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Abstract 12 

Harmful algal blooms (HABs) of the toxic dinoflagellate Karenia brevis occur annually on the 13 

West Florida Shelf (WFS). Detection of these blooms using satellite observations often suffers 14 

from two problems: lack of accurate algorithms to identify phytoplankton blooms in optically 15 

complex waters and patchiness (i.e., heterogeneity) of K. brevis during blooms. Here, using data 16 

collected by the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National 17 

Polar-orbiting Partnership (SNPP) between 2017 and 2019, we develop a practical approach to 18 

overcome these difficulties despite the lack of a chlorophyll-a fluorescence band on VIIRS. The 19 

approach is based on artificial intelligence (specifically, a deep-learning convolutional neural 20 

network model), which uses spatial coherence of bloom patches to account for the patchiness of 21 

K. brevis concentrations. After proper training, the overall performance (i.e., F1 score) of the 22 

deep learning model is 89%. Extracted K. brevis patches were consistent with those derived from 23 

the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite that has a 24 

fluorescence band. Furthermore, the wider swath of VIIRS over MODIS (3040-km versus 2330-25 

km) led to more valid observations of bloom extent for improved near-real-time applications. 26 

The results not only demonstrate the capacity of VIIRS in HABs monitoring, but also show the 27 

value of the DL model in extracting K. brevis bloom patches for both near real-time applications 28 

and retrospective analysis. 29 
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1. Introduction 32 

Harmful algal blooms (HABs) are a global phenomenon that can negatively impact coastal 33 

ecosystems, economies, and human and wildlife health. Increases in HAB occurrences have been 34 

linked to eutrophication and climate change (Anderson et al., 2021; Fu et al., 2012; Glibert et al., 35 

2014; Glibert & Burford, 2017). The primary HAB-forming species on the West Florida Shelf 36 

(WFS) is Karenia brevis, a toxic dinoflagellate that causes fish, seabird, and marine mammal 37 

mortalities and poses hazards to human and wildlife health (Fleming et al., 2007, 2011; 38 

Flewelling et al., 2005; Kirkpatrick et al., 2004; Steidinger, 2009). K. brevis blooms occur near-39 

annually on the WFS, typically in late summer and fall, although particularly severe blooms have 40 

been reported year-round (e.g., 2005–2007, 2017–2019, and 2020–2021). The spatial scale of K. 41 

brevis blooms on the WFS also varies considerably from event to event and even over much 42 

shorter (i.e. daily) time scales. Areas with high concentrations of K. brevis are often called ‘red 43 

tides’, though these waters can appear in various shades of red, green, brown, or black. 44 

The spatial and temporal variability of K. brevis blooms and associated impacts on the WFS 45 

require extensive monitoring to inform communication and forecasting. Water samples are 46 

routinely collected during field sampling of WFS coastal waters by the Florida Fish and Wildlife 47 

Conservation Commission (FWC) and dedicated research groups and volunteer networks, 48 

regardless of bloom conditions; additional sampling is also conducted in response to bloom 49 

events. Each year, thousands of samples are enumerated using microscopy to detect and monitor 50 

K. brevis and other HABs in Florida’s (U.S.A.) marine and estuarine waters. This information is 51 

compiled within the FWC HAB Monitoring Database and reported by the FWC via regular 52 

updates on HABs. Background K. brevis concentrations (< 1,000 cells L−1) are often observed in 53 

the non-bloom season (Heil & Steidinger, 2009; Steidinger, 2009). When K. brevis cell counts 54 

exceed 1,000 cells L−1, commercial shellfish harvesting areas may be closed due to potential 55 

hazards posed by the toxins. The lower limit for satellite detection is 50,000 cells L−1, which is 56 

1–2 orders of magnitude less than concentrations at which blooms are visible by the human eye 57 

(Tester & Steidinger, 1997). When cell counts are above 100,000 cells L−1, reports of fish 58 
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mortality and human respiration problems increase (Fleming et al., 2011; Flewelling et al., 2005; 59 

Kirkpatrick et al., 2004). 60 

Over the past sixty years, more than a million water samples have been collected on the WFS 61 

and processed for K. brevis enumeration by FWC (FWC HAB Monitoring Database, 2021). 62 

However, the majority of samples were collected in nearshore waters, less than 10 km from the 63 

shoreline. This equates to fewer than one sample collected every two months within each 0.05° 64 

grid, although sampling intensity (including offshore) has increased substantially over time (Hu 65 

et al., 2022). Satellite remote sensing can help overcome the bias introduced by the scarcity of 66 

field data (especially offshore) because it provides increased synoptic spatial and temporal 67 

coverage (Amin, Zhou, et al., 2009; Amin et al., 2015; Esaias et al., 1998; Tester & Stumpf, 68 

1998; Tomlinson et al., 2004). At elevated concentrations of K. brevis, water discoloration is 69 

captured in satellite images, and such a discoloration is often interpreted as an indication of K. 70 

brevis blooms (Cannizzaro et al., 2008, 2009; Cullen et al., 1997; Schofield et al., 1999; Tyler & 71 

Stumpf, 1989). Other factors, such as suspended sediments, colored dissolved organic matter 72 

(CDOM), and non-K. brevis phytoplankton blooms, can also cause water discoloration and be 73 

misconstrued as red tide (Dierssen et al., 2006). Blooms of K. brevis and other species may also 74 

occur at levels that can be observed via satellites but without discoloration observed with the 75 

naked eye. Thus, detection of K. brevis blooms using satellite observations requires algorithms, 76 

which are often empirical, to first detect phytoplankton blooms (Amin, Zhou, et al., 2009; 77 

Carvalho et al., 2010, 2011; El-Habashi et al., 2016; Hu & Feng, 2016; Qi et al., 2015; Stumpf et 78 

al., 2003; Tomlinson et al., 2009) and then distinguish the bloom types (e.g., K. brevis, diatom, 79 

Pyrodinium bahamense, Tripos hircus).  80 

Satellite sensors equipped with spectral bands to measure solar-stimulated chlorophyll-a 81 

fluorescence, including the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard 82 

Terra (2000–) and Aqua (2002–) and the Ocean and Land Colour Imager (OLCI) aboard 83 

