacteria
and Symbiodiniaceae, allowing to detect changes in coral microbiomes’ structure. In Mcap_B a
simple network in MO formed by two C31 Cladocopium ITS2 profiles and few bacteria,
increased conspicuously in bacterial nodes from M1 to M6, together with the addition of
another C31 and a Durusdinium D4/D1 nodes in M3 and M6. Mcap_NB started with a complex
network composed by four C31, two C17d/C31 and two D4/D1 profiles connected with dense
agglomerations of bacteria. The network became less complex in M1 and M3, with the
exclusion of two C31 profiles; and acquired more bacterial nodes again over M6, with the re-
inclusion of C31 nodes and exclusion of a C17d/C31 node. Pcom_B started with three C15
profiles connected to few bacteria. Bacterial nodes increased over M1 with the addition of a
C15 profile, and declined in M6 with the removal of a C15 node. Pcom_NB networks
maintained three C15 profiles and few bacteria nodes over MO-M3. In M6 a Cl1d profile was
added, but bacterial nodes and edges diminished. Network complexity increased in Pacu_B
from M0-M1, with the increase of C1d profiles from three to four nodes, and with a progressive
increment of bacterial nodes over M1-M6. Co-occurrence interconnections were predominant
over co-exclusion, except in Mcap_B at M1 and Pacu_B at M3. Networks in susceptible-B
colonies in the three species displayed increased positive interactions during bleaching
recovery. Whereas, in resistant-NB corals the number of interactions decreased in Mcap_NB, or
fluctuated in Pcom_NB. Consistently, Pcom_B and Pcom_NB maintained smaller networks
(fewer nodes and edges) than the rest, with the punctual exception of Mcap_B in MO (Fig. 6;

Supplementary Material S2 for detailed results).
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4. Discussion

Historically, massive coral bleaching in Hawaiian ecosystems was unusual, until 1996
(Bahr et al., 2015). The consecutive heatwaves of 2014 and 2015 in Kane‘ohe Bay allowed us
to track temporal shifts in bleaching susceptible and resistant coral microbiomes in situ, during
and after the bleaching peaks. Pcom_B corals recovered faster (after ~2.5 months) than Pacu_B
(~3 months), and Mcap_B (~6 months), according to color scores (Ritson-Williams and Gates
2020), yet actual Symbiodineaceae densities could have been regained faster (Cunning et al.,
2016). Prokaryotes, in turn, were expected to exhibit more rapid responses to stressors, due to
their fast generation times (Ziegler et al., 2017; Glasl et al., 2017; Pogoreutz et al., 2018).

Algal and prokaryotic communities in our corals followed a species-specific pattern,
frequent in sympatric populations (Gardner et al., 2019; Howells et al., 2020), whereas
intraspecific Symbiodiniaceae signatures were identified at the colony scale (Rouzé et al.,
2019). Mcap had the most variable ITS2 profiling, followed by Pcom and Pacu, whilst
Symbiodiniaceae composition was influenced by bleaching susceptibility. Algal-genotypes
conferring different bleaching resistance in conspecific hosts may appertain to the same genus,
as in Pcom (Sampayo et al., 2008), or to different ones as in Mcap (Berkelmans and van Oppen
2006; Gardner et al., 2019). But also, susceptibility can be independent from symbiont-type
(Smith et al., 2017; Howells et al., 2020).

Bacterial compositions were more diverse in Mcap and Pacu than in Pcom, and were
practically constant between bleaching phenotypes. Microbial stability after natural thermal
disturbance has been reported in corals undergoing sub-bleaching (Epstein et al., 2019) and
bleaching (Gardner et al., 2019). While, community shifts were documented after induced stress
(Bourne et al., 2005; Vega Thurber et al., 2009; Littman et al., 2011; Ziegler et al., 2016). In our
corals, certain bacterial-ASVs/ Symbiodiniaceae-DIVs were differentially abundant across time
and/or bleaching susceptibility, highlighting the potential of fine-scale microbiome changes in

coral resilience (Glasl et al., 2017; Ziegler et al., 2019; Epstein et al., 2019). Below we discuss
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the dynamics of coral microbiomes during the process of bleaching and recovery in the different

host species.

