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Abstract13

The wind speeds given in 10-minute intervals is forecast using multiple methods inclusive of14

persistence, statistical methods of ARIMA as well as artificial intelligence methods of Artificial15

Neural Networks. Tall tower meteorological variables in Columbia, Missouri are clustered16

using Self-Organizing Maps after the optimal number of clusters was determined using the17

Elbow and Silhouette methods among others. The optimal number of clusters, k was given18

as 4 for all methods. The data were then grouped into three Intervals which consisted of19

approximately 50 percent and over of vectors or rows from the data frame. These intervals20

were then used as training and testing for the forecast models of Long Short-Term Memory21

Networks with pressure and wind speeds as inputs as well as lagged wind speeds as inputs.22

Other models using these intervals in our analyses include Moving Autoregressive Integrated23

Moving Average (ARIMA) and persistence. From the results obtained from the ARIMA, the24

metric of the root mean square error (RMSE) ranged from approximately 0.6 to 1.0 ms−1 for25

forecast horizon 2 to 12 in increments of 2. Interval2 had the upper and lower values and thus26

showed most variability in errors because it encompassed most of spring, all of summer and the27

beginning of fall. The moving ARIMA showed lower errors than the LSTM with pressure and28

wind speeds inputs for all the intervals. This may be attributed to the difficulty in representing29

the system’s non-linearity and high dimensionality by using just the wind speeds and pressure30

as inputs. The lagged co-ordinates of the wind speed was then examined and used as inputs for31

the LSTM. The metric used for the evaluation of prediction of the forecast horizons of 60, 120,32

180, 240, 300 and 360 minutes or 1, 2, 3, 4, 5 and 6 hours ahead is the Normalized Root Mean33

Square Error (NRMSE). These models were compared to the benchmark model of persistence.34

It was determined that all of the models beat persistence and the LSTM with the lag series35

outperforms the LSTM with pressure and wind speed as inputs. The Moving ARIMA is now36

beaten by the lagged series LSTM in all intervals for at least 2 time forecast horizons of 6037

and 120 minutes or 1 and 2 hours. It is thus shown that the Artificial Neural Network method38

with the lagged series inputs is the best performing model.39
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1 Introduction43

1.1 Wind speeds44

Wind speeds closer to the ground are subjected to resistance and friction. Even though these45

winds are highly positively correlated with each other, the correlations grow weaker with height as46

noted in both this study and Cao et al.’s [9]. Due to local surface characteristics and large scale47

forcing mechanisms such as pressure and temperature differences, wind is one of the most difficult48

meteorological variables to forecast [28]. Also, since the atmosphere is highly nonlinear and high49

dimensional, it is especially difficult to forecast this variable in the much needed higher resolutions50

and longer time horizons [15]. The higher resolution shows more details of the faster variations in51

wind speeds caused by turbulence and other factors. The importance of such forecasts stems from52

the ability to aid in the scheduling, dispatching and adjusting electricity reservations [15]. In our53

work we are looking at short term forecasting at high resolution (10 minute wind speeds at hub54

height).55

1.2 Forecasting of wind speeds56

Due to the stochastic nature of wind speeds, forecasting this variable is important for its optimal57

integration into the power grids [27]. These short term forecasts, can be used by plant managers to58

adjust turbine components to achieve more efficiency. Another advantage of short term forecasts59

is the ability to make turbines operable closer to extreme weather events before shutting down.60

Daily short term forecasts are also important as they relate to the operability of the turbines in61

terms of their cut-in and cut-off wind speeds as they aid in the reduction of structural damage to62

infrastructure [9].63

There are numerous methods that have been used to forecast wind speed values, some of which64

are illustrated in Figure 3. Please see the acronyms 1 associated with this chart. The methods65

incorporated in this paper are Artificial Intelligence (AI) methods which are compared to statisti-66

cal models as well as the benchmark of persistence. The significant difference between these two67

methods is that statistical multiple linear regression is written in terms of a set of linear operators68

whilst Artificial Neural Networks(ANNs) are representative of a linear combination of simple non-69

linear functions [4]. A mapping is done from random input vectors to output vectors without the70

assumption that there is a fixed relationship between the two [19]. ANNs have the ability to learn71

from past data by recognizing patterns among the observations and using these to forecast into the72

future [19]. Research has indicated the superiority in prediction accuracy of ANNs to statistical73

regression especially as the non-linearity of the problem increases [4]. Previous studies, namely [2]74

and [3], done in Missouri, found the wind speeds to be chaotic in nature, hence motivating the75

choice of this method to address the complexity and non-linearity of the data.76

1.3 Wind Power77

From the relationship P = 1
2ρAV 3 where P is the available power at the turbine,ρ is the density of78

air, A is the area swept by the turbine and V is the wind speed, the two meteorological variables79

which determines the available turbine power are ρ and V . The latter variable has the greater80

influence as the power varies as the cube of V . The air density is dependent on pressure and81

temperature as seen from the following equation [21]82

ρ = D

(
273.15

T

)[
B − 0.3783e

760

]
(1)

where D is 1.168kg/m3 - the density of dry air at standard atmospheric temperature (25◦C) and83

pressure (100kPa) and B is the barometric pressure in torr, e is the moist air vapour pressure in84

torr. Hence, as seen in subsequent sections of the methods, these two meteorological parameters,85

will be considered, together with wind speeds, when determining the inputs to the Neural Network.86

1AI-Artificial Intelligence, ANN-Artificial Neural Networks, ANFIS-Adaptive Neuro-Fuzzy Interface System,
SVM-Support Vector Machine, AR-Auto-Regressive, MA-Moving Average, ARMA-Auto-Regressive Moving Aver-
age, ARIMA-Auto-Regressive Integrated Moving Average
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1.4 Literature Review87

From [10], comparative analysis of ARIMA and LSTM models in predicting hourly wind speeds88

indicated the RMSE to be less than of the ARIMA method. An analysis of the existing literature89

and the studies done by [10] showed that for smaller datasets, ARIMA performed better whilst for90

larger datasets, deep learning techniques such as LSTM outperforms the statistical methods such91

as ARIMA. Another study done by [33] forecasts 10-minute wind speeds as done in our study, but92

uses fuzzy set theory to conduct attribute reduction of the factors affecting the wind speeds instead93

of the magnitude correlation plot. This determined what were the inputs into the LSTM model.94

