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Abstract

We examine the effects of regional climate model (RCM) horizontal resolution and forcing
scaling (i.e., spatial aggregation of meteorological datasets) on the portrayal of climate change
impacts. Specifically, we assess how the above decisions affect: (i) historical simulation of
signature measures of hydrologic behavior, and (ii) projected changes in terms of annual water
balance and hydrologic signature measures. To this end, we conduct our study in three
catchments located in the headwaters of the Colorado River basin. Meteorological forcings for
current and a future climate projection are obtained at three spatial resolutions (4-, 12- and 36-
km) from dynamical downscaling with the Weather Research and Forecasting (WRF) regional
climate model, and hydrologic changes are computed using four different hydrologic model
structures. These projected changes are compared to those obtained from running hydrologic

simulations with current and future 4-km WRF climate outputs re-scaled to 12- and 36-km.

The results show that the horizontal resolution of WRF simulations heavily affects basin-
averaged precipitation amounts, propagating into large differences in simulated signature
measures across model structures. The implications of re-scaled forcing datasets on historical
performance were primarily observed on simulated runoff seasonality. We also found that the
effects of WRF grid resolution on projected changes in mean annual runoff and
evapotranspiration may be larger than the effects of hydrologic model choice, which surpasses
the effects from re-scaled forcings. Scaling effects on projected variations in hydrologic
signature measures were found to be generally smaller than those coming from WREF resolution;
however, forcing aggregation in many cases reversed the direction of projected changes in

hydrologic behavior.
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1. Introduction

Although global climate models (GCMs) are widely used for generating information on
future climate scenarios, their native grid size (~100-200 km on a side) is a serious limitation for
characterizing climate projections at the basin scale, where features such as elevation and aspect
become relevant. To reconcile differences between coarse resolution GCM outputs and regional
or local scale climate processes, Regional Climate Models (RCMs) are run with lateral boundary
conditions from GCMs to force fine-scale climate simulations, a process typically referred to as
dynamical downscaling (Xu 1999; Fowler et al. 2007). Teutschbein and Seibert (2010) presented
a detailed review of approaches that make use of RCMs for quantifying climate change impacts
on hydrologic processes, and a plethora of additional example applications can be found in the
literature (e.g., Wood et al. 2004; Steele-Dunne et al. 2008; Suklitsch et al. 2008; Kay et al.
2009; Prudhomme and Davies 2009; Gao et al. 2011; Vicuiia et al. 2011; Majone et al. 2012; Wi

et al. 2012; Lauer et al. 2013; Veldazquez et al. 2013).

However, a key aspect rarely explored is the choice of RCM horizontal resolution, which
determines how precipitation — in particular snowfall — and other hydrologic variables are
represented in highly heterogeneous regions (Rasmussen et al. 2011). For example, Kleinn et al.
(2005) compared hydrologic model simulations forced with 14-km and 56-km RCM outputs in
the Rhine basin in Central Europe, finding that although the finer resolution provided more
realistic precipitation fields, improvements in streamflow simulation skill were small. Contrarily,
Dankers et al. (2007) showed that 12-km simulations conducted with the HIRHAM RCM
provided a better representation of orographic patterns and extreme precipitation events in the

Upper Danube basin in Central Europe, and better simulations of hydrologic extreme events at
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the sub-basin scale in comparison to coarser (50-km) RCM outputs. Graham et al. (2007)
concluded that a 25-km resolution provided more systematic and less spatially variable biases in
RCM precipitation and temperature fields when compared to 50-km resolution. Van Roosmalen
et al. (2010) evaluated the implications of choosing different RCM resolutions (12-, 25- and 50-
km) on delta change factors (e.g., additive perturbation for temperature, multiplier for
precipitation) — from a control and future climate scenario — computed at a monthly basis for
Denmark, finding that the added value of increasing resolution was almost negligible. A set of
studies conducted in the Colorado Headwaters Region (Ikeda et al., 2010; Rasmussen et al.,
2011, 2014) explored the effects of horizontal resolution using the Weather Research and
Forecasting (WRF) regional climate model (Skamarock et al. 2008). Specifically, they showed
that the use of horizontal resolution of 6 km or less in RCMs allowed accurate estimations of
vertical motions driven by topography without the need to include a convective parameterization
scheme, improving the representation of seasonal snowfall and snowpack. Along these lines,
Prein et al. (2013) compared the effects of different horizontal resolutions (4-, 12- and 36-km) on
daily heavy precipitation events simulated by WRF over the same domain, finding that only the
4-km simulation was able to reproduce heavy summertime events, and that both 4-km and 12-km
outputs were comparable and superior to the 36-km simulation when looking at winter events.
More recently, Olsson et al. (2015) obtained similar findings — i.e., better simulation of summer

extremes and summer wet spells — when moving from 50-km to 6-km horizontal grids.

The choice of the RCM resolution is typically determined by climate modelers to optimize
some constraints including available computer (i.e., time to compute the solution) and the need
to represent selected important atmospheric processes as explicitly as possible, but the domains

of these solutions are nearly always rectilinear for the Eulerian grid. However, hydrologic
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modelers choose any shaped spatial element named Hydrologic Response Unit (HRU) at which
the hydrologic model is run. The HRUs can be the entire catchment, a grid box, or
hydrologically similar areas (e.g., similar soil-vegetation areas) and those are at different scale
than RCM resolution. Accordingly, scaling or spatial aggregation of RCM outputs is nearly
always required to obtain HRU averaged meteorological forcing. Several studies have examined
the hydrologic implications of spatially aggregating meteorological fields from finer scales (e.g.,
Finnerty et al. 1997; Koren et al. 1999; Bell and Moore 2000; Arnaud et al. 2002; Liang et al.
2004; Shrestha et al. 2006, 2007; Tramblay et al. 2011; Rasmussen et al. 2012), showing mixed
conclusions. Lobligeois et al. (2014) conducted a detailed review of previous efforts, and
analyzed the benefits of using high-resolution rainfall fields for flood simulation, including a
large sample of flood events (3620) in a large number of catchments (181); although they
concluded that these effects are “scale-dependent and event-specific-dependent”, they also found
that regions with high spatial rainfall variability obtained the greatest benefits from high-
resolution precipitation inputs. Importantly, none of the above studies assessed the sensitivity of

hydrologic changes to the spatial scale at which historical and future climate datasets are used.

Given the evidence showing that RCM resolution affects climate outputs, a natural question
that arises is how the effects of RCM horizontal resolution on hydrologic portrayals of climate
change compare to those of scaled RCM at the same horizontal resolution. This paper examines
how the grid spacing adopted in a RCM for dynamical downscaling affects hydrologic change
estimates. In particular, we aim to characterize these effects on: (i) historical simulation of
signature measures of hydrologic behavior (e.g., runoff ratio, seasonality, log-term baseflow),
and (ii) projected hydrologic change in terms of annual water balance and hydrologic signature

measures. Further, we compare the implications of choosing different horizontal grid sizes to
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those associated with spatial aggregation of high resolution RCM output. Given the increasing
awareness of the importance of hydrologic model structural uncertainty to climate change impact
studies (e.g., Boorman and Sefton 1997; Jones et al. 2006; Jiang et al. 2007; Kay et al. 2009;
Ludwig et al. 2009; Bae et al. 2011; Bastola et al. 2011; Najafi et al. 2011; Poulin et al. 2011;
Miller et al. 2012; Vano et al. 2012; Surfleet et al. 2012; Addor et al. 2014; Mendoza et al. 2015,
2016; Mizukami et al. 2016), we include four different hydrologic/land surface models for two
reasons: to examine the robustness of RCM resolution and forcing aggregation effects, and to
obtain insights on the relative importance of forcing-related decisions versus hydrologic model

choice.

