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Abstract

Harmful algal blooms (HABs) of the toxic dinoflagellate Karenia brevis occur annually on the
West Florida Shelf (WFES). Detection of these blooms using satellite observations often suffers
from two problems: lack of accurate algorithms to identify phytoplankton blooms in optically
complex waters and patchiness (i.e., heterogeneity) of K. brevis during blooms. Here, using data
collected by the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National
Polar-orbiting Partnership (SNPP) between 2017 and 2019, we develop a practical approach to
overcome these difficulties despite the lack of a chlorophyll-a fluorescence band on VIIRS. The
approach is based on artificial intelligence (specifically, a deep-learning convolutional neural
network model), which uses spatial coherence of bloom patches to account for the patchiness of
K. brevis concentrations. After proper training, the overall performance (i.e., F1 score) of the
deep learning model is 89%. Extracted K. brevis patches were consistent with those derived from
the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite that has a
fluorescence band. Furthermore, the wider swath of VIIRS over MODIS (3040-km versus 2330-
km) led to more valid observations of bloom extent for improved near-real-time applications.
The results not only demonstrate the capacity of VIIRS in HABs monitoring, but also show the
value of the DL model in extracting K. brevis bloom patches for both near real-time applications

and retrospective analysis.
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1. Introduction

Harmful algal blooms (HABs) are a global phenomenon that can negatively impact coastal
ecosystems, economies, and human and wildlife health. Increases in HAB occurrences have been
linked to eutrophication and climate change (Anderson et al., 2021; Fu et al., 2012; Glibert et al.,
2014; Glibert & Burford, 2017). The primary HAB-forming species on the West Florida Shelf
(WES) is Karenia brevis, a toxic dinoflagellate that causes fish, seabird, and marine mammal
mortalities and poses hazards to human and wildlife health (Fleming et al., 2007, 2011;
Flewelling et al., 2005; Kirkpatrick et al., 2004; Steidinger, 2009). K. brevis blooms occur near-
annually on the WFS, typically in late summer and fall, although particularly severe blooms have
been reported year-round (e.g., 2005-2007, 2017-2019, and 2020-2021). The spatial scale of K.
brevis blooms on the WFS also varies considerably from event to event and even over much
shorter (i.e. daily) time scales. Areas with high concentrations of K. brevis are often called ‘red

tides’, though these waters can appear in various shades of red, green, brown, or black.

The spatial and temporal variability of K. brevis blooms and associated impacts on the WFS
require extensive monitoring to inform communication and forecasting. Water samples are
routinely collected during field sampling of WFS coastal waters by the Florida Fish and Wildlife
Conservation Commission (FWC) and dedicated research groups and volunteer networks,
regardless of bloom conditions; additional sampling is also conducted in response to bloom
events. Each year, thousands of samples are enumerated using microscopy to detect and monitor
K. brevis and other HABs in Florida’s (U.S.A.) marine and estuarine waters. This information is
compiled within the FWC HAB Monitoring Database and reported by the FWC via regular
updates on HABs. Background K. brevis concentrations (< 1,000 cells L™!) are often observed in
the non-bloom season_(Heil & Steidinger, 2009; Steidinger, 2009). When K. brevis cell counts
exceed 1,000 cells L™!, commercial shellfish harvesting areas may be closed due to potential
hazards posed by the toxins. The lower limit for satellite detection is 50,000 cells L™, which is
1-2 orders of magnitude less than concentrations at which blooms are visible by the human eye

(Tester & Steidinger, 1997). When cell counts are above 100,000 cells L™, reports of fish
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mortality and human respiration problems increase (Fleming et al., 2011; Flewelling et al., 2005;

Kirkpatrick et al., 2004).

Over the past sixty years, more than a million water samples have been collected on the WFS
and processed for K. brevis enumeration by FWC (FWC HAB Monitoring Database, 2021).
However, the majority of samples were collected in nearshore waters, less than 10 km from the
shoreline. This equates to fewer than one sample collected every two months within each 0.05°
grid, although sampling intensity (including offshore) has increased substantially over time (Hu
et al., 2022). Satellite remote sensing can help overcome the bias introduced by the scarcity of
field data (especially offshore) because it provides increased synoptic spatial and temporal
coverage (Amin, Zhou, et al., 2009; Amin et al., 2015; Esaias et al., 1998; Tester & Stumpf,
1998; Tomlinson et al., 2004). At elevated concentrations of K. brevis, water discoloration is
captured in satellite images, and such a discoloration is often interpreted as an indication of K.
brevis blooms (Cannizzaro et al., 2008, 2009; Cullen et al., 1997; Schofield et al., 1999; Tyler &
Stumpf, 1989). Other factors, such as suspended sediments, colored dissolved organic matter
(CDOM), and non-K. brevis phytoplankton blooms, can also cause water discoloration and be
misconstrued as red tide (Dierssen et al., 2006). Blooms of K. brevis and other species may also
occur at levels that can be observed via satellites but without discoloration observed with the
naked eye. Thus, detection of K. brevis blooms using satellite observations requires algorithms,
which are often empirical, to first detect phytoplankton blooms (Amin, Zhou, et al., 2009;
Carvalho et al., 2010, 2011; El-Habashi et al., 2016; Hu & Feng, 2016; Qi et al., 2015; Stumpf et
al., 2003; Tomlinson et al., 2009) and then distinguish the bloom types (e.g., K. brevis, diatom,

Pyrodinium bahamense, Tripos hircus).

