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 Abstract 

 The Great Lakes Runoff Inter-comparison Project for Lake Ontario (GRIP-O) aims to 

compare different hydrologic models, using the same settings, in their ability to estimate runoff 

for the Lake Ontario watershed. The watershed is challenging because many of its tributaries 

have a regulated flow regime and a significant part remains ungauged. GRIP-O follows the GRIP-

M project which focused on Lake Michigan. It involves a comparison between two different 

sources of precipitation data (CaPA- Canadian Precipitation Analysis and the GHCND- Global 

Historical Climatology Network - Daily), and focuses here on two lumped models, GR4J (modèle 

du Génie Rural à 4 paramètres Journalier) and LBRM (Large Basin Runoff Model).  

 Results indicate that both models perform very well, with GR4J performing slightly 

better than LBRM and the GHCND precipitation dataset resulting in better simulations than 

CaPA, for this area. Performances are, however, always very satisfactory whatever the 

combination of model / precipitation data used, even for regulated catchments, and do not 

show any clear correlation to any of the catchments' properties studied here. Results also tend 

to confirm that the Area-Ratio Method is appropriate for extrapolating flows from the gauged 

part of a catchment to the whole catchment including its ungauged parts, as demonstrated in 

GRIP-M. 

 

Key words: lumped models, regulated watersheds, runoff estimation, Canadian Precipitation 

Analysis (CaPA), Dynamically Dimensioned Search (DDS) algorithm, local calibration  

 

 

 

 

 

 

 



 Introduction 

 As a freshwater resource, the Laurentian Great Lakes provide many ecosystem services 

including navigation, potable water supplies, recreational benefits, etc. Associated 

environmental issues include pollution, erosion, climate change impacts, and flooding. 

Integrating these considerations to optimize management practices requires the 

implementation of reliable environmental models. In the Great Lakes, the main physical 

processes related to the water cycle are stream runoff, over-lake precipitation and evaporation, 

inter-lake and St. Lawrence channel routing, and groundwater processes. A cascade of distinct 

models is generally applied to simulate Great Lakes’ water levels. Examples are the National 

Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research  

Laboratory (GLERL) Advanced Hydrologic Prediction System (AHPS; Gronewold et al., 2011) and  

Environment and Climate Change Canada’s (ECCC) Water Cycle Prediction System (WCPS) for 

water levels and thermo-dynamics of the Great Lakes (Fortin, ECCC 2016, personal 

communication). Another good example of interconnected models which simulate many 

physical processes is provided by Wiley et al. (2010). The study presented here focuses on 

runoff from terrestrial areas conveyed to the lakes through their tributaries.  The goal is to 

simulate stream flows through hydrologic models. 

 In the field of hydrologic modeling, simulations are mainly performed by data-driven 

models (Razavi  and Coulibaly, 2012), lumped conceptual models, or (semi-)distributed physical 

models. Models of the first two categories are relatively easy to implement and generally 

require few input data and less powerful computational resources, but they are based on 

conceptual and empirical equations and can represent stream flows only at one location (i.e., 

one point in a stream). Distributed or semi-distributed physical models, however, aim to 

represent processes physically (although they often rely on many empirical equations) and 

provide spatial details for several physical variables. Distributed physical models generally 

require much more input data and computational time than lumped models. 

 Many numerical models have been applied to simulate runoff in the Great Lakes 

watershed (Coon et al., 2011). Applications range from assessing climate change impacts on 

lake levels (Angel and Kunkel, 2010; Chao, 1999; Croley, 2003; MacKay and Seglenieks, 2013),  



land-use change effects on water quality (Mao and Cherkauer, 2009; Wiley et al., 2010), short-  

to mid-term runoff and lake level forecasts (Croley and Lee, 1993; Croley and Hartmann, 1987;  

Gronewold et al., 2011), or the comparison between different hydrologic platforms and  

associated implementation strategies (Deacu et al., 2012; Fry et al., 2014; Haghnegahdar et al.,  

2014). Based on these studies, some rainfall-runoff models provide reliable runoff simulations 

for Great Lakes watersheds. Lumped models, such as the NOAA GLERL Large Basin Runoff 

Model (LBRM; Croley and He, 2002) and the NOAA National Weather Service (NWS) model 

(Burnash, 1995), and distributed physical models such as the  MESH (Modélisation 

Environnementale – Surface and Hydrology; Pietroniro et al., 2007), Watflood (Kouwen, 2010), 

and the Precipitation-Runoff Modeling System (PRMS;  Hay et al., 2011) are examples.  In the 

Lake Ontario watershed, Croley (1983) and Haghnegahdar et al. (2014) calibrated hydrologic 

models with runoff observations to optimize simulations of this variable. The former 

demonstrated that the LBRM worked well for simulating weekly flows, while the second 

evaluated the MESH model on 15 Great Lakes subbasins, including two Lake Ontario subbasins.  

However, even after calibration, the MESH model did not perform particularly well for 

validation catchments (Nash-Sutcliffe values below 0.6). 

 The Great Lakes Runoff Inter-comparison Project for Lake Ontario (GRIP-O)  involves a 

comparison between two lumped models, namely GR4J (modèle du Génie Rural à 4 paramètres 

Journalier;  Perrin et al., 2003) and LBRM.  Although GR4J has not been applied yet in the Great 

Lakes watershed, it was successfully applied in many different climatic conditions (e.g.,  Pagano 

et  al., 2010; Seiller et al., 2012). LBRM is the reference lumped model for the Great-Lakes, as it 

is the only model that simulates runoff across the entire Great Lakes basin for operational 

seasonal water budget forecasting applications. The inter-comparison between distributed 

models will be addressed in  a forthcoming paper (Gaborit et al., in preparation). It includes a 

comparison with the best performing lumped models from the present study. 

 In addition to the above comparisons, two different sources for precipitation are 

compared via their resulting hydrologic performances, namely the Global Historical Climatology 

Network- Daily (GHCND, a collection of ground observations; Menne et al., 2012) and the 

Canadian Precipitation Analysis (CaPA) datasets. CaPA has been evaluated using ground 



measurements of precipitation and generally provided good predictions (Fortin et al., 2015; 

Lespinas et al., 2015; Mahfouf et al., 2007). CaPA was, however, only compared once to 

observed precipitation in terms of resulting hydrologic performances (Eum et al., 2014) for a 

catchment in the Canadian Rocky Mountains and with the Variable Infiltration Capacity model 

(VIC; Mao and Cherkauer, 2009). Deacu et al. (2012) compared CaPA precipitation and model 

precipitation from the Canadian Global Environmental Multiscale (GEM) model in terms of the 

resulting impacts on the Great Lakes' Net Basin Supply simulations (NBS). A Great Lake's NBS is 

the sum of over-lake precipitation and runoff brought from its watershed, minus over-lake 

evaporation, and does not take into account streamflow coming from an upstream Great Lake 

(DeMarchi et al., 2009). Deacu et al. (2012) found that the Great Lakes' NBS was more 

accurately simulated with model precipitation. However, NBS is the result of many processes 

with a high level of associated uncertainty, making it difficult to accurately assess the quality of 

precipitation data in this case. 

