

Unsupervised Detection of Contextual Anomaly in Remotely Sensed Data

Qi Liu^{a,*}, Rudy Klucik^a, Chao Chen^b, Glenn Grant^{c,d}, David Gallaher^{d,e}, Qin Lv^b, Li Shang^a

^a*Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO, 80309, United States*

^b*Department of Computer Science, University of Colorado, Boulder, CO, 80309, United States*

^c*Department of Geography, University of Colorado, Boulder, CO, 80309, United States*

^d*Cooperative Institute for Research in Environmental Sciences, Boulder, CO, 80309, United States*

^e*National Snow and Ice Data Center, Boulder, CO, 80309, United States*

Email addresses: {qi.liu, klucik, chao.chen, glenn.grant, qin.lv, li.shang}@colorado.edu,
david.gallaher@nsidc.org

Abstract

Massive amounts of remotely sensed data are being generated at an unprecedented rate, offering new opportunities for data-driven scientific discovery in the Earth sciences and related domains. However, due to the sheer volume of remotely sensed data and the lack of effective data analytics tools, most data remain in the dark, with little to no quality assurance and limited access to high-level analytical tools. Anomaly detection, which aims to find scenarios that differ from the norm, is of particular importance when analyzing remotely sensed data. However, most previous work has focused on identifying individual anomalies, and required prior knowledge of the ground truth for supervised learning. In this work, we propose an unsupervised anomaly detection framework that requires no prior knowledge and is capable of detecting anomalous events, which we define as groups of outlier objects differing contextually from their spatial and temporal neighbors. Such contextual anomalies can be useful in discovering both hidden quality issues in the data and real natural events of significance. We demonstrate the effectiveness of our framework via Web-based tools developed for visualizing and analyzing such contextual anomalies, using two types of data. The techniques and tools developed in this project are generally usable for a diverse set of satellite products and will be made publicly available with the support of the National Snow

*Corresponding author.

and Ice Data Center (NSIDC).

Keywords: unsupervised anomaly detection, contextual anomaly, data quality, rare events detection

1. Introduction

Recent advances in remote sensing technology have revolutionized the way remotely sensed (RS) data is acquired, managed, and analyzed (Ma et al., 2015; Rathore et al., 2015). More than 200 on-orbit satellites are currently capturing continuous Earth observations (Ma et al., 2015), offering great opportunities for advancing the scientific understanding of the Earth's systems. However, as the proliferation of these products increases, so does the complexity needed for processing them. The variety of data can vary greatly, even within individual data sets (Li et al., 2016). Therefore, human expert-driven data analysis, a laborious and time-consuming process, remains the mainstream approach for data quality assessment (Isaac and Lynnes, 2003; Gonzalez and Datcu, 2011; Borg et al., 2011) and scientific knowledge discovery (Steffen et al., 2004; Ferguson and Villarini, 2012). The sheer volume and complexity of RS data have hampered adequate quality assessment or higher-level analysis such as anomaly detection. While Earth scientists are very interested in studying anomalies such as climate extremes (Coumou and Rahmstorf, 2012; McCright et al., 2014; Easterling et al., 2000; Muster et al., 2015), finding all such anomalies from massive data sets is challenging. Furthermore, RS data is often contaminated with noise or errors which need to be identified and then either corrected or eliminated. Thus, a high demand exists for effective and generic anomaly detection tools which require minimal involvement of domain experts while having the ability to adapt to diverse data sets. Anomaly detection in RS data is challenging for several reasons. (1) Prior models may not exist for determining what constitutes anomalous data. Additionally, unknown types of anomalies may exist in the data. (2) Remotely sensed imagery is often contaminated with noisy pixels or missing data. (3) The dynamic nature of spatial and temporal variations in multiple frequency channels need to be considered. (4) Due to the high volume and variety of RS data, validated ground truth data sets are not normally available for supervised learning. Additionally, there will always exist unusual anomalies in the data that exceed the expectations or prior knowledge

27 of Earth scientists. Unsupervised approaches are thus preferred. In this work, we propose a
28 clustering-based framework for anomaly detection, which requires no domain knowledge of
29 the data set and enables automated anomaly detection on diverse data sets.

30 While most previous research has focused on detecting *point anomalies* (Chandola et al.,
31 2009; Gupta et al., 2014; Bhaduri et al., 2011), which are individual data points that are
32 considered globally anomalous (e.g., extreme low temperature or high wind), our work fo-
33 cuses on the less-studied *contextual anomalies* (Sun and Chawla, 2004; Alvera-Azcárate et al.,
34 2012), especially in the dynamics of spatial and temporal domains. Contextual anomalies are
35 relative anomalies under specific contexts. For example, a high air temperature trend in the
36 summer may be normal, but if the same temperature trend occurs during a winter period
37 it could potentially be due to data defects or anomalous atmospheric processes (Matthes
38 et al., 2015; López-Moreno et al., 2014; Bokhorst et al., 2012). Such contextual anomalies
39 are of particular importance in Earth sciences research. And an effective solution for detect-
40 ing contextual anomalies should leverage both spatial and temporal coherence in localized
41 regions. The assumption is that in a natural environment, pixels in close proximity share
42 similar morphology and evolve gradually over time, while anomalous pixels would have low
43 coherence with their neighbors in space and time.

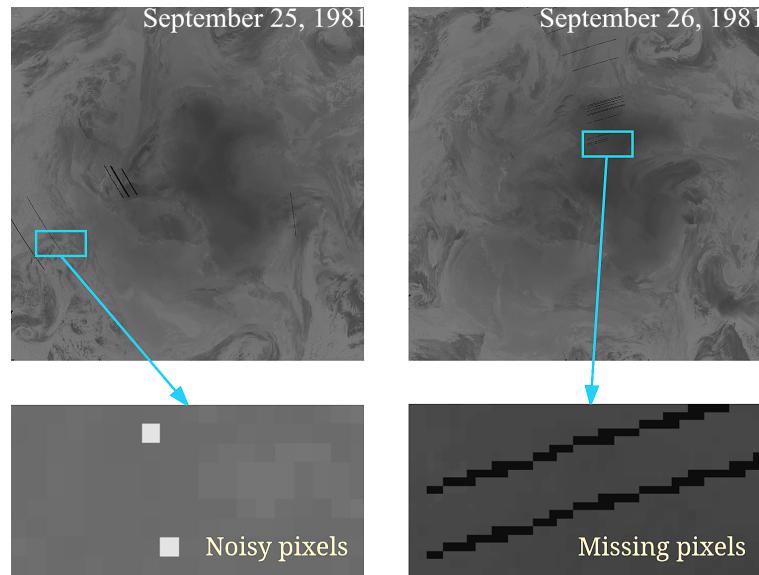


Fig. 1. AVHRR skin temperature data with noise and missing pixels. Examples shown for September 25 and 26, 1981.

44 One issue to note is the noise or errors in the data. Fig. 1 shows two snapshots of the
45 Advanced Very High Resolution Radiometer (AVHRR) skin temperature data for the South
46 Pole (Chuck et al., 2000, updated 2007). The data values fluctuate from one location to
47 another, as well as over time at the same location. Despite this spatial-temporal dynamic, the
48 data record is also contaminated by random noise from clouds, instrumentation, and missing
49 data. To reduce the bias or disturbance from noisy data when searching for interesting
50 anomalies, we have developed a noisy pixel filtering algorithm and integrated it with the
51 anomaly detection framework.

52 Besides discovering individual objects ($n \times n$ pixels) that are contextual outliers relative
53 to their spatial-temporal neighbors, it is also helpful to study these outliers collectively as
54 *anomalous events*, which can potentially reveal unusual processes that lead to those outliers
55 in the first place. Such underlying processes can either be systematic errors (e.g., sensor
56 calibration error), which require intervention for quality control, or natural events (e.g.,
57 extreme weather condition), which may lead to new knowledge (Xiong et al., 2011; Song
58 et al., 2007). With the knowledge that anomalous behaviors caused by systematic errors or
59 rare natural events can spread to a wide range of regions and last for a long period of time, we
60 aggregate spatial-temporal outliers into anomalous events within a global spatial-temporal
61 context and report those events with a ranking of their importance. Combining all the points
62 above, we have developed a novel clustering-based framework for unsupervised detection of
63 contextual anomalies in remotely sensed data. Our main contributions are summarized as
64 follows.

- 65 • The design of an unsupervised anomaly detection framework that (1) requires no prior
66 knowledge of the data set, (2) identifies contextual outliers that differ from their spatial-
67 temporal neighbors; and (3) groups contextual outliers into anomalous events to reveal
68 possible underlying processes.
- 69 • Demonstration of the framework's effectiveness via Web-based tools we have developed,
70 using two different types of remote sensing data: SSM/I passive microwave and skin
71 (surface) temperatures derived from AVHRR data.
- 72 • Identification and validation of new data quality issues due to systematic or random

73 errors as well as significant natural events.

74 This manuscript is organized as follows. Section 2 presents the problem formulation and
75 key notations. Section 3 describes the anomaly detection framework as well as its usage
76 scenarios. Section 4 presents the anomaly detection framework in detail. Section 5 reports
77 our evaluation of the proposed framework and presents case study results. Section 6 gives
78 an overview of related work. Finally, Section 7 concludes this work.

79 **2. Problem Formulation**

80 Climate extremes such as unusual warm and cold events are increasingly attracting the
81 attention of Earth scientists (Matthes et al., 2015; López-Moreno et al., 2014; Bokhorst
82 et al., 2012). In this section, we first introduce the notion of contextual anomalies that
83 can be caused by such extreme events and then formally define spatial-temporal outliers
84 and anomalous events, which are the main focus of our unsupervised contextual anomaly
85 detection framework.

86 Fig. 2 and Fig. 3 illustrates three types of contextual anomalies that can be caused by
87 unusual natural events, systematic or random errors.

88 **• Unusual time series snippets:** The Earth observation data usually has obvious
89 cycles (e.g., diurnal or seasonal cycles). In addition, the period of a cycle and the
90 average magnitude of the data in each cycle are relatively stable. However, there exist
91 snippets in a time series that deviate from the stable pattern. For example, Fig. 2
92 shows a brightness temperature time series from several adjacent pixels. The duration
93 of high brightness temperatures each summer is relatively stable. However, as noted in
94 the figure, in one snippet the high brightness temperature persisted longer than usual,
95 and in another snippet the data value was significantly higher than that of the previous
96 summers. These unusual time series snippets can be caused by either unusual natural
97 events or errors.