The remainder of this paper is organized as follows. Section 2 provides a description of the
study domain. Section 3 describes the meteorological forcing data, hydrologic models and the
experimental design adopted in this study. Section 4 illustrates how the choice of RCM
horizontal resolution and forcing aggregation affect hydrologic portrayals — obtained from
different hydrologic models — under historical and modified climatic conditions. Finally, section

5 summarizes our main findings.

2. Study Area

The Colorado River basin (CRB) is one of the major water sources for consumption,
irrigation and hydropower in the western United States, draining parts of seven states and
Mexico, and covering the needs of more than 30 million people. Given its strategic relevance,
several studies have been conducted to quantify the potential effects of changes in precipitation
and temperature on the hydrology of this area (e.g., Milly et al. 2005; Christensen and

Lettenmaier 2007; Hoerling and Eischeid 2007; Ray et al. 2008; Rasmussen et al. 2011, 2014;
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Miller et al. 2011, 2012; Bureau of Reclamation 2012; Vano et al. 2012; Vano and Lettenmaier
2014). Much of the water for this region comes from the high-elevation area — the Colorado
Headwaters — that act as a natural reservoir during the winter, storing precipitation as snowpack.
Hence, we select three basins in the Colorado Headwaters with outlets at streamflow stations
managed by the United States Geological Survey (USGS) — Yampa River at Steamboat Springs,
East River at Almont and Animas River at Durango — whose location and elevation ranges are

shown in Figure 1.

Table 1 summarizes the main hydroclimatic characteristics of the three basins for which
historical data are available, over an 8-year period (Oct/2000 - Sep/2008). Mean basin
precipitation ranges between 700 mm/year to 900 mm/year, while mean basin elevation is above
2500 m.a.s.l. Among these basins, the East River at Almont has the largest runoff ratio (0.42),
and the Yampa at Steamboat Springs has the lowest runoff ratio (0.32, with the lowest runoff and
precipitation amounts). The land surface of the Yampa and Animas River basins is
predominantly covered by deciduous forests (26 % at Yampa and 23 % at Animas) and
evergreen forests (37 % at Yampa and 39 % at Animas), while the land surface of the East River

basin is mainly covered by evergreen forests (29 %) and grassland/herbaceous (26 %).

3. Data and methods

3.1 Climate datasets

We use dynamically downscaled climate datasets obtained with the WRF model to force
hydrologic simulations and compute hydrologic changes due to a climate perturbation. These

datasets consist of historical (control run, CTRL) and pseudo global warming (PGW) outputs at
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three different horizontal resolutions (4-, 12- and 36-km). These WRF simulations are fully
described in Rasmussen et al. (2014), but briefly reviewed below. The initial and 3-hourly lateral
boundary conditions were taken from the North American Regional Reanalysis (NARR;
Mesinger et al. 2006) coarse resolution dataset (~32 km). The model physics options used in that
study included the Noah Land Surface Model (Noah-LSM) version 3.2 with upgraded snow
physics (Chen and Dudhia, 2001; Barlage et al., 2010), the Thompson mixed-phase cloud
microphysics scheme (Thompson et al. 2008), the Yonsei University planetary boundary layer
(Hong et al. 2006) and the Community Atmosphere Model’s (CAM) longwave and shortwave
radiation schemes (Collins et al. 2006). Because the use of a horizontal resolution of 6-km or less
is able to accurately estimate vertical motions driven by topography (Ikeda et al. 2010;
Rasmussen et al. 2011), a convective parameterization was included for the 12- and 36-km
simulations — using the Betts-Miller-Janji¢ scheme (Janji¢ 1994)— but not for the 4-km

simulation (Rasmussen et al. 2014).

The PGW approach (Schir et al., 1996; Hara et al., 2008; Kawase et al., 2009; Rasmussen
et al., 2011) consists of adding monthly mean climate perturbations to the initial and 3-hourly
boundary conditions taken from NARR at each WRF vertical level. The climate perturbation
was obtained from the Community Climate System Model Version 3 (CCSM3) runs performed
by the National Center for Atmospheric Research’s (NCAR) Climate and Global Dynamics
Division (Collins et al. 2006) under the A1B scenario (Nakicenovic et al. 2000; Meehl et al.
2007). This perturbation is generated by subtracting the current 10-yr (1995-2005) monthly

climatology from a future 10-yr (2045-2055) monthly climatology.

Meteorological data from WRF simulations is available for all horizontal resolutions at

hourly time steps, for both historical and modified climatic conditions. The 12-km and 36-km
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grids are perfectly aligned to each other, but not with the high-resolution 4-km grid. The output
variables and temporal discretization used depend on specific hydrologic model requirements
(Table 2). To compare the effects of WRF horizontal resolution — referred as experiment 1 — with
those from re-scaling high-resolution outputs, we create two additional forcing datasets by re-
gridding WRF outputs obtained at 4-km to the 12- and 36-km grid cells used by Rasmussen et al.
(2014) — referred as experiment 2. This is done in two steps: (1) identification of all the 4-km
grid points contained in WRF grid cells at 12- and 36-km resolutions, and (2) computation of the
new forcing data from the simple average of the 4-km points contained in the 12- and 36-km grid

cells.

Figure 2 includes basin-averaged monthly precipitation values computed from: (a) WRF
outputs obtained by Rasmussen et al. (2014) with three different horizontal resolutions (4-, 12-
and 36-km), and (b) 4-km WREF outputs, re-scaled to 12- and 36-km. These results correspond to
the period October/2002 — September/2008, for current (CTRL, dashed lines) and future (PGW,
solid lines) climate scenarios. As a reference, observed basin-averaged monthly precipitation
values, also displayed with black symbols in Figure 2, were obtained by applying the Thiessen
interpolation method (Thiessen 1911) on SNOTEL observations, including 8, 4 and 11 stations
for the Yampa, East and Animas River basins, respectively. The results show that a closer match
is achieved using high-resolution (i.e. 4-km) WRF outputs compared to 12- and 36-km,
especially at the East and Animas River basins. Although 4-km WRF underestimates basin-
averaged precipitation at Yampa, especially during late winter and spring, additional analyses
(not shown) suggested that a single station — located at the northeastern edge of the basin —
recorded much greater precipitation amounts than the others, enhancing the mismatch between

observed and simulated precipitation.

Page 9 of 55



202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

Figure 2a shows that WRF horizontal resolution affects precipitation amounts
considerably. Indeed, 4-km WRF-CTRL simulations generate basin-averaged annual
precipitation amounts of 735 mm, 824 mm and 937 mm in Yampa, East at Animas River basins,
respectively, while the 12-km (36-km) WRF-CTRL simulation produces 473 mm (371 mm) at
Yampa, 596 mm (580 mm) at East, and 650 mm (611 mm) at the Animas River basin. These
relative differences are augmented over summer (June-September), when the 4-km WRF-CTRL
outputs are 168 mm, 205 mm and 195 mm for Yampa, East and Animas, respectively, while 12-
km (36-km) outputs are 68 mm (39 mm) at Yampa, 95 mm (77 mm) at East, and 111 mm (80
mm) at Animas. Moreover, PGW simulations project an increase in precipitation over fall/winter
and a decrease during summer months at all basins, regardless of the horizontal resolution
adopted in WRF. By contrast, scaling effects (Figure 2b) on monthly precipitation amounts are
minor compared to those coming from WREF resolution, with 12-km (36-km) annual totals of 715
mm (698 mm) at Yampa, 808 mm (759 mm) at East and 934 mm (960 mm) at the Animas River
basin. Datasets spatially aggregated at 12-km (36-km) provide accumulated October-March
differences of -14 mm (-25 mm) at Yampa, and -17 mm (-61 mm) at East with respect to the 4-
km WRF-CTRL simulation, and the 36-km aggregated dataset generated a +10 mm February-

April precipitation difference at Animas when compared to the same benchmark.

