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Abstract 22 

We examine the effects of regional climate model (RCM) horizontal resolution and forcing 23 

scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change 24 

impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of 25 

signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water 26 

balance and hydrologic signature measures. To this end, we conduct our study in three 27 

catchments located in the headwaters of the Colorado River basin. Meteorological forcings for 28 

current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-29 

km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional 30 

climate model, and hydrologic changes are computed using four different hydrologic model 31 

structures. These projected changes are compared to those obtained from running hydrologic 32 

simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km.   33 

The results show that the horizontal resolution of WRF simulations heavily affects basin-34 

averaged precipitation amounts, propagating into large differences in simulated signature 35 

measures across model structures. The implications of re-scaled forcing datasets on historical 36 

performance were primarily observed on simulated runoff seasonality. We also found that the 37 

effects of WRF grid resolution on projected changes in mean annual runoff and 38 

evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses 39 

the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic 40 

signature measures were found to be generally smaller than those coming from WRF resolution; 41 

however, forcing aggregation in many cases reversed the direction of projected changes in 42 

hydrologic behavior. 43 

44 
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1. Introduction 45 

Although global climate models (GCMs) are widely used for generating information on 46 

future climate scenarios, their native grid size (~100-200 km on a side) is a serious limitation for 47 

characterizing climate projections at the basin scale, where features such as elevation and aspect 48 

become relevant. To reconcile differences between coarse resolution GCM outputs and regional 49 

or local scale climate processes, Regional Climate Models (RCMs) are run with lateral boundary 50 

conditions from GCMs to force fine-scale climate simulations, a process typically referred to as 51 

dynamical downscaling (Xu 1999; Fowler et al. 2007). Teutschbein and Seibert (2010) presented 52 

a detailed review of approaches that make use of RCMs for quantifying climate change impacts 53 

on hydrologic processes, and a plethora of additional example applications can be found in the 54 

literature (e.g., Wood et al. 2004; Steele-Dunne et al. 2008; Suklitsch et al. 2008; Kay et al. 55 

2009; Prudhomme and Davies 2009; Gao et al. 2011; Vicuña et al. 2011; Majone et al. 2012; Wi 56 

et al. 2012; Lauer et al. 2013; Velázquez et al. 2013). 57 

However, a key aspect rarely explored is the choice of RCM horizontal resolution, which 58 

determines how precipitation – in particular snowfall – and other hydrologic variables are 59 

represented in highly heterogeneous regions (Rasmussen et al. 2011). For example, Kleinn et al. 60 

(2005) compared hydrologic model simulations forced with 14-km and 56-km RCM outputs in 61 

the Rhine basin in Central Europe, finding that although the finer resolution provided more 62 

realistic precipitation fields, improvements in streamflow simulation skill were small. Contrarily, 63 

Dankers et al. (2007) showed that 12-km simulations conducted with the HIRHAM RCM 64 

provided a better representation of orographic patterns and extreme precipitation events in the 65 

Upper Danube basin in Central Europe, and better simulations of hydrologic extreme events at 66 
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the sub-basin scale in comparison to coarser (50-km) RCM outputs. Graham et al. (2007) 67 

concluded that a 25-km resolution provided more systematic and less spatially variable biases in 68 

RCM precipitation and temperature fields when compared to 50-km resolution. Van Roosmalen 69 

et al. (2010) evaluated the implications of choosing different RCM resolutions (12-, 25- and 50-70 

km) on delta change factors (e.g., additive perturbation for temperature, multiplier for 71 

precipitation) – from a control and future climate scenario – computed at a monthly basis for 72 

Denmark, finding that the added value of increasing resolution was almost negligible. A set of 73 

studies conducted in the Colorado Headwaters Region (Ikeda et al., 2010; Rasmussen et al., 74 

2011, 2014) explored the effects of horizontal resolution using the Weather Research and 75 

Forecasting (WRF) regional climate model (Skamarock et al. 2008). Specifically, they showed 76 

that the use of horizontal resolution of 6 km or less in RCMs allowed accurate estimations of 77 

vertical motions driven by topography without the need to include a convective parameterization 78 

scheme, improving the representation of seasonal snowfall and snowpack. Along these lines, 79 

Prein et al. (2013) compared the effects of different horizontal resolutions (4-, 12- and 36-km) on 80 

daily heavy precipitation events simulated by WRF over the same domain, finding that only the 81 

4-km simulation was able to reproduce heavy summertime events, and that both 4-km and 12-km 82 

outputs were comparable and superior to the 36-km simulation when looking at winter events. 83 

More recently, Olsson et al. (2015) obtained similar findings – i.e., better simulation of summer 84 

extremes and summer wet spells – when moving from 50-km to 6-km horizontal grids. 85 

The choice of the RCM resolution is typically determined by climate modelers to optimize 86 

some constraints including available computer (i.e., time to compute the solution) and the need 87 

to represent selected important atmospheric processes as explicitly as possible, but the domains 88 

of these solutions are nearly always rectilinear for the Eulerian grid. However, hydrologic 89 
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modelers choose any shaped spatial element named Hydrologic Response Unit (HRU) at which 90 

the hydrologic model is run. The HRUs can be the entire catchment, a grid box, or 91 

hydrologically similar areas (e.g., similar soil-vegetation areas) and those are at different scale 92 

than RCM resolution. Accordingly, scaling or spatial aggregation of RCM outputs is nearly 93 

always required to obtain HRU averaged meteorological forcing. Several studies have examined 94 

the hydrologic implications of spatially aggregating meteorological fields from finer scales (e.g., 95 

Finnerty et al. 1997; Koren et al. 1999; Bell and Moore 2000; Arnaud et al. 2002; Liang et al. 96 

2004; Shrestha et al. 2006, 2007; Tramblay et al. 2011; Rasmussen et al. 2012), showing mixed 97 

conclusions. Lobligeois et al. (2014) conducted a detailed review of previous efforts, and 98 

analyzed the benefits of using high-resolution rainfall fields for flood simulation, including a 99 

large sample of flood events (3620) in a large number of catchments (181); although they 100 

concluded that these effects are “scale-dependent and event-specific-dependent”, they also found 101 

that regions with high spatial rainfall variability obtained the greatest benefits from high-102 

resolution precipitation inputs. Importantly, none of the above studies assessed the sensitivity of 103 

hydrologic changes to the spatial scale at which historical and future climate datasets are used. 104 

Given the evidence showing that RCM resolution affects climate outputs, a natural question 105 

that arises is how the effects of RCM horizontal resolution on hydrologic portrayals of climate 106 

change compare to those of scaled RCM at the same horizontal resolution. This paper examines 107 

how the grid spacing adopted in a RCM for dynamical downscaling affects hydrologic change 108 

estimates. In particular, we aim to characterize these effects on: (i) historical simulation of 109 

signature measures of hydrologic behavior (e.g., runoff ratio, seasonality, log-term baseflow), 110 

and (ii) projected hydrologic change in terms of annual water balance and hydrologic signature 111 

measures. Further, we compare the implications of choosing different horizontal grid sizes to 112 
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those associated with spatial aggregation of high resolution RCM output. Given the increasing 113 

awareness of the importance of hydrologic model structural uncertainty to climate change impact 114 

studies (e.g., Boorman and Sefton 1997; Jones et al. 2006; Jiang et al. 2007; Kay et al. 2009; 115 

Ludwig et al. 2009; Bae et al. 2011; Bastola et al. 2011; Najafi et al. 2011; Poulin et al. 2011; 116 

Miller et al. 2012; Vano et al. 2012; Surfleet et al. 2012; Addor et al. 2014; Mendoza et al. 2015, 117 

