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Abstract

In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic
water use drivers must be fully understood to successfully manage water supplies on extended
timescales. This is particularly evident across large portions of the High Plains Aquifer where
groundwater levels have declined at unsustainable rates despite improvements in both the
efficiency of water use and water productivity in agricultural practices. Improved technology and
land use practices have not mitigated groundwater level declines, thus water management
strategies must adapt accordingly or risk further resource loss. In this study, we analyze the
water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major
drivers that have shaped the history, and will direct the future, of water use in modern
agriculture. Based on this analysis, we conclude that future water management strategies can
benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with
strategic objectives, (2) management of water as both an input into the water-energy-food nexus
and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives
within long-term goals, (4) innovative strategies that fit within restrictive political frameworks,
(5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire
to conserve valuable water resources. This research sets the foundation to address water
management as a function of complex decision-making trends linked to the water-energy-food
nexus. Water management strategy recommendations are made based on the objective of

balancing farmer profit and conserving water resources to ensure future agricultural production.
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Page 2 of 51



64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

1. Introduction

Crop production across the High Plains Aquifer region (High Plains) in the central United
States has an annual market value greater than $20 billion—approximately 10 percent of the
entire U.S. crop value (NASS-USDA, 2012). Irrigation is essential to much of this crop
production. Irrigated agriculture across the High Plains accounts for 30 percent of all irrigated
acreage in the U.S. (Dennehy et al., 2002), and 97 percent of High Plains irrigation water is
extracted from the High Plains Aquifer (HPA; Maupin and Barber, 2005). Due to extensive
irrigation, groundwater levels across large sections of the HPA have been declining for decades,
particularly in the southern section where the aquifer is thin and irrigation demand is high
(Haacker et al., 2015; McGuire, 2009; Scanlon et al., 2012). Future decades are forecast to bring
more widespread groundwater declines, effectively depleting broad regions of the HPA if current
practices continue (Haacker et al., 2015). Major reductions in water availability would result in
enormous consequences for food and energy production.

At the core of agricultural water management challenges is the water-energy-food nexus.
Acting within this nexus across the HPA are the individuals and institutions that adapt to address
the realities of groundwater depletion. These include creating and adopting new technologies,
developing and planting different cultivars, shifting cropping patterns, implementing new
policies, expanding monitoring, and pushing toward more efficient use of limited resources.
These strategies have been designed around the objectives of increasing crop yields, decreasing
production costs, improving or maintaining soil fertility, and reducing environmental impacts
(Edwards, 1989; Stuart et al., 2015). They can be generalized into two broad focus areas: (1)
water conservation to both use less water and be more efficient in application, and (2) water

productivity to maximize the return on water use. Water conservation research has focused on
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strategies such as deficit irrigation (Fereres et al., 2007; Geerts and Raes, 2009), irrigation
technologies (Colaizzi et al., 2009; Howell, 2001), rainfed agriculture (Rockstrém et al., 2010;
Rosegrant et al., 2002), and land management practices (Bossio et al., 2008; 2010). Water
productivity research has focused on improved seed genetics (Hu and Xiong, 2014; Passioura,
2004), variable rate irrigation (Basso et al., 2013; Evans et al., 2013), and intraseason water
management through irrigation scheduling and soil moisture monitoring (Aguilar et al., 2015),
vegetation indices (Basso et al., 2004), and tillage practices (Derpsch et al., 2010). Despite this
increased emphasis toward groundwater conservation among researchers, and new technologies
and strategies that can greatly improve water productivity, groundwater supplies across the HPA
continue to decline at unsustainable rates (Haacker et al., 2015; Scanlon et al., 2012).
Historically, water management strategies have targeted water use drivers within three
major domains: (1) physical (e.g., climate, geology), (2) agricultural (e.g., crop type, tillage
practices), and (3) socioeconomic (e.g., groundwater doctrines, market values) (Pimental et al.,
1997). However, water use drivers in modern agriculture are too complicated to be regulated
individually within these separate domains. For example, changes in precipitation patterns have
direct implications on irrigation scheduling and applications (Lorite et al., 2015), improved
technologies allow for innovative and heterogeneous farming practices (Steven and Clark, 2013;
Zhang and Kovacs, 2012), and crop prices respond to changes in global market demands
(Rosegrant, 2008). Furthermore, drivers within these domains each influence short- and long-
term water use decisions in ways that have not been addressed in static water management
strategies (e.g., climate variability, government incentives, and annual crop insurance plans).

Moreover, water use drivers across these domains are inherently linked, making it impossible to
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implement temporally relevant water management strategies in one domain without impacting
another.

There are clear gaps in current water management strategies across the High Plains, as
evidenced by the increase in both crop production and water use despite the reality of
groundwater depletion (NASS-USDA). Nowhere is agricultural water management more
prevalent than in the water-energy-food nexus of the HPA, making the region ideal to learn how
complex management domains influence water use and decision-making. This study provides a
comprehensive overview of the major drivers of water use across the HPA through a novel
synthesis of data and an in-depth review of the relevant literature. We examine drivers in the
physical, agricultural, and socioeconomic domains in contrast to the historical approach.
Furthermore, within each domain, we analyze water use trends and examine how these drivers
interact to influence water use decisions. We then synthesize across domains to present a
framework for maintaining long-term aquifer supplies through improved agricultural water

management strategies across the water-energy-food nexus.

2. Methods

This study synthesizes extensive agricultural databases along with the relevant water
management literature across the HPA. When used, specific processing techniques are discussed
within corresponding sections. Sections 3, 4, and 5 compile individual water use drivers or driver
categories into major domains, where each subsection represents a major driver set or focus area.
Subsections are selected according to the most significant topics for water supply or water use
across the region, as a complete synthesis of these drivers is necessary to formulate water
management suggestions and highlight areas where water resources are exploited. All drivers at

every spatial and temporal scale may not be included, as our subsection lists are representative of
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and relevant to large scale management schemes. We derive our conclusions based on the trends
found within and across each domain, and we make management suggestions based on the goals

of maintaining farmer profit and achieving long-term aquifer sustainability.

3. The Physical Domain

The physical domain defines the limits of the water-energy-food nexus. For example,
food production requires both energy and water. If water is limited, so will be the ability to
increase crop yields. Thus, balancing components within the nexus to find the combination
where production is highest and resource expenditures are lowest over time is critical for
sustainable agriculture. A required step to reach this ideal nexus status is to assess total water
availability and supply through time. Here, we analyze the major physical drivers that impact
water availability and supply, and we highlight the trends that have the most influence on long-

term sustainability goals.

