

1 Research Paper

2

3 **Complex water management in modern agriculture: Trends in the water-energy-food**
4 **nexus over the High Plains Aquifer**

5

6 Submitted for publication in Science of the Total Environment

7

8

9 Samuel J. Smidt¹

10 Erin M.K. Haacker¹

11 Anthony D. Kendall¹

12 Jillian M. Deines^{1, 2}

13 Lisi Pei^{3, 4}

14 Kayla A. Cotterman¹

15 Haoyang Li⁵

16 Xiao Liu¹

17 Bruno Basso¹

18 David W. Hyndman¹

19

20 1 – Department of Earth and Environmental Sciences, Michigan State University, East Lansing,
21 MI, 48824, USA

22

23 2- Center for Systems Integration and Sustainability, Michigan State University, East Lansing,
24 MI, 48824, USA

25

26 3 – University Corporation of Atmospheric Research, Boulder, CO, 80301, USA

27

28 4 – NOAA Great Lakes Environmental Research Laboratory, Ann Arbor, Michigan, 48108, USA

29

30 5 – Department of Economics, Michigan State University, East Lansing, MI, 48824, USA

31

32 Corresponding Author:

33 Samuel J. Smidt
34 Department of Earth and Environmental Sciences
35 Michigan State University
36 East Lansing, MI 48824

37

38 Email: smidtsam@msu.edu
39 Phone: 517-355-4635

40

41 The authors do not have any conflicts of interest or financial disclosures to report.

42 **Abstract**

43 In modern agriculture, the interplay between complex physical, agricultural, and socioeconomic
44 water use drivers must be fully understood to successfully manage water supplies on extended
45 timescales. This is particularly evident across large portions of the High Plains Aquifer where
46 groundwater levels have declined at unsustainable rates despite improvements in both the
47 efficiency of water use and water productivity in agricultural practices. Improved technology and
48 land use practices have not mitigated groundwater level declines, thus water management
49 strategies must adapt accordingly or risk further resource loss. In this study, we analyze the
50 water-energy-food nexus over the High Plains Aquifer as a framework to isolate the major
51 drivers that have shaped the history, and will direct the future, of water use in modern
52 agriculture. Based on this analysis, we conclude that future water management strategies can
53 benefit from: (1) prioritizing farmer profit to encourage decision-making that aligns with
54 strategic objectives, (2) management of water as both an input into the water-energy-food nexus
55 and a key incentive for farmers, (3) adaptive frameworks that allow for short-term objectives
56 within long-term goals, (4) innovative strategies that fit within restrictive political frameworks,
57 (5) reduced production risks to aid farmer decision-making, and (6) increasing the political desire
58 to conserve valuable water resources. This research sets the foundation to address water
59 management as a function of complex decision-making trends linked to the water-energy-food
60 nexus. Water management strategy recommendations are made based on the objective of
61 balancing farmer profit and conserving water resources to ensure future agricultural production.

62

63 Keywords: High Plains Aquifer, water management, irrigation, agriculture, economics, policy

64 **1. Introduction**

65 Crop production across the High Plains Aquifer region (High Plains) in the central United
66 States has an annual market value greater than \$20 billion—approximately 10 percent of the
67 entire U.S. crop value (NASS-USDA, 2012). Irrigation is essential to much of this crop
68 production. Irrigated agriculture across the High Plains accounts for 30 percent of all irrigated
69 acreage in the U.S. (Dennehy et al., 2002), and 97 percent of High Plains irrigation water is
70 extracted from the High Plains Aquifer (HPA; Maupin and Barber, 2005). Due to extensive
71 irrigation, groundwater levels across large sections of the HPA have been declining for decades,
72 particularly in the southern section where the aquifer is thin and irrigation demand is high
73 (Haacker et al., 2015; McGuire, 2009; Scanlon et al., 2012). Future decades are forecast to bring
74 more widespread groundwater declines, effectively depleting broad regions of the HPA if current
75 practices continue (Haacker et al., 2015). Major reductions in water availability would result in
76 enormous consequences for food and energy production.

77 At the core of agricultural water management challenges is the water-energy-food nexus.
78 Acting within this nexus across the HPA are the individuals and institutions that adapt to address
79 the realities of groundwater depletion. These include creating and adopting new technologies,
80 developing and planting different cultivars, shifting cropping patterns, implementing new
81 policies, expanding monitoring, and pushing toward more efficient use of limited resources.
82 These strategies have been designed around the objectives of increasing crop yields, decreasing
83 production costs, improving or maintaining soil fertility, and reducing environmental impacts
84 (Edwards, 1989; Stuart et al., 2015). They can be generalized into two broad focus areas: (1)
85 water conservation to both use less water and be more efficient in application, and (2) water
86 productivity to maximize the return on water use. Water conservation research has focused on

87 strategies such as deficit irrigation (Fereres et al., 2007; Geerts and Raes, 2009), irrigation
88 technologies (Colaizzi et al., 2009; Howell, 2001), rainfed agriculture (Rockström et al., 2010;
89 Rosegrant et al., 2002), and land management practices (Bossio et al., 2008; 2010). Water
90 productivity research has focused on improved seed genetics (Hu and Xiong, 2014; Passioura,
91 2004), variable rate irrigation (Basso et al., 2013; Evans et al., 2013), and intraseason water
92 management through irrigation scheduling and soil moisture monitoring (Aguilar et al., 2015),
93 vegetation indices (Basso et al., 2004), and tillage practices (Derpsch et al., 2010). Despite this
94 increased emphasis toward groundwater conservation among researchers, and new technologies
95 and strategies that can greatly improve water productivity, groundwater supplies across the HPA
96 continue to decline at unsustainable rates (Haacker et al., 2015; Scanlon et al., 2012).

97 Historically, water management strategies have targeted water use drivers within three
98 major domains: (1) physical (e.g., climate, geology), (2) agricultural (e.g., crop type, tillage
99 practices), and (3) socioeconomic (e.g., groundwater doctrines, market values) (Pimental et al.,
100 1997). However, water use drivers in modern agriculture are too complicated to be regulated
101 individually within these separate domains. For example, changes in precipitation patterns have
102 direct implications on irrigation scheduling and applications (Lorite et al., 2015), improved
103 technologies allow for innovative and heterogeneous farming practices (Steven and Clark, 2013;
104 Zhang and Kovacs, 2012), and crop prices respond to changes in global market demands
105 (Rosegrant, 2008). Furthermore, drivers within these domains each influence short- and long-
106 term water use decisions in ways that have not been addressed in static water management
107 strategies (e.g., climate variability, government incentives, and annual crop insurance plans).
108 Moreover, water use drivers across these domains are inherently linked, making it impossible to

109 implement temporally relevant water management strategies in one domain without impacting
110 another.

111 There are clear gaps in current water management strategies across the High Plains, as
112 evidenced by the increase in both crop production and water use despite the reality of
113 groundwater depletion (NASS-USDA). Nowhere is agricultural water management more
114 prevalent than in the water-energy-food nexus of the HPA, making the region ideal to learn how
115 complex management domains influence water use and decision-making. This study provides a
116 comprehensive overview of the major drivers of water use across the HPA through a novel
117 synthesis of data and an in-depth review of the relevant literature. We examine drivers in the
118 physical, agricultural, and socioeconomic domains in contrast to the historical approach.
119 Furthermore, within each domain, we analyze water use trends and examine how these drivers
120 interact to influence water use decisions. We then synthesize across domains to present a
121 framework for maintaining long-term aquifer supplies through improved agricultural water
122 management strategies across the water-energy-food nexus.

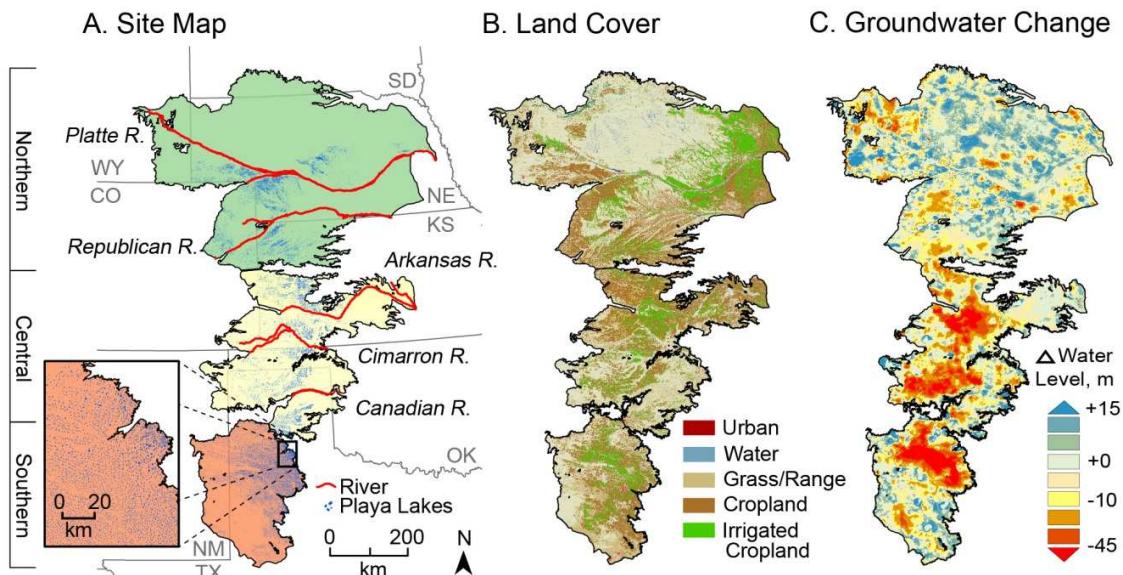
123
124 **2. Methods**

125 This study synthesizes extensive agricultural databases along with the relevant water
126 management literature across the HPA. When used, specific processing techniques are discussed
127 within corresponding sections. Sections 3, 4, and 5 compile individual water use drivers or driver
128 categories into major domains, where each subsection represents a major driver set or focus area.
129 Subsections are selected according to the most significant topics for water supply or water use
130 across the region, as a complete synthesis of these drivers is necessary to formulate water
131 management suggestions and highlight areas where water resources are exploited. All drivers at
132 every spatial and temporal scale may not be included, as our subsection lists are representative of

133 and relevant to large scale management schemes. We derive our conclusions based on the trends
134 found within and across each domain, and we make management suggestions based on the goals
135 of maintaining farmer profit and achieving long-term aquifer sustainability.

136

137 **3. The Physical Domain**


138 The physical domain defines the limits of the water-energy-food nexus. For example,
139 food production requires both energy and water. If water is limited, so will be the ability to
140 increase crop yields. Thus, balancing components within the nexus to find the combination
141 where production is highest and resource expenditures are lowest over time is critical for
142 sustainable agriculture. A required step to reach this ideal nexus status is to assess total water
143 availability and supply through time. Here, we analyze the major physical drivers that impact
144 water availability and supply, and we highlight the trends that have the most influence on long-
145 term sustainability goals.

146

147 *3.1 Geology, Soil, and Land Cover*

148 The HPA (450,000 km²; Qi, 2010) is located in the west-central United States and spans
149 portions of eight states: South Dakota, Wyoming, Nebraska, Colorado, Kansas, Oklahoma, New
150 Mexico, and Texas (Figure 1A). Given its size, the HPA is often divided into three geographical
151 areas, each with unique physical characteristics: the Northern High Plains (NHP; 249,509 km²,
152 Central High Plains (CHP; 127,168 km²), and Southern High Plains (SHP; 75,921 km²). At
153 3,750 km³ of total water volume in 2012 (Haacker et al., 2015), slightly larger than the volume
154 of Lake Huron, the HPA remains one of the largest known freshwater aquifers in the world. The
155 total volume of water estimated within the NHP is ~2,940 km³, the CHP is ~635 km³, and the

156 SHP is ~171 km³. However, groundwater is being recharged at rates far below annual
157 withdrawals in the south and central portions of the aquifer.

158
159 **Figure 1.** The High Plains and aquifer decline. **A)** Site map of the HPA and its three
160 main regions. **B)** Land cover across the HPA region, dominated by range and cropland (NLCD,
161 2011). **C)** Interpolated groundwater level declines compared to predevelopment levels (modified
162 from Haacker et al., 2015).
163

164 The High Plains have a semi-arid, temperate climate, with surface elevations that follow
165 a west-east gradient from ~2,400-m in the west to ~350-m in the east (Dennehy et al., 2002);
166 local relief is generally very low. Soil characteristics follow a general gradient of high
167 permeability in the NHP (Dennehy et al., 2002; Gutentag et al., 1984) to low permeability in the
168 SHP (Dennehy et al., 2002; Reeves Jr., 1970). Native land cover includes short and medium
169 grass prairies, though large sections of modern land cover have transitioned to cropland (Figure
170 1B) with the major crop choices of corn, sorghum, winter wheat, soybeans, alfalfa, and cotton
171 (Dennehy et al., 2002). Crop selections follow a general gradient of water-intensive crops in the
172 north (e.g., corn, soybeans) to less water-intensive crops in the south (e.g., cotton, winter wheat).
173 The other major land use type across the region is livestock rangeland (primarily cattle; Dennehy

174 et al., 2002). Collectively between cropland and rangeland, 94% of the High Plains is considered
175 agricultural land (Figure 1B).

176

177 *3.2 Hydrology and Hydrogeology*

178 Several hydraulically-connected permeable units collectively form the HPA complex
179 (Gutentag et al., 1984; Knowles et al., 1984); the largest of which is the Ogallala Formation, or
180 Ogallala Aquifer, a name often used interchangeably with HPA. The Ogallala Aquifer underlies
181 nearly 77 percent of the HPA area, with most of the remaining area composed of the Brule,
182 Arikaree, Great Bend Prairie, and Equus Beds aquifers. Hydraulic conductivity and specific yield
183 across the HPA vary from 1 to 105 m/day and 3 to 35 percent, respectively (Gutentag et al.,
184 1984), resulting in highly variable groundwater yields across the aquifer. Saturated thickness
185 ranges from 0 to 300-m but has drastically declined since predevelopment; average saturated
186 thickness is approximately 60-m. Depth to water is generally from a few to 150-m, and average
187 depth to water in 2012 was 30-m for the NHP, 44-m for the CHP, and 41-m for the SHP.