This simplified input improves upon the accuracy as well as the speed of the model [33]. In [14],95

dimensionality reduction of the meteorological data that affects the wind speed is also conducted.96

They instead utilizes principal component analysis (PCA). It was found that this case had the97

most improvements in terms of errors when compared to models’ inputs of the historical wind98

speed data and the other exogenous variables. In reference [13], the authors compared the results99

of two models, LSTM and Support-Vector Machine (SVM) in the prediction of wind speeds. It was100

determined that of the two algorithms the LSTM incurred the lower RMSE than that of the SVM101

due to the LSTM’s ability to remember patterns for a longer duration. [1] showed the superiority102

in model performance of hybrid simulations. This study, using the metric of RMSE, determined103

that the LSTM-ARIMA model had less forecasting errors when compared to the LSTM and SVM104

models. Another paper that incorporates clustering to select the training samples before feeding105

them to the LSTM is [31]. However, this is done for day-ahead forecasting. They utilized a density106

based spatial clustering (DBSCAN), deep feature extraction and LSTM forecasting in their study.107

Their proposed model out performed the benchmark methods of random forest (RF), least square108

support vector regression (LSSVR) and back propagation neural network (BPNN), by at least 17%109

[31]. In another comparative study of forecasting hourly wind speeds for a year, Neural Networks110

was compared with the statistical method of ARMA in which the ARMA was outperformed by111

all the other methods; the feed forward neural network (FNN), recurrent neural network (RNN),112

LSTM and the gated recurrent unit (GRU)[34]. The ANN which are utilized for the purpose of113

short term forecasting of wind speeds usually perform better than the time series methods with a114

few exceptions [34]. The authors considered the variables that were also investigated in this study115

in the prediction of the target variable; these are wind direction, wind speed with one time step116

lag, pressure and temperature. After various permutations of the inputs, it was found that the117

wind speed with the one time lag had the largest correlation with the wind speed and as such it118

was deemed the most important feature [34]. In [12],the variations of inputs into a LSTM as well119

as a 1D-CNN were also investigated.120

The objective of this paper is to apply multiple forecasting techniques of tall tower data in121

Missouri; persistence as a benchmark, statistical methods of ARIMA and ANN techniques in clus-122

tering and subsequently forecasting using LSTM. The novelty of this work includes the usage of123

the competitive learning Neural Network, SOMs, in the clustering of the data with similar patterns124

which are then the inputs into the LSTM. This feature of data mining, clustering of data, allow for125

the preprocessing of the data and thus the accurate development of forecasting models [13] [31].126

The forecasting of tall tower data in Columbia, MO for this scale is carried out; short term forecasts127

at high resolution is conducted. The proposed methodology is tested using real -world tall tower128

data and it outperforms other known prediction methods. The subsequent structure of the paper129

is as follows. Section 2 gives the data used in this study, section 3 introduces the concepts of the130

methods incorporated in this paper, section 4 discusses the results whilst sections 5 gives the future131

analyses that can be conducted and the conclusion of the paper collectively.132
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Figure 1: Methods for wind speed forecasting
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2 Data133

Columbia, Missouri is located in 038◦53.270′N latitude and 092◦15.820′W longitude and has a134

site elevation of 255m as seen in Figure 2. Ten-minute tall tower wind speed, wind direction135

and temperature data in 2009 from this region were used in our study [11]. The respective units136

are ms−1, degrees and degrees Celsius, respectively. The anemometer orientations were 120◦and137

300◦for the tall tower height of 68 m. Channels 1 and 2 represent the respective wind speed times138

series. The larger of the wind speed values at each time step were taken and labelled as Max1. The139

wind direction time series at this height level was given from channel 7 and sine of these angles was140

labelled as Direction1. The temperature time series from 2 m logger height were also utilized in141

our analyses, taken from channel 11, it is referred to as Temp. Hourly maximum pressure data was142

taken from University of Missouri, Extension’s Missouri Historical Agricultural Weather Database.143

Each hourly pressure value was repeated five times. This time series, labelled as Pressure, along144

with Max1, Direction1 and Temp were combined and used in all of the analyses for Columbia68 as145

detailed in the Methods section below.146

0 30 60 90 12015
Kilometers

1771

132

Elevation

MO County Boundaries

Columbia Station

Figure 2: Tall tower location

3 Methods147

Artificial Neural Networks (ANN) have to date been applied to a multitude of fields in solving com-148

plex problems. These data-driven models are utilized especially as physically-based mathematical149

models are difficult to construct given the high non-linearity of natural systems [20]. As defined150

by Basheer and Hajmeer [4] and Ramasamy et al. [25] , ANNs can be considered as a system of151

densely interconnected processing elements, also called artificial neurons or nodes, which have the152

ability to conduct parallel computations of input data .Complex relationships are derived from the153
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input and the output. The input variables are multiplied by weights and biases are added to these154

products. These are then passed through transfer functions for the generation of the outputs [25].155

ANNs, being abstractions of biological systems, have the advantages of processing data that are156

highly nonlinear. These robust systems have the ability to learn and generalize imprecise and fuzzy157

data [4]. Data are allowed to be processed faster and have a better fit amidst inaccuracies from158

measurement errors. The system in its learning is self updating and has the ability to unlearn data159

as well [4].160

There are many applications of ANNs, which include modelling, classification, pattern recog-161

nition and multivariate data analysis problems [4] [25]. Here, we will focus our attention on the162

clustering of the data into various clusters and then on subsequent modelling and forecasting. Clus-163

tering as described by [4], is formed by investigating the similarities and differences of the inputs164

based on their inter-correlations. Kohonen networks or Self-Organizing Feature Maps (SOMs), the165

unsupervised learning ANN where the actual values are not required for the training set, are used166

in this study. Forecasting is also done by training the ANN using a training set of historical data. A167

Recurrent Neural Network (RNN) is utilized especially for its dynamic memory capabilities where168

the outputs of neurons are fed as inputs to the same neurons or other neurons in the preceding169

layers [4]. A general overview of the methods incorporated in this study is depicted in the flow170

diagram below. More details of these methods are given in the following sub-sections.171