Figure 3 displays basin-averaged monthly temperatures computed for experiments 1
(Figure 3a) and 2 (Figure 3b). The 4-km WREF historical simulation provided annual mean
temperatures of 2.1° C for Yampa, -0.5° C for East and 1.2° C for Animas, while the 12-km (36-
km) WREF run resulted in 1.8° C (1.5° C) at Yampa, -1.1° C (-0.4° C) at East and 0.5° C (0.7° C)
at Animas These differences can be mostly explained by discrepancies over December-February

(DJF). Similar relative differences (i.e. higher DJF temperatures) between the 4-km WRF
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simulation and the 12-km/36-km runs were found under the PGW climate scenario, with annual
increases (i.e. future — current) in basin-averaged mean annual temperature ranging from +2.3° C
(Animas River basin) to +2.5° C (Yampa River basin). On the other hand, Figure 3b shows that
scaling effects on monthly temperatures were relatively smaller, with mean annual temperatures
of 2.2° C (2.1° C) for Yampa, -0.5° C (0.1° C) for East and 1.1° C (0.8° C) for Animas from the
re-scaled 12-km (36-km) dataset. Moreover, the two coarse resolution datasets provided almost
identical projected changes in mean annual temperature than the original 4-km WRF simulation:
+2.4° C in the Yampa and East River basins, and +2.3° C in the Animas River basin. However,
there are still differences in basin-averaged monthly temperature values among the three datasets
in Experiment 2, which arise from daily temperature discrepancies and are so small that they are

not distinguishable at the scale of Figure 3.

3.2 Hydrologic/land surface models

To explore the interplay between WRF horizontal resolutions and the choice of hydrologic
model structure, we include four hydrologic/land surface models: the US Geological Survey's
Precipitation Runoff Modeling System (PRMS; Leavesley et al., 1983; Leavesley and Stannard,
1995), the Variable Infiltration Capacity model (VIC; Wood et al., 1992; Liang et al., 1994,
1996) the Noah Land Surface Model (Noah-LSM; Ek 2003; Mitchell et al. 2004), and the Noah
Land Surface Model with Multiple Parameterizations (Noah-MP; Niu et al. 2011; Yang et al.
2011). Our choice builds on the different degrees of complexity spanned by these models in
terms of conceptualization of vegetation, soil and seasonal snowpack (see Table 3 for further
details), and also different parameterizations for some hydrologic processes (e.g., different model

equations for canopy storage, baseflow, etc.). It should be noted that these models are not
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ordered by degree of complexity, which can vary depending on the process representation of
interest (Table 3). Simulation time steps, forcing variables and land cover data used for a priori
parameter estimates vary depending on specific model requirements (see Table 2 for further

details).

In this study we use a single suite of physics options for Noah-MP, including a Ball-Berry
type model for canopy stomatal resistance, the Community Land Model (CLM; Oleson et al.
2010) soil stress function to control stomatal resistance, the SIMTOP model for runoff and
groundwater (Niu et al. 2005), a Monin-Obukhov similarity theory-based drag coefficient,
supercooled liquid water and frozen soil permeability based on Niu and Yang (2006), a two-
stream radiation transfer scheme applied only to the vegetated fraction, a snow surface albedo
parameterization based on the Canadian Land Surface Scheme (CLASS; Verseghy 1991),
partitioning of precipitation into snowfall and rainfall based on Jordan (1991) and a Noah-type
lower boundary of soil temperature. Readers are referred to Niu et al. (2011) for a full

description of each model component.

3.3 Experimental design

3.3.1 Hydrologic model simulations

To assess the effects of WRF horizontal resolution and spatial scaling on the portrayal of
climate change impacts, we perform offline hydrologic model simulations under historical

(CTRL) and modified climate (PGW) scenarios for the following cases:

e Experiment 1: hydrologic models are forced with 4-, 12- and 36-km WRF outputs

produced by Rasmussen et al. (2014).
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* Experiment 2: hydrologic models are forced with 4-km WRF outputs, and two additional

datasets obtained from re-scaling 4-km outputs to 12- and 36-km resolutions.

All model simulations are conducted for the period between October 1, 2000 and September
30, 2008, using the first two years as spin up (not processed) to initialize model states. We
compute hydrologic changes using the same parameter values obtained by Mendoza et al.
(2015), i.e. calibrated by minimizing the root mean squared error (RMSE) between observed and
simulated daily streamflow (period October 1, 2002 to September 30, 2008) with the Shuffled
Complex Evolution (SCE-UA) algorithm (Duan et al., 1992, 1993), using 4-km resolution WRF
historical datasets. Setting WRF-CTRL output as a historical climate baseline fits with the aim to
better understand how different methodological choices affect hydrologic portrayals using the
climate datasets obtained by Rasmussen et al. (2014); therefore, tuning hydrologic model
parameters to WRF-CTRL allows a direct examination of how the climate change signal (given
by the differences between WRF-CTRL and WRF-PGW) propagates into hydrologic changes.
Although there are still some biases in the WRF-CTRL output (Figure 2), this is a problem
common to all historical forcing datasets (Mizukami et al. 2014), including those based on
interpolated station data and empirical algorithms (e.g., Maurer et al. 2002; Livneh et al. 2013),
and differences between WRF and such gridded datasets are often attributable to errors in the
gridded datasets and not to errors in WRF (Gutmann et al. 2012). It is important that hydrologic
model parameters are consistent with the features of meteorological fields used, and the high-
resolution WRF simulations are most consistent with both the observations, and with other WRF

simulations.

Because the purpose of these experiments is to examine the implications of forcing datasets

developed at different spatial resolutions, we fix the grid spacing of hydrological models to 4-
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km — identical to the regular grid used in the 4-km WRF simulations performed by Rasmussen et
al. (2014)- to isolate effects of forcing scale from those of hydrologic model grid size. Hence,
when hydrologic model simulations are forced with 12- and 36-km meteorological datasets,
meteorological variables are distributed to hydrologic model grid cells using a nearest neighbor
interpolation method as in Shrestha et al. (2006). Finally, hydrologic changes are computed for
the period Oct/2002 - Sep/2008 by forcing all hydrologic models with the same current (CTRL)

and future (PGW) WREF datasets.