 Given the variety and number of existing models (Coon et al., 2011) and the need to 

better understand the potential and limitations of hydrologic modeling (Gronewold and Fortin, 

2012), a comparison of different runoff models is of interest. Each model has advantages not 

only of simulation performances or possible applications but also of requirements. The Great 

Lakes Runoff Inter-comparison Project for Lake Ontario (GRIP-O) further pursues a comparison 

of runoff modeling tools for the Great Lakes watershed started by Fry et al. (2014). Fry et al. 

(2014) compared various models in their ability to simulate historical runoff for the Lake 

Michigan watershed by incorporating different calibration frameworks and input data. The 

GRIP-O compares different models’ ability to simulate daily runoff from the Lake Ontario 

watershed (Fig. 1). To achieve a fair comparison, the exact same forcings and calibration 

framework were used in our simulations. To better manage the freshwater resources of Lake 

Ontario, the ultimate aim of the GRIP-O is the development of a reliable and efficient daily 

runoff simulation platform for many environmental applications such as flood alerts and lake-

level forecasts. 

 

Site Description 



 The total watershed area (Fig. 1) is about 83,000 km2 of which around 19,000 km2 

correspond to the lake surface. Although Lake Ontario receives water from the upstream Great 

Lakes through the Niagara River, its watershed is defined as the land part which drains directly 

into the lake; that is, not taking into account the areas which drain in the upstream Great Lakes. 

This is to focus on the runoff component of Lake Ontario NBS, which does not take into account 

water provided to the lake by the upstream Great Lakes (DeMarchi et al., 2009). The 

U.S./Canada border follows the Niagara River, the middle of Lake Ontario, and the St.-Lawrence 

River down to Cornwall, ON, which consists of the outlet of the Lake Ontario watershed as it is 

defined here. Major cities inside the catchment include Toronto (subbasin 14), Hamilton 

(subbasin 15), Rochester (subbasin 3/4bis), Syracuse (subbasin 5), and Kingston (subbasin 9), for 

a total of about 11 million inhabitants (9 in Canada, 2 on the U.S. side). Apart from the cities, 

the catchment is mainly rural (agriculture, pasture, forest).    

 

Methods 

Models   

 GR4J is a daily continuous lumped hydrologic model with four free parameters (Perrin et 

al., 2003). It basically relies on two tanks which represent the soil and routing reservoirs of a 

catchment and on the Unit Hydrograph theory to produce stream flows. It was coupled with 

the two free-parameter CémaNeige snow module (Nicolle et al., 2011; Valéry, 2010). 

 The LBRM is also a daily continuous lumped hydrologic model; it includes a snow 

module and has a total of nine free parameters by default. Originally developed by NOAA- 

GLERL, it simulates water transport through a series of cascading tanks (Croley and He, 2002). 

LBRM has been employed in a variety of research-oriented and operational applications, 

ranging from hydrodynamic modeling studies (Anderson et al., 2010) to Great Lakes water-level 

forecasting systems (Gronewold et al., 2011). Both models require daily watershed averages of 

precipitation and of maximum and minimum temperature, as well as the catchment area. GR4J 

also requires the mean watershed latitude, used in the potential evapotranspiration 

formulation, and the mean watershed elevation (up to five elevation classes can be defined in 



the Cémaneige snow module). It was implemented here using a unique elevation class for each 

GRIP-O subbasin.  

 

Spatial framework and study area characteristics  

 The spatial framework for the GRIP-O (Fig. 1) is slightly different from the one made by 

Croley (1983) for the calibration of the LBRM model.  We subdivided some subbasins (4 and 

4bis, 10 and 10bis, 13 and 13bis; Fig. 1) in order for the data of the flow gauges to better 

represent the total subbasin outflow in the case of calibration scheme 1 (i.e., for subbasins 

containing several flow stations). However, this leaves some areas as ungauged, such as 

subbasins 2, 4, 13bis, and 9. Subbasin 9 is considered ungauged because of the small area 

covered by the gauge, despite the fact that it contains a flow station. 

 The two lumped models studied are subject to a specific calibration for each gauged 

GRIP-O subbasin identified in Figure 1. This is likely to lead to optimal hydrologic simulations for 

the different subbasins than if performing global calibration over all the subbasins at once 

(Gaborit et al., 2015), in which case a unique parameter set would be used for all subbasins.   

 A detailed and accurate delineation of Great Lakes subbasins, based on 1 arcsecond 

(arcsec) data, has been published by Wang et al. (2015) as part of the Great Lakes Aquatic 

Habitat Framework (GLAHF). GRIP-O subbasins rely instead on 30 arcsec flow direction data 

from HydroSHEDS (Lehner et al., 2006). We used the 30-arcsec data to delineate the 

watersheds because of the resulting gain in the required computational time for distributed 

routing models. The same delineation was used for the lumped models. However, GLAHF 

watershed boundaries were used as a guideline to correct the major discrepancies of the GRIPO 

delineations based on 30-arcsec data. Cases involving "missing areas" in the GRIP-O subbasins 

were, however, not addressed, such as for the area located right below the "10 bis" text of 

Figure 1. 

 The gauge stations were selected based on their data availability and proximity to the 

lake shoreline, so that a maximum coverage of the lake watershed could be reached with a 

minimum of stream gauges with minor missing records, regardless of the type of flow regime 

(i.e., natural or regulated). Of the 30 stream gauges of Figure 1, 27 have no missing data, two 



are complete at 94%, and the 20-mile creek gauge (subbasin 1) is complete at 80% over the 

GRIP-O period.  

 Regulation within the subbasins (Fig. 1) generally involves artificial reservoirs with dams. 

Some information is available with regard to the location and size of the structures (Simley and 

Carswell, 2009). A few consist of major hydraulic structures which are used for hydropower 

production (such as on the Trent River in subbasin 12) or flooding prevention (such as the 

Mount Morris dam on the Genesee River). However, no information was found with respect to 

management policy or operating rules for these structures. Therefore, observed and simulated 

flow time series downstream of the structures were assessed to gain insights about the effects 

of the artificial structures which are not accounted for by the models. Canadian structures do 

not result in frequent and abrupt streamflow fluctuations  that the models cannot reproduce, 

while some U.S. structures do (such as for the Oswego  River, which shows strong fluctuations 

with a period sometimes as short as one day). Overall, most artificial structures on the Lake 

Ontario watershed seem to mainly involve simple management policies with a smooth effect on 

downstream stream flows and could be seen as artificial reservoirs with a simple weir at their 

outlet, hence resulting in artificial lakes. The effect of such structures is relatively well handled 

by the models during calibration. 

 Some aquifers do exist in the vicinity of Lake Ontario. The main aquifers are located 

between Lake Simcoe (west of subbasin 12) and Lake Ontario and consist of two confined 

aquifers separated by impervious layers and an unconfined aquifer (the Oak Ridges Moraine).  