Sentinel-3A (2016–) and Sentinel-3B (2018–), are used for bloom monitoring by U.S. Federal 84 

and State agencies (e.g., the U.S. National Oceanic and Atmospheric Administration (NOAA), 85 

https://coastalscience.noaa.gov/science-areas/habs/hab-forecasts/gulf-of-mexico/; FWC, 86 

https://myfwc.com/research/redtide/statewide/). Empirical algorithms developed using 87 

concurrent field and satellite data often rely on satellite-field matching pairs (i.e., data collected 88 

from the same location within a short time window), and thus can be regarded as ‘pixel-based’ 89 
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approaches. These include techniques of the chlorophyll-a anomaly (Stumpf, 2001; Stumpf et al., 90 

2003; Wang et al., 2021), particle backscattering coefficient bbp ratio (Anderson et al., 2012; 91 

Cannizzaro et al., 2008; Carder et al., 1999; Morel, 1988), normalized water-leaving radiance 92 

(nLw) ratio  (Carvalho et al., 2011), nLw spectral shape (Tomlinson et al., 2009), normalized 93 

Fluorescence Line Height (nFLH; Hu & Feng, 2016), Red Solar Induced Fluorescence (red SIF, 94 

Luis et al., 2023) and Red-Band Difference (RBD; Amin, Gilerson, et al., 2009; Amin, Zhou, et 95 

al., 2009). However, because K. brevis cell concentrations from adjacent waters (i.e., within a 96 

single pixel) can differ by several orders of magnitude (Tomlinson et al., 2009, also see 97 

supplemental Fig. S1), significant data spread is commonly observed when comparing satellite-98 

estimated K. brevis concentration with water sample-determined K. brevis concentration (Hu & 99 

Feng, 2016).  100 

The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-101 

orbiting Partnership (SNPP; 2011–), NOAA-20 (2017–), and NOAA-21 (2022–) exhibits similar 102 

spatial (375/750-m) and temporal (near-daily) resolutions as MODIS (250/500/1000-m) and 103 

OLCI (300-m), but VIIRS does not have the dedicated bands for measuring chlorophyll-a 104 

fluorescence for bloom detection (Hu et al., 2015). Despite this limitation, VIIRS has shown 105 

potential for bloom detection using alternative approaches, including the Red-Green 106 

Chlorophyll-a Index (RGCI; Qi et al., 2015) and neural network models (El-Habashi et al., 2016; 107 

El-Habashi & Ahmed, 2019). While bloom detection may be similar to nFLH and RBD, these 108 

algorithms were developed using pixel-based approaches without the ability to differentiate 109 

between K. brevis blooms and other types of blooms. Evaluation of these approaches using a 110 

large field dataset suggested that, although these approaches may work well for case studies, they 111 

are not applicable in a more general sense (supplemental Figs. S2 & S3).  112 

Deep learning models are poised to overcome the limitations of pixel-based approaches by 113 

adding an emphasis on the recognition of spatial patterns. Also, unlike empirical approaches that 114 

typically utilize spectral information from only a few wavebands, these models can take 115 

advantage of the spectral information from all bands. Previous studies indicate the potential of 116 

using such approaches to identify HABs of Magalefidinium polykrikoides in Korean waters (Kim 117 

et al., 2019; Shin et al., 2022). However, for the K. brevis blooms on the WFS, there is no 118 

method for systematic observation using VIIRS data without a fluorescence band. With MODIS 119 

nearing the end of its lifespan (i.e., NASA will crease support of MODIS no later than 2026), the 120 
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development of robust bloom detection algorithms for VIIRS sensors, scheduled for launch 121 

every five years, is critical to ensure a seamless satellite ocean color data record for monitoring 122 

HABs in near-real-time and documenting long-term trends. In order to address this need, the 123 

objective of this paper is to develop a practical approach to take advantage of computer artificial 124 

intelligence to recognize spatially coherent ocean color patterns in VIIRS imagery associated 125 

with K. brevis blooms.   126 

 127 

2. Data and methods 128 

2.1 In-situ data 129 

Water samples from near-surface waters were used to determine the in-situ concentration of K. 130 

brevis at sampling sites. A total of 23,232 field data points for K. brevis cell counts were 131 

recorded at sample depths of ~ 0.5 m on the WFS from January 2017 to December 2019 (FWC 132 

HAB Monitoring Datbase, 2021). Fig. 1a shows the number of field K. brevis cell counts data in 133 

each 5-km grid. In this study, K. brevis cell counts larger than 100,000 cells L−1 are considered K. 134 

brevis blooms. 135 

2.2 VIIRS satellite data 136 

A total of 4,282 level-2 SNPP VIIRS granules covering the WFS from January 2017 to 137 

December 2019 were downloaded from the NOAA CoastWatch data portal 138 

(https://coastwatch.noaa.gov). These level-2 products included nLw(λ) for each band (410, 443, 139 

486, 551, 638, and 671 nm) and quality assurance flag information. Default L3 flags developed 140 

by NOAA (Wang et al., 2017) were applied for quality control to exclude pixels with unreliable 141 

radiance values from further analysis. Fig. 1b shows the increased spatial and temporal coverage 142 

of VIIRS data compared to the in-situ cell count data. 143 

Remote sensing reflectance (Rrs(λ)) for each band was determined from nLw(λ) as follows: 144 

������ =  	
���� �
���⁄ ,         (1) 145 

where �0��� is the mean extraterrestrial solar irradiance (Thuillier et al., 2003).  146 
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A cylindrical equidistant projection was used to map these data within the WFS at 1-km spatial 147 

resolution (Barnes et al., 2021). Rrs(λ) data at 671-nm and 551-nm were used to generate the 148 

RGCI (Qi et al., 2015) following the equation: 149 

���� = ����671� ����551�⁄ ,        (2) 150 

In addition, Rrs(λ) at 551, 486, and 443 nm were used to generate Enhanced Red-Green-Blue 151 

(ERGB) composite images to show color patterns of coastal waters. The ERGB images 152 

differentiate dark features, caused by high absorption by chlorophyll-a and/or colored dissolved 153 

organic matter (CDOM), from bright features caused by either sediment resuspension or shallow 154 

bottom (Hu et al., 2005).  155 

2.3 Deep learning model 156 

Deep learning (DL) is a type of artificial intelligence that uses artificial neural networks with 157 

multiple layers to learn from data and make predictions. A Convolution Neural Network (CNN; 158 

Lecun et al., 1998) is a form of deep learning that is widely used in image segmentation for 159 

clustering parts of imagery together that belong to the same object class. Here, a type of CNN 160 

architecture called Res-Unet deep learning model (Diakogiannis et al., 2020; Qi et al., 2021; 161 

Wang & Hu, 2021; Xiao et al., 2018; Yao et al., 2023) is used. This model combines 162 

constructions inherent to both Res-Net (He et al., 2016) and U-net (Ronneberger et al., 2015) 163 

models, thus improving ability to effectively perform image segmentation tasks.  164 

