

1 **Detection of *Karenia brevis* red tides on the West Florida Shelf using VIIRS observations:**
2 **Accounting for spatial coherence with artificial intelligence**

3 Yao Yao^a, Chuanmin Hu^{a,*}, Jennifer P. Cannizzaro^a, Brian B. Barnes^a, David C. English^a, Yuyuan Xie
4^a, Katherine Hubbard^b, Menghua Wang^c

5^aCollege of Marine Science, University of South Florida, St. Petersburg, FL, USA

6^bFish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St.
7 Petersburg, FL, USA

8^cNational Oceanic and Atmospheric Administration, Center for Satellite Applications and Research,
9 College Park, MD, USA

10 * Corresponding author: huc@usf.edu

11

12 **Abstract**

13 Harmful algal blooms (HABs) of the toxic dinoflagellate *Karenia brevis* occur annually on the
14 West Florida Shelf (WFS). Detection of these blooms using satellite observations often suffers
15 from two problems: lack of accurate algorithms to identify phytoplankton blooms in optically
16 complex waters and patchiness (i.e., heterogeneity) of *K. brevis* during blooms. Here, using data
17 collected by the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National
18 Polar-orbiting Partnership (SNPP) between 2017 and 2019, we develop a practical approach to
19 overcome these difficulties despite the lack of a chlorophyll-a fluorescence band on VIIRS. The
20 approach is based on artificial intelligence (specifically, a deep-learning convolutional neural
21 network model), which uses spatial coherence of bloom patches to account for the patchiness of
22 *K. brevis* concentrations. After proper training, the overall performance (i.e., F1 score) of the
23 deep learning model is 89%. Extracted *K. brevis* patches were consistent with those derived from
24 the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite that has a
25 fluorescence band. Furthermore, the wider swath of VIIRS over MODIS (3040-km *versus* 2330-
26 km) led to more valid observations of bloom extent for improved near-real-time applications.
27 The results not only demonstrate the capacity of VIIRS in HABs monitoring, but also show the
28 value of the DL model in extracting *K. brevis* bloom patches for both near real-time applications
29 and retrospective analysis.

30 **Keywords:** *Karenia brevis*, red tide, bloom detection, deep learning, remote sensing, VIIRS,
31 MODIS

32 **1. Introduction**

33 Harmful algal blooms (HABs) are a global phenomenon that can negatively impact coastal
34 ecosystems, economies, and human and wildlife health. Increases in HAB occurrences have been
35 linked to eutrophication and climate change (Anderson et al., 2021; Fu et al., 2012; Glibert et al.,
36 2014; Glibert & Burford, 2017). The primary HAB-forming species on the West Florida Shelf
37 (WFS) is *Karenia brevis*, a toxic dinoflagellate that causes fish, seabird, and marine mammal
38 mortalities and poses hazards to human and wildlife health (Fleming et al., 2007, 2011;
39 Flewelling et al., 2005; Kirkpatrick et al., 2004; Steidinger, 2009). *K. brevis* blooms occur near-
40 annually on the WFS, typically in late summer and fall, although particularly severe blooms have
41 been reported year-round (e.g., 2005–2007, 2017–2019, and 2020–2021). The spatial scale of *K.*
42 *brevis* blooms on the WFS also varies considerably from event to event and even over much
43 shorter (i.e. daily) time scales. Areas with high concentrations of *K. brevis* are often called ‘red
44 tides’, though these waters can appear in various shades of red, green, brown, or black.

45 The spatial and temporal variability of *K. brevis* blooms and associated impacts on the WFS
46 require extensive monitoring to inform communication and forecasting. Water samples are
47 routinely collected during field sampling of WFS coastal waters by the Florida Fish and Wildlife
48 Conservation Commission (FWC) and dedicated research groups and volunteer networks,
49 regardless of bloom conditions; additional sampling is also conducted in response to bloom
50 events. Each year, thousands of samples are enumerated using microscopy to detect and monitor
51 *K. brevis* and other HABs in Florida’s (U.S.A.) marine and estuarine waters. This information is
52 compiled within the FWC HAB Monitoring Database and reported by the FWC via regular
53 updates on HABs. Background *K. brevis* concentrations (< 1,000 cells L⁻¹) are often observed in
54 the non-bloom season (Heil & Steidinger, 2009; Steidinger, 2009). When *K. brevis* cell counts
55 exceed 1,000 cells L⁻¹, commercial shellfish harvesting areas may be closed due to potential
56 hazards posed by the toxins. The lower limit for satellite detection is 50,000 cells L⁻¹, which is
57 1–2 orders of magnitude less than concentrations at which blooms are visible by the human eye
58 (Tester & Steidinger, 1997). When cell counts are above 100,000 cells L⁻¹, reports of fish

59 mortality and human respiration problems increase (Fleming et al., 2011; Flewelling et al., 2005;
60 Kirkpatrick et al., 2004).

61 Over the past sixty years, more than a million water samples have been collected on the WFS
62 and processed for *K. brevis* enumeration by FWC (FWC HAB Monitoring Database, 2021).
63 However, the majority of samples were collected in nearshore waters, less than 10 km from the
64 shoreline. This equates to fewer than one sample collected every two months within each 0.05°
65 grid, although sampling intensity (including offshore) has increased substantially over time (Hu
66 et al., 2022). Satellite remote sensing can help overcome the bias introduced by the scarcity of
67 field data (especially offshore) because it provides increased synoptic spatial and temporal
68 coverage (Amin, Zhou, et al., 2009; Amin et al., 2015; Esaias et al., 1998; Tester & Stumpf,
69 1998; Tomlinson et al., 2004). At elevated concentrations of *K. brevis*, water discoloration is
70 captured in satellite images, and such a discoloration is often interpreted as an indication of *K.*
71 *brevis* blooms (Cannizzaro et al., 2008, 2009; Cullen et al., 1997; Schofield et al., 1999; Tyler &
72 Stumpf, 1989). Other factors, such as suspended sediments, colored dissolved organic matter
73 (CDOM), and non-*K. brevis* phytoplankton blooms, can also cause water discoloration and be
74 misconstrued as red tide (Dierssen et al., 2006). Blooms of *K. brevis* and other species may also
75 occur at levels that can be observed via satellites but without discoloration observed with the
76 naked eye. Thus, detection of *K. brevis* blooms using satellite observations requires algorithms,
77 which are often empirical, to first detect phytoplankton blooms (Amin, Zhou, et al., 2009;
78 Carvalho et al., 2010, 2011; El-Habashi et al., 2016; Hu & Feng, 2016; Qi et al., 2015; Stumpf et
79 al., 2003; Tomlinson et al., 2009) and then distinguish the bloom types (e.g., *K. brevis*, diatom,
80 *Pyrodinium bahamense*, *Tripos hircus*).

81 Satellite sensors equipped with spectral bands to measure solar-stimulated chlorophyll-a
82 fluorescence, including the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard
83 Terra (2000–) and Aqua (2002–) and the Ocean and Land Colour Imager (OLCI) aboard
84 Sentinel-3A (2016–) and Sentinel-3B (2018–), are used for bloom monitoring by U.S. Federal
85 and State agencies (e.g., the U.S. National Oceanic and Atmospheric Administration (NOAA),
86 <https://coastalscience.noaa.gov/science-areas/habs/hab-forecasts/gulf-of-mexico/>; FWC,
87 <https://myfwc.com/research/redtide/statewide/>). Empirical algorithms developed using
88 concurrent field and satellite data often rely on satellite-field matching pairs (i.e., data collected
89 from the same location within a short time window), and thus can be regarded as ‘pixel-based’

90 approaches. These include techniques of the chlorophyll-a anomaly (Stumpf, 2001; Stumpf et al.,
91 2003; Wang et al., 2021), particle backscattering coefficient b_{bp} ratio (Anderson et al., 2012;
92 Cannizzaro et al., 2008; Carder et al., 1999; Morel, 1988), normalized water-leaving radiance
93 (nL_w) ratio (Carvalho et al., 2011), nL_w spectral shape (Tomlinson et al., 2009), normalized
94 Fluorescence Line Height (nFLH; Hu & Feng, 2016), Red Solar Induced Fluorescence (red SIF,
95 Luis et al., 2023) and Red-Band Difference (RBD; Amin, Gilerson, et al., 2009; Amin, Zhou, et
96 al., 2009). However, because *K. brevis* cell concentrations from adjacent waters (i.e., within a
97 single pixel) can differ by several orders of magnitude (Tomlinson et al., 2009, also see
98 supplemental Fig. S1), significant data spread is commonly observed when comparing satellite-
99 estimated *K. brevis* concentration with water sample-determined *K. brevis* concentration (Hu &
100 Feng, 2016).

101 The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-
102 orbiting Partnership (SNPP; 2011–), NOAA-20 (2017–), and NOAA-21 (2022–) exhibits similar
103 spatial (375/750-m) and temporal (near-daily) resolutions as MODIS (250/500/1000-m) and
104 OLCI (300-m), but VIIRS does not have the dedicated bands for measuring chlorophyll-a
105 fluorescence for bloom detection (Hu et al., 2015). Despite this limitation, VIIRS has shown
106 potential for bloom detection using alternative approaches, including the Red-Green
107 Chlorophyll-a Index (RGCI; Qi et al., 2015) and neural network models (El-Habashi et al., 2016;
108 El-Habashi & Ahmed, 2019). While bloom detection may be similar to nFLH and RBD, these
109 algorithms were developed using pixel-based approaches without the ability to differentiate
110 between *K. brevis* blooms and other types of blooms. Evaluation of these approaches using a
111 large field dataset suggested that, although these approaches may work well for case studies, they
112 are not applicable in a more general sense (supplemental Figs. S2 & S3).

113 Deep learning models are poised to overcome the limitations of pixel-based approaches by
114 adding an emphasis on the recognition of spatial patterns. Also, unlike empirical approaches that
115 typically utilize spectral information from only a few wavebands, these models can take
116 advantage of the spectral information from all bands. Previous studies indicate the potential of
117 using such approaches to identify HABs of *Magalefidinium polykrikoides* in Korean waters (Kim
118 et al., 2019; Shin et al., 2022). However, for the *K. brevis* blooms on the WFS, there is no
119 method for systematic observation using VIIRS data without a fluorescence band. With MODIS
120 nearing the end of its lifespan (i.e., NASA will cease support of MODIS no later than 2026), the

121 development of robust bloom detection algorithms for VIIRS sensors, scheduled for launch
122 every five years, is critical to ensure a seamless satellite ocean color data record for monitoring
123 HABs in near-real-time and documenting long-term trends. In order to address this need, the
124 objective of this paper is to develop a practical approach to take advantage of computer artificial
125 intelligence to recognize spatially coherent ocean color patterns in VIIRS imagery associated
126 with *K. brevis* blooms.

127

128 **2. Data and methods**

129 **2.1 In-situ data**

130 Water samples from near-surface waters were used to determine the in-situ concentration of *K.*
131 *brevis* at sampling sites. A total of 23,232 field data points for *K. brevis* cell counts were
132 recorded at sample depths of ~ 0.5 m on the WFS from January 2017 to December 2019 (FWC
133 HAB Monitoring Database, 2021). Fig. 1a shows the number of field *K. brevis* cell counts data in
134 each 5-km grid. In this study, *K. brevis* cell counts larger than 100,000 cells L⁻¹ are considered *K.*
135 *brevis* blooms.

136 **2.2 VIIRS satellite data**

137 A total of 4,282 level-2 SNPP VIIRS granules covering the WFS from January 2017 to
138 December 2019 were downloaded from the NOAA CoastWatch data portal
139 (<https://coastwatch.noaa.gov>). These level-2 products included $nL_w(\lambda)$ for each band (410, 443,
140 486, 551, 638, and 671 nm) and quality assurance flag information. Default L3 flags developed
141 by NOAA (Wang et al., 2017) were applied for quality control to exclude pixels with unreliable
142 radiance values from further analysis. Fig. 1b shows the increased spatial and temporal coverage
143 of VIIRS data compared to the *in-situ* cell count data.

144 Remote sensing reflectance ($R_{rs}(\lambda)$) for each band was determined from $nL_w(\lambda)$ as follows:

145
$$R_{rs}(\lambda) = nL_w(\lambda)/f_0(\lambda), \quad (1)$$

146 where $f_0(\lambda)$ is the mean extraterrestrial solar irradiance (Thuillier et al., 2003).

147 A cylindrical equidistant projection was used to map these data within the WFS at 1-km spatial
148 resolution (Barnes et al., 2021). $R_{rs}(\lambda)$ data at 671-nm and 551-nm were used to generate the
149 RGCI (Qi et al., 2015) following the equation:

150
$$RGCI = R_{rs}(671)/R_{rs}(551), \quad (2)$$

151 In addition, $R_{rs}(\lambda)$ at 551, 486, and 443 nm were used to generate Enhanced Red-Green-Blue
152 (ERGB) composite images to show color patterns of coastal waters. The ERGB images
153 differentiate dark features, caused by high absorption by chlorophyll-a and/or colored dissolved
154 organic matter (CDOM), from bright features caused by either sediment resuspension or shallow
155 bottom (Hu et al., 2005).

156 2.3 Deep learning model

157 Deep learning (DL) is a type of artificial intelligence that uses artificial neural networks with
158 multiple layers to learn from data and make predictions. A Convolution Neural Network (CNN;
159 Lecun et al., 1998) is a form of deep learning that is widely used in image segmentation for
160 clustering parts of imagery together that belong to the same object class. Here, a type of CNN
161 architecture called Res-Unet deep learning model (Diakogiannis et al., 2020; Qi et al., 2021;
162 Wang & Hu, 2021; Xiao et al., 2018; Yao et al., 2023) is used. This model combines
163 constructions inherent to both Res-Net (He et al., 2016) and U-net (Ronneberger et al., 2015)
164 models, thus improving ability to effectively perform image segmentation tasks.