These major aquifers are located in subbasins 14, 13, and 12 (Howard et al., 1996). The deepest 

parts of the confined aquifers can be located down to 150 m below surface. The Oak Ridges 

Moraine does contribute to stream baseflow for rivers of the aforementioned catchments; 

Kassenaar and Wexler (2006) estimated that 90% of the Oak Ridges Moraine discharge does 

contribute to the streams of the northern shore of Lake Ontario. No information was found 

about the contribution from the deep, major confined aquifers to the streams of the Lake 

Ontario watershed, but Harvey et al. (2000) demonstrated that water can be brought by 

aquifers directly to the lake, i.e., without being released first into the streams. However, this 

flux is generally considered negligible by operational hydrologists in comparison to the other 



components of the lake's NBS (Lauren Fry, USACE 2015, personal communication). Many other 

small aquifers do exist in the region (Singer et al., 2003, for an exhaustive review). Therefore, 

the effect of these aquifers on the streamflow of Lake Ontario tributaries may represent a 

challenge for hydrologic models, in addition to the regulated flow regime of many rivers in this 

watershed (Fig. 1). 

 Finally, some diversions are performed in order to fill the Welland and New-York State 

Barge (NYSB) canals. The Welland canal (located in subbasin 1) diverts water from Lake Erie into 

Lake Ontario and involves flows of about 250 m3/s. The NYSB canal diverts about 30 m3/s  in 

summer from the Niagara River into the Genesee River (subbasin 3), and a little less than 30 

m3/s is taken from the Genesee River to fill the NYSB canal between the Genesee and Oswego 

rivers, so this diversion is not expected to significantly affect the Genesee River’s overall 

balance. Finally, the Oswego River gauge station does not take the NYSB canal flow into 

account. In summary, neither canal nor diversion is supposed to have any significant effect on 

the Lake Ontario recorded tributary stream flows, but the aquifers may represent an additional 

challenge for hydrologic models used in the GRIP-O.  

 

Calibration schemes   

 Two different calibration schemes are used for this project: scheme 1, in which the 

models are calibrated using an estimation of the whole catchment runoff derived from the 

gauged observed flow and a simple Area-based Ratio Method (ARM); and scheme 2, which 

consists of implementing the models over the gauged part of a subbasin. Because the ultimate 

goal of the GRIP-O is to develop efficient modeling tools to simulate runoff from the whole Lake 

Ontario watershed, including its ungauged parts, calibration scheme 1 can be viewed as a first 

step in this direction because it allows simulating runoff for the ungauged area of a gauged 

subbasin (Fig. 1). The same protocol could also be used to estimate runoff for the whole Lake 

Ontario watershed, by considering the total Lake Ontario watershed as a single catchment (and 

applying a unique model over this large area; see section on runoff estimation for the whole 

GRIP-O area). The ARM has proven reliable for estimating flows for ungauged portions of a 

watershed, as long as its gauged fraction is higher than a certain threshold of about 40% (Fry et 



al., 2014). The synthetic flows built this way make it possible to implement the hydrologic 

model over the whole subbasin at once, thus taking into account rainfall over the ungauged 

part of the catchment. 

 Other methods for estimating runoff from a complete subbasin exist but were not as 

attractive as calibration scheme 1. For example, one could calibrate the model at the gauged 

sites and then extend the simulated flows to the whole basin using the ARM, but this would 

imply neglecting the difference in rainfall amounts between the gauged and ungauged areas. 

One could also implement the model in two steps: a first one to calibrate it at the gauged sites, 

and a second one to implement it over the whole catchment, using the true rainfall amounts 

falling over its area and the parameter set derived from the first calibration. Calibration scheme 

2 actually corresponds to the first part of this approach, but it requires two implementations of 

the same model for each subbasin. 

 To determine which is the best practice among these two different possibilities is 

beyond the scope of this work, but the preferred two are used in the GRIP-O: both are easy to 

implement and make use of the "true" forcings. It was first envisioned to only use calibration 

scheme 1 for all gauged  subbasins for consistency with the former GRIP-M (Fry et al., 2014), 

but calibration scheme 2 corresponds to a practice commonly used in hydrology, i.e., 

implementing and calibrating the models at the gauged sites (with true observed flows). As a 

consequence, an arbitrary subdivision was made between the subbasins: when one contains 

several gauges, calibration scheme 1 is applied (5 cases); when it contains a unique most-

downstream gauge (Fig. 1, 8 cases), the second scheme is used. However, these two calibration 

schemes are not compared here because they were not both applied to each of the subbasins. 

 

 Precipitation sources  

 The first source of precipitation consists of the Canadian Precipitation Analysis (CaPA), a 

system relying on modeled precipitation fields derived from the Canadian Regional 

Deterministic Prediction System (RDPS) but corrected with ground-based precipitation 

observations. More precisely, we chose to use the 24-h CaPA data of the 2.4 b8 version 

(Lespinas et al., 2015), which consists of gridded fields of 24-hourly accumulated precipitation, 



corrected by ground stations but not by radar fields, which is the case for CaPA 3.0 (Fortin et al., 

2015). No reanalysis was yet available for CaPA 3.0 over the time period of interest to the GRIP-

O. Both 6- and 24-h accumulations are available from CaPA 2.4 b8. It was decided to use the 24-

h product because more ground stations are generally available in real-time at the 24-h interval 

than at the 6-h interval, making the 24- h CaPA product more tied to observations than the 6-h 

one. The resolution of CaPA 2.4 b8 is 0.125 degree (or 450 arcsec, around 15 km near Lake 

Ontario). CaPA is designed for near real-time application and is thus a fully automated 

precipitation analysis procedure. 

 The second main source of precipitation data available for the GRIP-O consists of the 

Global Historical Climatology Network- Daily (GHCND version), developed by the NOAA National 

Climate Data Center (NCDC), which incorporates many data sources all over the globe, such as 

weather and climate stations as well as observations from volunteer observers in the U.S. and 

Canada. The data were interpolated on a 15 arcsec grid (around 450 m near Lake Ontario) using 

a nearest neighbor (or Thiessen polygons) method. 

 Table 1 shows the number of ground stations per GRIP-O subbasin (Fig. 1) for each 

precipitation dataset. The density of the GHCND is higher than that of the stations used in CaPA 

because CaPA only uses stations for which data is available in real-time at the Canadian Centre 

for Meteorological and Environmental Prediction (CCMEP). The GHCND network density, 

however, varies between 2004 and 2011 (the GRIP-O period): it increases in the U.S. basins and 

decreases in Canada (Table 1). Watershed averages were computed based on the gridded 

products and the subbasin shapes, either for the whole subbasin in case of calibration scheme 1 

or for its gauged area for scheme 2. Both models were provided with daily basin averages of 

maximum and minimum temperature based on the data contained in the GHCND (same 

stations as the precipitation ones), even in the case of providing the models with CaPA 

precipitation.  

