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Abstract

Massive amounts of remotely sensed data are being generated at an unprecedented rate,
offering new opportunities for data-driven scientific discovery in the Earth sciences and
related domains. However, due to the sheer volume of remotely sensed data and the lack
of effective data analytics tools, most data remain in the dark, with little to no quality
assurance and limited access to high-level analytical tools. Anomaly detection, which aims to
find scenarios that differ from the norm, is of particular importance when analyzing remotely
sensed data. However, most previous work has focused on identifying individual anomalies,
and required prior knowledge of the ground truth for supervised learning. In this work,
we propose an unsupervised anomaly detection framework that requires no prior knowledge
and is capable of detecting anomalous events, which we define as groups of outlier objects
differing contextually from their spatial and temporal neighbors. Such contextual anomalies
can be useful in discovering both hidden quality issues in the data and real natural events
of significance. We demonstrate the effectiveness of our framework via Web-based tools
developed for visualizing and analyzing such contextual anomalies, using two types of data.
The techniques and tools developed in this project are generally usable for a diverse set of

satellite products and will be made publicly available with the support of the National Snow
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1. Introduction

Recent advances in remote sensing technology have revolutionized the way remotely
sensed (RS) data is acquired, managed, and analyzed (Ma et al., 2015; Rathore et al.,
2015). More than 200 on-orbit satellites are currently capturing continuous Earth observa-
tions (Ma et al., 2015), offering great opportunities for advancing the scientific understanding
of the Earth’s systems. However, as the proliferation of these products increases, so does
the complexity needed for processing them. The variety of data can vary greatly, even
within individual data sets (Li et al., 2016). Therefore, human expert-driven data anal-
ysis, a laborious and time-consuming process, remains the mainstream approach for data
quality assessment (Isaac and Lynnes, 2003; Gonzalez and Datcu, 2011; Borg et al., 2011)
and scientific knowledge discovery (Steffen et al., 2004; Ferguson and Villarini, 2012). The
sheer volume and complexity of RS data have hampered adequate quality assessment or
higher-level analysis such as anomaly detection. While Earth scientists are very interested
in studying anomalies such as climate extremes (Coumou and Rahmstorf, 2012; McCright
et al., 2014; Easterling et al., 2000; Muster et al., 2015), finding all such anomalies from mas-
sive data sets is challenging. Furthermore, RS data is often contaminated with noise or errors
which need to be identified and then either corrected or eliminated. Thus, a high demand
exists for effective and generic anomaly detection tools which require minimal involvement
of domain experts while having the ability to adapt to diverse data sets. Anomaly detection
in RS data is challenging for several reasons. (1) Prior models may not exist for determining
what constitutes anomalous data. Additionally, unknown types of anomalies may exist in the
data. (2) Remotely sensed imagery is often contaminated with noisy pixels or missing data.
(3) The dynamic nature of spatial and temporal variations in multiple frequency channels
need to be considered. (4) Due to the high volume and variety of RS data, validated ground
truth data sets are not normally available for supervised learning. Additionally, there will

always exist unusual anomalies in the data that exceed the expectations or prior knowledge
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of Earth scientists. Unsupervised approaches are thus preferred. In this work, we propose a
clustering-based framework for anomaly detection, which requires no domain knowledge of
the data set and enables automated anomaly detection on diverse data sets.

While most previous research has focused on detecting point anomalies (Chandola et al.,
2009; Gupta et al., 2014; Bhaduri et al., 2011), which are individual data points that are
considered globally anomalous (e.g., extreme low temperature or high wind), our work fo-
cuses on the less-studied conteztual anomalies (Sun and Chawla, 2004; Alvera-Azcérate et al.,
2012), especially in the dynamics of spatial and temporal domains. Contextual anomalies are
relative anomalies under specific contexts. For example, a high air temperature trend in the
summer may be normal, but if the same temperature trend occurs during a winter period
it could potentially be due to data defects or anomalous atmospheric processes (Matthes
et al., 2015; Lépez-Moreno et al., 2014; Bokhorst et al., 2012). Such contextual anomalies
are of particular importance in Earth sciences research. And an effective solution for detect-
ing contextual anomalies should leverage both spatial and temporal coherence in localized
regions. The assumption is that in a natural environment, pixels in close proximity share
similar morphology and evolve gradually over time, while anomalous pixels would have low

coherence with their neighbors in space and time.

September 25, 198 September 26, 198

B Noisy pixels Missing pixels

Fig. 1. AVHRR skin temperature data with noise and missing pixels. Examples shown for

September 25 and 26, 1981.
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One issue to note is the noise or errors in the data. Fig. 1 shows two snapshots of the
Advanced Very High Resolution Radiometer (AVHRR) skin temperature data for the South
Pole (Chuck et al., 2000, updated 2007). The data values fluctuate from one location to
another, as well as over time at the same location. Despite this spatial-temporal dynamic, the
data record is also contaminated by random noise from clouds, instrumentation, and missing
data. To reduce the bias or disturbance from noisy data when searching for interesting
anomalies, we have developed a noisy pixel filtering algorithm and integrated it with the
anomaly detection framework.