165 The workflow in this study follows three main steps (Fig. 2). First, a set of “ground truth” images
166 were prepared semi-objectively and combined with satellite $R_{rs}(\lambda)$ and RGCI for model training.
167 Here, the term “ground truth” refers to the information determined by integrating ground (i.e.,
168 field) measurements and image analysis results as opposed to either ground measurements alone
169 or the theoretical “truth”. The trained model was then validated using a separate set of “ground
170 truth” images that were reserved for evaluation. Finally, the model was applied to VIIRS data
171 from 2017–2019, and the model output was used to generate monthly statistics to examine
172 spatiotemporal variability of *K. brevis* blooms over the course of the bloom event.

173 2.3.1 “Ground truth” image preparation

174 *K. brevis* blooms exhibit high RGCI (Qi et al., 2015) and appear reddish-black in ERGB
175 composite imagery (Hu et al., 2005), allowing these patches to be differentiated from the

176 surrounding waters. However, not all patches with high RGCI are *K. brevis* blooms because
177 blooms of other phytoplankton can also lead to high RGCI values, and other factors (e.g.,
178 CDOM) can cause ERGB images to appear reddish black. Here, field sample data are used to
179 confirm that patches with high RGCI are *K. brevis* blooms. The patches were identified as *K.*
180 *brevis* only if the field data showed high *K. brevis* cell counts ($> 100,000$ cells L^{-1}) that
181 corresponded to high RGCI and reddish-blackish features in ERGB. This practice has been
182 employed before to delineate *K. brevis* blooms using field sample data and MODIS/Aqua RBD
183 images (Hu et al., 2022).

184 Based on the criteria above, “ground truth” images were prepared as demonstrated in Fig. 3
185 using the following steps:

- 186 1. *K. brevis* cell counts data (± 7 days) were overlaid on VIIRS daily (i.e., snapshot) RGCI
187 and ERGB composite imagery (Figs. 3a & 3b).
- 188 2. Patches associated with *K. brevis* cell counts $> 100,000$ cells L^{-1} that exhibit high RGCI
189 and appear reddish black in the ERGB imagery were roughly outlined manually using the
190 ENVI/IDL region of interest (ROI) tool (Fig. 3b).
- 191 3. Pixels within the outline with $RGCI \geq$ the threshold of RGCI (T_{RGCI}) (e.g., *K. brevis*
192 bloom) were considered as bloom pixels and extracted objectively (Fig. 3c). T_{RGCI} was
193 set as 0.22, which corresponds to a chlorophyll-a concentration of $1.5 \mu\text{g L}^{-1}$ and
194 approximately $150,000$ *K. brevis* cells L^{-1} (Qi et al., 2015; Stumpf et al., 2003; Tester et
195 al., 2008). This threshold is consistent with that used for the MODIS RBD by Hu et al.
196 (2022).
- 197 4. The bloom pixels were assigned a value of 1. All remaining pixels, including those
198 outside the outline or with $RGCI < T_{RGCI}$, were assigned a value of 0 (e.g., non-*K. brevis*
199 bloom) or NaN (not a number, due to no observation or invalid pixels) (Fig. 3d).

200 A total of 100 VIIRS images were delineated following the above steps. Twenty three of these
201 images contained high VIIRS RGCI with *K. brevis* cell counts equal to zero and are intended to
202 help prevent false positives. Through random selection, 47 of these images were designated for
203 training, and the remaining 53 images were reserved for validation. Here, although the cell
204 counts data were likely collected not in the same day of the image acquisition and water could
205 have moved within ± 7 days to cause a mismatch between the locations of the *in situ* data and
206 image feature, as long as there were high cell counts within or near an image feature, the feature

207 is delineated as a *K. brevis* bloom patch. This is also one reason why a patch-wise approach
208 should work better than a pixel-wise approach.

209 *2.3.2 Model training*

210 A total of 47 “ground truth” images and their corresponding $R_{rs}(\lambda)$ and RGCI data were used as a
211 training dataset for developing and training the DL model. To balance the weight of the input
212 data and make the deep learning model training converge smoothly, each $R_{rs}(\lambda)$ band (410, 443,
213 486, 551, 638, 671 nm) was normalized by:

214
$$nR_{rs}(\lambda) = (\log(R_{rs}(\lambda)) - \log(R_{rs}(\lambda)_{min})) / (\log(R_{rs}(\lambda)_{max}) - \log(R_{rs}(\lambda)_{min})), \quad (3)$$

215 where $R_{rs}(\lambda)_{min}$ and $R_{rs}(\lambda)_{max}$ were determined to be 0.0001 and 0.02 by trial and error,
216 respectively. If $R_{rs}(\lambda)$ was less than 0.0001, it was set to 0.0001; and if $R_{rs}(\lambda)$ was great than
217 0.02, it was set to 0.02.

218 Likewise, RGCI was normalized as follows:

219
$$nRGCI = (RGCI - RGCI_{min}) / (RGCI_{max} - RGCI_{min}), \quad (4)$$

220 where $RGCI_{min}$ and $RGCI_{max}$ were determined to be 0.1 and 1.5 by trial and error, respectively.
221 If RGCI was less than 0.1, it was set to 0.1; and if RGCI was greater than 1.5, it was set to 1.5.

222 Squared convolution kernels were applied in this training network. Thus, each input training
223 image was divided into several spatially non-overlapping sub-images of 256×256 pixels, with
224 the sub-image size determined by computing power. Each sub-image was then used to train the
225 DL model, and the Jaccard distance index was used to assess the model convergence. After
226 passing through the deep convolutional layers, the model can recognize the characteristic $R_{rs}(\lambda)$
227 spectral shapes of *K. brevis* bloom patch and the coherent spatial relationships among the $R_{rs}(\lambda)$
228 spectral features that help identify the *K. brevis* bloom patches.

229 *2.3.3 Model validation*

230 A total of 53 delineated VIIRS “ground truth” images were reserved for validation to evaluate
231 the model performance. The morphology of each patch in the model extracted images was
232 visually compared with the semi-objectively delineated patches of the “ground truth” images and
233 field *K. brevis* cell concentration data to determine whether the model extracted results matched
234 those from the “ground truth” images. A confusion matrix (Stehman, 1997) was used to report

235 the number of true-positives (TP), true-negatives (TN), false-positives (FP), and false-negatives
236 (FN), as well as the F1 score to evaluate the overall accuracy. The F1 score was calculated as:

237
$$F1 = 2TP / (2TP + FP + FN) \times 100\%. \quad (5)$$

238 The above statistics is based on the evaluation of the 53 image pairs, each containing a “ground
239 truth” image (or truth image) and an image of model results (or model image). There are 41 *K.*
240 *brevis* bloom truth images and 12 non-bloom truth images. Each model image was compared to
241 its corresponding truth image to determine whether the model image is a TP, TN, FP, or FN. A
242 model image is a TP if 1) the morphology of each bloom patch in the model image matches that
243 in the truth image and 2) the overlapping bloom area (as measured by the number of pixels)
244 between the model image and the truth image is > 75% of the bloom area in the truth image,
245 otherwise the model image is an FN. A model image is an FP if any patch is classified as a
246 bloom patch, but the corresponding truth image shows no bloom, otherwise the model image is
247 an TN.

248 In addition to the confusion matrix, the bloom areas of all image pairs (i.e., the truth images and
249 the model images) were compared using a linear fitting with the coefficient of determination (R^2)
250 and the root mean square error (RMSE). RMSE was calculated as follows:

251
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \hat{x}_i}{\hat{x}_i} \right)^2} \times 100\%, \quad (6)$$

252 where x_i is the bloom area (i.e., number of pixels) of the model extracted result of the i -th model
253 image, and \hat{x}_i is the area of the i -th truth image.

254 Spectral similarities between $R_{rs}(\lambda)$ measured in *K. brevis* bloom and non-*K. brevis* bloom
255 patches were examined using the Spectral Angle Mapper (SAM) index (Kruse et al., 1993). The
256 SAM (in degrees) indicates the spectral similarity between two $R_{rs}(\lambda)$ spectra by calculating the
257 angle between them. The closer SAM is to 0-degree, the greater the similarity between the two
258 spectral shapes.

259 *2.3.4 Statistics of K. brevis coverage*

260 After the model was trained and validated, it was applied to a 3-year series of VIIRS data (2017–
261 2019) that encompassed a long-lasting *K. brevis* bloom event. Each pixel was classified into one
262 of three classes: ‘*K. brevis* bloom’ with a value of 1, ‘non-*K. brevis* bloom’ with a value of 0, or

263 ‘no valid observation’. The ‘no valid observation’ class was determined using the default L3
264 quality assurance flag information processed by NOAA (Wang et al., 2017), and these pixels
265 were excluded from the following statistics.

266 Monthly maps of bloom occurrence frequency (BOF) were generated from the individual
267 classified images and for a given location were calculated as follows:

268
$$BOF = (N_{kb}/(N_{kb} + N_{nkb})) \times 100\%, \quad (7)$$

269 where N_{kb} is the total number of ‘*K. brevis* bloom’ pixels and N_{nkb} is the total number of ‘non-*K.*
270 *brevis* bloom’ pixels. To make the statistics more meaningful, pixels with fewer than five valid
271 observations (see definition above) in any given month were excluded. Bloom areal footprints
272 were then calculated from all > 0% pixels in the monthly BOF maps.

273 Monthly BOF maps were also generated from individual classified maps derived based on RGCI >
274 TRGCI and chlorophyll-a > 1.5 $\mu\text{g L}^{-1}$ derived using a neural network model (El-Habashi et al.,
275 2016) to compare with model results.

276 **2.4 MODIS-based *K. brevis* bloom occurrence frequency maps**

277 MODIS/Aqua data were used to qualitatively assess the VIIRS deep learning model results.
278 Specifically, *K. brevis* blooms were classified following the work of Hu et al. (2022) by
279 integrating water sample data and MODIS data. Briefly, field *K. brevis* cell counts were first
280 overlaid on MODIS RBD (Amin et al., 2015; Amin, Zhou, et al., 2009). Patches with high RBD
281 and high field *K. brevis* cell concentrations were delineated semi-objectively: a crude outline was
282 manually drawn over each patch, and pixels within the outline with RBD > 0.15 $\text{mW cm}^{-2} \mu\text{m}^{-1}$
283 sr^{-1} (which corresponds to 150,000 cells L^{-1} , Hu & Feng, 2016) were identified as *K. brevis*
284 bloom pixels. Monthly BOF maps were generated from the daily imagery similarly to VIIRS
285 (Section 2.3.4).

286

287 **3. Results**

288 **3.1 Model validation**

289 A confusion matrix for assessing the performance of the DL model is shown in Table 1. The
290 overall F1 score was 89% with an accuracy of 81% and precision of 83%. Four sets of example

291 images from the validation dataset are presented in Fig. 4, showcasing TP, TN, FP, and FN
 292 results. The first set of images in the top row displays the TP results where the DL model
 293 successfully extracted *K. brevis* patches that match the “ground truth” image. Here, each TP case
 294 meets the criteria of both morphological evaluation and 75% threshold of bloom area as
 295 described in the methodology above. Of the 39 TP cases, the ratio of the overlapping bloom area
 296 to the true bloom area for each image pair ranged between 77.7% and 96.3%, with an overall
 297 ratio of 82.2% when all image pairs were combined. The second set of images illustrates the TN
 298 results where the DL model correctly identified non-*K. brevis* bloom (i.e., not a single patch was
 299 a bloom patch in both the “ground truth” image and the model image). The third set of images
 300 presents the FP results where the DL model extracted incorrect bloom patches, and the fourth set
 301 of images displays the FN results where the DL model failed to identify > 25% of the
 302 overlapping bloom areas between the “ground truth” image and the model image.

303 Table 1. Performance evaluation of the DL model where P and PP are the number of “true” and predicted *K. brevis*
 304 blooms, respectively; N and PN are the number of “true” and predicted non-*K. brevis* bloom, respectively. TN and
 305 TP are the number of true negatives and positives, respectively; FN and FP are the number of false negatives and
 306 positives, respectively.

Total n = 53		Predicted		F1 score	2TP/(2TP+FP+FN)	88.6%
		PP	PN			
“Ground truth”	P	TP 39	FN 2	True positive rate (TPR)	TP/(TP+FN)	95.1%
	N	FP 8	TN 4	False positive rate (FPR)	FP/(FP+TN)	66.7%
Precision		TP/(TP+FP)	83.0%	Accuracy	(TP+TN)/n	81.1%

307
 308 A comparison between bloom areas (in number of pixels) determined from the “ground truth”
 309 images and the corresponding model images is presented in Fig. 5, wherein the overall RMSE
 310 was found to be 31.5%, and the coefficient of determination R^2 was calculated to be 0.92. Bloom
 311 areal extent was underestimated by the model in the Panhandle region in late-2018. These results
 312 will be discussed in detail below.

313 3.2 Model performance

314 The DL model, trained and verified based on the VIIRS spectral information and image coherent
315 context, can identify the *K. brevis* patches and distinguish them from non-*K. brevis* bloom
316 patches.