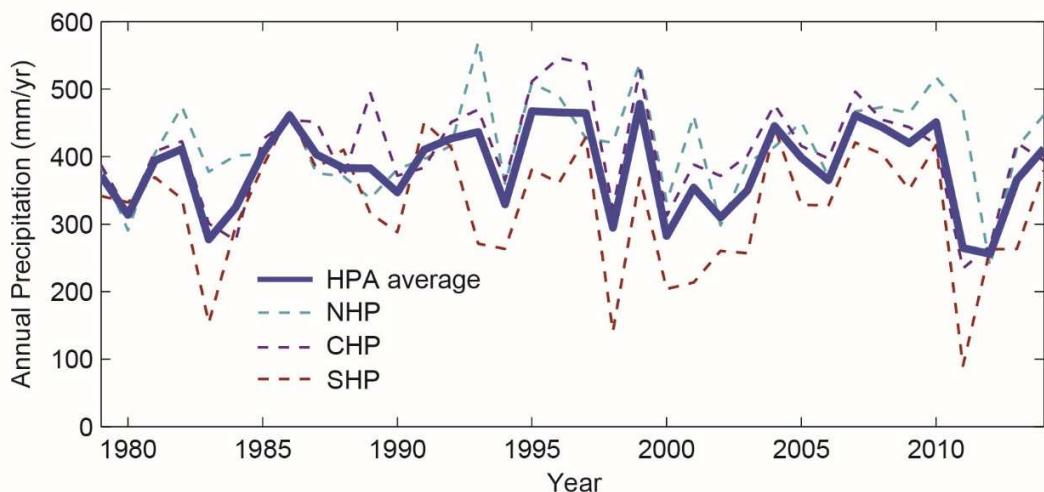
188 While groundwater supply in the NHP has been fairly stable since predevelopment, the
189 CHP and SHP have experienced extensive groundwater depletion due to extensive groundwater
190 pumping (McGuire, 2009). Peak groundwater level declines have reached more than 45-m in
191 portions of the CHP and SHP (Figure 1C), while average declines by state for portions of the
192 HPA are: 14-m in Texas, 9-m in Kansas, 6-m in Oklahoma, 5-m in New Mexico and Colorado,
193 and (Haacker et al., 2015). Average groundwater declines in the NHP have been less than 0.5-m
194 in both Nebraska and Wyoming (McGuire, 2009; Scanlon et al., 2012; Haacker et al. 2015),
195 although areas of extensive groundwater withdrawals are common. Collectively, nearly 410 km³

196 of water has been depleted from the HPA since predevelopment (Haacker et al., 2015), which is
197 approximately the volume of Lake Erie.

198 Total annual surface water flow entering the HPA region is ~2.5 km³ per year (Dennehy
199 et al., 2002), though extensive groundwater depletion has resulted in a net loss in annual
200 streamflow and surface water volume (Nativ, 1992; Scanlon et al., 2012). While major river
201 systems flow from west to east across the NHP and CHP, the SHP has few streams, and none
202 flow consistently. Instead, surface water in the SHP is largely drained and stored in thousands of
203 localized playa lakes that are most concentrated along the eastern margins of the region. These
204 broad, shallow lakes can span up to 1-km in diameter (Osterkamp and Wood, 1987) and drain an
205 estimated 90% of the SHP region (Nativ, 1992). Playa lakes exist across the entire High Plains
206 (~61,000 lakes; Gurdak and Roe, 2010) but are much more prevalent in the SHP (~30,000 lakes;
207 Osterkamp and Wood, 1987; Figure 1A).

208 Natural recharge in the NHP and CHP occurs primarily as precipitation percolation
209 through permeable soils and leakage from surface water bodies (Weeks et al., 1988; Dennehy et
210 al., 2002). Localized recharge in the SHP region largely occurs as percolation beneath playa
211 lakes where water passes through dissolved or fractured caliche (Osterkamp and Wood, 1987;
212 Scanlon and Goldsmith, 1997; Wood and Osterkamp, 1987). Areal groundwater recharge across
213 the High Plains decreases following a gradient from north to south. Secondary recharge across
214 some portions of the HPA also occurs as irrigation return flow where some of the excess applied
215 water is returned to the aquifer (McMahon et al., 2006; Scanlon et al., 2005; Whittemore et al.,
216 2015).

217


218 *3.3 Regional Climate*

219 The High Plains are located in a wet-dry climate transition zone (Koster et al., 2004) where
220 soil moisture plays a critical role in modulating the energy and mass transport that impact the
221 regional water cycle (Berg et al., 2014). This is particularly relevant in areas of high irrigation
222 where modified soil moisture significantly impacts the regional hydroclimate through adjusted
223 land-atmosphere interactions (Harding and Snyder 2012a; 2012b; Jódar et al., 2010; Lo and
224 Famiglietti, 2013; Moore and Rojstaczer 2001; 2002; Pei et al., 2016; Qian et al. 2013). One
225 major effect of increased soil moisture is on the Great Plains low-level jet (GPLLJ; Walters et
226 al., 2014; Weaver and Nigam, 2011). The GPLLJ brings moisture into the region from the Gulf
227 of Mexico and provides the main external moisture source for precipitation over the High Plains
228 and central United States (Cook et al., 2008; Higgins et al., 1997; Pei et al., 2014; Tuttle and
229 Davis, 2006; Weaver, 2007). At shorter timescales (event-scale), fluctuations in the GPLLJ
230 prompt nighttime rainfall maxima during warmer seasons, where greater moisture convergence
231 results in heavier precipitation (Carbone and Tuttle 2008; Pu and Dickinson 2014; Zhong et al.,
232 1996).

233 Climate models project a decrease in warm-season precipitation (Cook et al., 2008;
234 Maloney et al., 2014) and an increase in regional temperatures for the High Plains by the end of
235 this century (Cook et al., 2008; IPCC, 2007). Historically, the High Plains receives ~50-cm of
236 average annual precipitation (Crosbie et al., 2013), with a gradient from ~40-cm along the
237 western border to ~70-cm along the eastern edge (Gutentag et al., 1984). Precipitation is
238 projected to increase for the NHP and decrease for the SHP, and regional temperatures are
239 expected to increase by 2 to 5°C (Crosbie et al., 2013; IPCC, 2007). Increased temperatures
240 would likely favor increased evapotranspiration (Green et al., 2011), and a decrease in

241 precipitation and increase in temperature would both likely exacerbate groundwater supply
242 declines under current water use scenarios (Crosbie et al., 2013).

243 Extreme drought events have also become more frequent over the past 45 years (NLDAS-
244 2). The average annual HPA precipitation fell below 305-mm five times since 1998, whereas this
245 occurred just once from 1979-1998 (Figure 2). While reductions in annual precipitation are most
246 extreme in the SHP, similar trends have been seen in the NHP and CHP. In particular, SHP
247 precipitation fell below 100-mm during 2012-2013 regional droughts, and for the first time on
248 record, precipitation simultaneously fell below 300-mm for both the CHP and NHP regions
249 during the same drought period.

251 **Figure 2.** Average annual precipitation for the HPA and its three regions (NLDAS-2
252 forcing file A).

253
254 Discrepancies in the projected GPLLJ strengthening and subsequent precipitation decreases
255 suggest changes in future climate regimes over the HPA (Maloney et al., 2014). Areas of the
256 HPA that are currently limited by water availability will likely be the most affected by these
257 changes (Ng et al., 2010). However, accurately capturing these patterns remains a challenge for
258 predictive models even with knowledge of the major climate controls (Hoerling et al., 2014). For

259 example, the 2012 severe Great Plains drought was suggested to be independent of these climate
260 patterns and likely a result of atmospheric noise alone (Kumar et al., 2013). Future water
261 management strategies would clearly benefit from improved climate prediction skills.

262

263 **4. The Agricultural Domain**

264 Crop yield in the agricultural domain is the primary indicator of resource efficiency
265 within the water-energy-food nexus, given its dependence on both growing conditions and
266 agricultural management practices. Generally, increased yields through time indicate improved
267 technologies or agricultural practices that allow physical resources to be used more efficiently.
268 However, improved efficiency is not always an indicator of sustainability. Increased crop yields
269 may be a function of efficient practices, but that does not mean they are always less taxing on
270 resources within the physical domain (e.g., water, soil). Cross-domain impacts must be
271 considered to achieve sustainable management strategies in modern agriculture. In this section,
272 we highlight the major agricultural drivers that impact water use, the primary component limited
273 by availability and supply in the physical domain.

274

275 *4.1 Soil Management*

276 Soil management strategies focus on maximizing crop yield, maintaining long-term soil
277 fertility, and mitigating environmental impacts such as nitrate leaching and greenhouse gas
278 emissions. Example soil management strategies include conventional tillage versus no-till
279 farming (e.g., Ghimire et al., 2012; Hobbs et al., 2008), crop rotations (e.g., Johnston, 1986;
280 Odell et al., 1984), and off-season cover crops (e.g., Allen et al., 2005; Havlin et al., 1990).
281 Conservation agriculture incorporates these land management strategies to increase soil fertility
282 by preserving surface organic carbon, protecting soil from water runoff, and reducing soil loss by

283 eliminating bare exposure (Basso et al., 2006; 2014; Hobbs et al., 2008). Managing soils to
284 improve fertility reduces the demand for additional water applications. However, the potential
285 for soil management to conserve water does not negate the substantial amount of water used for
286 irrigation.

287

288 *4.2 Irrigation and Crop Yield*

289 A new synthesis of annual irrigated and non-irrigated yield since 1970 across the HPA
290 was conducted using data from the National Agricultural Statistics Service (NASS-USDA),
291 plotted in Figure 3. This synthesis uses annual county-level surveys of yields for the six major
292 commodities grown across the HPA: corn, soybeans, winter wheat, alfalfa, cotton, and sorghum.
293 The analysis of these data highlight: the considerable benefit of irrigation across the HPA (with
294 little difference across subregions), the large increase in yields of corn, soy, and cotton over time
295 due to improved management and crop genetics, and much larger annual variability in yields
296 from dryland relative to irrigated production. The linear trends fit to this data from 1970-2014
297 show that non-irrigated and irrigated yields have increased by 133 and 96 percent for corn, 74
298 and 330 percent for cotton, 69 and 89 percent for soybeans, 17 and 26 percent for alfalfa, 11 and
299 13 percent for sorghum, and 4 and 27 percent for wheat, respectively. Today, *non-irrigated* corn
300 yields are similar to the *irrigated* corn yields of 1970, and irrigated corn yields today are more
301 than double non-irrigated yields (Figure 3A). Similar trends can be seen in cotton yields,
302 although the gap between irrigated and non-irrigated yields has been increasing in recent years
303 (Figure 3B). Alfalfa, sorghum and wheat yields have not rapidly increased since 1970, though
304 irrigated yields are still approximately double the non-irrigated yields of these crops (Figure 3D-
305 F).

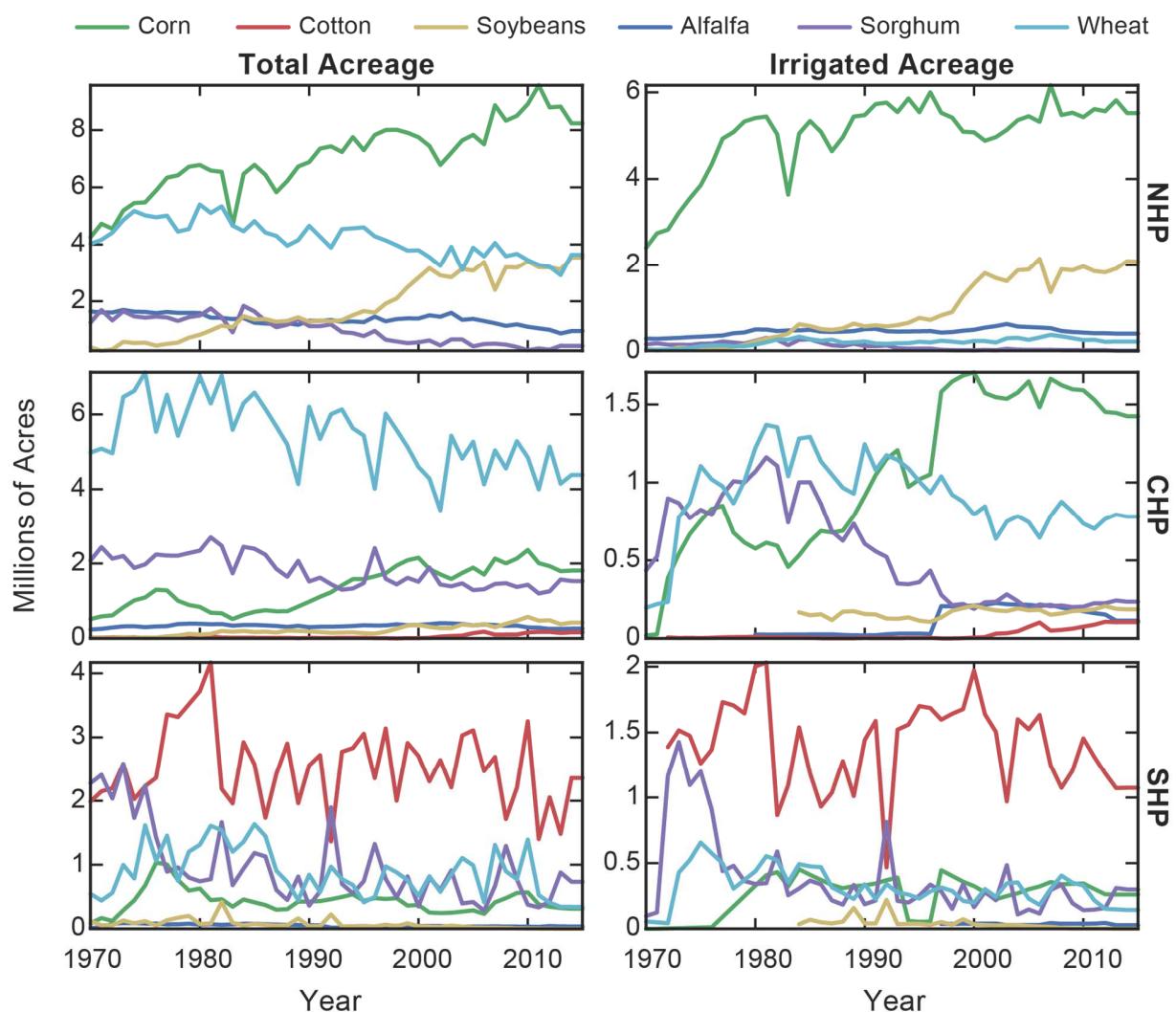
306

307 **Figure 3.** Irrigated and non-irrigated yields for the main commodities grown across the
 308 HPA (NASS-USDA). Alfalfa yields were not available after 2009.
 309

310 In general, we found that irrigation increases yield by a factor of two to four times
 311 relative to dryland farming, a significantly larger yield increase than can be generated by other
 312 land management strategies (Colaizzi and Gowda, 2009; Colaizzi and Schneider, 2004). This
 313 boost in crop yield generates a major economic incentive to irrigate. Today, over 12 million
 314 acres of irrigated cropland are fed by the HPA for these six commodities (NASS-USDA).
 315 Irrigation over the HPA is so extensive, and high-yield agriculture is such a major component to
 316 the regional economy, that widespread transitions to dryland agriculture would cause severe
 317 economic consequences for the region (Colaizzi et al., 2009).