98 **• Level shifting:** Fig. 2 also shows a scenario when the values of a group of adjacent
99 pixels significantly increase or decrease. This type of temporal discontinuity may ap-

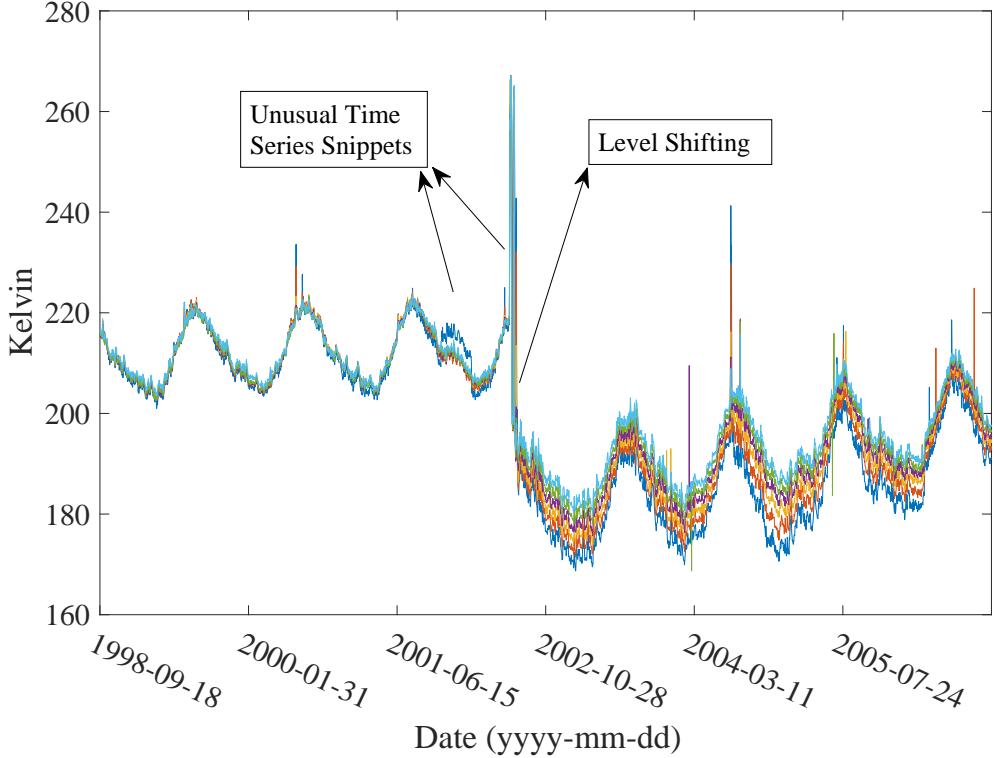


Fig. 2. Examples illustrating unusual time series and level shifting detected in the brightness temperature of several adjacent pixels.

pear normal when viewed spatially at a specific time, and can only be discovered when viewed as a time series at a given location.

- **Local spatial outlier:** A pixel or an object (i.e., a block of $n \times n$ spatial pixels), which appears normal when viewed globally in an image, appears inconsistent when compared with its neighbors. As shown in Fig. 3, pixel *A* is an outlier with respect to its neighbors, but normal when viewed globally. Pixel *B* has the same value as pixel *A*, but is not a local spatial outlier.

These three types of anomalies may all comply with the normal global data range and hence are invisible when using common statistical analyses such as a two standard deviation criteria method against a normal data distribution. Moreover, a level shifting or an unusual time series snippet may be visible only from a temporal perspective. Therefore, in order to detect all these anomalies, both spatial and temporal contextual information is extracted from a pixel's local neighborhood. Specifically, as illustrated in Fig. 4, an object $o_{x,y}^t$ is

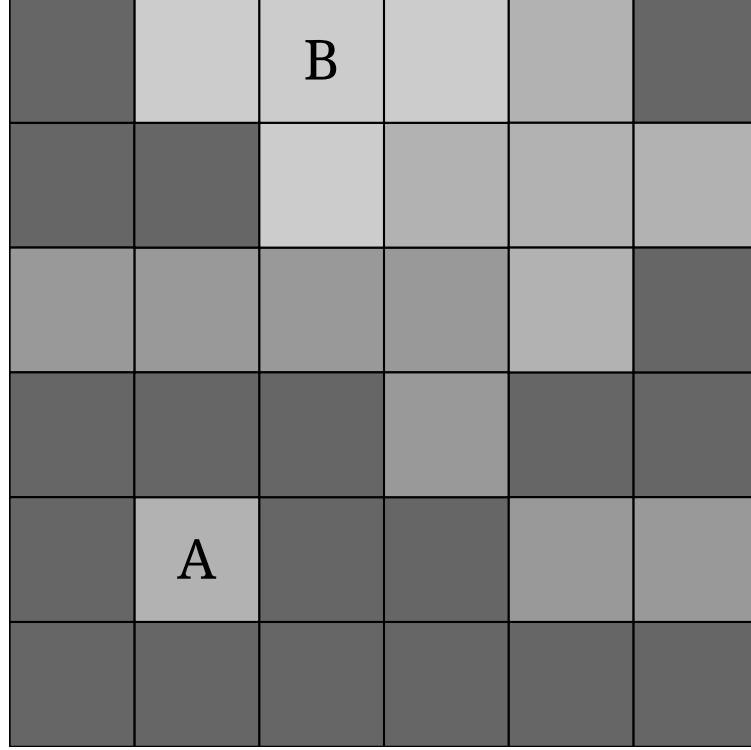


Fig. 3. An example of a local spatial outlier: Pixel A and B have the same value. However, pixel A is considered an outlier because of its behavior with respect to neighboring pixels whereas Pixel B is not because of its coherence with neighboring pixels.

113 comprised of a block of $n \times n$ pixels at a specific time t , where (x, y) is the location of
 114 the top left pixel of the object. Then the spatial neighborhood of the object refers to the
 115 eight spatially-adjacent objects at time t , and its temporal neighborhood refers to the set of
 116 objects $o_{x,y}^{t'}$ where $t' \in [t - T, t + T]$, $t' \neq t$ and T is the window size parameter. We now
 117 define spatial-temporal outliers (ST-Outliers) and anomalous events as follows.

118 **Definition 1.** ST-Outliers: Given a set of objects $O = \{o_{x,y}^t\}$. An object $o_{x,y}^t \in O$ is
 119 considered an ST-Outlier if its non-spatial-temporal features differ significantly from its
 120 spatial or temporal neighbors in O .

121 The non-spatial-temporal features represent an object's original physical value such as
 122 temperature, or derived values, e.g., temperature difference, temperature correlation and so
 123 on. Because ST-Outliers can emerge as a group due to the same natural event or systematic
 124 error, we also define anomalous events.

125 **Definition 2.** Anomalous Events: Let D be a set of objects that are ST-Outliers, and r is
126 an anomalous event that consists of a group of objects from D . The objects in r , which are
127 spatially and temporally correlated, behave significantly different from the other objects in
128 D in terms of non-spatial-temporal features.

129 In the following section, we give an overview of our anomaly detection framework along
130 with the web-based tools we developed that enable users to visualize and analyze the detected
131 anomalies.

132 3. Anomaly Detection Framework

133 Our anomaly detection framework takes as input a time series of satellite images. Each
134 image is usually processed at either the pixel level or the object level (Hussain et al., 2013).
135 Noise or missing data usually appear as random, discontinuous pixels. However, interesting
136 anomalies that represent natural events or systematic errors may often appear as a collection

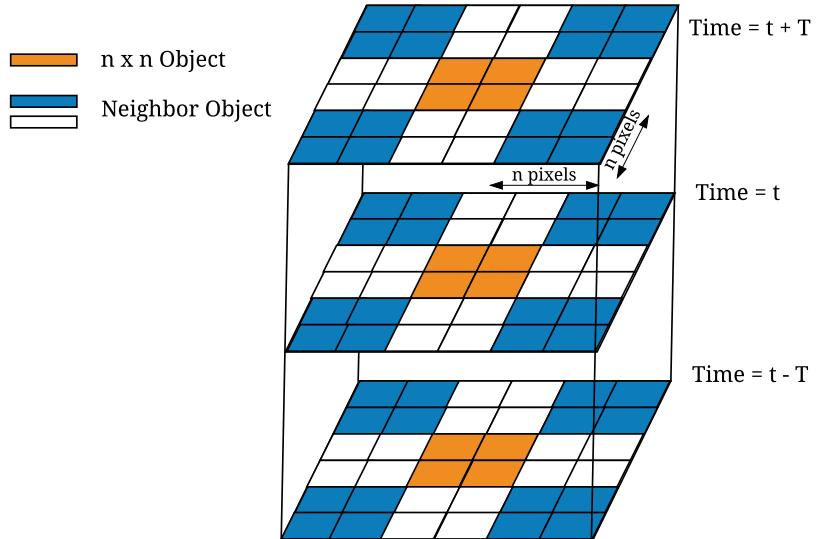


Fig. 4. An illustration of objects and local spatial-temporal neighborhoods. Each object is defined as a block of 2×2 pixels at a specific time. For the orange object at time t , its spatial neighbors include the 8 adjacent objects surrounding at time t (4 in blue and 4 in white), and its temporal neighbors are the other orange objects within the time range of $[t - T, t + T]$.

¹³⁷ of adjacent pixels. As such, our proposed anomaly detection framework consists of both
¹³⁸ pixel-based and object-based analysis.

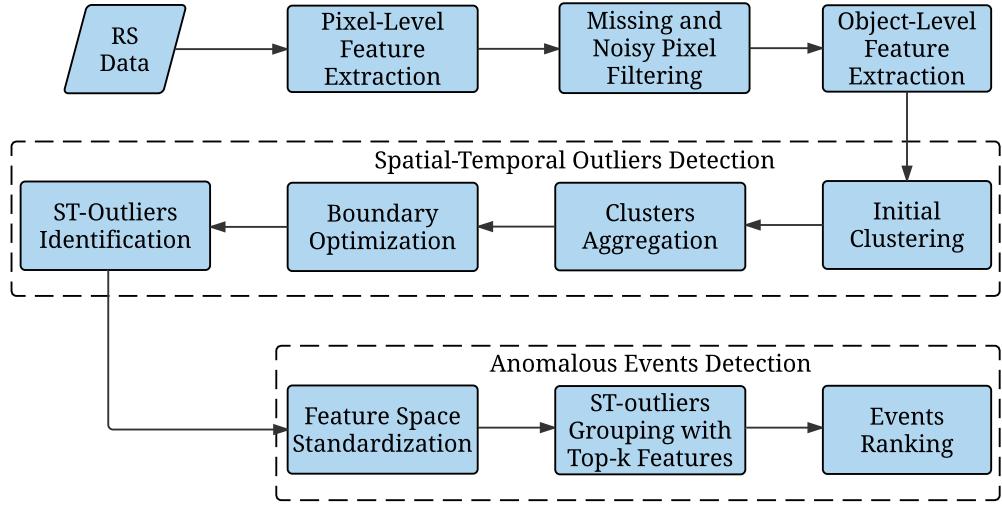


Fig. 5. An overview of the anomaly detection framework.

¹³⁹ *3.1. Overview*

¹⁴⁰ Fig. 5 gives an overview of our proposed anomaly detection framework, which consists of
¹⁴¹ four main steps:

- ¹⁴² **1. Missing and noisy pixel filtering.** RS imagery data may be contaminated by
¹⁴³ missing and/or noisy pixels, which would lead to a skewed data distribution. Thus,
¹⁴⁴ this step is designed to improve the quality of detected anomalies, which can be used as
¹⁴⁵ either an independent tool for data cleansing or integrated into the anomaly detection
¹⁴⁶ process, as shown in our framework.
- ¹⁴⁷ **2. Object-level feature extraction.** Each object consists of one or more pixels ($n \times n$).
¹⁴⁸ In order to capture the anomalous behaviors of an object, the radiometric values are
¹⁴⁹ extracted for each object, which are then compared with its neighbors in space and
¹⁵⁰ time to detect contextual anomalies.
- ¹⁵¹ **3. ST-Outliers detection.** An object that has either low spatial or temporal coher-
¹⁵² ence with its neighbors is identified as an outlier. This is accomplished through an
¹⁵³ unsupervised, clustering-based process.