Besides discovering individual objects (n x n pixels) that are contextual outliers relative
to their spatial-temporal neighbors, it is also helpful to study these outliers collectively as
anomalous events, which can potentially reveal unusual processes that lead to those outliers
in the first place. Such underlying processes can either be systematic errors (e.g., sensor
calibration error), which require intervention for quality control, or natural events (e.g.,
extreme weather condition), which may lead to new knowledge (Xiong et al., 2011; Song
et al., 2007). With the knowledge that anomalous behaviors caused by systematic errors or
rare natural events can spread to a wide range of regions and last for a long period of time, we
aggregate spatial-temporal outliers into anomalous events within a global spatial-temporal
context and report those events with a ranking of their importance. Combining all the points
above, we have developed a novel clustering-based framework for unsupervised detection of
contextual anomalies in remotely sensed data. Our main contributions are summarized as

follows.

e The design of an unsupervised anomaly detection framework that (1) requires no prior
knowledge of the data set, (2) identifies contextual outliers that differ from their spatial-
temporal neighbors; and (3) groups contextual outliers into anomalous events to reveal

possible underlying processes.

e Demonstration of the framework’s effectiveness via Web-based tools we have developed,
using two different types of remote sensing data: SSM/I passive microwave and skin

(surface) temperatures derived from AVHRR data.

e Identification and validation of new data quality issues due to systematic or random

4
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errors as well as significant natural events.

This manuscript is organized as follows. Section 2 presents the problem formulation and
key notations. Section 3 describes the anomaly detection framework as well as its usage
scenarios. Section 4 presents the anomaly detection framework in detail. Section 5 reports
our evaluation of the proposed framework and presents case study results. Section 6 gives

an overview of related work. Finally, Section 7 concludes this work.

2. Problem Formulation

Climate extremes such as unusual warm and cold events are increasingly attracting the
attention of Earth scientists (Matthes et al., 2015; Lépez-Moreno et al., 2014; Bokhorst
et al., 2012). In this section, we first introduce the notion of contextual anomalies that
can be caused by such extreme events and then formally define spatial-temporal outliers
and anomalous events, which are the main focus of our unsupervised contextual anomaly
detection framework.

Fig. 2 and Fig. 3 illustrates three types of contextual anomalies that can be caused by

unusual natural events, systematic or random errors.

e Unusual time series snippets: The Earth observation data usually has obvious
cycles (e.g., diurnal or seasonal cycles). In addition, the period of a cycle and the
average magnitude of the data in each cycle are relatively stable. However, there exist
snippets in a time series that deviate from the stable pattern. For example, Fig. 2
shows a brightness temperature time series from several adjacent pixels. The duration
of high brightness temperatures each summer is relatively stable. However, as noted in
the figure, in one snippet the high brightness temperature persisted longer than usual,
and in another snippet the data value was significantly higher than that of the previous
summers. These unusual time series snippets can be caused by either unusual natural

events or errors.

e Level shifting: Fig. 2 also shows a scenario when the values of a group of adjacent

pixels significantly increase or decrease. This type of temporal discontinuity may ap-
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Fig. 2. Examples illustrating unusual time series and level shifting detected in the brightness

temperature of several adjacent pixels.

100 pear normal when viewed spatially at a specific time, and can only be discovered when
101 viewed as a time series at a given location.

102 e Local spatial outlier: A pixel or an object (i.e., a block of n x n spatial pixels),
103 which appears normal when viewed globally in an image, appears inconsistent when
104 compared with its neighbors. As shown in Fig. 3, pixel A is an outlier with respect to
105 its neighbors, but normal when viewed globally. Pixel B has the same value as pixel
106 A, but is not a local spatial outlier.

107 These three types of anomalies may all comply with the normal global data range and

s hence are invisible when using common statistical analyses such as a two standard deviation
w9 criteria method against a normal data distribution. Moreover, a level shifting or an unusual
o time series snippet may be visible only from a temporal perspective. Therefore, in order to

1

jan

1 detect all these anomalies, both spatial and temporal contextual information is extracted

u2 from a pixel’s local neighborhood. Specifically, as illustrated in Fig. 4, an object otx,y is
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Fig. 3. An example of a local spatial outlier: Pixel A and B have the same value. However,
pixel A is considered an outlier because of its behavior with respect to neighboring pixels

whereas Pixel B is not because of its coherence with neighboring pixels.

comprised of a block of n x n pixels at a specific time ¢, where (z,y) is the location of
the top left pixel of the object. Then the spatial neighborhood of the object refers to the
eight spatially-adjacent objects at time ¢, and its temporal neighborhood refers to the set of
objects og’y where ¢ € [t — T,t +T],t' # t and T is the window size parameter. We now

define spatial-temporal outliers (ST-Outliers) and anomalous events as follows.

Definition 1. ST-Outliers: Given a set of objects O = {0 ,}. An object o}, € O is
considered an ST-Outlier if its non-spatial-temporal features differ significantly from its

spatial or temporal neighbors in O.

The non-spatial-temporal features represent an object’s original physical value such as
temperature, or derived values, e.g., temperature difference, temperature correlation and so
on. Because ST-Outliers can emerge as a group due to the same natural event or systematic

error, we also define anomalous events.
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Definition 2. Anomalous Events: Let D be a set of objects that are ST-Outliers, and r is
an anomalous event that consists of a group of objects from D. The objects in r, which are
spatially and temporally correlated, behave significantly different from the other objects in

D in terms of non-spatial-temporal features.

In the following section, we give an overview of our anomaly detection framework along
with the web-based tools we developed that enable users to visualize and analyze the detected

anomalies.

3. Anomaly Detection Framework

Our anomaly detection framework takes as input a time series of satellite images. Each
image is usually processed at either the pixel level or the object level (Hussain et al., 2013).
Noise or missing data usually appear as random, discontinuous pixels. However, interesting

anomalies that represent natural events or systematic errors may often appear as a collection

Time=t+T
== nxn Object

o ; ;
Neighbor Object

Time =t

Time=t-T

Fig. 4. An illustration of objects and local spatial-temporal neighborhoods. Each object
is defined as a block of 2 x 2 pixels at a specific time. For the orange object at time ¢, its
spatial neighbors include the 8 adjacent objects surrounding at time ¢ (4 in blue and 4 in
white), and its temporal neighbors are the other orange objects within the time range of

[t —=T,t+1T].