4.1. Pocillopora acuta

Pacu had the highest bleaching incidence, and was associated with eight fluctuating
Symbiodiniaceae Cld-profiles. This agreed with the C1d-dominance described for this species
in Hawai’i (LaJeunesse et al., 2004). Predicted profiles dominated by C1d and C42.2 likely
reflect the preponderance of mixed Cladocopium pacificum and C. latusorum (Turnham et al.,
2021). Lack of acclimatization patterns agrees with stabilities of dominant symbionts in
pocilloporids under thermal stress. Whilst, profile shifting driven by minor ITS2-sequences
shifts, is presumably matching with background genotype variability reported in previous
studies (Stat et al., 2009; McGinley et al., 2012; Epstein et al., 2019). In other geographies,
higher bleaching thresholds have been reported in populations harboring Durusdinium glynnii
(previously D1) (Glynn et al., 2001; Wham et al., 2017; Brener-Raffalli et al., 2018; Li et al.,
2021; Zhou et al., 2021), or in chunky (versus fine) morphotypes, even when presenting C1d
(Smith et al., 2017; Epstein et al., 2019). Therefore, the bleaching incidence observed in Pacu
could rely on a combination of having fine morphology and Cladocopium—profiles, both
correlated to higher susceptibilities (Smith et al., 2017).

Bacterial communities were dominated by phylum Proteobacteria, followed by
Bacteroidetes, Actinobacteria, Firmicutes and Cyanobacteria, similar to pocilloporids from
other regions; whereas, Family Amoebophilaceae (mostly Candidatus Amoebophylus) and
genus Acinetobacter (largely A. calcoaceticus) were more preeminent, and Endozoicomonas
less abundant in Pacu (Bourne and Munn 2005; Tout et al., 2015; Brener-Raffalli et al., 2018; Li
et al., 2021; Zhou et al., 2021, but see Epstein et al., 2019; Osman et al., 2020). Prokaryotic
community, in terms of overall alpha and beta diversity, did not show significant changes over
time, as in other surveys involving coral bleaching (Pogoreutz et al., 2018; Gardner et al.,
2019). Nonetheless, microbial rearrangements could be detected via balances of differentially

abundant taxa, revealing lower log-ratios in corals at the bleaching peak MO. Upon recovery
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(M1-M12) Pacu was correlated to Endozoicomonas, Cyanobium, Acinetobacter, Pseudomonas
and Neisseriaceae, whereas bleached colonies in MO were associated to Micrococcus,
Lawsonella, Synechococcus, Bacillus and Staphylococcus. Likewise, cross co-occurrence
networks showed an increase in node complexity and positive interconnections from M1. This
implied that sparse interactions between bacteria and Symbiodiniaceae during thermal stress,
increased in number as algal cells repopulated in the recovery process after MO, yielding larger
networks.

Recovery in Pacu happened after 2-3 months (Ritson-Williams and Gates 2020);
probably thanks to heterotrophic feeding (Lyndby et al., 2020; Dobson et al., 2021) and,

microbiome rearrangements in early recovery phases (Santos et al., 2014; Ziegler et al., 2017).

4.2. Montipora capitata

Mcap colonies were associated with Cladocopium and Durusdinium symbionts. At the
DIV level C31, C17 and C21 were predominant genotypes in both B and NB corals, while D4,
D1, D6, D1ab and D3h characterized NB colonies, in agreement with recent studies (Matsuda
2021). Bleaching resistant Mcap_NB colonies contained either pure C or mixed D/C profiles
(50 % of the times), and were different from susceptible Mcap_B, which contained basically C-
profiles. Adjacent colonies never shared the same ITS2-profile. In both bleaching phenotypes,
six colonies (66 %) maintained their corresponding dominant profiles, the remaining (three)
experienced temporal shifts, in agreement with Cunning et al. (2016). C31-C17d-C31.1-C31a-
C21-C31f-C17e-C311-C21ac might represent a thermosensitive ITS2-profile, as 8 out of 9
Mcap_B bleached colonies in MO contained this profile, whilst its presence in Mcap_NB (1-2
colonies) was always in combination with D-profiles. In purity or mixed, D-genotypes provide
thermal resistance in M. capitata, but colonies with C-profiling also demonstrated stress-
tolerance (Cunning et al., 2016). Our analyses based on ITS2-types (Hume et al., 2019)
identified different Cladocopium profiles, in comparison to previous surveys reporting solely
C31-genotype (LaJeunesse et al., 2004; Stat et al., 2013; Cunning et al., 2016), which could

resolve the disparate stress-resistance of Mcap_NB vs Mcap_B. In one exception though, two
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colonies containing the same profile (C31/C17d-C21-C31.9-C21ac-C17e-C31h-C31i) at MO,
one underwent bleaching and the other one not, suggesting multiple factors (including different
microenvironments affecting these corals) other than symbiont type regulating thermal
tolerance. Mcap_B and Mcap_NB maintained different Symbiodiniaceae compositions, based
on profiles and underlying ITS2-sequences, while colony heterogeneity in bleached Mcap_B
increased with time, with no clear stabilization pattern. Actually, only one colony acquired a
partial Durusdinium profile at M6, supporting the low prevalence of symbiont shuffling
described in this species (Cunning et al., 2016).

