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Abstract

Massive amounts of remotely sensed data are being generated at an unprecedented rate,

offering new opportunities for data-driven scientific discovery in the Earth sciences and

related domains. However, due to the sheer volume of remotely sensed data and the lack

of effective data analytics tools, most data remain in the dark, with little to no quality

assurance and limited access to high-level analytical tools. Anomaly detection, which aims to

find scenarios that differ from the norm, is of particular importance when analyzing remotely

sensed data. However, most previous work has focused on identifying individual anomalies,

and required prior knowledge of the ground truth for supervised learning. In this work,

we propose an unsupervised anomaly detection framework that requires no prior knowledge

and is capable of detecting anomalous events, which we define as groups of outlier objects

differing contextually from their spatial and temporal neighbors. Such contextual anomalies

can be useful in discovering both hidden quality issues in the data and real natural events

of significance. We demonstrate the effectiveness of our framework via Web-based tools

developed for visualizing and analyzing such contextual anomalies, using two types of data.

The techniques and tools developed in this project are generally usable for a diverse set of

satellite products and will be made publicly available with the support of the National Snow
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1. Introduction1

Recent advances in remote sensing technology have revolutionized the way remotely2

sensed (RS) data is acquired, managed, and analyzed (Ma et al., 2015; Rathore et al.,3

2015). More than 200 on-orbit satellites are currently capturing continuous Earth observa-4

tions (Ma et al., 2015), offering great opportunities for advancing the scientific understanding5

of the Earth’s systems. However, as the proliferation of these products increases, so does6

the complexity needed for processing them. The variety of data can vary greatly, even7

within individual data sets (Li et al., 2016). Therefore, human expert-driven data anal-8

ysis, a laborious and time-consuming process, remains the mainstream approach for data9

quality assessment (Isaac and Lynnes, 2003; Gonzalez and Datcu, 2011; Borg et al., 2011)10

and scientific knowledge discovery (Steffen et al., 2004; Ferguson and Villarini, 2012). The11

sheer volume and complexity of RS data have hampered adequate quality assessment or12

higher-level analysis such as anomaly detection. While Earth scientists are very interested13

in studying anomalies such as climate extremes (Coumou and Rahmstorf, 2012; McCright14

et al., 2014; Easterling et al., 2000; Muster et al., 2015), finding all such anomalies from mas-15

sive data sets is challenging. Furthermore, RS data is often contaminated with noise or errors16

which need to be identified and then either corrected or eliminated. Thus, a high demand17

exists for effective and generic anomaly detection tools which require minimal involvement18

of domain experts while having the ability to adapt to diverse data sets. Anomaly detection19

in RS data is challenging for several reasons. (1) Prior models may not exist for determining20

what constitutes anomalous data. Additionally, unknown types of anomalies may exist in the21

data. (2) Remotely sensed imagery is often contaminated with noisy pixels or missing data.22

(3) The dynamic nature of spatial and temporal variations in multiple frequency channels23

need to be considered. (4) Due to the high volume and variety of RS data, validated ground24

truth data sets are not normally available for supervised learning. Additionally, there will25

always exist unusual anomalies in the data that exceed the expectations or prior knowledge26
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of Earth scientists. Unsupervised approaches are thus preferred. In this work, we propose a27

clustering-based framework for anomaly detection, which requires no domain knowledge of28

the data set and enables automated anomaly detection on diverse data sets.29

While most previous research has focused on detecting point anomalies (Chandola et al.,30

2009; Gupta et al., 2014; Bhaduri et al., 2011), which are individual data points that are31

considered globally anomalous (e.g., extreme low temperature or high wind), our work fo-32

cuses on the less-studied contextual anomalies (Sun and Chawla, 2004; Alvera-Azcárate et al.,33

2012), especially in the dynamics of spatial and temporal domains. Contextual anomalies are34

relative anomalies under specific contexts. For example, a high air temperature trend in the35

summer may be normal, but if the same temperature trend occurs during a winter period36

it could potentially be due to data defects or anomalous atmospheric processes (Matthes37

et al., 2015; López-Moreno et al., 2014; Bokhorst et al., 2012). Such contextual anomalies38

are of particular importance in Earth sciences research. And an effective solution for detect-39

ing contextual anomalies should leverage both spatial and temporal coherence in localized40

regions. The assumption is that in a natural environment, pixels in close proximity share41

similar morphology and evolve gradually over time, while anomalous pixels would have low42

coherence with their neighbors in space and time.43

Fig. 1. AVHRR skin temperature data with noise and missing pixels. Examples shown for

September 25 and 26, 1981.
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One issue to note is the noise or errors in the data. Fig. 1 shows two snapshots of the44

Advanced Very High Resolution Radiometer (AVHRR) skin temperature data for the South45