317 Fig. 6 shows a VIIRS scene collected on 16 September 2018 that contains two separate patches
318 of high RGCI water that appear darkish red in the ERGB imagery. *K. brevis* cell counts $>$
319 100,000 cells L $^{-1}$ confirm that the northern patch offshore of Charlotte Harbor was a true bloom,
320 and the model correctly identified this bloom patch. Background cell counts ($<1,000$ cells L $^{-1}$)
321 were collected in the more southerly patch located south of Cape Romano ($\sim 26^{\circ}$ N), and the
322 model correctly identified this patch as a non-*K. brevis* bloom. VIIRS $R_{rs}(\lambda)$ spectral shapes were
323 examined in Fig. 6a at locations within these patches. The high similarity in spectral shape (SAM
324 = 4.94 $^{\circ}$) indicates that both patches would be categorized as *K. brevis* blooms based on RGCI
325 alone. The DL model accurately differentiated between the *K. brevis* bloom patch and the non-*K.*
326 *brevis* bloom patches.

327 Fig. 7 further demonstrates how the VIIRS DL model generates fewer false-positive
328 classifications compared to both RGCI (Qi et al., 2015) and the neural network model (El-
329 Habashi et al., 2016). Monthly BOF maps using all three techniques were generated during a *K.*
330 *brevis* bloom event (August 2018) and non-*K. brevis* bloom event (June 2019), and are compared
331 to monthly FWC cell abundance data. While the neural network and RGCI retrieval results
332 accurately detect the *K. brevis* bloom in the central WFS in August 2018, there are some false-
333 positive results in nearshore waters to the north in the Panhandle/Big Bend regions and south of
334 Cape Romano ($\sim 26^{\circ}$ N). False positive classifications were also prevalent in these regions during
335 the non-*K. brevis* bloom event in June 2019. The VIIRS DL model, on the other hand, shows
336 strong consistency with *K. brevis* cell abundance, indicating improved performance in accurately
337 identifying both *K. brevis* blooms and non-blooms.

338 3.3 Comparisons between VIIRS and MODIS

339 Monthly MODIS BOF maps generated by semi-objective delineation for May 2018 to January
340 2019 were previously presented by Hu et al. (2022). In Fig. 8, comparisons are made between
341 bloom footprints generated from these maps and those derived using the VIIRS DL model. *K.*

342 *brevis* blooms were detected by both methods from June 2018 to January 2019, but several
343 differences were observed in the footprint areas. The VIIRS DL model often estimated *K. brevis*
344 blooms extending further into shallow coastal waters than the MODIS BOF, resulting in larger
345 footprint areal estimates than those observed with MODIS, except for cases during October and
346 November 2018 when MODIS derived BOF footprints were larger than those from VIIRS in the
347 Panhandle and Big Bend regions.

348 Fig. 9 provides a detailed visualization of the differences in bloom footprint observed between
349 VIIRS and MODIS for imagery acquired approximately one hour apart on October 30, 2018. The
350 VIIRS bloom footprint was 44% lower than that from MODIS. While MODIS RBD was well
351 above the threshold used by Hu et al. (2022) for identifying bloom patches, VIIRS RGCI was
352 close to the bloom threshold used when training the model. Residual increased suspended
353 sediment following the recent passage of a winter frontal system is evident in the VIIRS ERGB
354 and may explain why VIIRS failed to detect this patch. VIIRS and MODIS $R_s(\lambda)$ spectra
355 extracted from within the bloom patch are similar (SAM = 9.07°).

356

357 **4. Discussion**

358 4.1. Strengths and limitations

359 *K. brevis* blooms on the WFS pose threats to coastal ecosystems and public health and can
360 negatively impact local economies. An accurate means for near-real-time monitoring is required
361 to help protect public health, and long-term monitoring is needed to better understand the
362 underlying causes of blooms and identify bloom trends. Field measurements of *K. brevis* cell
363 counts are highly precise; however, their limited spatial and temporal resolutions restrict their
364 overall efficacy in consistently monitoring blooms with accuracy. Remote sensing may serve as a
365 valuable tool to complement field-based monitoring programs. However, previous remote
366 sensing algorithms often rely on pixel-based approaches with pre-determined thresholds applied
367 to identify blooms for each pixel with an image (Amin, Zhou, et al., 2009; Cannizzaro et al.,
368 2008, 2009; Carvalho et al., 2010, 2011; Hu & Feng, 2016; Qi et al., 2015; Soto et al., 2015;
369 Stumpf et al., 2003; Tomlinson et al., 2009). These had limited success due to the problems
370 associated with sub-pixel variability (Hu & Feng, 2016; Fig. S1). While neural network models
371 (El-Habashi et al., 2016; El-Habashi & Ahmed, 2019) offer several advantages over threshold-

372 based empirical approaches, systemic testing showed unsatisfactory performance (Figs. S2 & S3).
373 Here, we developed a deep learning model for detecting *K. brevis* blooms on the WFS using
374 VIIRS imagery that outperforms these other methods.

375 By adopting a patch-wise approach that considers spatial information (He et al., 2016), the
376 VIIRS DL model can overcome limitations associated with subpixel variability that are inherent
377 in pixel-wise approaches (Hu & Feng, 2016; Fig. S1). Furthermore, unlike empirical algorithms
378 using a few bands, such as the RGCI (Qi et al., 2015) and RBD (Amin, Zhou, et al., 2009)
379 algorithms, the VIIRS DL model utilizes all VIIRS bands as data input and relies on $R_{rs}(\lambda)$
380 spectral shapes for bloom identification. This spectral data from all bands can provide more
381 comprehensive information compared to the limited utilization of just two or three bands in other
382 empirical algorithms, therefore improving the accuracy of the deep learning model (Krizhevsky
383 et al., 2017).

384 As an automated patch-wise approach, the VIIRS DL model reduces false positives and
385 improves *K. brevis* bloom patch delineation, thus reducing the need for secondary verification by
386 *in situ* data and/or human interpretation. In contrast, most traditional approaches first determine
387 chlorophyll-a concentrations or a bloom patch (El-Habashi et al., 2016; Hu et al., 2005; Soto et
388 al., 2015), and then use in-situ sampling and/or human interpretation to confirm whether the
389 bloom patch is due to *K. brevis* or other phytoplankton. However, this does not indicate that the
390 DL model does not require *in situ* data for verification, particularly because *K. brevis* is not the
391 only dinoflagellate and blooms of other dinoflagellates may have similar optical properties to be
392 detected by the same DL model. If this is the case, what the DL model detects are blooms of
393 dinoflagellates. Yet because *K. brevis* is the dominant dinoflagellate to cause red tides, one can
394 assume that most of the detected blooms are likely due to *K. brevis*.

395 Furthermore, VIIRS has a wider swath width (3040-km) compared with MODIS (2330-km),
396 which means VIIRS has a greater number of observations to compare. Fig. 10 compares the
397 monthly coverage and the number of valid observations for MODIS and VIIRS during the latter
398 part of the 2017–2019 HABs bloom event (July 2018–December 2018). Although MODIS and
399 VIIRS had similar *K. brevis* bloom trends, there were differences in the number of valid
400 observation numbers. VIIRS had an average of ten or more valid observations per pixel per
401 month in the WFS region, while MODIS had only around five. Under good observation

402 conditions (e.g., cloud-free and optimal solar/sensor zenith angles), as in October 2018, VIIRS
403 could achieve more than 25 valid observations in the offshore area of Florida, while MODIS had
404 only about 15.

405 Additionally, unlike MODIS that saturates its fluorescence band (678-nm) over moderate to high
406 sun glint (Hu et al., 2012), VIIRS does not saturate under such conditions. Fig. 11 displays a case
407 study where a 5-day period of VIIRS and MODIS observations showed the advantage of using
408 VIIRS data for near-real-time monitoring. Due to the land adjacency effect, the saturation of the
409 fluorescence band, and the narrower swatch (than VIIRS), MODIS had only three images
410 showing scattered *K. brevis* patches during the 5-day period, with none of them capturing the full
411 extent of the bloom. In contrast, VIIRS had at least one image per day in this 5-day period, with
412 each of them showing near-complete bloom extent, which has extensive value toward guiding
413 timely and targeted resource management and public health communications during *K. brevis*
414 blooms.

415 Despite the advantages of using a deep learning model with VIIRS observation to detect *K.*
416 *brevis* blooms, there are several limitations. One is the definition of “bloom”. Here, the dataset
417 used to train the VIIRS DL model was prepared based on the RGCI threshold corresponding to
418 150,000 cells L⁻¹ of *K. brevis* (Amin et al., 2015; Amin, Zhou, et al., 2009; Hu et al., 2022; Hu &
419 Feng, 2016; Qi et al., 2015; Soto et al., 2015) if the phytoplankton population is dominated by *K.*
420 *brevis*. Because of the significant bloom patchiness (Fig. S1) and because of mixed
421 phytoplankton assemblage, this definition does not indicate that within a delineated bloom patch,
422 *K. brevis* cell concentration is always > 150,000 cells L⁻¹. As shown in Fig. 3, cell concentration
423 within the bloom patch can be much lower than this threshold, and sometimes can be 0 – 1,000.
424 This certainly does not mean that a *K. brevis* bloom patch with maximum concentration of
425 ~10,000 cells L⁻¹ (or even ~5,000 cells L⁻¹) can be detected by the DL model. What it means is
426 that an image feature with maximum cell counts lower than this threshold is considered as “non-
427 bloom” in the training and validation datasets. However, this threshold is higher than the
428 threshold of 5,000 cells L⁻¹ when the commercial shellfish harvesting areas were previously
429 required to be closed. It is also higher than the cell count threshold above which fish mortality
430 and human respiration irritation often occur (Fleming et al., 2011; Flewelling et al., 2005;
431 Kirkpatrick et al., 2004). Correspondingly, the *K. brevis* blooms detected here are rather

432 conservative, i.e., without including bloom patches (or other image features) with maximum K .
433 *brevis* concentrations lower than this threshold, although these waters are also harmful to marine
434 animals. Also, bloom detection is currently a binary classification that only allows for a
435 distinction between the presence and absence of blooms without quantifying the intensity of
436 them, although such a quantification may be possible when taking account of the RGCI values of
437 the delineated bloom patches. Clearly, future efforts are required to detect blooms at lower K .
438 *brevis* concentrations and to quantify the concentrations beyond presence/absence detections.
439 This would improve the utility of the tool for tracking bloom transport, evolution, and
440 appearance/disappearance.

441 The second limitation relates to the VIIRS DL model's applicability even under cloud free
442 conditions. Similar to other satellite sensors, the DL model is not applicable to image pixels
443 immediately adjacent to land because these pixels may be mixed pixels (between water and land)
444 or contaminated by land adjacency effect. In this study, a 2-pixel buffer was applied immediately
445 adjacent to land, effectively masking those areas. Estuaries were also masked to eliminate the
446 influence of land adjacency effects. Furthermore, the strength of avoiding false-positive
447 detection in sediment-rich waters (because of the use of the full $R_{rs}(\lambda)$ spectral information
448 together with spatial context) can become a weakness in some special cases. For example, if
449 sediment resuspension, due to the passage of cold fronts or storms, occurs during a *K. brevis*
450 bloom, the high concentrations of sediment particles can obscure the *K. brevis* signals, leading to
451 no bloom detection. Fig. 12 shows such a case. The ERGB images in Fig. 12a and Fig. 12c,
452 overlaid with field-measured *K. brevis* cell counts, reveal that in the Epicenter region, there was
453 a persistent and expansive *K. brevis* bloom during mid-November 2018, and the bloom patches
454 were correctly extracted by the VIIRS DL model (Figs. 12d and 12f). During this period and on
455 16 November 2018, a cold front passed through the Epicenter region, causing high
456 concentrations of resuspended sediment particles (bright features in Fig. 12b), which led to no
457 bloom detection (Fig. 12e). However, such a false-negative detection can be easily remedied by
458 inspecting sequential images: if similar bloom patches are detected in t1 and t3 but not in t2
459 when sediment resuspension occurs, one can safely assume that similar bloom patches still exist
460 in t2. Likewise, for near-real-time applications, if bloom patches are found in t1, the lack of
461 detected bloom patches in t2 due to sediment resuspension does not indicate the end of the bloom.

462 Therefore, the lack of ability to detect *K. brevis* blooms in sediment-rich waters is much less of a
463 problem than the false-positive detections in sediment-rich waters by other methods.

464

465 4.2. Future perspective

466 VIIRS measurements used in this study are from the SNPP satellite, yet the same sensor is also
467 carried by the NOAA-20 (2017–present) and NOAA-21 (2022–present) satellites. Future
468 satellites carrying the same VIIRS are expected to be launched about every 5 years. A
469 combination of these sensors, each with a different equatorial crossing time, can provide multiple
470 observations of *K. brevis* blooms in a single day. This will not only improve the cloud-free data
471 coverage, but also may provide more than one observation per day to capture the diel vertical
472 migration of *K. brevis* cells (Arnone et al., 2017; Hu, Barnes, et al., 2016; Qi et al., 2017;
473 Schofield et al., 2006). Likewise, the multi-sensor observations can not only help to study the
474 timing, intensity, and short-term dynamics of *K. brevis* blooms, but also improve near-real-time
475 observations to alert the public on bloom situations (e.g., NOAA's HAB Forecast System, or the
476 Integrated Redtide Information System (IRIS), Hu, Murch, et al., 2016;
477 <https://optics.marine.usf.edu/projects/iris.html>). The same logic can be extended to other sensors
478 such as the Ocean and Land Colour Instrument (OLCI) on the Sentinel-3A (2016–present) and
479 Sentinel-3B (2018–present) satellites. While cross-sensor consistency is yet to be determined, the
480 integration of these different satellite sensors can provide more comprehensive and accurate
481 observations of *K. brevis* blooms than being offered by any single sensor, thus facilitating both
482 research on bloom dynamics and near-real-time monitoring.