154 4. **Anomalous events detection.** In this step, we further group ST-Outliers that share
 155 similar anomalous behaviors (i.e., spatially and temporally correlated) as an anomalous
 156 event in order to help discover the underlying anomalous process, be it a natural event
 157 or systematic error.

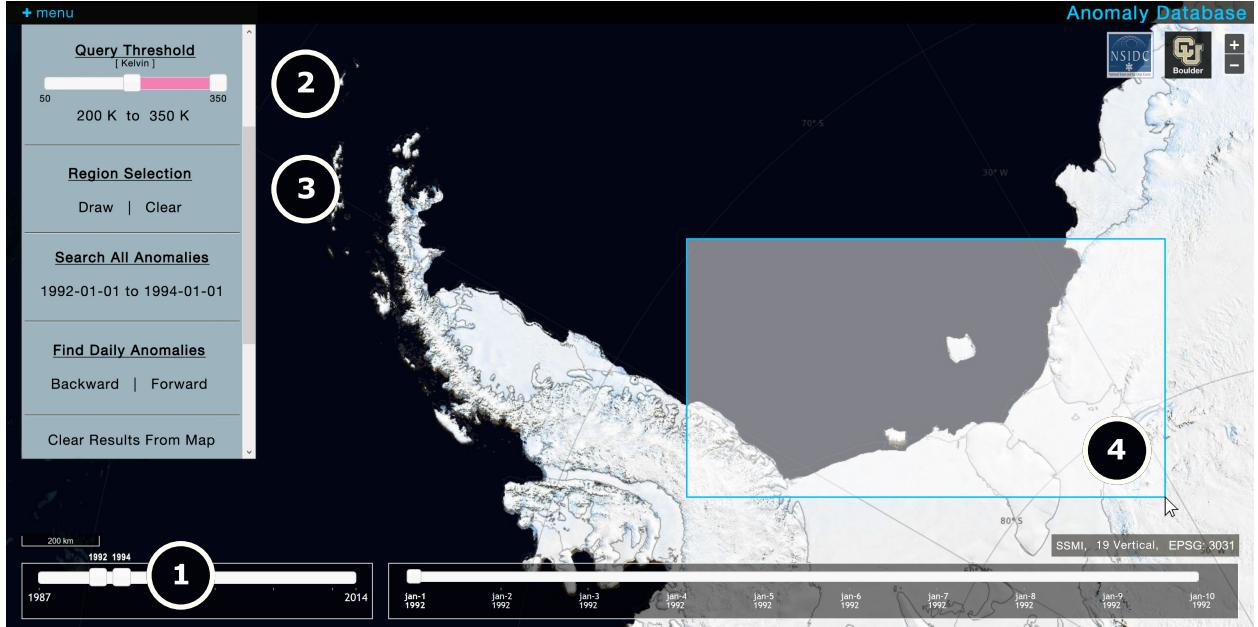


Fig. 6. Web-based user interface: Overall layout and key steps showing how anomalies are located.

158 3.2. *Usage Scenarios*

159 Next, we describe the web-based tools that enable interactive exploration and analysis

160 of anomalies by interfacing with a database that contains all anomalies detected by our
 161 framework.

162 *User Interface.* Fig. 6 shows the web-based user interface (UI), which features a set of
 163 tools and enables data exploration using an intuitive mapping interface. The UI comprises
 164 of several key features that allow users to quickly select a set of parameters that include
 165 information such as the sensor type (e.g., SSM/I vs. AVHRR), frequency band (e.g., 19 GHz,
 166 22 GHz), and polarization (e.g., vertical or horizontal), as well as select a sub region within
 167 the map to search. Users can then explore their results in one of two ways. The first

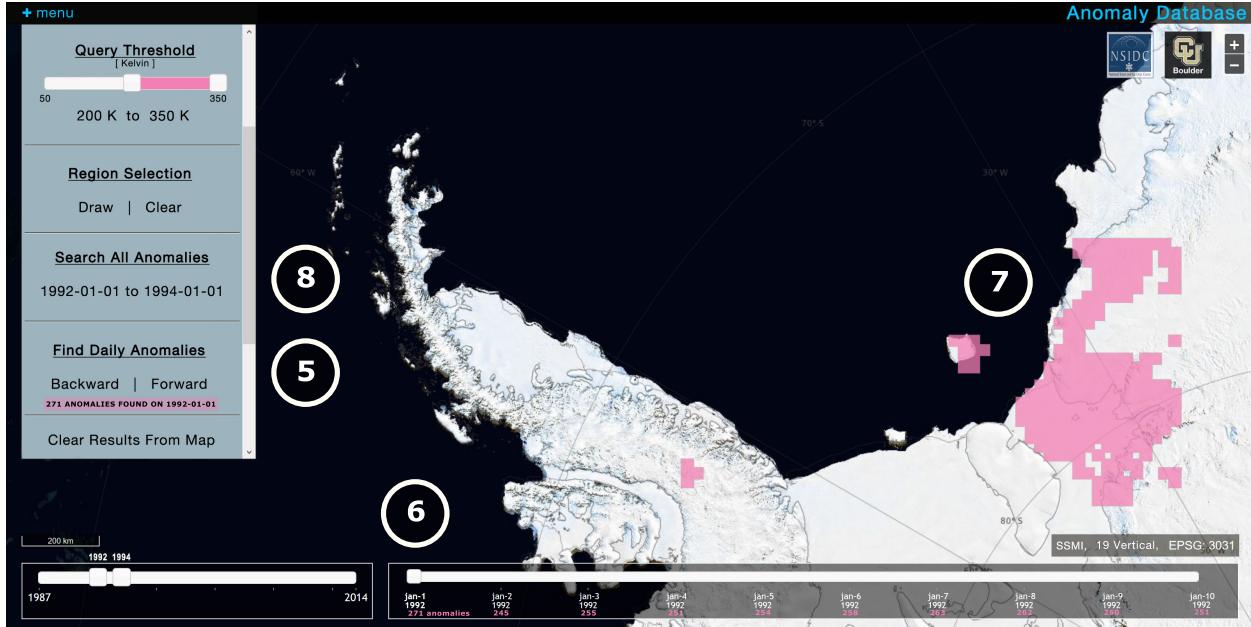


Fig. 7. Usage example: Querying the Weddell Sea and coast for anomalies.

168 approach allows query results to be visualized day by day, where the daily anomalies and their
 169 associated metadata are used to help the user grasp dynamic changes within a particular
 170 region. The second approach is by searching for an aggregation of the data within the
 171 specified time frame. In this way, results are collected for each pixel and can be displayed
 172 to show information such as the average pixel value or the frequency with which anomalies
 173 occur at each location.

174 *Usage Example.* We examine a coastal region to demonstrate how the tools can be used
 175 for exploring anomalies; the steps described are illustrated in Fig. 6 and Fig. 7. First, the
 176 user selects a date range of 1992 to 1994 of the South SSMI 19 vertical data set, refining
 177 the query to search for anomalies above 200 Kelvin with the slider. Next, a rectangular
 178 region is selected from anywhere in the Antarctic region; the user opts to search an area
 179 within the Weddell Sea, drawing out a rectangle to partition the specific sub region they
 180 are interested in. Finally, the user then selects a query that will parse anomalies so that
 181 they can be reviewed along the daily timeline. After the queried results are returned to
 182 the interface, they are overlaid within a layer of the map where the user has control over a
 183 temporal investigation of the data, allowing them to traverse forwards and backwards along
 184 the timeline to review results. Looking at the results, we can see that there are a significant

185 number of events concentrated within the Filchner Ice Shelf extending up toward the Brunt
186 Ice Shelf. This may prompt the user to refine his/her search to look at an aggregation of all
187 anomalies during the specified two-year period, allowing the user to see where those anomalies
188 are concentrated most, and the brightness temperatures associated with each pixel.

189 **4. Anomaly Detection Algorithms**

190 In this section, we describe in detail the key steps in the anomaly detection framework.

191 *4.1. Missing and Noisy Pixel Filtering*

192 As mentioned earlier, most RS imagery contains missing and/or noisy pixels, which
193 need to be properly identified and labeled. This information is then applied in the process
194 of object-level feature extraction in order to reduce the bias introduced by those pixels.
195 Additionally, we record noisy pixels in the anomaly database as random errors for users'
196 reference. Missing pixels are easy to handle since a missing pixel's value is usually set to
197 a special fill value such as 0. Hence, we focus primarily on filtering noisy pixels. Some of
198 the noisy pixels are outside the normal data range (i.e., clear errors), and can be filtered
199 easily using a threshold. However, some of the noisy pixels are within the normal range
200 but obviously "wrong" when compared with their neighbors. To address these scenarios, we
201 have designed a noisy pixel filtering algorithm, which can detect both types of noisy pixels
202 (outside normal data range or not) in two steps: (1) identify objects which contain potential
203 noisy pixels and (2) identify actual noisy pixels in each object.

204 *Detect Potential Noisy Objects.* In order to reduce the size of the feature space and improve
205 computation efficiency, we first divide an image into objects of $n \times n$ pixels each. For
206 each object, we extract features such as the absolute maximal difference between every two
207 adjacent pixels. Fig. 8 shows a distribution of the absolute maximal difference between
208 every two adjacent pixels in an object from an AVHRR image. The cutoff value in the
209 distribution is around 38. Empirically, this cutoff point can be utilized to find objects that
210 contain potential noisy pixels. However, a fixed threshold is not generic for all images in the
211 AVHRR data or for other data sets. Therefore, we have developed a clustering-based method
212 to automatically determine the "cutoff" threshold. The feature data is first clustered, then

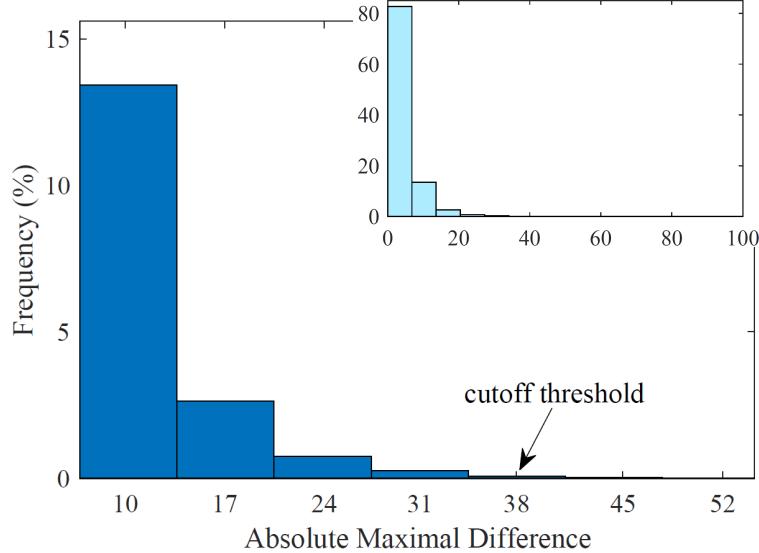


Fig. 8. Histograms showing the frequency distribution of absolute maximal differences between adjacent pixels in each object. The main plot (blue) highlights a subset of differences from the total distribution (cyan). The threshold for determining whether an object contains potential noisy pixels can be visually selected such that the probability of the absolute maximal difference converges toward zero.

213 the second order difference of cluster centroids (sorted in the ascending order) is computed.
 214 As illustrated in Fig. 9, the first peak of the second order difference (shown in red) is detected,
 215 and the cluster centroid value (shown in blue) right after the peak is set as the threshold to
 216 detect objects that contain potential noisy pixels.