3.1 Geology, Soil, and Land Cover

The HPA (450,000 km?; Qi, 2010) is located in the west-central United States and spans
portions of eight states: South Dakota, Wyoming, Nebraska, Colorado, Kansas, Oklahoma, New
Mexico, and Texas (Figure 1A). Given its size, the HPA is often divided into three geographical
areas, each with unique physical characteristics: the Northern High Plains (NHP; 249,509 km?,
Central High Plains (CHP; 127,168 km?), and Southern High Plains (SHP; 75,921 km?). At
3,750 km? of total water volume in 2012 (Haacker et al., 2015), slightly larger than the volume
of Lake Huron, the HPA remains one of the largest known freshwater aquifers in the world. The

total volume of water estimated within the NHP is ~2,940 km?, the CHP is ~635 km?, and the
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SHP is ~171 km?. However, groundwater is being recharged at rates far below annual

withdrawals in the south and central portions of the aquifer.
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Figure 1. The High Plains and aquifer decline. A) Site map of the HPA and its three
main regions. B) Land cover across the HPA region, dominated by range and cropland (NLCD,
2011). C) Interpolated groundwater level declines compared to predevelopment levels (modified
from Haacker et al., 2015).

The High Plains have a semi-arid, temperate climate, with surface elevations that follow
a west-east gradient from ~2,400-m in the west to ~350-m in the east (Dennehy et al., 2002);
local relief is generally very low. Soil characteristics follow a general gradient of high
permeability in the NHP (Dennehy et al., 2002; Gutentag et al., 1984) to low permeability in the
SHP (Dennehy et al., 2002; Reeves Jr., 1970). Native land cover includes short and medium
grass prairies, though large sections of modern land cover have transitioned to cropland (Figure
1B) with the major crop choices of corn, sorghum, winter wheat, soybeans, alfalfa, and cotton
(Dennehy et al., 2002). Crop selections follow a general gradient of water-intensive crops in the

north (e.g., corn, soybeans) to less water-intensive crops in the south (e.g., cotton, winter wheat).

The other major land use type across the region is livestock rangeland (primarily cattle; Dennehy
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et al., 2002). Collectively between cropland and rangeland, 94% of the High Plains is considered

agricultural land (Figure 1B).

3.2 Hydrology and Hydrogeology

Several hydraulically-connected permeable units collectively form the HPA complex
(Gutentag et al., 1984; Knowles et al., 1984); the largest of which is the Ogallala Formation, or
Ogallala Aquifer, a name often used interchangeably with HPA. The Ogallala Aquifer underlies
nearly 77 percent of the HPA area, with most of the remaining area composed of the Brule,
Arikaree, Great Bend Prairie, and Equus Beds aquifers. Hydraulic conductivity and specific yield
across the HPA vary from 1 to 105 m/day and 3 to 35 percent, respectively (Gutentag et al.,
1984), resulting in highly variable groundwater yields across the aquifer. Saturated thickness
ranges from 0 to 300-m but has drastically declined since predevelopment; average saturated
thickness is approximately 60-m. Depth to water is generally from a few to 150-m, and average
depth to water in 2012 was 30-m for the NHP, 44-m for the CHP, and 41-m for the SHP.

While groundwater supply in the NHP has been fairly stable since predevelopment, the
CHP and SHP have experienced extensive groundwater depletion due to extensive groundwater
pumping (McGuire, 2009). Peak groundwater level declines have reached more than 45-m in
portions of the CHP and SHP (Figure 1C), while average declines by state for portions of the
HPA are: 14-m in Texas, 9-m in Kansas, 6-m in Oklahoma, 5-m in New Mexico and Colorado,
and (Haacker et al., 2015). Average groundwater declines in the NHP have been less than 0.5-m
in both Nebraska and Wyoming (McGuire, 2009; Scanlon et al., 2012; Haacker et al. 2015),

although areas of extensive groundwater withdrawals are common. Collectively, nearly 410 km?
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of water has been depleted from the HPA since predevelopment (Haacker et al., 2015), which is
approximately the volume of Lake Erie.

Total annual surface water flow entering the HPA region is ~2.5 km? per year (Dennehy
et al., 2002), though extensive groundwater depletion has resulted in a net loss in annual
streamflow and surface water volume (Nativ, 1992; Scanlon et al., 2012). While major river
systems flow from west to east across the NHP and CHP, the SHP has few streams, and none
flow consistently. Instead, surface water in the SHP is largely drained and stored in thousands of
localized playa lakes that are most concentrated along the eastern margins of the region. These
broad, shallow lakes can span up to 1-km in diameter (Osterkamp and Wood, 1987) and drain an
estimated 90% of the SHP region (Nativ, 1992). Playa lakes exist across the entire High Plains
(~61,000 lakes; Gurdak and Roe, 2010) but are much more prevalent in the SHP (~30,000 lakes;
Osterkamp and Wood, 1987; Figure 1A).

Natural recharge in the NHP and CHP occurs primarily as precipitation percolation
through permeable soils and leakage from surface water bodies (Weeks et al., 1988; Dennehy et
al., 2002). Localized recharge in the SHP region largely occurs as percolation beneath playa
lakes where water passes through dissolved or fractured caliche (Osterkamp and Wood, 1987;
Scanlon and Goldsmith, 1997; Wood and Osterkamp, 1987). Areal groundwater recharge across
the High Plains decreases following a gradient from north to south. Secondary recharge across
some portions of the HPA also occurs as irrigation return flow where some of the excess applied
water is returned to the aquifer (McMahon et al., 2006; Scanlon et al., 2005; Whittemore et al.,

2015).

3.3 Regional Climate
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The High Plains are located in a wet-dry climate transition zone (Koster et al., 2004) where
soil moisture plays a critical role in modulating the energy and mass transport that impact the
regional water cycle (Berg et al., 2014). This is particularly relevant in areas of high irrigation
where modified soil moisture significantly impacts the regional hydroclimate through adjusted
land-atmosphere interactions (Harding and Snyder 2012a; 2012b; Jédar et al., 2010; Lo and
Famiglietti, 2013; Moore and Rojstaczer 2001; 2002; Pei et al., 2016; Qian et al. 2013). One
major effect of increased soil moisture is on the Great Plains low-level jet (GPLLIJ; Walters et
al., 2014; Weaver and Nigam, 2011). The GPLLJ brings moisture into the region from the Gulf
of Mexico and provides the main external moisture source for precipitation over the High Plains
and central United States (Cook et al., 2008; Higgins et al., 1997; Pei et al., 2014; Tuttle and
Davis, 2006; Weaver, 2007). At shorter timescales (event-scale), fluctuations in the GPLLJ
prompt nighttime rainfall maxima during warmer seasons, where greater moisture convergence
results in heavier precipitation (Carbone and Tuttle 2008; Pu and Dickinson 2014; Zhong et al.,
1996).