483 The findings here demonstrate the success of combining VIIRS observations and computer
484 artificial intelligence to detect HABs, while near-real-time applications require implementation
485 of this approach to generate *K. brevis* bloom maps automatically, so these maps can be
486 incorporated in the current IRIS. We expect to implement this approach in IRIS to monitor *K.*
487 *brevis* blooms in near-real-time in the next step.

488 Finally, the demonstration is for *K. brevis* blooms on the WFS between 2017 and 2019. Can the
489 same DL model be applied to other years for the same WFS and to other regions in the Gulf of
490 Mexico (GoM) where *K. brevis* have also been reported (e.g., coastal waters off Texas)? Because
491 the DL model is strictly data driven, if the training used here for the period of 2017 – 2019 does

492 not encompass all observing scenarios (e.g., solar/viewing geometry, weak-moderate sun glint,
493 different aerosol types and thicknesses) and all optical complexity (e.g., optically shallow bottom,
494 non-algal water constituents) for other years or for other GoM regions, then the DL model needs
495 to be retrained to include those scenarios. Otherwise, there is no need for retraining. For these
496 reasons, because a 3-year observing period is believed to be long enough to cover all possible
497 observing scenarios, application of the DL model for the WFS but to other years is unlikely to
498 require retraining. In contrast, for other regions of the GoM, because the reasons leading to
499 optical complexity may be different, a retraining is very likely needed. For the same reason,
500 because HABs are a global phenomenon (Anderson et al., 2021) and because of the global
501 coverage of VIIRS and other satellite data, we expect that such a machine learning approach may
502 find more applications in other regions where HABs also occur, once field data are available for
503 training and validation. These HABs are not necessarily caused by *K. brevis*, but can be caused
504 by other dinoflagellates. In particular, future satellite missions will have the capacity to collect
505 hyperspectral data on both sun-synchronous and geostationary satellite platforms. These include
506 NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, NASA's Geostationary
507 Littoral Imaging and Monitoring Radiometer (GLIMR) mission, and NOAA's Geostationary
508 Extended Observations (GeoXO) mission. These missions will provide unprecedented ocean
509 color data to bolster the ability to detect HABs by accounting for spatial coherence, spectral
510 contrasts, and short-term changes.

511

512 **5. Conclusion**

513 To date, compared with MODIS or OLCI, the use of VIIRS in detecting HABs in the Gulf of
514 Mexico is limited, possibly due to its lack of a fluorescence band. This technical challenge is
515 circumvented here through the use of full spectral information from each VIIRS image pixel and
516 a deep learning model to account for the spatial context of bloom pixels. Such an approach
517 detects *K. brevis* blooms on the West Florida Shelf as spatially coherent features, thus avoiding
518 typical problems of *K. brevis* patchiness (i.e., heterogeneity) encountered by traditional pixel-
519 based methods. The approach led to detected *K. brevis* bloom patterns that are consistent with
520 those derived from MODIS and microscopy observations and, meanwhile, the wide swath makes
521 VIIRS particularly useful in both retrospective analyses of bloom dynamics and near-real-time

522 monitoring of bloom occurrence. We expect to implement such an approach for near-real-time
523 data production in the current IRIS.

524

525 **6. Acknowledgements**

526 This work was supported by the Florida Fish and Wildlife Conservation Commission (FWC,
527 Agreement No. 20035), the U.S. NASA GLIMR program (80LARC21DA002, Subcontract #
528 L0141 through University of New Hampshire), the NASA Water Resources program
529 (80NSSC19K1200), and by the JPSS/NOAA ocean color cal/val program
530 (ST13301CQ0050/1332KP22FNEED004). We thank NOAA and NASA for providing VIIRS
531 and MODIS data, respectively. We also thank the FWC-Fish and Wildlife Research Institute's
532 Harmful Algal Bloom team for providing *K. brevis* cellular abundance data. Two anonymous
533 reviewers provided extensive comments and suggestions to improve the presentation of this work,
534 whose efforts are appreciated. The scientific results and conclusions, as well as any views or
535 opinions expressed herein, are those of the author(s) and do not necessarily reflect those of
536 NOAA or the Department of Commerce.

537

538 **Reference**

539 Amin, R., Gilerson, A., Gross, B., Moshary, F., & Ahmed, S. (2009). MODIS and MERIS
540 detection of dinoflagellates blooms using the RBD technique. *Remote Sensing of the*
541 *Ocean, Sea Ice, and Large Water Regions* 2009, 7473, 33–43.
542 <https://doi.org/10.1111/12.830631>

543 Amin, R., Penta, B., & deRada, S. (2015). Occurrence and spatial extent of HABs on the West
544 Florida Shelf 2002–present. *IEEE Geoscience and Remote Sensing Letters*, 12(10), 2080–
545 2084. <https://doi.org/10.1109/LGRS.2015.2448453>

546 Amin, R., Zhou, J., Gilerson, A., Gross, B., Moshary, F., & Ahmed, S. (2009). Novel optical
547 techniques for detecting and classifying toxic dinoflagellate *Karenia brevis* blooms using
548 satellite imagery. *Optics Express*, 17(11), 9126. <https://doi.org/10.1364/OE.17.009126>

549 Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E., & Montresor, M.
550 (2012). The globally distributed genus *Alexandrium*: Multifaceted roles in marine
551 ecosystems and impacts on human health. *Harmful Algae*, 14, 10–35.
552 <https://doi.org/10.1016/j.hal.2011.10.012>

553 Anderson, D. M., Fensin, E., Gobler, C. J., Hoeglund, A. E., Hubbard, K. A., Kulis, D. M.,
554 Landsberg, J. H., Lefebvre, K. A., Provoost, P., & Richlen, M. L. (2021). Marine harmful
555 algal blooms (HABs) in the United States: History, current status and future trends.
556 *Harmful Algae*, 101975.

557 Arnone, R. A., Vandermeulen, R. A., Soto, I. M., Ladner, S. D., Ondrusek, M. E., & Yang, H.
558 (2017). Diurnal changes in ocean color sensed in satellite imagery. *Journal of Applied*
559 *Remote Sensing*, 11(3), 032406. <https://doi.org/10.1111/1.JRS.11.032406>

560 Barnes, B. B., Hu, C., Bailey, S. W., Pahlevan, N., & Franz, B. A. (2021). Cross-calibration of
561 MODIS and VIIRS long near infrared bands for ocean color science and applications.
562 *Remote Sensing of Environment*, 260, 112439. <https://doi.org/10.1016/j.rse.2021.112439>

563 Cannizzaro, J. P., Carder, K. L., Chen, F. R., Heil, C. A., & Vargo, G. A. (2008). A novel
564 technique for detection of the toxic dinoflagellate, *Karenia brevis*, in the Gulf of Mexico
565 from remotely sensed ocean color data. *Continental Shelf Research*, 28(1), 137–158.
566 <https://doi.org/10.1016/j.csr.2004.04.007>

567 Cannizzaro, J. P., Hu, C., English, D. C., Carder, K. L., Heil, C. A., & Müller-Karger, F. E.
568 (2009). Detection of *Karenia brevis* blooms on the west Florida shelf using in situ
569 backscattering and fluorescence data. *Harmful Algae*, 8(6), 898–909.
570 <https://doi.org/10.1016/j.hal.2009.05.001>

571 Carder, K. L., Chen, F. R., Lee, Z. P., Hawes, S. K., & Kamykowski, D. (1999). Semianalytic
572 Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll *a* and absorption
573 with bio-optical domains based on nitrate-depletion temperatures. *Journal of Geophysical*
574 *Research: Oceans*, 104(C3), 5403–5421. <https://doi.org/10.1029/1998JC900082>

575 Carvalho, G. A., Minnett, P. J., Banzon, V. F., Baringer, W., & Heil, C. A. (2011). Long-term
576 evaluation of three satellite ocean color algorithms for identifying harmful algal blooms
577 (*Karenia brevis*) along the west coast of Florida: A matchup assessment. *Remote Sensing*
578 *of Environment*, 115(1), 1–18. <https://doi.org/10.1016/j.rse.2010.07.007>

579 Carvalho, G. A., Minnett, P. J., Fleming, L. E., Banzon, V. F., & Baringer, W. (2010). Satellite
580 remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the

581 Florida Red Tide (*Karenia brevis*). *Harmful Algae*, 9(5), 440–448.

582 <https://doi.org/10.1016/j.hal.2010.02.002>

583 Cullen, J. J., Ciotti, Á. M., Davis, R. F., & Lewis, M. R. (1997). Optical detection and
584 assessment of algal blooms. *Limnology and Oceanography*, 42(5part2), 1223–1239.

585 https://doi.org/10.4319/lo.1997.42.5_part_2.1223

586 Diakogiannis, F. I., Waldner, F., Caccetta, P., & Wu, C. (2020). ResUNet-a: A deep learning
587 framework for semantic segmentation of remotely sensed data. *ISPRS Journal of
588 Photogrammetry and Remote Sensing*, 162, 94–114.

589 <https://doi.org/10.1016/j.isprsjprs.2020.01.013>

590 Dierssen, H. M., Kudela, R. M., Ryan, J. P., & Zimmerman, R. C. (2006). Red and black tides:
591 Quantitative analysis of water-leaving radiance and perceived color for phytoplankton,
592 colored dissolved organic matter, and suspended sediments. *Limnology and
593 Oceanography*, 51(6), 2646–2659. <https://doi.org/10.4319/lo.2006.51.6.2646>

594 El-Habashi, A., & Ahmed, S. (2019). Analyses of satellite ocean color retrievals show advantage
595 of neural network approaches and algorithms that avoid deep blue bands. *Journal of
596 Applied Remote Sensing*, 13(02), 1. <https://doi.org/10.1117/1.JRS.13.024509>

597 El-Habashi, A., Ioannou, I., Tomlinson, M., Stumpf, R., & Ahmed, S. (2016). Satellite retrievals
598 of *Karenia brevis* Harmful Algal Blooms in the west Florida Shelf using neural networks
599 and comparisons with other techniques. *Remote Sensing*, 8(5), 377.

600 <https://doi.org/10.3390/rs8050377>

601 Esaias, W. E., Abbott, M. R., Barton, I., Brown, O. B., Campbell, J. W., Carder, K. L., Clark, D.
602 K., Evans, R. H., Hoge, F. E., Gordon, H. R., Balch, W. M., Letelier, R., & Minnett, P. J.

603 (1998). An overview of MODIS capabilities for ocean science observations. *IEEE*
604 *Transactions on Geoscience and Remote Sensing*, 36(4), 1250–1265.
605 <https://doi.org/10.1109/36.701076>

606 Fleming, L. E., Kirkpatrick, B., Backer, L. C., Bean, J. A., Wanner, A., Reich, A., Zaias, J.,
607 Cheng, Y. S., Pierce, R., Naar, J., Abraham, W. M., & Baden, D. G. (2007). Aerosolized
608 Red-Tide Toxins (Brevetoxins) and Asthma. *Chest*, 131(1), 187–194.
609 <https://doi.org/10.1378/chest.06-1830>

610 Fleming, L. E., Kirkpatrick, B., Backer, L. C., Walsh, C. J., Nierenberg, K., Clark, J., Reich, A.,
611 Hollenbeck, J., Benson, J., Cheng, Y. S., Naar, J., Pierce, R., Bourdelais, A. J., Abraham,
612 W. M., Kirkpatrick, G., Zaias, J., Wanner, A., Mendes, E., Shalat, S., ... Baden, D. G.
613 (2011). Review of Florida red tide and human health effects. *Harmful Algae*, 10(2), 224–
614 233. <https://doi.org/10.1016/j.hal.2010.08.006>

615 Flewelling, L. J., Naar, J. P., Abbott, J. P., Baden, D. G., Barros, N. B., Bossart, G. D., Bottein,
616 M.-Y. D., Hammond, D. G., Haubold, E. M., Heil, C. A., Henry, M. S., Jacocks, H. M.,
617 Leighfield, T. A., Pierce, R. H., Pitchford, T. D., Rommel, S. A., Scott, P. S., Steidinger,
618 K. A., Truby, E. W., ... Landsberg, J. H. (2005). Red tides and marine mammal
619 mortalities. *Nature*, 435(7043), 755–756. <https://doi.org/10.1038/nature435755a>

620 Fu, F., Tatters, A., & Hutchins, D. (2012). Global change and the future of harmful algal blooms
621 in the ocean. *Marine Ecology Progress Series*, 470, 207–233.
622 <https://doi.org/10.3354/meps10047>

623 FWC HAB Monitoring Database. (2021). *Fish and wildlife conservation commission. HAB*
624 *monitoring database* [Data set]. <https://myfwc.com/research/redtide/monitoring/database/>
625 Accessed on July 30, 2021.

626 Glibert, P. M., & Burford, M. A. (2017). Globally Changing Nutrient Loads and Harmful Algal
627 Blooms: Recent Advances, New Paradigms, and Continuing Challenges. *Oceanography*,
628 30(1), 58–69.