Figure 3: Methods for wind speed forecasting utilized in this study
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3.1 Methods determining the number of clusters172

Clustering analyses as mentioned in [22], are statistical methods which are used to partition multi-173

variate data into subsets. There are numerous methods that can be used to determine the optimal174
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number of clusters to classify the data into relatively homogeneous groups, such as the Elbow175

Method, Silhouette Analysis and Gap Statistic. These methods, which are used in this study,176

are outlined below. We have considered in the analyses this multivariate data set (of length n)177

of variables wind speed, direction, temperature and pressure. We denote these points as xi for178

i = 1, . . . , n.179

The Elbow Method is determined by plotting the within-cluster sum of squares (WCSS) against180

the number of clusters, say k. The WCSS(k) gives the sum of the squared distances between181

each data point, say xi, in all clusters and their associated centroids denoted as x̄j (which is the182

geometric center or the arithmetic mean position of all the points in the plane figure). This can be183

written as follows.184

WCSS(k) =

k∑
j=1

∑
xiεclusterj

∥xi − x̄j∥2 (2)

The changes in WCSS with a range of k determines the optimal number of clusters in accordance185

with the Elbow method. The value in which k elbows or the point where the rate of decrease in186

WCSS is relatively minimal when compared to its previous k values.187

The Silhouette Clustering method was also used in our analysis. This method examines the188

within cluster-consistency by comparing how similar objects from a cluster are to another. Its189

value, S(i) range from -1 to 1 where the lower end of the interval indicates that the configuration190

has too much or few clusters. The closer this value is to 1 however, is indicative of an object that191

is well matched to its cluster or poorly matched to the other clusters.192

The mean similarity of point i and all other points in the same cluster, Ci, is given by equation 3193

where |Ci| denotes the number of elements in Ci and d(i, j) give the distances between data points i194

and j in cluster Ci. In this average the distances, d(i, i) are not considered hence the consideration195

of |Ci| − 1 in the formulation below.196

ai =
1

|Ci| − 1

∑
jεCi,i̸=j

d(i, j) (3)

The smallest mean dissimilarity of point i and all the other points of another cluster, Ck, is197

given by bi in equation 4.198

bi = mink ̸=i
1

|Ck|
∑
jεCk

d(i, j) (4)

This is the second best fit cluster for point i based on the distance metric. The Silhouette value199

for point i, we define as Si, is given in terms of ai and bi as seen in equation 5.200

Si =

{
(bi)−(ai)

max{ai,bi} if |Ci| > 1

0 if |Ci| = 1
(5)

This can be further simplified as seen below, depending on the inequality relations between the201

mean similarity and dissimilarity.202

Si =


1− ai

bi
if ai < bi

0 if ai = bi
bi
ai

− 1 if ai > bi

(6)

The Gap Statistic, another consideration used in this paper, is outlined as follows. As previously203

denoted, let Ci be the ith Cluster and |Ci| be representative of the number of elements in this cluster.204

Let the pairwise distances between elements say i and j in Ci, di, be given by equation 7.205

di =
∑

i,jεCi

d(i, j) (7)

For a given number of clusters k, the within cluster distance for that particular partitioning Pk,206

is given by equation 8. A better classification is indicative of a smaller Wk value.207
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Wk =

k∑
i=1

1

2 |Ci|
di (8)

Considering the data in which the ’true’ number of clusters is given by G, Wk should drop as208

k increases until it reaches G where it will decrease at a much slower rate. Thus, there will be an209

’elbow’ point in Wk; this k value corresponds to the optimal number of clusters. The Gap Method210

is used to compare the original data with the expected curve, E∗
n {log(Wk)} where E∗

n gives the211

expectation of sample n from the reference distribution. The Gap Statistic is the value of k which212

maximizes Gapn(k) or from equation 9, the cluster value where Wk is at the furthest distance from213

the expected curve [32].214

Gapn(k) = E∗
n {log(Wk)} − log(Wk) (9)

3.2 Self Organizing Maps (SOM)215

A Self Organizing Map (SOM) is an unsupervised clustering method as there is no additional216

information being supplied to the model by a ’supervisor’ [16]. In this model, high-dimensional217

data sets are reduced to the two-dimensional map in which nodes with most similarity are nearest218

to each other and vice-versa [23]. It does this dimensionality reduction via the usage of cluster219

centers which can then be interpreted as an ’abstract representation’ of any given vector from220

that particular cluster [16]. It preserves topology where vectors that are near in input space are221

also mapped to nearby neurons in the SOM [22][23]. This resulting map is a projection of a222

multidimensional space rather than a geographical space [23]. There are two modes of operation,223

training which builds the map using input examples through a method called vector quantization224

and mapping which classifies new input vectors [7].225

This Kohonen Neural Network is used in many applications [30] such as Pearce et al.’s air226

quality classifications [23] and in geoscience for the extraction of climate and atmospheric circulation227

patterns [16]. Previous studies using SOMs also include Berkovic’s [5] determination of the wind228

regimes, choosing from various map sizes, the number of nodes in the rows and columns. However in229

our study, since we utilized SOMs for the purposes for clustering our data to be later incorporated230

in our forecasting algorithm, we defined our map size based on the formulation written in [29]. The231

number of neurons, M of the map is determined from the number of observations, N . It is given232

by the following expression [7].233

M ≈ 5
√
N (10)

According to [6], the methodology of the SOM can be achieved via the processes of competition-234

where the Best Match Unit (BMU) is identified, cooperation -where the topological neighbourhood235

of the ’excited’ neurons are identified and finally adaptation -where BMU and excited neurons are236

updated in accordance to the input vector.237

In more detail the methodology of the SOM is as follows [29].238

1. The weight vector of each of the neurons in the map is initialized randomly.239

2. The training observed data, say xt, is ’passed’ to the map as an input vector and Euclidean240

distance between the all the neurons and this vector is calculated. The neuron with the241

smallest distance is termed the Best Matching Unit or (BMU). For each input observation,242

the BMU is identified. We denoted this unit as c henceforth.243

3. A neighbourhood of c is selected and using a neighbourhood function given by hci, the
weighted vectors of the neighbouring neurons, i are updated.