Climate models project a decrease in warm-season precipitation (Cook et al., 2008;
Maloney et al., 2014) and an increase in regional temperatures for the High Plains by the end of
this century (Cook et al., 2008; IPCC, 2007). Historically, the High Plains receives ~50-cm of
average annual precipitation (Crosbie et al., 2013), with a gradient from ~40-cm along the
western border to ~70-cm along the eastern edge (Gutentag et al., 1984). Precipitation is
projected to increase for the NHP and decrease for the SHP, and regional temperatures are
expected to increase by 2 to 5°C (Crosbie et al., 2013; IPCC, 2007). Increased temperatures

would likely favor increased evapotranspiration (Green et al., 2011), and a decrease in

Page 10 of 51



241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

precipitation and increase in temperature would both likely exacerbate groundwater supply
declines under current water use scenarios (Crosbie et al., 2013).

Extreme drought events have also become more frequent over the past 45 years (NLDAS-
2). The average annual HPA precipitation fell below 305-mm five times since 1998, whereas this
occurred just once from 1979-1998 (Figure 2). While reductions in annual precipitation are most
extreme in the SHP, similar trends have been seen in the NHP and CHP. In particular, SHP
precipitation fell below 100-mm during 2012-2013 regional droughts, and for the first time on
record, precipitation simultaneously fell below 300-mm for both the CHP and NHP regions

during the same drought period.
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Figure 2. Average annual precipitation for the HPA and its three regions (NLDAS-2
forcing file A).

Discrepancies in the projected GPLLJ strengthening and subsequent precipitation decreases
suggest changes in future climate regimes over the HPA (Maloney et al., 2014). Areas of the
HPA that are currently limited by water availability will likely be the most affected by these
changes (Ng et al., 2010). However, accurately capturing these patterns remains a challenge for

predictive models even with knowledge of the major climate controls (Hoerling et al., 2014). For
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example, the 2012 severe Great Plains drought was suggested to be independent of these climate
patterns and likely a result of atmospheric noise alone (Kumar et al., 2013). Future water

management strategies would clearly benefit from improved climate prediction skills.

4. The Agricultural Domain

Crop yield in the agricultural domain is the primary indicator of resource efficiency
within the water-energy-food nexus, given its dependence on both growing conditions and
agricultural management practices. Generally, increased yields through time indicate improved
technologies or agricultural practices that allow physical resources to be used more efficiently.
However, improved efficiency is not always an indicator of sustainability. Increased crop yields
may be a function of efficient practices, but that does not mean they are always less taxing on
resources within the physical domain (e.g., water, soil). Cross-domain impacts must be
considered to achieve sustainable management strategies in modern agriculture. In this section,
we highlight the major agricultural drivers that impact water use, the primary component limited

by availability and supply in the physical domain.

4.1 Soil Management

Soil management strategies focus on maximizing crop yield, maintaining long-term soil
fertility, and mitigating environmental impacts such as nitrate leaching and greenhouse gas
emissions. Example soil management strategies include conventional tillage versus no-till
farming (e.g., Ghimire et al., 2012; Hobbs et al., 2008), crop rotations (e.g., Johnston, 1986;
Odell et al., 1984), and off-season cover crops (e.g., Allen et al., 2005; Havlin et al., 1990).
Conservation agriculture incorporates these land management strategies to increase soil fertility

by preserving surface organic carbon, protecting soil from water runoff, and reducing soil loss by
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eliminating bare exposure (Basso et al., 2006; 2014; Hobbs et al., 2008). Managing soils to
improve fertility reduces the demand for additional water applications. However, the potential
for soil management to conserve water does not negate the substantial amount of water used for

irrigation.

4.2 Irrigation and Crop Yield

A new synthesis of annual irrigated and non-irrigated yield since 1970 across the HPA
was conducted using data from the National Agricultural Statistics Service (NASS-USDA),
plotted in Figure 3. This synthesis uses annual county-level surveys of yields for the six major
commodities grown across the HPA: corn, soybeans, winter wheat, alfalfa, cotton, and sorghum.
The analysis of these data highlight: the considerable benefit of irrigation across the HPA (with
little difference across subregions), the large increase in yields of corn, soy, and cotton over time
due to improved management and crop genetics, and much larger annual variability in yields
from dryland relative to irrigated production. The linear trends fit to this data from 1970-2014
show that non-irrigated and irrigated yields have increased by 133 and 96 percent for corn, 74
and 330 percent for cotton, 69 and 89 percent for soybeans, 17 and 26 percent for alfalfa, 11 and
13 percent for sorghum, and 4 and 27 percent for wheat, respectively. Today, non-irrigated corn
yields are similar to the irrigated corn yields of 1970, and irrigated corn yields today are more
than double non-irrigated yields (Figure 3A). Similar trends can be seen in cotton yields,
although the gap between irrigated and non-irrigated yields has been increasing in recent years
(Figure 3B). Alfalfa, sorghum and wheat yields have not rapidly increased since 1970, though
irrigated yields are still approximately double the non-irrigated yields of these crops (Figure 3D-

F).
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Figure 3. Irrigated and non-irrigated yields for the main commodities grown across the
HPA (NASS-USDA). Alfalfa yields were not available after 2009.

In general, we found that irrigation increases yield by a factor of two to four times
relative to dryland farming, a significantly larger yield increase than can be generated by other
land management strategies (Colaizzi and Gowda, 2009; Colaizzi and Schneider, 2004). This
boost in crop yield generates a major economic incentive to irrigate. Today, over 12 million
acres of irrigated cropland are fed by the HPA for these six commodities (NASS-USDA).
Irrigation over the HPA is so extensive, and high-yield agriculture is such a major component to
the regional economy, that widespread transitions to dryland agriculture would cause severe

economic consequences for the region (Colaizzi et al., 2009).
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4.3 Crop selection
Water demand varies by commodity, and in general, the most water-intensive crops

return the greatest short-term profit. For example, cotton demands approximately 69-cm of water
for peak yields while corn requires almost 80-cm (Moore and Rojstaczer, 2001). This has
resulted in both the widespread selection and the irrigation of more water-intensive crops, such
as corn, across the High Plains. To investigate commodity selection trends, we calculated annual
irrigated and total acreages from 1970 to 2014 for the six major commodities (NASS-USDA).
We used a composite of annual county-level surveys, which may in some years only include a
subset of commodities for each county, and the more complete bi-decadal Agricultural Census.
Additionally, the noisier annual survey data were bias corrected to match the 5-year Census data.
Biases in survey data are calculated for each county relative to the Census values as

biasyeqr = (CeNsuUSyeqr — SUTVEYyeqr) /SUTVEYy car (eq. 1)
and linearly interpolated between Census years. This annual bias was then converted to a
multiplicative correction factor as

COTTectionyeq, = biaSyeqr + 1 (eq. 2)

which was then multiplied by the annual survey data for each county. Counties partially within
the HPA were multiplied by the fraction of each county that falls within three HPA subregions.

