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13 Abstract
14 The wind speeds given in 10-minute intervals is forecast using multiple methods inclusive of
15 persistence, statistical methods of ARIMA as well as artificial intelligence methods of Artificial
16 Neural Networks. Tall tower meteorological variables in Columbia, Missouri are clustered
17 using Self-Organizing Maps after the optimal number of clusters was determined using the
18 Elbow and Silhouette methods among others. The optimal number of clusters, £ was given
19 as 4 for all methods. The data were then grouped into three Intervals which consisted of
20 approximately 50 percent and over of vectors or rows from the data frame. These intervals
21 were then used as training and testing for the forecast models of Long Short-Term Memory
22 Networks with pressure and wind speeds as inputs as well as lagged wind speeds as inputs.
23 Other models using these intervals in our analyses include Moving Autoregressive Integrated
24 Moving Average (ARIMA) and persistence. From the results obtained from the ARIMA, the
25 metric of the root mean square error (RMSE) ranged from approximately 0.6 to 1.0 ms™" for
26 forecast horizon 2 to 12 in increments of 2. Interval2 had the upper and lower values and thus
27 showed most variability in errors because it encompassed most of spring, all of summer and the
28 beginning of fall. The moving ARIMA showed lower errors than the LSTM with pressure and
20 wind speeds inputs for all the intervals. This may be attributed to the difficulty in representing
30 the system’s non-linearity and high dimensionality by using just the wind speeds and pressure
31 as inputs. The lagged co-ordinates of the wind speed was then examined and used as inputs for
32 the LSTM. The metric used for the evaluation of prediction of the forecast horizons of 60, 120,
33 180, 240, 300 and 360 minutes or 1, 2, 3, 4, 5 and 6 hours ahead is the Normalized Root Mean
34 Square Error (NRMSE). These models were compared to the benchmark model of persistence.
35 It was determined that all of the models beat persistence and the LSTM with the lag series
36 outperforms the LSTM with pressure and wind speed as inputs. The Moving ARIMA is now
37 beaten by the lagged series LSTM in all intervals for at least 2 time forecast horizons of 60
38 and 120 minutes or 1 and 2 hours. It is thus shown that the Artificial Neural Network method
30 with the lagged series inputs is the best performing model.
40 Keywords: Self-Organizing Maps (SOMs), Autoregressive Integrated Moving Average
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1 Introduction

1.1 Wind speeds

Wind speeds closer to the ground are subjected to resistance and friction. Even though these
winds are highly positively correlated with each other, the correlations grow weaker with height as
noted in both this study and Cao et al.’s [9]. Due to local surface characteristics and large scale
forcing mechanisms such as pressure and temperature differences, wind is one of the most difficult
meteorological variables to forecast [28]. Also, since the atmosphere is highly nonlinear and high
dimensional, it is especially difficult to forecast this variable in the much needed higher resolutions
and longer time horizons [15]. The higher resolution shows more details of the faster variations in
wind speeds caused by turbulence and other factors. The importance of such forecasts stems from
the ability to aid in the scheduling, dispatching and adjusting electricity reservations [15]. In our
work we are looking at short term forecasting at high resolution (10 minute wind speeds at hub
height).

1.2 Forecasting of wind speeds

Due to the stochastic nature of wind speeds, forecasting this variable is important for its optimal
integration into the power grids [27]. These short term forecasts, can be used by plant managers to
adjust turbine components to achieve more efficiency. Another advantage of short term forecasts
is the ability to make turbines operable closer to extreme weather events before shutting down.
Daily short term forecasts are also important as they relate to the operability of the turbines in
terms of their cut-in and cut-off wind speeds as they aid in the reduction of structural damage to
infrastructure [9].

There are numerous methods that have been used to forecast wind speed values, some of which
are illustrated in Figure 3. Please see the acronyms ! associated with this chart. The methods
incorporated in this paper are Artificial Intelligence (AI) methods which are compared to statisti-
cal models as well as the benchmark of persistence. The significant difference between these two
methods is that statistical multiple linear regression is written in terms of a set of linear operators
whilst Artificial Neural Networks(ANNs) are representative of a linear combination of simple non-
linear functions [4]. A mapping is done from random input vectors to output vectors without the
assumption that there is a fixed relationship between the two [19]. ANNs have the ability to learn
from past data by recognizing patterns among the observations and using these to forecast into the
future [19]. Research has indicated the superiority in prediction accuracy of ANNs to statistical
regression especially as the non-linearity of the problem increases [4]. Previous studies, namely |[2]
and [3], done in Missouri, found the wind speeds to be chaotic in nature, hence motivating the
choice of this method to address the complexity and non-linearity of the data.

1.3 Wind Power

From the relationship P = % pAV3 where P is the available power at the turbine,p is the density of
air, A is the area swept by the turbine and V is the wind speed, the two meteorological variables
which determines the available turbine power are p and V. The latter variable has the greater
influence as the power varies as the cube of V. The air density is dependent on pressure and
temperature as seen from the following equation [21]

273.15\ | B — 0.3783¢
p=D (1)
T 760

where D is 1.168kg/m? - the density of dry air at standard atmospheric temperature (25°C) and
pressure (100kPa) and B is the barometric pressure in torr, e is the moist air vapour pressure in
torr. Hence, as seen in subsequent sections of the methods, these two meteorological parameters,
will be considered, together with wind speeds, when determining the inputs to the Neural Network.