217 *Identify Noisy Pixels.* For each object detected above, we divide its pixels into two groups
 218 based on the similarity of their features, and pixels in the smaller group are identified as
 219 noisy pixels. However, there is one potential issue. As illustrated in Fig. 10, the pixels (P1
 220 and P2 in blue box) from the edge of the Antarctica Peninsula are identified as noisy pixels in
 221 object B , but it looks normal in object A . In order to handle pixels that are located around
 222 edges or dynamic regions (e.g., ocean), we compute the absolute difference between each
 223 noisy pixel candidate and its neighbors. If a pixel is similar to the majority of its neighbors,
 224 the pixel is not noisy since we assume noisy pixels are random and do not occur together.

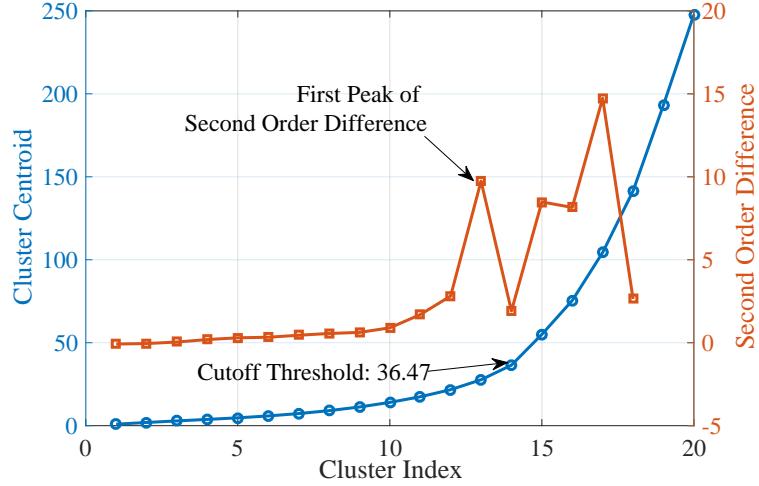


Fig. 9. A method for automatically determining the cutoff threshold. Step 1 finds the first peak of the second order difference (shown in red), here the cluster index is 13. Step 2 checks the cluster centroid series (shown in blue) to find the value 36.47 at index 14, that value is then used to detect objects containing potential noisy pixels.

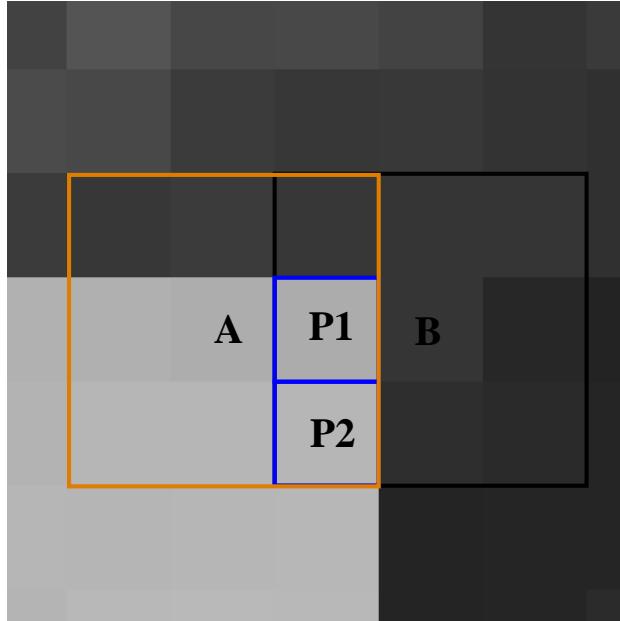


Fig. 10. One potential issue when identifying noisy pixels near edges and dynamic regions. Pixels P1 and P2 are observed as normal within object A (orange 3×3 pixels block), but are identified as outliers in object B (black 3×3 pixels block) due to the sharp transition at the edge of the Antarctic Peninsula.

225 *4.2. Object-Level Feature Extraction*

226 In this step, instead of extracting pixel-level features to emphasize the internal pixel-to-
227 pixel variance of an object, we extract object-level features to describe an object with respect
228 to its neighbors. Specifically, we extract three types of features for each object.

229

- Basic features: Mean and standard deviation of the object’s $n \times n$ pixels.

230

- Spatial features: Correlation and difference between the object and each of its eight
231 neighboring objects to capture the spatial dynamics of an object against its spatial
232 neighbors.

233

- Temporal features: Mean and standard deviation difference between the object and
234 each of its $2T$ temporal neighbors (i.e., $[t - T, t + T]$).

235 By transforming the satellite image time series into a feature space, we achieve three
236 goals. (1) Reduce the impact from noisy and missing pixels: For instance, a missing pixel
237 can be ignored by computing the mean and standard deviation of an object that contain
238 multiple pixels; but if all pixels of an object are missing pixels, the object is abandoned. (2)
239 Leverage the spatial features to avoid the problem of spatial heteroscedasticity, i.e., the local
240 distribution of the data is not uniform at different locations in an image. (3) Help remove
241 the impact from cyclic patterns and highlight local outliers.

242 *4.3. ST-Outliers Detection*

243 Satellite imagery data generally contain some cyclic patterns such as seasonal cycles. It is
244 thus reasonable to assume that the data follows Gaussian mixture models (GMM). However,
245 the number of clusters K requires prior knowledge and is very difficult to determine. Our
246 problem is even more complicated because the exact percentage of outliers is unknown. To
247 address these issues, we propose an extended Expectation-Maximization (EM) algorithm.
248 Fig. 12 illustrates the essential steps of our algorithm for detecting spatial-temporal outliers:
249 cluster initialization, cluster aggregation, and boundary optimization. The rationale behind
250 this approach is to focus on capturing the normal patterns, and treat small clusters and
251 stand-alone data points as outliers, because normal patterns occur more frequently than
252 outliers and belong to denser clusters. Next, we describe the three steps in more detail.

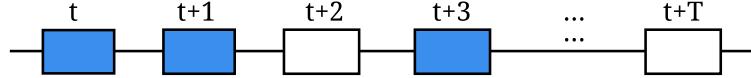


Fig. 11. A time series of objects at location (x, y) spanning time t to $t + T$. Normal objects are shown in blue and outlier objects are shown in white.

253 *Cluster initialization.* In this stage, we detect outliers from all objects $\{o_{x,y}^{t_0}, \dots, o_{x,y}^{t_T}\}$ at
254 location (x, y) within the maximal temporal span, as shown in Fig. 11. Note that spatial-
255 temporal outliers can be captured because both spatial and temporal features are also used
256 here. For example, if one object is significantly different from its spatial neighbors, this
257 object should be significantly far away from the others in the spatial feature space so that
258 it will be assigned to a small cluster or be a stand-alone object. Moreover, since the exact
259 number of clusters is unknown, we choose a relatively large cluster number ($K = 5$ as shown
260 in Fig. 12 (a)) to perform the multivariate EM algorithm (Andersson, 1958; Lee and Scott,
261 2012) in the object feature space. However, if K is too large, similar objects may be assigned
262 to different clusters.

263 *Cluster Aggregation.* To address this issue, we merge clusters with very similar statistical
264 models. For example, in Fig. 12, the top-left two clusters shown in red and green in step (a)
265 are merged into the larger red cluster in step (b). Let $\{\mathcal{C}_1, \dots, \mathcal{C}_K\}$ be the initial clusters,

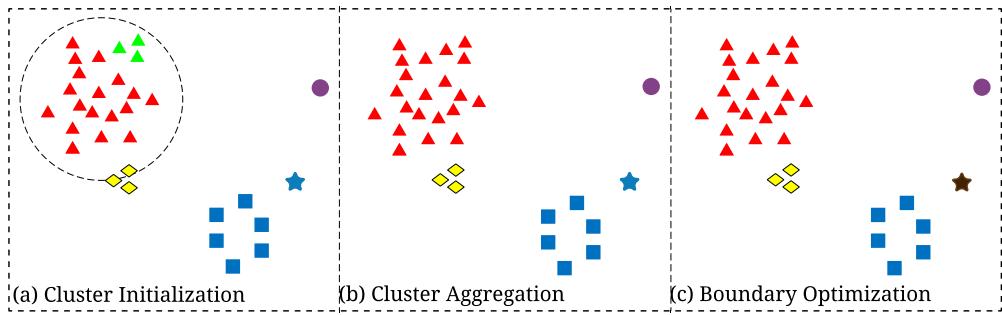


Fig. 12. Illustration of the three key steps of the proposed ST-Outliers detection algorithm. Object shapes represent the ground truth of different types of objects, and object colors indicate the clusters they belong to. In this example, step (a) identifies five different clusters; step (b) merges the green cluster into the red cluster; and step (c) separates the brown star object from the blue cluster.

266 and $\{\mathcal{N}_p(\mu_1, \Sigma_1), \dots, \mathcal{N}_p(\mu_K, \Sigma_K)\}$ be the corresponding statistical models, where p is the
 267 dimension of the feature space, and μ, Σ are the mean vector and variance matrix respectively.
 268 We define the impact domain of model $\mathcal{N}_p(\mu_i, \Sigma_i)$ as $A_\alpha^i = \{x \mid \Pr[(x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \leq$
 269 $\epsilon] \leq 1 - \alpha\}$. Intuitively, a greater α means a tighter impact domain. Based on the relation
 270 between \mathcal{C}_i and A_α^j for any (i, j) , we have the following three situations:

$$\mathcal{C}_i \subseteq A_\alpha^j \quad (1)$$

$$\mathcal{C}_i - \mathcal{C}_i \cap A_\alpha^j \neq \emptyset \quad (2)$$

$$\mathcal{C}_i \cap A_\alpha^j = \emptyset \quad (3)$$

271 The three situations are presented in Fig. 12 (a). Assuming the red triangles cluster
 272 represents \mathcal{C}_j , its impact domain A_α^j is within the dashed circle. In the case of 1, assuming
 273 \mathcal{C}_i is the green triangles cluster, then \mathcal{C}_i and \mathcal{C}_j can be merged together, because with high
 274 probability, the observations in \mathcal{C}_i may be from statistical model $\mathcal{N}_p(\mu_j, \Sigma_j)$. However, in
 275 the case of Eq. 3, assuming \mathcal{C}_i is the yellow rhombuses cluster, then the probability of these
 276 two clusters are from the same statistical model is very low and cannot be merged. To deal
 277 with the remaining case of 2, we define a new statistic W :

$$W = \frac{|\mathcal{C}_i - \mathcal{C}_i \cap A_\alpha^j|}{|\mathcal{C}_i|} \quad (4)$$

278 If W is larger than a given threshold, then we merge the i^{th} and j^{th} clusters. In this way,
 279 The situation in (1) becomes a special case of the situation in (2).

280 *Boundary optimization.* After cluster aggregation, we reestimate the statistical models based
 281 on the updated clustering results, and then optimize the boundary for each cluster. We
 282 remove an object from a cluster if the object does not follow the cluster's statistical model.
 283 For example, as shown in Fig. 12 (c), the blue hexagon is removed from its original cluster
 284 and becomes a stand-alone object. To do so, we test every object in the i^{th} cluster whether
 285 it is from population $\mathcal{N}_p(\mu_i, \Sigma_i)$.