Adjusted acreages were then summed across the three HPA subregions (Figure 4).
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Figure 4. Total commodity acreage (left) and irrigated commodity acreage (right) by
region (NASS-USDA).

By the middle of the 1990s, over 7.5 million acres of corn were irrigated across the HPA
region compared to just over 2 million acres in 1970. Today, irrigated corn acreage alone is
greater than all other major commodities combined for the NHP and CHP regions (Figure 4).
While some areas of the HPA have tried shifting from corn to less water-intensive crops in an
attempt to conserve water (e.g., Colaizzi et al., 2009), extensively irrigating the crop with the
greatest economic return is still widely in practice today. For total acreage, corn is the primary

crop in the NHP, wheat is primary in the CHP, and cotton is primary in the SHP. This trend in
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dominant crop type follows the same gradient of regional water availability, where the most
water intensive crop is dominant in the north and the least water intensive crop in the south,
further demonstrating how water supply in the physical domain affects decision-making in the
agricultural domain. Across the HPA, irrigated corn now accounts for over 50 percent of all
irrigation; with approximately 70, 75, and 80 percent of the corn being irrigated in the NHP,

CHP, and SHP, respectively.

4.4 Groundwater Pumping

Widespread irrigation is the largest contributor to groundwater decline across the HPA.
Steady groundwater level declines across both the CHP and SHP are evidence that irrigation
practices in these regions are unsustainable (Figure SA). Since the late 1930s, saturated volumes
of the CHP and SHP aquifers have been reduced by ~30 and ~50 percent, respectively. Our
projections based on linear extrapolation of trends in saturated thickness from 1993-2012 (after
Haacker et al., 2015) show that irrigable acreage availability (areas with >10-m saturated
thickness) will fall below 50 percent of the total SHP and CHP area by the years 2025 and 2065,
respectively (Figure 5SB). However, irrigation on the NHP has had little impact on the overall
decline of groundwater in the region as a whole. This suggests that water in the NHP can
generally be treated as a renewable resource (Haacker et al., 2015; Scanlon et al., 2012), except

for some portions of the region.
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Figure 5. Aquifer decline across the High Plains. A) Saturated aquifer volume for each HPA
region since predevelopment. B) Estimated (left) and predicted (right) irrigable acreage based on
saturated thickness interpolations for each region (modified from Haacker et al., 2015).
Saturated thicknesses across the NHP have historically varied nonlinearly in a given
location, suggesting that overall irrigable acreage may remain relatively stable into the future.
However, saturated thicknesses across the CHP and SHP have not evidenced recovery, thus
declining saturated thickness estimates are representative of declining irrigable acreage
predictions for these regions. Extending the time frame for trend analysis prior to 1993 would
allow for more comprehensive predictions of each region, but this dilutes the role of recent
agricultural practices on declining groundwater levels. The average projected usable lifespan of
the aquifer based on estimated 2007 storage and depletion rates is around 81-yrs for the SHP and

238-yrs for the CHP, while the NHP is relatively sustainable under current irrigation trends

(Scanlon et al., 2012).

4.5 Efficient Water Use
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Irrigation has become more expensive due to groundwater declines and the increased
costs for the energy sources needed to lift groundwater, further supporting the central role of the
water-energy-food nexus in modern agriculture. This increase in cost, in addition to the goal of
conserving water resources, has led to the development and adoption of increasingly efficient
irrigation technologies (i.e., reduction in the percent of water lost to direct evaporation per
amount applied). In theory, improved efficiency of water use increases farmer profit by lowering
production costs.

Since the 1980’s, a common strategy to improve irrigation efficiency has been to modify
pre-existing central pivot systems with lower-pressure spray applicators (Colaizzi et al., 2004;
Colaizzi et al., 2009; Lyle and Bordovsky, 1983). Low-pressure spray applicators are classified
according to the height of the nozzle, as Low-Elevation Spray Applicators (LESA) or Mid-
Elevation Spray Applicators (MESA). Systems using an applicator sock dragged along the soil or
a sprayer near the soil are referred to as Low Energy Precision Applicators (LEPA), which is
also the common name for this entire low pressure applicator class.

We quantified the change in irrigation technologies across Kansas since 1990 (Figure 6)
using water rights data from the Kansas Water Information Management and Analysis System
(WIMAS). Prior to 1990, adoption of LEPA and related technologies was small, remaining
below 5%. While the prevalence of flood irrigation systems steadily declined, farmers were
transitioning to traditional high-pressure center pivot systems until 1997 when an abrupt
inflection in adoption of LEPA-type systems occurred, along with a steady decline in flood and
high pressure center pivot systems. By 2010, LEPA-type systems accounted for almost 65% of

all irrigation systems across the HPA region of Kansas. Irrigation technology selections in
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Kansas demonstrate the widespread adoption of LEPA technology, trends which are mimicked

across the rest of the HPA states.
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Figure 6. Irrigation technology selections across the HPA in Kansas (Kansas Division of Water
Resources).
4.6 Water Use Response to Efficient Technologies

Irrigation technology can have a large effect on water use efficiency (Deng et al., 2006).
For example, subsurface drip irrigation can reduce irrigation water use by 35 to 55% (Lamm and
Trooien, 2003). However, groundwater level declines have not been mitigated by the widespread
conversion to more efficient irrigation technologies; instead, total withdrawals have increased.
As improved irrigation efficiency decreases the usage cost for water applications, more acreage
can be irrigated at a lower cost, resulting in increased profit margins for farmers and increased
incentive to irrigate more acres (Pfeiffer and Lin, 2014; Upendram and Peterson, 2007).

To demonstrate that efficient irrigation technologies have led to increased water use
across the HPA, we processed data for total irrigated acreage from 1990-1996, seven years prior

to the widespread adoption of LEPA technology, and 1997-2003, seven years directly after
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LEPA adoption (NASS-USDA). Total irrigated acreage across the HPA increased by ~11.38
million acres after widespread LEPA adoption; by subregion, the NHP, CHP, and SHP increased
by 5.55, 3.63, and 2.22 million acres, respectively (Table 1). Also significant are the trends in
irrigated crop choice that directly follow LEPA adoption. For example, NHP farmers focused on
irrigating a variety of crops rather than isolating corn expansion, CHP farmers expanded water
intensive crops despite regional water level decline, and SHP farmers primarily sought to
improve yields on predominant crops like cotton while also capitalizing on the incentive to grow
water-intensive corn in the relatively dry region. From 1996 through 2015, there has been an 11
percent increase in irrigated acres on the NHP and CHP; in contrast there has been a 25 percent
decrease on the SHP, likely due to the decrease in available irrigable acreage as displayed in

Figure 5.