Pole (Chuck et al., 2000, updated 2007). The data values fluctuate from one location to46

another, as well as over time at the same location. Despite this spatial-temporal dynamic, the47

data record is also contaminated by random noise from clouds, instrumentation, and missing48

data. To reduce the bias or disturbance from noisy data when searching for interesting49

anomalies, we have developed a noisy pixel filtering algorithm and integrated it with the50

anomaly detection framework.51

Besides discovering individual objects (n× n pixels) that are contextual outliers relative52

to their spatial-temporal neighbors, it is also helpful to study these outliers collectively as53

anomalous events, which can potentially reveal unusual processes that lead to those outliers54

in the first place. Such underlying processes can either be systematic errors (e.g., sensor55

calibration error), which require intervention for quality control, or natural events (e.g.,56

extreme weather condition), which may lead to new knowledge (Xiong et al., 2011; Song57

et al., 2007). With the knowledge that anomalous behaviors caused by systematic errors or58

rare natural events can spread to a wide range of regions and last for a long period of time, we59

aggregate spatial-temporal outliers into anomalous events within a global spatial-temporal60

context and report those events with a ranking of their importance. Combining all the points61

above, we have developed a novel clustering-based framework for unsupervised detection of62

contextual anomalies in remotely sensed data. Our main contributions are summarized as63

follows.64

• The design of an unsupervised anomaly detection framework that (1) requires no prior65

knowledge of the data set, (2) identifies contextual outliers that differ from their spatial-66

temporal neighbors; and (3) groups contextual outliers into anomalous events to reveal67

possible underlying processes.68

• Demonstration of the framework’s effectiveness via Web-based tools we have developed,69

using two different types of remote sensing data: SSM/I passive microwave and skin70

(surface) temperatures derived from AVHRR data.71

• Identification and validation of new data quality issues due to systematic or random72
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errors as well as significant natural events.73

This manuscript is organized as follows. Section 2 presents the problem formulation and74

key notations. Section 3 describes the anomaly detection framework as well as its usage75

scenarios. Section 4 presents the anomaly detection framework in detail. Section 5 reports76

our evaluation of the proposed framework and presents case study results. Section 6 gives77

an overview of related work. Finally, Section 7 concludes this work.78

2. Problem Formulation79

Climate extremes such as unusual warm and cold events are increasingly attracting the80

attention of Earth scientists (Matthes et al., 2015; López-Moreno et al., 2014; Bokhorst81

et al., 2012). In this section, we first introduce the notion of contextual anomalies that82

can be caused by such extreme events and then formally define spatial-temporal outliers83

and anomalous events, which are the main focus of our unsupervised contextual anomaly84

detection framework.85

Fig. 2 and Fig. 3 illustrates three types of contextual anomalies that can be caused by86

unusual natural events, systematic or random errors.87

• Unusual time series snippets: The Earth observation data usually has obvious88

cycles (e.g., diurnal or seasonal cycles). In addition, the period of a cycle and the89

average magnitude of the data in each cycle are relatively stable. However, there exist90

snippets in a time series that deviate from the stable pattern. For example, Fig. 291

shows a brightness temperature time series from several adjacent pixels. The duration92

of high brightness temperatures each summer is relatively stable. However, as noted in93

the figure, in one snippet the high brightness temperature persisted longer than usual,94

and in another snippet the data value was significantly higher than that of the previous95

summers. These unusual time series snippets can be caused by either unusual natural96

events or errors.97

• Level shifting: Fig. 2 also shows a scenario when the values of a group of adjacent98

pixels significantly increase or decrease. This type of temporal discontinuity may ap-99
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Fig. 2. Examples illustrating unusual time series and level shifting detected in the brightness

temperature of several adjacent pixels.

pear normal when viewed spatially at a specific time, and can only be discovered when100

viewed as a time series at a given location.101

• Local spatial outlier: A pixel or an object (i.e., a block of n × n spatial pixels),102

which appears normal when viewed globally in an image, appears inconsistent when103

compared with its neighbors. As shown in Fig. 3, pixel A is an outlier with respect to104

its neighbors, but normal when viewed globally. Pixel B has the same value as pixel105

A, but is not a local spatial outlier.106

These three types of anomalies may all comply with the normal global data range and107

hence are invisible when using common statistical analyses such as a two standard deviation108

criteria method against a normal data distribution. Moreover, a level shifting or an unusual109

time series snippet may be visible only from a temporal perspective. Therefore, in order to110

detect all these anomalies, both spatial and temporal contextual information is extracted111

from a pixel’s local neighborhood. Specifically, as illustrated in Fig. 4, an object otx,y is112
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Fig. 3. An example of a local spatial outlier: Pixel A and B have the same value. However,

pixel A is considered an outlier because of its behavior with respect to neighboring pixels

whereas Pixel B is not because of its coherence with neighboring pixels.

comprised of a block of n × n pixels at a specific time t, where (x, y) is the location of113

the top left pixel of the object. Then the spatial neighborhood of the object refers to the114

eight spatially-adjacent objects at time t, and its temporal neighborhood refers to the set of115

objects ot
′
x,y where t′ ∈ [t − T, t + T ], t′ 6= t and T is the window size parameter. We now116

define spatial-temporal outliers (ST-Outliers) and anomalous events as follows.117

Definition 1. ST-Outliers: Given a set of objects O = {otx,y}. An object otx,y ∈ O is118

considered an ST-Outlier if its non-spatial-temporal features differ significantly from its119

spatial or temporal neighbors in O.120

The non-spatial-temporal features represent an object’s original physical value such as121

temperature, or derived values, e.g., temperature difference, temperature correlation and so122

on. Because ST-Outliers can emerge as a group due to the same natural event or systematic123

error, we also define anomalous events.124
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Definition 2. Anomalous Events: Let D be a set of objects that are ST-Outliers, and r is125

an anomalous event that consists of a group of objects from D. The objects in r, which are126

spatially and temporally correlated, behave significantly different from the other objects in127