137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

of adjacent pixels. As such, our proposed anomaly detection framework consists of both

pixel-based and object-based analysis.

RS Pixel-Level Missing and Object-Level
Data Feature > Noisy Pixel >  Feature
Extraction Filtering Extraction
|~ spatialTemporal Outliers Detection | |
Il sT-Outliers _ Boundary Clusters » Initial |
: Identification |~ Optimization Aggregation Clustering :
L J
_______ Anomalous Events Detection “l
Feature Space GI‘S(;TI;Olilrtlll(ifI?th »| Events |
Standardization ping Ranking |
Top-k Features [
________________________ J

Fig. 5. An overview of the anomaly detection framework.

3.1. Overview

Fig. 5 gives an overview of our proposed anomaly detection framework, which consists of

four main steps:

1. Missing and noisy pixel filtering. RS imagery data may be contaminated by
missing and/or noisy pixels, which would lead to a skewed data distribution. Thus,
this step is designed to improve the quality of detected anomalies, which can be used as
either an independent tool for data cleansing or integrated into the anomaly detection
process, as shown in our framework.

2. Object-level feature extraction. Each object consists of one or more pixels (n xn).
In order to capture the anomalous behaviors of an object, the radiometric values are
extracted for each object, which are then compared with its neighbors in space and
time to detect contextual anomalies.

3. ST-Outliers detection. An object that has either low spatial or temporal coher-
ence with its neighbors is identified as an outlier. This is accomplished through an

unsupervised, clustering-based process.
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4. Anomalous events detection. In this step, we further group ST-Outliers that share
similar anomalous behaviors (i.e., spatially and temporally correlated) as an anomalous

event in order to help discover the underlying anomalous process, be it a natural event

or systematic error.

+ menu Anomaly Database

Query Threshold
[Kelvin ]

50
200 K to 350 K

Region Selection

Draw | Clear

Search All Anomalies

1992-01-01 to 1994-01-01

Find Daily Anomalies

Backward | Forward

Clear Results From Map

Fig. 6. Web-based user interface: Overall layout and key steps showing how anomalies are

located.

3.2. Usage Scenarios

Next, we describe the web-based tools that enable interactive exploration and analysis
of anomalies by interfacing with a database that contains all anomalies detected by our

framework.

User Interface. Fig. 6 shows the web-based user interface (UI), which features a set of
tools and enables data exploration using an intuitive mapping interface. The Ul comprises
of several key features that allow users to quickly select a set of parameters that include
information such as the sensor type (e.g., SSM/I vs. AVHRR), frequency band (e.g., 19 GHz,
22 GHz), and polarization (e.g., vertical or horizontal), as well as select a sub region within

the map to search. Users can then explore their results in one of two ways. The first

10
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+ menu Anomaly Database
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Draw | Clear

Search All Anomalies
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Find Daily Anomalies

Backward | Forward

nnnnnnnnnnnnnnnnnnnnnnnnn
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1992 1994

271 anomalles 245

Fig. 7. Usage example: Querying the Weddell Sea and coast for anomalies.

approach allows query results to be visualized day by day, where the daily anomalies and their
associated metadata are used to help the user grasp dynamic changes within a particular
region. The second approach is by searching for an aggregation of the data within the
specified time frame. In this way, results are collected for each pixel and can be displayed
to show information such as the average pixel value or the frequency with which anomalies

occur at each location.

Usage FExample. We examine a coastal region to demonstrate how the tools can be used
for exploring anomalies; the steps described are illustrated in Fig. 6 and Fig. 7. First, the
user selects a date range of 1992 to 1994 of the South SSMI 19 vertical data set, refining
the query to search for anomalies above 200 Kelvin with the slider. Next, a rectangular
region is selected from anywhere in the Antarctic region; the user opts to search an area
within the Weddell Sea, drawing out a rectangle to partition the specific sub region they
are interested in. Finally, the user then selects a query that will parse anomalies so that
they can be reviewed along the daily timeline. After the queried results are returned to
the interface, they are overlaid within a layer of the map where the user has control over a
temporal investigation of the data, allowing them to traverse forwards and backwards along

the timeline to review results. Looking at the results, we can see that there are a significant

11



190

191

192

193

194

196

197

198

199

200

201

202

203

204

205

206

207

208

210

211

212

number of events concentrated within the Filchner Ice Shelf extending up toward the Brunt
Ice Shelf. This may prompt the user to refine his/her search to look at an aggregation of all
anomalies during the specified two-year period, allowing the user to see where those anomalies

are concentrated most, and the brightness temperatures associated with each pixel.

4. Anomaly Detection Algorithms

In this section, we describe in detail the key steps in the anomaly detection framework.

4.1. Missing and Noisy Pixel Filtering

As mentioned earlier, most RS imagery contains missing and/or noisy pixels, which
need to be properly identified and labeled. This information is then applied in the process
of object-level feature extraction in order to reduce the bias introduced by those pixels.
Additionally, we record noisy pixels in the anomaly database as random errors for users’
reference. Missing pixels are easy to handle since a missing pixel’s value is usually set to
a special fill value such as 0. Hence, we focus primarily on filtering noisy pixels. Some of
the noisy pixels are outside the normal data range (i.e., clear errors), and can be filtered
easily using a threshold. However, some of the noisy pixels are within the normal range
but obviously “wrong” when compared with their neighbors. To address these scenarios, we
have designed a noisy pixel filtering algorithm, which can detect both types of noisy pixels
(outside normal data range or not) in two steps: (1) identify objects which contain potential

noisy pixels and (2) identify actual noisy pixels in each object.