hci(t) = a(t)e
−∥rc−ri∥2

2R2(t) (11)
Wi(t+ 1) = Wi(t) + hci(t) [xt −Wi(t)] (12)
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Where, from equation 11, hci is the neighbouring function and t is an index of iteration, a(t)244

is the learning rate, rc is vector of c, ri is the vector of the neuron i and R is the radius around245

c. This function is a monotonically decreasing function of t as the learning rate decreases246

with the iterations during the training process and the radii around c decreases with t. This247

process ensures that neurons i closest to c are being adjusted the most.248

The neurons are updated in accordance to equation 12 where Wi(t+ 1) and Wi(t) represent249

the weighted vector of neuron i at the t+ 1 and t indices of iterations respectively, hci is the250

neighbourhood function above and xt is the observed input vector.251

4. This process is repeated in the iterative training until the clusters are identified based on252

their distances.253

The data described in Section 4.2, were normalized between 0 and 1 by subtracting from each254

element in that particular column of the data frame, its mean. These values are then divided by255

the standard deviation of the column to give the z or standard scores. This standardizing of the256

variables was done using the scale command. These analyses were done in R studio [30]. The257

SOM grid was then created using the relation of 10 where N = 52, 560 data observations for each258

variable. The grid size used was 41 by 28 of hexagonal nodes corresponding to the factor pair of259

1,148. This value was used instead of the calculated numeric of 1,146 because it had more factor260

pairs.261

The following is a list of the metrics to be plotted and their description will be shown in the262

results section.263

1. Node Count- This map gives the number of samples that are mapped to each of the nodes of264

the map. This value should be relatively uniform throughout the SOM. Large values in some265

areas of the map is indicative for the need of a larger map whilst empty nodes indicates that266

a smaller map may be more appropriate. Generally, it is used to determine high density areas267

in the map where ideally there should be a homogeneous distribution [24].268

2. Neighbourhood Distance or U-Matrix- This map gives the distance between each node and its269

neigbouring neurons. It represents the Euclidean distance amongst the codebook vectors of270

the respective neighbourhoods [24]. Larger distances indicates dissimilarities and thus cluster271

boundaries as nodes from the same cluster have the tendency to be closer.272

3. Heat Maps - These maps separately give the distribution of each of the parameters throughout273

the map. These are done for the four variables, both scaled and unscaled.274

4. Clustering of the codebook vectors - This map consists of the codebook vectors which is the275

data structure that carries the neuron’s weight vector in a 2D grid. The number of clusters276

or groups is input as well as the specification to add the cluster boundaries.277

After the clusters are identified, the cluster associated with each of the x(t) vectors was deter-278

mined. Continuous intervals of the clustered 2009 Columbia, MO data set, representing approxi-279

mately 50% and over of data points in that particular cluster, were established. There were three280

intervals in which the majority of the vectors or rows from the data frame belonged to two of the281

identified four clusters, denoted Cluster1 to Cluster4 (we will explain more of this in the subsequent282

results section). For example, Interval1 ranged from 1 to 16,000 rows in which Cluster3 consisted283

of 50.2% of the vectors. Interval2 which started at 16,001 and ended 40,500 inclusively, comprised284

78.92% of rows from Cluster2. Interval3 included vectors from 40,501 to 52,500 in which Cluster3285

represented approximately 48% of this interval. It should be noted that there were predominately286

two clusters which we will also show in subsequent results of the clustering of the codebook vectors.287

Another note to mention is that the entire time series of length was not used. Instead, 52,500 rows288

were utilized in our analyses. There were 16,000, 24,500, and 12,000 points in Cluster1, Cluster2289

and Cluster3 respectively.290

These intervals are then separately trained and tested in time series forecasting using the Re-291

current Neural Network explained in the subsequent subsection.292

9



3.3 Recurrent Neural Networks (RNN), Long Short- Term Memory Net-293

works (LSTM)294

Recurrent Neural Networks (RNN) allow information to persist via one or more hidden states295

and loops that pass information from one step to another of the network. However, for this, there296

exists the vanishing gradient problem as the gradients asymptotically reduce to 0 from the repeated297

multiplication of weights for various time steps. Long Short-Term Memory networks (LSTMs) are298

a special type of RNN that can learn these long-term dependencies. The LSTM has memory blocks299

called cells where information is stored in the cell state, ct and the hidden state, ht. A diagrammatic300

representation of the architecture of such memory blocks or cells is seen in Figure 4. Information is301

regulated by gates by optionally allowing certain data through using sigmoid and tanh activation302

functions. The output of the sigmoid function is a number between 0 and 1, where 0 and 1 mean303

no and all information goes to the cell state, respectively. Generally notated, the inputs to the304

gates are the output hidden state from the previous step , ht−1, and the output cell state from the305

previous step, ct−1 and current input, xt, which are pointwise multiplied by weight matrices, W ,306

and then added to a bias, b.307

There are three major gates: the forget, the input, and the output gates.308

1. The forget gate: As seen in Figure 4, the input of this gate is xt and ht−1 for that time309

step. These inputs are multiplied by weight matricies and added to a bias. This value is then310

inputted to the sigmoid function and a vector is outputted which corresponds to each value311

in the cell state, ct−1. Please refer to equation 13. This vector output is multiplied to the cell312

state. If a 0 is output from the sigmoid function for a particular value, the forget gate wants313

the cell state to disregard that information whilst if 1 is the sigmoid output, the forget gate314

wants the cell state to remember this data.315

ft = σ (Wf · [ht−1, xt] + bf ) (13)

2. The input gate: The gate determines the information being stored in the cell state. The316

sigmoid layer decides the data to be updated and the tanh layer, whose output values ranges317

from -1 to 1, creates a vector of possible values that could be added to the cell state. Please318

refer to equations 14 and 15.319

it = σ (Wi · [ht−1, xt] + bi) (14)
gt = tanh (Wg · [ht−1, xt] + bg) (15)

The old cell state, ct−1 is then used to update the new cell state ct. This is done represen-
tatively by equation 16. The old state is multiplied by ft to forget the information decided
upon earlier and then it is added to the product of it and gt which is indicative of the new
possible values scaled to the update amount decided upon for each value. Note that ∗ is
representative of the Hadamard or entrywise product.