LAI-Artificial Intelligence, ANN-Artificial Neural Networks, ANFIS-Adaptive Neuro-Fuzzy Interface System,
SVM-Support Vector Machine, AR-Auto-Regressive, MA-Moving Average, ARMA-Auto-Regressive Moving Aver-
age, ARIMA-Auto-Regressive Integrated Moving Average
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1.4 Literature Review

From [10], comparative analysis of ARIMA and LSTM models in predicting hourly wind speeds
indicated the RMSE to be less than of the ARIMA method. An analysis of the existing literature
and the studies done by [10] showed that for smaller datasets, ARIMA performed better whilst for
larger datasets, deep learning techniques such as LSTM outperforms the statistical methods such
as ARIMA. Another study done by [33] forecasts 10-minute wind speeds as done in our study, but
uses fuzzy set theory to conduct attribute reduction of the factors affecting the wind speeds instead
of the magnitude correlation plot. This determined what were the inputs into the LSTM model.
This simplified input improves upon the accuracy as well as the speed of the model [33]. In [14],
dimensionality reduction of the meteorological data that affects the wind speed is also conducted.
They instead utilizes principal component analysis (PCA). It was found that this case had the
most improvements in terms of errors when compared to models’ inputs of the historical wind
speed data and the other exogenous variables. In reference [13], the authors compared the results
of two models, LSTM and Support-Vector Machine (SVM) in the prediction of wind speeds. It was
determined that of the two algorithms the LSTM incurred the lower RMSE than that of the SVM
due to the LSTM’s ability to remember patterns for a longer duration. [1] showed the superiority
in model performance of hybrid simulations. This study, using the metric of RMSE, determined
that the LSTM-ARIMA model had less forecasting errors when compared to the LSTM and SVM
models. Another paper that incorporates clustering to select the training samples before feeding
them to the LSTM is [31]. However, this is done for day-ahead forecasting. They utilized a density
based spatial clustering (DBSCAN), deep feature extraction and LSTM forecasting in their study.
Their proposed model out performed the benchmark methods of random forest (RF), least square
support vector regression (LSSVR) and back propagation neural network (BPNN), by at least 17%
[31]. In another comparative study of forecasting hourly wind speeds for a year, Neural Networks
was compared with the statistical method of ARMA in which the ARMA was outperformed by
all the other methods; the feed forward neural network (FNN), recurrent neural network (RNN),
LSTM and the gated recurrent unit (GRU)[34]. The ANN which are utilized for the purpose of
short term forecasting of wind speeds usually perform better than the time series methods with a
few exceptions [34]. The authors considered the variables that were also investigated in this study
in the prediction of the target variable; these are wind direction, wind speed with one time step
lag, pressure and temperature. After various permutations of the inputs, it was found that the
wind speed with the one time lag had the largest correlation with the wind speed and as such it
was deemed the most important feature [34]. In [12],the variations of inputs into a LSTM as well
as a 1D-CNN were also investigated.

The objective of this paper is to apply multiple forecasting techniques of tall tower data in
Missouri; persistence as a benchmark, statistical methods of ARIMA and ANN techniques in clus-
tering and subsequently forecasting using LSTM. The novelty of this work includes the usage of
the competitive learning Neural Network, SOMs, in the clustering of the data with similar patterns
which are then the inputs into the LSTM. This feature of data mining, clustering of data, allow for
the preprocessing of the data and thus the accurate development of forecasting models [13] [31].
The forecasting of tall tower data in Columbia, MO for this scale is carried out; short term forecasts
at high resolution is conducted. The proposed methodology is tested using real -world tall tower
data and it outperforms other known prediction methods. The subsequent structure of the paper
is as follows. Section 2 gives the data used in this study, section 3 introduces the concepts of the
methods incorporated in this paper, section 4 discusses the results whilst sections 5 gives the future
analyses that can be conducted and the conclusion of the paper collectively.
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2 Data

Columbia, Missouri is located in 038°53.270'N latitude and 092°15.820'W longitude and has a
site elevation of 255m as seen in Figure 2. Ten-minute tall tower wind speed, wind direction
and temperature data in 2009 from this region were used in our study [11]. The respective units
are ms— !, degrees and degrees Celsius, respectively. The anemometer orientations were 120°and
300°for the tall tower height of 68 m. Channels 1 and 2 represent the respective wind speed times
series. The larger of the wind speed values at each time step were taken and labelled as Max1. The
wind direction time series at this height level was given from channel 7 and sine of these angles was
labelled as Directionl. The temperature time series from 2 m logger height were also utilized in
our analyses, taken from channel 11, it is referred to as Temp. Hourly maximum pressure data was
taken from University of Missouri, Extension’s Missouri Historical Agricultural Weather Database.
Each hourly pressure value was repeated five times. This time series, labelled as Pressure, along
with Max1, Directionl and Temp were combined and used in all of the analyses for Columbia68 as
detailed in the Methods section below.

@ Coumbia staton
3 Mo county Boundaries

Elevation
171
132

01530 60 90 120
O Kilometers

Figure 2: Tall tower location

3 Methods

Artificial Neural Networks (ANN) have to date been applied to a multitude of fields in solving com-
plex problems. These data-driven models are utilized especially as physically-based mathematical
models are difficult to construct given the high non-linearity of natural systems [20]. As defined
by Basheer and Hajmeer [4] and Ramasamy et al. [25] , ANNs can be considered as a system of
densely interconnected processing elements, also called artificial neurons or nodes, which have the
ability to conduct parallel computations of input data .Complex relationships are derived from the
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input and the output. The input variables are multiplied by weights and biases are added to these
products. These are then passed through transfer functions for the generation of the outputs [25].

ANNS, being abstractions of biological systems, have the advantages of processing data that are
highly nonlinear. These robust systems have the ability to learn and generalize imprecise and fuzzy
data [4]. Data are allowed to be processed faster and have a better fit amidst inaccuracies from
measurement errors. The system in its learning is self updating and has the ability to unlearn data
as well [4].

There are many applications of ANNs, which include modelling, classification, pattern recog-
nition and multivariate data analysis problems [4] [25]. Here, we will focus our attention on the
clustering of the data into various clusters and then on subsequent modelling and forecasting. Clus-
tering as described by [4], is formed by investigating the similarities and differences of the inputs
based on their inter-correlations. Kohonen networks or Self-Organizing Feature Maps (SOMs), the
unsupervised learning ANN where the actual values are not required for the training set, are used
in this study. Forecasting is also done by training the ANN using a training set of historical data. A
Recurrent Neural Network (RNN) is utilized especially for its dynamic memory capabilities where
the outputs of neurons are fed as inputs to the same neurons or other neurons in the preceding
layers [4]. A general overview of the methods incorporated in this study is depicted in the flow
diagram below. More details of these methods are given in the following sub-sections.