Satellite sensors equipped with spectral bands to measure solar-stimulated chlorophyll-a
fluorescence, including the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard
Terra (2000-) and Aqua (2002-) and the Ocean and Land Colour Imager (OLCI) aboard
Sentinel-3A (2016-) and Sentinel-3B (2018-), are used for bloom monitoring by U.S. Federal
and State agencies (e.g., the U.S. National Oceanic and Atmospheric Administration (NOAA),
https://coastalscience.noaa.gov/science-areas/habs/hab-forecasts/gulf-of-mexico/; FWC,
https://myfwc.com/research/redtide/statewide/). ~ Empirical  algorithms developed using
concurrent field and satellite data often rely on satellite-field matching pairs (i.e., data collected

from the same location within a short time window), and thus can be regarded as ‘pixel-based’
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approaches. These include techniques of the chlorophyll-a anomaly (Stumpf, 2001; Stumpf et al.,
2003; Wang et al., 2021), particle backscattering coefficient by, ratio (Anderson et al., 2012;
Cannizzaro et al., 2008; Carder et al., 1999; Morel, 1988), normalized water-leaving radiance
(nLy) ratio (Carvalho et al., 2011), nL,, spectral shape (Tomlinson et al., 2009), normalized
Fluorescence Line Height (nFLH; Hu & Feng, 2016), Red Solar Induced Fluorescence (red SIF,
Luis et al., 2023) and Red-Band Difference (RBD; Amin, Gilerson, et al., 2009; Amin, Zhou, et
al., 2009). However, because K. brevis cell concentrations from adjacent waters (i.e., within a
single pixel) can differ by several orders of magnitude (Tomlinson et al., 2009, also see
supplemental Fig. S1), significant data spread is commonly observed when comparing satellite-
estimated K. brevis concentration with water sample-determined K. brevis concentration (Hu &

Feng, 2016).

The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-
orbiting Partnership (SNPP; 2011-), NOAA-20 (2017-), and NOAA-21 (2022-) exhibits similar
spatial (375/750-m) and temporal (near-daily) resolutions as MODIS (250/500/1000-m) and
OLCI (300-m), but VIIRS does not have the dedicated bands for measuring chlorophyll-a
fluorescence for bloom detection (Hu et al., 2015). Despite this limitation, VIIRS has shown
potential for bloom detection using alternative approaches, including the Red-Green
Chlorophyll-a Index (RGCI; Qi et al., 2015) and neural network models (El-Habashi et al., 2016;
El-Habashi & Ahmed, 2019). While bloom detection may be similar to nFLH and RBD, these
algorithms were developed using pixel-based approaches without the ability to differentiate
between K. brevis blooms and other types of blooms. Evaluation of these approaches using a
large field dataset suggested that, although these approaches may work well for case studies, they

are not applicable in a more general sense (supplemental Figs. S2 & S3).

Deep learning models are poised to overcome the limitations of pixel-based approaches by
adding an emphasis on the recognition of spatial patterns. Also, unlike empirical approaches that
typically utilize spectral information from only a few wavebands, these models can take
advantage of the spectral information from all bands. Previous studies indicate the potential of
using such approaches to identify HABs of Magalefidinium polykrikoides in Korean waters (Kim
et al., 2019; Shin et al., 2022). However, for the K. brevis blooms on the WES, there is no
method for systematic observation using VIIRS data without a fluorescence band. With MODIS
nearing the end of its lifespan (i.e., NASA will crease support of MODIS no later than 2026), the
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development of robust bloom detection algorithms for VIIRS sensors, scheduled for launch
every five years, is critical to ensure a seamless satellite ocean color data record for monitoring
HABs in near-real-time and documenting long-term trends. In order to address this need, the
objective of this paper is to develop a practical approach to take advantage of computer artificial
intelligence to recognize spatially coherent ocean color patterns in VIIRS imagery associated

with K. brevis blooms.

2. Data and methods
2.1 In-situ data

Water samples from near-surface waters were used to determine the in-situ concentration of K.
brevis at sampling sites. A total of 23,232 field data points for K. brevis cell counts were
recorded at sample depths of ~ 0.5 m on the WES from January 2017 to December 2019 (FWC
HAB Monitoring Datbase, 2021). Fig. 1a shows the number of field K. brevis cell counts data in
each 5-km grid. In this study, K. brevis cell counts larger than 100,000 cells L™ are considered K.

brevis blooms.
2.2 VIIRS satellite data

A total of 4,282 level-2 SNPP VIIRS granules covering the WEFS from January 2017 to
December 2019 were downloaded from the NOAA CoastWatch data portal
(https://coastwatch.noaa.gov). These level-2 products included nL,(A) for each band (410, 443,
486, 551, 638, and 671 nm) and quality assurance flag information. Default L3 flags developed
by NOAA (Wang et al., 2017) were applied for quality control to exclude pixels with unreliable
radiance values from further analysis. Fig. 1b shows the increased spatial and temporal coverage

of VIIRS data compared to the in-situ cell count data.
Remote sensing reflectance (Rs(A)) for each band was determined from nL,(A) as follows:

Rrs(A) = nLy(D)/fo(D), €9

where f;(4) is the mean extraterrestrial solar irradiance (Thuillier et al., 2003).
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A cylindrical equidistant projection was used to map these data within the WES at 1-km spatial

resolution (Barnes et al., 2021). R,(A) data at 671-nm and 551-nm were used to generate the

RGCI (Qi et al., 2015) following the equation:
RGCI = R,4(671)/R,4(551), 2)

In addition, R.(A) at 551, 486, and 443 nm were used to generate Enhanced Red-Green-Blue
(ERGB) composite images to show color patterns of coastal waters. The ERGB images
differentiate dark features, caused by high absorption by chlorophyll-a and/or colored dissolved
organic matter (CDOM), from bright features caused by either sediment resuspension or shallow

bottom (Hu et al., 2005).
2.3 Deep learning model

Deep learning (DL) is a type of artificial intelligence that uses artificial neural networks with
multiple layers to learn from data and make predictions. A Convolution Neural Network (CNN;
Lecun et al., 1998) is a form of deep learning that is widely used in image segmentation for
clustering parts of imagery together that belong to the same object class. Here, a type of CNN
architecture called Res-Unet deep learning model (Diakogiannis et al., 2020; Qi et al., 2021;
Wang & Hu, 2021; Xiao et al., 2018; Yao et al.,, 2023) is used. This model combines
constructions inherent to both Res-Net (He et al., 2016) and U-net (Ronneberger et al., 2015)

models, thus improving ability to effectively perform image segmentation tasks.