ct = (ft ∗ ct−1) + (it ∗ gt) (16)

3. The output gate: A vector is created from scaling the values in the cell state using a tanh320

function. The sigmoid function is once again used as a filter to regulate what is to be outputted321

from the vector mentioned previously. This can be represented by equation 17. This is sent322

as the output and as the hidden state of the next cell.323

ot = σ (Wo · [ht−1, xt] + bo) (17)
ht = ot ∗ tanh (ct) (18)
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Figure 4: LSTM Architecture
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3.4 Moving AutoRegressive Integrated Moving Average Method (ARIMA)324

A moving AutoRegressive Integrated Moving Average Method (ARIMA) is used as another model325

in our analysis. This is a statistical method which uses the relationship within the time series326

data in its construction. Data cannot be white noise, that is, purely random with mean = 0 and327

standard deviation being a constant as forecasting into the future would not be possible. If this328

condition is met, AutoRegressive, AR(p), Moving Average, MA(q) and AutoRegressive Moving329

Average, ARMA(p,q) methods can be utilized. If the data are not stationary (that is not constant330

mean and variances), differencing needs to be performed. An AutoRegressive Integrated Moving331

Average, ARIMA (p,d,q) can be used where the Integrating part represents the d or the differencing332

factor.333

The AR method, a time series model, is regressed from its previous values up to an order334

determined by the p parameter. This can be seen mathematically from equation 19. The Partial335

Autocorrelation function (PACF) determines how many lags are to be incorporated in the AR336

method; large PACF values gives the order of the model. For lag p, the relationship between xt337

and xt−p is determined, filtering all the intermediate linear influence from xt−1, xt−2, . . . , xt−(p−1).338

xt = β0 + β1xt−1 + β2xt−2 + . . .+ βpxt−p + εt (19)

Where xt and xt−1, . . . ,xt−p are the current and previous values respectively and β0 is a constant339

term and β1,. . . ,βp are the coefficient representing what part of xt−1,. . . , xt−p are relevant in340

explaining the current value etc.341

The MA model is written in terms of a linear combination of past error. It gives the extent the342

series is related to its past errors. Generally it can written as equation 20. The Autocorrelation343

function determines the number of lags for the MA model. It is given by the lag value which is344

statistically different from 0 and above the error band, followed by consecutive insignificant ACF345

values for subsequent lags.346

xt = c+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q (20)

Where xt is the current value, εt and εt−1, . . . , εt−q are errors from the current and previous pre-347

dictions respectively and θ1, . . . , θq represent the corresponding part which is relevant in explaining348

the current value.349

The ARMA method is the linear combination of the linear models, AR and MA as such they too350

are linear models. This method thus, takes into account past values and errors in its formulation.351

Generally it can be written as equation 21.352
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xt = β0 + β1xt−1 + β2xt−2 + . . .+ βpxt−p + εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q (21)

The differencing parameter,d is introduced in the ARIMA models to remove trends and season-353

ality. The first order difference is given by ∆1xt = xt−xt−1. This and higher orders can be written354

in terms of B, the backward shift operator where Bxt = xt−1 and B (Bxt) = B (xt−1) = xt−2.355

Generally for shifting an observation some m periods, Bmxt = xt−m. Thus, the first and sec-356

ond differences in terms of operator B are ∆1xt = xt − xt−1 = xt − Bxt = (1−B)xt and357

∆2xt = ∆1xt − ∆1xt−1 = (1−B)
2
xt respectively. The second difference can be shown to be358

via expansion, xt−2 − 2xt−1 + xt.359

To determine the number of differencing to use we examine the autocorrelations. If the series360

has positive autocorrelations out to a large number of lags then the series may need differencing.361

If for lag 1, the autocorrelation is zero or negative then the series does not need higher order362

differencing. However, if for lag 1 the autocorrelation is less than or equal to -0.5, then the series363

may be over-differenced. A model with no differencing implies that the series is stationary whilst the364

assumptions are made that for the first and second differencing of the series, the original series has a365

constant average trend and has time varying trends respectively. An ARIMA(1,1,0), ARIMA(0,1,1)366

and ARIMA(1,1,1) can be written mathematically as equations 22a and 22b, 23a and 23b, 24a and367

24b respectively.368

∆1xt = β0 + β1∆1xt−1 (22a)
⇒ xt = β0 + xt−1 + β1 (xt−1 − xt−2) (22b)

∆xt = c+Θ1εt−1 (23a)
⇒ xt = c+ xt−1 +Θ1εt−1 (23b)

∆xt = β0 + β1∆1xt−1 +Θ1εt−1 (24a)
⇒ xt = β0 + xt−1 + β1 (xt−1 − xt−2) + Θ1εt−1 (24b)

3.5 Model Configuration369

Model: LSTM (pressure and wind speeds as inputs) The Pytorch structure of the codes for this370

model was motivated/developed by [17].371

• The data were loaded, preprocessed (by taking the larger wind speed of the orientations at372

each time step) and plotted.373

• The target variable was specified as wind speed along with the forecast lead (how much we374

are forecasting ahead, h). The target was specified as the lag/shift of the wind speed by the375

forecast lead. The features were given as wind speed and pressure. The data were then split376

into the training (75%) and testing (25%) sets from the observations. The train and test data377

were then standardized where the values are not restricted to a particular bounding range378

like normalization.379

• A sequence of observations from the train and test set were constructed. This sequence was380

given as a block of data from some ith row - sequence length through row i. For i less than381

the sequence length, the 1st row was padded by repeating it as many times deemed necessary.382

Thus, the outputs have the number of rows in the block equal to the sequence length.383

• These sequences from data set was set in Pytorch’s dataloader to select minibatches. However,384

in our model the batch sizes selected were the entire respective train and test data sets for the385

Intervals. Thus we had two features (columns), fifty sequence length (rows) and one batch386

the length of the train and test sets.387
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• A shallow regression LSTM model was then utilized with one hidden layer of 100 hidden units.388