The workflow in this study follows three main steps (Fig. 2). First, a set of “ground truth” images 165 

were prepared semi-objectively and combined with satellite Rrs(λ) and RGCI for model training. 166 

Here, the term “ground truth” refers to the information determined by integrating ground (i.e., 167 

field) measurements and image analysis results as opposed to either ground measurements alone 168 

or the theoretical “truth”. The trained model was then validated using a separate set of “ground 169 

truth” images that were reserved for evaluation. Finally, the model was applied to VIIRS data 170 

from 2017–2019, and the model output was used to generate monthly statistics to examine 171 

spatiotemporal variability of K. brevis blooms over the course of the bloom event.  172 

2.3.1 “Ground truth” image preparation 173 

K. brevis blooms exhibit high RGCI (Qi et al., 2015) and appear reddish-black in ERGB 174 

composite imagery (Hu et al., 2005), allowing these patches to be differentiated from the 175 
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surrounding waters. However, not all patches with high RGCI are K. brevis blooms because 176 

blooms of other phytoplankton can also lead to high RGCI values, and other factors (e.g., 177 

CDOM) can cause ERGB images to appear reddish black. Here, field sample data are used to 178 

confirm that patches with high RGCI are K. brevis blooms. The patches were identified as K. 179 

brevis only if the field data showed high K. brevis cell counts (> 100,000 cells L-1) that 180 

corresponded to high RGCI and reddish-blackish features in ERGB. This practice has been 181 

employed before to delineate K. brevis blooms using field sample data and MODIS/Aqua RBD 182 

images (Hu et al., 2022).  183 

Based on the criteria above, “ground truth” images were prepared as demonstrated in Fig. 3 184 

using the following steps: 185 

1. K. brevis cell counts data (± 7 days) were overlaid on VIIRS daily (i.e., snapshot) RGCI 186 

and ERGB composite imagery (Figs. 3a & 3b). 187 

2. Patches associated with K. brevis cell counts > 100,000 cells L−1 that exhibit high RGCI 188 

and appear reddish black in the ERGB imagery were roughly outlined manually using the 189 

ENVI/IDL region of interest (ROI) tool (Fig. 3b). 190 

3. Pixels within the outline with RGCI ≥ the threshold of RGCI (TRGCI) (e.g., K. brevis 191 

bloom) were considered as bloom pixels and extracted objectively (Fig. 3c). TRGCI was 192 

set as 0.22, which corresponds to a chlorophyll-a concentration of 1.5 μg L−1 and 193 

approximately 150,000 K. brevis cells L−1 (Qi et al., 2015; Stumpf et al., 2003; Tester et 194 

al., 2008). This threshold is consistent with that used for the MODIS RBD by Hu et al. 195 

(2022). 196 

4. The bloom pixels were assigned a value of 1. All remaining pixels, including those 197 

outside the outline or with RGCI < TRGCI, were assigned a value of 0 (e.g., non-K. brevis 198 

bloom) or NaN (not a number, due to no observation or invalid pixels) (Fig. 3d). 199 

A total of 100 VIIRS images were delineated following the above steps. Twenty three of these 200 

images contained high VIIRS RGCI with K. brevis cell counts equal to zero and are intended to 201 

help prevent false positives. Through random selection, 47 of these images were designated for 202 

training, and the remaining 53 images were reserved for validation. Here, although the cell 203 

counts data were likely collected not in the same day of the image acquisition and water could 204 

have moved within ± 7 days to cause a mismatch between the locations of the in situ data and 205 

image feature, as long as there were high cell counts within or near an image feature, the feature 206 
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is delineated as a K. brevis bloom patch. This is also one reason why a patch-wise approach 207 

should work better than a pixel-wise approach. 208 

2.3.2 Model training 209 

A total of 47 “ground truth” images and their corresponding Rrs(λ) and RGCI data were used as a 210 

training dataset for developing and training the DL model. To balance the weight of the input 211 

data and make the deep learning model training converge smoothly, each Rrs(λ) band (410, 443, 212 

486, 551, 638, 671 nm) was normalized by: 213 

	������ =  �log�������� − log ������������ �log�������� !� − log ������������⁄ , (3) 214 

where ���������  and ������� !  were determined to be 0.0001 and 0.02 by trial and error, 215 

respectively. If ������ was less than 0.0001, it was set to 0.0001; and if ������ was great than 216 

0.02, it was set to 0.02. 217 

Likewise, RGCI was normalized as follows: 218 

	���� = ����� − ��������  ������ ! −  ��������,⁄      (4) 219 

where RGCI��� and RGCI� ! were determined to be 0.1 and 1.5 by trial and error, respectively. 220 

If RGCI was less than 0.1, it was set to 0.1; and if RGCI was greater than 1.5, it was set to 1.5.  221 

Squared convolution kernels were applied in this training network. Thus, each input training 222 

image was divided into several spatially non-overlapping sub-images of 256 × 256 pixels, with 223 

the sub-image size determined by computing power. Each sub-image was then used to train the 224 

DL model, and the Jaccard distance index was used to assess the model convergence. After 225 

passing through the deep convolutional layers, the model can recognize the characteristic Rrs(λ) 226 

spectral shapes of K. brevis bloom patch and the coherent spatial relationships among the Rrs(λ) 227 

spectral features that help identify the K. brevis bloom patches.  228 

2.3.3 Model validation 229 

A total of 53 delineated VIIRS “ground truth” images were reserved for validation to evaluate 230 

the model performance. The morphology of each patch in the model extracted images was 231 

visually compared with the semi-objectively delineated patches of the “ground truth” images and 232 

field K. brevis cell concentration data to determine whether the model extracted results matched 233 

those from the “ground truth” images. A confusion matrix (Stehman, 1997) was used to report 234 
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the number of true-positives (TP), true-negatives (TN), false-positives (FP), and false-negatives 235 

(FN), as well as the F1 score to evaluate the overall accuracy. The F1 score was calculated as: 236 