3.3.2 Process-based evaluation metrics

We use four hydrologic signature measures (Yilmaz et al. 2008; Stewart et al. 2005) to
quantify model performance and projected changes in catchment behavior. These metrics are
intended to represent different hydrologic processes — ranging from overall precipitation
partitioning into ET and runoff to vertical redistribution of soil moisture —, and they are derived
from daily runoff time series. The notation, short description, mathematical formulation and
physical process associated with each signature measure are detailed in Table 4. Similar
diagnostic evaluation metrics have been used in past studies with multiple purposes, such as
model evaluation (e.g., Herbst et al., 2009; Majone et al., 2012; Pfannerstill et al., 2014),
catchment classification (e.g., Oudin et al., 2010; Carrillo et al., 2011; Ley et al., 2011; Sawicz et
al., 2011), sensitivity analysis (e.g., van Werkhoven et al., 2008; Wagener et al., 2009),
hydrologic model structure identification (e.g., Hartmann et al. 2013; Hrachowitz et al. 2014),
analysis of spatial distribution of hydrologic processes (e.g., McMillan et al. 2014) and the
choice of realistic model parameter values in terms of process representations (e.g., Pokhrel and

Gupta, 2009; van Werkhoven et al., 2009; Kollat et al., 2012; Pokhrel et al., 2012).
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4. Results and discussion

4.1 Model performance

We first analyze how hydrologic model performance is affected by WRF horizontal
resolution (Figure 4a) and forcing re-scaling (Figure 4b) over the period October/2002 -
September/2008. To this end, we computed the differences between simulated (control, CTRL)
and observed (Obs) values of signature measures of hydrologic behavior (Table 4). In Figure 4,
each evaluation metric is displayed in a different row, hydrologic model structures are
represented by different symbols, and different colors depict different WRF horizontal
resolutions (Figure 4a) or spatial forcing scales (Figure 4b). Therefore, differences between
symbols of different colors indicate the magnitudes of effects of RCM horizontal resolution
and/or scaling on hydrologic model performance. In Figure 4, the dispersion of red symbols (4-
km) indicates inter-model differences in calibrated model performance, which are still
considerable when compared to those from uncalibrated model parameters (Mendoza et al.
2015). Finally, the spread provided by the small multi-model ensemble when using a single

meteorological forcing dataset is quantified by the sample standard deviation:

e T M D "

where M; is the metric value (e.g., runoff ratio) obtained by model i, N is the number of
hydrologic model structures (N = 4), and M is the mean of the metric obtained from the multi-

model ensemble.

The results from experiment 1 (Figure 4a) clearly show the impact of WRF horizontal

resolution on water balance simulations. Due to the decreased precipitation amounts from
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coarse-resolution WRF simulations (see 12- and 36-km in Figure 2a), all the hydrologic models
produced less runoff in all basins, leading to increased biases (i.e. underestimation) in simulated
runoff ratios (RR). When looking at the center of time of runoff (CTR), however, there is no
dependence between the selected WRF horizontal resolution and performance, although runoff
seasonality is likely to be affected by differences in winter and summer precipitation amounts —
together with differences in DJF temperatures controlling the simulation of snowpack processes
— between 4-km and 12- or 36-km WRF simulations. Using 12- and 36-km WRF outputs
increases inter-model differences when comparing to 4-km WRF simulations for all the
signatures (Table 5). For example, the sample standard deviations of errors in simulated runoff
seasonality (i.e. CTRL - Obs) — computed from the multi-model ensemble forced with the 4-km
WREF output — are 2.3, 5.9 and 3.6 days for Yampa, East, and Animas, respectively; however,
when using 12-km (36-km) WREF outputs the spread from the multi-model ensemble increases up
to 9.4 (18.5) days at Yampa, 8.0 (8.3) days at East, and 7.0 (7.5) days at Animas. Note that the
baseflow processes (FLV) result obtained from VIC and the 36-km WREF for the Yampa River
basin (i.e. blue triangle) has been omitted in Figure 4a to allow a better visualization and
comparison between experiments 1 and 2 (since CTRL — Obs = 4579.4 log(m?%s)). With the
exception of runoff ratio (RR), the degree of improvement or degradation in hydrologic model
performance obtained from switching WRF horizontal resolution depends on the combination of

hydrologic model and basin.

For the particular case of experiment 2, errors in signature measures reflect how much
information is lost when hydrologic model simulations are forced with coarse-scale
meteorological fields (Zhao et al. 2009). As shown in Figure 4b, the effects of forcing scaling on

model performance exhibit similar patterns to those from WRF horizontal resolution, but
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propagating into generally smaller inter-model differences (Table 5) in runoff ratio (RR),
flashiness of runoff (FMS), and baseflow processes (FLV). However, the representation of
runoff seasonality (CTR) is considerably affected in some combinations of hydrologic model and
basin. For instance, errors in simulated CTR at the Yampa River basin span from 5 day with
Noah-LSM and 8.2 days with Noah-MP using 4-km WRF outputs, to -4.2 days with Noah-LSM
and -5.6 days with Noah-MP when using the 12-km aggregated dataset. Large changes in
simulations of CTR are also observed with PRMS, Noah-LSM and Noah-MP at the East River
basin. In summary, forcing scaling can translate into similar or even larger inter-model
differences in simulations of runoff seasonality. This might be attributed to the smoothing effect
when spatially aggregating high precipitation/snowmelt fields from 4-km WRF output, affecting
the historical simulation of high daily runoff events and therefore the computation of center of

timing (CTR).

Figure 5 illustrates how hydrologic signature measures obtained from coarse resolution
datasets (12- and 36-km) differ from those computed using high-resolution WRF outputs under
current climate. The results obtained in experiments 1 and 2 are displayed in Figures 5a and 5b,
respectively, where each column represents a specific signature measure, and each row contains
signature measures computed with 12- and 36-km horizontal resolutions, versus metrics obtained
with the 4-km WREF output (i.e. baseline climate dataset). Results from experiment 1 (Figure 5a)
demonstrate that while a coarser horizontal resolution propagates into decreased simulated runoff
ratios (RR) and a flashier catchment response (FMS) in comparison to the baseline dataset using
any hydrologic model, the effects on other metrics depend on the model structure and/or the
basin analyzed. For example, 12-km WRF outputs increase the center of time of runoff (CTR) —

with respect to the 4-km WREF output — from 229 to 235 days at Yampa, from 222 to 231 days at
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East, and from 214 to 227 days at Animas when using PRMS, and decreases the same metric
from 227 to 214 days at Yampa, and from 227 to 225 days at East if the model is Noah-MP.
Similar effects are observed if hydrologic simulations are forced with 36-km WRF outputs. The
implications of WRF horizontal resolution on long-term baseflow (FLV) are basin-dependent for
each model with the exception of VIC, for which signature values (all of which have units of
log(m3/s)) increase from 523 at Yampa, 292 at East and 225 at Animas — obtained with 4-km
WREF output — to 826 (4793) at Yampa, 432 (458) at East, and 376 (464) when using 12-km (36-

km) WREF outputs.

The results displayed in Figure 5b show that the effects of re-scaling forcing datasets are
less pronounced than those from WRF horizontal resolution, but still are important for some
signature measures. Overall, re-gridding 4-km WREF outputs to coarser horizontal resolutions
generates a reduction in simulated runoff ratio (RR) at Yampa (except 36-km with PRMS) and
East (except 12-km and Noah-LSM), and shifts to earlier center of time of runoff (CTR) at
Yampa with all hydrologic models, and decreases in CTR at East and Animas with all models
except VIC. Scaling effects translate into generally small variations in FMS (except at the
Yampa River basin when forcing VIC with 12-km and 36-km datasets, and East when forcing
VIC with 36-km WRF), with increases or decreases depending on the combination of hydrologic
model and basin. For instance, the 12-km (36-km) dataset shows decreases in FMS (all values
with units of log(m3¥s) ) from 1.21 to 1.17 (1.15) when running PRMS at the Animas River
basin, but increases the same metric from 1.23 to 1.28 (1.33) if the hydrologic model is VIC.
Further, the 12-km forcing dataset increases FMS from 1.59 to 1.61 at the Yampa River basin,
and from 1.35 to 1.37 at the East River basin when hydrologic simulations are performed with

PRMS. Finally, scaling effects on long-term baseflow (FLV) are more pronounced when the
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forcing grid size is 36-km, with increase or decrease in signature values depending on the

combination of forcing scale and hydrologic model structure at each basin.