318

319 *4.3 Crop selection*


320 Water demand varies by commodity, and in general, the most water-intensive crops
321 return the greatest short-term profit. For example, cotton demands approximately 69-cm of water
322 for peak yields while corn requires almost 80-cm (Moore and Rojstaczer, 2001). This has
323 resulted in both the widespread selection and the irrigation of more water-intensive crops, such
324 as corn, across the High Plains. To investigate commodity selection trends, we calculated annual
325 irrigated and total acreages from 1970 to 2014 for the six major commodities (NASS-USDA).
326 We used a composite of annual county-level surveys, which may in some years only include a
327 subset of commodities for each county, and the more complete bi-decadal Agricultural Census.
328 Additionally, the noisier annual survey data were bias corrected to match the 5-year Census data.
329 Biases in survey data are calculated for each county relative to the Census values as

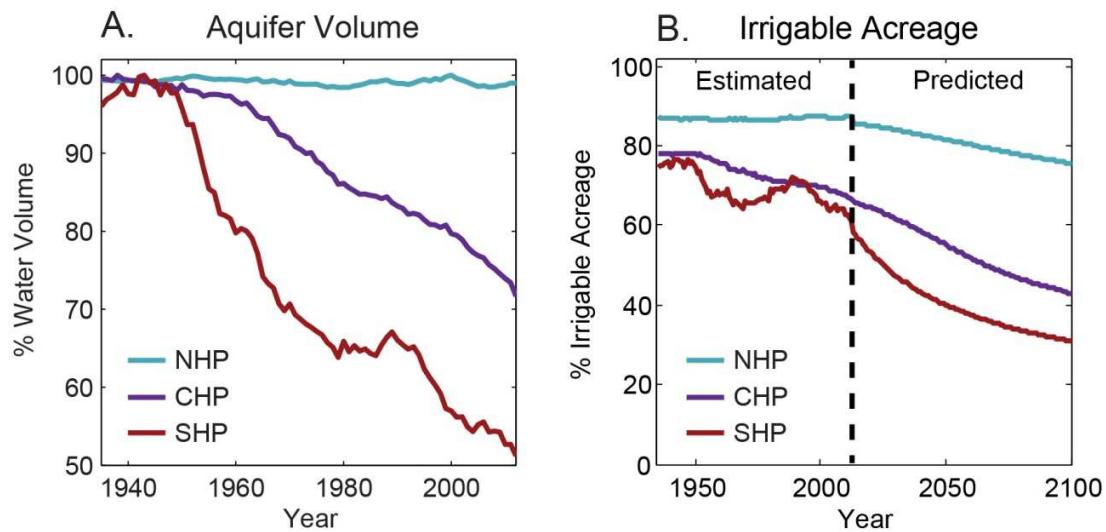
330 $bias_{year} = (Census_{year} - survey_{year})/survey_{year}$ (eq. 1)

331 and linearly interpolated between Census years. This annual bias was then converted to a
332 multiplicative correction factor as

333 $correction_{year} = bias_{year} + 1$ (eq. 2)

334 which was then multiplied by the annual survey data for each county. Counties partially within
335 the HPA were multiplied by the fraction of each county that falls within three HPA subregions.
336 Adjusted acreages were then summed across the three HPA subregions (Figure 4).

337
 338 **Figure 4.** Total commodity acreage (left) and irrigated commodity acreage (right) by
 339 region (NASS-USDA).
 340


341 By the middle of the 1990s, over 7.5 million acres of corn were irrigated across the HPA
 342 region compared to just over 2 million acres in 1970. Today, irrigated corn acreage alone is
 343 greater than all other major commodities combined for the NHP and CHP regions (Figure 4).
 344 While some areas of the HPA have tried shifting from corn to less water-intensive crops in an
 345 attempt to conserve water (e.g., Colaizzi et al., 2009), extensively irrigating the crop with the
 346 greatest economic return is still widely in practice today. For total acreage, corn is the primary
 347 crop in the NHP, wheat is primary in the CHP, and cotton is primary in the SHP. This trend in

348 dominant crop type follows the same gradient of regional water availability, where the most
349 water intensive crop is dominant in the north and the least water intensive crop in the south,
350 further demonstrating how water supply in the physical domain affects decision-making in the
351 agricultural domain. Across the HPA, irrigated corn now accounts for over 50 percent of all
352 irrigation; with approximately 70, 75, and 80 percent of the corn being irrigated in the NHP,
353 CHP, and SHP, respectively.

354

355 *4.4 Groundwater Pumping*

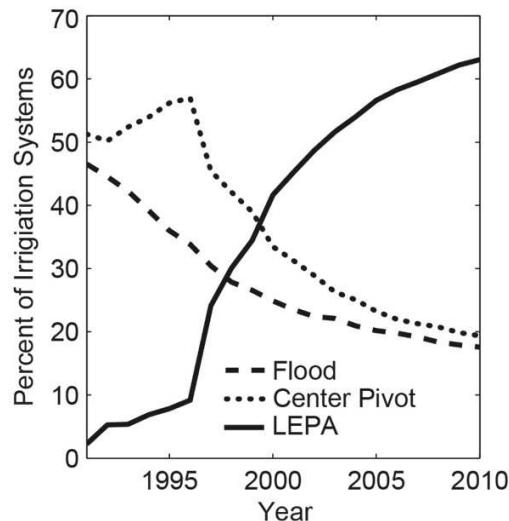
356 Widespread irrigation is the largest contributor to groundwater decline across the HPA.
357 Steady groundwater level declines across both the CHP and SHP are evidence that irrigation
358 practices in these regions are unsustainable (Figure 5A). Since the late 1930s, saturated volumes
359 of the CHP and SHP aquifers have been reduced by ~30 and ~50 percent, respectively. Our
360 projections based on linear extrapolation of trends in saturated thickness from 1993-2012 (after
361 Haacker et al., 2015) show that irrigable acreage availability (areas with >10-m saturated
362 thickness) will fall below 50 percent of the total SHP and CHP area by the years 2025 and 2065,
363 respectively (Figure 5B). However, irrigation on the NHP has had little impact on the overall
364 decline of groundwater in the region as a whole. This suggests that water in the NHP can
365 generally be treated as a renewable resource (Haacker et al., 2015; Scanlon et al., 2012), except
366 for some portions of the region.

367

368 **Figure 5.** Aquifer decline across the High Plains. **A)** Saturated aquifer volume for each HPA
 369 region since predevelopment. **B)** Estimated (left) and predicted (right) irrigable acreage based on
 370 saturated thickness interpolations for each region (modified from Haacker et al., 2015).
 371

372 Saturated thicknesses across the NHP have historically varied nonlinearly in a given
 373 location, suggesting that overall irrigable acreage may remain relatively stable into the future.
 374 However, saturated thicknesses across the CHP and SHP have not evidenced recovery, thus
 375 declining saturated thickness estimates are representative of declining irrigable acreage
 376 predictions for these regions. Extending the time frame for trend analysis prior to 1993 would
 377 allow for more comprehensive predictions of each region, but this dilutes the role of recent
 378 agricultural practices on declining groundwater levels. The average projected usable lifespan of
 379 the aquifer based on estimated 2007 storage and depletion rates is around 81-yrs for the SHP and
 380 238-yrs for the CHP, while the NHP is relatively sustainable under current irrigation trends
 381 (Scanlon et al., 2012).

382


383 *4.5 Efficient Water Use*

384 Irrigation has become more expensive due to groundwater declines and the increased
385 costs for the energy sources needed to lift groundwater, further supporting the central role of the
386 water-energy-food nexus in modern agriculture. This increase in cost, in addition to the goal of
387 conserving water resources, has led to the development and adoption of increasingly efficient
388 irrigation technologies (i.e., reduction in the percent of water lost to direct evaporation per
389 amount applied). In theory, improved efficiency of water use increases farmer profit by lowering
390 production costs.

391 Since the 1980's, a common strategy to improve irrigation efficiency has been to modify
392 pre-existing central pivot systems with lower-pressure spray applicators (Colaizzi et al., 2004;
393 Colaizzi et al., 2009; Lyle and Bordovsky, 1983). Low-pressure spray applicators are classified
394 according to the height of the nozzle, as Low-Elevation Spray Applicators (LESA) or Mid-
395 Elevation Spray Applicators (MESA). Systems using an applicator sock dragged along the soil or
396 a sprayer near the soil are referred to as Low Energy Precision Applicators (LEPA), which is
397 also the common name for this entire low pressure applicator class.

398 We quantified the change in irrigation technologies across Kansas since 1990 (Figure 6)
399 using water rights data from the Kansas Water Information Management and Analysis System
400 (WIMAS). Prior to 1990, adoption of LEPA and related technologies was small, remaining
401 below 5%. While the prevalence of flood irrigation systems steadily declined, farmers were
402 transitioning to traditional high-pressure center pivot systems until 1997 when an abrupt
403 inflection in adoption of LEPA-type systems occurred, along with a steady decline in flood and
404 high pressure center pivot systems. By 2010, LEPA-type systems accounted for almost 65% of
405 all irrigation systems across the HPA region of Kansas. Irrigation technology selections in

406 Kansas demonstrate the widespread adoption of LEPA technology, trends which are mimicked
407 across the rest of the HPA states.

408

409 **Figure 6.** Irrigation technology selections across the HPA in Kansas (Kansas Division of Water
410 Resources).

411

412 *4.6 Water Use Response to Efficient Technologies*

413 Irrigation technology can have a large effect on water use efficiency (Deng et al., 2006).
414 For example, subsurface drip irrigation can reduce irrigation water use by 35 to 55% (Lamm and
415 Trooien, 2003). However, groundwater level declines have not been mitigated by the widespread
416 conversion to more efficient irrigation technologies; instead, total withdrawals have increased.
417 As improved irrigation efficiency decreases the usage cost for water applications, more acreage
418 can be irrigated at a lower cost, resulting in increased profit margins for farmers and increased
419 incentive to irrigate more acres (Pfeiffer and Lin, 2014; Upendram and Peterson, 2007).

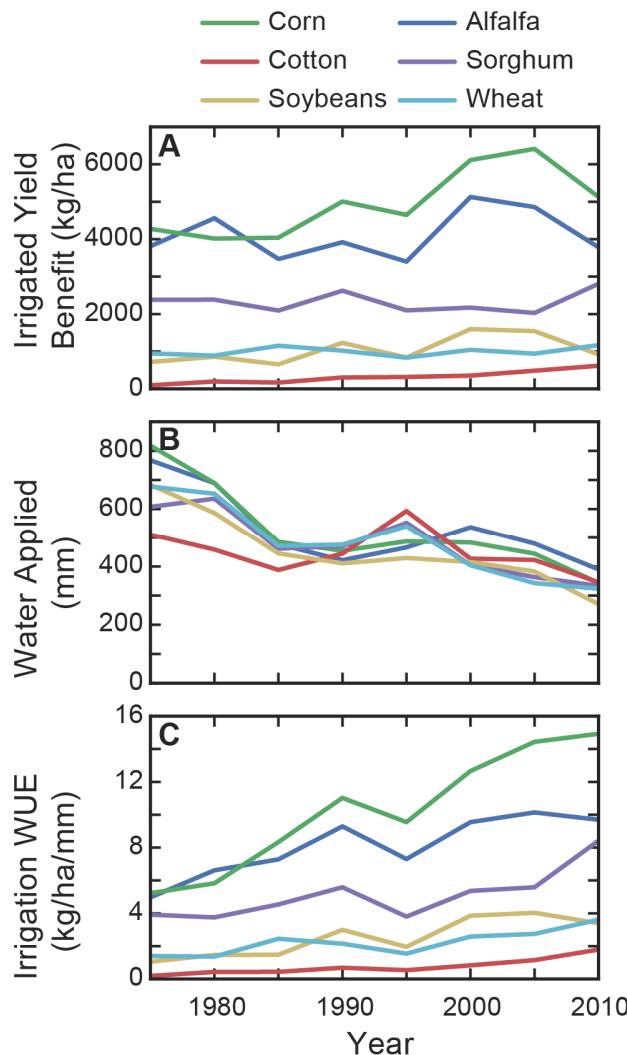
420 To demonstrate that efficient irrigation technologies have led to increased water use
421 across the HPA, we processed data for total irrigated acreage from 1990-1996, seven years prior
422 to the widespread adoption of LEPA technology, and 1997-2003, seven years directly after

423 LEPA adoption (NASS-USDA). Total irrigated acreage across the HPA increased by ~11.38
424 million acres after widespread LEPA adoption; by subregion, the NHP, CHP, and SHP increased
425 by 5.55, 3.63, and 2.22 million acres, respectively (Table 1). Also significant are the trends in
426 irrigated crop choice that directly follow LEPA adoption. For example, NHP farmers focused on
427 irrigating a variety of crops rather than isolating corn expansion, CHP farmers expanded water
428 intensive crops despite regional water level decline, and SHP farmers primarily sought to
429 improve yields on predominant crops like cotton while also capitalizing on the incentive to grow
430 water-intensive corn in the relatively dry region. From 1996 through 2015, there has been an 11
431 percent increase in irrigated acres on the NHP and CHP; in contrast there has been a 25 percent
432 decrease on the SHP, likely due to the decrease in available irrigable acreage as displayed in
433 Figure 5.