'1 = 2)* / �2)* + '* + '-� × 100%.        (5) 237 

The above statistics is based on the evaluation of the 53 image pairs, each containing a “ground 238 

truth” image (or truth image) and an image of model results (or model image). There are 41 K. 239 

brevis bloom truth images and 12 non-bloom truth images. Each model image was compared to 240 

its corresponding truth image to determine whether the model image is a TP, TN, FP, or FN. A 241 

model image is a TP if 1) the morphology of each bloom patch in the model image matches that 242 

in the truth image and 2) the overlapping bloom area (as measured by the number of pixels) 243 

between the model image and the truth image is > 75% of the bloom area in the truth image, 244 

otherwise the model image is an FN. A model image is an FP if any patch is classified as a 245 

bloom patch, but the corresponding truth image shows no bloom, otherwise the model image is 246 

an TN.   247 

In addition to the confusion matrix, the bloom areas of all image pairs (i.e., the truth images and 248 

the model images) were compared using a linear fitting with the coefficient of determination (R2) 249 

and the root mean square error (RMSE). RMSE was calculated as follows: 250 

�012 =  34
� ∑ �!67!86

!86
�9��:4  × 100%,        (6) 251 

where ;�  is the bloom area (i.e., number of pixels) of the model extracted result of the <-th model 252 

image, and ;8� is the area of the <-th truth image. 253 

Spectral similarities between Rrs(λ) measured in K. brevis bloom and non-K. brevis bloom 254 

patches were examined using the Spectral Angle Mapper (SAM) index (Kruse et al., 1993). The 255 

SAM (in degrees) indicates the spectral similarity between two Rrs(λ) spectra by calculating the 256 

angle between them. The closer SAM is to 0-degree, the greater the similarity between the two 257 

spectral shapes. 258 

2.3.4 Statistics of K. brevis coverage 259 

After the model was trained and validated, it was applied to a 3-year series of VIIRS data (2017–260 

2019) that encompassed a long-lasting K. brevis bloom event. Each pixel was classified into one 261 

of three classes: ‘K. brevis bloom’ with a value of 1, ‘non-K. brevis bloom’ with a value of 0, or 262 
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‘no valid observation’. The ‘no valid observation’ class was determined using the default L3 263 

quality assurance flag information processed by NOAA (Wang et al., 2017),  and these pixels 264 

were excluded from the following statistics.  265 

Monthly maps of bloom occurrence frequency (BOF) were generated from the individual 266 

classified images and for a given location were calculated as follows: 267 

=>' = �-?@ �-?@ + -�?@�⁄ � × 100%,       (7) 268 

where -?@ is the total number of ‘K. brevis bloom’ pixels and -�?@ is the total number of ‘non-K. 269 

brevis bloom’ pixels. To make the statistics more meaningful, pixels with fewer than five valid 270 

observations (see definition above) in any given month were excluded. Bloom areal footprints 271 

were then calculated from all > 0% pixels in the monthly BOF maps.  272 

Monthly BOF maps were also generated from individual classified maps derived based on RGCI > 273 

TRGCI and chlorophyll-a > 1.5 μg L−1 derived using a neural network model (El-Habashi et al., 274 

2016) to compare with model results. 275 

2.4 MODIS-based K. brevis bloom occurrence frequency maps 276 

MODIS/Aqua data were used to qualitatively assess the VIIRS deep learning model results. 277 

Specifically, K. brevis blooms were classified following the work of Hu et al. (2022) by 278 

integrating water sample data and MODIS data. Briefly, field K. brevis cell counts were first 279 

overlaid on MODIS RBD  (Amin et al., 2015; Amin, Zhou, et al., 2009). Patches with high RBD 280 

and high field K. brevis cell concentrations were delineated semi-objectively: a crude outline was 281 

manually drawn over each patch, and pixels within the outline with RBD > 0.15 mW cm−2 µm−1 282 

sr−1 (which corresponds to 150,000 cells L−1, Hu & Feng, 2016) were identified as K. brevis 283 

bloom pixels. Monthly BOF maps were generated from the daily imagery similarly to VIIRS 284 

(Section 2.3.4).  285 

 286 

3. Results 287 

3.1 Model validation 288 

A confusion matrix for assessing the performance of the DL model is shown in Table 1. The 289 

overall F1 score was 89% with an accuracy of 81% and precision of 83%. Four sets of example 290 
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images from the validation dataset are presented in Fig. 4, showcasing TP, TN, FP, and FN 291 

results. The first set of images in the top row displays the TP results where the DL model 292 

successfully extracted K. brevis patches that match the “ground truth” image. Here, each TP case 293 

meets the criteria of both morphological evaluation and 75% threshold of bloom area as 294 

described in the methodology above. Of the 39 TP cases, the ratio of the overlapping bloom area 295 

to the true bloom area for each image pair ranged between 77.7% and 96.3%, with an overall 296 

ratio of 82.2% when all image pairs were combined. The second set of images illustrates the TN 297 

results where the DL model correctly identified non-K. brevis bloom (i.e., not a single patch was 298 

a bloom patch in both the “ground truth” image and the model image). The third set of images 299 

presents the FP results where the DL model extracted incorrect bloom patches, and the fourth set 300 

of images displays the FN results where the DL model failed to identify > 25% of the 301 

overlapping bloom areas between the “ground truth” image and the model image. 302 

Table 1. Performance evaluation of the DL model where P and PP are the number of “true” and predicted K. brevis 303 

blooms, respectively; N and PN are the number of “true” and predicted non-K. brevis bloom, respectively. TN and 304 

TP are the number of true negatives and positives, respectively; FN and FP are the number of false negatives and 305 

positives, respectively. 306 

Total n = 53 
Predicted 

F1 score 2TP/(2TP+FP+FN) 88.6% 
PP PN 

  
“Ground truth” 

P TP 39 FN 2 
True positive 

rate (TPR) 
TP/(TP+FN) 95.1% 

N FP 8 TN 4 
False positive 

rate (FPR) 
FP/(FP+TN) 66.7% 

Precision TP/(TP+FP) 83.0% Accuracy (TP+TN)/n 81.1% 

 307 

A comparison between bloom areas (in number of pixels) determined from the “ground truth” 308 

images and the corresponding model images is presented in Fig. 5, wherein the overall RMSE 309 

was found to be 31.5%, and the coefficient of determination R2 was calculated to be 0.92. Bloom 310 

areal extent was underestimated by the model in the Panhandle region in late-2018. These results 311 

will be discussed in detail below. 312 
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3.2 Model performance 313 

The DL model, trained and verified based on the VIIRS spectral information and image coherent 314 

context, can identify the K. brevis patches and distinguish them from non-K. brevis bloom 315 

patches. 316 

Fig. 6 shows a VIIRS scene collected on 16 September 2018 that contains two separate patches 317 

of high RGCI water that appear darkish red in the ERGB imagery. K. brevis cell counts > 318 