Prokaryotic communities were dominated by Proteobacteria (Family P30B-24, Order
Myxococcales), and by genera Acinetobacter (largely A. calcoaceticus) and Endozoicomonas.
In general, they matched with M. capitata microbiomes, characterized by the presence of
Cyanobacteria and Deinococcus-Thermus, and low abundance of Vibrio (Shore-Maggio et al.,
2015; Beurmann et al., 2018). Even if non statistically significant, increased alpha diversities
observed in Mcap_B at M1 and M3 may suggest microbial rearrangements after thermal-stress
(Vega Thurber et al., 2009; Tout et al., 2015; McDevitt-Irwin et al., 2017), or seasonal
fluctuations in Mcap_NB at M6 (Cunning et al., 2016). Log-ratio rankings of differentially
abundant taxa were higher in Mcap_NB with respect to Mcap_B at MO and M6. At these two
time points of symbiont depletion: bleaching peak (M0O) and seasonal algal downturn (M6; as in
Cunning et al.,, 2016), Mcap_NB was ranked to numerator taxa —Endozoicomonas,
Acinetobacter and Pseudomonas; whereas bleached Mcap_B were correlated to denominator
taxa —Myxococcales, Lawsonella, Micrococcus, Synechococcus, Bacillus and Staphylococcus.
Cross networks became more complex in Mcap_B from M1 to M6, as algal densities recovered
(M1-M3), and bacteria established interactions with Symbiodiniaceae. Instead, Mcap_NB
showed higher network complexity in MO compared to bleached Mcap_B colonies, reflecting
stress response rearrangements between thermo-tolerant algal and prokaryotic symbionts during
the heatwave.

M. capitata was found to rely on heterotrophy to compensate for energy losses when

experimentally bleached (Grottoli et al., 2006). Mcap did not evidence such trophic plasticity,
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and would have regained symbiont populations at expense of biomass resources by January
2015 (Wall et al., 2019; Ritson-Williams and Gates 2020), in agreement with the microbial

outcomes.

4.3. Porites compressa

ITS2-profiling in Pcom revealed C15-dominance, in accordance with older surveys on
Porites compressa (LalJeunesse et al., 2004). Pcom_NB and Pcom_B corals held distinct
Symbiodiniaceae patterns 70-90 % of the times, across MO-M12. While, other characteristics
in the holobiont or microenvironmental variabilities causing different stress conditions, should
explain why 20 % adjacent Pcom_B and Pcom_NB colonies sharing the same profiles had
different susceptibilities in MO. During the peak of the heatwave in Oct-2014 (M0O) Pcom_NB
associated to DIVs Cl5cc and D6, and more often to the ITS2 profile C15-C5c¢i-C15cc-C15cl-
C15n-C15c¢j-C151, which could represent a thermotolerant symbiont-type found in 7 out of 10
resistant colonies, and in only one susceptible Pcom_B. Accordingly, this profile was less
prevailing in M6 (May 2015), coinciding with a period of minor thermal disturbances and lower
symbiont abundances (Brown et al., 1999; Cunning et al., 2015). C15-genotypes with higher
temperature tolerance were already described associating to Porites spp. from the Great Barrier
Reef (Fisher et al., 2012). Dissimilarities in ITS2-sequences between Pcom_B and Pcom_NB
tended to vanish after M1, reflecting algal rearrangements linked to recovery from this time
point. This concurs with coral photo-physiology data supporting intense symbiont repopulation
(elevated cell mitosis and photopigment synthesis) from Nov (Wall et al., 2019; Matsuda et al.,
2020; Ritson-Williams and Gates 2020).