286 *Outlier Identification.* We repeat the procedure in cluster aggregation and boundary optimi-
287 zation until there is no further change. After that, the small clusters and isolated objects
288 are considered as spatial-temporal outliers. Please note that the underlying assumption is
289 that the percentage of anomalous data in the whole data set is quite low.

290 *4.4. Anomalous Events Detection*

291 Usually, for domain experts, the ultimate goal of anomaly detection is not identifying
292 the individual outliers, but to find out the underlying processes that cause those outliers.
293 Thus, instead of raising an alarm for every single outlier, it is much more valuable to provide
294 an ordered list of anomalous events along with their specific rankings of importance or level
295 of interest. We accomplish this in the following three steps: feature space standardization,
296 ST-Outliers grouping, and events ranking.

297 *Feature Space Standardization.* In this step, we use z -score to compute the standardized
298 score for each type of feature in the feature space:

$$F_{stad} = \frac{F - \mu_F}{\sigma_F}, \quad (5)$$

299 where μ_F and σ_F are the mean and standard deviation of the feature, respectively. This
300 step is needed because each feature type has a different value range. By using a z -score
301 normalization, all features now fall within the same value range, thus allowing us to com-
302 pare/group outlier objects using the top- k most significant features.

303 *ST-Outliers Grouping and Events Ranking.* In this step, we sort the feature vector for each
304 outlier by the absolute value of F_{stad} , then group the outliers as illustrated in Fig. 13, where
305 the outliers in the same group have the same top- k categorical features. For each group,
306 we merge every outlier and its spatial and temporal neighbors into an event until there is
307 no further change. The intuition behind this grouping strategy is that the impact of an
308 underlying anomalous process usually spans a continuous time period, and from the spatial
309 perspective, more than one object is affected. Finally the events are ranked by the total
310 number of outliers in each event and reported through the web-based UI.

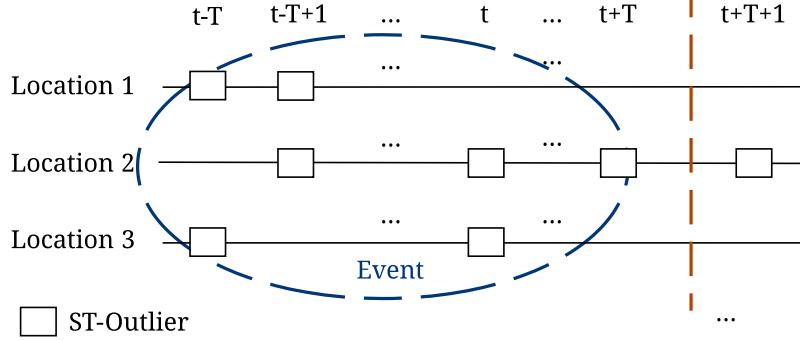


Fig. 13. An example of grouping ST-Outliers into anomalous events. ST-Outliers from three locations are detected at different time points and are similar in their top-k features. The outliers that occur within the same time window $[t - T, t + T]$ are then grouped together as a single event.

311 **5. Results and Discussion**

312 In this section, we first evaluate the performance of the proposed anomaly detection
313 framework with experiments carried out on two data sets: skin temperature derived from
314 AVHRR data and DMSP SSM/I Daily Polar Gridded Brightness Temperatures. The details
315 of parameter settings, and case studies of AVHRR and SSM/I data are discussed. Then,
316 the computational efficiency of the proposed method is analyzed both theoretically and
317 experimentally.

318 **5.1. AVHRR Data**

319 We used the South Pole AVHRR skin temperature data from July 24, 1981 to June 30,
320 2005. During the process of creating the anomaly database we discovered that the AVHRR
321 data is heavily contaminated with noise; this data set thus served as a good test case for
322 assessing the performance of our noise pixel filtering algorithm.

323 *Parameter Settings.* As mentioned in the algorithm design, it is inefficient to utilize clustering
324 with individual pixels due to the large number of pixels in satellite images. Instead, we divide
325 each image into objects of size $n \times n$ pixels to identify and filter out objects which could
326 potentially contain noisy pixels. We experimented with different n values, and setting $n = 3$
327 achieves a good balance between accuracy and efficiency. The assumption is that within

328 each 3×3 object the variance should be small. Once the absolute maximal difference is
 329 computed for each object, the data is transformed into a feature space where the algorithm
 330 described in Section 4.1 is applied.

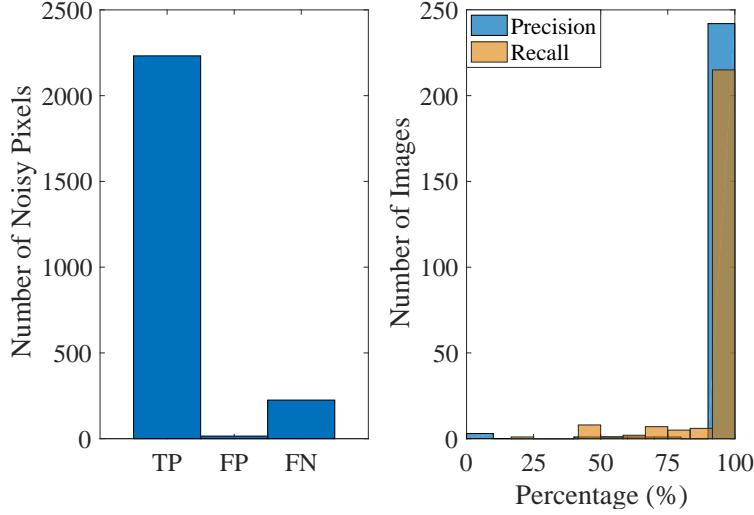


Fig. 14. Noisy pixel filtering in the AVHRR data set. Results show that our algorithm correctly identifies most of the noisy pixels (Left) and achieves high precision and recall for most of the images (Right).

331 *Algorithm Performance.* To assess the accuracy of the noise pixel filtering algorithm, we
 332 can validate the detected pixels visually using a random sample of 10% of the AVHRR
 333 images. We then quantified the performance using two widely-used pattern recognition
 334 metrics: *precision* and *recall*.

$$335 \quad Precision = \frac{TP}{TP + FP} \quad (6)$$

$$Recall = \frac{TP}{TP + FN} \quad (7)$$

336 True positive (TP) is the number of noisy pixels that are correctly detected as noise.
 337 False positive (FP) is the number of normal pixels that are incorrectly identified as noise by
 338 the algorithm. And false negative (FN) is the number of noisy pixels that are incorrectly
 339 classified as normal. Fig. 14 shows the distribution of each metric evaluated for the data
 340 set. The average *precision* and *recall* are 98.1% and 95.7%, respectively. This indicates
 341 that our noise filtering algorithm is effective, which can be used for data quality control

342 and filtering, and can help reduce the bias introduced by such noisy pixels in the anomaly
343 detection process.

344 *5.2. SSM/I Data*

345 SSM/I data is a primary resource for estimating sea ice concentrations and classifying
346 sea ice types. While the data set has been continuously collected for nearly 30 years, from
347 July 9, 1987 to June 30, 2015, it has been distributed without a thorough quality assessment.
348 New data defects have been discovered by our framework and confirmed by specialists. Here,
349 we use a case study from the North Pole data set to demonstrate the effectiveness of our
350 approach.

351 *Parameter Settings.* For each image in the SSM/I data set, an object is defined as a 2×2
352 block of pixels, i.e., $n = 2$. Here we use a smaller block size because SSM/I data has a lower
353 resolution than that of AVHRR data (25km vs 5km), and $n = 2$ is the minimum requirement
354 for removing the impact of missing or noisy pixels. With a vector size of four (four pixels
355 in each object), we compute the spatial correlation between an object and its eight spatial
356 neighbors. The temporal neighborhood spans 2 days before and after each object (i.e.,
357 $T = 2$) to help smooth out dynamic attributes such as clouds, which usually pass through
358 the area in 1 to 2 days. The temporal neighborhood of 5 days can therefore reduce random
359 noise without filtering out real, dynamic, or periodic fluctuations in the time series. For
360 each object, we extract six features: the mean and standard deviation of the pixels, a spatial
361 correlation vector and a difference vector between the object and its eight neighbors, and the
362 mean and standard deviation between the object and its temporal neighbors (+/- 2 days).
363 The object features are then used for the detection of ST-Outliers and anomaly events.

364 As the inherent number of models of the data is uncertain, Silhouette coefficients (Rousseeuw,
365 1987) are used to evaluate the clustering's performance for differing initial conditions. Be-
366 cause the clustering quality is positively related to the Silhouette coefficient, the number of
367 initial clusters is chosen where the Silhouette coefficient reaches a maxima. Fig. 15 shows
368 how the Silhouette coefficient changes with varying number of initial clusters with random
369 samples of 10% of the SSM/I data. In addition, we used 10% as an upper bound for the total
370 number of outliers. As with a relatively larger boundary, we maintain a high potential for

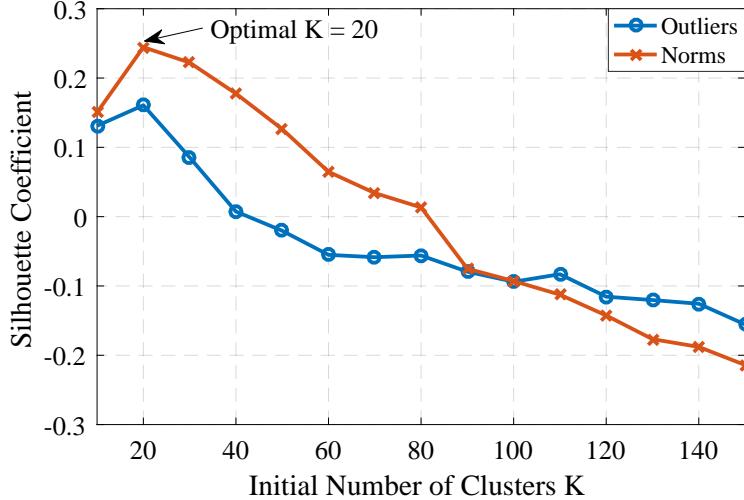


Fig. 15. Choosing the initial number of clusters K . Silhouette coefficients are computed for the normal and outlier clusters using varying numbers of initial clusters. The optimal number of clusters $K = 20$ is selected when Silhouette coefficients reach a maxima for both normal and outlier clusters.

371 including all anomalous events in the database. We aggregate outliers from the smallest size
 372 of cluster until the total number of outliers exceeds 10%. Thus, the resulted total outliers
 373 can be equal or less than 10%, which depends on the real partitions of norms and anomalies.

Table 1: List of Top Ranked Anomalous Events

Event Duration	Category
1990.01.01-1991.12.31	Sensor Failure
2012.07.09-2012.07.12	Natural Event
2012.07.27-2012.07.29	Natural Event
2002.06.27-2002.06.29	Natural Event
2003.10.24-2003.10.25	Natural Event
2011.02.01-2011.02.04	Unknown
2010.09.02-2010.09.04	Systematic Error

374 *Case Studies.* Table 1 shows a partial list of top-ranked anomalous events discovered and
 375 reported by our framework. Because no ground truth exists for this data, we collaborated

376 with other geoscientists and studied previous literature for the region to identify several of
 377 the most significant anomalous events; these events exhibited systematic error or evidence
 378 of natural events to help validate our technique. Here we discuss several of those events in
 379 detail.