100,000 cells L−1 confirm that the northern patch offshore of Charlotte Harbor was a true bloom, 319 

and the model correctly identified this bloom patch. Background cell counts (<1,000 cells L−1) 320 

were collected in the more southerly patch located south of Cape Romano (~26oN), and the 321 

model correctly identified this patch as a non-K. brevis bloom. VIIRS Rrs(λ) spectral shapes were 322 

examined in Fig. 6a at locations within these patches. The high similarity in spectral shape (SAM 323 

= 4.94o) indicates that both patches would be categorized as K. brevis blooms based on RGCI 324 

alone. The DL model accurately differentiated between the K. brevis bloom patch and the non-K. 325 

brevis bloom patches.  326 

Fig. 7 further demonstrates how the VIIRS DL model generates fewer false-positive 327 

classifications compared to both RGCI (Qi et al., 2015) and the neural network model (El-328 

Habashi et al., 2016). Monthly BOF maps using all three techniques were generated during a K. 329 

brevis bloom event (August 2018) and non-K. brevis bloom event (June 2019), and are compared 330 

to monthly FWC cell abundance data. While the neural network and RGCI retrieval results 331 

accurately detect the K. brevis bloom in the central WFS in August 2018, there are some false-332 

positive results in nearshore waters to the north in the Panhandle/Big Bend regions and south of 333 

Cape Romano (~26o N). False positive classifications were also prevalent in these regions during 334 

the non-K. brevis bloom event in June 2019. The VIIRS DL model, on the other hand, shows 335 

strong consistency with K. brevis cell abundance, indicating improved performance in accurately 336 

identifying both K. brevis blooms and non-blooms. 337 

3.3 Comparisons between VIIRS and MODIS 338 

Monthly MODIS BOF maps generated by semi-objective delineation for May 2018 to January 339 

2019 were previously presented by Hu et al. (2022). In Fig. 8, comparisons are made between 340 

bloom footprints generated from these maps and those derived using the VIIRS DL model. K. 341 
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brevis blooms were detected by both methods from June 2018 to January 2019, but several 342 

differences were observed in the footprint areas. The VIIRS DL model often estimated K. brevis 343 

blooms extending further into shallow coastal waters than the MODIS BOF, resulting in larger 344 

footprint areal estimates than those observed with MODIS, except for cases during October and 345 

November 2018 when MODIS derived BOF footprints were larger than those from VIIRS in the 346 

Panhandle and Big Bend regions.  347 

Fig. 9 provides a detailed visualization of the differences in bloom footprint observed between 348 

VIIRS and MODIS for imagery acquired approximately one hour apart on October 30, 2018. The 349 

VIIRS bloom footprint was 44% lower than that from MODIS. While MODIS RBD was well 350 

above the threshold used by Hu et al. (2022) for identifying bloom patches, VIIRS RGCI was 351 

close to the bloom threshold used when training the model. Residual increased suspended 352 

sediment following the recent passage of a winter frontal system is evident in the VIIRS ERGB 353 

and may explain why VIIRS failed to detect this patch. VIIRS and MODIS Rrs(λ) spectra 354 

extracted from within the bloom patch are similar (SAM = 9.07o). 355 

 356 

4. Discussion 357 

4.1. Strengths and limitations 358 

K. brevis blooms on the WFS pose threats to coastal ecosystems and public health and can 359 

negatively impact local economies. An accurate means for near-real-time monitoring is required 360 

to help protect public health, and long-term monitoring is needed to better understand the 361 

underlying causes of blooms and identify bloom trends. Field measurements of K. brevis cell 362 

counts are highly precise; however, their limited spatial and temporal resolutions restrict their 363 

overall efficacy in consistently monitoring blooms with accuracy. Remote sensing may serve as a 364 

valuable tool to complement field-based monitoring programs. However, previous remote 365 

sensing algorithms often rely on pixel-based approaches with pre-determined thresholds applied 366 

to identify blooms for each pixel with an image (Amin, Zhou, et al., 2009; Cannizzaro et al., 367 

2008, 2009; Carvalho et al., 2010, 2011; Hu & Feng, 2016; Qi et al., 2015; Soto et al., 2015; 368 

Stumpf et al., 2003; Tomlinson et al., 2009). These had limited success due to the problems 369 

associated with sub-pixel variability (Hu & Feng, 2016; Fig. S1). While neural network models 370 

(El-Habashi et al., 2016; El-Habashi & Ahmed, 2019) offer several advantages over threshold-371 



 14

based empirical approaches, systemic testing showed unsatisfactory performance (Figs. S2 & S3). 372 

Here, we developed a deep learning model for detecting K. brevis blooms on the WFS using 373 

VIIRS imagery that outperforms these other methods.  374 

By adopting a patch-wise approach that considers spatial information (He et al., 2016), the 375 

VIIRS DL model can overcome limitations associated with subpixel variability that are inherent 376 

in pixel-wise approaches (Hu & Feng, 2016; Fig. S1). Furthermore, unlike empirical algorithms 377 

using a few bands, such as the RGCI (Qi et al., 2015) and RBD (Amin, Zhou, et al., 2009) 378 

algorithms, the VIIRS DL model utilizes all VIIRS bands as data input and relies on Rrs(λ) 379 

spectral shapes for bloom identification. This spectral data from all bands can provide more 380 

comprehensive information compared to the limited utilization of just two or three bands in other 381 

empirical algorithms, therefore improving the accuracy of the deep learning model (Krizhevsky 382 

et al., 2017).  383 

As an automated patch-wise approach, the VIIRS DL model reduces false positives and 384 

improves K. brevis bloom patch delineation, thus reducing the need for secondary verification by 385 

in situ data and/or human interpretation. In contrast, most traditional approaches first determine 386 

chlorophyll-a concentrations or a bloom patch (El-Habashi et al., 2016; Hu et al., 2005; Soto et 387 

al., 2015), and then use in-situ sampling and/or human interpretation to confirm whether the 388 

bloom patch is due to K. brevis or other phytoplankton. However, this does not indicate that the 389 

DL model does not require in situ data for verification, particularly because K. brevis is not the 390 

only dinoflagellate and blooms of other dinoflagellates may have similar optical properties to be 391 

detected by the same DL model. If this is the case, what the DL model detects are blooms of 392 

dinoflagellates. Yet because K. brevis is the dominant dinoflagellate to cause red tides, one can 393 

assume that most of the detected blooms are likely due to K. brevis.  394 

Furthermore, VIIRS has a wider swath width (3040-km) compared with MODIS (2330-km), 395 

which means VIIRS has a greater number of observations to compare. Fig. 10 compares the 396 

monthly coverage and the number of valid observations for MODIS and VIIRS during the latter 397 

part of the 2017–2019 HABs bloom event (July 2018–December 2018). Although MODIS and 398 