Detect Potential Noisy Objects. In order to reduce the size of the feature space and improve
computation efficiency, we first divide an image into objects of n x n pixels each. For
each object, we extract features such as the absolute maximal difference between every two
adjacent pixels. Fig. 8 shows a distribution of the absolute maximal difference between
every two adjacent pixels in an object from an AVHRR image. The cutoff value in the
distribution is around 38. Empirically, this cutoff point can be utilized to find objects that
contain potential noisy pixels. However, a fixed threshold is not generic for all images in the
AVHRR data or for other data sets. Therefore, we have developed a clustering-based method

to automatically determine the “cutoff” threshold. The feature data is first clustered, then

12
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Fig. 8. Histograms showing the frequency distribution of absolute maximal differences
between adjacent pixels in each object. The main plot (blue) highlights a subset of differences
from the total distribution (cyan). The threshold for determining whether an object contains
potential noisy pixels can be visually selected such that the probability of the absolute

maximal difference converges toward zero.

the second order difference of cluster centroids (sorted in the ascending order) is computed.
As illustrated in Fig. 9, the first peak of the second order difference (shown in red) is detected,
and the cluster centroid value (shown in blue) right after the peak is set as the threshold to

detect objects that contain potential noisy pixels.

Identify Noisy Pizels. For each object detected above, we divide its pixels into two groups
based on the similarity of their features, and pixels in the smaller group are identified as
noisy pixels. However, there is one potential issue. As illustrated in Fig. 10, the pixels (P1
and P2 in blue box) from the edge of the Antarctica Peninsula are identified as noisy pixels in
object B, but it looks normal in object A. In order to handle pixels that are located around
edges or dynamic regions (e.g., ocean), we compute the absolute difference between each
noisy pixel candidate and its neighbors. If a pixel is similar to the majority of its neighbors,

the pixel is not noisy since we assume noisy pixels are random and do not occur together.

13
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Fig. 9. A method for automatically determining the cutoff threshold. Step 1 finds the first
peak of the second order difference (shown in red), here the cluster index is 13. Step 2 checks
the cluster centroid series (shown in blue) to find the value 36.47 at index 14, that value is

then used to detect objects containing potential noisy pixels.

Fig. 10. One potential issue when identifying noisy pixels near edges and dynamic regions.
Pixels P1 and P2 are observed as normal within object A (orange 3 x 3 pixels block), but
are identified as outliers in object B (black 3 x 3 pixels block) due to the sharp transition at

the edge of the Antarctic Peninsula.
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4.2. Object-Level Feature Extraction
In this step, instead of extracting pixel-level features to emphasize the internal pixel-to-
pixel variance of an object, we extract object-level features to describe an object with respect

to its neighbors. Specifically, we extract three types of features for each object.
e Basic features: Mean and standard deviation of the object’s n x n pixels.

e Spatial features: Correlation and difference between the object and each of its eight
neighboring objects to capture the spatial dynamics of an object against its spatial

neighbors.

e Temporal features: Mean and standard deviation difference between the object and

each of its 27" temporal neighbors (i.e., [t — Tt + T).

By transforming the satellite image time series into a feature space, we achieve three
goals. (1) Reduce the impact from noisy and missing pixels: For instance, a missing pixel
can be ignored by computing the mean and standard deviation of an object that contain
multiple pixels; but if all pixels of an object are missing pixels, the object is abandoned. (2)
Leverage the spatial features to avoid the problem of spatial heteroscedasticity, i.e., the local
distribution of the data is not uniform at different locations in an image. (3) Help remove

the impact from cyclic patterns and highlight local outliers.

4.3. 8T-Outliers Detection

Satellite imagery data generally contain some cyclic patterns such as seasonal cycles. It is
thus reasonable to assume that the data follows Gaussian mixture models (GMM). However,
the number of clusters K requires prior knowledge and is very difficult to determine. Our
problem is even more complicated because the exact percentage of outliers is unknown. To
address these issues, we propose an extended Expectation-Maximization (EM) algorithm.
Fig. 12 illustrates the essential steps of our algorithm for detecting spatial-temporal outliers:
cluster initialization, cluster aggregation, and boundary optimization. The rationale behind
this approach is to focus on capturing the normal patterns, and treat small clusters and
stand-alone data points as outliers, because normal patterns occur more frequently than

outliers and belong to denser clusters. Next, we describe the three steps in more detail.

15
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Fig. 11. A time series of objects at location (z,y) spanning time ¢ to t + 7. Normal objects

are shown in blue and outlier objects are shown in white.

Cluster initialization. In this stage, we detect outliers from all objects {ol,,..., 0"} at
location (z,y) within the maximal temporal span, as shown in Fig. 11. Note that spatial-
temporal outliers can be captured because both spatial and temporal features are also used
here. For example, if one object is significantly different from its spatial neighbors, this
object should be significantly far away from the others in the spatial feature space so that
it will be assigned to a small cluster or be a stand-alone object. Moreover, since the exact
number of clusters is unknown, we choose a relatively large cluster number (K = 5 as shown
in Fig. 12 (a)) to perform the multivariate EM algorithm (Andersson, 1958; Lee and Scott,

2012) in the object feature space. However, if K is too large, similar objects may be assigned

to different clusters.