629 Glibert, P. M., Icarus Allen, J., Artioli, Y., Beusen, A., Bouwman, L., Harle, J., Holmes, R., &
630 Holt, J. (2014). Vulnerability of coastal ecosystems to changes in harmful algal bloom
631 distribution in response to climate change: Projections based on model analysis. *Global*
632 *Change Biology*, 20(12), 3845–3858. <https://doi.org/10.1111/gcb.12662>

633 He, K., Zhang, X., Ren, S., & Sun, J. (2016). *Deep Residual Learning for Image Recognition*.
634 770–778.
635 https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_C
636 *VPR_2016_paper.html*

637 Heil, C. A., & Steidinger, K. A. (2009). Monitoring, management, and mitigation of *Karenia*
638 blooms in the eastern Gulf of Mexico. *Harmful Algae*, 8(4), 611–617.
639 <https://doi.org/10.1016/j.hal.2008.11.006>

640 Hu, C., Barnes, B. B., Qi, L., Lembke, C., & English, D. (2016). Vertical migration of *Karenia*
641 *brevis* in the northeastern Gulf of Mexico observed from glider measurements. *Harmful*
642 *Algae*, 58, 59–65. <https://doi.org/10.1016/j.hal.2016.07.005>

643 Hu, C., Barnes, B., Qi, L., & Corcoran, A. (2015). A Harmful Algal Bloom of *Karenia brevis* in
644 the Northeastern Gulf of Mexico as Revealed by MODIS and VIIRS: A Comparison.
645 *Sensors*, 15(2), 2873–2887. <https://doi.org/10.3390/s150202873>

646 Hu, C., & Feng, L. (2016). Modified MODIS fluorescence line height data product to improve
647 image interpretation for red tide monitoring in the eastern Gulf of Mexico. *Journal of
648 Applied Remote Sensing*, 11(1), 012003. <https://doi.org/10.1117/1.JRS.11.012003>

649 Hu, C., Feng, L., Lee, Z., Davis, C. O., Mannino, A., McClain, C. R., & Franz, B. A. (2012).
650 Dynamic range and sensitivity requirements of satellite ocean color sensors: Learning
651 from the past. *Applied Optics*, 51(25), 6045–6062. <https://doi.org/10.1364/AO.51.006045>

652 Hu, C., Muller-Karger, F., Taylor, C., Carder, K., Kelble, C., Johns, E., & Heil, C. (2005). Red
653 tide detection and tracing using MODIS fluorescence data: A regional example in SW
654 Florida coastal waters. *Remote Sensing of Environment*, 97(3), 311–321.
655 <https://doi.org/10.1016/j.rse.2005.05.013>

656 Hu, C., Murch, B., Corcoran, A. A., Zheng, L., Barnes, B. B., Weisberg, R. H., Atwood, K., &
657 Lenes, J. M. (2016). Developing a smart semantic web with linked data and models for
658 near-real-time monitoring of red tides in the eastern Gulf of Mexico. *IEEE Systems
659 Journal*, 10(3), 1282–1290. <https://doi.org/10.1109/JSYST.2015.2440782>

660 Hu, C., Yao, Y., Cannizzaro, J. P., Garrett, M., Harper, M., Markley, L., Villac, C., & Hubbard,
661 K. (2022). *Karenia brevis* bloom patterns on the west Florida shelf between 2003 and
662 2019: Integration of field and satellite observations. *Harmful Algae*, 117, 102289.
663 <https://doi.org/10.1016/j.hal.2022.102289>

664 Kim, S. M., Shin, J., Baek, S., & Ryu, J.-H. (2019). U-Net Convolutional Neural Network Model
665 for Deep Red Tide Learning Using GOCI. *Journal of Coastal Research*, 90(sp1), 302.
666 <https://doi.org/10.2112/SI90-038.1>

667 Kirkpatrick, B., Fleming, L. E., Squicciarini, D., Backer, L. C., Clark, R., Abraham, W., Benson,
668 J., Cheng, Y. S., Johnson, D., Pierce, R., Zaia, J., Bossart, G. D., & Baden, D. G. (2004).
669 Literature review of Florida red tide: Implications for human health effects. *Harmful
670 Algae*, 3(2), 99–115. <https://doi.org/10.1016/j.hal.2003.08.005>

671 Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep
672 convolutional neural networks. *Communications of the ACM*, 60(6), 84–90.
673 <https://doi.org/10.1145/3065386>

674 Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J.,
675 & Goetz, A. F. H. (1993). The spectral image processing system (SIPS)—Interactive
676 visualization and analysis of imaging spectrometer data. *Remote Sensing of Environment*,
677 44(2–3), 145–163.

678 Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
679 document recognition. *Proceedings of the IEEE*, 86(11), 2278–2324.
680 <https://doi.org/10.1109/5.726791>

681 Luis, K., Köhler, P., Frankenberg, C., & Gierach, M. (2023). First light demonstration of red
682 solar induced fluorescence for Harmful Algal Bloom monitoring. *Geophysical Research
683 Letters*, 50(13), e2022GL101715. <https://doi.org/10.1029/2022GL101715>

684 Morel, A. (1988). Optical modeling of the upper ocean in relation to its biogenous matter content
685 (case I waters). *Journal of Geophysical Research: Oceans*, 93(C9), 10749–10768.
686 <https://doi.org/10.1029/JC093iC09p10749>

687 Qi, L., Hu, C., Barnes, B. B., & Lee, Z. (2017). VIIRS captures phytoplankton vertical migration
688 in the NE Gulf of Mexico. *Harmful Algae*, 66, 40–46.
689 <https://doi.org/10.1016/j.hal.2017.04.012>

690 Qi, L., Hu, C., Cannizzaro, J., Corcoran, A. A., English, D., & Le, C. (2015). VIIRS observations
691 of a *Karenia brevis* bloom in the northeastern Gulf of Mexico in the absence of a
692 fluorescence Band. *IEEE Geoscience and Remote Sensing Letters*, 12(11), 2213–2217.
693 <https://doi.org/10.1109/LGRS.2015.2457773>

694 Qi, L., Yao, Y., English, D. E., Ma, R., Luft, J., & Hu, C. (2021). Remote sensing of brine
695 shrimp cysts in salt lakes. *Remote Sensing of Environment*, 266, 112695.
696 <https://doi.org/10.1016/j.rse.2021.112695>

697 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical
698 Image Segmentation. In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.),
699 *Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015* (pp.
700 234–241). Springer International Publishing. https://doi.org/10.1007/978-3-319-24574-4_28

702 Schofield, O., Grzymski, J., Bissett, W. P., Kirkpatrick, G. J., Millie, D. F., Moline, M., &
703 Roesler, C. S. (1999). Optical Monitoring and Forecasting Systems for Harmful Algal
704 Blooms: Possibility or Pipe Dream? *Journal of Phycology*, 35(6), 1477–1496.
705 <https://doi.org/10.1046/j.1529-8817.1999.3561477.x>

706 Schofield, O., Kerfoot, J., Mahoney, K., Moline, M., Oliver, M., Lohrenz, S., & Kirkpatrick, G.
707 (2006). Vertical migration of the toxic dinoflagellate *Karenia brevis* and the impact on
708 ocean optical properties. *Journal of Geophysical Research: Oceans*, 111(C6).
709 <https://doi.org/10.1029/2005JC003115>

710 Shin, J., Khim, B.-K., Jang, L.-H., Lim, J., & Jo, Y.-H. (2022). Convolutional neural network
711 model for discrimination of harmful algal bloom (HAB) from non-HABs using Sentinel-
712 3 OLCI imagery. *ISPRS Journal of Photogrammetry and Remote Sensing*, 191, 250–262.
713 <https://doi.org/10.1016/j.isprsjprs.2022.07.012>

714 Soto, I. M., Cannizzaro, J., Muller-Karger, F. E., Hu, C., Wolny, J., & Goldgof, D. (2015).
715 Evaluation and optimization of remote sensing techniques for detection of *Karenia brevis*
716 blooms on the West Florida Shelf. *Remote Sensing of Environment*, 170, 239–254.
717 <https://doi.org/10.1016/j.rse.2015.09.026>

718 Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy.
719 *Remote Sensing of Environment*, 62(1), 77–89. [https://doi.org/10.1016/S0034-4257\(97\)00083-7](https://doi.org/10.1016/S0034-4257(97)00083-7)

721 Steidinger, K. A. (2009). Historical perspective on *Karenia brevis* red tide research in the Gulf of
722 Mexico. *Harmful Algae*, 8(4), 549–561. <https://doi.org/10.1016/j.hal.2008.11.009>

723 Stumpf, R. P. (2001). Applications of Satellite Ocean Color Sensors for Monitoring and
724 Predicting Harmful Algal Blooms. *Human and Ecological Risk Assessment: An
725 International Journal*, 7(5), 1363–1368. <https://doi.org/10.1080/20018091095050>

726 Stumpf, R. P., Culver, M. E., Tester, P. A., Tomlinson, M., Kirkpatrick, G. J., Pederson, B. A.,
727 Truby, E., Ransibrahmanakul, V., & Soracco, M. (2003). Monitoring *Karenia brevis*

728 blooms in the Gulf of Mexico using satellite ocean color imagery and other data. *Harmful*
729 *Algae*, 2(2), 147–160. [https://doi.org/10.1016/S1568-9883\(02\)00083-5](https://doi.org/10.1016/S1568-9883(02)00083-5)

730 Tester, P. A., Shea, D., Kibler, S. R., Varnam, S. M., Black, M. D., & Wayne Litaker, R. (2008).
731 Relationships among water column toxins, cell abundance and chlorophyll concentrations
732 during *Karenia brevis* blooms. *Continental Shelf Research*, 28(1), 59–72.
733 <https://doi.org/10.1016/j.csr.2007.04.007>

734 Tester, P. A., & Steidinger, K. A. (1997). *Gymnodinium breve* red tide blooms: Initiation,
735 transport, and consequences of surface circulation. *Limnology and Oceanography*,
736 42(5part2), 1039–1051. https://doi.org/10.4319/lo.1997.42.5_part_2.1039

737 Tester, P. A., & Stumpf, R. P. (1998). Phytoplankton blooms and remote sensing: What is the
738 potential for early warning. *Journal of Shellfish Research*, 17, 1469–1472.

739 Thuillier, G., Hersé, M., Labs, D., Foujols, T., Peetermans, W., Gillotay, D., Simon, P. C., &
740 Mandel, H. (2003). The solar spectral irradiance from 200 to 2400 nm as measured by the
741 SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions. *Solar Physics*,
742 214, 1–22.

743 Tomlinson, M. C., Stumpf, R. P., Ransibrahmanakul, V., Truby, E. W., Kirkpatrick, G. J.,
744 Pederson, B. A., Vargo, G. A., & Heil, C. A. (2004). Evaluation of the use of SeaWiFS
745 imagery for detecting *Karenia brevis* harmful algal blooms in the eastern Gulf of Mexico.
746 *Remote Sensing of Environment*, 91(3–4), 293–303.
747 <https://doi.org/10.1016/j.rse.2004.02.014>

748 Tomlinson, M. C., Wynne, T. T., & Stumpf, R. P. (2009). An evaluation of remote sensing
749 techniques for enhanced detection of the toxic dinoflagellate, *Karenia brevis*. *Remote*
750 *Sensing of Environment*, 113(3), 598–609. <https://doi.org/10.1016/j.rse.2008.11.003>

751 Tyler, M. A., & Stumpf, R. P. (1989). Feasibility of using satellites for detection of kinetics of
752 small phytoplankton blooms in estuaries: Tidal and migrational effects. *Remote Sensing*
753 *of Environment*, 27(3), 233–249. [https://doi.org/10.1016/0034-4257\(89\)90085-0](https://doi.org/10.1016/0034-4257(89)90085-0)

754 Wang, M., & Hu, C. (2021). Satellite remote sensing of pelagic Sargassum macroalgae: The
755 power of high resolution and deep learning. *Remote Sensing of Environment*, 264,
756 112631. <https://doi.org/10.1016/j.rse.2021.112631>

757 Wang, M., Jiang, L., Mikelsons, K., & Liu, X. (2021). Satellite-derived global chlorophyll-a
758 anomaly products. *International Journal of Applied Earth Observation and*
759 *Geoinformation*, 97, 102288. <https://doi.org/10.1016/j.jag.2020.102288>

760 Wang, M., Liu, X., Jiang, L., & Son, S. (2017). *Visible Infrared Imaging Radiometer Suite*
761 *Ocean Color Products. VIIRS Ocean Color Algorithm Theoretical Basis Document*.
762 NOAA/NESDIS/STAR: Maryland, USA, 2017.