Bacterial communities in Pcom were less diverse than in the other hosts, accounting for
many low abundance taxa, and ~ 90 % predominance of a single Endozoicomonas microbe. The
bacterial community structures were relatively constant, across bleaching phenotypes and time.
Salerno et al. (2011) also found stable microbiomes in P. compressa under mild thermal
treatments; whereas Vega Thurber et al. (2009) observed switches from healthy to pathogenic

microbiota after intense high temperature exposures. Both of these thermal stresses were
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administered in an experimental setting. In our field data the prevalent ASV
(694df3c7t8b6b66c922ed51a965d75d0a) matched with a symbiont (Oceanospirillaceae-OTU
C7-A01: FJ930289.1; Supplementary Material S2) broadly documented in Porites spp.
(including P. compressa from Maui) and other hermatypic corals from Australia, Hawai‘i, and
Bermuda (Speck and Donachie 2012), suggesting a conserved large-scale partnership with
corals (Neave et al., 2016). Coral-microbiomes dominated by one or few Endozoicomonas
phylotypes were described to have microbial inflexibility in stress responses (Pogoreutz et al.,
2018). In our susceptible Pcom_B corals dominated by one Endozoicomonas strain though, the
microbial balance composed by two Endozoicomonas (the predominant ASV above and another
congeneric strain), Candidatus Amoebophilus, Acinetobacter calcoaceticus, Pseudosmonas
stutzeri, Synechococcus and Roseitalea phylotypes; over five antagonistic Endozoicomonas
strains, Micrococcus, Staphylococcus and Neisseriaceae taxa, pinpointed a longitudinal
discontinuity of increased log-ratios in Pcom_B at M1. Microbial communities of bleaching
resistant Pcom_NB phenotypes, in contrast, remained stable and dominated by
Endozoicomonas. Different from Pogoreutz and co-workers (2018) findings, the relative
microbial inflexibility of Pcom and Endozoicomonas predominance, could afford benefits in
terms of resistance or faster recovery during thermal stress responses.

Pcom was characterized by small cross networks with mild fluctuations between
heatwaves, reflecting a much simpler microbial community. Increased edge complexity at M1
in Pcom_B again suggests a rapid recovery response, with reliance on few bacterial ASVs; as
compared to Mcap_B and Pacu_B, reflecting larger bacterial consortia participating in the
recovery. Reduced trophic plasticity, and intense loss of Symbiodiniaceae and photosynthetic
pigments might obligate Pcom_B to regain symbionts faster, at high biomass investment with
respect to the other species (Wall et al., 2019; Matsuda et al., 2020). Furthermore, intense algal
repopulation in Pcom_B from October—November 2014 was correlated with low symbiont 6"°N
(Wall et al., 2019), and assimilation of N depleted sources, possibly derived from diazotroph

bacteria via N, fixation (Lesser et al., 2007; Cardini et al., 2015; Bednarz et al., 2017). Indeed,
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differentially abundant taxa ranked to recovering Pcom_B included various diazotroph taxa (see

below).

4.4.Differentially abundant bacterial taxa defining temporal shifts in bleaching
recovery

Coral microbiomes in the present study revealed minor community disruption in
response to heatwaves. Similar outcomes were reported previously, together with increases in
potentially beneficial (Santos et al., 2014; Epstein et al., 2019). One bacterial group widely
associated to corals and documented to display diversified tolerances and/or functional traits to
stress conditions is Endozoicomonas (Bourne et al., 2005; Vega Thurber et al., 2009; Littman et
al., 2011; Neave et al., 2016; McDevitt-Irwin et al., 2017; Pogoreutz et al., 2018; Ziegler et al.,
2016, 2017, 2019; Epstein et al., 2019). In our corals, saving an initial decline in Mcap_B at
MO, this genus displayed preponderance throughout bleaching stress, in agreement with other
studies (Ziegler et al., 2016; Pogoreutz et al., 2018; Epstein et al., 2019). Endozoicomonas
symbionts are proposed to play three kinds of functions: 1) nutrient acquisition/provision —
carbon, nitrogen, sulphur, methane recycling, amino acid production,
dimethylsulfoniopropionate (DMSP) metabolism; 2) microbiome modulation —quorum-sensing;
and 3) promotion of host health —antimicrobial activity, pathogens exclusion (Neave et al.,
2016, 2017). DMSP produced by Symbiodiniaceae and sulfur-derivatives from certain
prokaryotes (Endozoicomonas, Acinetobacter, Pseudomonas, Vibrio) provide a selective
environment structuring bacterial populations (Raina et al., 2010). Hence, upon the downturn of
DMSP production throughout bleaching/stress episodes, high abundances of Endozoicomonas
might modulate microbiomes steadiness (Ziegler et al., 2016; Pogoreutz et al., 2018; Epstein et
al., 2019). Further, diazotroph bacteria contribute to homeostasis during bleaching and sub-
bleaching recovery after thermal stress (Santos et al., 2014; Epstein et al., 2019), by suppling
limiting nitrogen to Symbiodiniaceae (Lesser et al., 2007; Olson et al., 2009; Cardini et al.,
2015; Bednarz et al., 2017). Indeed, many differentially abundant taxa positively ranked to our