Figure 3: Methods for wind speed forecasting utilized in this study
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3.1 Methods determining the number of clusters

Clustering analyses as mentioned in [22], are statistical methods which are used to partition multi-
variate data into subsets. There are numerous methods that can be used to determine the optimal
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number of clusters to classify the data into relatively homogeneous groups, such as the Elbow
Method, Silhouette Analysis and Gap Statistic. These methods, which are used in this study,
are outlined below. We have considered in the analyses this multivariate data set (of length n)
of variables wind speed, direction, temperature and pressure. We denote these points as x; for
1=1,...,n.

The Elbow Method is determined by plotting the within-cluster sum of squares (WCSS) against
the number of clusters, say k. The WCSS(k) gives the sum of the squared distances between
each data point, say x;, in all clusters and their associated centroids denoted as #; (which is the
geometric center or the arithmetic mean position of all the points in the plane figure). This can be
written as follows.

k
wessky = Y e -l (2)
j=1 z;eclusteryj

The changes in W(C'SS with a range of k determines the optimal number of clusters in accordance
with the Elbow method. The value in which k& elbows or the point where the rate of decrease in
WCSS is relatively minimal when compared to its previous k values.

The Silhouette Clustering method was also used in our analysis. This method examines the
within cluster-consistency by comparing how similar objects from a cluster are to another. Its
value, S(i) range from -1 to 1 where the lower end of the interval indicates that the configuration
has too much or few clusters. The closer this value is to 1 however, is indicative of an object that
is well matched to its cluster or poorly matched to the other clusters.

The mean similarity of point ¢ and all other points in the same cluster, C;, is given by equation 3
where |C;| denotes the number of elements in C; and d(, j) give the distances between data points ¢
and j in cluster C;. In this average the distances, d(i,¢) are not considered hence the consideration
of |C;] — 1 in the formulation below.

W=ty Y ) 3)

JjeCiyi#j
The smallest mean dissimilarity of point ¢ and all the other points of another cluster, Cj, is
given by b; in equation 4.
. 1 .
b; = mmk#m Z d(i,j) (4)
" jeCi

This is the second best fit cluster for point ¢ based on the distance metric. The Silhouette value
for point ¢, we define as \5;, is given in terms of a; and b; as seen in equation 5.

bi —la; .
S — ”Eal?{a(i,bz} if |G > 1 (5)
o if 0] =1

This can be further simplified as seen below, depending on the inequality relations between the
mean similarity and dissimilarity.

17%: if a; < b;
%71 if a; > b;

i

The Gap Statistic, another consideration used in this paper, is outlined as follows. As previously
denoted, let C; be the i*" Cluster and |C;| be representative of the number of elements in this cluster.
Let the pairwise distances between elements say ¢ and j in C;, d;, be given by equation 7.

di= > d(i,j) (7)

1,jeC5
For a given number of clusters k, the within cluster distance for that particular partitioning Py,
is given by equation 8. A better classification is indicative of a smaller Wy, value.
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Considering the data in which the ’true’ number of clusters is given by G, W} should drop as
k increases until it reaches G where it will decrease at a much slower rate. Thus, there will be an
‘elbow’ point in Wy; this k value corresponds to the optimal number of clusters. The Gap Method
is used to compare the original data with the expected curve, Ef {log(W})} where E} gives the
expectation of sample n from the reference distribution. The Gap Statistic is the value of k& which
maximizes Gap, (k) or from equation 9, the cluster value where Wy, is at the furthest distance from
the expected curve [32].

Gapy (k) = E;, {log(Wi)} — log(Wi) (9)

3.2 Self Organizing Maps (SOM)

A Self Organizing Map (SOM) is an unsupervised clustering method as there is no additional
information being supplied to the model by a ’supervisor’ [16]. In this model, high-dimensional
data sets are reduced to the two-dimensional map in which nodes with most similarity are nearest
to each other and vice-versa [23|. It does this dimensionality reduction via the usage of cluster
centers which can then be interpreted as an ’abstract representation’ of any given vector from
that particular cluster [16]. It preserves topology where vectors that are near in input space are
also mapped to nearby neurons in the SOM [22][23]. This resulting map is a projection of a
multidimensional space rather than a geographical space [23]. There are two modes of operation,
training which builds the map using input examples through a method called vector quantization
and mapping which classifies new input vectors [7].

This Kohonen Neural Network is used in many applications [30] such as Pearce et al.’s air
quality classifications [23] and in geoscience for the extraction of climate and atmospheric circulation
patterns [16]. Previous studies using SOMs also include Berkovic’s [5] determination of the wind
regimes, choosing from various map sizes, the number of nodes in the rows and columns. However in
our study, since we utilized SOMs for the purposes for clustering our data to be later incorporated
in our forecasting algorithm, we defined our map size based on the formulation written in [29]. The
number of neurons, M of the map is determined from the number of observations, N. It is given
by the following expression [7].

M ~5VN (10)

According to [6], the methodology of the SOM can be achieved via the processes of competition-
where the Best Match Unit (BMU) is identified, cooperation -where the topological neighbourhood
of the ’excited’ neurons are identified and finally adaptation -where BMU and excited neurons are
updated in accordance to the input vector.

In more detail the methodology of the SOM is as follows [29].

1. The weight vector of each of the neurons in the map is initialized randomly.

2. The training observed data, say x;, is 'passed’ to the map as an input vector and Euclidean
distance between the all the neurons and this vector is calculated. The neuron with the
smallest distance is termed the Best Matching Unit or (BMU). For each input observation,
the BMU is identified. We denoted this unit as ¢ henceforth.

3. A neighbourhood of ¢ is selected and using a neighbourhood function given by h;, the
weighted vectors of the neighbouring neurons, i are updated.

has(t) = a(t)e™ 5 (1)
Wit + 1) = Wi(t) + hatt) 20 — Wi(8)] (12)
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Where, from equation 11, h,; is the neighbouring function and ¢ is an index of iteration, a(t)
is the learning rate, r. is vector of ¢, r; is the vector of the neuron i and R is the radius around
c. This function is a monotonically decreasing function of ¢ as the learning rate decreases
with the iterations during the training process and the radii around ¢ decreases with ¢. This
process ensures that neurons ¢ closest to ¢ are being adjusted the most.