D in terms of non-spatial-temporal features.128

In the following section, we give an overview of our anomaly detection framework along129

with the web-based tools we developed that enable users to visualize and analyze the detected130

anomalies.131

3. Anomaly Detection Framework132

Our anomaly detection framework takes as input a time series of satellite images. Each133

image is usually processed at either the pixel level or the object level (Hussain et al., 2013).134

Noise or missing data usually appear as random, discontinuous pixels. However, interesting135

anomalies that represent natural events or systematic errors may often appear as a collection136

Time = t

Time = t - T

Neighbor  Object

n x n Object
Time = t + T

n
 p

ix
el

s

n pixels

Fig. 4. An illustration of objects and local spatial-temporal neighborhoods. Each object

is defined as a block of 2 × 2 pixels at a specific time. For the orange object at time t, its

spatial neighbors include the 8 adjacent objects surrounding at time t (4 in blue and 4 in

white), and its temporal neighbors are the other orange objects within the time range of

[t− T, t+ T ].

8



of adjacent pixels. As such, our proposed anomaly detection framework consists of both137

pixel-based and object-based analysis.138
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Fig. 5. An overview of the anomaly detection framework.

3.1. Overview139

Fig. 5 gives an overview of our proposed anomaly detection framework, which consists of140

four main steps:141

1. Missing and noisy pixel filtering. RS imagery data may be contaminated by142

missing and/or noisy pixels, which would lead to a skewed data distribution. Thus,143

this step is designed to improve the quality of detected anomalies, which can be used as144

either an independent tool for data cleansing or integrated into the anomaly detection145

process, as shown in our framework.146

2. Object-level feature extraction. Each object consists of one or more pixels (n×n).147

In order to capture the anomalous behaviors of an object, the radiometric values are148

extracted for each object, which are then compared with its neighbors in space and149

time to detect contextual anomalies.150

3. ST-Outliers detection. An object that has either low spatial or temporal coher-151

ence with its neighbors is identified as an outlier. This is accomplished through an152

unsupervised, clustering-based process.153
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4. Anomalous events detection. In this step, we further group ST-Outliers that share154

similar anomalous behaviors (i.e., spatially and temporally correlated) as an anomalous155

event in order to help discover the underlying anomalous process, be it a natural event156

or systematic error.157

19 Vertical,

1

2

3

4

Fig. 6. Web-based user interface: Overall layout and key steps showing how anomalies are

located.

3.2. Usage Scenarios158

Next, we describe the web-based tools that enable interactive exploration and analysis159

of anomalies by interfacing with a database that contains all anomalies detected by our160

framework.161

User Interface. Fig. 6 shows the web-based user interface (UI), which features a set of162

tools and enables data exploration using an intuitive mapping interface. The UI comprises163

of several key features that allow users to quickly select a set of parameters that include164

information such as the sensor type (e.g., SSM/I vs. AVHRR), frequency band (e.g., 19 GHz,165

22 GHz), and polarization (e.g., vertical or horizontal), as well as select a sub region within166

the map to search. Users can then explore their results in one of two ways. The first167
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Fig. 7. Usage example: Querying the Weddell Sea and coast for anomalies.

approach allows query results to be visualized day by day, where the daily anomalies and their168

associated metadata are used to help the user grasp dynamic changes within a particular169

region. The second approach is by searching for an aggregation of the data within the170

specified time frame. In this way, results are collected for each pixel and can be displayed171

to show information such as the average pixel value or the frequency with which anomalies172

occur at each location.173

Usage Example. We examine a coastal region to demonstrate how the tools can be used174

for exploring anomalies; the steps described are illustrated in Fig. 6 and Fig. 7. First, the175

user selects a date range of 1992 to 1994 of the South SSMI 19 vertical data set, refining176

the query to search for anomalies above 200 Kelvin with the slider. Next, a rectangular177

region is selected from anywhere in the Antarctic region; the user opts to search an area178

within the Weddell Sea, drawing out a rectangle to partition the specific sub region they179

are interested in. Finally, the user then selects a query that will parse anomalies so that180

they can be reviewed along the daily timeline. After the queried results are returned to181

the interface, they are overlaid within a layer of the map where the user has control over a182

temporal investigation of the data, allowing them to traverse forwards and backwards along183

the timeline to review results. Looking at the results, we can see that there are a significant184
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number of events concentrated within the Filchner Ice Shelf extending up toward the Brunt185

Ice Shelf. This may prompt the user to refine his/her search to look at an aggregation of all186

anomalies during the specified two-year period, allowing the user to see where those anomalies187

are concentrated most, and the brightness temperatures associated with each pixel.188

4. Anomaly Detection Algorithms189

In this section, we describe in detail the key steps in the anomaly detection framework.190

4.1. Missing and Noisy Pixel Filtering191

As mentioned earlier, most RS imagery contains missing and/or noisy pixels, which192

need to be properly identified and labeled. This information is then applied in the process193

of object-level feature extraction in order to reduce the bias introduced by those pixels.194