4.2 Changes in annual water balance

In this section, we examine and compare the effects of WRF horizontal resolution
(experiment 1) and spatial forcing aggregation (experiment 2) on the partitioning of precipitation
into ET and runoff under current and future climate scenarios. In each panel of Figure 6, the
diagonal lines represent basin-averaged mean annual precipitation for current and future climate
scenarios over a 6-year average period (Oct/2002 - Sep/2008). The intersection of these lines
with the x-axis indicates where all precipitation becomes runoff, while the intersection with the
y-axis indicates where the system converts all precipitation into ET. In each panel, different
symbols depict outputs coming from different hydrologic model structures for current climate
(unfilled) and future climate (solid) with symbol colors showing the spatial resolutions. A
symbol located exactly on the 1:1 lines represents a simulation with negligible changes in storage
over the 6-year simulation period (i.e. P = ET + R), whereas symbols located below the 1:1 line
imply increases in storage, and those above denote decreases in storage. Inter-model differences
in precipitation partitioning are represented by the distance between different symbols (unfilled
or solid), while the distance between a particular symbol (e.g., star for Noah-MP) for current
(unfilled) and future (solid) climate scenarios represents the hydrologic change signal. The
uncertainty arising from model choice, represented by the dispersion of symbols holding the
same color along the precipitation (diagonal) line, is quantified in Table 6 by the following

metric:

[ 2 2
Sper=\NOr Y Op; 2)
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where 0, and 0, are the sample standard deviations obtained with equation (1) from the multi-

model outputs for mean annual runoff and mean annual ET, respectively.

The results obtained from experiment 1 (Figure 6a and Figure 2a) show that 4-km WRF
simulations generate the largest precipitation amounts under current (CTRL) and future (PGW)
climate scenarios at all basins, followed by 12- and 36-km WREF outputs. On the other hand, the
effects of forcing re-scaling (Figure 6b) on basin-averaged annual precipitation are reduced
compared to those of WRF horizontal resolution. Interestingly, forcing re-scaling can increase
inter-model differences (i.e. larger dispersion of symbols when 4-km WREF are re-gridded to 12-
and 36-km) in precipitation partitioning under current and future climate (Table 6). For example,
sger increases from 40.5 mm/year with 4-km WRF-CTRL output, to 45.5 mm/year with the 12-
km aggregated dataset in the East River basin. Further, scaling effects on inter-model differences
can be larger than those from WRF horizontal resolution. For instance, sger = 41.3 mm/year
when using 36-km WRF-CTRL output at the Yampa River basin, but the same metric goes up to

51.7 mm/year with the 36-km aggregated dataset.

To understand how WRF horizontal resolution and forcing re-scaling affect the portrayal
of climate change impacts in annual water balance, we compute projected changes in basin-
averaged mean annual runoff and ET (Figure 7) for each basin (displayed in different columns).
In each panel, the dispersion of the same symbol (e.g., triangle for VIC) holding different colors
across the ARunoff — AET space (with A representing the difference between future and current
climate scenarios) represents the uncertainty introduced by the choice of WRF horizontal
resolution (Figure 7a) or spatial resolution in forcing datasets (Figure 7b). Similarly, the
dispersion of different symbols holding the same color (e.g., red for 4-km WRF datasets)

illustrates the uncertainty associated with hydrologic model choice. We quantify inter-model
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differences in projected changes in annual water balance using equation (2), together with inter-

forcing differences when a single model structure is applied (Table 7).

Figure 7a shows that the choice of WRF horizontal resolution has large effects on
hydrologic changes projected through different hydrologic model structures. These effects are
reflected in the magnitude (i.e. location or distance from each symbol to the point ARunoff =0
mm/yr, AET = 0 mm/yr) and direction (i.e. quadrant in which symbols are located, indicating
increase/decrease of mean annual runoff and ET) of projected changes in mean annual runoff and
mean annual ET obtained with each hydrologic model. Further, the dispersion provided by
different WRF horizontal resolutions — represented by different colors and quantified in Table 7b
— through a single model structure —represented by a single symbol in Figure 7a — may be
comparable or even larger than that obtained from multiple model structures forced with a
unique WRF dataset (Table 7a). For example, inter-forcing differences in projected hydrologic
changes at the East River basin from experiment 1 (i.e. different WRF horizontal resolutions) are
sarAET = 28.5 mm/year using PRMS, and saraer = 22.6 mm/year with Noah-MP. Both values are
larger than inter-model differences obtained using 12-km WRF outputs, for which sagarr = 16.7
mm/year. Further, in most cases inter-forcing differences from experiment 2 (i.e. different

forcing scales) are smaller than inter-model differences summarized in Table 7a.

In summary, the results presented Figure 7 in Table 7 indicate that the effects of forcing
scaling on projected changes in the annual water balance are smaller than those coming from
WREF horizontal resolution. Indeed, the direction of hydrologic change is mostly preserved when
forcing the same hydrologic model with re-scaled datasets (Figure 7b). In opposition to the
results obtained from experiment 1, the uncertainty coming from hydrologic model choice is

much larger than the uncertainty from the choice of dataset. Additionally, re-scaling forcing
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inputs to coarser resolutions can enhance inter-model differences in hydrologic change shown by

the increased dispersion of symbols of the same color and saraer values (Table 7).

4.3 Projected changes in catchment behavior

Finally, we compare the effects of WRF horizontal resolution and forcing re-scaling on
projected changes in hydrologic signature measures across multiple model structures (Figure 8).
Again, differences between symbols of different colors indicate the magnitudes of effects of
RCM horizontal resolution and/or scaling on projected changes in basin behavior. The results
from experiment 1 (Figure 8a) show that the only consistent change obtained with all WRF
horizontal resolutions is a decrease in the center of time of runoff (CTR), or earlier annual peak
flow, under the future climate scenario, although the magnitudes obtained can be different
depending on the hydrologic model selected. These inter-model differences — computed with
equation (1) for each forcing dataset — are presented in Table 8. One can note that — as opposed
to model performance results (Table 5) — there is not a defined relation between the choice of
WREF horizontal resolution, and the spread in projected changes from different hydrologic model

structures.

Selecting coarser grid sizes (i.e. 12- and 36-km) with a convective parameterization in
WREF generally translates into increased projected changes (i.e. PGW — CTRL) in runoff ratio
(RR), changing in some cases the sign (i.e. from negative to positive values) of projected
variations. For instance, outputs from the 4-km WRF solution show a decrease in RR of -0.01
with PRMS at the Yampa River basin, but outputs from the 12-km (36-km) WRF solution show
a change of +0.02 (+0.03) for the same model/basin. When looking at flashiness of runoff

(FMS), the effects of WRF horizontal resolution on projected changes obtained with a specific
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hydrologic model structure depend on the basin analyzed. For example, the choice of grid
spacing has relatively small effects on projected changes in FMS obtained with Noah-LSM at
Yampa (+0.27 to +0.36 log(m>/s)), Noah-MP at East (+0.03 to +0.08 log(m?/s)), and PRMS at
Animas (-0.18 to -0.27 log(m?¥/s)), but larger implications in future projections for the rest of
models/basins. The results for low flow volumes (FLV) show that WRF horizontal resolution
mostly affects the direction and magnitude of projections obtained with VIC, especially in the
Yampa River basin, for which projected changes go from +87.1 log(m3/s) with 4-km WRF
output, to -65.3 log(m3/s) using 36-km WRF datasets. This behavior can be explained by the
parameter values found from the calibration of VIC at Yampa, which compensated a good match
of high flows at the expense of very poor baseflow simulations during July-September (not

shown).