 

Calibration details  

 Because calibrating a hydrologic model over a set of 4 to 5 years is generally enough to 

achieve reasonable model robustness (e.g., Refsgaard et al., 1996), the calibration period was 



chosen to range from June 1, 2007 to the end (4.5 years). The validation period extends from 

June 1, 2005 to June 1, 2007 (2 years), with the first year of data (June 1, 2004 to June 1, 2005) 

being used for spin-up. The objective function used in calibration consists in the Nash-Sutcliffe 

Efficiency criterion (NSE; Nash and Sutcliffe, 1970) but computed taking the square-root of the 

observed and simulated flow time series, in order to avoid overemphasizing peak-flow events, 

and will be referred to as "NSE √" throughout the paper. Other evaluation criteria used in this 

study consist in the common Nash-Sutcliffe criterion (NSE), the Nash criterion calculated over 

the log of the flows (NSE ln), and a bias criterion (in equation 1 below) indicates a simulation's 

overall water budget fit. 

 Equation (1)                     PBIAS =
∑ (	
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 GR4J and the "Cémaneige" snow module have a total of six free parameters, and LBRM 

was implemented here using ten free parameters (the upper soil zone capacity, USZ, in addition 

to its nine conventional ones; Table 2). The calibration algorithm consists in the Dynamically 

Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007). DDS is designed for 

calibration problems with many parameters and automatically scales the search within the 

maximum number of user-specified model runs. A maximum of 2000 model runs was allowed 

during a calibration trial, and three distinct trials (each starting with a different initial parameter 

set) were performed for each model, precipitation dataset, and subbasin. For each model and 

subbasin, the best of the three trials was finally kept to compute the validation performances. 

Table 2 presents the parameter ranges used in calibration. The initial parameter sets were 

randomly selected inside the prescribed intervals.  

 

Results and Discussion 

Best hydrologic simulations 

What are the best possible hydrologic simulation performances for the area under study and 

how do the models account for regulation impacts on runoff?  Among the four different model 

combinations examined (LBRM or GR4J model, CaPA or GHCND precipitation dataset), the best 

simulation performances were generally achieved with GR4J and the GHCND dataset (Table 3).  

Moreover, performances obtained with the latter combination a priori consist of some of the 



best possible hydrologic simulation performances for the area under study. Indeed, the GHCND 

dataset consists of a dense network of ground-based stations for precipitation and 

temperature, and GR4J generally stands among the best hydrologic models in multi-model 

comparison studies (e.g., Pagano et al., 2010; Seiller et al., 2012). 

 However, it is always possible to improve local simulation performances, but results 

presented in this section nevertheless represent the benchmark to which other experiments 

will be compared. 

 A few conclusions can be drawn from Table 3. Simulation performances are not related 

to any of the subbasins' main properties (country affiliation, area, elevation, type of flow 

regime) or to the calibration scheme or catchment gauged percentage. Very satisfying 

performances were obtained even in the worst case scenario (influenced flow regime, 

calibration scheme 1 with synthetic observed flows) and a relatively low gauged fraction (see, 

for example, subbasin 10bis). At the same time, cases which were a priori expected to lead to 

some of the best results (natural or less influenced flow regime, calibration scheme 2) often 

display poorer performances (subbasins 4bis and 6). This was also true for the three other 

model combinations (LBRM / GR4J and GHCND/ CaPA precipitation). 

 Simulated hydrographs generally closely follow the observed ones, even for regulated 

catchments [Fig. 2; see Electronic Supplementary Material (ESM) Fig. S1. Flow regulation in the 

Lake Ontario watershed mainly consists of artificial reservoirs (see section on spatial framework 

and study area characteristics) with a weir at their outlet (static control which the models can a 

priori account for during calibration. However, good performances are obtained even for 

subbasin 5 (Oswego River, Table 3), despite the fact that it involves a more sophisticated type 

of control which results in frequent streamflow fluctuations for the observed time-series which 

the hydrologic models cannot reproduce (see ESM Fig. S1.). For this subbasin, the observed 

general flow dynamic is, nevertheless, well captured by the smoother simulated flows. 

 Furthermore, if some aquifers do significantly contribute base flow to some streams of 

the Lake Ontario watershed (e.g., the northern shore of Lake Ontario), they neither prevent the 

hydrologic models from successfully reproducing streamflow dynamics, nor do they lead to a 

strong underestimation of the overall water balance (Table 3). 



 The GR4J model is well adapted to hydrologic modeling of the Lake Ontario watershed.  

Model performances obtained here are promising both for the future implementation of 

distributed models and the estimation of the whole lake's runoff.  Indeed, the regulated 

downstream flow gauges (Fig. 1), together with the gauges on "natural" streams, cover about 

74% of the total Lake Ontario watershed land surface. Natural flows represent 20% of the 

watershed area under study. Therefore, if only natural flows would demonstrate good 

simulation performances, runoff for the whole watershed could be hardly estimated with the 

ARM (see Fry et al., 2014, for the reliability of a catchment's runoff estimation as a function of 

its gauged fraction). But, this is not the case here. 

 The fact that no calibration scheme systematically leads to better performances than 

the other, as observed with the three other model combinations, further supports the 

methodology used to simulate runoff for the ungauged part of a gauged catchment (calibration 

scheme 1). Using synthetic flows (derived from observed ones and the simple ARM process) to 

calibrate a model leads to satisfactory simulation performances even in the case where only 40-

60% of the subbasin is gauged (see subbasins 6, 10bis, 13, 14 and 15 in Table 3). This also tends 

to further confirm findings of the GRIP-M (Fry et al., 2014), namely that the ARM can provide 

reliable runoff estimations for a whole subbasin even if less than half of it is gauged. To further 

confirm this, calibration scheme 2 was tested for subbasins 6 and 14, so that both schemes 

could be truly compared for these catchments. The results (see ESM Table S1.) confirm that 

performances are extremely close for both, sometimes even slightly better with calibration 

scheme 1. 

 Validation performances are often lower than in calibration, especially when evaluating 

the NSE criterion. However, this drop of performances between calibration and validation is 

smaller when using CaPA precipitation, indicating that the models can be robust and that the 

drop of performances between calibration and validation is more related to the precipitation 

data than to the model structure. Although performances are generally lower in validation with 

GHCND precipitation, they remain satisfactory for most of the subbasins (Table 3). 

 Finally, the GR4J exhibits satisfactory values for the three different NSE criteria (Table 3) 

(both in calibration and validation). This result indicates that the different components of 



streamflow are well reproduced by the model (baseflow, interflow, surface runoff, low-flow 

periods, floodings). Although no test was performed with using the traditional NSE criterion as 

the objective function, it is argued that using NSE √ as the objective function is a reasonable 

choice when using GR4J but not the LBRM (see below). The relevance of using NSE √ as the 

objective function was already demonstrated, for example by Oudin et al. (2006).   

 

Model and precipitation dataset inter-comparison  

 Can a relatively new model to Great Lakes hydrological modeling (GR4J) be 

implemented and demonstrate similar or better success than the LBRM, and which 

precipitation product results in the better runoff simulations at a subbasin scale? In order to 

determine if differences in performance observed between the two hydrological models and 

the two precipitation datasets are statistically significant, a two-sided sign test is used (see for 

example Walpole and Myers, 1985). The sign test is performed on the sign of the differences in 

performance, assuming independence across basins. It does not inform us on the magnitude of 

the mean difference in performance, but rather on whether or not one model or one 

precipitation dataset is expected to outperform the other on a majority of watersheds. The 

number of cases for which GR4J outperforms LBRM and the number of cases for which GHCND 

outperforms CaPA are reported in Table 5, together with the associated p-values.  