763 Weisberg, R. H., Liu, Y., Lembke, C., Hu, C., Hubbard, K., & Garrett, M. (2019). The coastal
764 ocean circulation influence on the 2018 West Florida Shelf *K. brevis* red tide bloom.
765 *Journal of Geophysical Research: Oceans*, 124(4), 2501–2512.
766 <https://doi.org/10.1029/2018JC014887>

767 Xiao, X., Lian, S., Luo, Z., & Li, S. (2018). Weighted Res-UNet for High-Quality Retina Vessel
768 Segmentation. *2018 9th International Conference on Information Technology in*
769 *Medicine and Education (ITME)*, 327–331. <https://doi.org/10.1109/ITME.2018.00080>

770 Yao, Y., Hu, C., & Barnes, B. B. (2023). Mysterious increases of whiting events in the Bahama

771 Banks. *Remote Sensing of Environment*, 285, 113389.

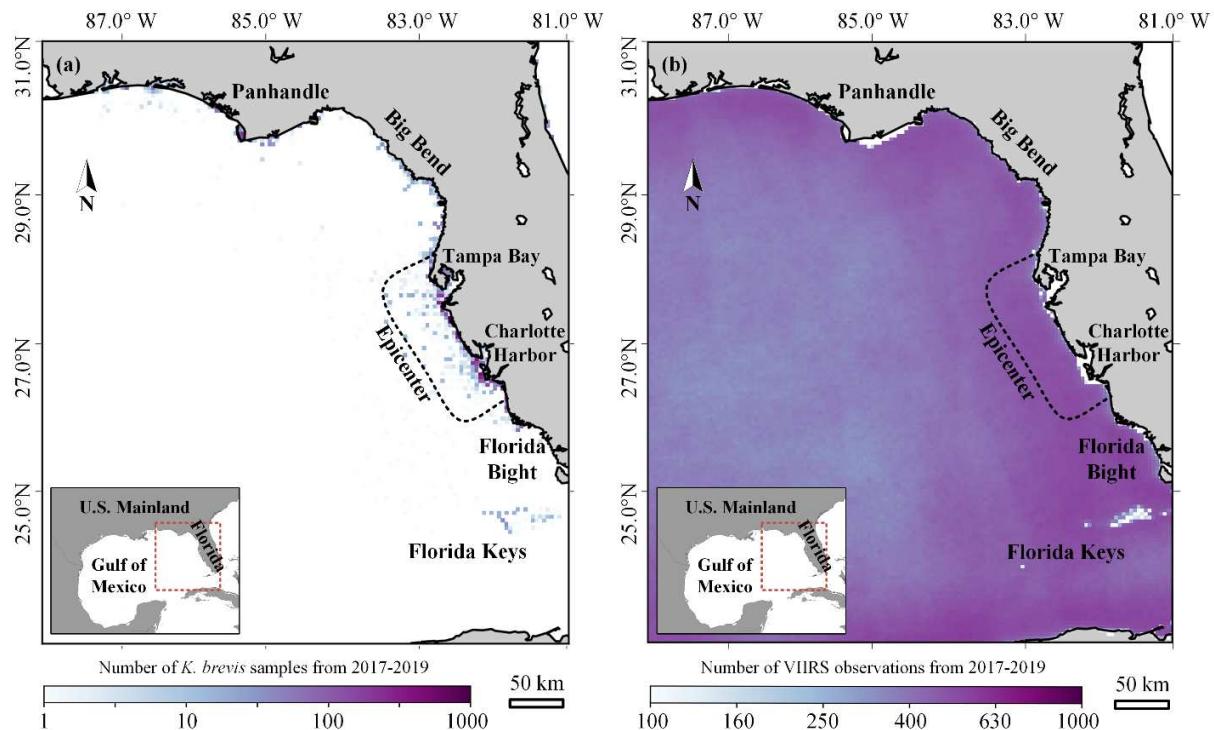
772 <https://doi.org/10.1016/j.rse.2022.113389>

773

774

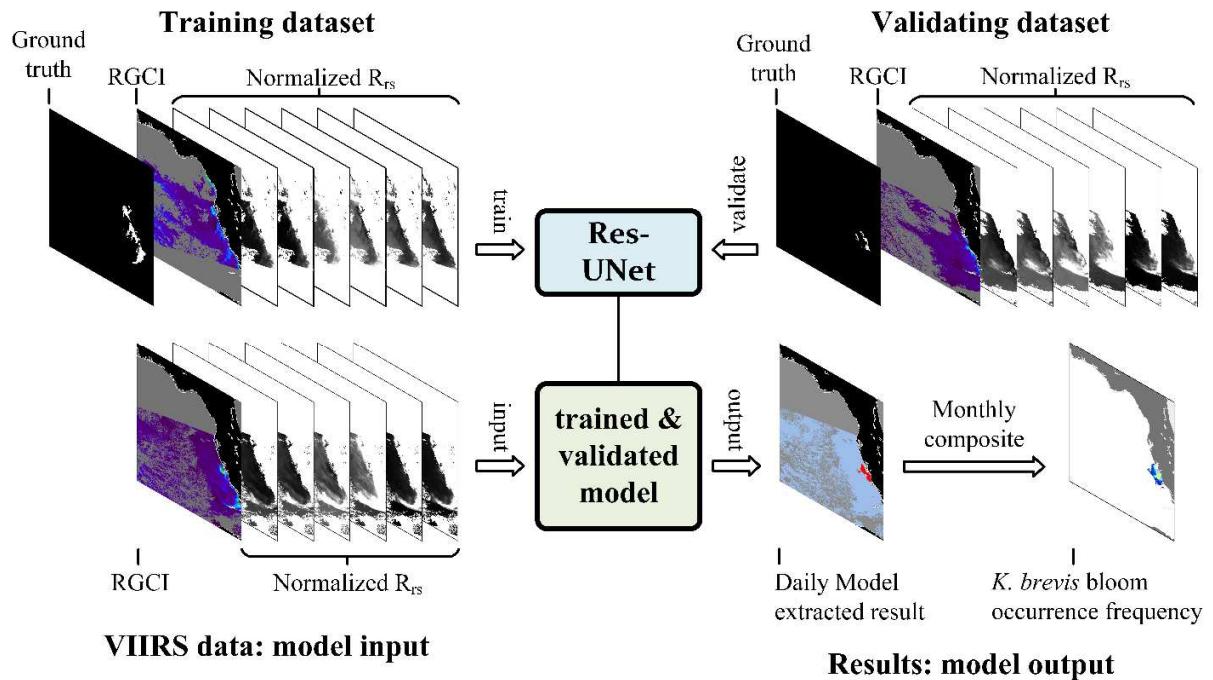
775

776 **Figures**



777
778 Fig. 1. The West Florida Shelf is located in the eastern Gulf of Mexico (inset map), spanning the
779 region west of the Florida peninsula, encompassing the Panhandle, Big Bend, Central West
780 Florida Shelf, including Tampa Bay and Charlotte Harbor, and the Florida Keys. The number of
781 (a) discrete *in situ* *K. brevis* cellular abundance observations with scale from 1–1000 and (b)
782 valid VIIRS observations in each 5-km grid in 2017–2019 with scale from 100–1000 are shown.
783 The number of valid MODIS observations has been shown in Hu et al. (2022). Following
784 [Weisberg et al. \(2019\)](#), the region from the north of Tampa Bay to the south of Charlotte Harbor
785 is outlined as the *K. brevis* bloom “epicenter”, i.e., where most *K. brevis* blooms were found and
786 most water samples were collected.

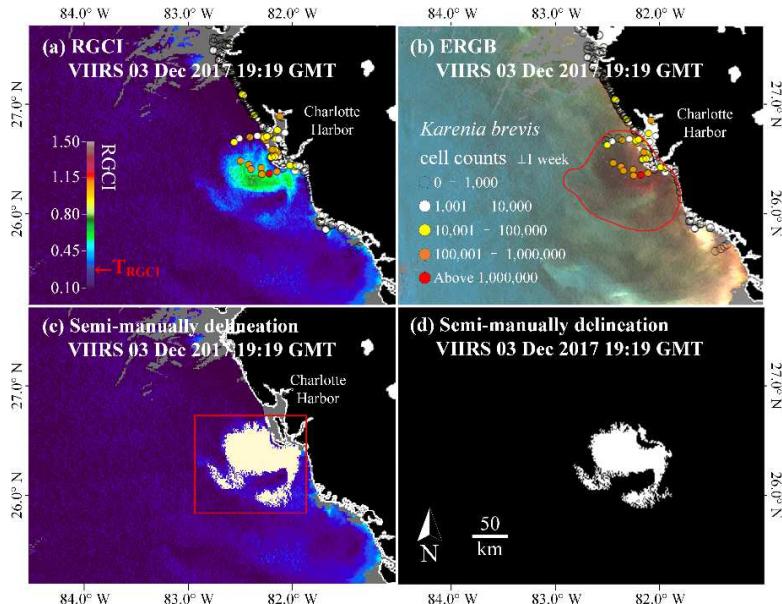
787
788



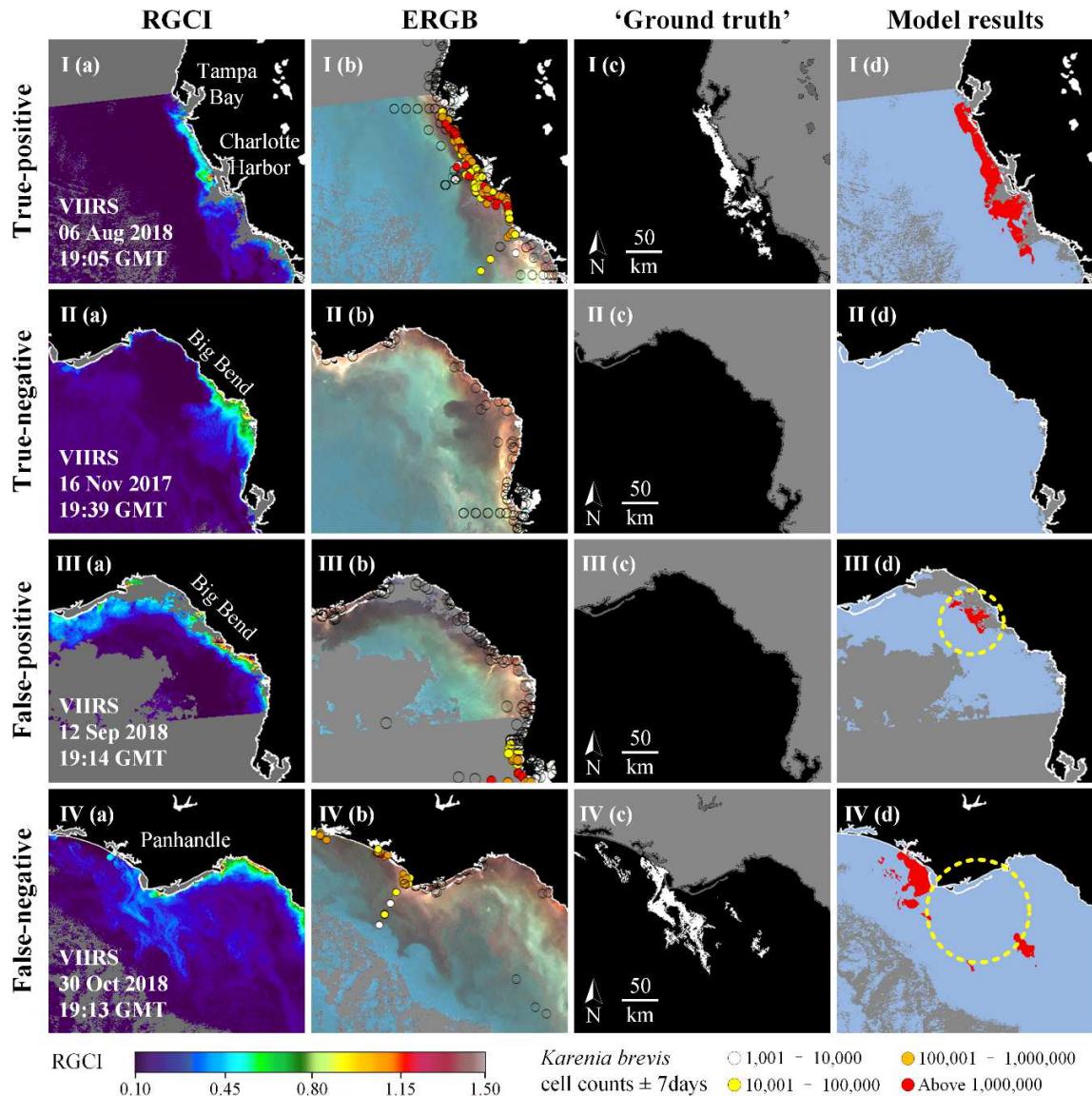
789

790 Fig. 2. Conceptual illustration of the model training, validation, and application activities
 791 conducted in this study for classifying *K. brevis* blooms in VIIRS imagery using a deep learning
 792 approach. In the top row, VIIRS “ground truth”, $R_{rs}(\lambda)$, and RGCI images are used for training
 793 and validating the deep learning model. In the bottom row, the validated model was applied to
 794 VIIRS $R_{rs}(\lambda)$ and RGCI data to delineate *K. brevis* bloom patches. The pixels were classified as
 795 ‘*K. brevis* bloom’ (red), ‘non-*K. brevis* bloom’ (blue), and ‘no valid observation’ (grey). Monthly
 796 bloom occurrence frequency maps were generated from the individual (near-daily) model
 797 extracted results.

798

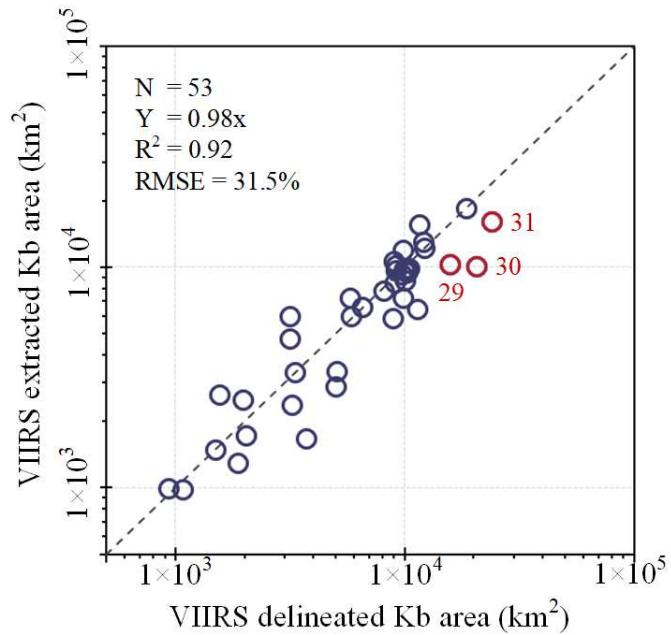


801 Fig. 3. “Ground truth” image preparation steps for the training the DL model. In (a), VIIIRS
 802 RGCI is overlaid with *K. brevis* field sample data (± 1 week) (shown in colored circles). The
 803 spatially coherent high-RGCI patch in (a) and reddish-dark patch in the VIIIRS ERGB composite
 804 image (b) that is collocated with high *K. brevis* cell counts ($> 100,000$ cells L^{-1}) suggest that this
 805 is a *K. brevis* bloom patch. A crude outline is manually drawn over the patch. In (c), pixels
 806 within the manual outline with RGCI values greater than the RGCI threshold (T_{RGCI} is marked
 807 on the color bar) are considered as bloom pixels. In (d), pixels in the delineated patch (*K. brevis*
 808 bloom) are marked as 1 (white), and all other pixels (non-*K. brevis* bloom) are marked as 0
 809 (black).