Cluster Aggregation. To address this issue, we merge clusters with very similar statistical
models. For example, in Fig. 12, the top-left two clusters shown in red and green in step (a)

are merged into the larger red cluster in step (b). Let {Ci,...,Cx} be the initial clusters,

1 - -~ | | 1
1 | | 1
1 A ! A A ! A A |
e AAAAA \ ! A AL ! A Al !
/ A \ ! A ! A
v A ATa, ) ® a.t., ® i.t, o
PoA A‘AAA | | A Ax,A | A As,A !
\ / ! A | A
AN A A A // i A A A i A A A .
' ~ 4 !
g * g * 2 * |
1 1
|
: P | n ", | n " :
1 | | 1
" | " | " a
- = : u : u !
1(a) Cluster Initialization (b) Cluster Aggregation (c) Boundary Optimization '

_____________________________ e

Fig. 12. Illustration of the three key steps of the proposed ST-Outliers detection algorithm.
Object shapes represent the ground truth of different types of objects, and object colors
indicate the clusters they belong to. In this example, step (a) identifies five different clusters;
step (b) merges the green cluster into the red cluster; and step (c) separates the brown star

object from the blue cluster.
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and {N,(p1,%1),. .., Np(k,Xk)} be the corresponding statistical models, where p is the
dimension of the feature space, and p, 3 are the mean vector and variance matrix respectively.
We define the impact domain of model N, (i, %) as AL, = {x | Pr[(z — p)TS;  (z — ps) <
€] <1 — a}. Intuitively, a greater a means a tighter impact domain. Based on the relation

between C; and AJ for any (7,7), we have the following three situations:

C; C AL (1)
Ci—CNA +£¢ (2)
CiNA =¢ (3)

The three situations are presented in Fig. 12 (a). Assuming the red triangles cluster
represents C;, its impact domain AJ is within the dashed circle. In the case of 1, assuming
C; is the green triangles cluster, then C; and C; can be merged together, because with high
probability, the observations in C; may be from statistical model N,(u;, X;). However, in
the case of Eq. 3, assuming C; is the yellow rhombuses cluster, then the probability of these
two clusters are from the same statistical model is very low and cannot be merged. To deal

with the remaining case of 2, we define a new statistic W:

IC; — Cin Al
W=———-—= (4)
Cil
If W is larger than a given threshold, then we merge the i and j** clusters. In this way,

The situation in (1) becomes a special case of the situation in (2).

Boundary optimization. After cluster aggregation, we reestimate the statistical models based
on the updated clustering results, and then optimize the boundary for each cluster. We
remove an object from a cluster if the object does not follow the cluster’s statistical model.
For example, as shown in Fig. 12 (c), the blue hexagon is removed from its original cluster
and becomes a stand-alone object. To do so, we test every object in the i*" cluster whether

it is from population N, (1, ;).
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Outlier Identification. We repeat the procedure in cluster aggregation and boundary opti-
mization until there is no further change. After that, the small clusters and isolated objects
are considered as spatial-temporal outliers. Please note that the underlying assumption is

that the percentage of anomalous data in the whole data set is quite low.

4.4. Anomalous Events Detection

Usually, for domain experts, the ultimate goal of anomaly detection is not identifying
the individual outliers, but to find out the underlying processes that cause those outliers.
Thus, instead of raising an alarm for every single outlier, it is much more valuable to provide
an ordered list of anomalous events along with their specific rankings of importance or level
of interest. We accomplish this in the following three steps: feature space standardization,

ST-Outliers grouping, and events ranking.

Feature Space Standardization. In this step, we use z-score to compute the standardized

score for each type of feature in the feature space:

F —
Fstad - IuFa (5)
OF

where pp and op are the mean and standard deviation of the feature, respectively. This
step is needed because each feature type has a different value range. By using a z-score
normalization, all features now fall within the same value range, thus allowing us to com-

pare/group outlier objects using the top-k most significant features.

ST-Outliers Grouping and Fvents Ranking. In this step, we sort the feature vector for each
outlier by the absolute value of Fy4, then group the outliers as illustrated in Fig. 13, where
the outliers in the same group have the same top-k categorical features. For each group,
we merge every outlier and its spatial and temporal neighbors into an event until there is
no further change. The intuition behind this grouping strategy is that the impact of an
underlying anomalous process usually spans a continuous time period, and from the spatial
perspective, more than one object is affected. Finally the events are ranked by the total

number of outliers in each event and reported through the web-based UI.
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Fig. 13. An example of grouping ST-Outliers into anomalous events. ST-Outliers from
three locations are detected at different time points and are similar in their top-k features.
The outliers that occur within the same time window [t — T, t+ T are then grouped together

as a single event.

5. Results and Discussion

In this section, we first evaluate the performance of the proposed anomaly detection
framework with experiments carried out on two data sets: skin temperature derived from
AVHRR data and DMSP SSM/I Daily Polar Gridded Brightness Temperatures. The details
of parameter settings, and case studies of AVHRR and SSM/I data are discussed. Then,
the computational efficiency of the proposed method is analyzed both theoretically and

experimentally.

5.1. AVHRR Data

We used the South Pole AVHRR skin temperature data from July 24, 1981 to June 30,
2005. During the process of creating the anomaly database we discovered that the AVHRR
data is heavily contaminated with noise; this data set thus served as a good test case for

assessing the performance of our noise pixel filtering algorithm.

Parameter Settings. As mentioned in the algorithm design, it is inefficient to utilize clustering
with individual pixels due to the large number of pixels in satellite images. Instead, we divide
each image into objects of size n x n pixels to identify and filter out objects which could
potentially contain noisy pixels. We experimented with different n values, and setting n = 3

achieves a good balance between accuracy and efficiency. The assumption is that within
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»s each 3 X 3 object the variance should be small. Once the absolute maximal difference is

19 computed for each object, the data is transformed into a feature space where the algorithm

130 described in Section 4.1 is applied.
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Fig. 14. Noisy pixel filtering in the AVHRR data set. Results show that our algorithm
correctly identifies most of the noisy pixels (Left) and achieves high precision and recall for

most of the images (Right).