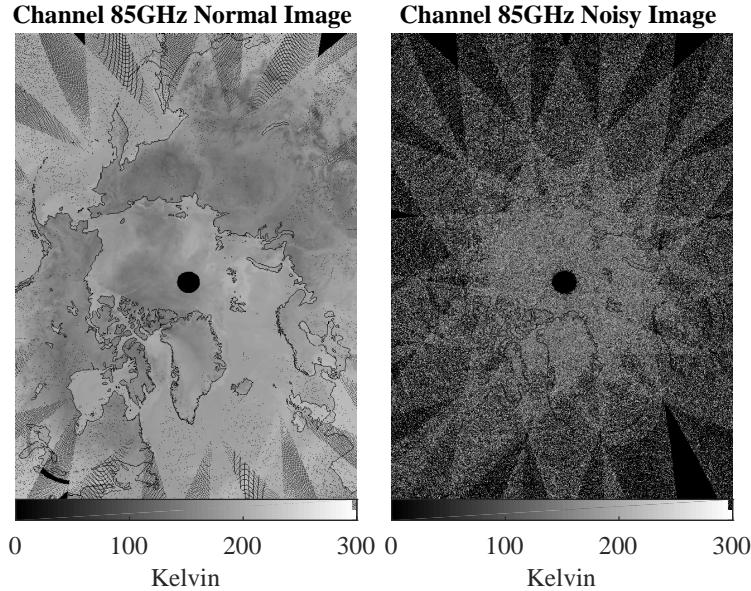


Fig. 16. SSM/I Data Defect: random noise within the image due to sensor failure.

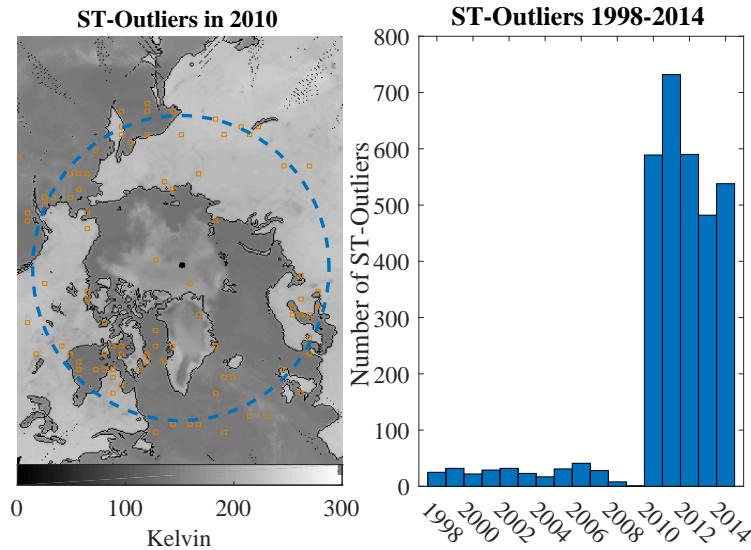


Fig. 17. A systematic error from 2010. (Left) The majority of ST-Outliers were detected around coastal regions. (Right) A significant shift in the number of ST-Outliers beginning in 2010.

380 **Event 1:** The first event was found within the 85.5 GHz channel. The 85.5 GHz vertical
 381 channel exhibited a degradation in signal from January 1, 1990 to December 31, 1991,
 382 while the horizontal channel degraded between January 1, 1991 to December 31, 1991. The
 383 origin of the event was a sensor failure. All the images collected during that period were
 384 corrupted with random noise, as shown in Fig. 16. This data defect could significantly affect
 385 prior analysis and computation of the region's climatology. While only part of the defect
 386 (degradation in 1991) was documented (Maslanik and Stroeve., 2004, updated 2016), our
 387 algorithm was able to uncover new errors within the 85.5 GHz channel. The issues with the
 388 1990 data were reported to the NSIDC to help alert users.

389 **Event 2:** A sharp increase in the frequency of anomalies was discovered following 2010.
 390 The left image in Fig. 17 shows the spatial locations of ST-Outliers (orange squares), mainly
 391 detected by temporal mean and standard deviation features in 2010. As seen in the figure, the

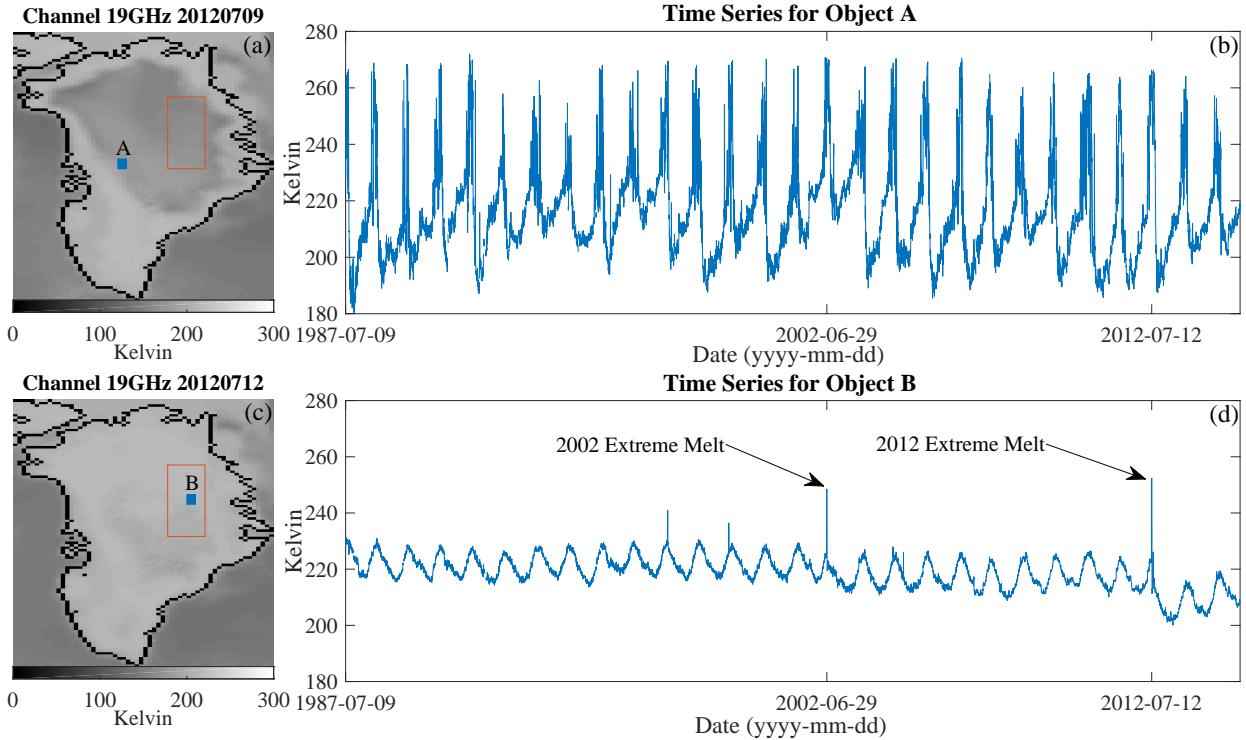


Fig. 18. SSM/I anomalous event: Summer extreme melt in 2002 and 2012. The red boxes in (a) and (c) represent regions which rarely melt. (b) The time series for object A, melting occurs regularly every summer. (d) The time series for object B, which was impacted by the extreme melt events in both 2002 and 2012.

392 majority of outliers are located around coastal areas. We determined that this surge of events
393 was due to an inconsistency between measurements from the sensors on DMSP satellites F13
394 and F17 (where data from the F13 sensor was used until 2010, then transitioning to F17).
395 The NSIDC conducted an inter-comparison of the F13 and F17 data where products from
396 the two sensors overlapped. Similar to our findings, larger differences, sometimes up to
397 10 K, were found in regions of sharp gradients of brightness temperature, usually around
398 coastlines and sea ice extents (Maslanik and Stroeve., 2004, updated 2016). In addition to
399 the discovery of this systematic error, we were also able to generate a detailed report on the
400 spatial-temporal locations of each outlier for the event. This last product could potentially
401 accelerate the quality control process.

402 **Event 3 and 4:** Events from 2002 and 2012 are top ranked, consistent with two extreme
403 melt events that occurred during those years (Nghiem et al., 2012; Steffen et al., 2004). As
404 shown in Fig. 18 (a) and (c), the region outside of the red box regularly melts during the
405 summer months, while in 2002 and 2012, that melting process abnormally expanded into
406 part of the region within the red box. Our algorithm effectively detected the locations and
407 dates of regions that normally would not melt when they exhibited abnormal behavior in
408 2002 and 2012. Fig. 18 (d) shows an example time series from one of those locations (object
409 B) between 1987 and 2015. The brightness temperature reveals a sharp increase during the
410 summers of 2002 and 2012. In Fig. 18 (c), most rare melt objects are located in the red
411 box. In addition, all rare melt locations detected were found to have averaged 5 melt days
412 over the years. Thus, our framework can provide a way to explore potential interesting rare
413 events without manually sifting through the data.

414 **Event 5:** Besides the widely known extreme melt events in 2002 and 2012, the algorithm
415 also detected an unusually warm event during October 2003. This event caused one location,
416 which typically would begin to freeze during this time, to experience about an extra month
417 worth of melt days. Fig. 19 shows this unusually long melt event in October 2003. From the
418 time series in this figure, spanning 2002 to 2004, the brightness temperatures of these three
419 adjacent regions normally would reveal a mean value which decreases during the month of
420 October. In 2003 though, there were sharp changes, reaching a maxima one would expect
421 during the summer. Our algorithm accurately captured this event with the presence of

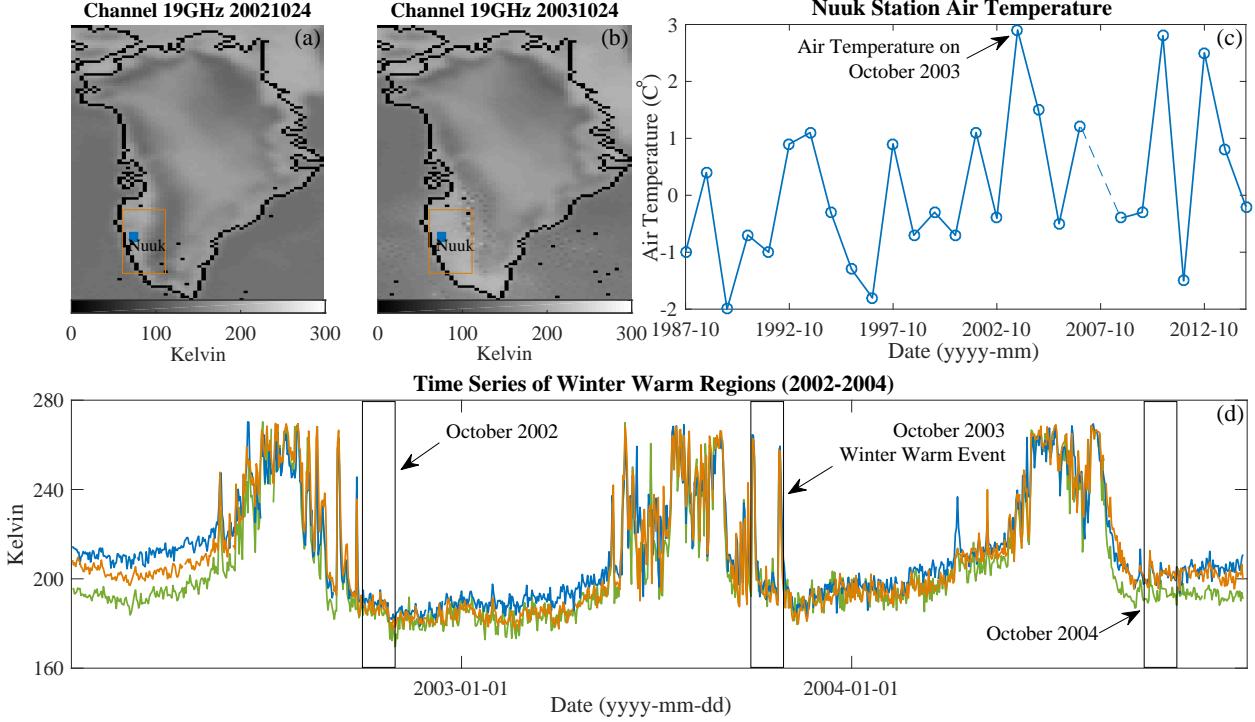


Fig. 19. SSM/I anomalous event: October 2003 winter warm event. (a) and (b) The region inside the box on October 24, 2003 has a higher average brightness temperature than that of the same region on October 24, 2002. (c) The warm event correlated with the air temperature at Nuuk station. (d) The brightness temperature of objects around Nuuk station show a sharp increase during October 2003.