2016; Mizukami et al. 2016), we include four different hydrologic/land surface models for two 118 

reasons: to examine the robustness of RCM resolution and forcing aggregation effects, and to 119 

obtain insights on the relative importance of forcing-related decisions versus hydrologic model 120 

choice. 121 

The remainder of this paper is organized as follows. Section 2 provides a description of the 122 

study domain. Section 3 describes the meteorological forcing data, hydrologic models and the 123 

experimental design adopted in this study. Section 4 illustrates how the choice of RCM 124 

horizontal resolution and forcing aggregation affect hydrologic portrayals – obtained from 125 

different hydrologic models – under historical and modified climatic conditions. Finally, section 126 

5 summarizes our main findings.  127 

2. Study Area 128 

The Colorado River basin (CRB) is one of the major water sources for consumption, 129 

irrigation and hydropower in the western United States, draining parts of seven states and 130 

Mexico, and covering the needs of more than 30 million people. Given its strategic relevance, 131 

several studies have been conducted to quantify the potential effects of changes in precipitation 132 

and temperature on the hydrology of this area (e.g., Milly et al. 2005; Christensen and 133 

Lettenmaier 2007; Hoerling and Eischeid 2007; Ray et al. 2008; Rasmussen et al. 2011, 2014; 134 
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Miller et al. 2011, 2012; Bureau of Reclamation 2012; Vano et al. 2012; Vano and Lettenmaier 135 

2014). Much of the water for this region comes from the high-elevation area – the Colorado 136 

Headwaters – that act as a natural reservoir during the winter, storing precipitation as snowpack. 137 

Hence, we select three basins in the Colorado Headwaters with outlets at streamflow stations 138 

managed by the United States Geological Survey (USGS) – Yampa River at Steamboat Springs, 139 

East River at Almont and Animas River at Durango – whose location and elevation ranges are 140 

shown in Figure 1.  141 

Table 1 summarizes the main hydroclimatic characteristics of the three basins for which 142 

historical data are available, over an 8-year period (Oct/2000 - Sep/2008). Mean basin 143 

precipitation ranges between 700 mm/year to 900 mm/year, while mean basin elevation is above 144 

2500 m.a.s.l. Among these basins, the East River at Almont has the largest runoff ratio (0.42), 145 

and the Yampa at Steamboat Springs has the lowest runoff ratio (0.32, with the lowest runoff and 146 

precipitation amounts). The land surface of the Yampa and Animas River basins is 147 

predominantly covered by deciduous forests (26 % at Yampa and 23 % at Animas) and 148 

evergreen forests (37 % at Yampa and 39 % at Animas), while the land surface of the East River 149 

basin is mainly covered by evergreen forests (29 %) and grassland/herbaceous (26 %). 150 

3. Data and methods 151 

3.1 Climate datasets 152 

We use dynamically downscaled climate datasets obtained with the WRF model to force 153 

hydrologic simulations and compute hydrologic changes due to a climate perturbation. These 154 

datasets consist of historical (control run, CTRL) and pseudo global warming (PGW) outputs at 155 
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three different horizontal resolutions (4-, 12- and 36-km). These WRF simulations are fully 156 

described in Rasmussen et al. (2014), but briefly reviewed below. The initial and 3-hourly lateral 157 

boundary conditions were taken from the North American Regional Reanalysis (NARR; 158 

Mesinger et al. 2006) coarse resolution dataset (~32 km). The model physics options used in that 159 

study included the Noah Land Surface Model (Noah-LSM) version 3.2 with upgraded snow 160 

physics (Chen and Dudhia, 2001; Barlage et al., 2010), the Thompson mixed-phase cloud 161 

microphysics scheme (Thompson et al. 2008), the Yonsei University planetary boundary layer 162 

(Hong et al. 2006) and the Community Atmosphere Model’s (CAM) longwave and shortwave 163 

radiation schemes (Collins et al. 2006). Because the use of a horizontal resolution of 6-km or less 164 

is able to accurately estimate vertical motions driven by topography (Ikeda et al. 2010; 165 

Rasmussen et al. 2011), a convective parameterization was included for the 12- and 36-km 166 

simulations – using the Betts-Miller-Janjić scheme (Janjić 1994)–  but not for the 4-km 167 

simulation (Rasmussen et al. 2014). 168 

The PGW approach (Schär et al., 1996; Hara et al., 2008; Kawase et al., 2009; Rasmussen 169 

et al., 2011) consists of adding monthly mean climate perturbations to the initial and 3-hourly 170 

boundary conditions taken from NARR at each WRF vertical level.  The climate perturbation 171 

was obtained from the Community Climate System Model Version 3 (CCSM3) runs performed 172 

by the National Center for Atmospheric Research’s (NCAR) Climate and Global Dynamics 173 

Division (Collins et al. 2006) under the A1B scenario (Nakicenovic et al. 2000; Meehl et al. 174 

2007). This perturbation is generated by subtracting the current 10-yr (1995-2005) monthly 175 

climatology from a future 10-yr (2045-2055) monthly climatology.  176 

Meteorological data from WRF simulations is available for all horizontal resolutions at 177 

hourly time steps, for both historical and modified climatic conditions. The 12-km and 36-km 178 
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grids are perfectly aligned to each other, but not with the high-resolution 4-km grid. The output 179 

variables and temporal discretization used depend on specific hydrologic model requirements 180 

(Table 2). To compare the effects of WRF horizontal resolution – referred as experiment 1 – with 181 

those from re-scaling high-resolution outputs, we create two additional forcing datasets by re-182 

gridding WRF outputs obtained at 4-km to the 12- and 36-km grid cells used by Rasmussen et al. 183 

(2014) – referred as experiment 2. This is done in two steps: (1) identification of all the 4-km 184 

grid points contained in WRF grid cells at 12- and 36-km resolutions, and (2) computation of the 185 

new forcing data from the simple average of the 4-km points contained in the 12- and 36-km grid 186 

cells. 187 

Figure 2 includes basin-averaged monthly precipitation values computed from: (a) WRF 188 

outputs obtained by Rasmussen et al. (2014) with three different horizontal resolutions (4-, 12- 189 

and 36-km), and (b) 4-km WRF outputs, re-scaled to 12- and 36-km. These results correspond to 190 

the period October/2002 – September/2008, for current (CTRL, dashed lines) and future (PGW, 191 

solid lines) climate scenarios. As a reference, observed basin-averaged monthly precipitation 192 

values, also displayed with black symbols in Figure 2, were obtained by applying the Thiessen 193 

interpolation method (Thiessen 1911) on SNOTEL observations, including 8, 4 and 11 stations 194 

for the Yampa, East and Animas River basins, respectively. The results show that a closer match 195 

is achieved using high-resolution (i.e. 4-km) WRF outputs compared to 12- and 36-km, 196 

especially at the East and Animas River basins. Although 4-km WRF underestimates basin-197 

averaged precipitation at Yampa, especially during late winter and spring, additional analyses 198 

(not shown) suggested that a single station – located at the northeastern edge of the basin – 199 

recorded much greater precipitation amounts than the others, enhancing the mismatch between 200 

observed and simulated precipitation.  201 
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Figure 2a shows that WRF horizontal resolution affects precipitation amounts 202 

considerably. Indeed, 4-km WRF-CTRL simulations generate basin-averaged annual 203 

precipitation amounts of 735 mm, 824 mm and 937 mm in Yampa, East at Animas River basins, 204 

respectively, while the 12-km (36-km) WRF-CTRL simulation produces 473 mm (371 mm) at 205 