 Results from Table 4 suggest that GR4J performs generally better than LBRM 

considering NSE √ values (the objective function) in calibration. However, results from Table 5 

indicate that for this criterion (NSE √) it cannot be stated with confidence that GR4J is better 

than LBRM (the difference is not statistically significant). The superiority of GR4J over LBRM is, 

however, significant for the NSE criterion (Table 5, both in calibration and validation), which 

puts the emphasis on high streamflow values. Because performing well in peak flow events is 

one of the main requirements for a hydrologic model, calibrating the LBRM using the NSE √ 

objective function may not be a good choice, as it generally has difficulty for peak events (Figs. 

2 and 3).   

 



 Table 6 contains some valuable information for comparing the GHCND and CaPA  

precipitation datasets. Using the GHCND precipitation dataset leads to better calibration 

performances than when using the CaPA dataset (Tables 4 and 5). This suggests that the daily 

average catchment precipitation derived from the GHCND data and using the Thiessen Polygon 

method is closer to the real amounts than the values derived from CaPA are. This also makes 

sense considering that the GHCND network density is higher than the density of the real-time 

ground stations used in CaPA (Table 1). 

 When comparing the U.S. or Canadian side of the Lake Ontario watershed, the model 

performances are quite different (Table 6). In Canada, model performances resulting from 

GHCND and CaPA precipitation are close (Table 6), while in the U.S. (median U.S.), the 

difference resulting from using one source or the other is more pronounced.  Because  the 

density of the GHCND is much higher than the density of the ground stations used in CaPA, it 

can be concluded with some confidence that the daily basin averages of precipitation are well 

reproduced by CaPA in Canada. This is confirmed when looking at the correlation between 

CaPA and GHCND daily watershed averages of precipitation (see ESM Table S3.). 

 However, the differences in performance between GHCND and CaPA are less 

pronounced in validation than in calibration, and are not statistically significant according to the 

sign test (Table 5). In fact, for the NSE √ criterion, CaPA outperforms GHCND in validation for a 

majority of watersheds (9 out of 14). In particular, CaPA leads to better performances than the 

GHCND in validation for some catchments such as the 4bis, 8, 12 and 15 subbasins. This cannot 

be attributed to a lower GHCND network density in validation (Table 1). However, the 

catchments displaying this behavior are in areas where the GHCND density is generally low for 

the calibration period. 

 We suggest the lumped models learn to compensate for a spatial misrepresentation of 

GHCND precipitation during calibration (and for the catchments mentioned earlier) but that this 

compensation is not suited anymore in validation because the GHCND density changes over 

time (Table 1), resulting in a better model temporal robustness with CaPA than with GHCND 

(Table 6). Although not clearly shown here, performances obtained with CaPA precipitation 



lead to models with a strong temporal robustness (see ESM Table S4.), which therefore 

supports the relevance of this comparison study.  

 

Parameter values  

 When looking at parameter values obtained after calibration (Table 2), no clear 

difference could be identified between using the CaPA or GHCND precipitation dataset for 

either of the two models. Parameter values were generally close with the two different 

precipitation sources. The values are not shown here for all of the catchments (see ESM Table 

S5), but a few statistics are shown for these values as it could be of some interest to initialize 

future GR4J or LBRM  implementations over nearby catchments and/or similar climatic areas. 

Tables 7 and 8 are devoted to such a purpose. 

 As GR4J could end up with two main types of parameter sets, depending on if the 

production store maximum capacity was much lower than the routing store maximum capacity 

or not, these two cases were distinguished to compute the statistics of Table 8. The production 

store capacity is supposed to conceptually represent soil depth (Harlan et al., 2010). In some 

cases (4/14 with GHCND and 5/14 with CaPA), the GR4J production capacity (X1, mm) was very 

low compared to the routing store capacity (X3, mm) with values generally below 30 mm for 

the former. This is not considered a realistic value for the Lake Ontario watershed based on 

observed soil depth data (~1.4 m) but also according to GR4J general range of parameter values 

(Perrin et al., 2003). 

 These very low values obtained after calibration with GR4J for the X1 parameter (and 

accompanied by high values for the X3 routing store capacity) are attributed to flow regulation 

because they were only observed in the case of partly regulated subbasins, such as subbasins 3, 

5, 8, and 12. As regulation in these watersheds is mainly due to artificial reservoirs, the low X1 

and high X3 values (Table 8) obtained for these catchments could be seen as an effort made by 

the model to optimally represent the effect of regulation on simulated stream flows by trying to 

represent a big routing reservoir (X3). Because this reservoir then captures 90% of runoff 

generated by the production store (X1), a high X3 value may logically call for a low X1 value to 

still be able to represent peak flows. Additional tests performed in the case of the very low X1 



values revealed that they were not due to local optima found during calibration, as changing 

the initial parameter values did systematically lead to the same unconventional values. 

Moreover, the good model temporal robustness obtained with these unconventional X1 and X3 

parameter values, along with the very satisfactory simulated hydrographs which they achieve, 

demonstrates the relevance of the second type of parameter values described in Table 8. 

Despite the satisfactory performances obtained even for subbasins with regulation structures, it 

would be interesting to test the methodology proposed by Moulin et al. (2005) to better 

account for major hydraulic structures in GR4J, but this is dedicated to future work.   

 

Additional model tests 

 Additional model combinations were performed in order to assess the sensitivity of the 

evaluation metrics considering the observed and simulated time-series in a different way or in 

more detail. A test was performed by computing the scores with 7-day averages of flow values 

to hinder the effect of daily fluctuations induced by regulation on observed flows such as those 

of the Genesee and Oswego Rivers. Doing so did not lead to a significant increase of 

performances for the rivers subject to such fluctuations (see ESM Table S6.), and does not 

mitigate the effect of regulation by slightly changing the time-step of the time-series. 

 Performances were also assessed on a seasonal basis for the winter (November to May) 

or summer (June to October) periods, but still using a daily-time-step. The analysis was limited 

to the calibration period. Winter performances tend to be better than summer ones in terms of 

all NSE criteria used in this study (see ESM Table S7). This is common in hydrology, as winter 

processes are generally less chaotic and easier to reproduce than summer ones. For example, 

winter stream flows in the area considered are frequently governed by temperature via 

snowmelt processes. In summer, convective storms can be localized over very small areas and 

can be poorly captured by observation networks. The better winter performances in 

comparison to summer ones are also due to the NSE criterion itself, which is generally better 

for higher streamflows (see Martinec and Rango, 1989). 

 Apart from this, there is not much information which can be derived from this seasonal 

analysis. It is only highlighted that despite better than summer ones, winter NSE values are 



almost never higher than overall values for the whole calibration period. In summer, 

performances remain at least satisfactory, with most of the values comprised between 60 and 

80%. The scores related to seasonal or weekly performances can be found in ESM Table S6 and 

S7. 