VIIRS had similar K. brevis bloom trends, there were differences in the number of valid 399 

observation numbers. VIIRS had an average of ten or more valid observations per pixel per 400 

month in the WFS region, while MODIS had only around five. Under good observation 401 
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conditions (e.g., cloud-free and optimal solar/sensor zenith angles), as in October 2018, VIIRS 402 

could achieve more than 25 valid observations in the offshore area of Florida, while MODIS had 403 

only about 15.  404 

Additionally, unlike MODIS that saturates its fluorescence band (678-nm) over moderate to high 405 

sun glint (Hu et al., 2012), VIIRS does not saturate under such conditions. Fig. 11 displays a case 406 

study where a 5-day period of VIIRS and MODIS observations showed the advantage of using 407 

VIIRS data for near-real-time monitoring. Due to the land adjacency effect, the saturation of the 408 

fluorescence band, and the narrower swatch (than VIIRS), MODIS had only three images 409 

showing scattered K. brevis patches during the 5-day period, with none of them capturing the full 410 

extent of the bloom. In contrast, VIIRS had at least one image per day in this 5-day period, with 411 

each of them showing near-complete bloom extent, which has extensive value toward guiding 412 

timely and targeted resource management and public health communications during K. brevis 413 

blooms.  414 

Despite the advantages of using a deep learning model with VIIRS observation to detect K. 415 

brevis blooms, there are several limitations. One is the definition of “bloom”. Here, the dataset 416 

used to train the VIIRS DL model was prepared based on the RGCI threshold corresponding to 417 

150,000 cells L−1 of K. brevis (Amin et al., 2015; Amin, Zhou, et al., 2009; Hu et al., 2022; Hu & 418 

Feng, 2016; Qi et al., 2015; Soto et al., 2015) if the phytoplankton population is dominated by K. 419 

brevis. Because of the significant bloom patchiness (Fig. S1) and because of mixed 420 

phytoplankton assemblage, this definition does not indicate that within a delineated bloom patch, 421 

K. brevis cell concentration is always > 150,000 cells L-1. As shown in Fig. 3, cell concentration 422 

within the bloom patch can be much lower than this threshold, and sometimes can be 0 – 1,000. 423 

This certainly does not mean that a K. brevis bloom patch with maximum concentration of 424 

~10,000 cells L-1 (or even ~5,000 cells L-1) can be detected by the DL model. What it means is 425 

that an image feature with maximum cell counts lower than this threshold is considered as “non-426 

bloom” in the training and validation datasets. However, this threshold is higher than the 427 

threshold of 5,000 cells L−1 when the commercial shellfish harvesting areas were previously 428 

required to be closed. It is also higher than the cell count threshold above which fish mortality 429 

and human respiration irritation often occur (Fleming et al., 2011; Flewelling et al., 2005; 430 

Kirkpatrick et al., 2004). Correspondingly, the K. brevis blooms detected here are rather 431 
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conservative, i.e., without including bloom patches (or other image features) with maximum K. 432 

brevis concentrations lower than this threshold, although these waters are also harmful to marine 433 

animals. Also, bloom detection is currently a binary classification that only allows for a 434 

distinction between the presence and absence of blooms without quantifying the intensity of 435 

them, although such a quantification may be possible when taking account of the RGCI values of 436 

the delineated bloom patches. Clearly, future efforts are required to detect blooms at lower K. 437 

brevis concentrations and to quantify the concentrations beyond presence/absence detections. 438 

This would improve the utility of the tool for tracking bloom transport, evolution, and 439 

appearance/disappearance.  440 

The second limitation relates to the VIIRS DL model’s applicability even under cloud free 441 

conditions. Similar to other satellite sensors, the DL model is not applicable to image pixels 442 

immediately adjacent to land because these pixels may be mixed pixels (between water and land) 443 

or contaminated by land adjacency effect. In this study, a 2-pixel buffer was applied immediately 444 

adjacent to land, effectively masking those areas. Estuaries were also masked to eliminate the 445 

influence of land adjacency effects. Furthermore, the strength of avoiding false-positive 446 

detection in sediment-rich waters (because of the use of the full Rrs(λ) spectral information 447 

together with spatial context) can become a weakness in some special cases. For example, if 448 

sediment resuspension, due to the passage of cold fronts or storms, occurs during a K. brevis 449 

bloom, the high concentrations of sediment particles can obscure the K. brevis signals, leading to 450 

no bloom detection. Fig. 12 shows such a case. The ERGB images in Fig. 12a and Fig. 12c, 451 

overlaid with field-measured K. brevis cell counts, reveal that in the Epicenter region, there was 452 

a persistent and expansive K. brevis bloom during mid-November 2018, and the bloom patches 453 

were correctly extracted by the VIIRS DL model (Figs. 12d and 12f). During this period and on 454 

16 November 2018, a cold front passed through the Epicenter region, causing high 455 

concentrations of resuspended sediment particles (bright features in Fig. 12b), which led to no 456 

bloom detection (Fig. 12e). However, such a false-negative detection can be easily remedied by 457 

inspecting sequential images: if similar bloom patches are detected in t1 and t3 but not in t2 458 

when sediment resuspension occurs, one can safely assume that similar bloom patches still exist 459 

in t2. Likewise, for near-real-time applications, if bloom patches are found in t1, the lack of 460 

detected bloom patches in t2 due to sediment resuspension does not indicate the end of the bloom. 461 
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Therefore, the lack of ability to detect K. brevis blooms in sediment-rich waters is much less of a 462 

problem than the false-positive detections in sediment-rich waters by other methods.  463 

 464 

4.2. Future perspective 465 

VIIRS measurements used in this study are from the SNPP satellite, yet the same sensor is also 466 

carried by the NOAA-20 (2017–present) and NOAA-21 (2022–present) satellites. Future 467 

satellites carrying the same VIIRS are expected to be launched about every 5 years. A 468 

combination of these sensors, each with a different equatorial crossing time, can provide multiple 469 

observations of K. brevis blooms in a single day. This will not only improve the cloud-free data 470 

coverage, but also may provide more than one observation per day to capture the diel vertical 471 

migration of K. brevis cells (Arnone et al., 2017; Hu, Barnes, et al., 2016; Qi et al., 2017; 472 