Algorithm Performance. To assess the accuracy of the noise pixel filtering algorithm, we
can validate the detected pixels visually using a random sample of 10% of the AVHRR
images. We then quantified the performance using two widely-used pattern recognition

metrics: precision and recall.

TP

Precision = TP FP (6)
TP
Recall = m—m (7)

True positive (TP) is the number of noisy pixels that are correctly detected as noise.
False positive (FP) is the number of normal pixels that are incorrectly identified as noise by
the algorithm. And false negative (FN) is the number of noisy pixels that are incorrectly
classified as normal. Fig. 14 shows the distribution of each metric evaluated for the data
set. The average precision and recall are 98.1% and 95.7%, respectively. This indicates

that our noise filtering algorithm is effective, which can be used for data quality control
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and filtering, and can help reduce the bias introduced by such noisy pixels in the anomaly

detection process.

5.2. SSM/I Data

SSM/T data is a primary resource for estimating sea ice concentrations and classifying
sea ice types. While the data set has been continuously collected for nearly 30 years, from
July 9, 1987 to June 30, 2015, it has been distributed without a thorough quality assessment.
New data defects have been discovered by our framework and confirmed by specialists. Here,
we use a case study from the North Pole data set to demonstrate the effectiveness of our

approach.

Parameter Settings. For each image in the SSM/I data set, an object is defined as a 2 x 2
block of pixels, i.e., n = 2. Here we use a smaller block size because SSM/I data has a lower
resolution than that of AVHRR data (25km vs 5km), and n = 2 is the minimum requirement
for removing the impact of missing or noisy pixels. With a vector size of four (four pixels
in each object), we compute the spatial correlation between an object and its eight spatial
neighbors. The temporal neighborhood spans 2 days before and after each object (i.e.,
T = 2) to help smooth out dynamic attributes such as clouds, which usually pass through
the area in 1 to 2 days. The temporal neighborhood of 5 days can therefore reduce random
noise without filtering out real, dynamic, or periodic fluctuations in the time series. For
each object, we extract six features: the mean and standard deviation of the pixels, a spatial
correlation vector and a difference vector between the object and its eight neighbors, and the
mean and standard deviation between the object and its temporal neighbors (4/- 2 days).

The object features are then used for the detection of ST-Outliers and anomaly events.

As the inherent number of models of the data is uncertain, Silhouette coefficients (Rousseeuw,

1987) are used to evaluate the clustering’s performance for differing initial conditions. Be-
cause the clustering quality is positively related to the Silhouette coefficient, the number of
initial clusters is chosen where the Silhouette coefficient reaches a maxima. Fig. 15 shows
how the Silhouette coefficient changes with varying number of initial clusters with random
samples of 10% of the SSM/I data. In addition, we used 10% as an upper bound for the total

number of outliers. As with a relatively larger boundary, we maintain a high potential for
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Fig. 15. Choosing the initial number of clusters K. Silhouette coefficients are computed

for the normal and outlier clusters using varying numbers of initial clusters. The optimal

number of clusters K = 20 is selected when Silhouette coefficients reach a maxima for both

normal and outlier clusters.

sn including all anomalous events in the database. We aggregate outliers from the smallest size

sz of cluster until the total number of outliers exceeds 10%. Thus, the resulted total outliers

;13 can be equal or less than 10%, which depends on the real partitions of norms and anomalies.

Table 1: List of Top Ranked Anomalous Events

Event Duration

Category

1990.01.01-1991.12.31
2012.07.09-2012.07.12
2012.07.27-2012.07.29
2002.06.27-2002.06.29
2003.10.24-2003.10.25
2011.02.01-2011.02.04
2010.09.02-2010.09.04

Sensor Failure
Natural Event
Natural Event
Natural Event
Natural Event
Unknown

Systematic Error

s Case Studies. Table 1 shows a partial list of top-ranked anomalous events discovered and

ss  reported by our framework. Because no ground truth exists for this data, we collaborated
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srs  with other geoscientists and studied previous literature for the region to identify several of

;77 the most significant anomalous events; these events exhibited systematic error or evidence

sis - of natural events to help validate our technique. Here we discuss several of those events in

sre  detail.

Channel 85GHz Normal Image  Channel 85GHz Noisy Image

0 100 200 3000 100 200 300
Kelvin Kelvin

Fig. 16. SSM/I Data Defect: random noise within the image due to sensor failure.
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Fig. 17. A systematic error from 2010. (Left) The majority of ST-Outliers were detected
around coastal regions. (Right) A significant shift in the number of ST-Outliers beginning

in 2010.
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Event 1: The first event was found within the 85.5 GHz channel. The 85.5 GHz vertical
channel exhibited a degradation in signal from January 1, 1990 to December 31, 1991,
while the horizontal channel degraded between January 1, 1991 to December 31, 1991. The
origin of the event was a sensor failure. All the images collected during that period were
corrupted with random noise, as shown in Fig. 16. This data defect could significantly affect
prior analysis and computation of the region’s climatology. While only part of the defect
(degradation in 1991) was documented (Maslanik and Stroeve., 2004, updated 2016), our
algorithm was able to uncover new errors within the 85.5 GHz channel. The issues with the
1990 data were reported to the NSIDC to help alert users.