The loss function is used to calculate the error or the difference between the predicted and389

the actual values. The loss function chosen was Mean Square Error (MSE). The optimizer is390

used to make changes to the weights; it does this to try to lower the model loss function. The391

optimizer chosen was the Adaptive Moment Estimation (Adam) algorithm with a learning392

rate of 0.01. An epoch is the number of times the algorithm traverses the training data. The393

model was trained using 20 epochs and was then evaluated.394

4 Results395

From Figure 5, we can see that the elbow occurs at 4, indicative that this is the optimal k. In396

figure 6, 4 has the largest S(i) value indicating that for k = 4, the objects are well matched to their397

respective clusters. Similarly, from Figure 7, the value which maximizes Gapn(k) is k = 4. From398

the analysis of multiple methods, the bar chart in Figure 8 indicates that most of the methods399

result in an optimal k of 4. This is an important consideration, as mentioned in Pearce et al. [23],400

because a grid with too few classes losses important information via generalizations whilst too many401

classes will result in loss of statistical power as there will exist smaller within class sample sizes.402

Figure 5: Elbow Method showing the
optimal number of clusters of the data
to be 4

Figure 6: Silhouette Clustering Method
showing the optimal number of clusters
of the data to be 4

Figure 7: Gap Statistic showing the op-
timal number of clusters of the data to
be 4

Figure 8: Methods determining optimal
k show that optimally, from most meth-
ods, that k = 4

The grid was a hexagonal structure consisting of 1148 nodes. This structure consisted of no x403

and y axes but rather nodal positions, which were numbered as bottom left having the least value,404

whose node numbering increases from left to right [18]. As mentioned in [23], limitations of SOMs405

include its grid having a finite structure, which imposes restrictions on the map in the provision of406

precise information on clustering dissimilarity. Another restriction is using set of numbers to define407

the grid that in turn generalize its shape, be it a rectangle or a square [23].408
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From the results of the SOMs, the node count plot can be seen in Figure 9. Since the distribution409

of the counts is relatively uniform throughout the domain of the SOM, the map size is appropriate.410

Figure 10 shows the neighbourhood distance in which cluster boundaries can be identified via large411

nodal distances. From this map, it is evident that there exist areas where there are greater distances412

representative of the upper end of the scale and the lighter colours. This is seen for example in the413

north eastern portion of the map. From the clustering of the codebook vectors in Figure 15, we do414

note that this is separated as part of a cluster. This is contained in a smaller cluster whilst there415

are two major clusters where the adjacent nodes are grouped in the same cluster. This grid also416

shows, for each node, all the variables (as colour coded) in various sector representations. The radii417

of the sectors varies with respect to its variable [18]. The unscaled heat map for all of the variables418

used in this study are seen from Figures 11 to 14.419

Figure 9: Node Count Plot showing the homo-
geneous distribution of the samples on the map

Figure 10: Neighbourhood Distance or U-
Matrix showing the distance between each
node and its neighbouring neurons

Figure 11: Heat Map showing the unscaled dis-
tribution of the wind direction values through-
out the map

Figure 12: Heat Map showing the un-
scaled distribution of the wind speed values
throughout the map
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Figure 13: Heat Map showing the unscaled dis-
tribution of the temperature values throughout
the map

Figure 14: Heat Map showing the unscaled dis-
tribution of the pressure values throughout the
map

Figure 15: Clustering of codebook vectors into the optimal 4 clusters identified showing there are
2 dominant clusters

From the clusters of the SOMs, continuous intervals belonging to a particular cluster were420

identified. These intervals are representative of approximately 50% and more of the rows from the421

data frame belonging to a particular cluster where Interval1, Interval2 and Interval3 belonging to422

Cluster3, Cluster2, and Cluster3 ranged from 1 to 16,000, 16,001 to 40,500 and 40,501 to 52,500423

rows respectively. The three intervals identified by our clustering are graphed in Figures 16, 17 and424

18 where both the test and training sets are visualized. These clusters from the SOM were utilized425

to optimize model performance in forecasting as done in Browell et al.’s article [6]. The forecast426

horizon is from 20 minutes to 2 hours. As mentioned in [6], for these time scales which are used to427

balance the power systems by operators, statistical methodologies inclusive of ARIMA are superior428

to that of results obtained from Numerical Weather Predictions (NWP). This can be attributed to429

its low computational cost and ease of including of new data [6].430

From table 1, the RMSE and the MAE for these intervals and various time steps, h, using the431

moving ARIMA model, can be seen. These values ranged from approximately 0.6 to 1.0 ms−1.432

These results are somewhat comparable to that of [6]. Browell et al. [6] used vector autoregression433

in the spatial consideration of multiple locations and for this model they obtained RMSEs of 0.96,434

1.55, 2.00 ms−1 for one, three and six hours ahead. Another study by [27] using both hourly and435
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10 minute data in which 39 and 173 points were forecasted respectively for each data set, have436

RMSEs of 1.27 ms−1 for the hourly dataset and 0.96 ms−1 for the 10 minute dataset. For our437

time step or forecast horizon of h equal to 6 (one hour ahead), for Interval1 and Interval3 this value438

was approximately 0.8 ms−1 whilst for Interval2, it was an estimated 0.1 ms−1 less that the other439

two intervals.440

In our analyses, the upper and lower values from this range resulted from the run of Interval2.441

This is expected as this interval encompassed most of the spring, all of the summer and the beginning442

of the fall. As such it is expected that the model shows the most variability in errors for this interval.443

It is expected as well that this interval has the lowest errors as it has highest learning ability of the444

neurons due to its largest training set [20]. This can be seen graphically in Figure 19. From Table445

2, we see that the results were comparable to that of the intervals defined by the SOMs. We note446

also that spring has the largest RMSE from the moving ARIMA as expected due to the prevalence447

of convective storms. The moving ARIMA was also trained using three quarters of the entire data448

set, despite having this advantage of more information variability in training/learning phase, these449

results did not deviate significantly from the interval and the seasonal analyses.450

ANN are powerful and are frequently used in time series forecasting due to their high parallelism,451

among other characteristics [26]. However, the ARIMA model is widely used and has given more452

accurate results for very short term forecasts [26].453
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Figure 16: Interval 1 used in model runs con-
sisting of rows 1 - 16,000 of the data