Schofield et al., 2006). Likewise, the multi-sensor observations can not only help to study the 473 

timing, intensity, and short-term dynamics of K. brevis blooms, but also improve near-real-time 474 

observations to alert the public on bloom situations (e.g., NOAA's HAB Forecast System, or the 475 

Integrated Redtide Information System (IRIS), Hu, Murch, et al., 2016; 476 

https://optics.marine.usf.edu/projects/iris.html). The same logic can be extended to other sensors 477 

such as the Ocean and Land Colour Instrument (OLCI) on the Sentinel-3A (2016–present) and 478 

Sentinel-3B (2018–present) satellites. While cross-sensor consistency is yet to be determined, the 479 

integration of these different satellite sensors can provide more comprehensive and accurate 480 

observations of K. brevis blooms than being offered by any single sensor, thus facilitating both 481 

research on bloom dynamics and near-real-time monitoring.  482 

The findings here demonstrate the success of combining VIIRS observations and computer 483 

artificial intelligence to detect HABs, while near-real-time applications require implementation 484 

of this approach to generate K. brevis bloom maps automatically, so these maps can be 485 

incorporated in the current IRIS. We expect to implement this approach in IRIS to monitor K. 486 

brevis blooms in near-real-time in the next step.  487 

Finally, the demonstration is for K. brevis blooms on the WFS between 2017 and 2019. Can the 488 

same DL model be applied to other years for the same WFS and to other regions in the Gulf of 489 

Mexico (GoM) where K. brevis have also been reported (e.g., coastal waters off Texas)? Because 490 

the DL model is strictly data driven, if the training used here for the period of 2017 – 2019 does 491 
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not encompass all observing scenarios (e.g., solar/viewing geometry, weak-moderate sun glint, 492 

different aerosol types and thicknesses) and all optical complexity (e.g., optically shallow bottom, 493 

non-algal water constituents) for other years or for other GoM regions, then the DL model needs 494 

to be retrained to include those scenarios. Otherwise, there is no need for retraining. For these 495 

reasons, because a 3-year observing period is believed to be long enough to cover all possible 496 

observing scenarios, application of the DL model for the WFS but to other years is unlikely to 497 

require retraining. In contrast, for other regions of the GoM, because the reasons leading to 498 

optical complexity may be different, a retraining is very likely needed. For the same reason, 499 

because HABs are a global phenomenon (Anderson et al., 2021) and because of the global 500 

coverage of VIIRS and other satellite data, we expect that such a machine learning approach may 501 

find more applications in other regions where HABs also occur, once field data are available for 502 

training and validation. These HABs are not necessarily caused by K. brevis, but can be caused 503 

by other dinoflagellates. In particular, future satellite missions will have the capacity to collect 504 

hyperspectral data on both sun-synchronous and geostationary satellite platforms. These include 505 

NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, NASA’s Geostationary 506 

Littoral Imaging and Monitoring Radiometer (GLIMR) mission, and NOAA’s Geostationary 507 

Extended Observations (GeoXO) mission. These missions will provide unprecedented ocean 508 

color data to bolster the ability to detect HABs by accounting for spatial coherence, spectral 509 

contrasts, and short-term changes. 510 

 511 

5. Conclusion 512 

To date, compared with MODIS or OLCI, the use of VIIRS in detecting HABs in the Gulf of 513 

Mexico is limited, possibly due to its lack of a fluorescence band. This technical challenge is 514 

circumvented here through the use of full spectral information from each VIIRS image pixel and 515 

a deep learning model to account for the spatial context of bloom pixels. Such an approach 516 

detects K. brevis blooms on the West Florida Shelf as spatially coherent features, thus avoiding 517 

typical problems of K. brevis patchiness (i.e., heterogeneity) encountered by traditional pixel-518 

based methods. The approach led to detected K. brevis bloom patterns that are consistent with 519 

those derived from MODIS and microscopy observations and, meanwhile, the wide swath makes 520 

VIIRS particularly useful in both retrospective analyses of bloom dynamics and near-real-time 521 
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monitoring of bloom occurrence. We expect to implement such an approach for near-real-time 522 

data production in the current IRIS.  523 

 524 
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Figures 776 

777 
Fig. 1. The West Florida Shelf is located in the eastern Gulf of Mexico (inset map), spanning the 778 

region west of the Florida peninsula, encompassing the Panhandle, Big Bend, Central West 779 

Florida Shelf, including Tampa Bay and Charlotte Harbor, and the Florida Keys. The number of 780 

(a) discrete in situ K. brevis cellular abundance observations with scale from 1–1000 and (b) 781 

valid VIIRS observations in each 5-km grid in 2017–2019 with scale from 100–1000 are shown. 782 

The number of valid MODIS observations has been shown in Hu et al. (2022). Following 783 

Weisberg et al. (2019), the region from the north of Tampa Bay to the south of Charlotte Harbor 784 

is outlined as the K. brevis bloom “epicenter”, i.e., where most K. brevis blooms were found and 785 

most water samples were collected.    786 

 787 

  788 
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 789 

Fig. 2. Conceptual illustration of the model training, validation, and application activities 790 

conducted in this study for classifying K. brevis blooms in VIIRS imagery using a deep learning 791 

approach. In the top row, VIIRS “ground truth”, Rrs(λ), and RGCI images are used for training 792 

and validating the deep learning model. In the bottom row, the validated model was applied to 793 

VIIRS Rrs(λ) and RGCI data to delineate K. brevis bloom patches. The pixels were classified as 794 

‘K. brevis bloom’ (red), ‘non-K. brevis bloom’ (blue), and ‘no valid observation’ (grey). Monthly 795 

bloom occurrence frequency maps were generated from the individual (near-daily) model 796 

extracted results.  797 

  798 
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 799 

 800 

Fig. 3. “Ground truth” image preparation steps for the training the DL model. In (a), VIIRS 801 

RGCI is overlaid with K. brevis field sample data (±1 week) (shown in colored circles). The 802 

spatially coherent high-RGCI patch in (a) and reddish-dark patch in the VIIRS ERGB composite 803 

image (b) that is collocated with high K. brevis cell counts (>100,000 cells L−1) suggest that this 804 

is a K. brevis bloom patch. A crude outline is manually drawn over the patch. In (c), pixels 805 

within the manual outline with RGCI values greater than the RGCI threshold (TRGCI is marked 806 

on the color bar) are considered as bloom pixels. In (d), pixels in the delineated patch (K. brevis 807 

bloom) are marked as 1 (white), and all other pixels (non-K. brevis bloom) are marked as 0 808 