recovering corals included diazotrophs and/or DMSP-metabolizing bacteria: e.g.,
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Endozoicomonas, Acinetobacter calcoaceticus, Pseudomonas stutzeri, Cyanobium (Lalucat et
al., 2006; Lesser et al., 2007; Olson et al., 2009; Raina et al., 2010). High occurrence of
Acinetobacter spp. and Endozoicomonas spp. is frequently documented in healthy and bleached
Scleractinia, implying synergistic roles in fitness (Cai et al., 2018). Another recently described
symbiont in coral holobionts is Candidatus Amoebophilus, an intracellular associate of
unicellular eukaryotes, like Symbiodiniaceae or amoebae, with undefined role (Huggett and
Apprill 2018; Epstein et al., 2019). Differential phylotypes in this genus were correlated to algal
repopulation, particularly in Pcom_B. Bleaching entails loss of major nourishment inputs and
photoprotection, and corals therefore implement compensatory strategies (Fitt et al., 2001). For
instance, bleached corals have been observed to reinforce feeding on planktonic diazotrophs and
preferentially on nitrogen-rich Synechococcus cyanobacteria (Meunier et al., 2019).
Accordingly, bleached colonies and incipient recovery stages in this study were associated to
Synechococcus; but interestingly also to differential phylotypes with potential UV-absorbing
properties, like Bacillus, Staphylococcus (Ravindran et al., 2013), Micrococcus (Arai et al.,
1992), and the already mentioned Cyanobacteria —Cyanobium, Synechococcus (Sinha et al.,
2001). Notably, Bacillus and Staphylococcus strains within the coral mucus have demonstrated
to increase their UV-absorbance range in response to elevated temperatures, likely protecting
bleached colonies from excessive irradiation prior to recovery (Ravindran et al., 2013).
Lawsonella was another genus frequently associated with bleached corals here. Despite little
information exists on marine representatives, it could involve opportunistic/transient microbes,
as those described in certain human abscesses (Bell et al., 2016). Differentially abundant taxa
were broadly shared between Mcap and Pacu, and partially matching with Pcom —this last
chiefly influenced by Endozoicomonas spp. This outcome is appealing, and suggests that locally
the same players may modulate stress responses in different coral species. Thus, understanding
the dynamics of differentially abundant microbial consortia in correlation with bleaching and
recovery, could provide regional indicators to forecast the fate of sympatric corals to upcoming
(Glasl et al., 2017). Furthermore, certain strains could be proposed as “probiotics” to improve

coral resistance (Peixoto et al., 2017).
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5. Conclusions

Prokaryotic and algal microbiomes differed among the three coral species. Despite the
recovery of the bleached individuals, there was no apparent pattern of temporal acclimatization.
Symbiodiniaceae shifts were found by bleaching phenotype in Mcap and Pcom, probably
contributing to resistance. Compared to previous work, ITS2-type profiling (Hume et al., 2019)
allowed us to disentangle higher intraspecific resolution within Symbiodiniaceae diversity.
Whist compositional analyses (Morton et al., 2019) on the other, permitted the identification of
fine-scale differences in the abundance of certain ASVs/DIVs driving changes by bleaching
susceptibility and time within each host, despite overall stability of the communities. Fungal
associates remain unexplored, until better methods can address host co-amplification and
improve taxonomic identifications (Amend et al., 2012).

The three major coral reef founders in Kane’ohe Bay revealed different responses after
2014-2015 heatwaves. Pacu had thorough bleaching susceptibility and recovered
photosynthetic symbionts probably relying on heterotrophy (Lyndby et al., 2020; Dobson et al.,
2021), and microbiome rearrangements in the early recovery phases (Santos et al., 2014; Ziegler
et al., 2017). Mcap and Pcom displayed two bleaching phenotypes, and the susceptible colonies
Mcap_B revealed greater bleaching resistance and slower recovery at low biomass investment.
Instead, Pcom_B underwent stronger bleaching (higher pigment loss), faster symbiont
repopulation at higher metabolic expenses, but attained better energetic standing (Wall et al.,
2019; Ritson-Williams and Gates 2020).