Yampa, 596 mm (580 mm) at East, and 650 mm (611 mm) at the Animas River basin. These 206 

relative differences are augmented over summer (June-September), when the 4-km WRF-CTRL 207 

outputs are 168 mm, 205 mm and 195 mm for Yampa, East and Animas, respectively, while 12-208 

km (36-km) outputs are 68 mm (39 mm) at Yampa, 95 mm (77 mm) at East, and 111 mm (80 209 

mm) at Animas. Moreover, PGW simulations project an increase in precipitation over fall/winter 210 

and a decrease during summer months at all basins, regardless of the horizontal resolution 211 

adopted in WRF. By contrast, scaling effects (Figure 2b) on monthly precipitation amounts are 212 

minor compared to those coming from WRF resolution, with 12-km (36-km) annual totals of 715 213 

mm (698 mm) at Yampa, 808 mm (759 mm) at East and 934 mm (960 mm) at the Animas River 214 

basin. Datasets spatially aggregated at 12-km (36-km) provide accumulated October-March 215 

differences of -14 mm (-25 mm) at Yampa, and -17 mm (-61 mm) at East with respect to the 4-216 

km WRF-CTRL simulation, and the 36-km aggregated dataset generated a +10 mm February-217 

April precipitation difference at Animas when compared to the same benchmark. 218 

Figure 3 displays basin-averaged monthly temperatures computed for experiments 1 219 

(Figure 3a) and 2 (Figure 3b). The 4-km WRF historical simulation provided annual mean 220 

temperatures of 2.1º C for Yampa, -0.5º C for East and 1.2º C for Animas, while the 12-km (36-221 

km) WRF run resulted in 1.8º C (1.5º C) at Yampa, -1.1º C (-0.4º C) at East and 0.5º C (0.7º C) 222 

at Animas These differences can be mostly explained by discrepancies over December-February 223 

(DJF). Similar relative differences (i.e. higher DJF temperatures) between the 4-km WRF 224 
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simulation and the 12-km/36-km runs were found under the PGW climate scenario, with annual 225 

increases (i.e. future – current) in basin-averaged mean annual temperature ranging from +2.3º C 226 

(Animas River basin) to +2.5º C (Yampa River basin). On the other hand, Figure 3b shows that 227 

scaling effects on monthly temperatures were relatively smaller, with mean annual temperatures 228 

of 2.2º C (2.1º C) for Yampa, -0.5º C (0.1º C) for East and 1.1º C (0.8º C) for Animas from the 229 

re-scaled 12-km (36-km) dataset. Moreover, the two coarse resolution datasets provided almost 230 

identical projected changes in mean annual temperature than the original 4-km WRF simulation: 231 

+2.4º C in the Yampa and East River basins, and +2.3º C in the Animas River basin. However, 232 

there are still differences in basin-averaged monthly temperature values among the three datasets 233 

in Experiment 2, which arise from daily temperature discrepancies and are so small that they are 234 

not distinguishable at the scale of Figure 3. 235 

3.2 Hydrologic/land surface models 236 

To explore the interplay between WRF horizontal resolutions and the choice of hydrologic 237 

model structure, we include four hydrologic/land surface models: the US Geological Survey's 238 

Precipitation Runoff Modeling System (PRMS; Leavesley et al., 1983; Leavesley and Stannard, 239 

1995), the Variable Infiltration Capacity  model (VIC; Wood et al., 1992; Liang et al., 1994, 240 

1996) the Noah Land Surface Model (Noah-LSM; Ek 2003; Mitchell et al. 2004), and the Noah 241 

Land Surface Model with Multiple Parameterizations (Noah-MP; Niu et al. 2011; Yang et al. 242 

2011). Our choice builds on the different degrees of complexity spanned by these models in 243 

terms of conceptualization of vegetation, soil and seasonal snowpack (see Table 3 for further 244 

details), and also different parameterizations for some hydrologic processes (e.g., different model 245 

equations for canopy storage, baseflow, etc.). It should be noted that these models are not 246 
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ordered by degree of complexity, which can vary depending on the process representation of 247 

interest (Table 3). Simulation time steps, forcing variables and land cover data used for a priori 248 

parameter estimates vary depending on specific model requirements (see Table 2 for further 249 

details). 250 

In this study we use a single suite of physics options for Noah-MP, including a Ball-Berry 251 

type model for canopy stomatal resistance, the Community Land Model (CLM; Oleson et al. 252 

2010) soil stress function to control stomatal resistance, the SIMTOP model for runoff and 253 

groundwater (Niu et al. 2005), a Monin-Obukhov similarity theory-based drag coefficient, 254 

supercooled liquid water and frozen soil permeability based on Niu and Yang (2006), a two-255 

stream radiation transfer scheme applied only to the vegetated fraction, a snow surface albedo 256 

parameterization based on the Canadian Land Surface Scheme (CLASS; Verseghy 1991), 257 

partitioning of precipitation into snowfall and rainfall based on Jordan (1991) and a Noah-type 258 

lower boundary of soil temperature. Readers are referred to Niu et al. (2011) for a full 259 

description of each model component. 260 

3.3 Experimental design 261 

3.3.1 Hydrologic model simulations 262 

To assess the effects of WRF horizontal resolution and spatial scaling on the portrayal of 263 

climate change impacts, we perform offline hydrologic model simulations under historical 264 

(CTRL) and modified climate (PGW) scenarios for the following cases: 265 

• Experiment 1: hydrologic models are forced with 4-, 12- and 36-km WRF outputs 266 

produced by Rasmussen et al. (2014). 267 
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• Experiment 2: hydrologic models are forced with 4-km WRF outputs, and two additional 268 

datasets obtained from re-scaling 4-km outputs to 12- and 36-km resolutions. 269 

All model simulations are conducted for the period between October 1, 2000 and September 270 

30, 2008, using the first two years as spin up (not processed) to initialize model states.  We 271 

compute hydrologic changes using the same parameter values obtained by Mendoza et al. 272 

(2015), i.e. calibrated by minimizing the root mean squared error (RMSE) between observed and 273 

simulated daily streamflow (period October 1, 2002 to September 30, 2008) with the Shuffled 274 

Complex Evolution (SCE-UA) algorithm (Duan et al., 1992, 1993), using 4-km resolution WRF 275 

historical datasets. Setting WRF-CTRL output as a historical climate baseline fits with the aim to 276 

better understand how different methodological choices affect hydrologic portrayals using the 277 

climate datasets obtained by Rasmussen et al. (2014); therefore, tuning hydrologic model 278 

parameters to WRF-CTRL allows a direct examination of how the climate change signal (given 279 

by the differences between WRF-CTRL and WRF-PGW) propagates into hydrologic changes. 280 