The neurons are updated in accordance to equation 12 where W;(¢t + 1) and W;(t) represent
the weighted vector of neuron 7 at the ¢ + 1 and ¢ indices of iterations respectively, h.; is the
neighbourhood function above and x; is the observed input vector.

4. This process is repeated in the iterative training until the clusters are identified based on
their distances.

The data described in Section 4.2, were normalized between 0 and 1 by subtracting from each
element in that particular column of the data frame, its mean. These values are then divided by
the standard deviation of the column to give the z or standard scores. This standardizing of the
variables was done using the scale command. These analyses were done in R studio [30]. The
SOM grid was then created using the relation of 10 where N = 52,560 data observations for each
variable. The grid size used was 41 by 28 of hexagonal nodes corresponding to the factor pair of
1,148. This value was used instead of the calculated numeric of 1,146 because it had more factor
pairs.

The following is a list of the metrics to be plotted and their description will be shown in the
results section.

1. Node Count- This map gives the number of samples that are mapped to each of the nodes of
the map. This value should be relatively uniform throughout the SOM. Large values in some
areas of the map is indicative for the need of a larger map whilst empty nodes indicates that
a smaller map may be more appropriate. Generally, it is used to determine high density areas
in the map where ideally there should be a homogeneous distribution [24].

2. Neighbourhood Distance or U-Matrix- This map gives the distance between each node and its
neigbouring neurons. It represents the Euclidean distance amongst the codebook vectors of
the respective neighbourhoods [24]. Larger distances indicates dissimilarities and thus cluster
boundaries as nodes from the same cluster have the tendency to be closer.

3. Heat Maps - These maps separately give the distribution of each of the parameters throughout
the map. These are done for the four variables, both scaled and unscaled.

4. Clustering of the codebook vectors - This map consists of the codebook vectors which is the
data structure that carries the neuron’s weight vector in a 2D grid. The number of clusters
or groups is input as well as the specification to add the cluster boundaries.

After the clusters are identified, the cluster associated with each of the x(t) vectors was deter-
mined. Continuous intervals of the clustered 2009 Columbia, MO data set, representing approxi-
mately 50% and over of data points in that particular cluster, were established. There were three
intervals in which the majority of the vectors or rows from the data frame belonged to two of the
identified four clusters, denoted Clusterl to Cluster4 (we will explain more of this in the subsequent
results section). For example, Intervall ranged from 1 to 16,000 rows in which Cluster3 consisted
of 50.2% of the vectors. Interval2 which started at 16,001 and ended 40,500 inclusively, comprised
78.92% of rows from Cluster2. Interval3d included vectors from 40,501 to 52,500 in which Cluster3
represented approximately 48% of this interval. It should be noted that there were predominately
two clusters which we will also show in subsequent results of the clustering of the codebook vectors.
Another note to mention is that the entire time series of length was not used. Instead, 52,500 rows
were utilized in our analyses. There were 16,000, 24,500, and 12,000 points in Clusterl, Cluster2
and Cluster3 respectively.

These intervals are then separately trained and tested in time series forecasting using the Re-
current Neural Network explained in the subsequent subsection.
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3.3 Recurrent Neural Networks (RNN), Long Short- Term Memory Net-
works (LSTM)

Recurrent Neural Networks (RNN) allow information to persist via one or more hidden states
and loops that pass information from one step to another of the network. However, for this, there
exists the vanishing gradient problem as the gradients asymptotically reduce to 0 from the repeated
multiplication of weights for various time steps. Long Short-Term Memory networks (LSTMs) are
a special type of RNN that can learn these long-term dependencies. The LSTM has memory blocks
called cells where information is stored in the cell state, ¢; and the hidden state, h;. A diagrammatic
representation of the architecture of such memory blocks or cells is seen in Figure 4. Information is
regulated by gates by optionally allowing certain data through using sigmoid and tanh activation
functions. The output of the sigmoid function is a number between 0 and 1, where 0 and 1 mean
no and all information goes to the cell state, respectively. Generally notated, the inputs to the
gates are the output hidden state from the previous step , h;_1, and the output cell state from the
previous step, ¢;—1 and current input, x;, which are pointwise multiplied by weight matrices, W,
and then added to a bias, b.
There are three major gates: the forget, the input, and the output gates.

1. The forget gate: As seen in Figure 4, the input of this gate is x; and h;—; for that time
step. These inputs are multiplied by weight matricies and added to a bias. This value is then
inputted to the sigmoid function and a vector is outputted which corresponds to each value
in the cell state, c;—1. Please refer to equation 13. This vector output is multiplied to the cell
state. If a 0 is output from the sigmoid function for a particular value, the forget gate wants
the cell state to disregard that information whilst if 1 is the sigmoid output, the forget gate
wants the cell state to remember this data.

fe =0 Wy [hi—1, 2] + by) (13)

2. The input gate: The gate determines the information being stored in the cell state. The
sigmoid layer decides the data to be updated and the tanh layer, whose output values ranges
from -1 to 1, creates a vector of possible values that could be added to the cell state. Please
refer to equations 14 and 15.

it =0 (Wl . [ht—17xt] + bz) (14)
g¢ = tanh (W - [hy—1, z¢] + by) (15)

The old cell state, ¢;_1 is then used to update the new cell state ¢;. This is done represen-
tatively by equation 16. The old state is multiplied by f; to forget the information decided
upon earlier and then it is added to the product of ¢; and g; which is indicative of the new
possible values scaled to the update amount decided upon for each value. Note that * is
representative of the Hadamard or entrywise product.

ce = (frxcim1) + (i * gr) (16)

3. The output gate: A vector is created from scaling the values in the cell state using a tanh
function. The sigmoid function is once again used as a filter to regulate what is to be outputted
from the vector mentioned previously. This can be represented by equation 17. This is sent
as the output and as the hidden state of the next cell.

or =0 (Wo - [hy—1, 2] + bo) (17)
ht = o; x tanh (c¢) (18)

10



Figure 4: LSTM Architecture
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3.4 Moving AutoRegressive Integrated Moving Average Method (ARIMA)

A moving AutoRegressive Integrated Moving Average Method (ARIMA) is used as another model
in our analysis. This is a statistical method which uses the relationship within the time series
data in its construction. Data cannot be white noise, that is, purely random with mean = 0 and
standard deviation being a constant as forecasting into the future would not be possible. If this
condition is met, AutoRegressive, AR(p), Moving Average, MA(q) and AutoRegressive Moving
Average, ARMA (p,q) methods can be utilized. If the data are not stationary (that is not constant
mean and variances), differencing needs to be performed. An AutoRegressive Integrated Moving
Average, ARIMA (p,d,q) can be used where the Integrating part represents the d or the differencing
factor.