The workflow in this study follows three main steps (Fig. 2). First, a set of “ground truth” images
were prepared semi-objectively and combined with satellite R.s(A) and RGCI for model training.
Here, the term “ground truth” refers to the information determined by integrating ground (i.e.,
field) measurements and image analysis results as opposed to either ground measurements alone
or the theoretical “truth”. The trained model was then validated using a separate set of “ground
truth” images that were reserved for evaluation. Finally, the model was applied to VIIRS data
from 2017-2019, and the model output was used to generate monthly statistics to examine

spatiotemporal variability of K. brevis blooms over the course of the bloom event.

2.3.1 “Ground truth” image preparation

K. brevis blooms exhibit high RGCI (Qi et al., 2015) and appear reddish-black in ERGB
composite imagery (Hu et al., 2005), allowing these patches to be differentiated from the
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surrounding waters. However, not all patches with high RGCI are K. brevis blooms because
blooms of other phytoplankton can also lead to high RGCI values, and other factors (e.g.,
CDOM) can cause ERGB images to appear reddish black. Here, field sample data are used to
confirm that patches with high RGCI are K. brevis blooms. The patches were identified as K.
brevis only if the field data showed high K. brevis cell counts (> 100,000 cells L) that
corresponded to high RGCI and reddish-blackish features in ERGB. This practice has been
employed before to delineate K. brevis blooms using field sample data and MODIS/Aqua RBD
images (Hu et al., 2022).

Based on the criteria above, “ground truth” images were prepared as demonstrated in Fig. 3
using the following steps:

1. K. brevis cell counts data (+ 7 days) were overlaid on VIIRS daily (i.e., snapshot) RGCI
and ERGB composite imagery (Figs. 3a & 3b).

2. Patches associated with K. brevis cell counts > 100,000 cells L™! that exhibit high RGCI
and appear reddish black in the ERGB imagery were roughly outlined manually using the
ENVI/IDL region of interest (ROI) tool (Fig. 3b).

3. Pixels within the outline with RGCI > the threshold of RGCI (Traccr) (e.g., K. brevis
bloom) were considered as bloom pixels and extracted objectively (Fig. 3c). Trgcr was
set as 0.22, which corresponds to a chlorophyll-a concentration of 1.5 pg L' and
approximately 150,000 K. brevis cells L™! (Qi et al., 2015; Stumpf et al., 2003; Tester et
al., 2008). This threshold is consistent with that used for the MODIS RBD by Hu et al.
(2022).

4. The bloom pixels were assigned a value of 1. All remaining pixels, including those
outside the outline or with RGCI < Trgcl, were assigned a value of O (e.g., non-K. brevis

bloom) or NaN (not a number, due to no observation or invalid pixels) (Fig. 3d).

A total of 100 VIIRS images were delineated following the above steps. Twenty three of these
images contained high VIIRS RGCI with K. brevis cell counts equal to zero and are intended to
help prevent false positives. Through random selection, 47 of these images were designated for
training, and the remaining 53 images were reserved for validation. Here, although the cell
counts data were likely collected not in the same day of the image acquisition and water could
have moved within + 7 days to cause a mismatch between the locations of the in situ data and

image feature, as long as there were high cell counts within or near an image feature, the feature
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is delineated as a K. brevis bloom patch. This is also one reason why a patch-wise approach

should work better than a pixel-wise approach.

2.3.2 Model training

A total of 47 “ground truth” images and their corresponding R(A) and RGCI data were used as a
training dataset for developing and training the DL model. To balance the weight of the input
data and make the deep learning model training converge smoothly, each R(A) band (410, 443,
486, 551, 638, 671 nm) was normalized by:

nRrs(A) = (log(Rrs(A)) - log(Rrs(A)min)) /(log(Rrs(A)max) - log(Rrs(A)min))J (3)

where R,4(A)min and R,g(A)max Were determined to be 0.0001 and 0.02 by trial and error,
respectively. If R,5(4) was less than 0.0001, it was set to 0.0001; and if R,.4(4) was great than
0.02, it was set to 0.02.

Likewise, RGCI was normalized as follows:
nRGCI = (RGCI — RGCliy) / (RGClpayx — RGClyin), 4)

where RGCl,,;, and RGCl,,,, were determined to be 0.1 and 1.5 by trial and error, respectively.

If RGCI was less than 0.1, it was set to 0.1; and if RGCI was greater than 1.5, it was set to 1.5.

Squared convolution kernels were applied in this training network. Thus, each input training
image was divided into several spatially non-overlapping sub-images of 256 x 256 pixels, with
the sub-image size determined by computing power. Each sub-image was then used to train the
DL model, and the Jaccard distance index was used to assess the model convergence. After
passing through the deep convolutional layers, the model can recognize the characteristic R, s(A)
spectral shapes of K. brevis bloom patch and the coherent spatial relationships among the R(A)

spectral features that help identify the K. brevis bloom patches.
2.3.3 Model validation

A total of 53 delineated VIIRS “ground truth” images were reserved for validation to evaluate
the model performance. The morphology of each patch in the model extracted images was
visually compared with the semi-objectively delineated patches of the “ground truth” images and
field K. brevis cell concentration data to determine whether the model extracted results matched

those from the “ground truth” images. A confusion matrix (Stehman, 1997) was used to report
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the number of true-positives (TP), true-negatives (TN), false-positives (FP), and false-negatives

(FN), as well as the F1 score to evaluate the overall accuracy. The F1 score was calculated as:
F1=2TP /(2TP + FP + FN) x 100%. 5)

The above statistics is based on the evaluation of the 53 image pairs, each containing a “ground
truth” image (or truth image) and an image of model results (or model image). There are 41 K.
brevis bloom truth images and 12 non-bloom truth images. Each model image was compared to
its corresponding truth image to determine whether the model image is a TP, TN, FP, or FN. A
model image is a TP if 1) the morphology of each bloom patch in the model image matches that
in the truth image and 2) the overlapping bloom area (as measured by the number of pixels)
between the model image and the truth image is > 75% of the bloom area in the truth image,
otherwise the model image is an FN. A model image is an FP if any patch is classified as a
bloom patch, but the corresponding truth image shows no bloom, otherwise the model image is

an TN.