Event 2: A sharp increase in the frequency of anomalies was discovered following 2010.
The left image in Fig. 17 shows the spatial locations of ST-Outliers (orange squares), mainly

detected by temporal mean and standard deviation features in 2010. As seen in the figure, the

Time Seriesfor Object A
T

200
180 ‘ :
100 . 200 300 1987-07-09 2002-06-29 2012-07-12
Kelvin Date (yyyy-mm-dd)
Channel 19GHz 20120712 280 Time Seriesfor Object B
. T

(d)

60| 2002 Extreme Melt\ 2012 Extreme Melt\

180 :
100 200 300 1987-07-09 2002-06-29 2012-07-12
Kelvin Date (yyyy-mm-dd)

Fig. 18. SSM/I anomalous event: Summer extreme melt in 2002 and 2012. The red boxes
in (a) and (c) represent regions which rarely melt. (b) The time series for object A, melting
occurs regularly every summer. (d) The time series for object B, which was impacted by the

extreme melt events in both 2002 and 2012.
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majority of outliers are located around coastal areas. We determined that this surge of events
was due to an inconsistency between measurements from the sensors on DMSP satellites F13
and F17 (where data from the F13 sensor was used until 2010, then transitioning to F17).
The NSIDC conducted an inter-comparison of the F13 and F17 data where products from
the two sensors overlapped. Similar to our findings, larger differences, sometimes up to
10K, were found in regions of sharp gradients of brightness temperature, usually around
coastlines and sea ice extents (Maslanik and Stroeve., 2004, updated 2016). In addition to
the discovery of this systematic error, we were also able to generate a detailed report on the
spatial-temporal locations of each outlier for the event. This last product could potentially
accelerate the quality control process.

Event 3 and 4: Events from 2002 and 2012 are top ranked, consistent with two extreme
melt events that occurred during those years (Nghiem et al., 2012; Steffen et al., 2004). As
shown in Fig. 18 (a) and (c), the region outside of the red box regularly melts during the
summer months, while in 2002 and 2012, that melting process abnormally expanded into
part of the region within the red box. Our algorithm effectively detected the locations and
dates of regions that normally would not melt when they exhibited abnormal behavior in
2002 and 2012. Fig. 18 (d) shows an example time series from one of those locations (object
B) between 1987 and 2015. The brightness temperature reveals a sharp increase during the
summers of 2002 and 2012. In Fig. 18 (c), most rare melt objects are located in the red
box. In addition, all rare melt locations detected were found to have averaged 5 melt days
over the years. Thus, our framework can provide a way to explore potential interesting rare
events without manually sifting through the data.

Event 5: Besides the widely known extreme melt events in 2002 and 2012, the algorithm
also detected an unusually warm event during October 2003. This event caused one location,
which typically would begin to freeze during this time, to experience about an extra month
worth of melt days. Fig. 19 shows this unusually long melt event in October 2003. From the
time series in this figure, spanning 2002 to 2004, the brightness temperatures of these three
adjacent regions normally would reveal a mean value which decreases during the month of
October. In 2003 though, there were sharp changes, reaching a maxima one would expect

during the summer. Our algorithm accurately captured this event with the presence of
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Fig. 19. SSM/I anomalous event: October 2003 winter warm event. (a) and (b) The region
inside the box on October 24, 2003 has a higher average brightness temperature than that of
the same region on October 24, 2002. (c¢) The warm event correlated with the air temperature
at Nuuk station. (d) The brightness temperature of objects around Nuuk station show a

sharp increase during October 2003.

seasonality and noise. The event was found to be related to the Atlantic Subpolar Gyre
Warming (southwest to Nuuk at Greenland) in October 2003 (Stein, 2005). Our finding is
also consistent with a surface air temperature obtained from the Nuuk station where October
2003 was a record high between 1987 and 2015 (2007 data is missing), as seen in Fig. 19.
Other significant events detected by our framework have been shared with our collabo-

rators for further investigation.

5.3. Computational Efficiency

The computational efficiency of the proposed method was analyzed with two phases: fea-
ture extraction and anomaly detection. For the feature extraction process, the computation
complexity is O(tmn), where t is the number of images and (m, n) are the number of columns

and rows of each image. For anomaly detection, the algorithm complexity is O(krL), where
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k is the number of clusters, r is the number of clustering iterations, and L is the length of a
time series with extracted features. Table. 2 shows the average processing time for feature
extraction on a SSM/I image, and the average processing time for anomaly detection for
the longest time series (10,218 days). Since there are missing data in the SSM/I data, the
time series have different length, which allows us to evaluate the real algorithm complexity
for anomaly detection. Fig. 20(a) shows the anomaly detection time as a function of time
series length. The actual computation time is linear and consistent with theoretical com-
plexity. In addition, since there is no dependence among data files during feature extraction
and anomaly detection, our method can be easily parallelized using multiple computers or
CPUs. For example, Fig. 20(b) shows the different anomaly detection time for a total of
24,356 time series (64 GB) with 1 to 4 CPUs.

Table 2: Computational Efficiency of Feature Extraction and Anomaly Detection

Feature | Complexity Image Size (m ,n) Process Time (s) I/O (s)

Extraction O(tmn) (304, 448) 0.848 0.171
Anomaly | Complexity Time Series Length Process Time (s) I/O (s)
Detection O(krL) 10218 1.189 0.321
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Fig. 20. (a) Illustration of the linear complexity of anomaly detection algorithm. (b)

Demonstration of total anomaly detection time with multiple CPUs.
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6. Related Work

Anomaly detection has been a topic of active research (Chandola et al., 2009; Gupta
et al., 2014; Bhaduri et al., 2011), with the majority of research focusing on point anomaly
detection. For example, one-class Kernel Fisher Discriminants (Roth, 2004) was proposed as
a method of learning a discriminative boundary close to the normal instances, such that any
test instance that does not fall within the learned boundary is considered anomalous. Knorr
and Ng (Knox and Ng, 1998; Knorr et al., 2000) developed several distance-based outlier
detection algorithms where the core methodology was to score a data instance by counting
the number of nearest neighbors that are within a distance d; data instances with the lowest
scores were considered outliers. As summarized in Chandola et al. (2009), techniques for
detecting point anomalies can be categorized into the following types: classification, nearest
neighborhood, clustering, statistical modeling, information, and spectrum based.