The AR method, a time series model, is regressed from its previous values up to an order
determined by the p parameter. This can be seen mathematically from equation 19. The Partial
Autocorrelation function (PACF) determines how many lags are to be incorporated in the AR
method; large PACF values gives the order of the model. For lag p, the relationship between x;
and z;_, is determined, filtering all the intermediate linear influence from &1, 2 —2,..., % (p—1)-

= Bo + Bixi—1 + Bavi—o + ... + BpTi—p + & (19)

Where z; and z;_1, ...,r:—p are the current and previous values respectively and 3y is a constant
term and Bi,...,8, are the coefficient representing what part of z;_i,..., 24—, are relevant in
explaining the current value etc.

The MA model is written in terms of a linear combination of past error. It gives the extent the
series is related to its past errors. Generally it can written as equation 20. The Autocorrelation
function determines the number of lags for the MA model. It is given by the lag value which is
statistically different from 0 and above the error band, followed by consecutive insignificant ACF
values for subsequent lags.

Ty =c+er+016_1 + 0840+ ...+ qut—q (20)
Where x; is the current value, e and €¢_1,...,e,—4 are errors from the current and previous pre-
dictions respectively and 6, ..., 8, represent the corresponding part which is relevant in explaining

the current value.

The ARMA method is the linear combination of the linear models, AR and MA as such they too
are linear models. This method thus, takes into account past values and errors in its formulation.
Generally it can be written as equation 21.
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xp = By + P17 + Poi_o ...+ Bpxi_p +ep + 01601 +Oagr_o + ...+ 041 (21)

The differencing parameter,d is introduced in the ARIMA models to remove trends and season-
ality. The first order difference is given by Ajx; = 2y —xy_1. This and higher orders can be written
in terms of B, the backward shift operator where Bxy; = x;—1 and B (Bx;) = B(x4—1) = T1—2.
Generally for shifting an observation some m periods, B™x; = x4_,,. Thus, the first and sec-
ond differences in terms of operator B are Ajxy = zy — 241 = x — Bxy = (1 — B)xy and
Aoxy = Az — Ay = (1 — B)2 x; respectively. The second difference can be shown to be
via expansion, r;_o — 2T¢_1 + X;.

To determine the number of differencing to use we examine the autocorrelations. If the series
has positive autocorrelations out to a large number of lags then the series may need differencing.
If for lag 1, the autocorrelation is zero or negative then the series does not need higher order
differencing. However, if for lag 1 the autocorrelation is less than or equal to -0.5, then the series
may be over-differenced. A model with no differencing implies that the series is stationary whilst the
assumptions are made that for the first and second differencing of the series, the original series has a
constant average trend and has time varying trends respectively. An ARIMA(1,1,0), ARIMA(0,1,1)
and ARIMA(1,1,1) can be written mathematically as equations 22a and 22b, 23a and 23b, 24a and
24b respectively.

Avzy = fo + frA1mi—1 (22a)

=2 = o+ x—1 + 1 (T—1 — T4—2) (22b)

Azy =c+ 01611 (23a)

= o =c+xi—1+ 060181 (23b)

Az = fo + f1A1xi—1 + O1641 (24a)

=2 = Lo+ x—1 + 01 (T—1 — T4—2) + O1641 (24b)

3.5 Model Configuration

Model: LSTM (pressure and wind speeds as inputs) The Pytorch structure of the codes for this
model was motivated/developed by [17].

e The data were loaded, preprocessed (by taking the larger wind speed of the orientations at
each time step) and plotted.

e The target variable was specified as wind speed along with the forecast lead (how much we
are forecasting ahead, h). The target was specified as the lag/shift of the wind speed by the
forecast lead. The features were given as wind speed and pressure. The data were then split
into the training (75%) and testing (25%) sets from the observations. The train and test data
were then standardized where the values are not restricted to a particular bounding range
like normalization.

e A sequence of observations from the train and test set were constructed. This sequence was
given as a block of data from some i*" row - sequence length through row i. For i less than
the sequence length, the 15° row was padded by repeating it as many times deemed necessary.

Thus, the outputs have the number of rows in the block equal to the sequence length.

e These sequences from data set was set in Pytorch’s dataloader to select minibatches. However,
in our model the batch sizes selected were the entire respective train and test data sets for the
Intervals. Thus we had two features (columns), fifty sequence length (rows) and one batch
the length of the train and test sets.
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e A shallow regression LSTM model was then utilized with one hidden layer of 100 hidden units.
The loss function is used to calculate the error or the difference between the predicted and
the actual values. The loss function chosen was Mean Square Error (MSE). The optimizer is
used to make changes to the weights; it does this to try to lower the model loss function. The
optimizer chosen was the Adaptive Moment Estimation (Adam) algorithm with a learning
rate of 0.01. An epoch is the number of times the algorithm traverses the training data. The
model was trained using 20 epochs and was then evaluated.

4 Results

From Figure 5, we can see that the elbow occurs at 4, indicative that this is the optimal k. In
figure 6, 4 has the largest S(¢) value indicating that for £ = 4, the objects are well matched to their
respective clusters. Similarly, from Figure 7, the value which maximizes Gap, (k) is k = 4. From
the analysis of multiple methods, the bar chart in Figure 8 indicates that most of the methods
result in an optimal k of 4. This is an important consideration, as mentioned in Pearce et al. [23],
because a grid with too few classes losses important information via generalizations whilst too many
classes will result in loss of statistical power as there will exist smaller within class sample sizes.