In addition to the confusion matrix, the bloom areas of all image pairs (i.e., the truth images and
the model images) were compared using a linear fitting with the coefficient of determination (R?)

and the root mean square error (RMSE). RMSE was calculated as follows:

RMSE = |+ ?21(""2;1_"”)2 x 100%, 6)

where Xx; is the bloom area (i.e., number of pixels) of the model extracted result of the i-th model

image, and X; is the area of the i-th truth image.

Spectral similarities between R(A) measured in K. brevis bloom and non-K. brevis bloom
patches were examined using the Spectral Angle Mapper (SAM) index (Kruse et al., 1993). The
SAM (in degrees) indicates the spectral similarity between two R,(A) spectra by calculating the
angle between them. The closer SAM is to 0-degree, the greater the similarity between the two

spectral shapes.
2.3.4 Statistics of K. brevis coverage

After the model was trained and validated, it was applied to a 3-year series of VIIRS data (2017-
2019) that encompassed a long-lasting K. brevis bloom event. Each pixel was classified into one

of three classes: ‘K. brevis bloom’ with a value of 1, ‘non-K. brevis bloom’ with a value of 0, or



263  ‘no valid observation’. The ‘no valid observation’ class was determined using the default L3
264  quality assurance flag information processed by NOAA (Wang et al., 2017), and these pixels

265  were excluded from the following statistics.

266  Monthly maps of bloom occurrence frequency (BOF) were generated from the individual

267  classified images and for a given location were calculated as follows:
268  BOF = (Nyp/(Ngp + Npkp)) X 100%, (7)

269  where Ny, is the total number of ‘K. brevis bloom’ pixels and N, is the total number of ‘non-K.
270  brevis bloom’ pixels. To make the statistics more meaningful, pixels with fewer than five valid
271  observations (see definition above) in any given month were excluded. Bloom areal footprints

272  were then calculated from all > 0% pixels in the monthly BOF maps.

273  Monthly BOF maps were also generated from individual classified maps derived based on RGCI >
274 Traer and chlorophyll-a > 1.5 pg L™! derived using a neural network model (El-Habashi et al.,
275  2016) to compare with model results.

276 2.4 MODIS-based K. brevis bloom occurrence frequency maps

277  MODIS/Aqua data were used to qualitatively assess the VIIRS deep learning model results.
278  Specifically, K. brevis blooms were classified following the work of Hu et al. (2022) by
279  integrating water sample data and MODIS data. Briefly, field K. brevis cell counts were first
280  overlaid on MODIS RBD (Amin et al., 2015; Amin, Zhou, et al., 2009). Patches with high RBD
281  and high field K. brevis cell concentrations were delineated semi-objectively: a crude outline was
282  manually drawn over each patch, and pixels within the outline with RBD > 0.15 mW cm™?um™!
283  sr! (which corresponds to 150,000 cells L', Hu & Feng, 2016) were identified as K. brevis
284  bloom pixels. Monthly BOF maps were generated from the daily imagery similarly to VIIRS
285  (Section 2.3.4).

286
287 3. Results
288 3.1 Model validation

289 A confusion matrix for assessing the performance of the DL model is shown in Table 1. The

290  overall F1 score was 89% with an accuracy of 81% and precision of 83%. Four sets of example
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images from the validation dataset are presented in Fig. 4, showcasing TP, TN, FP, and FN
results. The first set of images in the top row displays the TP results where the DL model
successfully extracted K. brevis patches that match the “ground truth” image. Here, each TP case
meets the criteria of both morphological evaluation and 75% threshold of bloom area as
described in the methodology above. Of the 39 TP cases, the ratio of the overlapping bloom area
to the true bloom area for each image pair ranged between 77.7% and 96.3%, with an overall
ratio of 82.2% when all image pairs were combined. The second set of images illustrates the TN
results where the DL model correctly identified non-K. brevis bloom (i.e., not a single patch was
a bloom patch in both the “ground truth” image and the model image). The third set of images
presents the FP results where the DL model extracted incorrect bloom patches, and the fourth set
of images displays the FN results where the DL model failed to identify > 25% of the
overlapping bloom areas between the “ground truth” image and the model image.

Table 1. Performance evaluation of the DL model where P and PP are the number of “true” and predicted K. brevis
blooms, respectively; N and PN are the number of “true” and predicted non-K. brevis bloom, respectively. TN and

TP are the number of true negatives and positives, respectively; FN and FP are the number of false negatives and

positives, respectively.

Total n = 53 Predicted F1 OTP/(2TP+FP+FN)  88.6%
otaln = PP PN score ( ) .6%
True positive
P| TP 39 FN 2 rate (TPR) TP/(TP+FN) 95.1%
“Ground truth” Fal ”
alse positive
N | FP 8 ™ 4 rate (FPR) FP/(FP+TN) 66.7%
Precision TP/(TP+FP) 83.0% Accuracy (TP+TN)/n 81.1%

A comparison between bloom areas (in number of pixels) determined from the “ground truth”
images and the corresponding model images is presented in Fig. 5, wherein the overall RMSE
was found to be 31.5%, and the coefficient of determination R? was calculated to be 0.92. Bloom
areal extent was underestimated by the model in the Panhandle region in late-2018. These results

will be discussed in detail below.
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3.2 Model performance

The DL model, trained and verified based on the VIIRS spectral information and image coherent
context, can identify the K. brevis patches and distinguish them from non-K. brevis bloom

patches.