810

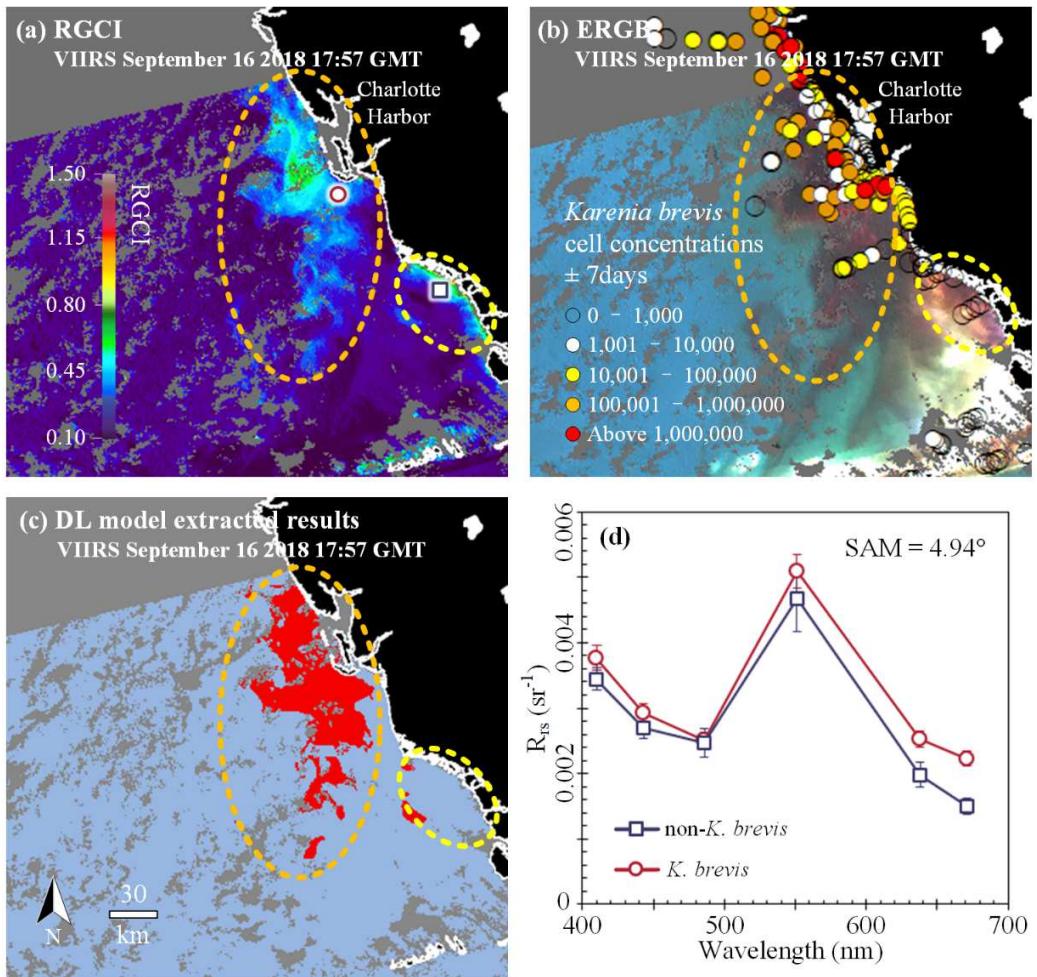
811 Fig. 4. Four sets of example imagery from the validation dataset. The first row (I) shows a case
 812 with true-positive results. The second row (II) shows a case with true-negative results. The third
 813 row (III) shows the false-positive results, and the fourth row (IV) shows the false-negative
 814 results (poor results are circled in dashed lines) as compared with the “ground truth” delineation
 815 in (c). Imagery shown include: (a) VIIRS RGCI; (b) VIIRS ERGB-composite images with field
 816 *K. brevis* cell count data overlaid, cell counts less than 1000 show as transparent circles; (c)
 817 VIIRS semi-objectively delineated results, and (d) VIIRS DL model extracted results with red,
 818 blue, and grey representing *K. brevis* blooms, non-*K. brevis* bloom, and no valid observation or
 819 no satellite data, respectively.



820

821 Fig. 5. Scatter plot of *K. brevis* bloom area (km^2) determined from the VIIRS delineated “ground
 822 truth” dataset (based on visual inspection of co-located VIIRS imagery and in-situ data) and
 823 trained VIIRS DL model. Red circles represent the image pairs that the bloom detected in
 824 Panhandle region on 29, 30 and 31 October 2018. Cases where neither method identified a *K.*
 825 *brevis* bloom are not shown.

826

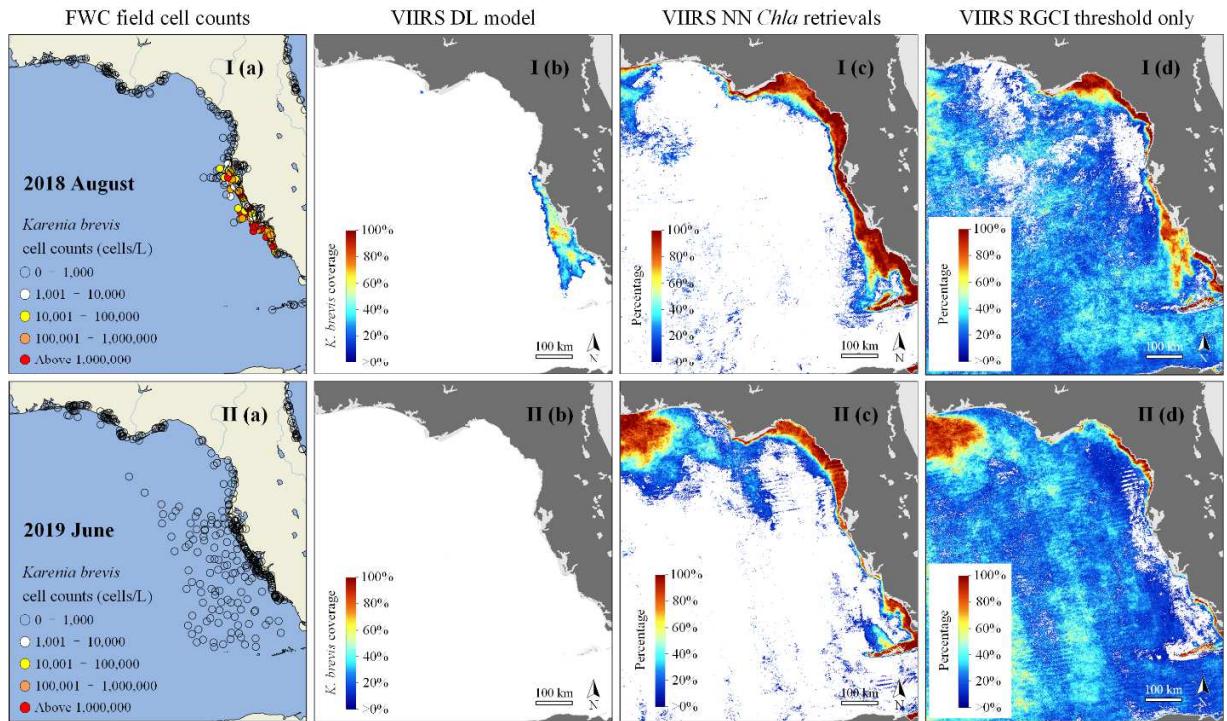


827

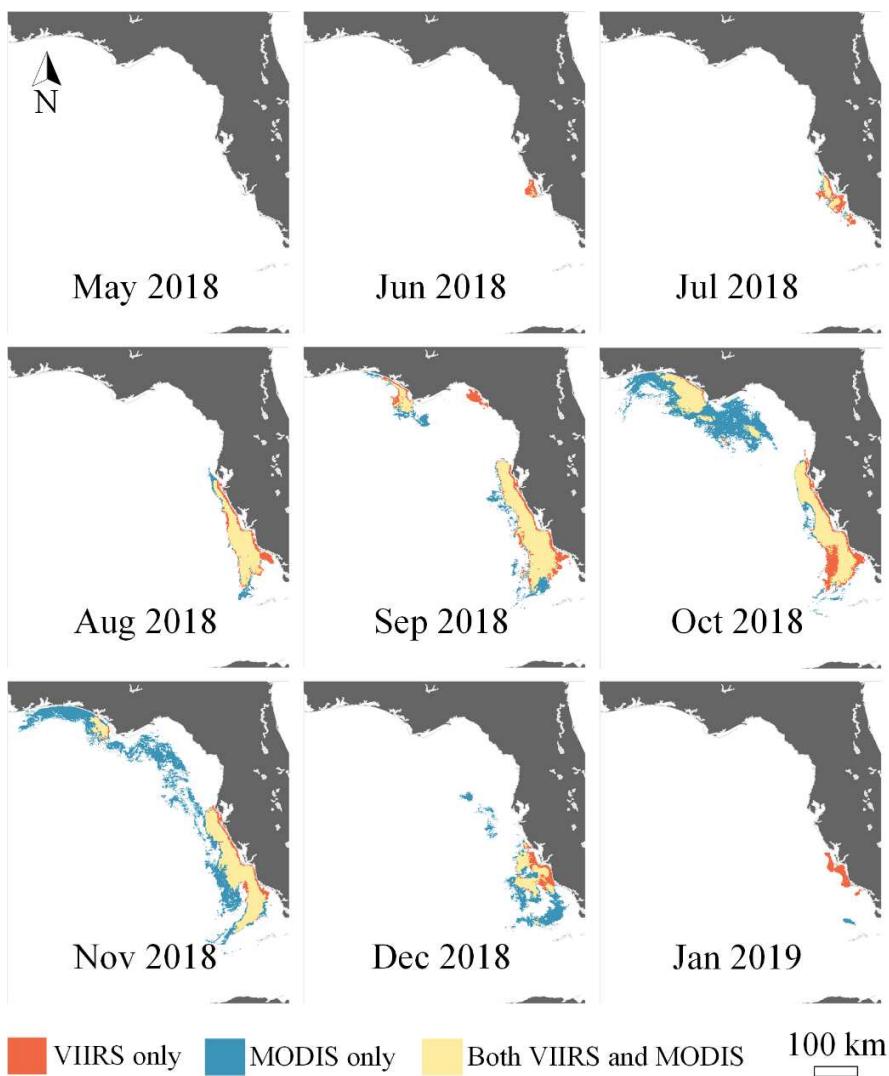
828 Fig. 6. The capacity of the DL model in separating *K. brevis* and non-*K. brevis* bloom patches in
 829 optically complex nearshore waters is demonstrated here using a VIIRS scene of the WFS
 830 collected on 16 September 2018 for cases of (a) VIIRS RGCI, (b) VIIRS ERGB composite
 831 image overlaid with field *K. brevis* cellular abundance data, where high RGCI values are shown
 832 to correspond to dark waters, and (c) *K. brevis* bloom patch determined from the VIIRS DL
 833 model, showing that the DL model correctly classified a high-RGCI patch (yellow dashed circle)
 834 south of the *K. bloom* patch (orange dashed circle) as non-*K. brevis* bloom. Panel (d) shows that
 835 the spectral shapes from the two locations (one in the *K. brevis* bloom and the other in the non-*K.*
 836 *brevis* bloom, see locations marked in (a)) are similar, yet the DL model could differentiate them.