(black).   809 
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 810 

Fig. 4. Four sets of example imagery from the validation dataset. The first row (I) shows a case 811 

with true-positive results. The second row (II) shows a case with true-negative results. The third 812 

row (III) shows the false-positive results, and the fourth row (IV) shows the false-negative 813 

results (poor results are circled in dashed lines) as compared with the “ground truth” delineation 814 

in (c). Imagery shown include: (a) VIIRS RGCI; (b) VIIRS ERGB-composite images with field 815 

K. brevis cell count data overlaid, cell counts less than 1000 show as transparent circles; (c) 816 

VIIRS semi-objectively delineated results, and (d) VIIRS DL model extracted results with red, 817 

blue, and grey representing K. brevis blooms, non-K. brevis bloom, and no valid observation or 818 

no satellite data, respectively.  819 
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 820 

Fig. 5. Scatter plot of K. brevis bloom area (km2) determined from the VIIRS delineated “ground 821 

truth” dataset (based on visual inspection of co-located VIIRS imagery and in-situ data) and 822 

trained VIIRS DL model. Red circles represent the image pairs that the bloom detected in 823 

Panhandle region on 29, 30 and 31 October 2018. Cases where neither method identified a K. 824 

brevis bloom are not shown. 825 

  826 
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 827 

Fig. 6. The capacity of the DL model in separating K. brevis and non-K. brevis bloom patches in 828 

optically complex nearshore waters is demonstrated here using a VIIRS scene of the WFS 829 

collected on 16 September 2018 for cases of (a) VIIRS RGCI, (b) VIIRS ERGB composite 830 

image overlaid with field K. brevis cellular abundance data, where high RGCI values are shown 831 

to correspond to dark waters, and (c) K. brevis bloom patch determined from the VIIRS DL 832 

model, showing that the DL model correctly classified a high-RGCI patch (yellow dashed circle) 833 

south of the K. bloom patch (orange dashed circle) as non-K. brevis bloom. Panel (d) shows that 834 

the spectral shapes from the two locations (one in the K. brevis bloom and the other in the non-K. 835 

brevis bloom, see locations marked in (a)) are similar, yet the DL model could differentiate them. 836 

 837 

  838 
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 839 

Fig. 7. Comparisons between (a) field K. brevis cellular abundance data (cells L−1) from FWC 840 

and monthly VIIRS bloom occurrence frequency maps generated in I(a) August 2018 and II(a) 841 

June 2019 using the approaches of I(b) & II(b) DL model, I(c) & II(c) neural network model (El-842 

Habashi et al., 2016), and I(d) & II(d) RGCI during K. brevis bloom (I) and non-K. brevis bloom 843 

(II) events. Only the DL model can correctly identify the bloom and non-bloom events. 844 
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 845 

Fig. 8. Monthly K. brevis bloom footprint maps derived from MODIS by semi-objective 846 

delineation (Hu et al., 2022) and VIIRS using the DL model for the bloom event between mid-847 

2018 and early-2019. 848 
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 850 

Fig. 9. The detection difference between VIIRS and MODIS in the Panhandle region on 30 851 

October 2018 for (a) VIIRS DL model extraction results, (b) MODIS RBD delineation results 852 

based on the RBD threshold in Hu et al. (2022), (c)VIIRS RGCI image, (d) MODIS RBD image, 853 

(e) VIIRS ERGB images overlaid with K. brevis cell counts, and (f) VIIRS and MODIS Rrs(λ) 854 

spectra from dash circled locations as noted in (d) and (e). Note that red, blue, and grey in panels 855 

(a) and (b) represent K. brevis blooms, non-K. brevis bloom, and no valid observation or no 856 

satellite data, respectively.  857 
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 859 

Fig. 10. Monthly images of VIIRS (top row) and MODIS (bottom row) showing the spatial 860 

distributions of number of valid observations at each 1-km location in the eastern Gulf of Mexico 861 

for each month from July to December 2018. 862 
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 864 

Fig. 11. An example showing the difference between VIIRS and MODIS valid observations and 865 

K. brevis bloom detections. The rows in (a) and (b) show the VIIRS RGCI and MODIS RBD 866 

images, respectively, over the central WFS for five consecutive days. The grey color represents 867 

no valid observation or no satellite data. The rows in (c) and (d) show their corresponding K. 868 

brevis bloom detection results determined with VIIRS using the DL model and MODIS by semi-869 

objective delineation (Hu et al., 2022). Red, blue, and grey represent K. brevis blooms, non-K. 870 

brevis bloom, no valid observation or no satellite data, respectively. 871 

 872 
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 876 

Fig. 12. An example showing how the strength of the VIIRS DL model (i.e., avoid false-positive 877 

bloom detection from sediment-rich waters) can turn into a weakness, and how such a weakness 878 

can be overcome by inspecting sequential images. Panels (a-c) are the VIIRS ERGB images in 879 

the Epicenter region overlaid with K. brevis cell counts, collected on 12, 16, and 17 November 880 

2018, respectively. Panels (d-f) are the corresponding VIIRS DL model extraction results, with 881 

red, blue, and grey representing K. brevis bloom patches, non-K. brevis bloom waters, and no 882 

valid observation or no satellite data, respectively. The field data and ERGB images suggest a 883 

continuous K. brevis bloom in the Epicenter region in mid-November 2018. During the bloom 884 

period, the sediment resuspension event on November 16 (b) led to no bloom detection (e), but 885 

one can still safely assume the existence of similar bloom patches as in (d) and (f). 886 

 887 



Graphical Abstract 

Harmful algal blooms (HABs) of the toxic dinoflagellate Karenia brevis, often called red tides, 

occur annually on the West Florida Shelf (WFS). Detection of these HABs using satellite 

observations often suffers from two problems: lack of accurate algorithms to identify 

phytoplankton blooms in optically complex waters and patchiness (i.e., heterogeneity) of K. brevis 

cellular abundance in bloom waters. Here, to take advantage of the wide swath (3040 km) and non-

saturation of the Visible Infrared Imaging Radiometer Suite (VIIRS) while realizing its 

disadvantage due to the lack of a fluorescence band, we develop a deep-learning (DL) 

convolutional neural network model to overcome the above technical challenges, especially on the 

spatial coherence of bloom patches. After proper training, the overall performance (i.e., F1 score) 

of the DL model is 89%. The results for the period of 2017 – 2019 not only demonstrate the 

capacity of VIIRS in HABs monitoring, but also show the value of the DL model in extracting K. 

brevis bloom patches for both near real-time applications and retrospective analysis. 

 

 