434

435 *4.7 Other Methods*

436 Past studies have also highlighted how maximizing efficient water use includes more than
437 just improved irrigation technology. For example, efficient water use also includes processes
438 such as fertilizer regimes (Ogola et al., 2002), root zone uptake (Clothier and Green, 1994), pre-
439 existing soil moisture (Panda et al., 2003), and irrigation frequency and intensity (Kang et al.,
440 2002; Nair et al., 2013). Yields have been highest when irrigation applications were frequent
441 with low intensity (Behera and Panda, 2009) and when fertilizer applications integrated with
442 irrigation could offset the additional need for water to maximize yield. Water uptake by plant
443 roots mostly occurs in the uppermost 45-cm of soil, thus irrigation applications that supply water
444 beneath this depth generally add to nutrient and water leaching (Panda et al., 2003). Furthermore,
445 increased irrigation applications, even with efficient technologies, lead directly to increased


446 water loss due to increased evapotranspiration (Howell et al., 2004; Ogola et al., 2002).
447 Improved irrigation regimes are a major focus area for water conservation, and further research
448 is needed that integrates water use with the social drivers behind water management.

449

450 *4.8 Water Productivity*

451 Improved water use efficiency can both limit the total volume of water applied per area
452 and reduce the total water demanded by the crop system. This movement has been widely linked
453 with “crop per drop” research where the objective is to maximize crop yield for every drop of
454 water applied (Brauman et al., 2013). To quantify the amount of crop returned per water amount
455 of water applied, we conducted a novel synthesis of the benefit of irrigation on yields, irrigated
456 water applications per commodity, and irrigation water use efficiency (Figure 7). The yield
457 benefit of irrigation (Figure 7A), or the difference between irrigated and non-irrigated yields,
458 was calculated for each commodity and averaged across the HPA using the data in Figures 3 and
459 4. To calculate water applications per commodity, three county-level time series were used: (1)
460 annual irrigated yields per commodity (Figure 3), (2) annual irrigated acreages per commodity
461 (Figure 4), and (3) water use per commodity, which was estimated every five years using
462 Agricultural Census and USGS Water Use data (NASS-USDA, 2012; NWIS-USGS). USGS
463 Water Use data prior to 1985 are at the state level, so we first disaggregated these to county level
464 by assuming that relative county-level water use remained the same from 1985 back to 1970.
465 Second, we used state level data from the 2013 Agricultural Census on water applied per
466 commodity and assumed that relative water applied per commodity remained the same within
467 each state across the analysis years. Third, we multiplied commodity acreages in each county by
468 relative water use to partition total water among commodities. Finally, we divided the

469 commodity water use in each county by county acreages to get water use per commodity. To
 470 estimate the “crop-per-drop” of irrigation water across the HPA, and how it varies across
 471 commodities, we divided the irrigated yield benefit (Figure 7A) by the water applied (Figure
 472 7B), yielding Irrigation Water Use Efficiency (Figure 7C), or the benefit of irrigation per unit of
 473 applied water, across commodities.

474
 475 **Figure 7.** Crop yield, irrigation application data, and water use data (NASS-USDA; NWIS-
 476 USGS) were used to quantify crop yield per water spent in 5 year increments since 1970. **A**
 477 Yield benefit is calculated as the difference in yield between irrigated and non-irrigated yield. **B**
 478 The HPA-average annual amount of water applied for each commodity. **C** Irrigation Water Use
 479 Efficiency (WUE), calculated as the irrigated yield benefit divided by applied water.
 480

481 The incentive to irrigate is obvious based on the irrigated yield benefit. For example,
482 irrigated corn yield is approximately 5,000 kg/ha greater than non-irrigated yield (Figure 7A).
483 However, the productivity of water (i.e., crop yield per drop) has not been well documented
484 across regions. Due to many factors including more efficient irrigation systems, shifts in
485 cropping patterns regionally, and changes in irrigation application practices, the amount of water
486 applied per season has decreased for all common commodities (Figure 7B), and the magnitude of
487 crop yield gained per amount of water applied has steadily increased in recent decades across the
488 HPA (Figure 7C), demonstrating that the productivity of irrigation water has steadily improved.
489 For example, irrigation water use efficiency has nearly tripled in the last 45 years for corn and
490 more than doubled for alfalfa, sorghum, soybeans, and wheat. This boost in regional productivity
491 is directly linked to both the improvement in yield benefit (Figure 7A) as well as reduced water
492 applications. Assuming these positive water productivity trends continue into the future, the
493 incentive to irrigate will continue to increase, further intensifying resource demands in the water-
494 energy-food nexus over the HPA.

495

496 *4.9 Emerging Strategies*

497 Emerging research to improve water productivity has largely focused on precision
498 agriculture, crop choice, and cultivar improvement (Basso et al., 2011; 2013; Ritchie and Basso,
499 2008). In recent years, the emphasis on cultivar development has increased given the expected
500 cross-domain implications of climate change such as decreased crop yields due to increased
501 water stress (Basso et al., 2015; Basso and Ritchie, 2014). New crop cultivars may result in
502 increased yields despite growth challenges posed by climate change by allowing for some
503 traditionally water-intensive crops to be grown in regions where water is scarce (Hu and Xiong,

504 2014; Lobell et al., 2014). As more drought-resistant crop cultivars enter the market, growth of
505 these cultivars in water-deficient areas will likely become more profitable (Benson et al., 2011).

506 Precision agriculture has generated significant interest among researchers and farmers
507 given its potential to improve long-term production even at the small farm scale, although the
508 adoption of precision agricultural practices has only grown moderately since their introduction in
509 the 1990s (Daberkow and McBride, 2003; McBratney et al., 2005). Precision agriculture uses
510 discretized, site-specific information based on factors including crop choice and soil type to
511 develop strategies that are unique to that site, such as only applying irrigation to moisture
512 deficient sections of a field (Basso et al., 2001; Bongiovanni and Lowenberg-Deboer, 2004). One
513 challenge for large scale increases in water productivity using precision agriculture is that
514 variable rate technologies are still under development and have not been widely applied in areas
515 such as the HPA. The implications of precision agriculture on water productivity are likely most
516 beneficial when considering adaptive, full-field irrigation strategies that respond to low soil
517 moisture conditions.

518

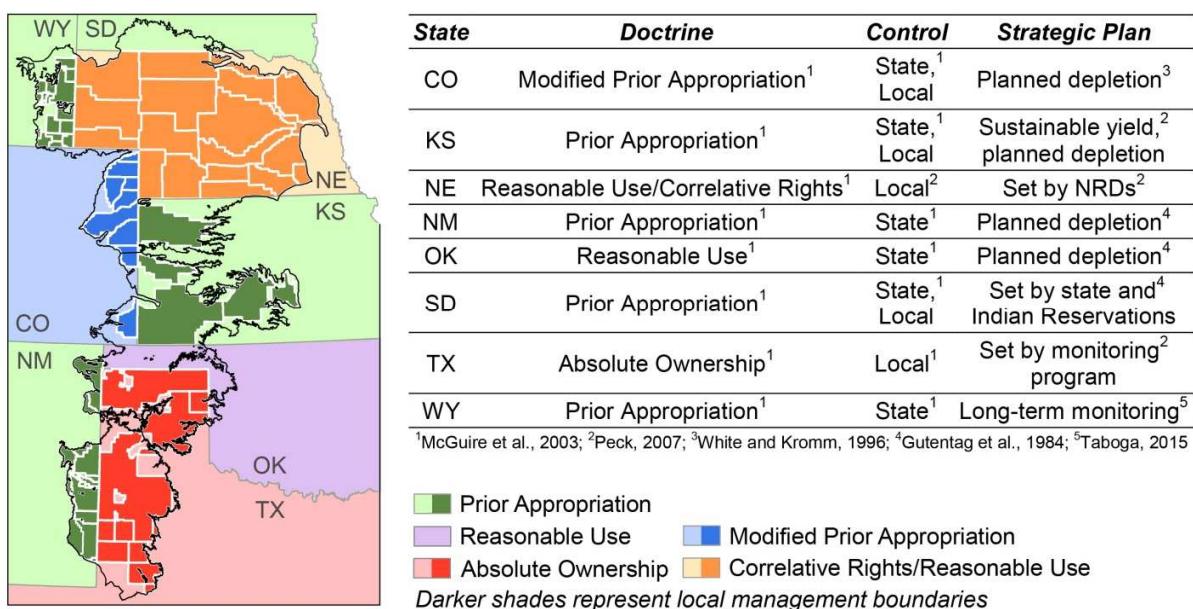
519 *4.10 Natural Viability*

520 Crop type selection is a natural solution to water conservation. For example, switching
521 from water-intensive corn to a less water-intensive crop mitigates the need for excess irrigation.
522 In the northern Texas region of the SHP, switching half of irrigated corn to irrigated cotton could
523 reduce water withdrawals by 8% (Colaizzi et al., 2009). Growing water-intensive crops in
524 regions that need supplemental irrigation generates the largest demand for water withdrawal
525 from the HPA aquifer. Crop selection based on the natural variability of the regional climate is

526 the most effective method of water conservation. However, natural crop selection generally
527 results in less farmer profit.

528

529 **5. The Socioeconomic Domain**


530 The socioeconomic domain both motivates and regulates how water is used within the
531 water-energy-food nexus. In other words, this domain defines the incentives and social penalties
532 for water use. Farmers generally aim to maximize profit, meaning the nature and location of
533 economic incentives within the nexus can be useful indicators of potential water use. At the same
534 time, legislation and political actions define to what extent, and sometimes at which locations,
535 water can be used. Understanding how drivers within the socioeconomic domain may impact
536 cross-domain trends in the physical and agricultural domains is a challenging but critical task in
537 modern agriculture. We highlight historical socioeconomic and policy trends that provide key
538 insights into areas where future management strategies can improve within the context of water
539 conservation.

540

541 *5.1 Historical Water Policy*

542 In the United States, water allocation laws are made at the state level except where
543 subject to federal rules such as interstate commerce (Peck 2007). Among U.S. states, there are
544 four predominant doctrines governing water policy: (1) the absolute ownership doctrine: all
545 water beneath a property owner's land belongs to the landowner, (2) the correlative rights
546 doctrine: landowners must share underlying water with other owners of land over an aquifer, and
547 each owner has equal rights to groundwater, (3) the reasonable use doctrine: the landowner can
548 use underlying water without restriction as long as it is beneficial to the overlying land, and (4)
549 the prior appropriation doctrine: priority belongs to the most senior claim, often phrased "first in

550 time, first in right.” The dominant legal doctrines governing water rights across the HPA states
551 are displayed in Figure 8.
552

553

554 **Figure 8.** Dominant groundwater doctrines, local management boundaries, primary
555 control levels, and prevailing management plans across the HPA in each state.

556

557 Most HPA states have developed localized management areas to enact further protection
558 for groundwater after decades of following a state-first control model (Fipps, 1998; Peck, 2007).
559 HPA states have intensified groundwater management strategies by implementing plan
560 requirements, regulating case-specific problems, and establishing critical watershed areas in
561 efforts to address groundwater decline issues not met by pre-existing allocation policies (Ashley
562 and Smith, 1999; Kaiser and Skillern, 2001; Mace et al., 2006). Despite a more localized and
563 defined management approach, allocation policies have failed to adequately protect against
564 groundwater depletion (Kaiser and Skillern, 2001). The control levels of all HPA states are
565 further summarized in Figure 8.

566 Surface water connections have also become increasingly prominent in modern
567 groundwater policy and legislation. For example, in 1999, Kansas sued Nebraska and Colorado
568 alleging that reduced flow in the Republican River due to large-scale groundwater development
569 violated the Republican River Compact of 1942. Although groundwater was not explicitly
570 addressed in the Compact, the US Supreme Court ruled that groundwater use was restricted if it
571 depleted transboundary streamflow. The resulting restrictions for this region of Nebraska
572 included a suspension on drilling new water wells, mandatory metering of irrigation wells in the
573 watershed and certifying irrigation acreages, restrictions of groundwater pumping volumes, and a
574 framework to use groundwater modeling to assess compliance on five-year running averages
575 (Kuwayama and Brozović, 2013; Peck, 2007). Future water management can capitalize on
576 improved observations and numerical models to formulate strategies that integrate surface water
577 and groundwater as a preemptive step to groundwater conservation.

578

579 *5.2 Motivation for Policy Changes*

580 Historically, water policies in the High Plains states were created during periods of
581 limited demand on water resources. These initial policies still exist as political frameworks, and
582 policies have been fit within the structure of these outdated philosophies. Most HPA states
583 acknowledge that under current policy, it is more realistic to manage groundwater as a
584 nonrenewable resource or mined commodity, rather than a sustainable and renewable resource
585 (Waskom et al., 2006). As a result, many areas on the High Plains have implemented “manage
586 for depletion” regimes where calculated water withdrawals are permitted based on an extraction
587 formula, rather than targeting aquifer sustainability (McGuire et al., 2003; Peck, 2007; Waskom
588 et al., 2006). Management strategies across the HPA region are summarized in Figure 8.

589 HPA states have attempted to modify federal, state, or local governance models to fit
590 within the limiting frameworks of historical policy and mitigate groundwater decline, but the
591 limitations of these adjustments are frequently debated as groundwater depletion has continued
592 under both large and small-scale control (Haacker et al., 2015; Kromm and White, 1987; Peck,
593 2003; Scanlon et al., 2012). A challenge is that large-scale control often overlooks localized
594 needs, but local management bodies can be reluctant to self-impose overwithdrawal sanctions
595 (Peterson, 1991). For example, the absolute ownership doctrine in Texas grants the landowner
596 flexibility in water withdrawals, but little protection exists for neighbors against
597 overwithdrawals. Localized permit systems discourage overwithdrawals, providing greater state
598 and local control, but little flexibility is granted to the landowners and extensive government
599 resources are necessary to administer the complex system of water rights and allocation. Given
600 these challenges, traditional management strategies emerging from past policies are unlikely to
601 meet the water demands of the future (NRCS, 2001; 2004).