 

Runoff estimation for the whole GRIP-O area  

 What is the best approach for estimating runoff, including its ungauged areas, for the 

entire Lake Ontario watershed? In order to have a better overview of the performance of Lake 

Ontario runoff simulations, the sum of runoff from the models implemented locally over each 

of the 14 GRIP-O gauged catchments (Fig. 1) was evaluated. The total area covered by the 

models is about 53,460 km2. Runoff observations used for the 53,460-km2 area actually 

correspond to estimations because they are derived from runoff truly observed for the gauged 

47,330-km2 area (brown part of Fig. 1) and the ARM. This estimate should be close to reality as 

more than 88% of the studied area is gauged. 

 A test of the model level of detail was made with implementation of a unique GR4J 

model over the entire 53,460-km2 area using the GHCND. In this case, the GR4J model was 

calibrated using precipitation and temperature values corresponding to weighted averages of 

the 14 subbasins' time-series and the sum of locally observed flows as reference. When using a 

unique model, the entire area is conceptually interpreted as a unique watershed with one main 

river, which is far from reality (Fig. 1). The unique model was implemented considering five 

different elevation classes of equal size and still the NSE √ value as objective function. A unique 

model is faster to implement than many local ones. This test is inspired from Croley (1983) who 

showed very promising results by doing so with LBRM. 

 In general, the simulated whole watershed performances are very good (Table 9) and 

are, in fact, better than performances obtained for any of the local subbasins- whatever the 

quality criterion considered (Table 3). This result suggests that the local model biases are 

compensated when grouping the catchments altogether. Moreover, as the NSE criterion is a 

skill score comparing simulated values to the mean of the observed flows, the reference is 

easier to gain the upper hand on when the flow dynamics are very strong, as is the case for the 



entire area (Fig. 4). When taking the mean of values simulated with the four combination 

possibilities (two models and two precipitation datasets), performances are as good or better 

than the best of the four independent combinations, except for the PBIAS criterion which 

stands somewhere in between the extreme values obtained with the individual combinations. 

 All four individual combinations of Table 9 display robust performances, which again 

highlights the compensation of local biases; it can be seen in validation (Table 3). In all cases 

observed, runoff is generally underestimated by the local models (Tables 3 and 9), which can be 

more precisely linked to the underestimation of peak flow events with local models (Fig. 4). It is 

nonetheless evident that both of the two lumped models used here, namely GR4J and LBRM, 

are able to produce very decent estimations of Lake Ontario runoff, which could be useful to 

several potential challenges in the field of water management and streamflow / lake level 

predictions. 

 Using a unique GR4J model to save computation time and effort for estimating runoff 

for the whole GRIP-O area described earlier proved to be promising. Although values for the 

different NSE criteria are slightly smaller for this unique model in comparison to performances 

obtained by summing all local models together (Table 9, Fig. 4), the opposite is true for the 

PBIAS criterion. As a consequence and depending on the targeted application, it may be 

preferable to use a unique model for the whole GRIP-O area than a set of models implemented 

on local subbasins, such as estimating the general contribution from the entire Lake Ontario 

area to the lake. In this case, it would a priori be preferable to use a unique model over the 

entire area and calibrate it with synthetic historic flow records derived from the ARM (i.e., using 

calibration scheme 1 for the entire Lake Ontario area). This way, the model could benefit from a 

better approximation of precipitation and temperature over the watershed, by taking into 

account the values over the ungauged parts of the watershed. 

 Tests were also performed calibrating the unique model using the conventional NSE 

criterion, but results were almost exactly the same (not shown but available upon request), 

which tends to suggest that for GR4J, calibrating on NSE √ or NSE does not change model 

performances. A calibration test with the NSE instead of NSE √ criterion performed on the 

Moira watershed (and still with GR4J and the GHCND precipitation) even revealed poorer 



simulation results with the former conventional criterion than with the objective function used 

in this work. Using five elevation classes leads to slightly better performances and hydrographs 

than with a unique elevation class (result available upon request), but this difference may be 

more significant in the case of watersheds with more pronounced topography.  

 

Conclusion  

 The first phase of the GRIP-O project, involving the implementation of the two lumped 

GR4J and LBRM hydrological models on the land area of the Lake Ontario watershed, has shown 

that both models were very efficient in simulating the lake's tributary stream flows. Both 

models are robust and perform well, whatever the precipitation dataset used as input. 

However, GR4J performs generally better than LBRM considering the NSE criterion. This 

suggests that using the NSE √ value as the objective may not be the best choice for 

implementing LBRM, which would probably achieve better hydrologic simulations using the 

conventional NSE criterion. For the model combinations performed during this work, GR4J 

appears to be better than LBRM, but more tests, including additional watersheds, should be 

performed. 

 The GHCND dataset leads to better performances than CaPA precipitation in calibration, 

but not in validation, which is probably linked to the fact that the GHCND network changes over 

time.  Overall, CaPA leads to hydrologic performances very close to the ones obtained with the 

GHCND for some GRIP-O subbasins, even in the case where the network of ground stations 

used in CaPA has a significantly lower density than the GHCND stations. This suggests that CaPA 

is a very useful source of daily precipitation data. 

 As a consequence, the model combination leading to the best hydrologic performances 

consists of the GR4J model driven by the GHCND forcings. Numerous possibilities could still be 

tested, for example, by calibrating the models with the conventional NSE values or by using 

multi-objective functions that would focus at the same time on the streamflow and snow water 

equivalent simulations. The results from GR4J and the GHCND forcings will be further used as a 

benchmark for future hydrological modelling experiments on Lake Ontario, such as an 

evaluation of distributed models.  



 The two different calibration schemes used resulted in very satisfactory performances. 

Using synthetic streamflow time-series for a whole subbasin, derived from observed data and a 

simple area-ratio method, resulted in a promising and efficient way to estimate the 

contribution of ungauged parts of a gauged subbasin. 

 Despite flow regulation affecting most of the GRIP-O subbasins, it did not prevent the 

models from achieving very satisfactory performances. The models, through calibration, 

generally mimic the effect of flow regulation, except for some of the U.S. basins (e.g., Oswego 

River), which involve dynamically sophisticated modifications to the natural flow regime but did 

not prevent the models from following the general flow trends. 

 In the light of the performances obtained in this study, promising results are expected in 

regard of the estimation of runoff for the entire Lake Ontario area (64,000 km2, Fig. 1). Indeed, 

performances are even better when looking at the total 53,460-km2 GRIP-O area as a whole 

instead of performances for local catchments. Moreover, even a unique GR4J model 

implemented over the total area resulted in very satisfying performances, especially for the 

PBIAS criterion, which could save a lot of computation time when interested in runoff for the 

entire Lake Ontario area. For that, a possibility would be to calibrate a unique GR4J model on 

the total gauged area of Lake Ontario (Fig. 1) and then to transfer the parameter set to a unique 

model for the entire Lake Ontario watershed, including its ungauged parts. This would allow 

taking into account rainfall and temperature data over the ungauged parts of the whole 

watershed.  Runoff simulations for the entire Lake Ontario watershed provide a better 

understanding of long-term water supply trends (the GRIP-O period can be extended, for 

example, using CaPA). 