4.7 Other Methods

Past studies have also highlighted how maximizing efficient water use includes more than
just improved irrigation technology. For example, efficient water use also includes processes
such as fertilizer regimes (Ogola et al., 2002), root zone uptake (Clothier and Green, 1994), pre-
existing soil moisture (Panda et al., 2003), and irrigation frequency and intensity (Kang et al.,
2002; Nair et al., 2013). Yields have been highest when irrigation applications were frequent
with low intensity (Behera and Panda, 2009) and when fertilizer applications integrated with
irrigation could offset the additional need for water to maximize yield. Water uptake by plant
roots mostly occurs in the uppermost 45-cm of soil, thus irrigation applications that supply water
beneath this depth generally add to nutrient and water leaching (Panda et al., 2003). Furthermore,

increased irrigation applications, even with efficient technologies, lead directly to increased

Page 21 of 51



446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

water loss due to increased evapotranspiration (Howell et al., 2004; Ogola et al., 2002).
Improved irrigation regimes are a major focus area for water conservation, and further research

is needed that integrates water use with the social drivers behind water management.

4.8 Water Productivity

Improved water use efficiency can both limit the total volume of water applied per area
and reduce the total water demanded by the crop system. This movement has been widely linked
with “crop per drop” research where the objective is to maximize crop yield for every drop of
water applied (Brauman et al., 2013). To quantify the amount of crop returned per water amount
of water applied, we conducted a novel synthesis of the benefit of irrigation on yields, irrigated
water applications per commodity, and irrigation water use efficiency (Figure 7). The yield
benefit of irrigation (Figure 7A), or the difference between irrigated and non-irrigated yields,
was calculated for each commodity and averaged across the HPA using the data in Figures 3 and
4. To calculate water applications per commodity, three county-level time series were used: (1)
annual irrigated yields per commodity (Figure 3), (2) annual irrigated acreages per commodity
(Figure 4), and (3) water use per commodity, which was estimated every five years using
Agricultural Census and USGS Water Use data (NASS-USDA, 2012; NWIS-USGS). USGS
Water Use data prior to 1985 are at the state level, so we first disaggregated these to county level
by assuming that relative county-level water use remained the same from 1985 back to 1970.
Second, we used state level data from the 2013 Agricultural Census on water applied per
commodity and assumed that relative water applied per commodity remained the same within
each state across the analysis years. Third, we multiplied commodity acreages in each county by

relative water use to partition total water among commodities. Finally, we divided the
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commodity water use in each county by county acreages to get water use per commodity. To
estimate the “crop-per-drop” of irrigation water across the HPA, and how it varies across
commodities, we divided the irrigated yield benefit (Figure 7A) by the water applied (Figure
7B), yielding Irrigation Water Use Efficiency (Figure 7C), or the benefit of irrigation per unit of

applied water, across commodities.

Corn —— Alfalfa
Cotton Sorghum
Soybeans Wheat

Irrigated Yield

Water Applied

Irrigation WUE
(kg/ha/mm)
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Year

Figure 7. Crop yield, irrigation application data, and water use data (NASS-USDA; NWIS-
USGS) were used to quantify crop yield per water spent in 5 year increments since 1970. A)
Yield benefit is calculated as the difference in yield between irrigated and non-irrigated yield. B)
The HPA-average annual amount of water applied for each commodity. C) Irrigation Water Use
Efficiency (WUE), calculated as the irrigated yield benefit divided by applied water.
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The incentive to irrigate is obvious based on the irrigated yield benefit. For example,
irrigated corn yield is approximately 5,000 kg/ha greater than non-irrigated yield (Figure 7A).
However, the productivity of water (i.e., crop yield per drop) has not been well documented
across regions. Due to many factors including more efficient irrigation systems, shifts in
cropping patterns regionally, and changes in irrigation application practices, the amount of water
applied per season has decreased for all common commodities (Figure 7B), and the magnitude of
crop yield gained per amount of water applied has steadily increased in recent decades across the
HPA (Figure 7C), demonstrating that the productivity of irrigation water has steadily improved.
For example, irrigation water use efficiency has nearly tripled in the last 45 years for corn and
more than doubled for alfalfa, sorghum, soybeans, and wheat. This boost in regional productivity
is directly linked to both the improvement in yield benefit (Figure 7A) as well as reduced water
applications. Assuming these positive water productivity trends continue into the future, the
incentive to irrigate will continue to increase, further intensifying resource demands in the water-

energy-food nexus over the HPA.

4.9 Emerging Strategies

Emerging research to improve water productivity has largely focused on precision
agriculture, crop choice, and cultivar improvement (Basso et al., 2011; 2013; Ritchie and Basso,
2008). In recent years, the emphasis on cultivar development has increased given the expected
cross-domain implications of climate change such as decreased crop yields due to increased
water stress (Basso et al., 2015; Basso and Ritchie, 2014). New crop cultivars may result in
increased yields despite growth challenges posed by climate change by allowing for some

traditionally water-intensive crops to be grown in regions where water is scarce (Hu and Xiong,
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2014; Lobell et al., 2014). As more drought-resistant crop cultivars enter the market, growth of
these cultivars in water-deficient areas will likely become more profitable (Benson et al., 2011).
Precision agriculture has generated significant interest among researchers and farmers
given its potential to improve long-term production even at the small farm scale, although the
adoption of precision agricultural practices has only grown moderately since their introduction in
the 1990s (Daberkow and McBride, 2003; McBratney et al., 2005). Precision agriculture uses
discretized, site-specific information based on factors including crop choice and soil type to
develop strategies that are unique to that site, such as only applying irrigation to moisture
deficient sections of a field (Basso et al., 2001; Bongiovanni and Lowenberg-Deboer, 2004). One
challenge for large scale increases in water productivity using precision agriculture is that
variable rate technologies are still under development and have not been widely applied in areas
such as the HPA. The implications of precision agriculture on water productivity are likely most
beneficial when considering adaptive, full-field irrigation strategies that respond to low soil

moisture conditions.

4.10 Natural Viability

Crop type selection is a natural solution to water conservation. For example, switching
from water-intensive corn to a less water-intensive crop mitigates the need for excess irrigation.
In the northern Texas region of the SHP, switching half of irrigated corn to irrigated cotton could
reduce water withdrawals by 8% (Colaizzi et al., 2009). Growing water-intensive crops in
regions that need supplemental irrigation generates the largest demand for water withdrawal

from the HPA aquifer. Crop selection based on the natural variability of the regional climate is
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the most effective method of water conservation. However, natural crop selection generally

results in less farmer profit.