Although there are still some biases in the WRF-CTRL output (Figure 2), this is a problem 281 

common to all historical forcing datasets (Mizukami et al. 2014), including those based on 282 

interpolated station data and empirical algorithms (e.g., Maurer et al. 2002; Livneh et al. 2013), 283 

and differences between WRF and such gridded datasets are often attributable to errors in the 284 

gridded datasets and not to errors in WRF (Gutmann et al. 2012). It is important that hydrologic 285 

model parameters are consistent with the features of meteorological fields used, and the high-286 

resolution WRF simulations are most consistent with both the observations, and with other WRF 287 

simulations. 288 

Because the purpose of these experiments is to examine the implications of forcing datasets 289 

developed at different spatial resolutions, we fix the grid spacing of hydrological models  to 4-290 
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km – identical to the regular grid used in the 4-km WRF simulations performed by Rasmussen et 291 

al. (2014)– to isolate effects of forcing scale from those of hydrologic model grid size. Hence, 292 

when hydrologic model simulations are forced with 12- and 36-km meteorological datasets, 293 

meteorological variables are distributed to hydrologic model grid cells using a nearest neighbor 294 

interpolation method as in Shrestha et al. (2006). Finally, hydrologic changes are computed for 295 

the period Oct/2002 - Sep/2008 by forcing all hydrologic models with the same current (CTRL) 296 

and future (PGW) WRF datasets. 297 

3.3.2 Process-based evaluation metrics 298 

We use four hydrologic signature measures (Yilmaz et al. 2008; Stewart et al. 2005) to 299 

quantify model performance and projected changes in catchment behavior. These metrics are 300 

intended to represent different hydrologic processes – ranging from overall precipitation 301 

partitioning into ET and runoff to vertical redistribution of soil moisture –, and they are derived 302 

from daily runoff time series. The notation, short description, mathematical formulation and 303 

physical process associated with each signature measure are detailed in Table 4. Similar 304 

diagnostic evaluation metrics have been used in past studies with multiple purposes, such as 305 

model evaluation (e.g., Herbst et al., 2009; Majone et al., 2012; Pfannerstill et al., 2014), 306 

catchment classification (e.g., Oudin et al., 2010; Carrillo et al., 2011; Ley et al., 2011; Sawicz et 307 

al., 2011), sensitivity analysis (e.g., van Werkhoven et al., 2008; Wagener et al., 2009), 308 

hydrologic model structure identification (e.g., Hartmann et al. 2013; Hrachowitz et al. 2014), 309 

analysis of spatial distribution of hydrologic processes (e.g., McMillan et al. 2014) and the 310 

choice of realistic model parameter values in terms of process representations (e.g., Pokhrel and 311 

Gupta, 2009; van Werkhoven et al., 2009; Kollat et al., 2012; Pokhrel et al., 2012). 312 
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4. Results and discussion 313 

4.1 Model performance 314 

We first analyze how hydrologic model performance is affected by WRF horizontal 315 

resolution (Figure 4a) and forcing re-scaling (Figure 4b) over the period October/2002 - 316 

September/2008. To this end, we computed the differences between simulated (control, CTRL) 317 

and observed (Obs) values of signature measures of hydrologic behavior (Table 4). In Figure 4, 318 

each evaluation metric is displayed in a different row, hydrologic model structures are 319 

represented by different symbols, and different colors depict different WRF horizontal 320 

resolutions (Figure 4a) or spatial forcing scales (Figure 4b). Therefore, differences between 321 

symbols of different colors indicate the magnitudes of effects of RCM horizontal resolution 322 

and/or scaling on hydrologic model performance. In Figure 4, the dispersion of red symbols (4-323 

km) indicates inter-model differences in calibrated model performance, which are still 324 

considerable when compared to those from uncalibrated model parameters (Mendoza et al. 325 

2015). Finally, the spread provided by the small multi-model ensemble when using a single 326 

meteorological forcing dataset is quantified by the sample standard deviation: 327 

N

ii=1
M

(M -M)
s =

N-1

∑
     (1) 328 

where Mi is the metric value (e.g., runoff ratio) obtained by model i, N is the number of 329 

hydrologic model structures (N = 4), and M  is the mean of the metric obtained from the multi-330 

model ensemble. 331 

The results from experiment 1 (Figure 4a) clearly show the impact of WRF horizontal 332 

resolution on water balance simulations. Due to the decreased precipitation amounts from 333 
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coarse-resolution WRF simulations (see 12- and 36-km in Figure 2a), all the hydrologic models 334 

produced less runoff in all basins, leading to increased biases (i.e. underestimation) in simulated 335 

runoff ratios (RR). When looking at the center of time of runoff (CTR), however, there is no 336 

dependence between the selected WRF horizontal resolution and performance, although runoff 337 

seasonality is likely to be affected by differences in winter and summer precipitation amounts – 338 

together with differences in DJF temperatures controlling the simulation of snowpack processes 339 

– between 4-km and 12- or 36-km WRF simulations. Using 12- and 36-km WRF outputs 340 

increases inter-model differences when comparing to 4-km WRF simulations for all the 341 

signatures (Table 5). For example, the sample standard deviations of errors in simulated runoff 342 

seasonality (i.e. CTRL - Obs) – computed from the multi-model ensemble forced with the 4-km 343 

WRF output – are 2.3, 5.9 and 3.6 days for Yampa, East, and Animas, respectively; however, 344 

when using 12-km (36-km) WRF outputs the spread from the multi-model ensemble increases up 345 

to 9.4 (18.5) days at Yampa, 8.0 (8.3) days at East, and 7.0 (7.5) days at Animas. Note that the 346 

baseflow processes (FLV) result obtained from VIC and the 36-km WRF for the Yampa River 347 

basin (i.e. blue triangle) has been omitted in Figure 4a to allow a better visualization and 348 

comparison between experiments 1 and 2 (since CTRL – Obs = 4579.4 log(m³/s)). With the 349 

exception of runoff ratio (RR), the degree of improvement or degradation in hydrologic model 350 

performance obtained from switching WRF horizontal resolution depends on the combination of 351 

hydrologic model and basin. 352 

For the particular case of experiment 2, errors in signature measures reflect how much 353 

information is lost when hydrologic model simulations are forced with coarse-scale 354 

meteorological fields (Zhao et al. 2009). As shown in Figure 4b, the effects of forcing scaling on 355 

model performance exhibit similar patterns to those from WRF horizontal resolution, but 356 
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propagating into generally smaller inter-model differences (Table 5) in runoff ratio (RR), 357 

flashiness of runoff (FMS), and baseflow processes (FLV). However, the representation of 358 

runoff seasonality (CTR) is considerably affected in some combinations of hydrologic model and 359 

basin. For instance, errors in simulated CTR at the Yampa River basin span from 5 day with 360 

Noah-LSM and 8.2 days with Noah-MP using 4-km WRF outputs, to -4.2 days with Noah-LSM 361 

and -5.6 days with Noah-MP when using the 12-km aggregated dataset. Large changes in 362 

simulations of CTR are also observed with PRMS, Noah-LSM and Noah-MP at the East River 363 

basin. In summary, forcing scaling can translate into similar or even larger inter-model 364 

differences in simulations of runoff seasonality. This might be attributed to the smoothing effect 365 

when spatially aggregating high precipitation/snowmelt fields from 4-km WRF output, affecting 366 

the historical simulation of high daily runoff events and therefore the computation of center of 367 

timing (CTR). 368 

Figure 5 illustrates how hydrologic signature measures obtained from coarse resolution 369 

datasets (12- and 36-km) differ from those computed using high-resolution WRF outputs under 370 

current climate. The results obtained in experiments 1 and 2 are displayed in Figures 5a and 5b, 371 

respectively, where each column represents a specific signature measure, and each row contains 372 

signature measures computed with 12- and 36-km horizontal resolutions, versus metrics obtained 373 

with the 4-km WRF output (i.e. baseline climate dataset). Results from experiment 1 (Figure 5a) 374 

demonstrate that while a coarser horizontal resolution propagates into decreased simulated runoff 375 

ratios (RR) and a flashier catchment response (FMS) in comparison to the baseline dataset using 376 

any hydrologic model, the effects on other metrics depend on the model structure and/or the 377 

basin analyzed. For example, 12-km WRF outputs increase the center of time of runoff (CTR) – 378 

with respect to the 4-km WRF output – from 229 to 235 days at Yampa, from 222 to 231 days at 379 
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East, and from 214 to 227 days at Animas when using PRMS, and decreases the same metric 380 

from 227 to 214 days at Yampa, and from 227 to 225 days at East if the model is Noah-MP. 381 