837

838



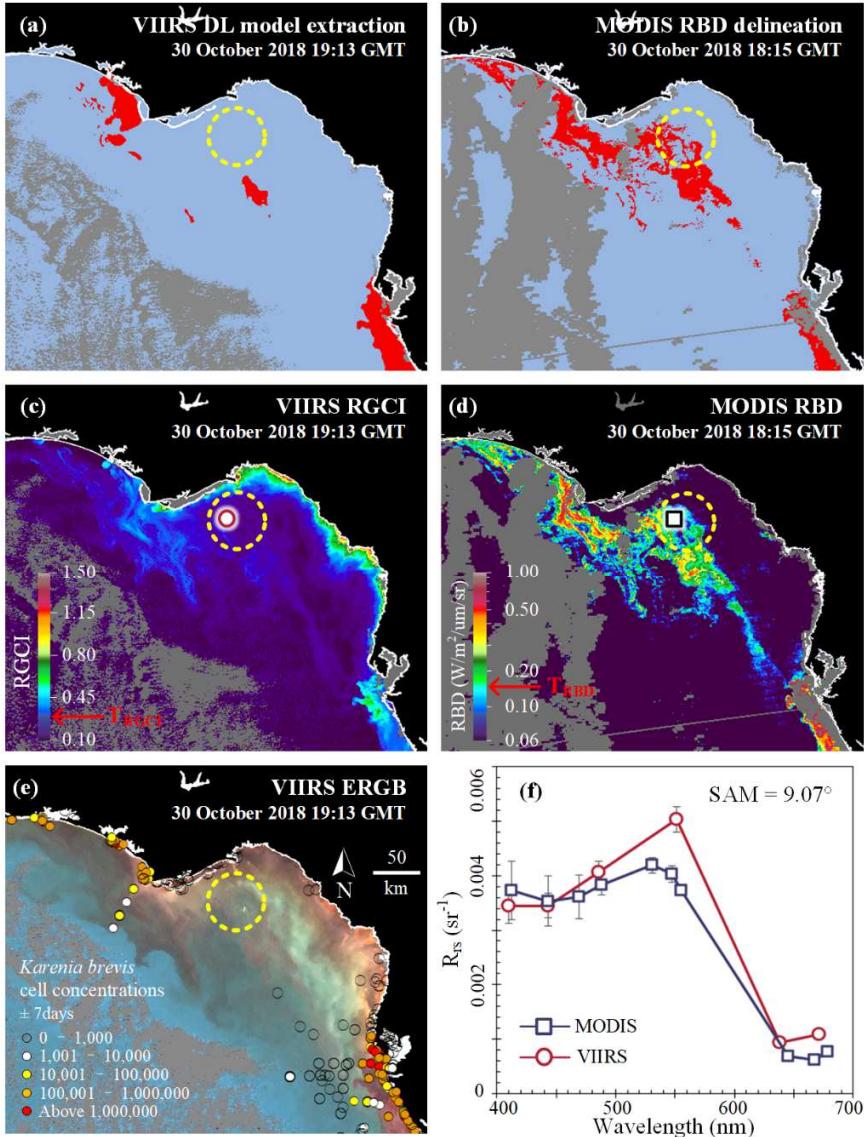
840 Fig. 7. Comparisons between (a) field *K. brevis* cellular abundance data (cells L^{-1}) from FWC
 841 and monthly VIIRS bloom occurrence frequency maps generated in I(a) August 2018 and II(a)
 842 June 2019 using the approaches of I(b) & II(b) DL model, I(c) & II(c) neural network model (El-
 843 Habashi et al., 2016), and I(d) & II(d) RGCI during *K. brevis* bloom (I) and non-*K. brevis* bloom
 844 (II) events. Only the DL model can correctly identify the bloom and non-bloom events.



845

846 Fig. 8. Monthly *K. brevis* bloom footprint maps derived from MODIS by semi-objective
 847 delineation (Hu et al., 2022) and VIIRS using the DL model for the bloom event between mid-
 848 2018 and early-2019.

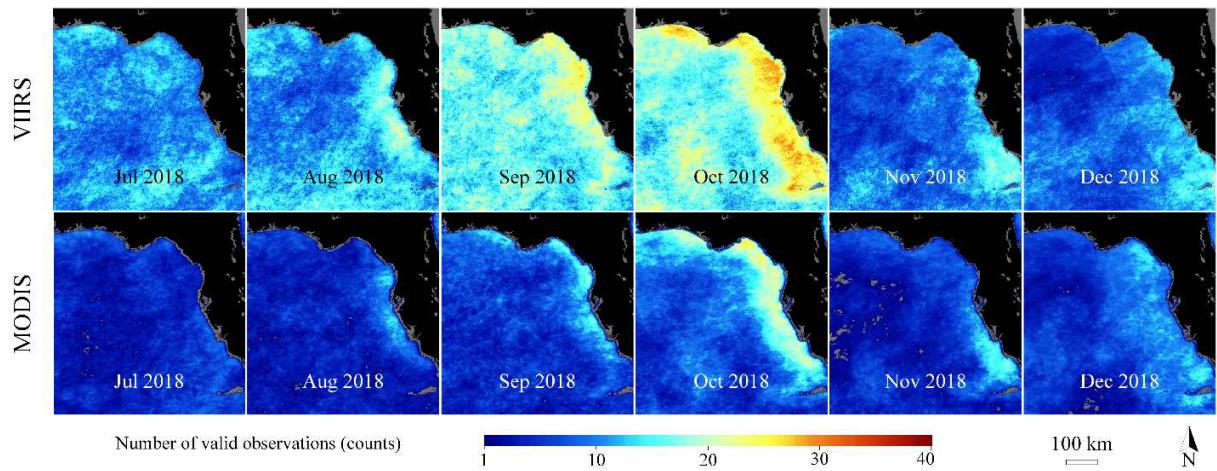
849



850

851 Fig. 9. The detection difference between VIIRS and MODIS in the Panhandle region on 30
 852 October 2018 for (a) VIIRS DL model extraction results, (b) MODIS RBD delineation results
 853 based on the RBD threshold in Hu et al. (2022), (c)VIIRS RGCI image, (d) MODIS RBD image,
 854 (e) VIIRS ERGB images overlaid with *K. brevis* cell counts, and (f) VIIRS and MODIS $R_{rs}(\lambda)$
 855 spectra from dash circled locations as noted in (d) and (e). Note that red, blue, and grey in panels
 856 (a) and (b) represent *K. brevis* blooms, non-*K. brevis* bloom, and no valid observation or no
 857 satellite data, respectively.

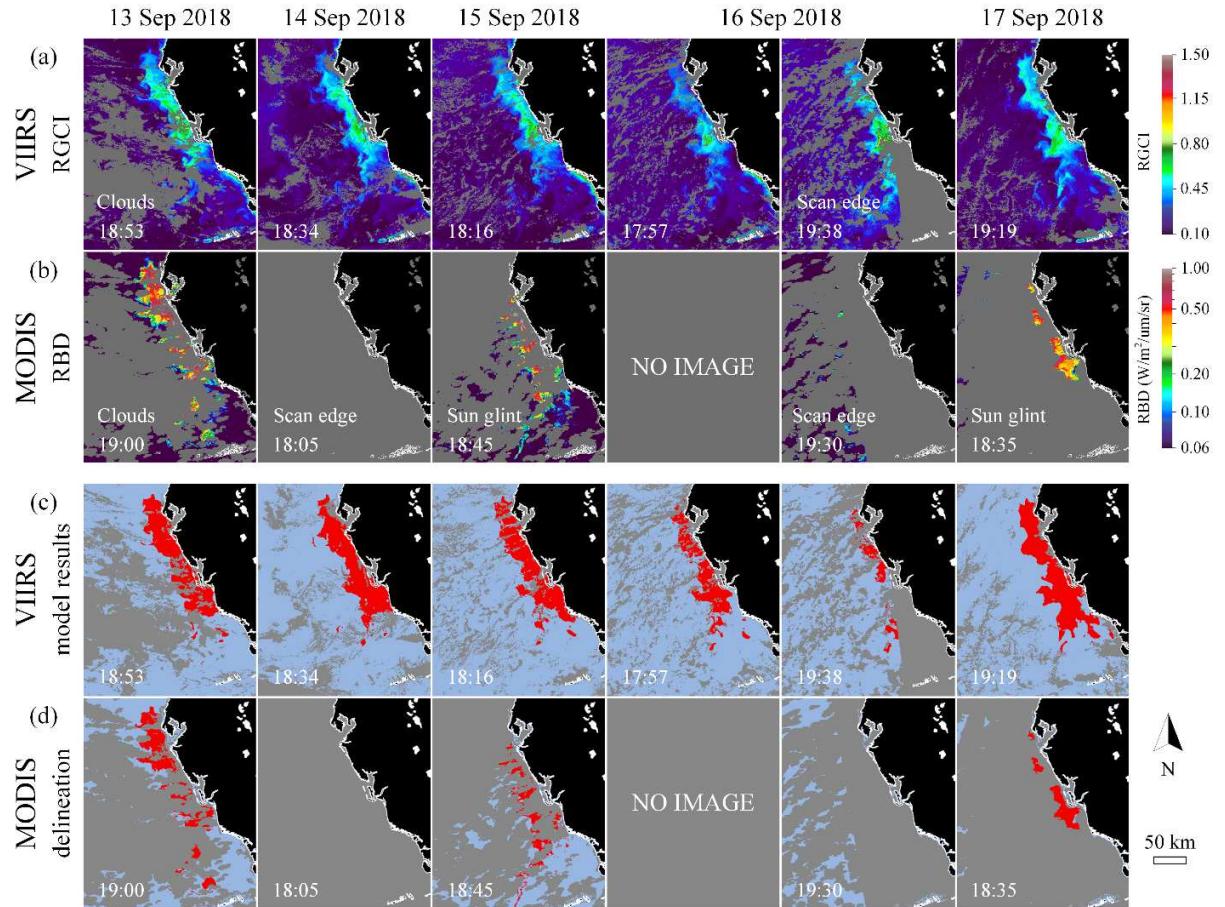
858



859

860 Fig. 10. Monthly images of VIIRS (top row) and MODIS (bottom row) showing the spatial
 861 distributions of number of valid observations at each 1-km location in the eastern Gulf of Mexico
 862 for each month from July to December 2018.

863



864

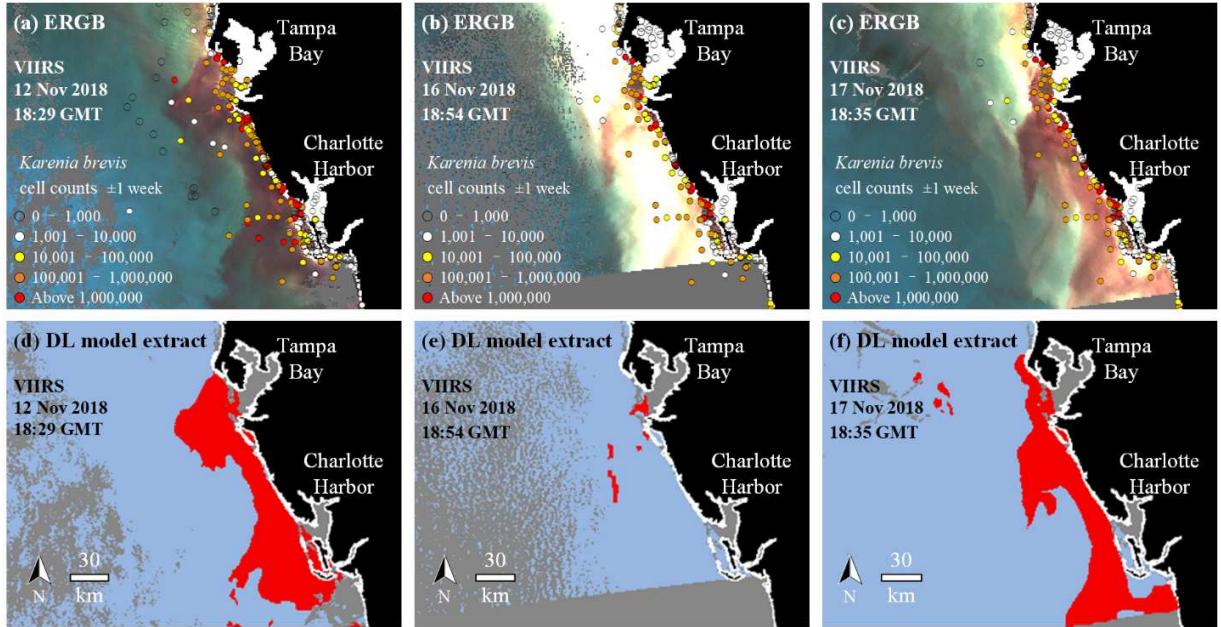
865 Fig. 11. An example showing the difference between VIIRS and MODIS valid observations and
 866 *K. brevis* bloom detections. The rows in (a) and (b) show the VIIRS RGCI and MODIS RBD
 867 images, respectively, over the central WFS for five consecutive days. The grey color represents
 868 no valid observation or no satellite data. The rows in (c) and (d) show their corresponding *K.*
 869 *brevis* bloom detection results determined with VIIRS using the DL model and MODIS by semi-
 870 objective delineation (Hu et al., 2022). Red, blue, and grey represent *K. brevis* blooms, non-*K.*
 871 *brevis* bloom, no valid observation or no satellite data, respectively.

872

873

874

875



876

877 Fig. 12. An example showing how the strength of the VIIRS DL model (i.e., avoid false-positive
 878 bloom detection from sediment-rich waters) can turn into a weakness, and how such a weakness
 879 can be overcome by inspecting sequential images. Panels (a-c) are the VIIRS ERGB images in
 880 the Epicenter region overlaid with *K. brevis* cell counts, collected on 12, 16, and 17 November
 881 2018, respectively. Panels (d-f) are the corresponding VIIRS DL model extraction results, with
 882 red, blue, and grey representing *K. brevis* bloom patches, non-*K. brevis* bloom waters, and no
 883 valid observation or no satellite data, respectively. The field data and ERGB images suggest a
 884 continuous *K. brevis* bloom in the Epicenter region in mid-November 2018. During the bloom
 885 period, the sediment resuspension event on November 16 (b) led to no bloom detection (e), but
 886 one can still safely assume the existence of similar bloom patches as in (d) and (f).

887

Graphical Abstract

Harmful algal blooms (HABs) of the toxic dinoflagellate *Karenia brevis*, often called red tides, occur annually on the West Florida Shelf (WFS). Detection of these HABs using satellite observations often suffers from two problems: lack of accurate algorithms to identify phytoplankton blooms in optically complex waters and patchiness (i.e., heterogeneity) of *K. brevis* cellular abundance in bloom waters. Here, to take advantage of the wide swath (3040 km) and non-saturation of the Visible Infrared Imaging Radiometer Suite (VIIRS) while realizing its disadvantage due to the lack of a fluorescence band, we develop a deep-learning (DL) convolutional neural network model to overcome the above technical challenges, especially on the spatial coherence of bloom patches. After proper training, the overall performance (i.e., F1 score) of the DL model is 89%. The results for the period of 2017 – 2019 not only demonstrate the capacity of VIIRS in HABs monitoring, but also show the value of the DL model in extracting *K. brevis* bloom patches for both near real-time applications and retrospective analysis.