5. The Socioeconomic Domain

The socioeconomic domain both motivates and regulates how water is used within the
water-energy-food nexus. In other words, this domain defines the incentives and social penalties
for water use. Farmers generally aim to maximize profit, meaning the nature and location of
economic incentives within the nexus can be useful indicators of potential water use. At the same
time, legislation and political actions define to what extent, and sometimes at which locations,
water can be used. Understanding how drivers within the socioeconomic domain may impact
cross-domain trends in the physical and agricultural domains is a challenging but critical task in
modern agriculture. We highlight historical socioeconomic and policy trends that provide key
insights into areas where future management strategies can improve within the context of water

conservation.

5.1 Historical Water Policy

In the United States, water allocation laws are made at the state level except where
subject to federal rules such as interstate commerce (Peck 2007). Among U.S. states, there are
four predominant doctrines governing water policy: (1) the absolute ownership doctrine: all
water beneath a property owner’s land belongs to the landowner, (2) the correlative rights
doctrine: landowners must share underlying water with other owners of land over an aquifer, and
each owner has equal rights to groundwater, (3) the reasonable use doctrine: the landowner can
use underlying water without restriction as long as it is beneficial to the overlying land, and (4)

the prior appropriation doctrine: priority belongs to the most senior claim, often phrased “first in
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550 time, first in right.” The dominant legal doctrines governing water rights across the HPA states

551  are displayed in Figure 8.

552
State Doctrine Control Strategic Plan
1
CO  Modified Prior Appropriation’ ﬂaé:l Planned depletion®
. g State,' Sustainable yield,
ha Frilar Apprennation Local  planned depletion
NE Reasonable Use/Correlative Rights' Local? Set by NRDs?
NM Prior Appropriation1 State’ Planned depletion‘
OK Reasonable Use' State'  Planned depletion®
. o si State,'  Set by state and*
D FriorAppropriation Local Indian Reservations
. 1 Set by monitoring®
X Absolute Ownership Local program
WY Prior A;:ﬁpropria\tion1 State' Long-term monitoring5
"McGuire et al., 2003; “Peck, 2007; *White and Kromm, 1996; ‘Gutentag et al., 1984; *Taboga, 2015
M Prior Appropriation
[ | Reasonable Use M Modified Prior Appropriation
[M Absolute Ownership [ Il Correlative Rights/Reasonable Use
Darker shades represent local management boundaries
553
554 Figure 8. Dominant groundwater doctrines, local management boundaries, primary

555  control levels, and prevailing management plans across the HPA in each state.
556

557 Most HPA states have developed localized management areas to enact further protection
558 for groundwater after decades of following a state-first control model (Fipps, 1998; Peck, 2007).
559  HPA states have intensified groundwater management strategies by implementing plan

560 requirements, regulating case-specific problems, and establishing critical watershed areas in

561 efforts to address groundwater decline issues not met by pre-existing allocation policies (Ashley
562  and Smith, 1999; Kaiser and Skillern, 2001; Mace et al., 2006). Despite a more localized and
563  defined management approach, allocation policies have failed to adequately protect against

564  groundwater depletion (Kaiser and Skillern, 2001). The control levels of all HPA states are

565  further summarized in Figure 8.
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Surface water connections have also become increasingly prominent in modern
groundwater policy and legislation. For example, in 1999, Kansas sued Nebraska and Colorado
alleging that reduced flow in the Republican River due to large-scale groundwater development
violated the Republican River Compact of 1942. Although groundwater was not explicitly
addressed in the Compact, the US Supreme Court ruled that groundwater use was restricted if it
depleted transboundary streamflow. The resulting restrictions for this region of Nebraska
included a suspension on drilling new water wells, mandatory metering of irrigation wells in the
watershed and certifying irrigation acreages, restrictions of groundwater pumping volumes, and a
framework to use groundwater modeling to assess compliance on five-year running averages
(Kuwayama and Brozovi¢, 2013; Peck, 2007). Future water management can capitalize on
improved observations and numerical models to formulate strategies that integrate surface water

and groundwater as a preemptive step to groundwater conservation.

5.2 Motivation for Policy Changes

Historically, water policies in the High Plains states were created during periods of
limited demand on water resources. These initial policies still exist as political frameworks, and
policies have been fit within the structure of these outdated philosophies. Most HPA states
acknowledge that under current policy, it is more realistic to manage groundwater as a
nonrenewable resource or mined commodity, rather than a sustainable and renewable resource
(Waskom et al., 2006). As a result, many areas on the High Plains have implemented “manage
for depletion” regimes where calculated water withdrawals are permitted based on an extraction
formula, rather than targeting aquifer sustainability (McGuire et al., 2003; Peck, 2007; Waskom

et al., 2006). Management strategies across the HPA region are summarized in Figure 8.
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HPA states have attempted to modify federal, state, or local governance models to fit
within the limiting frameworks of historical policy and mitigate groundwater decline, but the
limitations of these adjustments are frequently debated as groundwater depletion has continued
under both large and small-scale control (Haacker et al., 2015; Kromm and White, 1987; Peck,
2003; Scanlon et al., 2012). A challenge is that large-scale control often overlooks localized
needs, but local management bodies can be reluctant to self-impose overwithdrawal sanctions
(Peterson, 1991). For example, the absolute ownership doctrine in Texas grants the landowner
flexibility in water withdrawals, but little protection exists for neighbors against
overwithdrawals. Localized permit systems discourage overwithdrawals, providing greater state
and local control, but little flexibility is granted to the landowners and extensive government
resources are necessary to administer the complex system of water rights and allocation. Given
these challenges, traditional management strategies emerging from past policies are unlikely to

meet the water demands of the future (NRCS, 2001; 2004).

5.3 Farmer Profit

Water use across the HPA region is intimately linked to short-term farmer profit. This
concept is demonstrated by irrigating corn, the commodity most likely to return the greatest
profit, in the water-stressed SHP region, the HPA region least suited for the crop, despite the
understood implications of groundwater decline. This suggests that future management strategies
focused on water conservation should also take farmer profit into consideration through various
economic policies; these policies can be broadly sorted into: (1) direct policies, where direct
restrictions are imposed on human behavior (e.g., restrictive water use legislation), and (2)

indirect policies, where economic incentives are used to encourage a change in behavior (e.g.,
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subsidies for water-conserving practices). An ideal economic policy should be designed to
simultaneously encourage farmer profit protection and water conservation, all while staying
within the pre-existing frameworks of direct policies.

Farmer profit is a function of global market demand, production costs, and the variability
or risk involved in crop growth. From the perspective of a farmer, risk and variability linked to
decreased yields are often the biggest concern for decreased revenues (Barry, 1984). In general,
agricultural risk can be divided into: (1) production risk (associated with yield, input costs, and
weather variability), (2) market risk (uncertainty about future market value of the harvest), and
(3) institutional risk (the potential for change in agricultural policies; Babcock and Shogren,
1995; Barret; 1996; Eakin, 2005). By reducing risk and variability through indirect policies,
expected revenue and production costs can be balanced to provide a substantial influence on crop
choice.