422 seasonality and noise. The event was found to be related to the Atlantic Subpolar Gyre
 423 Warming (southwest to Nuuk at Greenland) in October 2003 (Stein, 2005). Our finding is
 424 also consistent with a surface air temperature obtained from the Nuuk station where October
 425 2003 was a record high between 1987 and 2015 (2007 data is missing), as seen in Fig. 19.

426 Other significant events detected by our framework have been shared with our collabo-
 427 rators for further investigation.

428 *5.3. Computational Efficiency*

429 The computational efficiency of the proposed method was analyzed with two phases: fea-
 430 ture extraction and anomaly detection. For the feature extraction process, the computation
 431 complexity is $O(tmn)$, where t is the number of images and (m, n) are the number of columns
 432 and rows of each image. For anomaly detection, the algorithm complexity is $O(krL)$, where

433 k is the number of clusters, r is the number of clustering iterations, and L is the length of a
 434 time series with extracted features. Table. 2 shows the average processing time for feature
 435 extraction on a SSM/I image, and the average processing time for anomaly detection for
 436 the longest time series (10,218 days). Since there are missing data in the SSM/I data, the
 437 time series have different length, which allows us to evaluate the real algorithm complexity
 438 for anomaly detection. Fig. 20(a) shows the anomaly detection time as a function of time
 439 series length. The actual computation time is linear and consistent with theoretical com-
 440 plexity. In addition, since there is no dependence among data files during feature extraction
 441 and anomaly detection, our method can be easily parallelized using multiple computers or
 442 CPUs. For example, Fig. 20(b) shows the different anomaly detection time for a total of
 443 24,356 time series (64 GB) with 1 to 4 CPUs.

Table 2: Computational Efficiency of Feature Extraction and Anomaly Detection

Feature	Complexity	Image Size (m ,n)	Process Time (s)	I/O (s)
Extraction	$O(tmn)$	(304, 448)	0.848	0.171
Anomaly	Complexity	Time Series Length	Process Time (s)	I/O (s)
Detection	$O(krL)$	10218	1.189	0.321

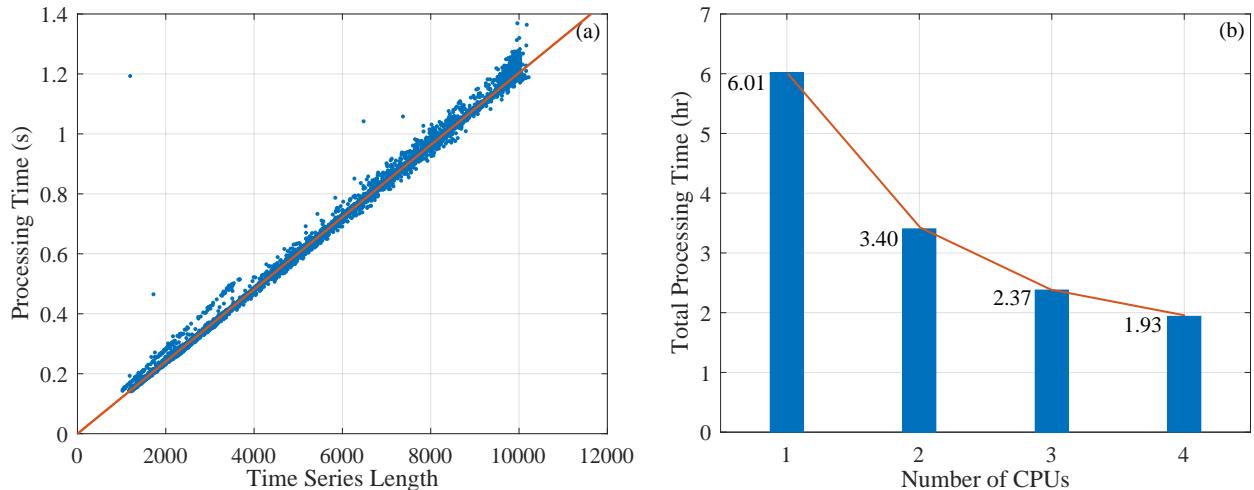


Fig. 20. (a) Illustration of the linear complexity of anomaly detection algorithm. (b) Demonstration of total anomaly detection time with multiple CPUs.

444 **6. Related Work**

445 Anomaly detection has been a topic of active research (Chandola et al., 2009; Gupta
446 et al., 2014; Bhaduri et al., 2011), with the majority of research focusing on point anomaly
447 detection. For example, one-class Kernel Fisher Discriminants (Roth, 2004) was proposed as
448 a method of learning a discriminative boundary close to the normal instances, such that any
449 test instance that does not fall within the learned boundary is considered anomalous. Knorr
450 and Ng (Knox and Ng, 1998; Knorr et al., 2000) developed several distance-based outlier
451 detection algorithms where the core methodology was to score a data instance by counting
452 the number of nearest neighbors that are within a distance d ; data instances with the lowest
453 scores were considered outliers. As summarized in Chandola et al. (2009), techniques for
454 detecting point anomalies can be categorized into the following types: classification, nearest
455 neighborhood, clustering, statistical modeling, information, and spectrum based.

456 Point anomaly detection techniques are extensively used in scientific data, especially in
457 climate research to identify sensor faults and significant events. However, for contextual
458 anomalies that fall within normal data ranges or hide in seasonal patterns, direct use of
459 those classical outlier detection algorithms will fail. Hence, a series of anomaly detection
460 methods leveraging spatial or temporal attributes have been proposed (Chandola et al.,
461 2009; Sun and Chawla, 2004; Alvera-Azcárate et al., 2012). For instance, in the work of
462 Vallis et al., long term time series data was decomposed to remove seasonality before using
463 statistical modeling to find anomalous points (Vallis et al., 2014). Spatial Local Outlier
464 Measure (SLOM) proposed by Sun and Chawla (Sun and Chawla, 2004) can capture the
465 local behavior of datum in its spatial neighborhood. Thus, local spatial outliers can be
466 discovered, which are usually missed by global techniques like “three standard deviations
467 away from the mean”. This type of approach handles either temporal or spatial context.

468 In our work, we detect contextual anomalies in both spatial and temporal contexts. The
469 typical method for spatial-temporal outlier detection consists of three steps (Gupta et al.,
470 2014): (1) Identify spatial objects from the input data. (2) Objects are analyzed to find
471 spatial outliers. (3) Spatial outliers are then verified if they are also temporal outliers. This
472 type of approach sequentially executes spatial and temporal outlier detection, consequently
473 the output is the intersection set of spatial and temporal outliers. For example, Birant and

474 Kut (Birant and Kut, 2007) proposed a density-based ST-Outlier detection method. They
475 use DBSCAN (Birant and Kut, 2007) to identify spatial outliers first, then validate with
476 their temporal neighbors. If no significant temporal difference was found, the candidate is
477 abandoned. Similarly, Cheng and Li (Cheng and Li, 2006) proposed a four-step method
478 to address the semantic and dynamic properties of geographic phenomena for ST-Outlier
479 detection. However, in order to capture all possible data defects or significant natural events,
480 the union set of spatial and temporal outliers has to be detected. Therefore, we have proposed
481 a single-step ST-Outlier detection algorithm using combined spatial-temporal features, with
482 which we are able to get all the ST-Outliers.

483 Furthermore, while most of the existing work only detects individual outliers, we aggre-
484 gate ST-Outliers into anomalous events, which provide more insights into the data as they
485 help reveal underlying processes that may have triggered groups of outliers. This direction
486 of work is related to collective anomalies (Chandola et al., 2009), which have been investi-
487 gated in some recent work, using statistical models. Das and Neil (Das et al., 2008) used
488 Whats Strange About Recent Events (WSARE) to detect anomalous clusters of counts in
489 categorical data and performed testing to determine if a cluster is a significant anomalous
490 pattern. And a Flexible Genre Model (FGM) was proposed by Xiong et al. (Xiong et al.,
491 2011) to discover anomalous behaviors of groups of points. In contrast to those supervised
492 or semi-supervised methods that assume availability of enough training data with ground
493 truth, our approach is unsupervised and requires no prior knowledge of the data sets.

494 7. Conclusion

495 In this work, we have proposed a novel unsupervised contextual anomaly detection frame-
496 work, which can effectively filter out noisy pixels, discover spatial-temporal outliers, and
497 group those outliers into anomalous events. With this framework, we have successfully iden-
498 tified significant data quality issues and natural events that were subsequently validated by
499 geoscientists. We expect that our experience developing the framework will not only ad-
500 vance anomaly detection in remote sensing but also provide new approaches for speeding up
501 scientific knowledge discovery, especially when combined with interactive data mining and
502 visualization tools. As with any large-scale project, the development is an ongoing effort.

503 With the support of the National Snow and Ice Data Center (NSIDC), we plan to make our
504 tools publicly available and will continue improving the tools and methodologies, as well as
505 expanding the range of remotely sensed data sets that we can support. We look forward to
506 collaboration and feedback from the community to drive further improvements.

507 **Acknowledgments**

508 This work was supported in part by the National Science Foundation (NSF) under grant
509 No.1251257. We thank Garrett Campbell for his advice and assistance during the early stages
510 of this project. We also thank Cathy Fowler and Richard McAllister for their suggestions on
511 user interface design.

512 **References**

513 Alvera-Azcárate, A., et al. Outlier detection in satellite data using spatial coherence. *Remote
514 Sensing of Environment* 2012;119:84–91.

515 Andersson, T.. *Multivariate statistical analysis*. John Wiley and Sons, Inc., New York,
516 1958.

517 Bhaduri, K., Matthews, B.L., Giannella, C.R.. Algorithms for speeding up distance-based
518 outlier detection. In: *Proceedings of the 17th International Conference on Knowledge
519 Discovery and Data Mining*. ACM; 2011. p. 859–867.

520 Birant, D., Kut, A.. ST-DBSCAN: An algorithm for clustering spatial-temporal data.
521 *Data and Knowledge Engineering* 2007;60(1):208–221.