200000~
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tot_withinss

100000- .

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 3 4 5 6 7 8 & 10 11 42 13 14 45 16 17 18 19 20
2:20

Figure 5: Elbow Method showing the Figure 6: Silhouette Clustering Method
optimal number of clusters of the data showing the optimal number of clusters
to be 4 of the data to be 4

Optimal number of clusters Optimal number of clusters for Columbia68

0.79
%;077 :f% I
075 0o . I -I
1 2 3 4 N b5 ” 6 . 7 8 9 10 25 50 75 160
Figure 7: Gap Statistic showing the op- Figure 8: Methods determining optimal
timal number of clusters of the data to k show that optimally, from most meth-
be 4 ods, that k =4

The grid was a hexagonal structure consisting of 1148 nodes. This structure consisted of no x
and y axes but rather nodal positions, which were numbered as bottom left having the least value,
whose node numbering increases from left to right [18]. As mentioned in [23], limitations of SOMs
include its grid having a finite structure, which imposes restrictions on the map in the provision of
precise information on clustering dissimilarity. Another restriction is using set of numbers to define
the grid that in turn generalize its shape, be it a rectangle or a square [23].
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From the results of the SOMs, the node count plot can be seen in Figure 9. Since the distribution
of the counts is relatively uniform throughout the domain of the SOM, the map size is appropriate.
Figure 10 shows the neighbourhood distance in which cluster boundaries can be identified via large
nodal distances. From this map, it is evident that there exist areas where there are greater distances
representative of the upper end of the scale and the lighter colours. This is seen for example in the
north eastern portion of the map. From the clustering of the codebook vectors in Figure 15, we do
note that this is separated as part of a cluster. This is contained in a smaller cluster whilst there
are two major clusters where the adjacent nodes are grouped in the same cluster. This grid also
shows, for each node, all the variables (as colour coded) in various sector representations. The radii
of the sectors varies with respect to its variable [18]. The unscaled heat map for all of the variables
used in this study are seen from Figures 11 to 14.

Plot for Col ia68

150

100 €

50

Figure 10: Neighbourhood Distance or U-
Figure 9: Node Count Plot showing the homo- Matrix showing the distance between each
geneous distribution of the samples on the map node and its neighbouring neurons

Figure 11: Heat Map showing the unscaled dis- Figure 12: Heat Map showing the un-
tribution of the wind direction values through- scaled distribution of the wind speed values
out the map throughout the map
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Figure 13: Heat Map showing the unscaled dis-  Figure 14: Heat Map showing the unscaled dis-
tribution of the temperature values throughout  tribution of the pressure values throughout the
the map map

Codes plo
‘b_ '

] Max1 O Direction1
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Figure 15: Clustering of codebook vectors into the optimal 4 clusters identified showing there are
2 dominant clusters

From the clusters of the SOMs, continuous intervals belonging to a particular cluster were
identified. These intervals are representative of approximately 50% and more of the rows from the
data frame belonging to a particular cluster where Intervall, Interval2 and Interval3 belonging to
Cluster3, Cluster2, and Cluster3 ranged from 1 to 16,000, 16,001 to 40,500 and 40,501 to 52,500
rows respectively. The three intervals identified by our clustering are graphed in Figures 16, 17 and
18 where both the test and training sets are visualized. These clusters from the SOM were utilized
to optimize model performance in forecasting as done in Browell et al.’s article [6]. The forecast
horizon is from 20 minutes to 2 hours. As mentioned in [6], for these time scales which are used to
balance the power systems by operators, statistical methodologies inclusive of ARIMA are superior
to that of results obtained from Numerical Weather Predictions (NWP). This can be attributed to
its low computational cost and ease of including of new data [6].

From table 1, the RMSE and the MAE for these intervals and various time steps, h, using the
moving ARIMA model, can be seen. These values ranged from approximately 0.6 to 1.0 ms™!.
These results are somewhat comparable to that of [6]. Browell et al. [6] used vector autoregression
in the spatial consideration of multiple locations and for this model they obtained RMSEs of 0.96,
1.55, 2.00 ms~*! for one, three and six hours ahead. Another study by [27] using both hourly and
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10 minute data in which 39 and 173 points were forecasted respectively for each data set, have
RMSEs of 1.27 ms~! for the hourly dataset and 0.96 ms~! for the 10 minute dataset. For our
time step or forecast horizon of h equal to 6 (one hour ahead), for Intervall and Interval3 this value
was approximately 0.8 ms~! whilst for Interval2, it was an estimated 0.1 ms™! less that the other
two intervals.

In our analyses, the upper and lower values from this range resulted from the run of Interval2.
This is expected as this interval encompassed most of the spring, all of the summer and the beginning
of the fall. As such it is expected that the model shows the most variability in errors for this interval.
It is expected as well that this interval has the lowest errors as it has highest learning ability of the
neurons due to its largest training set [20]. This can be seen graphically in Figure 19. From Table
2, we see that the results were comparable to that of the intervals defined by the SOMs. We note
also that spring has the largest RMSE from the moving ARIMA as expected due to the prevalence
of convective storms. The moving ARIMA was also trained using three quarters of the entire data
set, despite having this advantage of more information variability in training/learning phase, these
results did not deviate significantly from the interval and the seasonal analyses.