Additionally, we record noisy pixels in the anomaly database as random errors for users’195

reference. Missing pixels are easy to handle since a missing pixel’s value is usually set to196

a special fill value such as 0. Hence, we focus primarily on filtering noisy pixels. Some of197

the noisy pixels are outside the normal data range (i.e., clear errors), and can be filtered198

easily using a threshold. However, some of the noisy pixels are within the normal range199

but obviously “wrong” when compared with their neighbors. To address these scenarios, we200

have designed a noisy pixel filtering algorithm, which can detect both types of noisy pixels201

(outside normal data range or not) in two steps: (1) identify objects which contain potential202

noisy pixels and (2) identify actual noisy pixels in each object.203

Detect Potential Noisy Objects. In order to reduce the size of the feature space and improve204

computation efficiency, we first divide an image into objects of n × n pixels each. For205

each object, we extract features such as the absolute maximal difference between every two206

adjacent pixels. Fig. 8 shows a distribution of the absolute maximal difference between207

every two adjacent pixels in an object from an AVHRR image. The cutoff value in the208

distribution is around 38. Empirically, this cutoff point can be utilized to find objects that209

contain potential noisy pixels. However, a fixed threshold is not generic for all images in the210

AVHRR data or for other data sets. Therefore, we have developed a clustering-based method211

to automatically determine the “cutoff” threshold. The feature data is first clustered, then212
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Fig. 8. Histograms showing the frequency distribution of absolute maximal differences

between adjacent pixels in each object. The main plot (blue) highlights a subset of differences

from the total distribution (cyan). The threshold for determining whether an object contains

potential noisy pixels can be visually selected such that the probability of the absolute

maximal difference converges toward zero.

the second order difference of cluster centroids (sorted in the ascending order) is computed.213

As illustrated in Fig. 9, the first peak of the second order difference (shown in red) is detected,214

and the cluster centroid value (shown in blue) right after the peak is set as the threshold to215

detect objects that contain potential noisy pixels.216

Identify Noisy Pixels. For each object detected above, we divide its pixels into two groups217

based on the similarity of their features, and pixels in the smaller group are identified as218

noisy pixels. However, there is one potential issue. As illustrated in Fig. 10, the pixels (P1219

and P2 in blue box) from the edge of the Antarctica Peninsula are identified as noisy pixels in220

object B, but it looks normal in object A. In order to handle pixels that are located around221

edges or dynamic regions (e.g., ocean), we compute the absolute difference between each222

noisy pixel candidate and its neighbors. If a pixel is similar to the majority of its neighbors,223

the pixel is not noisy since we assume noisy pixels are random and do not occur together.224
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Fig. 9. A method for automatically determining the cutoff threshold. Step 1 finds the first

peak of the second order difference (shown in red), here the cluster index is 13. Step 2 checks

the cluster centroid series (shown in blue) to find the value 36.47 at index 14, that value is

then used to detect objects containing potential noisy pixels.

A BP1

P2

Fig. 10. One potential issue when identifying noisy pixels near edges and dynamic regions.

Pixels P1 and P2 are observed as normal within object A (orange 3 × 3 pixels block), but

are identified as outliers in object B (black 3× 3 pixels block) due to the sharp transition at

the edge of the Antarctic Peninsula.
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4.2. Object-Level Feature Extraction225

In this step, instead of extracting pixel-level features to emphasize the internal pixel-to-226

pixel variance of an object, we extract object-level features to describe an object with respect227

to its neighbors. Specifically, we extract three types of features for each object.228

• Basic features: Mean and standard deviation of the object’s n× n pixels.229

• Spatial features: Correlation and difference between the object and each of its eight230

neighboring objects to capture the spatial dynamics of an object against its spatial231

neighbors.232

• Temporal features: Mean and standard deviation difference between the object and233

each of its 2T temporal neighbors (i.e., [t− T, t+ T ]).234

By transforming the satellite image time series into a feature space, we achieve three235

goals. (1) Reduce the impact from noisy and missing pixels: For instance, a missing pixel236

can be ignored by computing the mean and standard deviation of an object that contain237

multiple pixels; but if all pixels of an object are missing pixels, the object is abandoned. (2)238

Leverage the spatial features to avoid the problem of spatial heteroscedasticity, i.e., the local239

distribution of the data is not uniform at different locations in an image. (3) Help remove240

the impact from cyclic patterns and highlight local outliers.241

4.3. ST-Outliers Detection242

Satellite imagery data generally contain some cyclic patterns such as seasonal cycles. It is243

thus reasonable to assume that the data follows Gaussian mixture models (GMM). However,244

the number of clusters K requires prior knowledge and is very difficult to determine. Our245

problem is even more complicated because the exact percentage of outliers is unknown. To246

address these issues, we propose an extended Expectation-Maximization (EM) algorithm.247

Fig. 12 illustrates the essential steps of our algorithm for detecting spatial-temporal outliers:248

cluster initialization, cluster aggregation, and boundary optimization. The rationale behind249

this approach is to focus on capturing the normal patterns, and treat small clusters and250

stand-alone data points as outliers, because normal patterns occur more frequently than251

outliers and belong to denser clusters. Next, we describe the three steps in more detail.252
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t+1 t+2t t+3 t+T
?
?

Fig. 11. A time series of objects at location (x, y) spanning time t to t+T . Normal objects

are shown in blue and outlier objects are shown in white.