602

603 *5.3 Farmer Profit*

604 Water use across the HPA region is intimately linked to short-term farmer profit. This
605 concept is demonstrated by irrigating corn, the commodity most likely to return the greatest
606 profit, in the water-stressed SHP region, the HPA region least suited for the crop, despite the
607 understood implications of groundwater decline. This suggests that future management strategies
608 focused on water conservation should also take farmer profit into consideration through various
609 economic policies; these policies can be broadly sorted into: (1) ***direct policies***, where direct
610 restrictions are imposed on human behavior (e.g., restrictive water use legislation), and (2)
611 ***indirect policies***, where economic incentives are used to encourage a change in behavior (e.g.,

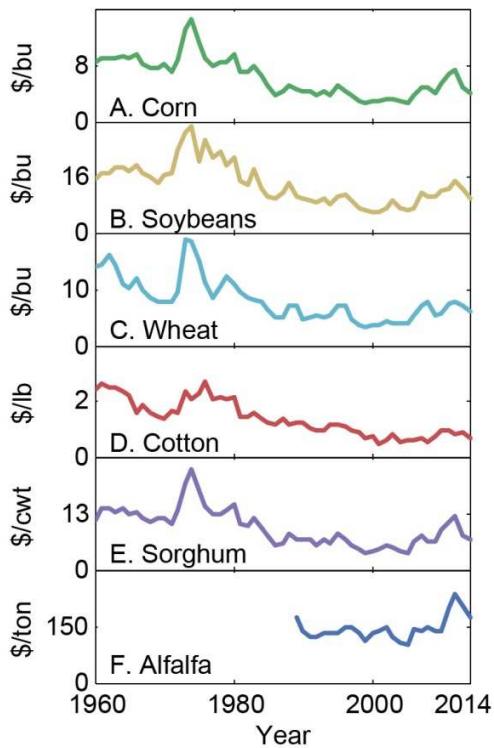
612 subsidies for water-conserving practices). An ideal economic policy should be designed to
613 simultaneously encourage farmer profit protection and water conservation, all while staying
614 within the pre-existing frameworks of direct policies.

615 Farmer profit is a function of global market demand, production costs, and the variability
616 or risk involved in crop growth. From the perspective of a farmer, risk and variability linked to
617 decreased yields are often the biggest concern for decreased revenues (Barry, 1984). In general,
618 agricultural risk can be divided into: (1) production risk (associated with yield, input costs, and
619 weather variability), (2) market risk (uncertainty about future market value of the harvest), and
620 (3) institutional risk (the potential for change in agricultural policies; Babcock and Shogren,
621 1995; Barret; 1996; Eakin, 2005). By reducing risk and variability through indirect policies,
622 expected revenue and production costs can be balanced to provide a substantial influence on crop
623 choice.

624 Crop insurance provides one method to mitigate production risk (Hazell et al., 1986), but
625 the long-term success of this strategy is often questioned (Duncan and Myers, 2000; Miranda et
626 al., 1997). Few other risk mitigation methods exist despite the critical link between risk
627 management and best management practices. For the High Plains, many of the active indirect
628 policies and risk management strategies are defined in the U.S. Farm Bill, a comprehensive
629 agricultural bill passed by congress every five years.

630 The U.S. Farm Bill includes market supports that boost the value of particular
631 commodities, subsidies that provide incentives for best management practices (e.g., switching to
632 high-efficiency irrigation systems), and crop insurance that decreases the risk of profit loss
633 during a variable growing season. For example, the 2014 US Farm Bill includes the Stacked
634 Income Protection Plan (STAX), which allows enrolled cotton farmers to receive payments if

635 regional yields fall below 90% of the expected level, ultimately decreasing the risk for growing
636 cotton. Another example is the Conservation Reserve Program (CRP), which was first introduced
637 in the 1985 Farm Bill and has significantly affected the HPA region by encouraging the
638 retirement of marginal farmland through rental and cost-share payments to farmers (Osborn,
639 1993). However, despite the long history of the U.S. Farm Bill, only a few studies (e.g., Rao and
640 Yang, 2010) have examined how indirect policies have influenced water availability.


641 Most indirect policies have done little to protect HPA groundwater, given that the
642 incentive to increase profits is antithetical to water conservation. In fact, current indirect policies
643 may increase the demand for water use across the HPA. For example, the Renewable Fuel
644 Standard (RFS) of 2005 required that 7.5 billion gallons of renewable fuel be blended into
645 gasoline by 2012 (Schnepp and Yacobucci, 2013). This biofuel mandate generated a profitability
646 incentive to farmers, ultimately increasing the planting of water-intensive biofuel crops (e.g.,
647 corn). This increased water burden may or may not be reduced in the future as less water-
648 intensive biofuel crops (e.g., sorghum) become more profitable. Indirect policies concentrated on
649 water conservation will be more realistic if factors such as irrigable acreage and total water use
650 are considered (Caswell and Zilberman, 1985). Interdisciplinary research that integrates social
651 and natural sciences will be necessary to help develop successful future water management
652 strategies that incorporate indirect policies and still mitigate groundwater decline.

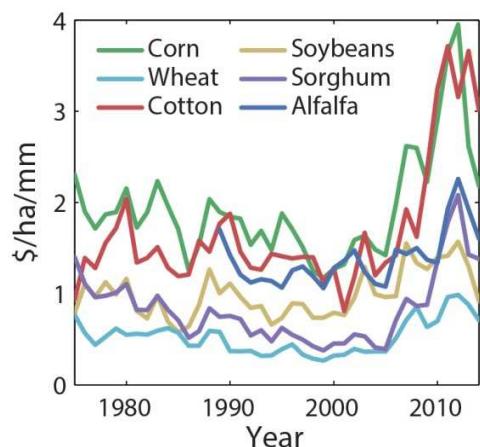
653

654 *5.4 Market Prices*

655 Effective groundwater management strategies must capture spatially and temporally
656 dynamic drivers, making it difficult for uniform policies to be effective. Market prices, for
657 example, have strongly fluctuated over the last fifty years (Figure 9). Commodity prices during

658 the 1970s were much higher than the 1990s, but values increased in the early 2000s to those
659 similar to the early 1980s. More recently, record grain production in 2012 and 2013, coupled
660 with unusually high grain prices in 2012, generated substantial bumper crops and subsequently a
661 sharp decline in grain prices prior to the 2014 season, demonstrating that short-term factors can
662 compromise management strategies even at the seasonal scale (USDA, 2014). Value fluctuations
663 have direct implications on irrigation demand through revenue incentives, particularly when
664 water intensive crops have a high market value. These dynamic complexities in management
665 strategies remain challenging to capture for long timescales; this challenge is intensified by the
666 unknowns linked in other domains such as climate variance and irrigation technologies.

668 **Figure 9.** 2014 price adjusted market values for common HPA commodities. Commodity
669 prices are synthesized for HPA states, with the exception of cotton which did not have official
670 state data for the HPA region (NASS-USDA). Cotton prices are derived from national market
671 values. Official alfalfa prices are not available prior to 1989 for the HPA states.
672


673 *5.5 Irrigation Value*

674 One challenge to cross-commodity analyses is finding an equal metric for comparison.
675 For example, comparing the irrigation water use efficiency for corn and cotton (Figure 7A)
676 would suggest that it is much more efficient to grow corn rather than cotton. But without an
677 economic value for efficiency, it is not an even comparison (i.e., a kilogram of cotton is not
678 equal to a kilogram of corn). To allow for cross-commodity comparisons, we calculated the
679 value of irrigation by multiplying irrigation water use efficiency in kg/ha/mm (Figure 7C) by
680 market value for each commodity converted to \$/kg (Figure 9), linearly interpolating the
681 irrigation water use efficiency data annually. The result is a time-series of annual irrigation per
682 commodity (Figure 10). It is no surprise that the irrigation value is high for corn given the large
683 irrigated yield benefit (Figure 7A) and high water use efficiency associated with the crop (Figure
684 7C), but the irrigation value of cotton is also high despite the relatively low irrigated yield
685 benefit (Figure 7A) and low market value (Figure 9) on a per-mass basis. Thus, quantifying the
686 economic value for irrigation can offer key insights that highlight incentives within the water-
687 energy-food nexus.

688 Our results indicate that given high irrigation values for both corn and cotton,
689 restructuring a management plan or subsidy program around the production of irrigated cotton
690 instead of water-intensive corn may provide an economic opportunity for farmers in regions like
691 the SHP to switch from corn to the less water-intensive commodity. Another example is the
692 irrigation value of wheat, which has yield benefits and water use metrics similar to those of
693 cotton, but its irrigation value is substantially less (Figure 10). This suggests that economic
694 incentives aligned with the production of irrigated wheat may not be very beneficial to either
695 farmer revenues or water conservation. By understanding the value of drivers like irrigation

696 value, management plans can be designed to promote both farmer profit and the mitigation of
697 groundwater loss by anticipating the most economical decisions for farmers.

698

699
700 **Figure 10.** The value of irrigation per commodity across the HPA. Irrigation value is
701 calculated as water use efficiency for each commodity (Figure 7C) multiplied by its
702 corresponding market value in \$/kg (Figure 9).

703

704 *5.6 Adaptive Management and Innovative Strategies*

705 The High Plains would also benefit from adaptive management that is responsive to
706 short-term drivers (e.g., government subsidies, drought) within a long-term framework. Recently,
707 sustainable management approaches have defined long-term goals for desired conditions 50-100
708 years into the future and used backcasting to inform short-term objectives and water use limits
709 (Gleeson et al., 2012). By adapting short-term regulations to meet long-term goals, water
710 management can be tailored to regional challenges and newly implemented programs. This
711 allows for spatially and temporally relevant adjustments that adapt to the regional needs across
712 the HPA while still maintaining groundwater sustainability as an objective. However,
713 implementation of these strategies is too recent to evaluate the effectiveness of this approach.

714 Innovative strategies have also been integrated into current policies, but the benefits of
715 these trials have been mixed. Current attempts have included: (1) heterogeneous tax policies,
716 where water during dry years is seen as more valuable than during wet years, thus subsidies are
717 given in exchange for groundwater conservation (e.g., Ashwell and Peterson, 2013), (2)
718 restrictions on new drilling and pumping, and (3) voluntary restrictions to total water use that are
719 self-imposed through personal or local initiatives (Mulligan et al., 2014). However, these
720 strategies have also been shown to increase water use and streamflow depletion because they do
721 not accurately capture changes in practice by users (Ashwell and Peterson, 2013; Scheierling et
722 al., 2006; Ward and Pulido-Velazquez, 2008). Innovative strategies designed to mitigate water
723 use must include the preferences of farmers if groundwater conservation is to be achieved.

724 When combined with innovative methods and regional markets, adaptive management
725 strategies could significantly alter water use across the High Plains. For example, the Twin Platte
726 Natural Resources District in Nebraska implemented the first groundwater permit trading market
727 in the United States in 2014 to maintain streamflow in the Platte River (Young and Brozović,
728 2016). Because the marginal cost of water reductions varies across users, permit trading
729 theoretically allows each unit of water pumped out of the system to be used at the lowest overall
730 cost to the system (Brozović and Young, 2014). This contrasts with uniform quotas on
731 groundwater pumping across users, which can force some users to make costly reductions while
732 other low cost solutions are overlooked. Permit markets have the potential to be cost-effective
733 while maximizing flexibility for water users (Palazzo and Brozović, 2014). A longer
734 implementation period is needed for full evaluation, but permit trading highlights a cost-effective
735 groundwater management strategy that promotes farmer profit, includes farmer values, and could
736 be implemented in other regions of the HPA.

737

738 **6. Discussion and Conclusions**

739 Agricultural water use is depleting the High Plains Aquifer, yet current water
740 management strategies will not prevent future declines. Increased climate variability will likely
741 increase the stress on water resources across the High Plains, specifically through changes in
742 precipitation patterns and drought intensification. We found that irrigation tends to at least
743 double commodity yield when compared to their non-irrigated counterparts, placing a large
744 economic incentive on irrigated water use across the semi-arid High Plains region. Additionally,
745 we found that efficient irrigation technologies can reduce total groundwater conservation, as
746 irrigated acreages substantially increased after the widespread introduction of efficient irrigation
747 technologies and groundwater level declines continued at rates similar to those prior to the
748 efficient systems. Future decades will require significant changes in agricultural practices for the
749 SHP and CHP regions, as irrigable areas are predicted to decline ~30 to 50 percent by 2100
750 relative to current irrigable areas. We further quantified irrigation water use efficiency and found
751 that the amount of crop per unit irrigation, often called crop per drop, has increased through time
752 for every major commodity. We multiplied these crop per drop values by market prices to
753 quantify the unit value of irrigation water for each commodity. Based on our results, cotton and
754 corn have the highest irrigation value, followed by alfalfa, soybeans, sorghum, and lastly wheat.
755 These new datasets provide a basis to evaluate the influence of major water use drivers across
756 domains and develop key insights into the water-energy-food nexus for modern agriculture.

757 Based on the trends analyzed in this study, our main conclusion is that future water
758 management strategies would benefit most from: (1) prioritizing farmer profit as an incentive for
759 change in practice, (2) managing water as an input in the water-energy-food nexus, (3) focusing

760 on adaptive frameworks, (4) adopting innovative strategies that function within current policies,
761 (5) reducing production risk, and (6) increasing political desire for resource sustainability.

762 Short-term farmer profit is the primary driver to water use across the High Plains. As
763 long as there is an economic incentive to irrigate, farmers across the HPA have largely
764 demonstrated that extensive groundwater extraction will continue regardless of the potential risk
765 for resource collapse. While aquifer depletion may be inevitable in some locations, water
766 conservation provides an optimal economic path, giving the region's economy time to diversify
767 and maximize both crop per drop and profit per drop. Introducing restrictive caps and regulations
768 can reduce groundwater use, but these efforts also result in decreased crop yields which pose
769 direct threats of food, fiber, and fuel shortages, as well as local economic hardship. Instead,
770 future strategies should attempt to shift the economic incentive away from immediate
771 groundwater extraction by placing incentives in the growth of less water-intensive crops as a way
772 to encourage sustainable management. This requires development of alternative biofuels,
773 increased demand for the commodities that generate alternative biofuels, and the implementation
774 of government programs or market adjustments to make these alternative crops valuable.
775 Farming practices will follow economic incentives, thus management strategies should
776 incentivize farmers to profitably reduce water use rather than making it more difficult to
777 maintain livelihoods through water use restrictions.