Similar effects are observed if hydrologic simulations are forced with 36-km WRF outputs. The 382 

implications of WRF horizontal resolution on long-term baseflow (FLV) are basin-dependent for 383 

each model with the exception of VIC, for which signature values (all of which have units of 384 

log(m³/s)) increase from 523 at Yampa, 292 at East and 225 at Animas – obtained with 4-km 385 

WRF output – to 826 (4793) at Yampa, 432 (458) at East, and 376 (464) when using 12-km (36-386 

km) WRF outputs.     387 

The results displayed in Figure 5b show that the effects of re-scaling forcing datasets are 388 

less pronounced than those from WRF horizontal resolution, but still are important for some 389 

signature measures. Overall, re-gridding 4-km WRF outputs to coarser horizontal resolutions 390 

generates a reduction in simulated runoff ratio (RR) at Yampa (except 36-km with PRMS) and 391 

East (except 12-km and Noah-LSM), and shifts to earlier center of time of runoff (CTR) at 392 

Yampa with all hydrologic models, and decreases in CTR at East and Animas with all models 393 

except VIC. Scaling effects translate into generally small variations in FMS (except at the 394 

Yampa River basin when forcing VIC with 12-km and 36-km datasets, and East when forcing 395 

VIC with 36-km WRF), with increases or decreases depending on the combination of hydrologic 396 

model and basin. For instance, the 12-km (36-km) dataset shows decreases in FMS (all values 397 

with units of log(m³/s) ) from 1.21  to 1.17 (1.15) when running PRMS at the Animas River 398 

basin, but increases the same metric from 1.23 to 1.28 (1.33) if the hydrologic model is VIC. 399 

Further, the 12-km forcing dataset increases FMS from 1.59 to 1.61 at the Yampa River basin, 400 

and from 1.35 to 1.37 at the East River basin when hydrologic simulations are performed with 401 

PRMS. Finally, scaling effects on long-term baseflow (FLV) are more pronounced when the 402 



 

 Page 19 of 55 

forcing grid size is 36-km, with increase or decrease in signature values depending on the 403 

combination of forcing scale and hydrologic model structure at each basin.   404 

4.2 Changes in annual water balance 405 

In this section, we examine and compare the effects of WRF horizontal resolution 406 

(experiment 1) and spatial forcing aggregation (experiment 2) on the partitioning of precipitation 407 

into ET and runoff under current and future climate scenarios. In each panel of Figure 6, the 408 

diagonal lines represent basin-averaged mean annual precipitation for current and future climate 409 

scenarios over a 6-year average period (Oct/2002 - Sep/2008). The intersection of these lines 410 

with the x-axis indicates where all precipitation becomes runoff, while the intersection with the 411 

y-axis indicates where the system converts all precipitation into ET. In each panel, different 412 

symbols depict outputs coming from different hydrologic model structures for current climate 413 

(unfilled) and future climate (solid) with symbol colors showing the spatial resolutions. A 414 

symbol located exactly on the 1:1 lines represents a simulation with negligible changes in storage 415 

over the 6-year simulation period (i.e. P = ET + R), whereas symbols located below the 1:1 line 416 

imply increases in storage, and those above denote decreases in storage. Inter-model differences 417 

in precipitation partitioning are represented by the distance between different symbols (unfilled 418 

or solid), while the distance between a particular symbol (e.g., star for Noah-MP) for current 419 

(unfilled) and future (solid) climate scenarios represents the hydrologic change signal. The 420 

uncertainty arising from model choice, represented by the dispersion of symbols holding the 421 

same color along the precipitation (diagonal) line, is quantified in Table 6 by the following 422 

metric: 423 

 2 2

, =
R ET R ET

s σ σ+      (2) 424 
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where Rσ  and ETσ  are the sample standard deviations obtained with equation (1) from the multi-425 

model outputs for mean annual runoff and mean annual ET, respectively. 426 

The results obtained from experiment 1 (Figure 6a and Figure 2a) show that 4-km WRF 427 

simulations generate the largest precipitation amounts under current (CTRL) and future (PGW) 428 

climate scenarios at all basins, followed by 12- and 36-km WRF outputs. On the other hand, the 429 

effects of forcing re-scaling (Figure 6b) on basin-averaged annual precipitation are reduced 430 

compared to those of WRF horizontal resolution. Interestingly, forcing re-scaling can increase 431 

inter-model differences (i.e. larger dispersion of symbols when 4-km WRF are re-gridded to 12- 432 

and 36-km) in precipitation partitioning under current and future climate (Table 6). For example, 433 

sR,ET increases from 40.5 mm/year with 4-km WRF-CTRL output, to 45.5 mm/year with the 12-434 

km aggregated dataset in the East River basin. Further, scaling effects on inter-model differences 435 

can be larger than those from WRF horizontal resolution. For instance, sR,ET  = 41.3 mm/year 436 

when using 36-km WRF-CTRL output at the Yampa River basin, but the same metric goes up to 437 

51.7 mm/year with the 36-km aggregated dataset. 438 

To understand how WRF horizontal resolution and forcing re-scaling affect the portrayal 439 

of climate change impacts in annual water balance, we compute projected changes in basin-440 

averaged mean annual runoff and ET (Figure 7) for each basin (displayed in different columns). 441 

In each panel, the dispersion of the same symbol (e.g., triangle for VIC) holding different colors 442 

across the ΔRunoff – ΔET space (with Δ representing the difference between future and current 443 

climate scenarios) represents the uncertainty introduced by the choice of WRF horizontal 444 

resolution (Figure 7a) or spatial resolution in forcing datasets (Figure 7b). Similarly, the 445 

dispersion of different symbols holding the same color (e.g., red for 4-km WRF datasets) 446 

illustrates the uncertainty associated with hydrologic model choice. We quantify inter-model 447 
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differences in projected changes in annual water balance using equation (2), together with inter-448 

forcing differences when a single model structure is applied (Table 7).    449 

Figure 7a shows that the choice of WRF horizontal resolution has large effects on 450 

hydrologic changes projected through different hydrologic model structures. These effects are 451 

reflected in the magnitude (i.e. location or distance from each symbol to the point ΔRunoff = 0 452 

mm/yr, ΔET = 0 mm/yr) and direction (i.e. quadrant in which symbols are located, indicating 453 

increase/decrease of mean annual runoff and ET) of projected changes in mean annual runoff and 454 

mean annual ET obtained with each hydrologic model. Further, the dispersion provided by 455 

different WRF horizontal resolutions – represented by different colors and quantified in Table 7b  456 

– through a single model structure –represented by a single symbol in Figure 7a – may be 457 

comparable or even larger than that obtained from multiple model structures forced with a 458 

unique WRF dataset (Table 7a). For example, inter-forcing differences in projected hydrologic 459 

changes at the East River basin from experiment 1 (i.e. different WRF horizontal resolutions) are 460 

s∆R,∆ET = 28.5 mm/year using PRMS, and s∆R,∆ET = 22.6 mm/year with Noah-MP. Both values are 461 

larger than inter-model differences obtained using 12-km WRF outputs, for which s∆R,∆ET = 16.7 462 

mm/year. Further, in most cases inter-forcing differences from experiment 2 (i.e. different 463 

forcing scales) are smaller than inter-model differences summarized in Table 7a. 464 

In summary, the results presented Figure 7 in Table 7 indicate that the effects of forcing 465 

scaling on projected changes in the annual water balance are smaller than those coming from 466 

WRF horizontal resolution. Indeed, the direction of hydrologic change is mostly preserved when 467 

forcing the same hydrologic model with re-scaled datasets (Figure 7b). In opposition to the 468 

results obtained from experiment 1, the uncertainty coming from hydrologic model choice is 469 

much larger than the uncertainty from the choice of dataset. Additionally, re-scaling forcing 470 
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inputs to coarser resolutions can enhance inter-model differences in hydrologic change shown by 471 

the increased dispersion of symbols of the same color and s∆R,∆ET values (Table 7).  472 