It is difficult to forecast which of the three strategies will become successful in future
scenarios. Yet, after the recent 2019 heatwave in Hawai’i P. compressa demonstrated better
performance than M. capitata, suggesting certain acclimatization (Innis et al., 2018; Matsuda et

al., 2020). Similarly, poritid corals from Panamd predicted to be disadvantaged to upcoming
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climate and anthropogenic disturbances with respect to other co-dominant scleractinians
(Aronson et al., 2014), have demonstrated unexpected resilience (O’Dea et al., 2020).
Cumulative research demonstrates that coral responses to thermal stress are reliant on host
species, geography, and severity/frequency of the events, impeding the elaboration of
generalizations. Notwithstanding this limitation, further understanding on microbial balances,
may allow to identify finer scale taxa dynamics as local indicators of coral reef fitness (Glasl et

al., 2017; Peixoto et al., 2017), serving as diagnostic tools for ecosystem stress.

Appendix A. Supplementary data

S1. Nuiiez-Pons et alii S1 SupplementaryMethods:  Coral bleaching  monitoring.

Experimental co-variates: Table S1. Experimental co-variates information. Bioinformatics
analysis. Sequencing outputs: Table S2A. Sequencing outputs of 16S rRNA gene V, reads.
Table S2B. Sequencing outputs of ITS1reads. Table S2C. Sequencing outputs of ITS2 reads.
Rarefaction and sequencing depth: Table S3A. Rarefaction information for 16S rRNA data,
Table S3B. Rarefaction information for ITS1 data, Table S3C. Rarefaction information for

ITS1 data.

S2. Nuifiez-Pons_et alii S2 SupplementaryResults: Alpha diversity for 16s rRNA gene data.

Fig. S1. Alpha diversity. Beta diversity for 16s rRNA gene data. Fig. S2.1. RPCA
compositional biplot based on Aitchison distances for Mcap. Fig. S2.2. RPCA compositional
biplots based on Aitchison distances for Pcom. Fig. S2.3. RPCA compositional biplots based on
Aitchison distances for Pacu. Taxa bar plots at ASV level. Fig. S.3.1. Prokaryotic composition
at the ASV level for Mcap. Fig. S.3.2. Prokaryotic composition at the ASV level for Pcom. Fig.
S.3.2. Prokaryotic composition at the ASV level for Pacu. Longitudinal approaches.
Longitudinal analyses for the 16S rRNA gene data. Fig S4.1. Box plot of pairwise distances
on Jaccard index of 16S data. Fig S4.2. Box plot of pairwise distances on Bray Curtis beta index

of 16S data. Fig S4.3. Volatility plot on Bray Curtis distances of 16S data from one timepoint to
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the consecutive. Fig S4.4. Volatility based on Bray Curtis distances of 16S data on coral
colonies from any time point respect to MO. Fig S4.5. Volatility plot of shared phylotypes of
16S data from any time point respect to M0. Fig S4.6. Volatility plot on log-ratio rakings of
microbial bacterial balances formed by differential taxa from one timepoint to the consecutive.
Fig S4.7. Volatility on log-ratio rakings of microbial bacterial balances formed by differential
taxa from any time point respect to Month 0. Longitudinal analyses for the ITS2 data. Fig.
S4.8. Volatility plots of first distances with DEICODE of ITS2 sequences from any time point
to Month 0. Fig. S4.9. Volatility plots of first distances with Bray Curtis from any time point to
Month 0O for ITS2 sequences. Fig. 4.10. Pairwise differences on LogRatios of balances formed
by differential ITS2 sequences in Pcom. Fig. S4.11. Pairwise differences on LogRatios of
balances formed by differentially abundant ITS2 sequences between Month O and 6. Fig. 4.12
Volatility plot of log-ratios ranks of balances formed by differential ITS2 sequences from corals
across time points MO-M6. Longitudinal trajectories of differential bacterial taxa. Fig SS.
Longitudinal trajectory plots of CLR of differential Endozoicomonas microbes in Pcom. Fungal
community inspection. Fig. S6. Taxa bar plots for the ITS1 data annotated at the Kingdom
level. Cross co-occurrence networks analysis. Fig. 6. Cross co-occurrence networks of ASV
bacteria phylotypes vsITS2 type profiles with annotated taxonomy. Genetic BLAST

alignment of prevalent Endozoicomonas.