According to Figure 8b, while the effects of forcing re-scaling on projected changes in
runoff ratio (RR) are smaller than those from WRF horizontal resolution (Figure 8a), they can
still change the sign (e.g., VIC simulations at the Yampa River basin) and magnitude (e.g.,
PRMS and VIC at East, Noah-MP at Animas) of projections. Although forcing scaling has very
minor effects on changes in runoff seasonality (CTR) across all models, it can affect both the
magnitude and direction of projections in flashiness of runoff (FMS). For example, projected
changes at the East River basin with VIC span from +0.34 log(m?/s) with 4-km WRF output, to —
0.15 log(m?/s) using 36-km re-scaled datasets; and projected changes in FMS at the Animas
River basin with Noah-MP range from -0.04 log(m%s) with 4-km WRF output, to +0.02
log(m?/s) using 36-km re-scaled datasets. Finally, scaling effects on projected changes in low
flow volumes (FLV) are generally smaller than those from WRF horizontal resolution, and are

mostly reflected in VIC simulations. Nevertheless, other hydrologic model structures can also
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reverse the signal of projected changes of FLV in some basins; for instance, Noah-LSM projects
a variation of +33.4 log(m?/s) at the Animas River basin using 4-km WRF outputs, switching to -

31.2 log(m3/s) if 36-km aggregated datasets are used.

5. Summary and Conclusions

Hydrologists encounter many subjective decisions when configuring hydrologic models for
climate change impact studies. One of the choices is how forcing inputs are prepared to drive
hydrologic model simulations. Scaling (up-scaling) high-resolution climate model output is
typically done to match up with the resolutions of other hydrologic model inputs, such as
parameter fields. Furthermore, climate modelers often use different microphysics schemes (e.g.,
convection parameterization or explicit solution of physical equations) depending on spatial
resolution, affecting precipitation inputs. We investigated the implications that RCM horizontal
resolution and re-scaling of RCM outputs may have on the portrayal of climate change impacts.
Specifically, we assessed the effects of the above decisions on: (i) historical performance in
terms of hydrologic signature measures, and (ii) hydrologic changes due to a climate
perturbation, with focus on the annual water balance and catchment processes. The analyses
were conducted in three catchments located in the headwaters of the Colorado River basin. To
explore the interplay between forcing effects and hydrologic model choice, we include four
model structures, whose parameters were calibrated against observed runoff using 4-km WRF

historical datasets (Mendoza et al. 2015).

As illustrated by Rasmussen et al. (2014), the choice of WRF horizontal resolution (i.e.
model grid size and inclusion of convective parameterization) has large effects on simulated

precipitation amounts. Specifically, the use of 12- and 36-km resolutions and a convective
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parameterization results in the underestimation of basin-averaged annual precipitation totals with
respect to 4-km WRF simulations. Therefore, it was found that the choice of WRF spatial
resolution has larger effects on the historical simulation of hydrologic signature measures in
comparison to those provided by up-scaling forcing datasets. However, up-scaling still affects
runoff seasonality (CTR) considerably due to the smoothing effects on high spatial variability in
precipitation and temperature over the mountainous, changing snowmelt timing. This is in line
with the results of Lobligeois et al. (2014), who found that using high-resolution precipitation
fields mostly benefited hydrologic simulations in areas with highly heterogeneous rainfall

patterns.

The water balance analysis revealed that WRF horizontal resolution has tremendous effects
on the portrayal of hydrologic change at an annual basis (i.e. variations in mean annual runoff
and ET), regardless of the hydrologic model structure selected. Moreover, the effects of WRF
horizontal resolution on hydrologic change may overwhelm the uncertainty from model choice,
which surpasses the uncertainty from re-scaled forcings. It was also found that re-scaling forcing
datasets to coarser resolutions may augment inter-model differences in precipitation partitioning
and projected changes in runoff and ET. The same conclusions can be drawn from hydrologic

model simulations conducted with uncalibrated parameter values (not shown here).

Forcing scaling effects on projected changes in hydrologic signature measures were found to
be generally smaller than those coming from WRF horizontal resolution. However, using coarser
forcing resolutions may create an artificial switch in the sign of changes projected by a particular
hydrologic model structure (e.g., runoff ratio, flashiness of runoff). Even more, we found that
scaling effects can exceed those associated with WRF spatial resolution when projecting

variations in hydrologic behavior (e.g., flashiness of runoff).
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This study has shown that the horizontal grid spacing used in RCMs can have important
consequences on the magnitude and direction of the hydrologic change signal; however, this
specific uncertainty source is still only one part of the entire uncertainty envelope of simulated
hydrologic projections (Clark et al. 2016). For example, a relevant component excluded from our
analyses is hydrologic parameter uncertainty (e.g., Cameron et al. 1999; Wilby 2005; Steele-
Dunne et al. 2008; Surfleet and Tullos 2013; Mendoza et al. 2016). Earlier work in our group and
by others has shown that the choice of forcing scale may have large effects on calibrated
parameters — especially for precipitation (e.g., Liang et al. 2004; Bardossy and Das 2008;
Tramblay et al. 2011) —, and that forcing generation methods may have substantial implications
on hydrological portrayals (Wayand et al. 2013; Mizukami et al. 2014; Elsner et al. 2014),
meaning that parameter values could be considerably affected when calibrating hydrologic
models against re-scaled datasets. In order to avoid an over-confident portrayal of climate
change impacts, future studies should incorporate an integrated characterization and
quantification of the different sources of uncertainty in hydrologic modeling, with particular

emphasis on meteorological forcings, model structure, and parameters.
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Figure 1: Location of the basins of interest: Yampa at Steamboat Springs (1468 km?), East at

Almont (748 km?), and Animas at Durango (1819 KIM2). c..eeueeeeeeeeeee oot eeee e 48

Figure 2: Basin-averaged observed (x symbols) and simulated (colored lines) monthly

precipitation values for current (CTRL, dashed lines) and future (PGW, solid lines) WRF outputs

used in (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2 (effects of

spatial aggregation), for period Oct/2002 - Sep/2008. Basin-averaged observed precipitation was

estimated using neighboring SNOTEL stations, whose weights were assigned using the Thiessen

interpolation Method (ThIESSEN 19T 1) coiiiiiiiiiieeee ettt e e ettt eeeeeeeeeaeeeeeaeananas 49

Figure 3: Same as in Figure 2, but for basin-averaged monthly temperature.........cccoeeeeeeeveenennnn.. 50

Figure 4: Difference between simulated (CTRL) and observed (Obs) signature measures of

hydrologic behavior (period Oct/2002 - Sep/2008) obtained from various hydrologic model

structures (i.e. different symbols) and forcing datasets (i.e. different colors). Results are

displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2

(effects Of SPAIAl AZETETALION ). ceeveerernneeeeeeeeeeee ettt e e eeeeeeeeeeeeeee e eeaeeeseeeeeeeeeeeaeenaaaaeseeeeeeeees 51

Figure 5: Impact of (a) WRF horizontal resolution (experiment 1) and (b) spatial ageregation of

WRF 4-km resolution datasets on simulated hydrologic signature measures. Each column

contains results for a specific metric, while different rows contain outputs from 12-km and 36-

km (v axis) versus model outputs using WRF datasets with 4 km horizontal erid space (x axis).