 Considering the promising results obtained during this work with lumped conceptual 

models, the second phase of the project will focus on the implementation of a distributed, 

physically based model developed at Environment and Climate Change Canada and named 

GEM-Hydro. Physically-based distributed models are interesting because they offer more 

possible applications than lumped models by representing the physical processes occurring 

everywhere inside the watershed. The area of Lake Ontario is thus relevant to distributed 

modeling, as detailed datasets exist for land use/land cover and soil texture. However, the 



performances of the lumped models will be hard to achieve with distributed models, given that 

lumped models can, through calibration, more easily accommodate themselves with systematic 

deficiencies in the forcing data. The good performance of lumped models could serve as a 

hydrological simulation target for more sophisticated models.   
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GR4J default initial parameter values indicated here; other trials were made with a random 
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Soil Zone. 

  

Table 3: Evaluation metrics obtained with GR4J and the GHCND precipitation dataset. All values 

are in percent; optimal value is 100 except for PBIAS (0). NSE √, NSE Ln: NSE values computed 

with either the square-root or log of the flows, respectively. See section on methods for more 

details. NSE=Nash-Sutcliffe Efficiency index, PBIAS=Percent Bias, CA=Canada. 

 

Table 4: NSE (Nash-Sutcliffe Efficiency index) values obtained with GR4J, minus NSE values from 

LBRM. CALIBR=calibration,VALID=validation, GHCND=Global Historical Climatology Network- 

Daily, CaPA=Canadian Precipitation Analysis. Values are in percent, so that a value of 5 in the 

Table corresponds for example  to a NSE of 75% for GR4J and 70% for LBRM. 

 

Table 5. The number of positive cases associated to the inter-comparison study, i.e., the 

number of cases with the GR4J model or GHCND precipitation showing better performances 

than LBRM or CaPA, respectively. For the comparison of GR4J vs LBRM or GHCND vs CaPA, the 

number of cases displayed in Table 6 was derived from the mean of performances along the 

two precipitation datasets or models, respectively. The p-value of the two-sided sign test is 

displayed in parenthesis. A number equal or greater than 12 out of 14 cases is considered 

significant (i.e., a p-value of less than 5%). CALIBR=calibration, VALID=validation, GHCND=Global 

Historical Climatology Network- Daily, CaPA=Canadian Precipitation Analysis. 

Table 6: NSE √ and NSE (Nash-Sutcliffe Efficiency index) values obtained with the GHCND 

precipitation dataset, minus NSE values obtained with CaPA precipitation, in calibration 

(CALIBR) or validation (VALID), and with the LBRM or GR4J models. Values are in percent, so 

that a value of 5 corresponds, for example, to a NSE of 70 %with CaPA and of 75 % with GHCND 

precipitation. 

 

Table 7: Statistics for the LBRM (Large-Basin Runoff Model) parameters after calibration taking 

all cases into account (28: 14 catchments and 2 precipitation datasets). Lin= linear, res= 



reservoir, coeff= coefficient, evap= evaporation, perco= percolation, USZ= Upper Soil Zone, std= 

standard deviation, LSZ= Lower Soil Zone, Tbase = base temperature, val. = value. 

 

Table 8: Statistics for the GR4J (modèle du Génie Rural à 4 paramètres Journalier) parameters 

after calibration separating the 28 final parameter sets in two cases depending on the relative 

values of X1 and X3, either of similar magnitude (or X1 > X3), or with X1 way lower than X3 (X1 

<< X3). 

Table 9: Daily runoff simulation performances when assessed for the 57,460-km2 Lake Ontario 

area (see text). CAL= calibration, VAL= validation, NSE= Nash-Sutcliffe Efficiency index. The 

mean of runoff simulated with the four different combination possibilities (mean GR4J-LBRM-

CAPA-GHCND) was assessed. The last column shows performances obtained with a unique GR4J 

model applied to this large area using GHCND precipitation. 

 

 

 

 

 

 

 

  

 Figure captions 

 

Figure 1: Lake Ontario subbasin delineation (GRIP-O subbasins). GLAHF subbasins depict the 

delineation performed by the Great Lakes Aquatic Habitat Framework. The main watershed 

outlet is located at Cornwall, ON. All dots correspond to most-downstream flow gauges 

selected for model calibrations; blue ones correspond to rivers with natural flow regimes while 

red ones are located on regulated rivers. The light (orange in online version) area represents 

the gauged area (about 74% of the total - dark (green in on-line version) - Lake Ontario 

watershed).  

 

Figure 2: Hydrographs in calibration for the Moira River (subbasin 11), derived from empirical 

measurements, the GR4J model (modèle du Génie Rural à 4 paramètres Journalier), and the 

LBRM model (Large-Basin Runoff Model). GHCND (Global Historical Climatology Network- Daily) 

precipitation data used.  



 

Figure 3: Subbasin 15 plots of simulated versus observed flows (Q) or square-root of the flows 

(√Q) for the whole GRIP-O period and with the GHCND precipitation data. GR4J = modèle du 

Génie Rural à 4 paramètres Journalier, LBRM = Large-Basin Runoff Model. 

 

Figure 4: comparison between hydrographs for the 57,460 km2 Lake Ontario area obtained 

either with summing runoff from the 14 local GR4J models (GR4J_locals) or with the unique 

GR4J model (GR4J_unique) calibrated over the whole area. In both cases, runoff was produced 

with using the GHCND precipitation.  

 

 

 











Table 1: Number of precipitation ground stations per GRIPO subbasin (see Figure 1) for the GHCND and CaPA 

datasets.   

 

number of rain gauges density (gauges/1000 km2) 

Subbasin Country 

Area 

(km2) CaPA GHCND (2004) GHCND (2011) CaPA GHCND (2004) GHCND (2011) 

1 CA 1087 5 7 3 5 6 3 

3 USA 6455 15 17 22 2 3 3 

4bis USA 450 0 2 5 0 4 11 

5 USA 13928 20 27 74 1 2 5 

6 USA 2406 0 2 3 0 1 1 

7 USA 5917 4 9 15 1 2 3 

8 USA 4977 3 4 6 1 1 1 

10 CA 2688 0 4 2 0 1 1 

10bis CA 2062 1 2 1 0 1 0 

11 CA 2853 1 5 3 0 2 1 

12 CA 12516 2 15 9 0 1 1 

13 CA 1538 2 4 2 1 3 1 

14 CA 2689 5 11 7 2 4 3 

15 CA 2246 2 7 5 1 3 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2: Parameter ranges used in calibration; one of the three GR4J trials was performed with GR4J default 

initial parameter values indicated here; other trials were made with a random initial parameter set; coeff: 

coefficient; UH: Unit Hydrograph; USZ: Upper Soil Zone; LSZ: Lower Soil Zone. 