Crop insurance provides one method to mitigate production risk (Hazell et al., 1986), but
the long-term success of this strategy is often questioned (Duncan and Myers, 2000; Miranda et
al., 1997). Few other risk mitigation methods exist despite the critical link between risk
management and best management practices. For the High Plains, many of the active indirect
policies and risk management strategies are defined in the U.S. Farm Bill, a comprehensive
agricultural bill passed by congress every five years.

The U.S. Farm Bill includes market supports that boost the value of particular
commodities, subsidies that provide incentives for best management practices (e.g., switching to
high-efficiency irrigation systems), and crop insurance that decreases the risk of profit loss
during a variable growing season. For example, the 2014 US Farm Bill includes the Stacked

Income Protection Plan (STAX), which allows enrolled cotton farmers to receive payments if
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regional yields fall below 90% of the expected level, ultimately decreasing the risk for growing
cotton. Another example is the Conservation Reserve Program (CRP), which was first introduced
in the 1985 Farm Bill and has significantly affected the HPA region by encouraging the
retirement of marginal farmland through rental and cost-share payments to farmers (Osborn,
1993). However, despite the long history of the U.S. Farm Bill, only a few studies (e.g., Rao and
Yang, 2010) have examined how indirect policies have influenced water availability.

Most indirect policies have done little to protect HPA groundwater, given that the
incentive to increase profits is antithetical to water conservation. In fact, current indirect policies
may increase the demand for water use across the HPA. For example, the Renewable Fuel
Standard (RFS) of 2005 required that 7.5 billion gallons of renewable fuel be blended into
gasoline by 2012 (Schnepf and Yacobucci, 2013). This biofuel mandate generated a profitability
incentive to farmers, ultimately increasing the planting of water-intensive biofuel crops (e.g.,
corn). This increased water burden may or may not be reduced in the future as less water-
intensive biofuel crops (e.g., sorghum) become more profitable. Indirect policies concentrated on
water conservation will be more realistic if factors such as irrigable acreage and total water use
are considered (Caswell and Zilberman, 1985). Interdisciplinary research that integrates social
and natural sciences will be necessary to help develop successful future water management

strategies that incorporate indirect policies and still mitigate groundwater decline.

5.4 Market Prices
Effective groundwater management strategies must capture spatially and temporally
dynamic drivers, making it difficult for uniform policies to be effective. Market prices, for

example, have strongly fluctuated over the last fifty years (Figure 9). Commodity prices during
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the 1970s were much higher than the 1990s, but values increased in the early 2000s to those
similar to the early 1980s. More recently, record grain production in 2012 and 2013, coupled
with unusually high grain prices in 2012, generated substantial bumper crops and subsequently a
sharp decline in grain prices prior to the 2014 season, demonstrating that short-term factors can
compromise management strategies even at the seasonal scale (USDA, 2014). Value fluctuations
have direct implications on irrigation demand through revenue incentives, particularly when
water intensive crops have a high market value. These dynamic complexities in management
strategies remain challenging to capture for long timescales; this challenge is intensified by the

unknowns linked in other domains such as climate variance and irrigation technologies.
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Figure 9. 2014 price adjusted market values for common HPA commodities. Commodity
prices are synthesized for HPA states, with the exception of cotton which did not have official
state data for the HPA region (NASS-USDA). Cotton prices are derived from national market
values. Official alfalfa prices are not available prior to 1989 for the HPA states.

Page 32 of 51



673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

5.5 Irrigation Value

One challenge to cross-commodity analyses is finding an equal metric for comparison.
For example, comparing the irrigation water use efficiency for corn and cotton (Figure 7A)
would suggest that it is much more efficient to grow corn rather than cotton. But without an
economic value for efficiencys, it is not an even comparison (i.e., a kilogram of cotton is not
equal to a kilogram of corn). To allow for cross-commodity comparisons, we calculated the
value of irrigation by multiplying irrigation water use efficiency in kg/ha/mm (Figure 7C) by
market value for each commodity converted to $/kg (Figure 9), linearly interpolating the
irrigation water use efficiency data annually. The result is a time-series of annual irrigation per
commodity (Figure 10). It is no surprise that the irrigation value is high for corn given the large
irrigated yield benefit (Figure 7A) and high water use efficiency associated with the crop (Figure
7C), but the irrigation value of cotton is also high despite the relatively low irrigated yield
benefit (Figure 7A) and low market value (Figure 9) on a per-mass basis. Thus, quantifying the
economic value for irrigation can offer key insights that highlight incentives within the water-
energy-food nexus.

Our results indicate that given high irrigation values for both corn and cotton,
restructuring a management plan or subsidy program around the production of irrigated cotton
instead of water-intensive corn may provide an economic opportunity for farmers in regions like
the SHP to switch from corn to the less water-intensive commodity. Another example is the
irrigation value of wheat, which has yield benefits and water use metrics similar to those of
cotton, but its irrigation value is substantially less (Figure 10). This suggests that economic
incentives aligned with the production of irrigated wheat may not be very beneficial to either

farmer revenues or water conservation. By understanding the value of drivers like irrigation
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value, management plans can be designed to promote both farmer profit and the mitigation of

groundwater loss by anticipating the most economical decisions for farmers.

4
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Figure 10. The value of irrigation per commodity across the HPA. Irrigation value is
calculated as water use efficiency for each commodity (Figure 7C) multiplied by its
corresponding market value in $/kg (Figure 9).

5.6 Adaptive Management and Innovative Strategies

The High Plains would also benefit from adaptive management that is responsive to
short-term drivers (e.g., government subsidies, drought) within a long-term framework. Recently,
sustainable management approaches have defined long-term goals for desired conditions 50-100
years into the future and used backcasting to inform short-term objectives and water use limits
(Gleeson et al., 2012). By adapting short-term regulations to meet long-term goals, water
management can be tailored to regional challenges and newly implemented programs. This
allows for spatially and temporally relevant adjustments that adapt to the regional needs across

the HPA while still maintaining groundwater sustainability as an objective. However,

implementation of these strategies is too recent to evaluate the effectiveness of this approach.
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Innovative strategies have also been integrated into current policies, but the benefits of
these trials have been mixed. Current attempts have included: (1) heterogeneous tax policies,
where water during dry years is seen as more valuable than during wet years, thus subsidies are
given in exchange for groundwater conservation (e.g., Ashwell and Peterson, 2013), (2)
restrictions on new drilling and pumping, and (3) voluntary restrictions to total water use that are
self-imposed through personal or local initiatives (Mulligan et al., 2014). However, these
strategies have also been shown to increase water use and streamflow depletion because they do
not accurately capture changes in practice by users (Ashwell and Peterson, 2013; Scheierling et
al., 2006; Ward and Pulido-Velazquez, 2008). Innovative strategies designed to mitigate water
use must include the preferences of farmers if groundwater conservation is to be achieved.