S3. Nufiez-Pons et alii S3 SupplementaryStatsTables: Alpha diversity statistics for 16s

rRNA gene data. Table S4A. Shannon by coral species. Table S4B. Shannon by coral species
and bleaching susceptibility. Table S4C. Shannon by coral species, bleaching susceptibility and
time point. Table S4D. Observed phylotypes by coral species. Table S4E. Observed phylotypes
by coral species and bleaching susceptibility. Table S4F. Observed phylotypes by coral species,
bleaching susceptibility and time point. Table S4G. Pielou’s Evenness by coral species. Table
S4H. Pielou’s Evenness by coral species and bleaching susceptibility. Table S4I. Pielou’s
Evenness by coral species, bleaching susceptibility and time point. Beta diversity statistics for

16s rRNA gene data. Table. SA: DEICODE beta diversity across coral species and TimePoint.
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Table. SB: Bray Curtis beta diversity across coral species and TimePoint. Table. 5C: Jaccard
beta diversity across coral species and TimePoint. Table 6A: DEICODE by bleaching
susceptibility across time points. Table 6B: Bray Curtis by bleaching susceptibility across time
points. Table 6C: Jaccard by bleaching susceptibility across time points. Table 7A: Beta
diversity comparisons based on DEICODE between bleaching susceptible coral phenotypes.
Table 7B: Beta diversity comparisons based on Bray Curtis between bleaching susceptible
coral phenotypes. Table 7C: Beta diversity comparisons based on Jaccard between bleaching
susceptible coral phenotypes. Beta diversity statistics for ITS2 data. Table 9A: DEICODE
beta diversity for ITS2 profiles across species and by Bleaching susceptibility. Table 9B: Bray
Curtis beta diversity for ITS2 profiles across species and by Bleaching susceptibility. Table 9C:
Jaccard beta diversity for ITS2 profiles across species and by Bleaching susceptibility. Table
10A: DEICODE beta diversity comparisons of differential ITS2 DIVs sequences across coral
species and by Bleaching susceptibility. Table 10B: Bray Curtis beta diversity comparisons of
differential ITS2 DIVs sequences across coral species and by Bleaching susceptibility. Table
10C: Jaccard beta diversity comparisons of differential ITS2 DIVs sequences across coral
species and by Bleaching susceptibility. Table 11A: Beta diversity comparisons based on
DEICODE distances on differential ITS2 DIVs sequences by bleaching susceptibility across
time points. Table 11B: Beta diversity comparisons based on Bray Curtis distances on
differential ITS2 DIVs sequences by bleaching susceptibility across time points. Table 11C:
Beta diversity comparisons based on Jaccard distances on differential ITS2 DIVs sequences by
bleaching susceptibility across time points. Table 12A. Beta diversity comparisons based on
DEICODE distances for differential ITS2 DIVs sequences by bleaching susceptibility and time
point. Table 12B. Beta diversity comparisons based on Bray Curtis distances for differential
ITS2 DIVs sequences by bleaching susceptibility and time point. Table 12C. Beta diversity
comparisons based on Jaccard distances for differential ITS2 DIVs sequences by bleaching

susceptibility and time point.
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S4. Nuiiez-Pons_et_alii_S4 SupplementaryDiffAbundTables16S: Table S8A. Differential

bacterial taxa for Mcap_B across all time points. Table S8b. Differential bacterial taxa for
Mcap_NB across all time points. Table S8C. Differential bacterial taxa for Pcom_B across all
time points. Table S8D. Differential bacterial taxa for Pcom_NB across all time points. Table
S8E. Differential bacterial taxa for Pacu_B across all time points. Table S8F. Differential
bacterial taxa Mcap B and NB by time points MO-M12. Table S8G. Differential bacterial taxa

Pcom B and NB by time points MO-M12.

S5. Nuifiez-Pons_et_alii S5 SupplementaryDiffAbundTablesITS2: Table S13A. Differential

ITS2 sequence DIVs for Mcap across all time points. Table S13B. Differential ITS2 sequence
DIVs for Pcom across all time points. Table S13C. Differential ITS2 sequence DIVs for Pacu
across all time points. Table S13D. Differential ITS2 sequence DIVs for Mcap B and NB in
time points MO-M6. Table S13E. Differential ITS2 sequence DIVs for Pcom B and NB in time

points MO-M6.
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Figure legends

Fig. 1. Map of Kane’ohe (O’ahu) in the Hawai’ian archipelago. Experimental coral sampling
scheme from tagged corals in the field, where 1.5 cm fragments were collected for each colony
in all sample groups (n = 10): Mcap_B, Mcap_NB, Pcom_B, Pcom_NB, and Pacu _B on five
occasions during the recovery after the first beaching event: MO: Oct 2014; M1: Nov 2014; M3:
Jan 2015, M6: May 2015, M12: Sept 2015. Species: Mcap: Montipora capitata, Pcom:s Porites
compressa, Pacu: Pocillopora acuta. Bleaching susceptibility: B: susceptible colonies; NB:

resistant colonies.