Cluster initialization. In this stage, we detect outliers from all objects {ot0x,y, . . . , otTx,y} at253

location (x, y) within the maximal temporal span, as shown in Fig. 11. Note that spatial-254

temporal outliers can be captured because both spatial and temporal features are also used255

here. For example, if one object is significantly different from its spatial neighbors, this256

object should be significantly far away from the others in the spatial feature space so that257

it will be assigned to a small cluster or be a stand-alone object. Moreover, since the exact258

number of clusters is unknown, we choose a relatively large cluster number (K = 5 as shown259

in Fig. 12 (a)) to perform the multivariate EM algorithm (Andersson, 1958; Lee and Scott,260

2012) in the object feature space. However, if K is too large, similar objects may be assigned261

to different clusters.262

Cluster Aggregation. To address this issue, we merge clusters with very similar statistical263

models. For example, in Fig. 12, the top-left two clusters shown in red and green in step (a)264

are merged into the larger red cluster in step (b). Let {C1, . . . , CK} be the initial clusters,265

(a) Cluster  Ini tial ization (b) Cluster  Aggregation (c) Boundar y Optimization

Fig. 12. Illustration of the three key steps of the proposed ST-Outliers detection algorithm.

Object shapes represent the ground truth of different types of objects, and object colors

indicate the clusters they belong to. In this example, step (a) identifies five different clusters;

step (b) merges the green cluster into the red cluster; and step (c) separates the brown star

object from the blue cluster.
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and {Np(µ1,Σ1), . . . ,Np(µK ,ΣK)} be the corresponding statistical models, where p is the266

dimension of the feature space, and µ, Σ are the mean vector and variance matrix respectively.267

We define the impact domain of model Np(µi,Σi) as Aiα = {x | Pr[(x − µi)TΣ−1i (x − µi) ≤268

ε] ≤ 1− α}. Intuitively, a greater α means a tighter impact domain. Based on the relation269

between Ci and Ajα for any (i, j), we have the following three situations:270

Ci ⊆ Ajα (1)

Ci − Ci ∩ Ajα 6= φ (2)

Ci ∩ Ajα = φ (3)

The three situations are presented in Fig. 12 (a). Assuming the red triangles cluster271

represents Cj, its impact domain Ajα is within the dashed circle. In the case of 1, assuming272

Ci is the green triangles cluster, then Ci and Cj can be merged together, because with high273

probability, the observations in Ci may be from statistical model Np(µj,Σj). However, in274

the case of Eq. 3, assuming Ci is the yellow rhombuses cluster, then the probability of these275

two clusters are from the same statistical model is very low and cannot be merged. To deal276

with the remaining case of 2, we define a new statistic W :277

W =
|Ci − Ci ∩ Ajα|

|Ci|
(4)

If W is larger than a given threshold, then we merge the ith and jth clusters. In this way,278

The situation in (1) becomes a special case of the situation in (2).279

Boundary optimization. After cluster aggregation, we reestimate the statistical models based280

on the updated clustering results, and then optimize the boundary for each cluster. We281

remove an object from a cluster if the object does not follow the cluster’s statistical model.282

For example, as shown in Fig. 12 (c), the blue hexagon is removed from its original cluster283

and becomes a stand-alone object. To do so, we test every object in the ith cluster whether284

it is from population Np(µi,Σi).285
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Outlier Identification. We repeat the procedure in cluster aggregation and boundary opti-286

mization until there is no further change. After that, the small clusters and isolated objects287

are considered as spatial-temporal outliers. Please note that the underlying assumption is288

that the percentage of anomalous data in the whole data set is quite low.289

4.4. Anomalous Events Detection290

Usually, for domain experts, the ultimate goal of anomaly detection is not identifying291

the individual outliers, but to find out the underlying processes that cause those outliers.292

Thus, instead of raising an alarm for every single outlier, it is much more valuable to provide293

an ordered list of anomalous events along with their specific rankings of importance or level294

of interest. We accomplish this in the following three steps: feature space standardization,295

ST-Outliers grouping, and events ranking.296

Feature Space Standardization. In this step, we use z-score to compute the standardized297

score for each type of feature in the feature space:298

Fstad =
F − µF
σF

, (5)

where µF and σF are the mean and standard deviation of the feature, respectively. This299

step is needed because each feature type has a different value range. By using a z-score300

normalization, all features now fall within the same value range, thus allowing us to com-301

pare/group outlier objects using the top-k most significant features.302

ST-Outliers Grouping and Events Ranking. In this step, we sort the feature vector for each303

outlier by the absolute value of Fstad, then group the outliers as illustrated in Fig. 13, where304

the outliers in the same group have the same top-k categorical features. For each group,305

we merge every outlier and its spatial and temporal neighbors into an event until there is306

no further change. The intuition behind this grouping strategy is that the impact of an307

underlying anomalous process usually spans a continuous time period, and from the spatial308

perspective, more than one object is affected. Finally the events are ranked by the total309

number of outliers in each event and reported through the web-based UI.310
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Fig. 13. An example of grouping ST-Outliers into anomalous events. ST-Outliers from

three locations are detected at different time points and are similar in their top-k features.

The outliers that occur within the same time window [t−T, t+T ] are then grouped together

as a single event.