When combined with innovative methods and regional markets, adaptive management
strategies could significantly alter water use across the High Plains. For example, the Twin Platte
Natural Resources District in Nebraska implemented the first groundwater permit trading market
in the United States in 2014 to maintain streamflow in the Platte River (Young and Brozovic¢,
2016). Because the marginal cost of water reductions varies across users, permit trading
theoretically allows each unit of water pumped out of the system to be used at the lowest overall
cost to the system (Brozovi¢ and Young, 2014). This contrasts with uniform quotas on
groundwater pumping across users, which can force some users to make costly reductions while
other low cost solutions are overlooked. Permit markets have the potential to be cost-effective
while maximizing flexibility for water users (Palazzo and Brozovi¢, 2014). A longer
implementation period is needed for full evaluation, but permit trading highlights a cost-effective
groundwater management strategy that promotes farmer profit, includes farmer values, and could

be implemented in other regions of the HPA.

Page 35 of 51



737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

6. Discussion and Conclusions

Agricultural water use is depleting the High Plains Aquifer, yet current water
management strategies will not prevent future declines. Increased climate variability will likely
increase the stress on water resources across the High Plains, specifically through changes in
precipitation patterns and drought intensification. We found that irrigation tends to at least
double commodity yield when compared to their non-irrigated counterparts, placing a large
economic incentive on irrigated water use across the semi-arid High Plains region. Additionally,
we found that efficient irrigation technologies can reduce total groundwater conservation, as
irrigated acreages substantially increased after the widespread introduction of efficient irrigation
technologies and groundwater level declines continued at rates similar to those prior to the
efficient systems. Future decades will require significant changes in agricultural practices for the
SHP and CHP regions, as irrigable areas are predicted to decline ~30 to 50 percent by 2100
relative to current irrigable areas. We further quantified irrigation water use efficiency and found
that the amount of crop per unit irrigation, often called crop per drop, has increased through time
for every major commodity. We multiplied these crop per drop values by market prices to
quantify the unit value of irrigation water for each commodity. Based on our results, cotton and
corn have the highest irrigation value, followed by alfalfa, soybeans, sorghum, and lastly wheat.
These new datasets provide a basis to evaluate the influence of major water use drivers across
domains and develop key insights into the water-energy-food nexus for modern agriculture.

Based on the trends analyzed in this study, our main conclusion is that future water
management strategies would benefit most from: (1) prioritizing farmer profit as an incentive for

change in practice, (2) managing water as an input in the water-energy-food nexus, (3) focusing
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on adaptive frameworks, (4) adopting innovative strategies that function within current policies,
(5) reducing production risk, and (6) increasing political desire for resource sustainability.

Short-term farmer profit is the primary driver to water use across the High Plains. As
long as there is an economic incentive to irrigate, farmers across the HPA have largely
demonstrated that extensive groundwater extraction will continue regardless of the potential risk
for resource collapse. While aquifer depletion may be inevitable in some locations, water
conservation provides an optimal economic path, giving the region’s economy time to diversify
and maximize both crop per drop and profit per drop. Introducing restrictive caps and regulations
can reduce groundwater use, but these efforts also result in decreased crop yields which pose
direct threats of food, fiber, and fuel shortages, as well as local economic hardship. Instead,
future strategies should attempt to shift the economic incentive away from immediate
groundwater extraction by placing incentives in the growth of less water-intensive crops as a way
to encourage sustainable management. This requires development of alternative biofuels,
increased demand for the commodities that generate alternative biofuels, and the implementation
of government programs or market adjustments to make these alternative crops valuable.
Farming practices will follow economic incentives, thus management strategies should
incentivize farmers to profitably reduce water use rather than making it more difficult to
maintain livelihoods through water use restrictions.

Water is the limiting component to agricultural production within the water-energy-food
nexus, and past practices on the HPA demonstrate that overlooked water use incentives will be
exploited if not properly accounted for in management strategies. Groundwater sustainability
goals can only be met when water use is balanced as an input within the nexus, where food and

fuel are functions of water use. In budget terms, groundwater sustainability goals can only be
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met when annual groundwater use is nearly equal to the annual recharge supplied. Given that the
agriculture industry across large portions of the HPA has historically been established using
unsustainable practices, future management strategies must compound multiple water
conservation methods to offset the extensive reliance on groundwater pumping.

Adaptive frameworks capture temporally dynamic water use drivers (e.g., extended
droughts, new government incentives, and market price fluctuations) by granting decision-
making freedom in response to changing circumstances. Thus, adaptive management strategies
must incorporate short-term objectives that align with long-term goals to remain relevant at
extended timescales, and must react to changing physical and social drivers that caused past
strategies to become outdated. By allowing for heterogeneous, short-term flexibility in a long-
term framework, strategies can be tailored to dynamic drivers even at the seasonal timescale to
meet long-term goals.

Widespread groundwater decline is enabled by pre-existing political frameworks that
govern water law. These frameworks are outdated and often irrelevant on the High Plains, as
evidenced by the shift from regional- to local-scale groundwater management over many areas of
the HPA. Management strategies that follow this traditional political framework will also likely
fail. Traditional frameworks are too restrictive to capture every critical water use driver, allowing
farmers to exploit these overlooked areas and capitalize on the economic incentives they leave
unregulated. Instead, innovative and nontraditional strategies should be designed to fit within
existing legislation, but designed to capitalize on the decision-making behaviors that follow
economic incentives. Innovative strategies do not need to capture every driver; rather, they need
to manage for the decisions that follow the key driver: farmer profit. New strategies that align

farmer profit with reduced water use may prove more effective within the legislative framework.
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Reduced production risk is another way to encourage farmer behavior by placing an
economic incentive toward ensured revenue. If the risk associated with a change in practice (e.g.,
less irrigation) is reduced, then farmers will be more likely to adopt new practices that align with
water conservation objectives. Reduced risk can come through mechanisms including the
enhanced development of climate resistant cultivars or more effective insurance programs.

There must be the political will to promote groundwater conservation. Past strategies can
mitigate groundwater declines to a certain extent, but they cannot fully succeed if there is not the
will to implement them. Given that some portions of the HPA are already managing for
depletion, there appears to be a conflict between these areas and a regional desire for
groundwater sustainability. Management strategies must be constructed with the necessary tools
to succeed, but they must also be implemented in a political framework that promotes and

advocates for successful implementation.
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