778 Water is the limiting component to agricultural production within the water-energy-food
779 nexus, and past practices on the HPA demonstrate that overlooked water use incentives will be
780 exploited if not properly accounted for in management strategies. Groundwater sustainability
781 goals can only be met when water use is balanced as an input within the nexus, where food and
782 fuel are functions of water use. In budget terms, groundwater sustainability goals can only be

783 met when annual groundwater use is nearly equal to the annual recharge supplied. Given that the
784 agriculture industry across large portions of the HPA has historically been established using
785 unsustainable practices, future management strategies must compound multiple water
786 conservation methods to offset the extensive reliance on groundwater pumping.

787 Adaptive frameworks capture temporally dynamic water use drivers (e.g., extended
788 droughts, new government incentives, and market price fluctuations) by granting decision-
789 making freedom in response to changing circumstances. Thus, adaptive management strategies
790 must incorporate short-term objectives that align with long-term goals to remain relevant at
791 extended timescales, and must react to changing physical and social drivers that caused past
792 strategies to become outdated. By allowing for heterogeneous, short-term flexibility in a long-
793 term framework, strategies can be tailored to dynamic drivers even at the seasonal timescale to
794 meet long-term goals.

795 Widespread groundwater decline is enabled by pre-existing political frameworks that
796 govern water law. These frameworks are outdated and often irrelevant on the High Plains, as
797 evidenced by the shift from regional- to local-scale groundwater management over many areas of
798 the HPA. Management strategies that follow this traditional political framework will also likely
799 fail. Traditional frameworks are too restrictive to capture every critical water use driver, allowing
800 farmers to exploit these overlooked areas and capitalize on the economic incentives they leave
801 unregulated. Instead, innovative and nontraditional strategies should be designed to fit within
802 existing legislation, but designed to capitalize on the decision-making behaviors that follow
803 economic incentives. Innovative strategies do not need to capture every driver; rather, they need
804 to manage for the decisions that follow the key driver: farmer profit. New strategies that align
805 farmer profit with reduced water use may prove more effective within the legislative framework.

806 Reduced production risk is another way to encourage farmer behavior by placing an
807 economic incentive toward ensured revenue. If the risk associated with a change in practice (e.g.,
808 less irrigation) is reduced, then farmers will be more likely to adopt new practices that align with
809 water conservation objectives. Reduced risk can come through mechanisms including the
810 enhanced development of climate resistant cultivars or more effective insurance programs.

811 There must be the political will to promote groundwater conservation. Past strategies can
812 mitigate groundwater declines to a certain extent, but they cannot fully succeed if there is not the
813 will to implement them. Given that some portions of the HPA are already managing for
814 depletion, there appears to be a conflict between these areas and a regional desire for
815 groundwater sustainability. Management strategies must be constructed with the necessary tools
816 to succeed, but they must also be implemented in a political framework that promotes and
817 advocates for successful implementation.

818 **Acknowledgments**

819 This manuscript is based upon work primarily supported by the National Science Foundation
820 grant 1039180 with supplemental support by the USDA NIFA Water CAP grant 2015-68007-
821 23133 and NASA Headquarters under the NASA Earth and Space Science Fellowship Program
822 grant 14-EARTH14F-198. Any opinions, findings, and conclusions or recommendations
823 expressed in this material are those of the authors and do not necessarily reflect the views of the
824 National Science Foundation, USDA National Institute of Food and Agriculture, or National
825 Aeronautics and Space Administration.

826 **References**

- 827 Aguilar, J., D. Rogers and I. Kisekka. 2015. Irrigation Scheduling Based on Soil Moisture
828 Sensors and Evapotranspiration. *Kansas Agricultural Experiment Station Research Reports*,
829 1(5): 20.
- 830 Aiken, J.D. 1980. The National Water Policy Review and Western Water Rights Law Reform:
831 An Overview. *Nebraska Law Review*, 59: 327.
- 832 Allen, V.G., C.P. Brown, R. Kellison, E. Segarra, T. Wheeler, P.A. Dotray, J.C. Conkwright, C.
833 J. Green, and V. Acosta-Martinez. 2005. Integrating cotton and beef production to reduce water
834 withdrawal from the Ogallala Aquifer in the Southern High Plains. *Agronomy Journal*, 97(2):
835 556-567. doi:10.2134/agronj2005.0556.
- 836 Arritt, R.W., T.D. Rink, M. Segal, D.P. Todey, C.A. Clark, M.J. Mitchell, and K.M. Labas.
837 1997. The Great Plains low-level jet during the warm season of 1993. *Monthly Weather Review*,
838 125(9): 2176-2192.
- 839 Ashley, J.S., and Z.A. Smith. 1999. Groundwater management in the West. *University of
840 Nebraska Press*.
- 841 Ashwell, N.E.Q., and J.M. Peterson. 2013. The Impact of Irrigation Capital Subsidies on
842 Common-pool Groundwater Use and Depletion: Results for Western Kansas. In *AAEE and
843 CAES Joint Annual Meeting*, 150703: 4-6.
- 844 Babcock, B.A., and J.F. Shogren. 1995. The cost of agricultural production risk. *Agricultural
845 Economics*, 12(2) 141-150. doi:10.1016/0169-5150(95)01140-G.
- 846 Barry, Peter J., ed. 1984. Risk management in agriculture. *Ames, Iowa: Iowa State University
847 Press*, 506.
- 848 Basso, B., D. Cammarano, and P. De Vita. 2004. Remotely sensed vegetation indices: Theory
849 and applications for crop management. *Rivista Italiana di Agrometeorologia*, 1: 36-53.
- 850 Basso, B., D. Cammarano, C. Fiorentino, and J.T. Ritchie. 2013. Wheat yield response to
851 spatially variable nitrogen fertilizer in Mediterranean environment. *European Journal of
852 Agronomy*, 51: 65-70. doi:10.1016/j.eja.2013.06.007.
- 853 Basso B., and J.T. Ritchie. 2014. Temperature and drought effects on maize yield. *Nature
854 Climate Change*, 4(233). doi:10.1038/nclimate2139.
- 855 Basso, B., J.T. Ritchie, D. Cammarano, and L. Sartori. 2011. A strategic and tactical
856 management approach to select optimal N fertilizer rates for wheat in a spatially variable field.
857 *European Journal of Agronomy*, 35(4): 215-222. doi:10.1016/j.eja.2011.06.004.
- 858 Basso, B., J.T. Ritchie, F.J. Pierce, J.W. Jones, and R.N. Braga. 2001. Spatial validation of crop
859 models for precision agriculture. *Agricultural Systems*, 68: 97-112. doi:10.1016/S0308-
860 521X(00)00063-9.

- 861 Basso, B., J.T. Ritchie, P.R. Grace, and L. Sartori. 2006. Simulation of tillage systems impact on
862 soil biophysical properties using the SALUS model. *Italian Journal of Agronomy*, 1(4): 677-688.
- 863 Basso, B. R. Nagelkirk, and L. Sartori. 2015. Modelling Conservation Agriculture. In: M.
864 Farooq, K. Siddique (eds.), *Conservation Agriculture*. Springer International Publishing
865 Switzerland. doi:10.1007/978-3-319-11620-4_8.
- 866 Behera, S.K., and R.K. Panda. 2009. Integrated management of irrigation water and fertilizers
867 for wheat crop using field experiments and simulation modeling. *Agricultural Water
868 Management*, 96(11) 1532-1540. doi:10.1016/j.agwat.2009.06.016.
- 869 Benson, A., P. Zhu, M. Farmer, and C. Villalobos. 2011. Profitability of a Dryland Grazing
870 System Suitable for the Texas High Plains. *The Texas Journal of Agriculture and Natural
871 Resources*, 24: 62-73.
- 872 Berg, A., B.R. Lintner, K.L. Findell, S. Malyshev, P.C. Loikith, and P. Gentine. Impact of soil
873 moisture-atmosphere interactions on surface temperature distribution. *Journal of Climate*,
874 27(21): 7976-7993. doi:10.1175/JCLI-D-13-00591.1.
- 875 Bongiovanni, R., and J. Lowenberg-DeBoer. 2004. Precision agriculture and sustainability.
876 *Precision Agriculture*, 5(4): 359-387. doi:10.1023/B:PRAG.0000040806.39604.aa.
- 877 Bossio, D., and K. Geheb, eds. 2008. Conserving land, protecting water. *CABI*, 6. ISBN-13: 978
878 1 84593 387 6.
- 879 Bossio, D., K. Geheb, and W. Critchley. 2010. Managing water by managing land: Addressing
880 land degradation to improve water productivity and rural livelihoods. *Agricultural Water
881 Management*, 97(4): 536-542. doi:10.1016/j.agwat.2008.12.001.
- 882 Brauman, K.A., S. Siebert, and J.A. Foley. 2013. Improvements in crop water productivity
883 increase water sustainability and food security—a global analysis. *Environmental Research
884 Letters*, 8(2): 024030. doi:10.1088/1748-9326/8/2/024030.
- 885 Brozović, Nicholas, and Richard Young. 2014. Design and implementation of markets for
886 groundwater pumping rights. In *Water Markets for the 21st Century*, Springer Netherlands. 283-
887 303.
- 888 Carbone, R.E., and J.D. Tuttle. 2008. Rainfall Occurrence in the US Warm Season: The Diurnal
889 Cycle. *Journal of Climate*, 21(16): 4132-4146. doi:10.1175/2008JCLI2275.1.
- 890 Caswell, M., and D. Zilberman. 1985. The choices of irrigation technologies in California.
891 *American Journal of Agricultural Economics*, 67(2): 224-234. doi:10.2307/1240673.
- 892 Colaizzi, P., and A. Schneider. 2004. Comparison of SDI, LEPA, and spray irrigation
893 performance for grain sorghum. *Transactions of the ASAE*, 47(5): 1477-1492.
- 894 Colaizzi, P.D., P.H. Gowda, T.H. Marek, and D.O. Porter. 2009. Irrigation in the Texas High
895 Plains: A brief history and potential reductions in demand. *Irrigation and Drainage*, 58(3): 257-
896 274. doi:10.1002/ird.418.

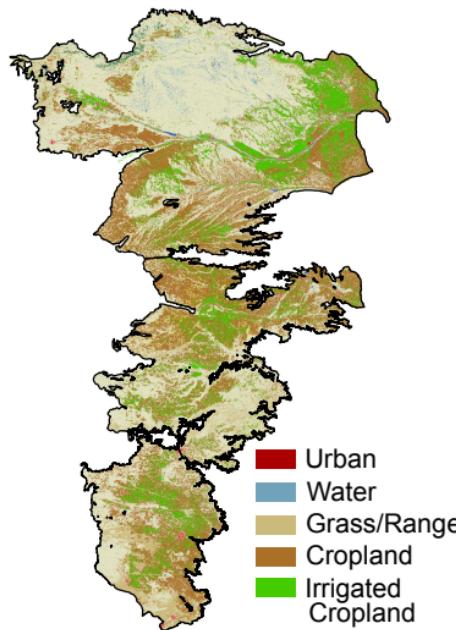
- 897 Colaizzi, P.D., S.R. Evett, and T.A. Howell. 2004. Irrigation methods and capacities for cotton in
898 the Northern High Plains. In *High Plains Groundwater Resources: Challenges and*
899 *Opportunities, Conference Proceedings*, Lubbock, TX. 7-9.
- 900 Cook, K.H., E.K. Vizy, Z.S. Launer, and C.M. Patricola. 2008. Springtime intensification of the
901 Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first
902 century. *Journal of Climate*, 21(23): 6321-6340. doi:10.1175/2008JCLI2355.1.
- 903 Crosbie, R.S., B.R. Scanlon, F.S. Mpelasoka, R.C. Reedy, J.B. Gates, and Lu Zhang. 2013.
904 Potential climate change effects on groundwater recharge in the High Plains Aquifer, USA.
905 *Water Resources Research*, 49(7): 3936-3951. doi:10.1002/wrcr.20292.
- 906 Daberkow, S.G., and W.D. McBride. 2003. Farm and operator characteristics affecting the
907 awareness and adoption of precision agriculture technologies in the US. *Precision Agriculture*,
908 4(2): 163-177. doi:10.1023/A:1024557205871.
- 909 Deng, X., L. Shan, H. Zhang, and N.C. Turner. 2006. Improving agricultural water use efficiency
910 in arid and semiarid areas of China. *Agricultural Water Management*, 80(1): 23-40.
911 doi:10.1016/j.agwat.2005.07.021.
- 912 Derpsch, R., T. Friedrich, A. Kassam, and H. Li. 2010. Current status of adoption of no-till
913 farming in the world and some of its main benefits. *International Journal of Agricultural and*
914 *Biological Engineering*, 3(1): 1-25.
- 915 Duncan, J., and R.J. Myers. 2000. Crop insurance under catastrophic risk. *American Journal of*
916 *Agricultural Economics*, 82(4): 842-855. doi:10.1111/0002-9092.00085.
- 917 Eakin, H. 2005. Institutional change, climate risk, and rural vulnerability: Cases from Central
918 Mexico. *World Development*, 33(11): 1923-1938. doi:10.1016/j.worlddev.2005.06.005.
- 919 Edwards, C.A. 1989. The importance of integration in sustainable agricultural systems.
920 *Agriculture, Ecosystems & Environment*, 27(1-4): 25-35. doi:10.1016/0167-8809(89)90069-8.
- 921 Evans, R.G., J. LaRue, K.C. Stone, and B.A. King. 2013. Adoption of site-specific variable rate
922 sprinkler irrigation systems. *Irrigation Science*, 31(4): 871-887. doi: 10.1007/s00271-012-0365-
923 x.
- 924 Farahani, and Z. Qiang. 2010. Managing water in rainfed agriculture—The need for a paradigm
925 shift. *Agricultural Water Management*, 97(4): 543-550. doi:10.1016/j.agwat.2009.09.009.
- 926 Fereres, E., M.A. Soriano. 2007. Deficit irrigation for reducing agricultural water use. *Journal of*
927 *Experimental Botany*, 58(2): 147-159. doi:10.1093/jxb/erl165.
- 928 Fipps, G., and C. Pope. 1998. Implementation of a district management system in the Lower Rio
929 Grande Valley of Texas. In *Proc. 14th Technical Conf. on Contemporary Challenges in*
930 *Irrigation and Drainage*. Phoenix: US Committee on Irrigation and Drainage.
- 931 Geerts, S., and D. Raes. 2009. Deficit irrigation as an on-farm strategy to maximize crop water
932 productivity in dry areas. *Agricultural Water Management*, 96(9): 1275-1284.
933 doi:10.1016/j.agwat.2009.04.009.