5. Results and Discussion311

In this section, we first evaluate the performance of the proposed anomaly detection312

framework with experiments carried out on two data sets: skin temperature derived from313

AVHRR data and DMSP SSM/I Daily Polar Gridded Brightness Temperatures. The details314

of parameter settings, and case studies of AVHRR and SSM/I data are discussed. Then,315

the computational efficiency of the proposed method is analyzed both theoretically and316

experimentally.317

5.1. AVHRR Data318

We used the South Pole AVHRR skin temperature data from July 24, 1981 to June 30,319

2005. During the process of creating the anomaly database we discovered that the AVHRR320

data is heavily contaminated with noise; this data set thus served as a good test case for321

assessing the performance of our noise pixel filtering algorithm.322

Parameter Settings. As mentioned in the algorithm design, it is inefficient to utilize clustering323

with individual pixels due to the large number of pixels in satellite images. Instead, we divide324

each image into objects of size n × n pixels to identify and filter out objects which could325

potentially contain noisy pixels. We experimented with different n values, and setting n = 3326

achieves a good balance between accuracy and efficiency. The assumption is that within327
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each 3 × 3 object the variance should be small. Once the absolute maximal difference is328

computed for each object, the data is transformed into a feature space where the algorithm329

described in Section 4.1 is applied.330
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Fig. 14. Noisy pixel filtering in the AVHRR data set. Results show that our algorithm

correctly identifies most of the noisy pixels (Left) and achieves high precision and recall for

most of the images (Right).

Algorithm Performance. To assess the accuracy of the noise pixel filtering algorithm, we331

can validate the detected pixels visually using a random sample of 10% of the AVHRR332

images. We then quantified the performance using two widely-used pattern recognition333

metrics: precision and recall.334

Precision =
TP

TP + FP
(6)

335

Recall =
TP

TP + FN
(7)

True positive (TP) is the number of noisy pixels that are correctly detected as noise.336

False positive (FP) is the number of normal pixels that are incorrectly identified as noise by337

the algorithm. And false negative (FN) is the number of noisy pixels that are incorrectly338

classified as normal. Fig. 14 shows the distribution of each metric evaluated for the data339

set. The average precision and recall are 98.1% and 95.7%, respectively. This indicates340

that our noise filtering algorithm is effective, which can be used for data quality control341
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and filtering, and can help reduce the bias introduced by such noisy pixels in the anomaly342

detection process.343

5.2. SSM/I Data344

SSM/I data is a primary resource for estimating sea ice concentrations and classifying345

sea ice types. While the data set has been continuously collected for nearly 30 years, from346

July 9, 1987 to June 30, 2015, it has been distributed without a thorough quality assessment.347

New data defects have been discovered by our framework and confirmed by specialists. Here,348

we use a case study from the North Pole data set to demonstrate the effectiveness of our349

approach.350

Parameter Settings. For each image in the SSM/I data set, an object is defined as a 2 × 2351

block of pixels, i.e., n = 2. Here we use a smaller block size because SSM/I data has a lower352

resolution than that of AVHRR data (25km vs 5km), and n = 2 is the minimum requirement353

for removing the impact of missing or noisy pixels. With a vector size of four (four pixels354

in each object), we compute the spatial correlation between an object and its eight spatial355

neighbors. The temporal neighborhood spans 2 days before and after each object (i.e.,356

T = 2) to help smooth out dynamic attributes such as clouds, which usually pass through357

the area in 1 to 2 days. The temporal neighborhood of 5 days can therefore reduce random358

noise without filtering out real, dynamic, or periodic fluctuations in the time series. For359

each object, we extract six features: the mean and standard deviation of the pixels, a spatial360

correlation vector and a difference vector between the object and its eight neighbors, and the361

mean and standard deviation between the object and its temporal neighbors (+/- 2 days).362

The object features are then used for the detection of ST-Outliers and anomaly events.363

As the inherent number of models of the data is uncertain, Silhouette coefficients (Rousseeuw,364

1987) are used to evaluate the clustering’s performance for differing initial conditions. Be-365

cause the clustering quality is positively related to the Silhouette coefficient, the number of366

initial clusters is chosen where the Silhouette coefficient reaches a maxima. Fig. 15 shows367

how the Silhouette coefficient changes with varying number of initial clusters with random368

samples of 10% of the SSM/I data. In addition, we used 10% as an upper bound for the total369

number of outliers. As with a relatively larger boundary, we maintain a high potential for370
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Fig. 15. Choosing the initial number of clusters K. Silhouette coefficients are computed

for the normal and outlier clusters using varying numbers of initial clusters. The optimal

number of clusters K = 20 is selected when Silhouette coefficients reach a maxima for both

normal and outlier clusters.

including all anomalous events in the database. We aggregate outliers from the smallest size371

of cluster until the total number of outliers exceeds 10%. Thus, the resulted total outliers372

can be equal or less than 10%, which depends on the real partitions of norms and anomalies.373