In each panel, different letters represent basins and different colors depict results from various

hydrologic models (Se€ 1€GENd FOI AELAILS). vvvveuermeeeeeeeeee ettt e e e e eeeeeeeeeeeaeaaanas 52
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Figure 6: Partitioning of current (CTRL) and future (PGW) basin-averaged mean annual

precipitation (diagonal, mm/year) into basin-averaged mean annual runoff (x axis, mm/year) and

evapotranspiration (y axis, mm/year) obtained from various model structures (i.e. different

symbols) and forcing datasets (i.e. different colors) for the period Oct/2002 - Sep/2008. Results

are displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2

(effects of spatial fOrCING AZETETALION). .uuuveeeeeeeeeeeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeeeaeeaaaaeseeeeeeeees 53

Figure 7: Projected changes in basin-averaged mean annual runoff (x axis, mm/year) and

evapotranspiration (y axis, mm/year) obtained from various model structures (i.e. different

symbols) and forcing datasets (i.e. different colors) for the period Oct/2002 - Sep/2008. Results

are displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2

(effects of spatial fOrCING AZETETALION). ..ueveeeeeeeeieeeieeeeeeeeeeeeeeee ittt eeeeeeeeeeeeeeeeeeaeeaaaaeseeeeeeeees 54

Figure 8: Difference between future (PGW) and current (CTRL) simulated signature measures of

hydrologic behavior, obtained from various hydrologic model structures (i.e. different symbols)

and forcing datasets (i.e. different colors) over a six-average water year (Oct/2002 - Sep/2008).

Results are displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b)

experiment 2 (effects of spatial fOrcing agoreZatiON). ..oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeaeennnas 55
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Table 1: Three study watersheds' characteristics. Hydrologic variables correspond to the period
Oct/2000-Sep/2008. P, R, PE, RE and DI denote basin-averaged mean annual values of
precipitation, runoff, potential evapotranspiration, runoff efficiency (R/P) and dryness index

(PE/P), respectively.

Mean Mean Mean Mean Mean Mean

Location USGS Area basin annual  Precipitation annual  annual  annual
ID elevation  runoff  from WRF PE* RE DI

(km?) (m.a.s.l.) (mm/yr) (mm/yr) (mm/yr) (R/P) (PE/P)
Yampa at Steamboat 09239500 1468 2674 228 717 953 0.32 1.33

Springs

East at Almont 09112500 748 3127 327 782 757 0.42 0.97
Animas at Durango 09361500 1819 3098 365 883 885 0.41 1.00

*PE obtained from PRMS by using a Jensen-Haise formulation (Jensen et al. 1969)
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971  Table 2: Summary of data sources and simulation setup used in this study

Model Vegetation data Soil data

Forcing variables*

Spatial/temporal
discretization

PRMS USGS 1-km gridded  State soils geographic
vegetation type and (STATSGO) 1-km
density data (USDA  gridded soils data

1992) (USDA 1994)

VIC UMD 1-km Global State soils geographic
Land Cover (STATSGO) 1-km
Classification (Hansen gridded soils data
et al. 2000) (USDA 1994)

Noah-LSM  National Land Cover  State soils geographic
and Data Base, 2006 (Fry (STATSGO) 1-km
Noah-MP et al. 2011). gridded soils data
(USDA 1994)

Daily precipitation;
maximum and minimum
daily temperature.

Precipitation,
temperature, shortwave
and longwave radiation,
wind speed, relative
humidity and air
pressure.

Precipitation,
temperature, shortwave
and longwave radiation,
wind speed, relative
humidity and air
pressure.

4 km and At =24
h

4kmandAt=1h

4kmandAt=1h

972 *Air temperature at 2 m and wind speed at 10 m are used for hydrologic simulations.

973
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974  Table 3: Overview of hydrologic model components used in this study
Model Snow accumulation Canopy Moisture in the soil Baseflow
and melt storage column/surface runoff
PRMS 2-layer energy/mass Precipitation can be intercepted by and evaporated Surface runoff and The groundwater zone is

balance model. Snowpack from the plant canopy. Precipitation that is not infiltration are computed conceptualized as a linear

energy balance is intercepted by the canopy layer (throughfall) is using a non-linear variable-  reservoir (ie. baseflow is

computed every 12 hours.  distributed to the watershed land surface. Interception ~ source-area method computed as a linear
of precipitation by the plant canopy is computed allowing for cascade flow. function of groundwater
during a time step as a function of plant-cover density storage).
and the storage available on the predominant plant-
cover type in each HRU.

VIC 2-layer energy/mass Water enters 1-layer canopy reservoir, and can leave An infiltration capacity Defined as a function of the

balance model. as canopy evaporation, transpiration or throughfall. function is defined. Vertical  soil moisture in the third
Canopy throughfall occurs when additional movement of moisture layer (Arno formulation).
precipitation exceeds the storage capacity of the through soil follows 1-D The function is linear
canopy. Different vegetation classes are allowed Richards equation. below a soil moisture
within a unique grid cell via a 'mosaic’ approach, threshold, and becomes
where energy and water balance terms are computed nonlinear above that
independently for each coverage class (vegetation and threshold.
bare soil).

Noah-LSM  1-layer energy/mass One canopy layer, simple canopy resistance. Simple Surface runoff is computed ~ Computed as the product
balance model that Jarvis type of canopy resistance function, single as the difference between of a scaling factor between
simulates snow linearized energy balance equation representing throughfall and a maximum 0 and 1 and the hydraulic
accumulation, combined ground/vegetation surface, considering infiltration rate. Vertical conductivity of the bottom
sublimation, melting and  seasonal LAI and green vegetation fraction. movement of moisture layer.
heat exchange at snow- through soil layers follows
atmosphere and snow-soil 1-D Richards equation.
interfaces.

Noah-MP  3-layer energy/mass Snow interception includes loading/unloading, Surface runoff is an Baseflow is parameterized

balance model that
represents percolation,
retention and refreezing
of meltwater within the
snowpack.

melt/refreeze capabilities, and sublimation of canopy-
intercepted snow, along with detailed representation of
transmission and attenuation of radiation through the
canopy, within- and below-canopy turbulence, and
different options to represent the biophysical controls
on transpiration.

exponential function of
depth to water table.
Vertical movement of
moisture through soil layers
follows 1-D Richards
equation.

as an exponential decaying
function of the water table
level (SIMTOP).
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Table 4: Signature measures used to evaluate model performance and projected changes in
catchment behavior

Notation Short description Equation Hydrologic process
RR Runoff Ratio RR=R/P Overall water balance (ET processes).

PR

CTR  Center Time of Runoff CTR = =2— Seasonality of runoff.

i=1 =i

lo, -lo iabili i

FMS FDC Mid-segment Slope FMS = g(0,,) ~log(Q,,) Varlaplhty, or flashiness, of the flow

m —m, magnitudes.
FDC Low-segment -~ _ Measure of the long-term baseflow
FLV Volume FLV ;[log(Ql) log(Q, )] processes.

R: basin-averaged mean annual runoff.

P: basin-averaged mean annual precipitation.

Oni: flow with exceedance probability of m; = 0.2.

Om2: flow with exceedance probability of mz = 0.7.

[ =1,2,...,L is the index into the array of flow values located within the low-flow segment (0.7-
1.0 exceedance probabilities), being L the index for minimum flow.