Figure 17: Interval 2 used in model runs con-
sisting of rows 16,001 - 40,500 of the data

Figure 18: Interval 3 used in the model runs
consisting of rows 40,501 - 52,500 of the data

Table 1: Moving ARIMA Results for the Intervals- RMSE determined for 20 to 120 minutes forecasts

h Interval1 Interval1 Interval2 Interval2 Interval3 Interval3
(10-mins) RMSE MAE RMSE MAE RMSE MAE

2 0.7624309 0.5587051 0.6152723 0.4480265 0.738208 0.4980114
4 0.7817789 0.5783413 0.665906 0.5017876 0.756581 0.5186229
6 0.8008848 0.5957457 0.7360105 0.5666321 0.7666935 0.5284694
8 0.8154731 0.6082994 0.8106469 0.6321702 0.7712227 0.5328341
10 0.8257323 0.6171721 0.8831231 0.6938833 0.7727915 0.5341433
12 0.832471 0.622839 0.9509406 0.7507482 0.7735839 0.5348155
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Table 2: Moving ARIMA Results for 2009 data set and the seasons- RMSE determined for 20 to
120 minutes forecasts

h (10-mins) 2009 data set- RMSE Spring- RMSE Summer- RMSE Fall- RMSE
2 0.6943994 0.763676 0.5139139 0.6625789
4 0.711852 0.7787825 0.5504232 0.68182
6 0.730347 0.7998983 0.5724217 0.7019841
8 0.7445687 0.8185765 0.5821634 0.7278857
10 0.7543516 0.8330311 0.5854124 0.7558021
12 0.7608936 0.8438839 0.5858682 0.7844518

Figure 19: ARIMA Errors for the Intervals-
RMSE for 20 to 120 minutes forecasts shows
that Interval2 which consists of most of spring,
all of summer and the beginning of fall, has the
largest range of errors

Figure 20: ARIMA Errors for 2009 data
set and the seasons- RMSE for 20 to
120 minutes forecasts shows that sum-
mer and spring have the least and most
errors respectively

The LSTM methodology was applied for the wind speed and pressure time series. Pressure was454

chosen because it had the greatest magnitude correlation with wind speed when compared with the455

other meteorological variables of wind direction and temperature. The RMSE results can be seen456

from Table 3. The test forecasted series for the various intervals, together with the actual series,457

can be seen in Figures 21 to 23. From the results obtained, ARIMA incurs smaller RMSE than458

the LSTM model for all intervals. Though there have been studies for which ARIMA outperforms459

ANN and SVM as mentioned in [27], there have been RNN methods used in wind speed forecasting460

which performs better that ARIMA. In [27], the errors are approximately 11 to 14 percent less in461

the RNN model compared to their ARIMA method. Another study, [9], univariate ARIMA saw462

higher errors than univariate RNN. The same result was observed when comparing multivariate463

ARIMA with a multivariate RNN.464

The reason for such results can be attributed to the difficulty of representing the high dimen-465

sional and non-linear system using the one-dimensional wind speed time series [15]. As such the466

series is lagged using the time delay τ and the embedding dimension d for each of the intervals and467

these lagged co-ordinates were input to the LSTM model. The τ value was determined to be 3468
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using Auto Mutual Information (AMI) with the exception of Interval2 whose value was given by 2.469

The d value was determined to be 6 using Cao Algorithm for all intervals. The τ value was taken470

at the first local minimum for the AMI and the d value, as when E1(d) attains saturation. Please471

refer to [3] for more information on the methodologies of these parameters as well as Figures 24472

and 25. Another study that uses the lags of the series in the training of the ANN as input variables473

was [8]. It was determined in their study that the best model was the simplest consisting of two474

layers and two input and one output neurons [8].475

The results obtained can be seen in Figures 26 to 28 for Interval1 to Interval3 respectively. The476

persistence model for each interval was constructed by calculating the average for every multiple477

of the 6th hour and recording these as the values of persistence for the next consecutive 6 hours478

or 36 time steps. The time forecast horizon, h looked at for this analysis are 60, 120, 180, 240,479

300 and 360 minutes. The models under comparison are the LSTM with lagged wind speeds as480

inputs, the Moving ARIMA, the LSTM with pressure and wind speeds as inputs and persistence.481

The Normalized Root Mean Squared Error (NRMSE) metric for model evaluation was determined482

for all of the models. For values of this metric exceeding 1 or 100% implies that the forecast is no483

better than the mean of the data after this run.484

It can be noted that all models performed better than the persistence model which stayed con-485

sistently between 0.8 and approximately 1.0 for the three intervals. The h value of 360 minutes for486

Interval1 and Interval2 have values which are over 1.0 or representative of a forecast no better than487

the mean. The LSTM with the lagged wind speeds as inputs, denoted as Lagseries, outperformed488

the LSTM with the pressure and wind speeds as inputs, denoted as Pressureandwind, for all of the489

intervals. The Moving ARIMA method is now beaten by the lagged LSTMs for up to the 180th
490

minute time step in Interval2 and up to the 120th time forecast horizon in Interval1 and Inter-491

val3. The second interval as mentioned previously has most of spring which have convective storm492

events, so it is expected that if any interval is to do best in the non-linear model of the LSTM when493

compared to the linear model of the ARIMA model, it would have been Interval2. The NRMSE494

of the LSTM Pressureandwind tends to one faster than the LSTM Lagseries for all of the intervals495

though up to the h value of 360 minutes, they do not exceed 1. As expected when the entire test496

set was forecasted for the models (h= test set), the NRMSE for most of the intervals exceeded 1;497

for the other cases, they were 0.97 and 0.98.498

The tabulated results of the RMSE values for each of these models can be seen in Table 4. The499

forecasted and the actual series for h = 360 minutes for LagSeries1 to LagSeries3 can be seen in500

Figures 29 to 31 respectively. Similarly, these plots for the ARIMA1 to ARIMA3 test set can be501

seen in subsequent figures whilst correspondingly the error defined as the difference between the502

actual test data and the predicted test data can be viewed in Figures 35 to 37. It can be noted,503

especially for the Moving ARIMA results, there was a significant match between the predicted and504

the actual series. The differences in the actual test data and the predicted test data were varying505

about the zero marker thus indicating that the trends were well captured by the model.506