Table 1: List of Top Ranked Anomalous Events

Event Duration Category

1990.01.01-1991.12.31 Sensor Failure

2012.07.09-2012.07.12 Natural Event

2012.07.27-2012.07.29 Natural Event

2002.06.27-2002.06.29 Natural Event

2003.10.24-2003.10.25 Natural Event

2011.02.01-2011.02.04 Unknown

2010.09.02-2010.09.04 Systematic Error

Case Studies. Table 1 shows a partial list of top-ranked anomalous events discovered and374

reported by our framework. Because no ground truth exists for this data, we collaborated375
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with other geoscientists and studied previous literature for the region to identify several of376

the most significant anomalous events; these events exhibited systematic error or evidence377

of natural events to help validate our technique. Here we discuss several of those events in378

detail.379
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Fig. 16. SSM/I Data Defect: random noise within the image due to sensor failure.
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Fig. 17. A systematic error from 2010. (Left) The majority of ST-Outliers were detected

around coastal regions. (Right) A significant shift in the number of ST-Outliers beginning

in 2010.
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Event 1: The first event was found within the 85.5 GHz channel. The 85.5 GHz vertical380

channel exhibited a degradation in signal from January 1, 1990 to December 31, 1991,381

while the horizontal channel degraded between January 1, 1991 to December 31, 1991. The382

origin of the event was a sensor failure. All the images collected during that period were383

corrupted with random noise, as shown in Fig. 16. This data defect could significantly affect384

prior analysis and computation of the region’s climatology. While only part of the defect385

(degradation in 1991) was documented (Maslanik and Stroeve., 2004, updated 2016), our386

algorithm was able to uncover new errors within the 85.5 GHz channel. The issues with the387

1990 data were reported to the NSIDC to help alert users.388

Event 2: A sharp increase in the frequency of anomalies was discovered following 2010.389

The left image in Fig. 17 shows the spatial locations of ST-Outliers (orange squares), mainly390

detected by temporal mean and standard deviation features in 2010. As seen in the figure, the391
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Fig. 18. SSM/I anomalous event: Summer extreme melt in 2002 and 2012. The red boxes

in (a) and (c) represent regions which rarely melt. (b) The time series for object A, melting

occurs regularly every summer. (d) The time series for object B, which was impacted by the

extreme melt events in both 2002 and 2012.

24



majority of outliers are located around coastal areas. We determined that this surge of events392

was due to an inconsistency between measurements from the sensors on DMSP satellites F13393

and F17 (where data from the F13 sensor was used until 2010, then transitioning to F17).394

The NSIDC conducted an inter-comparison of the F13 and F17 data where products from395

the two sensors overlapped. Similar to our findings, larger differences, sometimes up to396

10 K, were found in regions of sharp gradients of brightness temperature, usually around397

coastlines and sea ice extents (Maslanik and Stroeve., 2004, updated 2016). In addition to398

the discovery of this systematic error, we were also able to generate a detailed report on the399

spatial-temporal locations of each outlier for the event. This last product could potentially400

accelerate the quality control process.401

Event 3 and 4: Events from 2002 and 2012 are top ranked, consistent with two extreme402

melt events that occurred during those years (Nghiem et al., 2012; Steffen et al., 2004). As403

shown in Fig. 18 (a) and (c), the region outside of the red box regularly melts during the404

summer months, while in 2002 and 2012, that melting process abnormally expanded into405

part of the region within the red box. Our algorithm effectively detected the locations and406

dates of regions that normally would not melt when they exhibited abnormal behavior in407

2002 and 2012. Fig. 18 (d) shows an example time series from one of those locations (object408

B) between 1987 and 2015. The brightness temperature reveals a sharp increase during the409

summers of 2002 and 2012. In Fig. 18 (c), most rare melt objects are located in the red410

box. In addition, all rare melt locations detected were found to have averaged 5 melt days411

over the years. Thus, our framework can provide a way to explore potential interesting rare412

events without manually sifting through the data.413

Event 5: Besides the widely known extreme melt events in 2002 and 2012, the algorithm414

also detected an unusually warm event during October 2003. This event caused one location,415

which typically would begin to freeze during this time, to experience about an extra month416

worth of melt days. Fig. 19 shows this unusually long melt event in October 2003. From the417

time series in this figure, spanning 2002 to 2004, the brightness temperatures of these three418

adjacent regions normally would reveal a mean value which decreases during the month of419

October. In 2003 though, there were sharp changes, reaching a maxima one would expect420

during the summer. Our algorithm accurately captured this event with the presence of421
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seasonality and noise. The event was found to be related to the Atlantic Subpolar Gyre422

Warming (southwest to Nuuk at Greenland) in October 2003 (Stein, 2005). Our finding is423

also consistent with a surface air temperature obtained from the Nuuk station where October424

2003 was a record high between 1987 and 2015 (2007 data is missing), as seen in Fig. 19.425

Other significant events detected by our framework have been shared with our collabo-426

rators for further investigation.427

5.3. Computational Efficiency428

The computational efficiency of the proposed method was analyzed with two phases: fea-429

ture extraction and anomaly detection. For the feature extraction process, the computation430

complexity is O(tmn), where t is the number of images and (m,n) are the number of columns431

and rows of each image. For anomaly detection, the algorithm complexity is O(krL), where432
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k is the number of clusters, r is the number of clustering iterations, and L is the length of a433

time series with extracted features. Table. 2 shows the average processing time for feature434

extraction on a SSM/I image, and the average processing time for anomaly detection for435

the longest time series (10,218 days). Since there are missing data in the SSM/I data, the436

time series have different length, which allows us to evaluate the real algorithm complexity437

for anomaly detection. Fig. 20(a) shows the anomaly detection time as a function of time438

series length. The actual computation time is linear and consistent with theoretical com-439

plexity. In addition, since there is no dependence among data files during feature extraction440

and anomaly detection, our method can be easily parallelized using multiple computers or441