Fig. 6 shows a VIIRS scene collected on 16 September 2018 that contains two separate patches
of high RGCI water that appear darkish red in the ERGB imagery. K. brevis cell counts >
100,000 cells L' confirm that the northern patch offshore of Charlotte Harbor was a true bloom,
and the model correctly identified this bloom patch. Background cell counts (<1,000 cells L™")
were collected in the more southerly patch located south of Cape Romano (~26°N), and the
model correctly identified this patch as a non-K. brevis bloom. VIIRS R,s(A) spectral shapes were
examined in Fig. 6a at locations within these patches. The high similarity in spectral shape (SAM
= 4.94°) indicates that both patches would be categorized as K. brevis blooms based on RGCI
alone. The DL model accurately differentiated between the K. brevis bloom patch and the non-K.

brevis bloom patches.

Fig. 7 further demonstrates how the VIIRS DL model generates fewer false-positive
classifications compared to both RGCI (Qi et al., 2015) and the neural network model (EI-
Habashi et al., 2016). Monthly BOF maps using all three techniques were generated during a K.
brevis bloom event (August 2018) and non-K. brevis bloom event (June 2019), and are compared
to monthly FWC cell abundance data. While the neural network and RGCI retrieval results
accurately detect the K. brevis bloom in the central WFS in August 2018, there are some false-
positive results in nearshore waters to the north in the Panhandle/Big Bend regions and south of
Cape Romano (~26° N). False positive classifications were also prevalent in these regions during
the non-K. brevis bloom event in June 2019. The VIIRS DL model, on the other hand, shows
strong consistency with K. brevis cell abundance, indicating improved performance in accurately

identifying both K. brevis blooms and non-bloom:s.
3.3 Comparisons between VIIRS and MODIS

Monthly MODIS BOF maps generated by semi-objective delineation for May 2018 to January
2019 were previously presented by Hu et al. (2022). In Fig. 8, comparisons are made between

bloom footprints generated from these maps and those derived using the VIIRS DL model. K.
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brevis blooms were detected by both methods from June 2018 to January 2019, but several
differences were observed in the footprint areas. The VIIRS DL model often estimated K. brevis
blooms extending further into shallow coastal waters than the MODIS BOF, resulting in larger
footprint areal estimates than those observed with MODIS, except for cases during October and
November 2018 when MODIS derived BOF footprints were larger than those from VIIRS in the
Panhandle and Big Bend regions.

Fig. 9 provides a detailed visualization of the differences in bloom footprint observed between
VIIRS and MODIS for imagery acquired approximately one hour apart on October 30, 2018. The
VIIRS bloom footprint was 44% lower than that from MODIS. While MODIS RBD was well
above the threshold used by Hu et al. (2022) for identifying bloom patches, VIIRS RGCI was
close to the bloom threshold used when training the model. Residual increased suspended
sediment following the recent passage of a winter frontal system is evident in the VIIRS ERGB
and may explain why VIIRS failed to detect this patch. VIIRS and MODIS R,(A) spectra

extracted from within the bloom patch are similar (SAM = 9.07°).

4. Discussion
4.1. Strengths and limitations

K. brevis blooms on the WFS pose threats to coastal ecosystems and public health and can
negatively impact local economies. An accurate means for near-real-time monitoring is required
to help protect public health, and long-term monitoring is needed to better understand the
underlying causes of blooms and identify bloom trends. Field measurements of K. brevis cell
counts are highly precise; however, their limited spatial and temporal resolutions restrict their
overall efficacy in consistently monitoring blooms with accuracy. Remote sensing may serve as a
valuable tool to complement field-based monitoring programs. However, previous remote
sensing algorithms often rely on pixel-based approaches with pre-determined thresholds applied
to identify blooms for each pixel with an image (Amin, Zhou, et al., 2009; Cannizzaro et al.,
2008, 2009; Carvalho et al., 2010, 2011; Hu & Feng, 2016; Qi et al., 2015; Soto et al., 2015;
Stumpf et al., 2003; Tomlinson et al., 2009). These had limited success due to the problems
associated with sub-pixel variability (Hu & Feng, 2016; Fig. S1). While neural network models
(El-Habashi et al., 2016; El-Habashi & Ahmed, 2019) offer several advantages over threshold-

13



372
373
374

375
376
377
378
379
380
381
382
383

384
385
386
387
388
389
390
391
392
393
394

395
396
397
398
399
400
401

based empirical approaches, systemic testing showed unsatisfactory performance (Figs. S2 & S3).
Here, we developed a deep learning model for detecting K. brevis blooms on the WES using

VIIRS imagery that outperforms these other methods.

By adopting a patch-wise approach that considers spatial information (He et al., 2016), the
VIIRS DL model can overcome limitations associated with subpixel variability that are inherent
in pixel-wise approaches (Hu & Feng, 2016; Fig. S1). Furthermore, unlike empirical algorithms
using a few bands, such as the RGCI (Qi et al., 2015) and RBD (Amin, Zhou, et al., 2009)
algorithms, the VIIRS DL model utilizes all VIIRS bands as data input and relies on R(A)
spectral shapes for bloom identification. This spectral data from all bands can provide more
comprehensive information compared to the limited utilization of just two or three bands in other
empirical algorithms, therefore improving the accuracy of the deep learning model (Krizhevsky

etal., 2017).