- 934 Ghimire, R., K.R. Adhikari, Z. Chen, S.C. Shah, and K.R. Dahal. 2012. Soil organic carbon
935 sequestration as affected by tillage, crop residue, and nitrogen application in rice–wheat rotation
936 system. *Paddy and Water Environment*, 10(2): 95–102. doi:10.1007/s10333-011-0268-0.
- 937 Gleeson, T., W.M. Alley, D.M. Allen, M.A. Sophocleous, Y. Zhou, M. Taniguchi, and J.
938 VanderSteen. Towards sustainable groundwater use: setting long-term goals, backcasting, and
939 managing adaptively. *Groundwater*, 50(1): 19–26. doi:10.1111/j.1745-6584.2011.00825.x.
- 940 Green, T.R., M. Taniguchi, H. Kooi, J.J. Gurdak, D.M. Allen, K.M. Hiscock, H. Treidel, and A.
941 Aureli. 2011. Beneath the surface of global change: Impacts of climate change on groundwater.
942 *Journal of Hydrology*, 405(3): 532–560. doi:10.1016/j.jhydrol.2011.05.002.
- 943 Gurdak, J.J., and C.D. Roe. 2010. Review: Recharge rates and chemistry beneath playas of the
944 high Plains aquifer, USA. *Hydrogeology Journal*, 18(8): 1747–1772. doi:10.1007/s10040-010-
945 0672-3.
- 946 Gutentag, E.D., F.J. Heimes, N.C. Krothe, R.R. Luckey, and J.B. Weeks. 1984. Geohydrology of
947 the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South
948 Dakota, Texas, and Wyoming. *USGS No. 1400-B. 1-63*. Available at:
949 pubs.usgs.gov/pp/1400b/report.pdf.
- 950 Haacker, E.M.K., A.D. Kendall, D.W. Hyndman. 2015. Water level declines in the High Plains
951 Aquifer: Predevelopment to resource senescence. *Ground Water*, 4635(517).
952 doi:10.1111/gwat.12350.
- 953 Harding, K.J., and P.K. Snyder. 2012a. Modeling the atmospheric response to irrigation in the
954 Great Plains. Part I: General impacts on precipitation and the energy budget. *Journal of*
955 *Hydrometeorology*, 13(6): 1667–1686. doi:10.1175/JHM-D-11-098.1.
- 956 Harding, K.J., and P.K. Snyder. 2012b. Modeling the atmospheric response to irrigation in the
957 Great Plains. Part II: The precipitation of irrigated water and changes in precipitation recycling.
958 *Journal of Hydrometeorology*, 13(6): 1687–1703. doi:10.1175/JHM-D-11-099.1.
- 959 Havlin, J.L., D.E. Kissel, L.D. Maddux, M.M. Claassen, and J.H. Long. Crop rotation and tillage
960 effects on soil organic carbon and nitrogen. *Soil Science Society of America Journal*, 54(2): 448–
961 452.
- 962 Hazell, P.B.R., and R.D. Norton. 1986. Mathematical programming for economic analysis in
963 agriculture. *New York: Macmillan*.
- 964 Higgins, R.W., Y. Yao, and X.L. Wang. 1997. Influence of the North American monsoon system
965 on the US summer precipitation regime. *Journal of Climate*, 10(10): 2600–2622.
- 966 Hobbs, P.R., K. Sayre, and R. Gupta. 2008. The role of conservation agriculture in sustainable
967 agriculture. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 363(1491):
968 543–555. doi:10.1098/rstb.2007.2169.
- 969 Hoerling, M., J. Eischeid, A. Kumar, R. Leung, A. Mariotti, K. Mo, S. Schubert, and R. Seager.
970 2014. Causes and predictability of the 2012 Great Plains drought. *Bulletin of the American*
971 *Meteorological Society*, 95(2): 269–282. doi:10.1175/BAMS-D-13-00055.1.

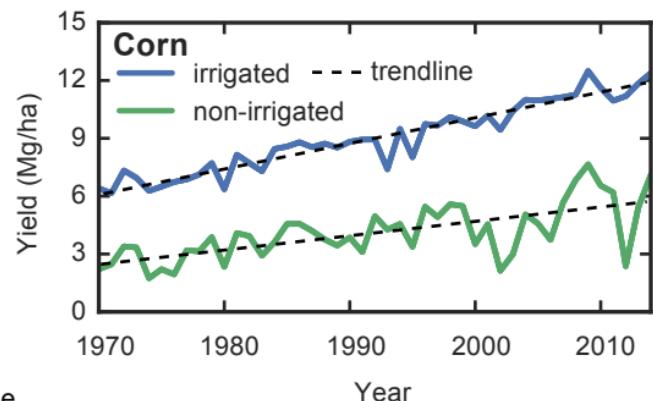
- 972 Honghong, H., and L. Xiong. 2014. Genetic engineering and breeding of drought-resistant crops.
973 *Annual review of plant biology*, 65: 715-741. doi:0.1146/annurev-arplant-050213-040000.
- 974 Howell, T.A. 2001. Enhancing Water Use Efficiency in Irrigated Agriculture. *Agronomy Journal*, 93(2): 281 doi:10.2134/agronj2001.932281.
- 976 Howell, T.A., S.R. Evett, J.A. Tolk, and A.D. Schneider. 2004. Evapotranspiration of full-,
977 deficit-irrigated, and dryland cotton on the Northern Texas High Plains. *Journal of Irrigation
978 and Drainage Engineering*, 130(4): 277-285.
- 979 Hu, H., and L. Xiong. 2014. Genetic engineering and breeding of drought-resistant crops.
980 *Annual Review of Plant Biology*, 65(1): 715-741. doi:10.1146/annurev-arplant-050213-040000.
- 981 IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group
982 I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon,
983 S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)].
984 *Cambridge University Press*, Cambridge, United Kingdom and New York, NY, USA.
- 985 Jódar, J., J. Carrera, and A. Cruz. 2010. Irrigation enhances precipitation at the mountains
986 downwind. *Hydrology and Earth System Sciences*, 14(10): 2003-2010. doi:10.5194/hess-14-
987 2003-2010.
- 988 Johnston, A.E. 1986. Soil organic matter, effects on soils and crops. *Soil Use and
989 Management*, 2(3): 97-105.
- 990 Kaiser, R., and F.F. Skillern. 2000. Deep trouble: Options for managing the hidden threat of
991 aquifer depletion in Texas. *Texas Tech Law Review*, 32: 249.
- 992 Kang, S., L. Zhang, Y. Liang, X. Hu, H. Cai, and B. Gu. 2002. Effects of limited irrigation on
993 yield and water use efficiency of winter wheat in the Loess Plateau of China. *Agricultural Water
994 Management*, 55(3): 203-216. doi:10.1016/S0378-3774(01)00180-9.
- 995 Knowles, T.R., P.L. Nordstrom, and W.B. Klemt. 1984. Evaluating the ground-water resources
996 of the High Plains of Texas. *Texas Department of Water Resources*, 3. Available at:
997 www.twdb.texas.gov/publications/reports/numbered_reports/doc/R288/R288v1/R288v1.pdf.
- 998 Koster, R.D., P.A. Dirmeyer, Z. Guo, G. Bonan, E. Chan, P. Cox, C.T. Gordon, S. Kanae, E.
999 Kowalczyk, D. Lawrence, and P. Liu. 2004. Regions of strong coupling between soil moisture
1000 and precipitation. *Science*, 305(5687): 1138-1140. doi:10.1126/science.1100217.
- 1001 Kromm, D.E., and S.E. White. 1987. Interstate groundwater management preference differences:
1002 The Ogallala region. *Journal of Geography*, 86(1): 5-11. doi:10.1080/00221348708979440.
- 1003 Kumar, Arun, Mingyue Chen, Martin Hoerling, and Jon Eischeid. 2013. Do extreme climate
1004 events require extreme forcings? *Geophysical Research Letters*, 40(13): 3440-3445.
1005 doi:10.1002/grl.50657.
- 1006 Kuwayama, Y., and N. Brozović. 2013. The regulation of a spatially heterogeneous externality:
1007 Tradable groundwater permits to protect streams. *Journal of Environmental Economics and
1008 Management*, 66(2): 364-382. doi:10.1016/j.jeem.2013.02.004.

- 1009 Lamm, F.R., and T.P. Trooien. 2003. Subsurface drip irrigation for corn production: a review of
1010 10 years of research in Kansas. *Irrigation Science*, 22(3-4): 195-200. doi:10.1007/s00271-003-
1011 0085-3.
- 1012 Leshy, J. 2009. Notes on a progressive national water policy. *Harvard Law & Policy Review*, 3:
1013 133.
- 1014 Lo, M., and J.S. Famiglietti. 2013. Irrigation in California's Central Valley strengthens the
1015 southwestern US water cycle. *Geophysical Research Letters*, 40(2): 301-306.
1016 doi:10.1002/grl.50108.
- 1017 Lobell, D.B., M.J. Roberts, W. Schlenker, N. Braun, B.B. Little, R.M. Rejesus, and G.L.
1018 Hammer. 2014. Greater sensitivity to drought accompanies maize yield increase in the US
1019 Midwest. *Science*, 344(6183): 516-519. doi:10.1126/science.1251423.
- 1020 Lorite, I.J., J.M. Ramírez-Cuesta, M. Cruz-Blanco, and C. Santos. 2015. Using weather forecast
1021 data for irrigation scheduling under semi-arid conditions. *Irrigation Science*, 33(6): 411-427.
1022 doi:10.1007/s00271-015-0478-0.
- 1023 Lyle, W.M., and J.P. Bordovsky. 1983. LEPA irrigation system evaluation [Low Energy
1024 Precision Application]. *Transactions of the ASAE*, 26(3): 0776-0781. doi:10.13031/2013.34022.
- 1025 Mace, R.E., R. Petrossian, R. Bradley, W.F. Mullican, and L. Christian. 2008. A streetcar named
1026 desired future conditions: The new groundwater availability for Texas (Revised). *9th Annual
1027 Changing Face of Water Rights in Texas*. Available at:
1028 [mhttp://www.twdb.texas.gov/groundwater/docs/Streetcar.pdf](http://www.twdb.texas.gov/groundwater/docs/Streetcar.pdf).
- 1029 Maloney, E.D., S.J. Camargo, E. Chang, B. Colle, R. Fu, K.L. Geil, Q. Hu, X. Jiang, N. Johnson,
1030 K.B. Karnauskas, and J. Kinter. 2014. North American climate in cmip5 experiments: part iii:
1031 assessment of twenty-first-century projections. *Journal of Climate*, 27(6): 2230-2270.
- 1032 Maupin, M.A., and N.L. Barber. 2005. Estimated withdrawals from principal aquifers in the
1033 United States, 2000. *U.S. Geological Survey Circular 1279*. Available at:
1034 <http://pubs.usgs.gov/circ/2005/1279/pdf/circ1279.pdf>.
- 1035 McBratney, A., B. Whelan, T. Ancev, and J. Bouma. 2005. Future directions of precision
1036 agriculture. *Precision Agriculture*, 6(1): 7-23. doi:10.1007/s11119-005-0681-8.
- 1037 McGuire, V. 2009. Water-level changes in the High Plains aquifer, predevelopment to 2007,
1038 2005-06, and 2006-07. *Publications of the US Geological Survey*, 17. Available at:
1039 pubs.usgs.gov/sir/2009/5019/pdf/sir2009-5019.pdf.
- 1040 McMahon, P.B., K.F. Dennehy, B.W. Bruce, J.K. Böhlke, R.L. Michel, J.J. Gurdak, and D.B.
1041 Hurlbut. 2006. Storage and transit time of chemicals in thick unsaturated zones under rangeland
1042 and irrigated cropland, High Plains, United States. *Water Resources Research*, 42(3).
1043 doi:10.1029/2005WR004417.
- 1044 Miranda, M.J., and J.W. Glauber. 1997. Systemic risk, reinsurance, and the failure of crop
1045 insurance markets. *American Journal of Agricultural Economics*, 79(1): 206-215.

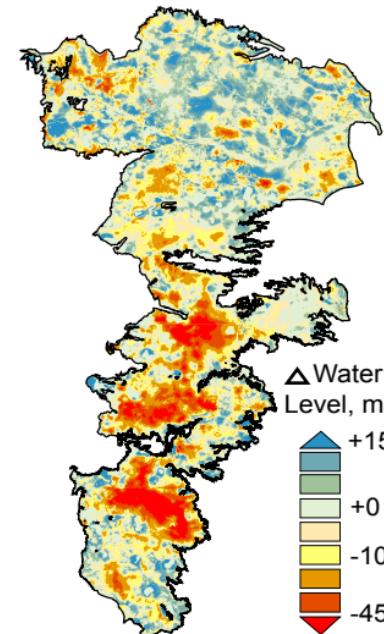
- 1046 Moore, N., and S. Rojstaczer. 2001. Irrigation-induced rainfall and the Great Plains. *Journal of*
1047 *Applied Meteorology*, 40(8): 1297-1309.
- 1048 Moore, N., and S. Rojstaczer. 2002. Irrigation's influence on precipitation: Texas High Plains,
1049 USA. *Geophysical Research Letters*, 29(16): 2-1. doi:10.1029/2002GL014940.
- 1050 Mulligan, K.B., C. Brown, Y.E. Yang, and D.P. Ahlfeld. 2014. Assessing groundwater policy
1051 with coupled economic-groundwater hydrologic modeling. *Water Resources Research*, 50(3):
1052 2257-2275. doi:10.1002/2013WR013666.
- 1053 Nair, S., J. Johnson, and C. Wang. 2013. Efficiency of irrigation water use: A review from the
1054 perspectives of multiple disciplines. *Agronomy Journal*, 105(2): 351-363.
1055 doi:10.2134/agronj2012.0421.
- 1056 NASS-USDA. 2012. Census of Agriculture. *US Department of Agriculture, National*
1057 *Agricultural Statistics Service*, Washington, DC. Available at:
1058 www.agcensus.usda.gov/Publications/2012/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf.
- 1059 Nativ, R. 1992. Recharge into Southern High Plains aquifer—possible mechanisms, unresolved
1060 questions. *Environmental Geology and Water Sciences*, 19(1): 21-32. doi:10.1007/BF01740574.
- 1061 Ng, G., D. McLaughlin, D. Entekhabi, and B.R. Scanlon, B. R. 2010. Probabilistic analysis of
1062 the effects of climate change on groundwater recharge. *Water Resources Research*, 46(7).
1063 doi:10.1029/2009WR007904.
- 1064 NLCD. 2011. Homer, C.G., J.A. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston,
1065 N.D. Herold, J.D. Wickham, and K. Megown, 2015. Completion of the 2011 National Land
1066 Cover Database for the conterminous United States—Representing a decade of land cover change
1067 information. *Photogrammetric Engineering and Remote Sensing*, 81(5): 345-354.
- 1068 NLDAS-2. National Aeronautics and Space Administration, North American Land Data
1069 Assimilation System, available at: ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.php.
- 1070 NWIS- USGS. U.S. Geological Survey, National Water Information System data available on
1071 the World Wide Web (Water Data for the Nation), Available at: waterdata.usgs.gov/nwis/.
- 1072 Odell, R.T., S.W. Melsted, and W.M. Walker. 1984. Changes in organic carbon and nitrogen of
1073 Morrow Plot soils under different treatments, 1904-1973. *Soil Science*, 137(3): 160-171.
- 1074 Ogola, J.B.O., T.R. Wheeler, and P.M. Harris. 2002. Effects of nitrogen and irrigation on water
1075 use of maize crops. *Field Crops Research*, 78(2): 105-117. doi:10.1016/S0378-4290(02)00116-8.
- 1076 Osborn, T. 1993. The Conservation Reserve Program: Status, future, and policy options. *Journal*
1077 *of Soil and Water Conservation*, 48(4): 271-279.
- 1078 Osterkamp, W.R., and W.W. Wood. 1987. Playa-lake basins on the Southern High Plains of
1079 Texas and New Mexico: Part I. Hydrologic, geomorphic, and geologic evidence for their
1080 development. *Geologic Society of America Bulletin*, 99: 215–223.