ANN are powerful and are frequently used in time series forecasting due to their high parallelism,
among other characteristics [26]. However, the ARIMA model is widely used and has given more
accurate results for very short term forecasts [26].
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Figure 18: Interval 3 used in the model runs
consisting of rows 40,501 - 52,500 of the data

Table 1: Moving ARIMA Results for the Intervals- RMSE determined for 20 to 120 minutes forecasts

h Intervall Intervall | Interval2 Interval2 | Interval3 Interval3
(10-mins) RMSE MAFE RMSE MAE RMSE MAFE
2 0.7624309  0.5587051 | 0.6152723  0.4480265 0.738208  0.4980114
4 0.7817789  0.5783413 0.665906  0.5017876 0.756581 0.5186229
6 0.8008848  0.5957457 | 0.7360105  0.5666321 | 0.7666935  0.5284694
8 0.8154731 0.6082994 | 0.8106469 0.6321702 | 0.7712227 0.5328341
10 0.8257323  0.6171721 | 0.8831231 0.6938833 | 0.7727915 0.5341433
12 0.832471 0.622839 0.9509406  0.7507482 | 0.7735839  0.5348155
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Table 2: Moving ARIMA Results for 2009 data set and the seasons- RMSE determined for 20 to
120 minutes forecasts

h (10-mins) | 2009 data set- RMSE | Spring- RMSE Summer- RMSE Fall- RMSE

2 0.6943994 0.763676 0.5139139 0.6625789
4 0.711852 0.7787825 0.5504232 0.68182
6 0.730347 0.7998983 0.5724217 0.7019841
8 0.7445687 0.8185765 0.5821634 0.7278857
10 0.7543516 0.8330311 0.5854124 0.7558021
12 0.7608936 0.8438839 0.5858682 0.7844518
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Figure 19: ARIMA Errors for the Intervals- Figure 20: ARIMA Errors for 2009 data
RMSE for 20 to 120 minutes forecasts shows set and the seasons- RMSE for 20 to
that Interval2 which consists of most of spring, 120 minutes forecasts shows that sum-
all of summer and the beginning of fall, has the mer and spring have the least and most
largest range of errors errors respectively

The LSTM methodology was applied for the wind speed and pressure time series. Pressure was
chosen because it had the greatest magnitude correlation with wind speed when compared with the
other meteorological variables of wind direction and temperature. The RMSE results can be seen
from Table 3. The test forecasted series for the various intervals, together with the actual series,
can be seen in Figures 21 to 23. From the results obtained, ARIMA incurs smaller RMSE than
the LSTM model for all intervals. Though there have been studies for which ARIMA outperforms
ANN and SVM as mentioned in [27], there have been RNN methods used in wind speed forecasting
which performs better that ARIMA. In [27], the errors are approximately 11 to 14 percent less in
the RNN model compared to their ARIMA method. Another study, [9], univariate ARIMA saw
higher errors than univariate RNN. The same result was observed when comparing multivariate
ARIMA with a multivariate RNN.

The reason for such results can be attributed to the difficulty of representing the high dimen-
sional and non-linear system using the one-dimensional wind speed time series [15]. As such the
series is lagged using the time delay 7 and the embedding dimension d for each of the intervals and
these lagged co-ordinates were input to the LSTM model. The 7 value was determined to be 3
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using Auto Mutual Information (AMI) with the exception of Interval2 whose value was given by 2.
The d value was determined to be 6 using Cao Algorithm for all intervals. The 7 value was taken
at the first local minimum for the AMI and the d value, as when E1(d) attains saturation. Please
refer to [3] for more information on the methodologies of these parameters as well as Figures 24
and 25. Another study that uses the lags of the series in the training of the ANN as input variables
was [8]. It was determined in their study that the best model was the simplest consisting of two
layers and two input and one output neurons [8].

The results obtained can be seen in Figures 26 to 28 for Intervall to Interval3 respectively. The
persistence model for each interval was constructed by calculating the average for every multiple
of the 6 hour and recording these as the values of persistence for the next consecutive 6 hours
or 36 time steps. The time forecast horizon, h looked at for this analysis are 60, 120, 180, 240,
300 and 360 minutes. The models under comparison are the LSTM with lagged wind speeds as
inputs, the Moving ARIMA, the LSTM with pressure and wind speeds as inputs and persistence.
The Normalized Root Mean Squared Error (NRMSE) metric for model evaluation was determined
for all of the models. For values of this metric exceeding 1 or 100% implies that the forecast is no
better than the mean of the data after this run.

It can be noted that all models performed better than the persistence model which stayed con-
sistently between 0.8 and approximately 1.0 for the three intervals. The h value of 360 minutes for
Intervall and Interval2 have values which are over 1.0 or representative of a forecast no better than
the mean. The LSTM with the lagged wind speeds as inputs, denoted as Lagseries, outperformed
the LSTM with the pressure and wind speeds as inputs, denoted as Pressureandwind, for all of the
intervals. The Moving ARIMA method is now beaten by the lagged LSTMs for up to the 180"
minute time step in Interval2 and up to the 120" time forecast horizon in Intervall and Inter-
val3. The second interval as mentioned previously has most of spring which have convective storm
events, so it is expected that if any interval is to do best in the non-linear model of the LSTM when
compared to the linear model of the ARIMA model, it would have been Interval2. The NRMSE
of the LSTM Pressureandwind tends to one faster than the LSTM Lagseries for all of the intervals
though up to the h value of 360 minutes, they do not exceed 1. As expected when the entire test
set was forecasted for the models (h= test set), the NRMSE for most of the intervals exceeded 1;
for the other cases, they were 0.97 and 0.98.

The tabulated results of the RMSE values for each of these models can be seen in Table 4. The
forecasted and the actual series for h = 360 minutes for LagSeriesl to LagSeries3 can be seen in
Figures 29 to 31 respectively. Similarly, these plots for the ARIMA1 to ARIMAS3 test set can be
seen in subsequent figures whilst correspondingly the error defined as the difference between the
actual test data and the predicted test data can be viewed in Figures 35 to 37. It can be noted,
especially for the Moving ARIMA results, there was a significant match between the predicted and
the actual series. The differences in the actual test data and the predicted test data were varying
about the zero marker thus indicating that the trends were well captured by the model.