As an automated patch-wise approach, the VIIRS DL model reduces false positives and
improves K. brevis bloom patch delineation, thus reducing the need for secondary verification by
in situ data and/or human interpretation. In contrast, most traditional approaches first determine
chlorophyll-a concentrations or a bloom patch (El-Habashi et al., 2016; Hu et al., 2005; Soto et
al., 2015), and then use in-situ sampling and/or human interpretation to confirm whether the
bloom patch is due to K. brevis or other phytoplankton. However, this does not indicate that the
DL model does not require in situ data for verification, particularly because K. brevis is not the
only dinoflagellate and blooms of other dinoflagellates may have similar optical properties to be
detected by the same DL model. If this is the case, what the DL model detects are blooms of
dinoflagellates. Yet because K. brevis is the dominant dinoflagellate to cause red tides, one can

assume that most of the detected blooms are likely due to K. brevis.

Furthermore, VIIRS has a wider swath width (3040-km) compared with MODIS (2330-km),
which means VIIRS has a greater number of observations to compare. Fig. 10 compares the
monthly coverage and the number of valid observations for MODIS and VIIRS during the latter
part of the 2017-2019 HABs bloom event (July 2018-December 2018). Although MODIS and
VIIRS had similar K. brevis bloom trends, there were differences in the number of valid
observation numbers. VIIRS had an average of ten or more valid observations per pixel per

month in the WFS region, while MODIS had only around five. Under good observation
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conditions (e.g., cloud-free and optimal solar/sensor zenith angles), as in October 2018, VIIRS
could achieve more than 25 valid observations in the offshore area of Florida, while MODIS had

only about 15.

Additionally, unlike MODIS that saturates its fluorescence band (678-nm) over moderate to high
sun glint (Hu et al., 2012), VIIRS does not saturate under such conditions. Fig. 11 displays a case
study where a 5-day period of VIIRS and MODIS observations showed the advantage of using
VIIRS data for near-real-time monitoring. Due to the land adjacency effect, the saturation of the
fluorescence band, and the narrower swatch (than VIIRS), MODIS had only three images
showing scattered K. brevis patches during the 5-day period, with none of them capturing the full
extent of the bloom. In contrast, VIIRS had at least one image per day in this 5-day period, with
each of them showing near-complete bloom extent, which has extensive value toward guiding
timely and targeted resource management and public health communications during K. brevis

blooms.

Despite the advantages of using a deep learning model with VIIRS observation to detect K.
brevis blooms, there are several limitations. One is the definition of “bloom”. Here, the dataset
used to train the VIIRS DL model was prepared based on the RGCI threshold corresponding to
150,000 cells L™! of K. brevis (Amin et al., 2015; Amin, Zhou, et al., 2009; Hu et al., 2022; Hu &
Feng, 2016; Qi et al., 2015; Soto et al., 2015) if the phytoplankton population is dominated by K.
brevis. Because of the significant bloom patchiness (Fig. S1) and because of mixed
phytoplankton assemblage, this definition does not indicate that within a delineated bloom patch,
K. brevis cell concentration is always > 150,000 cells L!. As shown in Fig. 3, cell concentration
within the bloom patch can be much lower than this threshold, and sometimes can be 0 — 1,000.
This certainly does not mean that a K. brevis bloom patch with maximum concentration of
~10,000 cells L' (or even ~5,000 cells L!) can be detected by the DL model. What it means is
that an image feature with maximum cell counts lower than this threshold is considered as “non-
bloom” in the training and validation datasets. However, this threshold is higher than the
threshold of 5,000 cells L™! when the commercial shellfish harvesting areas were previously
required to be closed. It is also higher than the cell count threshold above which fish mortality
and human respiration irritation often occur (Fleming et al., 2011; Flewelling et al., 2005;

Kirkpatrick et al., 2004). Correspondingly, the K. brevis blooms detected here are rather
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conservative, i.e., without including bloom patches (or other image features) with maximum K.
brevis concentrations lower than this threshold, although these waters are also harmful to marine
animals. Also, bloom detection is currently a binary classification that only allows for a
distinction between the presence and absence of blooms without quantifying the intensity of
them, although such a quantification may be possible when taking account of the RGCI values of
the delineated bloom patches. Clearly, future efforts are required to detect blooms at lower K.
brevis concentrations and to quantify the concentrations beyond presence/absence detections.
This would improve the utility of the tool for tracking bloom transport, evolution, and

appearance/disappearance.

The second limitation relates to the VIIRS DL model’s applicability even under cloud free
conditions. Similar to other satellite sensors, the DL model is not applicable to image pixels
immediately adjacent to land because these pixels may be mixed pixels (between water and land)
or contaminated by land adjacency effect. In this study, a 2-pixel buffer was applied immediately
adjacent to land, effectively masking those areas. Estuaries were also masked to eliminate the
influence of land adjacency effects. Furthermore, the strength of avoiding false-positive
detection in sediment-rich waters (because of the use of the full R.(A) spectral information
together with spatial context) can become a weakness in some special cases. For example, if
sediment resuspension, due to the passage of cold fronts or storms, occurs during a K. brevis
bloom, the high concentrations of sediment particles can obscure the K. brevis signals, leading to
no bloom detection. Fig. 12 shows such a case. The ERGB images in Fig. 12a and Fig. 12c,
overlaid with field-measured K. brevis cell counts, reveal that in the Epicenter region, there was
a persistent and expansive K. brevis bloom during mid-November 2018, and the bloom patches
were correctly extracted by the VIIRS DL model (Figs. 12d and 12f). During this period and on
16 November 2018, a cold front passed through the Epicenter region, causing high
concentrations of resuspended sediment particles (bright features in Fig. 12b), which led to no
bloom detection (Fig. 12e). However, such a false-negative detection can be easily remedied by
inspecting sequential images: if similar bloom patches are detected in t1 and t3 but not in t2
when sediment resuspension occurs, one can safely assume that similar bloom patches still exist
in t2. Likewise, for near-real-time applications, if bloom patches are found in tl, the lack of

detected bloom patches in t2 due to sediment resuspension does not indicate the end of the bloom.
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Therefore, the lack of ability to detect K. brevis blooms in sediment-rich waters is much less of a

problem than the false-positive detections in sediment-rich waters by other methods.