Point anomaly detection techniques are extensively used in scientific data, especially in
climate research to identify sensor faults and significant events. However, for contextual
anomalies that fall within normal data ranges or hide in seasonal patterns, direct use of
those classical outlier detection algorithms will fail. Hence, a series of anomaly detection
methods leveraging spatial or temporal attributes have been proposed (Chandola et al.,
2009; Sun and Chawla, 2004; Alvera-Azcarate et al., 2012). For instance, in the work of
Vallis et al., long term time series data was decomposed to remove seasonality before using
statistical modeling to find anomalous points (Vallis et al., 2014). Spatial Local Outlier
Measure (SLOM) proposed by Sun and Chawla (Sun and Chawla, 2004) can capture the
local behavior of datum in its spatial neighborhood. Thus, local spatial outliers can be
discovered, which are usually missed by global techniques like “three standard deviations
away from the mean”. This type of approach handles either temporal or spatial context.

In our work, we detect contextual anomalies in both spatial and temporal contexts. The
typical method for spatial-temporal outlier detection consists of three steps (Gupta et al.,
2014): (1) Identify spatial objects from the input data. (2) Objects are analyzed to find
spatial outliers. (3) Spatial outliers are then verified if they are also temporal outliers. This
type of approach sequentially executes spatial and temporal outlier detection, consequently

the output is the intersection set of spatial and temporal outliers. For example, Birant and
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Kut (Birant and Kut, 2007) proposed a density-based ST-Outlier detection method. They
use DBSCAN (Birant and Kut, 2007) to identify spatial outliers first, then validate with
their temporal neighbors. If no significant temporal difference was found, the candidate is
abandoned. Similarly, Cheng and Li (Cheng and Li, 2006) proposed a four-step method
to address the semantic and dynamic properties of geographic phenomena for ST-Outlier
detection. However, in order to capture all possible data defects or significant natural events,
the union set of spatial and temporal outliers has to be detected. Therefore, we have proposed
a single-step ST-Outlier detection algorithm using combined spatial-temporal features, with
which we are able to get all the ST-Outliers.

Furthermore, while most of the existing work only detects individual outliers, we aggre-
gate ST-Outliers into anomalous events, which provide more insights into the data as they
help reveal underlying processes that may have triggered groups of outliers. This direction
of work is related to collective anomalies (Chandola et al., 2009), which have been investi-
gated in some recent work, using statistical models. Das and Neil (Das et al., 2008) used
Whats Strange About Recent Events (WSARE) to detect anomalous clusters of counts in
categorical data and performed testing to determine if a cluster is a significant anomalous
pattern. And a Flexible Genre Model (FGM) was proposed by Xiong et al. (Xiong et al.,
2011) to discover anomalous behaviors of groups of points. In contrast to those supervised
or semi-supervised methods that assume availability of enough training data with ground

truth, our approach is unsupervised and requires no prior knowledge of the data sets.

7. Conclusion

In this work, we have proposed a novel unsupervised contextual anomaly detection frame-
work, which can effectively filter out noisy pixels, discover spatial-temporal outliers, and
group those outliers into anomalous events. With this framework, we have successfully iden-
tified significant data quality issues and natural events that were subsequently validated by
geoscientists. We expect that our experience developing the framework will not only ad-
vance anomaly detection in remote sensing but also provide new approaches for speeding up
scientific knowledge discovery, especially when combined with interactive data mining and

visualization tools. As with any large-scale project, the development is an ongoing effort.
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With the support of the National Snow and Ice Data Center (NSIDC), we plan to make our
tools publicly available and will continue improving the tools and methodologies, as well as
expanding the range of remotely sensed data sets that we can support. We look forward to

collaboration and feedback from the community to drive further improvements.
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One potential issue when identifying noisy pixels near edges and dynamic
regions. Pixels P1 and P2 are observed as normal within object A (orange
3 x 3 pixels block), but are identified as outliers in object B (black 3 x 3 pixels
block) due to the sharp transition at the edge of the Antarctic Peninsula. . .
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[lustration of the three key steps of the proposed ST-Outliers detection algo-
rithm. Object shapes represent the ground truth of different types of objects,
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(a) identifies five different clusters; step (b) merges the green cluster into the
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red cluster; and step (c) separates the brown star object from the blue cluster. 16

An example of grouping ST-Outliers into anomalous events. ST-Outliers from
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top-k features. The outliers that occur within the same time window [t —
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Noisy pixel filtering in the AVHRR data set. Results show that our algorithm
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puted for the normal and outlier clusters using varying numbers of initial
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SSM /T Data Defect: random noise within the image due to sensor failure. . .
A systematic error from 2010. (Left) The majority of ST-Outliers were de-
tected around coastal regions. (Right) A significant shift in the number of
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SSM/I anomalous event: Summer extreme melt in 2002 and 2012. The red
boxes in (a) and (c) represent regions which rarely melt. (b) The time series
for object A, melting occurs regularly every summer. (d) The time series for

object B, which was impacted by the extreme melt events in both 2002 and

SSM/I anomalous event: October 2003 winter warm event. (a) and (b) The
region inside the box on October 24, 2003 has a higher average brightness
temperature than that of the same region on October 24, 2002. (c) The
warm event correlated with the air temperature at Nuuk station. (d) The
brightness temperature of objects around Nuuk station show a sharp increase
during October 2003. . . . . . . . . . . .
(a) Ilustration of the linear complexity of anomaly detection algorithm. (b)

Demonstration of total anomaly detection time with multiple CPUs. . . . . .
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