Table 3: LSTM (with pressure and wind as inputs) RMSE values indicate that the Moving ARIMA
beats the LSTM for forecast times of 20 to 120 minutes

h (10-mins) | Intervall- RMSE | Interval2- RMSE | Interval3- RMSE
2 0.940142796 0.975498677 0.834158971
4 1.155461471 1.219467954 0.927660403
6 1.296958276 1.257914418 0.992396502
8 1.444971761 1.35340903 1.026433109
10 1.451004208 1.432323828 1.137951695
12 2.767638696 1.502783097 1.14651633

19




variable
—— Max1_leads
—— Model_forecast

Test set

Max1 Wind speeds

index

Figure 21: LSTM Intervall showing the model forecast
of forecast time 60 minutes or 1 hour and the actual
wind speed values, Max1

— Max1_leads
—— Model_forecast

Max1 Wind speeds
Max1 Wind speeds

Figure 22: LSTM Interval2 showing the model = Figure 23: LSTM Interval3 showing the model
forecast of forecast time 60 minutes or 1 hour forecast of forecast time 60 minutes or 1 hour

and the actual wind speed values, Max1 and the actual wind speed values, Maz1l
2 I
g Computing the embedding dimension
= i _
= o
S | S s =1\ 2
a E o :}_\: é«:::ﬂ:-&:g.::g;g:g:@:é:é:&:éﬁﬁzé:ﬁxb:&
s O | 0,0.0.0'
g | g < | —e— Ei(d)
T ! w ° —&— E2(d)
0 40 80 o | -~ limits for E1(d)
s T | 1
. 5 10 15
Time lag
dimension (d)
Figure 24: Tau or time delay for Inter-
val2 is given by 2 using the Auto Mutual Figure 25: Embedding dimension for Interval2 is
Information (AMI) determined to be 6 from Cao Algorithm

20



NRMSE for Intervali

=
— o Lagsaiasi
= ARBAT
N
g- 3 7 .———_._._.-_.'____—__!
W ] T o—— o
[72] [Te) e . o —_
DZ: = ] // | ] | ] | ] | ]
S o
| | | I | | |
50 100 150 200 250 300 350

Forecast time (minutes)

Figure 26: NRMSE for Intervall using Models- LagSeries] which is the LSTM with lagged wind
speeds as inputs, ARIMA1 which is the Moving ARIMA model, Pressureandwindl which is the
LSTM with pressure and wind speeds as inputs and Persistencel which is the Persistence model.
The LagSeriesl improves upon Pressureandwindl and beats the Moving ARIMA for forecast times

of 60 and 120 minutes
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Figure 27: NRMSE for Interval2 using Models- LagSeries2 which is the LSTM with lagged wind
speeds as inputs, ARIMA2 which is the Moving ARIMA model, Pressureandwind2 which is the
LSTM with pressure and wind speeds as inputs and Persistence2 which is the Persistence model.
The LagSeries2 improves upon Pressureandwind2 and beats the Moving ARIMA for forecast times

of 60, 120 and 180 minutes
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NRMSE for Interval3
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Figure 28: NRMSE for Interval3 using Models- LagSeries3 which is the LSTM with lagged wind
speeds as inputs, ARIMA3 which is the Moving ARIMA model, Pressureandwind3 which is the
LSTM with pressure and wind speeds as inputs and Persistence3 which is the Persistence model.
The LagSeries3 improves upon Pressureandwind3 and beats the Moving ARIMA for forecast times
of 60 and 120 minutes

Table 4: Models” RMSE Results for the Intervals showing that the best performing model, up to

180 minutes or 3 hours, is LagSeries

Interval | h (mins) | LagSeries | ARIMA | Pressureandwind | Persistence
Intervall 60 0.372907494 | 0.8008848 1.307214932 1.331339773
120 0.352250278 | 0.832471 1.572144369 1.643609466
180 1.087379921 | 0.8412903 1.831567231 1.987401039
240 1.477212704 | 0.8436806 1.943241466 2.055514112
300 1.724707138 | 0.8443778 2.05444378 2.119308164
360 1.920543992 | 0.8444589 2.13412727 2.263135526
Interval2 60 0.238592146 | 0.7360105 1.276806808 1.538227218
120 0.242534049 | 0.9509406 1.53582464 1.734079072
180 1.067046011 | 1.117465 1.72837262 1.83946146
240 1.432849673 | 1.233804 1.822299134 1.875548504
300 1.649253577 | 1.312496 1.9014607 2.069048477
360 1.786658699 | 1.365862 1.961462493 2.284102311
Interval3 60 0.376359712 | 0.7666935 1.257796263 1.536880065
120 0.436734176 | 0.7735839 1.617069345 1.619311738
180 1.028754688 | 0.7734066 1.685952464 1.80858766
240 1.36522671 | 0.7698904 1.778578867 1.814853169
300 1.596357379 | 0.7602228 1.84599341 1.939363159
360 1.739204251 | 0.7602228 1.891493873 2.168188039
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Figure 30: Lagseries2 LSTM showing the model
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Figure 31: LagSeries3 LSTM showing the model
forecast of prediction time, 6 hours and the ac-
tual wind speed values, Maxl
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Figure 32: Predictions of Moving ARIMAL1 for forecast
time, 6 hours and the actual wind speed values
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Figure 33: Predictions of Moving ARIMA2 for
forecast time, 6 hours and the actual wind speed
values
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Figure 35: Errors of Moving ARIMA1 for forecasting
time, 6 hours, of the test time series
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Figure 36: Errors of Moving ARIMA2 for fore-  Figure 37: Errors for Moving ARIMA3 for fore-
casting time, 6 hours, of the test time series casting time, 6 hours, of the test time series

5 Future Work, Additional Analyses and Conclusion

In the model runs, the forecast variable - in our case wind speed - can be further processed to
determine if there are any patterns in the wind speed forecast values (in terms of its accuracy) when
its actual values is less than or greater than some x value or the difference between consecutive
actual values rates are higher than some y value.

Yearly analysis can be done to see if there are the same number of clusters and accuracy in
forecasting (seasonal analysis - using yearly data) is similar.

The optimal number of clusters was determined to be 4 using the Elbow and Silhouette methods
among others. SOMs were then used to cluster the data after which three continuous intervals
belonging to a particular cluster, which represented approximately 50% and over of the input
vectors or rows from the data frame were identified. These intervals were then inputs for the
LSTMs with inputs pressure and wind speeds, the lagged series LSTMs with embedding dimension
d and time delay 7, the Moving Window ARIMA and persistence models. It was determined that
the Moving ARIMA model is outperformed by the lagged LSTM for at most 180 minutes from the
runs of the defined intervals. The lagged series improved upon the LSTM with the wind speed and
pressure series. All of these models however, performed better than the benchmark of persistence
for all time steps.
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