522 Bokhorst, S., Tømmervik, H., Callaghan, T., Phoenix, G., Bjerke, J.. Vegetation recovery
523 following extreme winter warming events in the sub-Arctic estimated using NDVI from
524 remote sensing and handheld passive proximal sensors. *Environmental and Experimental
525 Botany* 2012;81:18–25.

526 Borg, E., Fichtelmann, B., Asche, H.. Assessment for remote sensing data: accuracy of
527 interactive data quality interpretation. In: *International Conference on Computational
528 Science and Its Applications*. Springer; 2011. p. 366–375.

529 Chandola, V., Banerjee, A., Kumar, V.. Anomaly detection: a survey. *ACM Computing*
530 *Surveys* 2009;41(3):15.

531 Cheng, T., Li, Z.. A multiscale approach for spatio-temporal outlier detection. *Transactions*
532 *in GIS* 2006;10(2):253–263.

533 Chuck, F., Maslanik, J., Haran, T., Scambos, T., Key, J., Emery, W.. AVHRR Polar
534 Pathfinder Twice-daily 5 km EASE-Grid Composites V003, [July 1981 to October 1997].
535 Boulder, Colorado USA: National Snow and Ice Data Center [January 2016 Accessed]
536 2000, updated 2007;.

537 Coumou, D., Rahmstorf, S.. A decade of weather extremes. *Nature Climate Change*
538 2012;2(7):491–496.

539 Das, K., Schneider, J., Neill, D.B.. Anomaly pattern detection in categorical datasets.
540 In: *Proceedings of the 14th International Conference on Knowledge Discovery and Data*
541 *Mining*. ACM; 2008. p. 169–176.

542 Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., Mearns, L.O..
543 Climate extremes: observations, modeling, and impacts. *Science* 2000;289(5487):2068–
544 2074.

545 Ferguson, C.R., Villarini, G.. Detecting inhomogeneities in the Twentieth Century Re-
546 analysis over the central United States. *Journal of Geophysical Research: Atmospheres*
547 2012;117(D5).

548 Gonzalez, A.R., Datcu, M.. Data cleaning: approach for Earth observation image informa-
549 tion mining. In: *ESA-EUSC-JRC 2011 Image Information Mining: Geospatial Intelligence*
550 *from Earth Observation Conference*. 2011. p. 117–120.

551 Gupta, M., Gao, J., Aggarwal, C., Han, J.. Outlier detection for temporal data. *Synthesis*
552 *Lectures on Data Mining and Knowledge Discovery* 2014;5(1):1–129.

553 Hussain, M., Chen, D., Cheng, A., Wei, H., Stanley, D.. Change detection from
554 remotely sensed images: From pixel-based to object-based approaches. *ISPRS Journal of*
555 *Photogrammetry and Remote Sensing* 2013;80:91–106.

556 Isaac, D., Lynnes, C.. Automated data quality assessment in the intelligent archive. White
557 Paper prepared for the Intelligent Data Understanding Program 2003;17.

558 Knorr, E.M., Ng, R.T., Tucakov, V.. Distance-based outliers: algorithms and applications.
559 The International Journal on Very Large Data Bases 2000;8(3-4):237–253.

560 Knox, E.M., Ng, R.T.. Algorithms for mining distance based outliers in large datasets. In:
561 Proceedings of the International Conference on Very Large Data Bases. Citeseer; 1998. p.
562 392–403.

563 Lee, G., Scott, C.. EM algorithms for multivariate gaussian mixture models with truncated
564 and censored data. Computational Statistics and Data Analysis 2012;56(9):2816–2829.

565 Li, S., Dragicevic, S., Castro, F.A., Sester, M., Winter, S., Coltekin, A., Pettit, C., Jiang,
566 B., Haworth, J., Stein, A., et al. Geospatial big data handling theory and methods: A
567 review and research challenges. ISPRS Journal of Photogrammetry and Remote Sensing
568 2016;115:119–133.

569 López-Moreno, J.I., El-Kenawy, A., Revuelto, J., Azorín-Molina, C., Morán-Tejeda,
570 E., Lorenzo-Lacruz, J., Zabalza, J., Vicente-Serrano, S.M.. Observed trends and fu-
571 ture projections for winter warm events in the Ebro basin, northeast Iberian Peninsula.
572 International Journal of Climatology 2014;34(1):49–60.

573 Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A., Jie, W.. Remote
574 sensing big data computing: challenges and opportunities. Future Generation Computer
575 Systems 2015;51:47–60.

576 Maslanik, J., Stroeve, J.. DMSP SSM/I-SSMIS daily polar gridded bright-
577 ness temperatures, version 4. [July 1987 to June 2015]. Boulder, Colorado
578 USA: National Snow and Ice Data Center Distributed Active Archive Center doi:
579 <http://dx.doi.org/105067/AN9AI8EO7PX0> [January 2016 Accessed] 2004, updated 2016;.

580 Matthes, H., Rinke, A., Dethloff, K.. Recent changes in Arctic temperature ex-
581 tremes: warm and cold spells during winter and summer. Environmental Research Letters
582 2015;10(11):114020.

583 McCright, A.M., Dunlap, R.E., Xiao, C.. The impacts of temperature anomalies and po-
584 litical orientation on perceived winter warming. *Nature Climate Change* 2014;4(12):1077–
585 1081.

586 Muster, S., Langer, M., Abnizova, A., Young, K.L., Boike, J.. Spatio-temporal sensitivity
587 of MODIS land surface temperature anomalies indicates high potential for large-scale land
588 cover change detection in Arctic permafrost landscapes. *Remote Sensing of Environment*
589 2015;168:1–12.

590 Nghiem, S., Hall, D., Mote, T., Tedesco, M., Albert, M., Keegan, K., Shuman, C.,
591 DiGirolamo, N., Neumann, G.. The extreme melt across the Greenland Ice Sheet in
592 2012. *Geophysical Research Letters* 2012;39(20).

593 Rathore, M.M.U., Paul, A., Ahmad, A., Chen, B.W., Huang, B., Ji, W.. Real-time
594 big data analytical architecture for remote sensing application. *IEEE Journal of Selected
595 Topics in Applied Earth Observations and Remote Sensing* 2015;8(10):4610–4621.

596 Roth, V.. Outlier detection with one-class kernel fisher discriminants. In: *Advances in
597 Neural Information Processing Systems*. 2004. p. 1169–1176.

598 Rousseeuw, P.J.. Silhouettes: a graphical aid to the interpretation and validation of cluster
599 analysis. *Journal of Computational and Applied Mathematics* 1987;20:53–65.

600 Song, X., Wu, M., Jermaine, C., Ranka, S.. Conditional anomaly detection. *IEEE
601 Transactions on Knowledge and Data Engineering* 2007;19(5):631–645.

602 Steffen, K., Nghiem, S., Huff, R., Neumann, G.. The melt anomaly of 2002 on the
603 Greenland Ice Sheet from active and passive microwave satellite observations. *Geophysical
604 Research Letters* 2004;31(20).

605 Stein, M.. North Atlantic subpolar gyre warming—impacts on Greenland offshore waters.
606 *Journal of Northwest Atlantic Fishery Science* 2005;36:43–54.

607 Sun, P., Chawla, S.. On local spatial outliers. In: *Fourth International Conference on Data
608 Mining*. IEEE; 2004. p. 209–216.

609 Vallis, O., Hochenbaum, J., Kejariwal, A.. A novel technique for long-term anomaly
610 detection in the cloud. In: 6th USENIX Workshop on Hot Topics in Cloud Computing.
611 2014. .

612 Xiong, L., Póczos, B., Schneider, J.G.. Group anomaly detection using flexible genre
613 models. In: Advances in Neural Information Processing Systems. 2011. p. 1071–1079.

List of Figure Captions

1	AVHRR skin temperature data with noise and missing pixels. Examples shown for September 25 and 26, 1981.	3
2	Examples illustrating unusual time series and level shifting detected in the brightness temperature of several adjacent pixels.	6
3	An example of a local spatial outlier: Pixel A and B have the same value. However, pixel A is considered an outlier because of its behavior with respect to neighboring pixels whereas Pixel B is not because of its coherence with neighboring pixels.	7
4	An illustration of objects and local spatial-temporal neighborhoods. Each object is defined as a block of 2×2 pixels at a specific time. For the orange object at time t , its spatial neighbors include the 8 adjacent objects surrounding at time t (4 in blue and 4 in white), and its temporal neighbors are the other orange objects within the time range of $[t - T, t + T]$	8
5	An overview of the anomaly detection framework.	9
6	Web-based user interface: Overall layout and key steps showing how anomalies are located.	10
7	Usage example: Querying the Weddell Sea and coast for anomalies.	11
8	Histograms showing the frequency distribution of absolute maximal differences between adjacent pixels in each object. The main plot (blue) highlights a subset of differences from the total distribution (cyan). The threshold for determining whether an object contains potential noisy pixels can be visually selected such that the probability of the absolute maximal difference converges toward zero.	13
9	A method for automatically determining the cutoff threshold. Step 1 finds the first peak of the second order difference (shown in red), here the cluster index is 13. Step 2 checks the cluster centroid series (shown in blue) to find the value 36.47 at index 14, that value is then used to detect objects containing potential noisy pixels.	14

10	One potential issue when identifying noisy pixels near edges and dynamic regions. Pixels P1 and P2 are observed as normal within object A (orange 3×3 pixels block), but are identified as outliers in object B (black 3×3 pixels block) due to the sharp transition at the edge of the Antarctic Peninsula. . . .	14
11	A time series of objects at location (x, y) spanning time t to $t + T$. Normal objects are shown in blue and outlier objects are shown in white.	16
12	Illustration of the three key steps of the proposed ST-Outliers detection algorithm. Object shapes represent the ground truth of different types of objects, and object colors indicate the clusters they belong to. In this example, step (a) identifies five different clusters; step (b) merges the green cluster into the red cluster; and step (c) separates the brown star object from the blue cluster.	16
13	An example of grouping ST-Outliers into anomalous events. ST-Outliers from three locations are detected at different time points and are similar in their top-k features. The outliers that occur within the same time window $[t - T, t + T]$ are then grouped together as a single event.	19
14	Noisy pixel filtering in the AVHRR data set. Results show that our algorithm correctly identifies most of the noisy pixels (Left) and achieves high precision and recall for most of the images (Right).	20
15	Choosing the initial number of clusters K . Silhouette coefficients are computed for the normal and outlier clusters using varying numbers of initial clusters. The optimal number of clusters $K = 20$ is selected when Silhouette coefficients reach a maxima for both normal and outlier clusters.	22
16	SSM/I Data Defect: random noise within the image due to sensor failure. . . .	23
17	A systematic error from 2010. (Left) The majority of ST-Outliers were detected around coastal regions. (Right) A significant shift in the number of ST-Outliers beginning in 2010.	23

18	SSM/I anomalous event: Summer extreme melt in 2002 and 2012. The red boxes in (a) and (c) represent regions which rarely melt. (b) The time series for object A, melting occurs regularly every summer. (d) The time series for object B, which was impacted by the extreme melt events in both 2002 and 2012.	24
19	SSM/I anomalous event: October 2003 winter warm event. (a) and (b) The region inside the box on October 24, 2003 has a higher average brightness temperature than that of the same region on October 24, 2002. (c) The warm event correlated with the air temperature at Nuuk station. (d) The brightness temperature of objects around Nuuk station show a sharp increase during October 2003.	26
20	(a) Illustration of the linear complexity of anomaly detection algorithm. (b) Demonstration of total anomaly detection time with multiple CPUs.	27