4.3 Projected changes in catchment behavior 473 

Finally, we compare the effects of WRF horizontal resolution and forcing re-scaling on 474 

projected changes in hydrologic signature measures across multiple model structures (Figure 8). 475 

Again, differences between symbols of different colors indicate the magnitudes of effects of 476 

RCM horizontal resolution and/or scaling on projected changes in basin behavior. The results 477 

from experiment 1 (Figure 8a) show that the only consistent change obtained with all WRF 478 

horizontal resolutions is a decrease in the center of time of runoff (CTR), or earlier annual peak 479 

flow, under the future climate scenario, although the magnitudes obtained can be different 480 

depending on the hydrologic model selected. These inter-model differences – computed with 481 

equation (1) for each forcing dataset – are presented in Table 8. One can note that – as opposed 482 

to model performance results (Table 5) – there is not a defined relation between the choice of 483 

WRF horizontal resolution, and the spread in projected changes from different hydrologic model 484 

structures.  485 

Selecting coarser grid sizes (i.e. 12- and 36-km) with a convective parameterization in 486 

WRF generally translates into increased projected changes (i.e. PGW – CTRL) in runoff ratio 487 

(RR), changing in some cases the sign (i.e. from negative to positive values) of projected 488 

variations. For instance, outputs from the 4-km WRF solution show a decrease in RR of -0.01 489 

with PRMS at the Yampa River basin, but outputs from the 12-km (36-km) WRF solution show 490 

a change of +0.02 (+0.03) for the same model/basin. When looking at flashiness of runoff 491 

(FMS), the effects of WRF horizontal resolution on projected changes obtained with a specific 492 
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hydrologic model structure depend on the basin analyzed. For example, the choice of grid 493 

spacing has relatively small effects on projected changes in FMS obtained with Noah-LSM at 494 

Yampa (+0.27 to +0.36 log(m3/s)), Noah-MP at East (+0.03 to +0.08 log(m3/s)), and PRMS at 495 

Animas (-0.18 to -0.27 log(m3/s)), but larger implications in future projections for the rest of 496 

models/basins. The results for low flow volumes (FLV) show that WRF horizontal resolution 497 

mostly affects the direction and magnitude of projections obtained with VIC, especially in the 498 

Yampa River basin, for which projected changes go from +87.1 log(m3/s) with 4-km WRF 499 

output, to -65.3 log(m3/s) using 36-km WRF datasets. This behavior can be explained by the 500 

parameter values found from the calibration of VIC at Yampa, which compensated a good match 501 

of high flows at the expense of very poor baseflow simulations during July-September (not 502 

shown). 503 

According to Figure 8b, while the effects of forcing re-scaling on projected changes in 504 

runoff ratio (RR) are smaller than those from WRF horizontal resolution (Figure 8a), they can 505 

still change the sign (e.g., VIC simulations at the Yampa River basin) and magnitude (e.g., 506 

PRMS and VIC at East, Noah-MP at Animas) of projections. Although forcing scaling has very 507 

minor effects on changes in runoff seasonality (CTR) across all models, it can affect both the 508 

magnitude and direction of projections in flashiness of runoff (FMS). For example, projected 509 

changes at the East River basin with VIC span from +0.34 log(m3/s) with 4-km WRF output, to –510 

0.15 log(m3/s) using 36-km re-scaled datasets; and projected changes in FMS at the Animas 511 

River basin with Noah-MP range from -0.04 log(m3/s) with 4-km WRF output, to +0.02 512 

log(m3/s) using 36-km re-scaled datasets. Finally, scaling effects on projected changes in low 513 

flow volumes (FLV) are generally smaller than those from WRF horizontal resolution, and are 514 

mostly reflected in VIC simulations. Nevertheless, other hydrologic model structures can also 515 
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reverse the signal of projected changes of FLV in some basins; for instance, Noah-LSM projects 516 

a variation of +33.4 log(m3/s) at the Animas River basin using 4-km WRF outputs, switching to -517 

31.2 log(m3/s) if 36-km aggregated datasets are used.   518 

5. Summary and Conclusions 519 

Hydrologists encounter many subjective decisions when configuring hydrologic models for 520 

climate change impact studies. One of the choices is how forcing inputs are prepared to drive 521 

hydrologic model simulations. Scaling (up-scaling) high-resolution climate model output is 522 

typically done to match up with the resolutions of other hydrologic model inputs, such as 523 

parameter fields. Furthermore, climate modelers often use different microphysics schemes (e.g., 524 

convection parameterization or explicit solution of physical equations) depending on spatial 525 

resolution, affecting precipitation inputs. We investigated the implications that RCM horizontal 526 

resolution and re-scaling of RCM outputs may have on the portrayal of climate change impacts. 527 

Specifically, we assessed the effects of the above decisions on: (i) historical performance in 528 

terms of hydrologic signature measures, and (ii) hydrologic changes due to a climate 529 

perturbation, with focus on the annual water balance and catchment processes. The analyses 530 

were conducted in three catchments located in the headwaters of the Colorado River basin. To 531 

explore the interplay between forcing effects and hydrologic model choice, we include four 532 

model structures, whose parameters were calibrated against observed runoff using 4-km WRF 533 

historical datasets (Mendoza et al. 2015). 534 

As illustrated by Rasmussen et al. (2014), the choice of WRF horizontal resolution (i.e. 535 

model grid size and inclusion of convective parameterization) has large effects on simulated 536 

precipitation amounts. Specifically, the use of 12- and 36-km resolutions and a convective 537 
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parameterization results in the underestimation of basin-averaged annual precipitation totals with 538 

respect to 4-km WRF simulations. Therefore, it was found that the choice of WRF spatial 539 

resolution has larger effects on the historical simulation of hydrologic signature measures in 540 

comparison to those provided by up-scaling forcing datasets. However, up-scaling still affects 541 

runoff seasonality (CTR) considerably due to the smoothing effects on high spatial variability in 542 

precipitation and temperature over the mountainous, changing snowmelt timing. This is in line 543 

with the results of Lobligeois et al. (2014), who found that using high-resolution precipitation 544 

fields mostly benefited hydrologic simulations in areas with highly heterogeneous rainfall 545 

patterns.  546 

The water balance analysis revealed that WRF horizontal resolution has tremendous effects 547 

on the portrayal of hydrologic change at an annual basis (i.e. variations in mean annual runoff 548 

and ET), regardless of the hydrologic model structure selected. Moreover, the effects of WRF 549 

horizontal resolution on hydrologic change may overwhelm the uncertainty from model choice, 550 

which surpasses the uncertainty from re-scaled forcings. It was also found that re-scaling forcing 551 

datasets to coarser resolutions may augment inter-model differences in precipitation partitioning 552 

and projected changes in runoff and ET. The same conclusions can be drawn from hydrologic 553 

model simulations conducted with uncalibrated parameter values (not shown here). 554 

Forcing scaling effects on projected changes in hydrologic signature measures were found to 555 

be generally smaller than those coming from WRF horizontal resolution. However, using coarser 556 

forcing resolutions may create an artificial switch in the sign of changes projected by a particular 557 

hydrologic model structure (e.g., runoff ratio, flashiness of runoff). Even more, we found that 558 

scaling effects can exceed those associated with WRF spatial resolution when projecting 559 

variations in hydrologic behavior (e.g., flashiness of runoff). 560 
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This study has shown that the horizontal grid spacing used in RCMs can have important 561 

consequences on the magnitude and direction of the hydrologic change signal; however, this 562 

specific uncertainty source is still only one part of the entire uncertainty envelope of simulated 563 

hydrologic projections (Clark et al. 2016). For example, a relevant component excluded from our 564 

analyses is hydrologic parameter uncertainty (e.g., Cameron et al. 1999; Wilby 2005; Steele-565 