Fig. 2. Prokaryotic composition at the genus level (> 0.1 % detection) for the three coral
species. Bars are collapsed by species, month after bleaching event and bleaching susceptibility
phenotypes; and grouped for species and bleaching susceptibility. Species: Mcap: Montipora
capitata, Pcom:s Porites compressa, Pacu: Pocillopora acuta. Bleaching susceptibility: B:
susceptible colonies; NB: resistant colonies. Month after bleaching event: MO: Oct 2014; M1:

Nov 2014; M3: Jan 2015, M6: May 2015, M12: Aug 2015 (Table S1).

Fig. 3. Volatility of the log-ratios of the microbial/bacterial balance representing the differential
taxa across time for the three coral species, by bleaching susceptibility phenotypes.
A) Montipora capitata,; B) Pocillopora acuta; and C) Porites compressa corals. Numerator
and denominator taxa forming each balance are shown in each plot grouped at the genus level,
or the next lowest taxonomic annotation. *Represents time points with significant dissimilarities
between B and NB colonies (Welch tests p < 0.05). §Indicates significant divergence on log-
ratio longitudinally over time (LME; P>[z] < 0.05). D) Trajectory plots over time of
differentially abundant bacterial taxa at the ASV level for the three coral species, by bleaching
susceptibility phenotypes. Taxa are named by the lowest taxonomical annotation. Double
dashed lines represent selected numerator taxa, while single dashed lines represent denominator
taxa within each coral subset. Mcap: Montipora capitata, Pcom Porites compressa,

Pacu: Pocillopora acuta; NB: Bleaching resistant colonies, B: Bleaching susceptible colonies;
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Months after the bleaching event: MO: Oct 2014; M1: Nov 2014; M3: Jan 2015, M6: May 2015,

M12: Sept 2015.

Fig. 4. Symbiodiniaceae community composition of the three coral species across time points —
0 M0), 1 M1), 3 M3) and 6 (M6) months after the bleaching event, and beaching
susceptibility phenotypes —Bleaching susceptible (B) and resistant (NB) colonies. Each column
represents a coral fragment/sample at each collection point. Microalgal IDs are depicted by the
relative abundance of ITS2 sequences (> 3 % detection) plotted in the upper bars, and predicted
ITS2 profiles plotted in the bars below (normalized to 1). A) Montipora capitata (Mcap); B)

Porites compressa (Pcom) ; C) Pocillopora acuta (Pacu).

Fig. 5. Volatility of the log-ratios of the balance formed by the ITS2 sequences representing the
top differential phylotypes in two coral species by bleaching susceptibility phenotypes across
time. A) Montipora capitata: The balance included 23 top ranked numerator DIVs comprising
some C31, C17 and C21 and other C DIVs; and 23 top ranked denominator DIVs, formed by
D4, D1, D6, Dlab and D3h, and a few C17 and C21 among other C DIVs. B) Porites
compressa: In the balance 12 top ranked numerator DIVs included C3 and other C DIVs; and
the 12 top ranked denominator DIVs comprised several C15 and other C DIVs. *Represents
time points with significant dissimilarities between B and NB colonies (Welch tests p < 0.05).

RPCA compositional biplot based on Aitchison distances (DEICODE) of the
total Symbiodiniaceae ITS2 sequences from coral fragments belonging to two species at four
time points -0 (M0), 1 (M1), 3 (M3) and 6 (M6) months after the bleaching event. Samples
(circles) were distinguished by colour according to Bleaching susceptibility.
C) Montipora capitata (Mcap) showed differences in B vs NB colonies at MO, M1 and M3. D)
Porites compressa (Pcom) revealed divergencies in B vs NB colonies only at tO
(PERMANOVA, p < 0.05). Ten most relevant DIVs driving differences in the ordination space

are illustrated by the vectors in each plot.
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Fig. 6. Cross co-occurrence networks of bacteria phylotypes at the ASV level vs ITS2 type
profiles built on SCNIC for the three coral species, by bleaching susceptibility phenotypes O
(Oct 2014 -MO), 1 (Nov 2014 —M1), 3 (Jan 2015 -M3) and 6 (May 2015 —-M6) months after the
bleaching event. Mcap: Montipora capitata, Pcom Porites compressa, Pacu: Pocillopora acuta;
B: Bleaching susceptible colonies, NB: Bleaching resistant colonies. In the networks bacterial
ASVs are  represented by  pink  hexagons, Symbiodiniaceae type  profiles of
the Cladocopium clade are green circles and Durusdinium are orange circles. Negative
interactions are depicted by red arrows and quantified as red numbers / positive interactions by

green arrows and green numbers.
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