4.2. Future perspective

VIIRS measurements used in this study are from the SNPP satellite, yet the same sensor is also
carried by the NOAA-20 (2017-present) and NOAA-21 (2022—present) satellites. Future
satellites carrying the same VIIRS are expected to be launched about every 5 years. A
combination of these sensors, each with a different equatorial crossing time, can provide multiple
observations of K. brevis blooms in a single day. This will not only improve the cloud-free data
coverage, but also may provide more than one observation per day to capture the diel vertical
migration of K. brevis cells (Arnone et al., 2017; Hu, Barnes, et al., 2016; Qi et al., 2017;
Schofield et al., 2006). Likewise, the multi-sensor observations can not only help to study the
timing, intensity, and short-term dynamics of K. brevis blooms, but also improve near-real-time
observations to alert the public on bloom situations (e.g., NOAA's HAB Forecast System, or the
Integrated Redtide Information  System  (IRIS), Hu, Murch, et al, 2016;
https://optics.marine.usf.edu/projects/iris.html). The same logic can be extended to other sensors
such as the Ocean and Land Colour Instrument (OLCI) on the Sentinel-3A (2016—present) and
Sentinel-3B (2018—present) satellites. While cross-sensor consistency is yet to be determined, the
integration of these different satellite sensors can provide more comprehensive and accurate
observations of K. brevis blooms than being offered by any single sensor, thus facilitating both

research on bloom dynamics and near-real-time monitoring.

The findings here demonstrate the success of combining VIIRS observations and computer
artificial intelligence to detect HABs, while near-real-time applications require implementation
of this approach to generate K. brevis bloom maps automatically, so these maps can be
incorporated in the current IRIS. We expect to implement this approach in IRIS to monitor K.

brevis blooms in near-real-time in the next step.

Finally, the demonstration is for K. brevis blooms on the WFS between 2017 and 2019. Can the
same DL model be applied to other years for the same WFS and to other regions in the Gulf of
Mexico (GoM) where K. brevis have also been reported (e.g., coastal waters off Texas)? Because

the DL model is strictly data driven, if the training used here for the period of 2017 — 2019 does
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not encompass all observing scenarios (e.g., solar/viewing geometry, weak-moderate sun glint,
different aerosol types and thicknesses) and all optical complexity (e.g., optically shallow bottom,
non-algal water constituents) for other years or for other GoM regions, then the DL model needs
to be retrained to include those scenarios. Otherwise, there is no need for retraining. For these
reasons, because a 3-year observing period is believed to be long enough to cover all possible
observing scenarios, application of the DL model for the WFS but to other years is unlikely to
require retraining. In contrast, for other regions of the GoM, because the reasons leading to
optical complexity may be different, a retraining is very likely needed. For the same reason,
because HABs are a global phenomenon (Anderson et al., 2021) and because of the global
coverage of VIIRS and other satellite data, we expect that such a machine learning approach may
find more applications in other regions where HABs also occur, once field data are available for
training and validation. These HABs are not necessarily caused by K. brevis, but can be caused
by other dinoflagellates. In particular, future satellite missions will have the capacity to collect
hyperspectral data on both sun-synchronous and geostationary satellite platforms. These include
NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, NASA’s Geostationary
Littoral Imaging and Monitoring Radiometer (GLIMR) mission, and NOAA’s Geostationary
Extended Observations (GeoXO) mission. These missions will provide unprecedented ocean
color data to bolster the ability to detect HABs by accounting for spatial coherence, spectral

contrasts, and short-term changes.

5. Conclusion

To date, compared with MODIS or OLCI, the use of VIIRS in detecting HABs in the Gulf of
Mexico is limited, possibly due to its lack of a fluorescence band. This technical challenge is
circumvented here through the use of full spectral information from each VIIRS image pixel and
a deep learning model to account for the spatial context of bloom pixels. Such an approach
detects K. brevis blooms on the West Florida Shelf as spatially coherent features, thus avoiding
typical problems of K. brevis patchiness (i.e., heterogeneity) encountered by traditional pixel-
based methods. The approach led to detected K. brevis bloom patterns that are consistent with
those derived from MODIS and microscopy observations and, meanwhile, the wide swath makes

VIIRS particularly useful in both retrospective analyses of bloom dynamics and near-real-time

18



522
523

524

525

526
527
528
529
530
531
532
533
534
535
536
537

monitoring of bloom occurrence. We expect to implement such an approach for near-real-time

data production in the current IRIS.
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Fig. 1. The West Florida Shelf is located in the eastern Gulf of Mexico (inset map), spanning the
region west of the Florida peninsula, encompassing the Panhandle, Big Bend, Central West

Florida Shelf, including Tampa Bay and Charlotte Harbor, and the Florida Keys. The number of

(a) discrete in situ K. brevis cellular abundance observations with scale from 1-1000 and (b)
valid VIIRS observations in each 5-km grid in 2017-2019 with scale from 100-1000 are shown.
The number of valid MODIS observations has been shown in Hu et al. (2022). Following