Dunne et al. 2008; Surfleet and Tullos 2013; Mendoza et al. 2016). Earlier work in our group and 566 

by others has shown that the choice of forcing scale may have large effects on calibrated 567 

parameters – especially for precipitation (e.g., Liang et al. 2004; Bárdossy and Das 2008; 568 

Tramblay et al. 2011) –, and that forcing generation methods may have substantial implications 569 

on hydrological portrayals (Wayand et al. 2013; Mizukami et al. 2014; Elsner et al. 2014), 570 

meaning that parameter values could be considerably affected when calibrating hydrologic 571 

models against re-scaled datasets.  In order to avoid an over-confident portrayal of climate 572 

change impacts, future studies should incorporate an integrated characterization and 573 

quantification of the different sources of uncertainty in hydrologic modeling, with particular 574 

emphasis on meteorological forcings, model structure, and parameters. 575 
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Table 1: Three study watersheds' characteristics. Hydrologic variables correspond to the period 964 

Oct/2000-Sep/2008. P, R, PE, RE and DI denote basin-averaged mean annual values of 965 

precipitation, runoff, potential evapotranspiration, runoff efficiency (R/P) and dryness index 966 

(PE/P), respectively. 967 

     Mean Mean Mean Mean Mean Mean 

Location USGS Area basin annual Precipitation annual annual annual 

  ID   elevation runoff from WRF PE* RE DI 

   (km²) (m.a.s.l.) (mm/yr) (mm/yr) (mm/yr) (R/P) (PE/P) 

Yampa at Steamboat 

Springs 

09239500 1468 2674 228 717 953 0.32 1.33 

East at Almont 09112500 748 3127 327 782 757 0.42 0.97 

Animas at Durango 09361500 1819 3098 365 883 885 0.41 1.00 

*PE obtained from PRMS by using a Jensen-Haise formulation (Jensen et al. 1969) 968 

 969 

970 
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Table 2: Summary of data sources and simulation setup used in this study 971 

Model Vegetation data Soil data Forcing variables* Spatial/temporal 

        discretization 

PRMS USGS 1-km gridded 

vegetation type and 

density data (USDA 

1992) 

State soils geographic 

(STATSGO) 1-km 

gridded soils data 

(USDA 1994) 

Daily precipitation; 

maximum and minimum 

daily temperature. 

4 km and Δt = 24 

h 

VIC UMD 1-km Global 

Land Cover 

Classification (Hansen 

et al. 2000) 

State soils geographic 

(STATSGO) 1-km 

gridded soils data 

(USDA 1994) 

Precipitation, 

temperature, shortwave 

and longwave radiation, 

wind speed, relative 

humidity and air 

pressure. 

4 km and Δt = 1 h 

Noah-LSM 

and  

Noah-MP 

National Land Cover 

Data Base, 2006 (Fry 

et al. 2011). 

State soils geographic 

(STATSGO) 1-km 

gridded soils data 

(USDA 1994) 

Precipitation, 

temperature, shortwave 

and longwave radiation, 

wind speed, relative 

humidity and air 

pressure. 

4 km and Δt = 1 h 

*Air temperature at 2 m and wind speed at 10 m are used for hydrologic simulations. 972 

 973 
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Table 3: Overview of hydrologic model components used in this study 974 

Model Snow accumulation Canopy Moisture in the soil Baseflow 

  and melt storage column/surface runoff   

          

PRMS 2-layer energy/mass 

balance model. Snowpack 

energy balance is 

computed every 12 hours. 

Precipitation can be intercepted by and evaporated 

from the plant canopy. Precipitation that is not 

intercepted by the canopy layer (throughfall) is 

distributed to the watershed land surface. Interception 

of precipitation by the plant canopy is computed 

during a time step as a function of plant-cover density 

and the storage available on the predominant plant-

cover type in each HRU. 

Surface runoff and 

infiltration are computed 

using a non-linear variable-

source-area method 

allowing for cascade flow. 

The groundwater zone is 

conceptualized as a linear 

reservoir (ie. baseflow is 

computed as a linear 

function of groundwater 

storage). 

VIC 2-layer energy/mass 

balance model. 

Water enters 1-layer canopy reservoir, and can leave 

as canopy evaporation, transpiration or throughfall. 

Canopy throughfall occurs when additional 

precipitation exceeds the storage capacity of the 

canopy. Different vegetation classes are allowed 

within a unique grid cell via a 'mosaic' approach, 

where energy and water balance terms are computed 

independently for each coverage class (vegetation and 

bare soil). 

An infiltration capacity 

function is defined. Vertical 

movement of moisture 

through soil follows 1-D 

Richards equation. 

Defined as a function of the 

soil moisture in the third 

layer (Arno formulation). 

The function is linear 

below a soil moisture 

threshold, and becomes 

nonlinear above that 

threshold. 

Noah-LSM 1-layer energy/mass 

balance model that 

simulates snow 

accumulation, 

sublimation, melting and 

heat exchange at snow-

atmosphere and snow-soil 

interfaces. 

One canopy layer, simple canopy resistance. Simple 

Jarvis type of canopy resistance function, single 

linearized energy balance equation representing 

combined ground/vegetation surface, considering 

seasonal LAI and green vegetation fraction. 

Surface runoff is computed 

as the difference between 

throughfall and a maximum 

infiltration rate. Vertical 

movement of moisture 

through soil layers follows 

1-D Richards equation. 

Computed as the product 

of a scaling factor between 

0 and 1 and the hydraulic 

conductivity of the bottom 

layer. 

Noah-MP 3-layer energy/mass 

balance model that 

represents percolation, 

retention and refreezing 

of meltwater within the 

snowpack. 

Snow interception includes loading/unloading, 

melt/refreeze capabilities, and sublimation of canopy-

intercepted snow, along with detailed representation of 

transmission and attenuation of radiation through the 

canopy, within- and below-canopy turbulence, and 

different options to represent the biophysical controls 

on transpiration.  

Surface runoff is an 

exponential function of 

depth to water table. 

Vertical movement of 

moisture through soil layers 

follows 1-D Richards 

equation. 

Baseflow is parameterized 

as an exponential decaying 

function of the water table 

level (SIMTOP). 
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Table 4: Signature measures used to evaluate model performance and projected changes in 975 

catchment behavior 976 

Notation Short description Equation Hydrologic process 

RR Runoff Ratio /RR R P=   Overall water balance (ET processes). 

CTR Center Time of Runoff  1

1

N

i ii

N

ii

t Q
CTR

Q

=

=

= ∑

∑
 Seasonality of runoff. 

FMS FDC Mid-segment Slope 
1 2

1 2

log( ) log( )m mQ Q
FMS

m m

−
=

−
  

Variability, or flashiness, of the flow 

magnitudes. 

FLV 
FDC Low-segment 

Volume 
[ ]

1

log( ) log( )
L

l L

l

FLV Q Q
=

= −∑  
Measure of the long-term baseflow 

processes. 