N: total number of days in a water year.
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986  Table 5: Sample standard deviation in the error of simulated signature measures (CTRL - Obs)
987  computed from hydrologic multi-model ensemble outputs obtained with different forcing
988  datasets. RR, CTR, FMS and FLV denote runoff ratio, center of time of runoff, flow duration
989  curve mid-segment slope, and flow duration curve low-flow volumes, respectively.
Signature Yampa East Animas
Experiment 1 Experiment2 Experiment 1 Experiment2 Experiment1 Experiment 2

RR
4 km 0.02 0.03 0.04
12 km 0.06 0.03 0.03 0.04 0.06 0.02
36 km 0.06 0.04 0.07 0.01 0.08 0.01
CTR (days since Oct. 1)
4 km 2.32 5.96 3.60
12 km 9.37 4.25 7.99 7.88 6.96 4.35
36 km 18.54 6.29 8.31 10.46 7.50 7.22
FMS (log(m3/s))
4 km 0.65 0.31 0.07
12 km 1.45 0.92 0.58 0.41 0.14 0.05
36 km 1.81 1.50 0.43 0.55 0.24 0.08
FLV (log(m3/s))
4 km 172.54 73.81 47.44
12 km 296.98 267.63 122.76 78.59 100.06 47.87
36 km 2238.45 285.34 145.06 87.10 122.86 46.62
990
991
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Table 6: Sample standard deviation (mm/year) in the partitioning of mean annual precipitation
into mean annual runoff and mean annual ET, computed from hydrologic multi-model ensemble
outputs obtained with different forcing datasets. Larger numbers indicate that a large spread in
precipitation partitioning is introduced by the choice of hydrologic model.

Forcing data Yampa East Animas
Experiment 1  Experiment 2  Experiment 1  Experiment 2 Experiment 1  Experiment 2

Current climate (CTRL)

4 km 26.4 40.7 554

12 km 47.8 33.0 37.4 45.5 65.2 36.2

36 km 41.3 51.7 59.1 20.1 77.2 234

Future climate (PGW)

4 km 48.5 31.5 53.0

12 km 63.6 57.7 47.2 324 75.6 37.1

36 km 50.0 76.4 85.3 44.5 85.1 21.0
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Table 7: Sample standard deviation (mm/year) in projected changes in mean annual runoff and
mean annual ET, computed from (a) multiple hydrologic model structures and a single forcing
dataset, and (b) multiple forcing datasets and a single hydrologic model structure. Larger
numbers indicate that a large spread in projected changes is introduced by the choice of
hydrologic model or forcing dataset.

Experiment Yampa East Animas

Experiment 1  Experiment 2  Experiment 1  Experiment 2 Experiment 1  Experiment 2

(a) Fixed forcing dataset

4 km 23.9 233 8.8

12 km 20.5 26.5 16.7 25.1 15.2 12.6
36 km 12.9 30.5 31.5 27.5 12.8 17.8
(b) Fixed hydrologic model

PRMS 12.4 1.2 28.5 7.4 274 10.5
VIC 10.0 4.8 23.1 8.2 30.2 5.1
Noah-LSM 15.9 6.1 14.9 23 20.2 5.1
Noah-MP 20.3 1.9 22.6 5.0 26.6 9.1
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1003  Table 8: Sample standard deviation in projected changes (PGW - CTRL) in signature measures
1004  of catchment behavior, computed from hydrologic multi-model ensemble outputs obtained with
1005  different forcing datasets. RR, CTR, FMS and FLV denote runoff ratio, center of time of runoff,
1006  flow duration curve mid-segment slope, and flow duration curve low-flow volumes, respectively.
Signature Yampa East Animas
Experiment 1 Experiment 2 Experiment 1 Experiment2 Experiment 1 Experiment 2

RR

4 km 0.02 0.02 0.01

12 km 0.03 0.03 0.02 0.02 0.02 0.01
36 km 0.02 0.03 0.03 0.02 0.01 0.01
CTR (days since Oct. 1)

4 km 4.10 2.90 3.25

12 km 2.29 4.54 1.73 2.71 3.29 3.11
36 km 1.65 4.20 3.38 2.95 2.01 2.28
FMS (log(m3/s))

4 km 0.24 0.19 0.11

12 km 0.17 0.22 0.17 0.19 0.23 0.10
36 km 0.12 0.44 0.17 0.19 0.16 0.08
FLV (log(m3/s))

4 km 268.65 21.40 50.33

12 km 150.66 170.56 53.93 31.58 45.50 54.55
36 km 401.64 85.76 101.33 45.96 63.04 47.15

1007
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1008  Figure 1: Location of the basins of interest: Yampa at Steamboat Springs (1468 km?), East at
1009  Almont (748 km?), and Animas at Durango (1819 km?).
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(a) Experiment 1: effects of WRF horizontal resolution

Yampa River Basin East River Basin Animas River Basin
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(b) Experiment 2: effects of spatial aggregation
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1012 Figure 2: Basin-averaged observed (x symbols) and simulated (colored lines) monthly
1013 precipitation values for current (CTRL, dashed lines) and future (PGW, solid lines) WRF outputs
1014  used in (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2 (effects of
1015  spatial aggregation), for period Oct/2002 - Sep/2008. Basin-averaged observed precipitation was
1016  estimated using neighboring SNOTEL stations, whose weights were assigned using the Thiessen
1017  interpolation method (Thiessen 1911).
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(a) Experiment 1: effects of WRF horizontal resolution
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(b) Experiment 2: effects of spatial aggregation
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1020  Figure 3: Same as in Figure 2, but for basin-averaged monthly temperature.
1021
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Figure 4: Difference between simulated (CTRL) and observed (Obs) signature measures of
hydrologic behavior (period Oct/2002 - Sep/2008) obtained from various hydrologic model
structures (i.e. different symbols) and forcing datasets (i.e. different colors). Results are
displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2
(effects of spatial aggregation).
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(a) Experiment 1: effects of WRF horizontal resolution
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Figure 5: Impact of (a) WRF horizontal resolution (experiment 1) and (b) spatial aggregation of
WRF 4-km resolution datasets on simulated hydrologic signature measures. Each column
contains results for a specific metric, while different rows contain outputs from 12-km and 36-
km (y axis) versus model outputs using WRF datasets with 4 km horizontal grid space (x axis).
In each panel, different letters represent basins and different colors depict results from various
hydrologic models (see legend for details).
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(a) Experiment 1: effects of WRF horizontal resolution
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(b) Experiment 2: effects of spatial aggregation
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Figure 6: Partitioning of current (CTRL) and future (PGW) basin-averaged mean annual
precipitation (diagonal, mm/year) into basin-averaged mean annual runoff (x axis, mm/year) and
evapotranspiration (y axis, mm/year) obtained from various model structures (i.e. different
symbols) and forcing datasets (i.e. different colors) for the period Oct/2002 - Sep/2008. Results
are displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2
(effects of spatial forcing aggregation).

Page 53 of 55



(a) Experiment 1: effects of WRF horizontal resolution
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(b) Experiment 2: effects of spatial aggregation
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1046  Figure 7: Projected changes in basin-averaged mean annual runoff (x axis, mm/year) and
1047  evapotranspiration (y axis, mm/year) obtained from various model structures (i.e. different
1048  symbols) and forcing datasets (i.e. different colors) for the period Oct/2002 - Sep/2008. Results
1049  are displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b) experiment 2
1050  (effects of spatial forcing aggregation).
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1053  Figure 8: Difference between future (PGW) and current (CTRL) simulated signature measures of
1054  hydrologic behavior, obtained from various hydrologic model structures (i.e. different symbols)
1055 and forcing datasets (i.e. different colors) over a six-average water year (Oct/2002 - Sep/2008).
1056  Results are displayed for (a) experiment 1 (effects of WRF horizontal resolution) and (b)
1057  experiment 2 (effects of spatial forcing aggregation).
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