- 1081 Palazzo, Amanda, and Nicholas Brozović. 2014. The role of groundwater trading in spatial water
1082 management. *Agricultural Water Management*, 145: 50-60. doi:10.1016/j.agwat.2014.03.004.
- 1083 Panda, R.K., S.K. Behera, and P.S.Kashyap. 2003. Effective management of irrigation water for
1084 wheat under stressed conditions. Agricultural water management, 63(1): 37-56.
1085 doi:10.1016/S0378-3774(03)00099-4.
- 1086 Passioura, J. 2006. Increasing crop productivity when water is scarce—from breeding to field
1087 management. *Agricultural water management*, 80(1): 176-196. doi:10.1016/j.agwat.2005.07.012
- 1088 Peck, J.C. 2003. Property Rights in Groundwater-Some Lessons from the Kansas
1089 Experience. *The Kansas Journal of Law & Public Policy*, 12(3): 493-520.
- 1090 Peck, J.C. 2007. Groundwater management in the High Plains Aquifer in the USA: Legal
1091 problems and innovations. In M. Giordano and K.G. Villholth (eds.), *The Agricultural
1092 Groundwater Revolution: Opportunities and Threats to Development*. 296-319.
- 1093 Pei, L., N. Moore, S. Zhong, A.D. Kendall, Z. Gao, D.W. Hyndman. 2016. Effects of irrigation
1094 on summer precipitation over the United States. *Journal of Climate*. doi: 10.1175/JCLI-D-15-
1095 0337.1.
- 1096 Pei, L., N. Moore, S. Zhong, L. Luo, D.W. Hyndman, W.E. Heilman, and Z. Gao. 2014. WRF
1097 Model Sensitivity to Land Surface Model and Cumulus Parameterization under Short-Term
1098 Climate Extremes over the Southern Great Plains of the United States. *Journal of Climate*,
1099 27(20): 7703-7724. doi:10.1175/JCLI-D-14-00015.1.
- 1100 Peterson, J.M., and Y. Ding. 2005. Economic adjustments to groundwater depletion in the high
1101 plains: Do water-saving irrigation systems save water? *American Journal of Agricultural
1102 Economics*, 87(1): 147-159. doi:10.1111/j.0002-9092.2005.00708.x.
- 1103 Peterson, S.B. 1991. Designation and protection of critical groundwater areas. *BYU Law Review*.
1104 1393.
- 1105 Pfeiffer, L., and C.C. Lin. 2014. Does efficient irrigation technology lead to reduced
1106 groundwater extraction? Empirical evidence. *Journal of Environmental Economics and
1107 Management*, 67(2): 189-208. doi:10.1016/j.jeem.2013.12.002.
- 1108 Pu, B., and R.E. Dickinson. 2014. Diurnal spatial variability of Great Plains summer
1109 precipitation related to the dynamics of the low-level jet. *Journal of the Atmospheric Sciences*,
1110 71(5): 1807-1817. doi: 10.1175/JAS-D-13-0243.1.
- 1111 Qi, S. 2010. Digital Map of Aquifer Boundary for the High Plains Aquifer in Parts of Colorado,
1112 Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. U.S.
1113 *Geological Survey Data Series, DS543*. Available at: pubs.usgs.gov/ds/543/.
- 1114 Qian, Y., M. Huang, B. Yang, and L.K. Berg. 2013. A modeling study of irrigation effects on
1115 surface fluxes and land–air–cloud interactions in the Southern Great Plains. *Journal of
1116 Hydrometeorology*, 14(3): 700-721. doi:10.1175/JHM-D-12-0134.1.

- 1117 Rao, M.N., and Z. Yang. 2010. Groundwater impacts due to conservation reserve program in
1118 Texas County, Oklahoma. *Applied Geography*, 30(3): 317-328.
1119 doi:10.1016/j.apgeog.2009.08.006.
- 1120 Reeves Jr., C.C. 1970. Origin, classification, and geologic history of caliche on the southern
1121 High Plains, Texas and eastern New Mexico. *The Journal of Geology*, 78(3): 352-362.
- 1122 Ritchie, J.T., and B. Basso. 2008. Water Use Efficiency is NOT Constant when Crop Water
1123 Supply is Adequate or Fixed: The Role of Agronomic Management. *European Journal of
1124 Agronomy*. 28: 273–281. doi:10.1016/j.eja.2007.08.003.
- 1125 Rockström, J., L. Karlberg, S.P Wani, J. Barron, N. Hatibu, T. Oweis, A. Bruggerman, J.
1126 Farahani, Z. Qiang. Managing water in rainfed agriculture – The need for a paradigm shift.
1127 *Agricultural Water Management*, 97(4): 543-550. doi: 10.1016/j.agwat.2009.09.009.
- 1128 Rosegrant, M., X. Cai, S. Cline, and N. Nakagawa. 2002. The role of rainfed agriculture in the
1129 future of global food production. *Environment and Production Technology Division,
1130 International Food Policy Research Institute*. Available at:
1131 ageconsearch.umn.edu/bitstream/16053/1/ep020090.pdf.
- 1132 Rosegrant, M.W., T. Zhu, S. Msangi, and T. Sulser. 2008. Global scenarios for biofuels: Impacts
1133 and implications. *Review of Agricultural Economics*, 30(3): 495–505. doi:10.1111/j.1467-
1134 9353.2008.00424.x.
- 1135 Scanlon, B.R., and R.S. Goldsmith. 1997. Field study of spatial variability in unsaturated flow
1136 beneath and adjacent to playas. *Water Resources Research*, 33(10): 2239-2252.
1137 doi:10.1029/97WR01332.
- 1138 Scanlon, B.R., C.C. Faunt, L. Longuevergne, R.C. Reedy, W.M. Alley, V.L. McGuire, and P.B.
1139 McMahon. 2012. Groundwater depletion and sustainability of irrigation in the US High Plains
1140 and Central Valley. *Proceedings of the National Academy of Sciences*, 109(24): 9320–9325.
1141 doi:10.1073/pnas.1200311109.
- 1142 Scanlon, B.R., R.C. Reedy, D.A. Stonestrom, D.E. Prudic, and K.F. Dennehy. 2005. Impact of
1143 land use and land cover change on groundwater recharge and quality in the southwestern US.
1144 *Global Change Biology*, 11(10): 1577-1593. doi:10.1111/j.1365-2486.2005.01026.x.
- 1145 Scheierling, S.M., J.B. Loomis, and R.A. Young. 2006. Irrigation water demand: A meta-
1146 analysis of price elasticities. *Water Resources Research*, 42(1). doi:10.1029/2005WR004009.
- 1147 Schnepf, R., and B.D. Yacobucci. 2013. Renewable Fuel Standard (RFS): overview and issues.
1148 In *CRS Report for Congress, no. R40155*. Available at: www.fas.org/sgp/crs/misc/R40155.pdf.
- 1149 Steven, M.D., and J.A. Clark, eds. 2013. Applications of remote sensing in agriculture. *Elsevier*.
- 1150 Stuart D., B. Basso, S. Marquat-Pyatt, G.P. Robertson, and J. Zhao. 2015. Coupled human
1151 natural systems understanding of agricultural nitrogen loss. *Bioscience*, 65(6): 571-578.
1152 doi:10.1093/biosci/biv049.

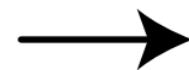

- 1153 Taboga, K. 2015. Wyoming's groundwater resource: Summary report. *Wyoming State*
1154 *Geological Survey*. Available at: www.wsgs.wyo.gov/products/wsgs-2015groundwater
1155 summary.pdf.
- 1156 The High Plains Aquifer, USA: Groundwater development and sustainability. *Geological*
1157 *Society, London, Special Publications*, 193(1): 99–119. doi:10.1144/GSL.SP.2002.193.01.09
- 1158 Tuttle, J.D., and C.A. Davis. 2006. Corridors of warm season precipitation in the central United
1159 States. *Monthly Weather Review*, 134(9): 2297-2317. doi:10.1175/MWR3188.1.
- 1160 Upendram, S., and J.M. Peterson. 2007. Groundwater Conservation and the Impact of an
1161 Irrigation Technology Upgrade on the Kansas High Plains Aquifer. *Journal of Agricultural &*
1162 *Resource Economics*, 32(3): 562-563.
- 1163 USDA, 2014. Grain and Oilseeds Outlook. *United States Department of Agriculture*. Available
1164 at: www.usda.gov/oce/forum/2014_Speeches/Grains_Oilseeds.pdf.
- 1165 Walters, C.K., J.A. Winkler, S. Husseini, R. Keeling, J. Nikolic, and S. Zhong. 2014. Low-level
1166 jets in the North American Regional Reanalysis (NARR): A comparison with rawinsonde
1167 observations. *Journal of Applied Meteorology and Climatology*, 53(9): 2093–2113.
1168 doi:10.1175/JAMC-D-13-0364.1.
- 1169 Ward, F.A., and M. Pulido-Velazquez. 2008. Water conservation in irrigation can increase water
1170 use. *Proceedings of the National Academy of Sciences*, 105(47): 18215-18220.
1171 doi:10.1073/pnas.0805554105.
- 1172 Waskom, R., J. Pritchett, and J. Schneekloth. 2006. Outlook on the High Plains aquifer: What's
1173 in store for irrigated agriculture? *Great Plains Soil Fertility Conference Proceedings, Denver,*
1174 *Colorado*. 122-128.
- 1175 Weaver, S.J. 2007. Variability of the Great Plains low-level jet: Large scale circulation context
1176 and hydroclimate impacts. *PhD Thesis, University of Maryland, College Park*.
- 1177 Weaver, S.J., and S. Nigam. 2011. Recurrent supersynoptic evolution of the Great Plains low-
1178 level jet. *Journal of Climate*, 24(2): 575–582. doi:10.1175/2010JCLI3445.1.
- 1179 Weeks, J.B., E.D. Gutentag, F.J. Heimes, and R.R. Luckey. 1988. Summary of the high plains
1180 regional aquifer-system analysis in parts of Colorado, Kansas, Nebraska, New Mexico,
1181 Oklahoma, South Dakota, Texas, and Wyoming. *USGS No. 1400-A*: A1-A30. Available at:
1182 pubs.usgs.gov/pp/1400a/report.pdf.
- 1183 White, S.E., and D.E. Kromm. 1996. Appropriation and water rights issues in the High Plains
1184 Ogallala region. *The Social Science Journal*, 33(4): 437-450. doi:10.1016/S0362
1185 3319(96)90016-6.
- 1186 Whittemore, D.O., J.J. Butler Jr, and B.B. Wilson. 2015. Water-level changes in the High Plains
1187 Aquifer of Kansas and implications for water use. *Proceedings of the 27th Annual Central Plains*
1188 *Irrigation Conference*. 134-142. Available at: www.ksre.k-state.edu/irrigate/oow/p15/Whittemore_15.pdf.

- 1190 WIMAS. Kansas Geological Survey and Kansas Department of Agriculture, Division of Water
1191 Resources. Water Information Management and Analysis System data available at:
1192 hercules.kgs.ku.edu/geohydro/wimas/index.cfm.
- 1193 Wood, W.W., and W.R. Osterkamp. 1987. Playa-lake basins on the Southern High Plains of
1194 Texas and New Mexico: Part II. A hydrologic model and mass-balance arguments for their
1195 development. *Geological Society of America Bulletin*, 99(2): 224-230.
- 1196 Young, R., and N. Brozovic. 2016. Innovations in Groundwater Management: Smart Markets for
1197 Transferable Groundwater Extraction Rights. *Technology and Innovation*, 17(4): 219-226.
- 1198 Zhang, C., and J.M. Kovacs. 2012. The application of small unmanned aerial systems for
1199 precision agriculture: a review. *Precision agriculture*, 13(6): 693-712. doi:10.1007/s11119-012-
1200 9274-5.
- 1201 Zhong, S., J.D. Fast, and X. Bian. 1996. A case study of the Great Plains low-level jet using
1202 wind profiler network data and a high-resolution mesoscale model. *Monthly Weather Review*,
1203 124(5): 785-806.


Coupled Human and Natural System on the High Plains

Crop Yield Response to Irrigation

High Plains Aquifer Depletion


Abundant Groundwater Supply
Extensive Agriculture
Favorable Water Use Policies

1

Economic Incentive
to Irrigate

2

Regional Groundwater Decline

3