R: basin-averaged mean annual runoff. 977 

P: basin-averaged mean annual precipitation. 978 

Qm1: flow with exceedance probability of m1 = 0.2. 979 

Qm2: flow with exceedance probability of m2 = 0.7. 980 

l = 1,2,...,L is the index into the array of flow values located within the low-flow segment (0.7-981 

1.0 exceedance probabilities), being L the index for minimum flow. 982 

N: total number of days in a water year. 983 

  984 

985 
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Table 5: Sample standard deviation in the error of simulated signature measures (CTRL - Obs) 986 

computed from hydrologic multi-model ensemble outputs obtained with different forcing 987 

datasets. RR, CTR, FMS and FLV denote runoff ratio, center of time of runoff, flow duration 988 

curve mid-segment slope, and flow duration curve low-flow volumes, respectively. 989 

Signature Yampa East Animas 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

RR             

4 km 0.02   0.03   0.04   

12 km 0.06 0.03 0.03 0.04 0.06 0.02 

36 km 0.06 0.04 0.07 0.01 0.08 0.01 

CTR (days since Oct. 1)           

4 km 2.32   5.96   3.60   

12 km 9.37 4.25 7.99 7.88 6.96 4.35 

36 km 18.54 6.29 8.31 10.46 7.50 7.22 

FMS (log(m³/s))           

4 km 0.65   0.31   0.07   

12 km 1.45 0.92 0.58 0.41 0.14 0.05 

36 km 1.81 1.50 0.43 0.55 0.24 0.08 

FLV (log(m³/s))           

4 km 172.54   73.81   47.44   

12 km 296.98 267.63 122.76 78.59 100.06 47.87 

36 km 2238.45 285.34 145.06 87.10 122.86 46.62 

 990 

991 
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Table 6: Sample standard deviation (mm/year) in the partitioning of mean annual precipitation 992 

into mean annual runoff and mean annual ET, computed from hydrologic multi-model ensemble 993 

outputs obtained with different forcing datasets. Larger numbers indicate that a large spread in 994 

precipitation partitioning is introduced by the choice of hydrologic model. 995 

Forcing data Yampa East Animas 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

Current climate (CTRL)           

4 km 26.4   40.7   55.4   

12 km 47.8 33.0 37.4 45.5 65.2 36.2 

36 km 41.3 51.7 59.1 20.1 77.2 23.4 

Future climate (PGW)            

4 km 48.5   31.5   53.0   

12 km 63.6 57.7 47.2 32.4 75.6 37.1 

36 km 50.0 76.4 85.3 44.5 85.1 21.0 

 

 

996 
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Table 7: Sample standard deviation (mm/year) in projected changes in mean annual runoff and 997 

mean annual ET, computed from (a) multiple hydrologic model structures and a single forcing 998 

dataset, and (b) multiple forcing datasets and a single hydrologic model structure. Larger 999 

numbers indicate that a large spread in projected changes is introduced by the choice of 1000 

hydrologic model or forcing dataset. 1001 

Experiment Yampa East Animas 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

(a) Fixed forcing dataset           

4 km 23.9   23.3   8.8   

12 km 20.5 26.5 16.7 25.1 15.2 12.6 

36 km 12.9 30.5 31.5 27.5 12.8 17.8 

(b) Fixed hydrologic model           

PRMS 12.4 1.2 28.5 7.4 27.4 10.5 

VIC 10.0 4.8 23.1 8.2 30.2 5.1 

Noah-LSM 15.9 6.1 14.9 2.3 20.2 5.1 

Noah-MP 20.3 1.9 22.6 5.0 26.6 9.1 

 

1002 
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Table 8: Sample standard deviation in projected changes (PGW - CTRL) in signature measures 1003 

of catchment behavior, computed from hydrologic multi-model ensemble outputs obtained with 1004 

different forcing datasets. RR, CTR, FMS and FLV denote runoff ratio, center of time of runoff, 1005 

flow duration curve mid-segment slope, and flow duration curve low-flow volumes, respectively. 1006 

Signature Yampa East Animas 

  Experiment 1 Experiment 2 Experiment 1 Experiment 2 Experiment 1 Experiment 2 

RR             

4 km 0.02   0.02   0.01   

12 km 0.03 0.03 0.02 0.02 0.02 0.01 

36 km 0.02 0.03 0.03 0.02 0.01 0.01 

CTR (days since Oct. 1)           

4 km 4.10   2.90   3.25   

12 km 2.29 4.54 1.73 2.71 3.29 3.11 

36 km 1.65 4.20 3.38 2.95 2.01 2.28 

FMS (log(m³/s))           

4 km 0.24   0.19   0.11   

12 km 0.17 0.22 0.17 0.19 0.23 0.10 

36 km 0.12 0.44 0.17 0.19 0.16 0.08 

FLV (log(m³/s))           

4 km 268.65   21.40   50.33   

12 km 150.66 170.56 53.93 31.58 45.50 54.55 

36 km 401.64 85.76 101.33 45.96 63.04 47.15 

 1007 
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Figure 1: Location of the basins of interest: Yampa at Steamboat Springs (1468 km2), East at 1008 

Almont (748 km2), and Animas at Durango (1819 km2). 1009 

1010 
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 1011 

Figure 2: Basin-averaged observed (x symbols) and simulated (colored lines) monthly 1012 

precipitation values for current (CTRL, dashed lines) and future (PGW, solid lines) WRF outputs 1013 

used in (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2 (effects of 1014 

spatial aggregation), for period Oct/2002 - Sep/2008. Basin-averaged observed precipitation was 1015 

estimated using neighboring SNOTEL stations, whose weights were assigned using the Thiessen 1016 

interpolation method (Thiessen 1911). 1017 

1018 
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 1019 

Figure 3: Same as in Figure 2, but for basin-averaged monthly temperature. 1020 

 1021 
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Figure 4: Difference between simulated (CTRL) and observed (Obs) signature measures of 1022 

hydrologic behavior (period Oct/2002 - Sep/2008) obtained from various hydrologic model 1023 

structures (i.e. different symbols) and forcing datasets (i.e. different colors). Results are 1024 

displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2 1025 

(effects of spatial aggregation). 1026 

1027 
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 1028 

Figure 5: Impact of (a) WRF horizontal resolution (experiment 1) and (b) spatial aggregation of 1029 

WRF 4-km resolution datasets on simulated hydrologic signature measures. Each column 1030 

contains results for a specific metric, while different rows contain outputs from 12-km and 36-1031 

km (y axis) versus model outputs using WRF datasets with 4 km horizontal grid space (x axis). 1032 

In each panel, different letters represent basins and different colors depict results from various 1033 

hydrologic models (see legend for details). 1034 

1035 
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 1036 

Figure 6: Partitioning of current (CTRL) and future (PGW) basin-averaged mean annual 1037 

precipitation (diagonal, mm/year) into basin-averaged mean annual runoff (x axis, mm/year) and 1038 

evapotranspiration (y axis, mm/year) obtained from various model structures (i.e. different 1039 

symbols) and forcing datasets (i.e. different colors) for the period Oct/2002 - Sep/2008. Results 1040 

are displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2 1041 

(effects of spatial forcing aggregation). 1042 

 1043 

1044 
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 1045 

Figure 7: Projected changes in basin-averaged mean annual runoff (x axis, mm/year) and 1046 

evapotranspiration (y axis, mm/year) obtained from various model structures (i.e. different 1047 

symbols) and forcing datasets (i.e. different colors) for the period Oct/2002 - Sep/2008. Results 1048 

are displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2 1049 

(effects of spatial forcing aggregation). 1050 

 1051 
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 1052 

Figure 8: Difference between future (PGW) and current (CTRL) simulated signature measures of 1053 

hydrologic behavior, obtained from various hydrologic model structures (i.e. different symbols) 1054 

and forcing datasets (i.e. different colors)  over a six-average water year (Oct/2002 - Sep/2008). 1055 

Results are displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b) 1056 

experiment 2 (effects of spatial forcing aggregation). 1057 