CPUs. For example, Fig. 20(b) shows the different anomaly detection time for a total of442

24,356 time series (64 GB) with 1 to 4 CPUs.443

Table 2: Computational Efficiency of Feature Extraction and Anomaly Detection

Feature

Extraction

Complexity Image Size (m ,n) Process Time (s) I/O (s)

O(tmn) (304, 448) 0.848 0.171

Anomaly

Detection

Complexity Time Series Length Process Time (s) I/O (s)

O(krL) 10218 1.189 0.321
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6. Related Work444

Anomaly detection has been a topic of active research (Chandola et al., 2009; Gupta445

et al., 2014; Bhaduri et al., 2011), with the majority of research focusing on point anomaly446

detection. For example, one-class Kernel Fisher Discriminants (Roth, 2004) was proposed as447

a method of learning a discriminative boundary close to the normal instances, such that any448

test instance that does not fall within the learned boundary is considered anomalous. Knorr449

and Ng (Knox and Ng, 1998; Knorr et al., 2000) developed several distance-based outlier450

detection algorithms where the core methodology was to score a data instance by counting451

the number of nearest neighbors that are within a distance d; data instances with the lowest452

scores were considered outliers. As summarized in Chandola et al. (2009), techniques for453

detecting point anomalies can be categorized into the following types: classification, nearest454

neighborhood, clustering, statistical modeling, information, and spectrum based.455

Point anomaly detection techniques are extensively used in scientific data, especially in456

climate research to identify sensor faults and significant events. However, for contextual457

anomalies that fall within normal data ranges or hide in seasonal patterns, direct use of458

those classical outlier detection algorithms will fail. Hence, a series of anomaly detection459

methods leveraging spatial or temporal attributes have been proposed (Chandola et al.,460

2009; Sun and Chawla, 2004; Alvera-Azcárate et al., 2012). For instance, in the work of461

Vallis et al., long term time series data was decomposed to remove seasonality before using462

statistical modeling to find anomalous points (Vallis et al., 2014). Spatial Local Outlier463

Measure (SLOM) proposed by Sun and Chawla (Sun and Chawla, 2004) can capture the464

local behavior of datum in its spatial neighborhood. Thus, local spatial outliers can be465

discovered, which are usually missed by global techniques like “three standard deviations466

away from the mean”. This type of approach handles either temporal or spatial context.467

In our work, we detect contextual anomalies in both spatial and temporal contexts. The468

typical method for spatial-temporal outlier detection consists of three steps (Gupta et al.,469

2014): (1) Identify spatial objects from the input data. (2) Objects are analyzed to find470

spatial outliers. (3) Spatial outliers are then verified if they are also temporal outliers. This471

type of approach sequentially executes spatial and temporal outlier detection, consequently472

the output is the intersection set of spatial and temporal outliers. For example, Birant and473
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Kut (Birant and Kut, 2007) proposed a density-based ST-Outlier detection method. They474

use DBSCAN (Birant and Kut, 2007) to identify spatial outliers first, then validate with475

their temporal neighbors. If no significant temporal difference was found, the candidate is476

abandoned. Similarly, Cheng and Li (Cheng and Li, 2006) proposed a four-step method477

to address the semantic and dynamic properties of geographic phenomena for ST-Outlier478

detection. However, in order to capture all possible data defects or significant natural events,479

the union set of spatial and temporal outliers has to be detected. Therefore, we have proposed480

a single-step ST-Outlier detection algorithm using combined spatial-temporal features, with481

which we are able to get all the ST-Outliers.482

Furthermore, while most of the existing work only detects individual outliers, we aggre-483

gate ST-Outliers into anomalous events, which provide more insights into the data as they484

help reveal underlying processes that may have triggered groups of outliers. This direction485

of work is related to collective anomalies (Chandola et al., 2009), which have been investi-486

gated in some recent work, using statistical models. Das and Neil (Das et al., 2008) used487

Whats Strange About Recent Events (WSARE) to detect anomalous clusters of counts in488

categorical data and performed testing to determine if a cluster is a significant anomalous489

pattern. And a Flexible Genre Model (FGM) was proposed by Xiong et al. (Xiong et al.,490

2011) to discover anomalous behaviors of groups of points. In contrast to those supervised491

or semi-supervised methods that assume availability of enough training data with ground492

truth, our approach is unsupervised and requires no prior knowledge of the data sets.493

7. Conclusion494

In this work, we have proposed a novel unsupervised contextual anomaly detection frame-495

work, which can effectively filter out noisy pixels, discover spatial-temporal outliers, and496

group those outliers into anomalous events. With this framework, we have successfully iden-497

tified significant data quality issues and natural events that were subsequently validated by498

geoscientists. We expect that our experience developing the framework will not only ad-499

vance anomaly detection in remote sensing but also provide new approaches for speeding up500

scientific knowledge discovery, especially when combined with interactive data mining and501

visualization tools. As with any large-scale project, the development is an ongoing effort.502
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With the support of the National Snow and Ice Data Center (NSIDC), we plan to make our503

tools publicly available and will continue improving the tools and methodologies, as well as504

expanding the range of remotely sensed data sets that we can support. We look forward to505

collaboration and feedback from the community to drive further improvements.506
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