Weisberg et al. (2019), the region from the north of Tampa Bay to the south of Charlotte Harbor

is outlined as the K. brevis bloom “epicenter”, i.e., where most K. brevis blooms were found and

most water samples were collected.
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Fig. 2. Conceptual illustration of the model training, validation, and application activities
conducted in this study for classifying K. brevis blooms in VIIRS imagery using a deep learning
approach. In the top row, VIIRS “ground truth”, R.(A), and RGCI images are used for training
and validating the deep learning model. In the bottom row, the validated model was applied to
VIIRS R:s(A) and RGCI data to delineate K. brevis bloom patches. The pixels were classified as
‘K. brevis bloom’ (red), ‘non-K. brevis bloom’ (blue), and ‘no valid observation’ (grey). Monthly
bloom occurrence frequency maps were generated from the individual (near-daily) model

extracted results.
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Fig. 3. “Ground truth” image preparation steps for the training the DL model. In (a), VIIRS
RGCI is overlaid with K. brevis field sample data (1 week) (shown in colored circles). The
spatially coherent high-RGCI patch in (a) and reddish-dark patch in the VIIRS ERGB composite
image (b) that is collocated with high K. brevis cell counts (>100,000 cells L™!) suggest that this
is a K. brevis bloom patch. A crude outline is manually drawn over the patch. In (c), pixels
within the manual outline with RGCI values greater than the RGCI threshold (Trgcr is marked
on the color bar) are considered as bloom pixels. In (d), pixels in the delineated patch (K. brevis
bloom) are marked as 1 (white), and all other pixels (non-K. brevis bloom) are marked as 0

(black).
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Fig. 4. Four sets of example imagery from the validation dataset. The first row (I) shows a case
with true-positive results. The second row (II) shows a case with true-negative results. The third
row (III) shows the false-positive results, and the fourth row (IV) shows the false-negative
results (poor results are circled in dashed lines) as compared with the “ground truth” delineation
in (c). Imagery shown include: (a) VIIRS RGCI; (b) VIIRS ERGB-composite images with field
K. brevis cell count data overlaid, cell counts less than 1000 show as transparent circles; (c)
VIIRS semi-objectively delineated results, and (d) VIIRS DL model extracted results with red,
blue, and grey representing K. brevis blooms, non-K. brevis bloom, and no valid observation or

no satellite data, respectively.
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Fig. 6. The capacity of the DL model in separating K. brevis and non-K. brevis bloom patches in
optically complex nearshore waters is demonstrated here using a VIIRS scene of the WFS
collected on 16 September 2018 for cases of (a) VIIRS RGCI, (b) VIIRS ERGB composite
image overlaid with field K. brevis cellular abundance data, where high RGCI values are shown
to correspond to dark waters, and (c) K. brevis bloom patch determined from the VIIRS DL
model, showing that the DL. model correctly classified a high-RGCI patch (yellow dashed circle)
south of the K. bloom patch (orange dashed circle) as non-K. brevis bloom. Panel (d) shows that
the spectral shapes from the two locations (one in the K. brevis bloom and the other in the non-K.

brevis bloom, see locations marked in (a)) are similar, yet the DL model could differentiate them.
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Fig. 7. Comparisons between (a) field K. brevis

cellular abundance data (cells L™") from FWC

and monthly VIIRS bloom occurrence frequency maps generated in I(a) August 2018 and II(a)
June 2019 using the approaches of I(b) & II(b) DL model, I(c) & II(c) neural network model (EI-
Habashi et al., 2016), and I(d) & 1I(d) RGCI during K. brevis bloom (I) and non-K. brevis bloom

(IT) events. Only the DL model can correctly identify the bloom and non-bloom events.
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Fig. 9. The detection difference between VIIRS and MODIS in the Panhandle region on 30
October 2018 for (a) VIIRS DL model extraction results, (b) MODIS RBD delineation results
based on the RBD threshold in Hu et al. (2022), (c)VIIRS RGCI image, (d) MODIS RBD image,
(e) VIIRS ERGB images overlaid with K. brevis cell counts, and (f) VIIRS and MODIS R/(A)
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(a) and (b) represent K. brevis blooms, non-K. brevis bloom, and no valid observation or no

satellite data, respectively.
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Fig. 11. An example showing the difference between VIIRS and MODIS valid observations and
K. brevis bloom detections. The rows in (a) and (b) show the VIIRS RGCI and MODIS RBD
images, respectively, over the central WES for five consecutive days. The grey color represents
no valid observation or no satellite data. The rows in (c) and (d) show their corresponding K.
brevis bloom detection results determined with VIIRS using the DL model and MODIS by semi-
objective delineation (Hu et al., 2022). Red, blue, and grey represent K. brevis blooms, non-K.

brevis bloom, no valid observation or no satellite data, respectively.
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Fig. 12. An example showing how the strength of the VIIRS DL model (i.e., avoid false-positive

bloom detection from sediment-rich waters) can turn into a weakness, and how such a weakness

can be overcome by inspecting sequential images. Panels (a-c) are the VIIRS ERGB images in

the Epicenter region overlaid with K. brevis cell counts, collected on 12, 16, and 17 November

2018, respectively. Panels (d-f) are the corresponding VIIRS DL model extraction results, with

red, blue, and grey representing K. brevis bloom patches, non-K. brevis bloom waters, and no

valid observation or no satellite data, respectively. The field data and ERGB images suggest a

continuous K. brevis bloom in the Epicenter region in mid-November 2018. During the bloom

period, the sediment resuspension event on November 16 (b) led to no bloom detection (e), but

one can still safely assume the existence of similar bloom patches as in (d) and (f).
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Graphical Abstract

Harmful algal blooms (HABs) of the toxic dinoflagellate Karenia brevis, often called red tides,

occur annually on the West Florida Shelf (WES). Detection of these HABs using satellite

observations often suffers from two problems: lack of accurate algorithms to identify

phytoplankton blooms in optically complex waters and patchiness (i.e., heterogeneity) of K. brevis

cellular abundance in bloom waters. Here, to take advantage of the wide swath (3040 km) and non-

saturation of the Visible Infrared Imaging Radiometer Suite (VIIRS) while realizing its

disadvantage due to the lack of a fluorescence band, we develop a deep-learning (DL)

convolutional neural network model to overcome the above technical challenges, especially on the

spatial coherence of bloom patches. After proper training, the overall performance (i.e., F1 score)

of the DL model is 89%. The results for the period of 2017 — 2019 not only demonstrate the

capacity of VIIRS in HABs monitoring, but also show the value of the DL. model in extracting K.

brevis bloom patches for both near real-time applications and retrospective analysis.
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