Table 3: LSTM (with pressure and wind as inputs) RMSE values indicate that the Moving ARIMA
beats the LSTM for forecast times of 20 to 120 minutes

h (10-mins) Interval1- RMSE Interval2- RMSE Interval3- RMSE
2 0.940142796 0.975498677 0.834158971
4 1.155461471 1.219467954 0.927660403
6 1.296958276 1.257914418 0.992396502
8 1.444971761 1.35340903 1.026433109
10 1.451004208 1.432323828 1.137951695
12 2.767638696 1.502783097 1.14651633
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Figure 21: LSTM Interval1 showing the model forecast
of forecast time 60 minutes or 1 hour and the actual
wind speed values, Max1

Figure 22: LSTM Interval2 showing the model
forecast of forecast time 60 minutes or 1 hour
and the actual wind speed values, Max1

Figure 23: LSTM Interval3 showing the model
forecast of forecast time 60 minutes or 1 hour
and the actual wind speed values, Max1

Figure 24: Tau or time delay for Inter-
val2 is given by 2 using the Auto Mutual
Information (AMI)

Figure 25: Embedding dimension for Interval2 is
determined to be 6 from Cao Algorithm
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Figure 26: NRMSE for Interval1 using Models- LagSeries1 which is the LSTM with lagged wind
speeds as inputs, ARIMA1 which is the Moving ARIMA model, Pressureandwind1 which is the
LSTM with pressure and wind speeds as inputs and Persistence1 which is the Persistence model.
The LagSeries1 improves upon Pressureandwind1 and beats the Moving ARIMA for forecast times
of 60 and 120 minutes

Figure 27: NRMSE for Interval2 using Models- LagSeries2 which is the LSTM with lagged wind
speeds as inputs, ARIMA2 which is the Moving ARIMA model, Pressureandwind2 which is the
LSTM with pressure and wind speeds as inputs and Persistence2 which is the Persistence model.
The LagSeries2 improves upon Pressureandwind2 and beats the Moving ARIMA for forecast times
of 60, 120 and 180 minutes
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Figure 28: NRMSE for Interval3 using Models- LagSeries3 which is the LSTM with lagged wind
speeds as inputs, ARIMA3 which is the Moving ARIMA model, Pressureandwind3 which is the
LSTM with pressure and wind speeds as inputs and Persistence3 which is the Persistence model.
The LagSeries3 improves upon Pressureandwind3 and beats the Moving ARIMA for forecast times
of 60 and 120 minutes

Table 4: Models’ RMSE Results for the Intervals showing that the best performing model, up to
180 minutes or 3 hours, is LagSeries

Interval h (mins) LagSeries ARIMA Pressureandwind Persistence
Interval1 60 0.372907494 0.8008848 1.307214932 1.331339773

120 0.352250278 0.832471 1.572144369 1.643609466
180 1.087379921 0.8412903 1.831567231 1.987401039
240 1.477212704 0.8436806 1.943241466 2.055514112
300 1.724707138 0.8443778 2.05444378 2.119308164
360 1.920543992 0.8444589 2.13412727 2.263135526

Interval2 60 0.238592146 0.7360105 1.276806808 1.538227218
120 0.242534049 0.9509406 1.53582464 1.734079072
180 1.067046011 1.117465 1.72837262 1.83946146
240 1.432849673 1.233804 1.822299134 1.875548504
300 1.649253577 1.312496 1.9014607 2.069048477
360 1.786658699 1.365862 1.961462493 2.284102311

Interval3 60 0.376359712 0.7666935 1.257796263 1.536880065
120 0.436734176 0.7735839 1.617069345 1.619311738
180 1.028754688 0.7734066 1.685952464 1.80858766
240 1.36522671 0.7698904 1.778578867 1.814853169
300 1.596357379 0.7602228 1.84599341 1.939363159
360 1.739204251 0.7602228 1.891493873 2.168188039
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Figure 29: LagSeries1 LSTM showing the model fore-
cast of prediction time, 6 hours and the actual wind
speed values, Max1

Figure 30: Lagseries2 LSTM showing the model
forecast of prediction time, 6 hours and the ac-
tual wind speed values, Max1

Figure 31: LagSeries3 LSTM showing the model
forecast of prediction time, 6 hours and the ac-
tual wind speed values, Max1

Figure 32: Predictions of Moving ARIMA1 for forecast
time, 6 hours and the actual wind speed values

Figure 33: Predictions of Moving ARIMA2 for
forecast time, 6 hours and the actual wind speed
values

Figure 34: Predictions of Moving ARIMA3 for
forecast time, 6 hours and the actual wind speed
values
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Figure 35: Errors of Moving ARIMA1 for forecasting
time, 6 hours, of the test time series

Figure 36: Errors of Moving ARIMA2 for fore-
casting time, 6 hours, of the test time series

Figure 37: Errors for Moving ARIMA3 for fore-
casting time, 6 hours, of the test time series

5 Future Work, Additional Analyses and Conclusion507

In the model runs, the forecast variable - in our case wind speed - can be further processed to508

determine if there are any patterns in the wind speed forecast values (in terms of its accuracy) when509

its actual values is less than or greater than some x value or the difference between consecutive510

actual values rates are higher than some y value.511

Yearly analysis can be done to see if there are the same number of clusters and accuracy in512

forecasting (seasonal analysis - using yearly data) is similar.513

The optimal number of clusters was determined to be 4 using the Elbow and Silhouette methods514

among others. SOMs were then used to cluster the data after which three continuous intervals515

belonging to a particular cluster, which represented approximately 50% and over of the input516

vectors or rows from the data frame were identified. These intervals were then inputs for the517

LSTMs with inputs pressure and wind speeds, the lagged series LSTMs with embedding dimension518

d and time delay τ , the Moving Window ARIMA and persistence models. It was determined that519

the Moving ARIMA model is outperformed by the lagged LSTM for at most 180 minutes from the520

runs of the defined intervals. The lagged series improved upon the LSTM with the wind speed and521

pressure series. All of these models however, performed better than the benchmark of persistence522

for all time steps.523
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