 

LBRM free 

parameters (10) 
unit 

low 

bound 

upper 

bound 

GR4J free 

paramete

rs (6) 

unit 
low 

bound 

upper 

bound 

Tbase ˚C 1.00E-04 10 

x1: 

Capacity 

of 

productio

n store 

mm 10 2500 

Snowmelt factor cm/˚C/day 1.00E-04 5 

x2: Water 

exchange 

coeff 

mm -15 10 

linear reservoir 

coeff: percolation 
day-1 1.00E-04 100 

x3: 

Capacity 

of routing 

store 

mm 10 700 

partial linear 

reservoir coeff: 

USZ evap 

 m-3 1.00E-09 1.00E-06 
x4: UH 

time base 
day 0 7 

linear reservoir 

coeff: interflow 
day-1 1.00E-04 10 

x5: 

degree-

day 

factor 

- 1 30 

linear reservoir 

coeff: deep 

percolation 

day-1 1.00E-05 10 

x6: 

snowpac

k inertia 

factor 

- 0 1 

partial linear 

reservoir coeff: 

LSZ evap. 

m-3 1.00E-12 5.00E-07 

linear reservoir 

coeff: 

groundwater 

day-1 1.00E-06 1 

linear reservoir 

coeff: surface 

flow 

day-1 1.00E-03 50 

USZ Capacity cm 1.00E+00 100 

 



Table 3: Evaluation metrics obtained with GR4J and the GHCND precipitation dataset. All values are in percent; optimal value is 100 except for 

PBIAS (0). NSE √, NSE Ln: NSE values computed with either the square-root or log of the flows, respectively. See section on methods for more 

details. NSE=Nash-Sutcliffe Efficiency index, PBIAS=Percent Bias, CA=Canada. 

CAL VAL 

Subbasin 

# country 

Cal. 

scheme Station % gauged Area(km2) 

Flow 

regime 

mean 

elev. (m) NSE 

NSE 

√ 

NSE 

Ln PBIAS NSE 

NSE 

√ 

NSE 

Ln PBIAS 

1 CA 2 20 mile N/A 307 natural 198 77.0 79.8 76.5 16.3 79.1 82.7 76.3 10.6 

3 USA 2 Genessee N/A 6317 regulated 418 81.0 83.1 79.0 2.4 81.6 83.9 82.9 -1.2 

4bis USA 2 Irondequoit N/A 326 natural 172 66.8 71.4 65.7 2.4 55.3 61.5 62.6 -0.5 

5 USA 2 Oswego N/A 13287 regulated 259 83.7 83.2 79.4 2.2 69.3 71.1 69.1 3.9 

6 USA 1 N/A 40 2406 mixed 264 71.4 76.2 75.8 2.3 63.5 70.6 74.2 12.8 

7 USA 2 Black river N/A 4847 regulated 471 79.2 81.9 81.7 2.3 72.5 74.6 74.7 3.4 

8 USA 2 Oswegatchie N/A 2543 regulated 250 78.5 82.1 83.7 1.6 68.2 76.9 79.9 -1.6 

10 CA 2 Salmon CA N/A 912 regulated 196 86.2 88.3 81.1 7.0 82.8 83.4 72.2 1.7 

10bis CA 1 N/A 44.2 944 mixed 115 82.2 88.7 84.8 7.9 76.6 82.4 81.2 1.8 

11 CA 2 Moira N/A 2582 regulated 228 88.2 89.6 84.3 4.3 83.6 82.7 75.5 3.0 

12 CA 1 N/A 88 12515.5 regulated 282 73.1 72.8 66.1 4.3 62.0 67.2 62.7 -5.0 

13 CA 1 N/A 40.3 1537.5 natural 178 62.2 66.4 63.1 2.8 57.7 62.4 61.3 8.3 

14 CA 1 N/A 61.3 2689.4 mixed 209 78.8 78.3 70.9 4.6 71.5 76.0 76.4 6.9 

15 CA 1 N/A 63 2245.8 mixed 263 80.4 81.7 78.2 -0.5 66.5 68.3 67.0 -0.4 

 

 

 

 

 

 

 

 

 



Table 4: NSE (Nash-Sutcliffe Efficiency index) values obtained with GR4J, minus NSE values from LBRM. 

CALIBR=calibration,VALID=validation, GHCND=Global Historical Climatology Network- Daily, CaPA=Canadian 

Precipitation Analysis. Values are in percent, so that a value of 5 in the Table corresponds for example to a NSE 

of 75% for GR4J and 70% for LBRM. 

 

  GHCND precipitation CAPA precipitation 

    NSE √ NSE NSE √ NSE 

Subbasin Country CALIBR VALID CALIBR VALID CALIBR VALID CALIBR VALID 

1 CA 9.1 9.7 12.8 18.6 9.1 13.6 14.6 21.7 

3 US 2.9 8.5 3.3 8.6 1.0 0.5 1.4 2.1 

4bis US -2.6 5.9 4.0 9.8 -1.6 10.2 3.5 19.0 

5 US -4.0 0.0 -4.6 1.1 -6.0 0.1 -7.2 -0.8 

6 US 8.1 9.8 10.3 12.0 2.3 5.1 4.0 6.9 

7 US 4.1 4.9 5.4 9.7 -1.4 6.5 -5.5 5.9 

8 US 5.8 13.7 3.6 7.4 0.6 10.8 -0.8 12.6 

10 CA -1.9 3.3 -2.6 5.2 -1.5 2.8 -5.9 2.6 

10bis CA 2.8 2.6 4.0 1.1 1.6 6.7 -2.0 7.6 

11 CA 0.0 4.7 4.4 14.5 0.6 5.1 2.0 6.0 

12 CA -2.4 2.4 0.4 7.8 -2.8 4.9 0.2 10.1 

13 CA 0.5 -1.8 9.4 1.4 5.6 4.2 10.5 2.9 

14 CA 0.5 3.0 4.8 5.5 2.7 5.5 8.1 8.8 

15 CA -3.7 -8.7 2.0 -4.4 0.8 6.0 8.0 8.1 

median US 3.5 7.2 3.8 9.1 -0.4 5.8 0.3 6.4 

median CA 0.2 2.8 4.2 5.4 1.2 5.3 5.0 7.8 

median 0.5 4.0 4.0 7.6 0.7 5.3 1.7 7.3 

number of positive 

cases 9/14 12/14 12/14 13/14 9/14 14/14 9/14 13/14 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5. The number of positive cases associated to the inter-comparison study, i.e., the number of cases with 

the GR4J model or GHCND precipitation showing better performances than LBRM or CaPA, respectively. For 

the comparison of GR4J vs LBRM or GHCND vs CaPA, the number of cases displayed in Table 6 was derived 

from the mean of performances along the two precipitation datasets or models, respectively. The p-value of 

the two-sided sign test is displayed in parenthesis. A number equal or greater than 12 out of 14 cases is 

considered significant (i.e., a p-value of less than 5%). CALIBR=calibration, VALID=validation, GHCND=Global 

Historical Climatology Network- Daily, CaPA=Canadian Precipitation Analysis. 

 

  NSE √ NSE 

  CALIBR VALID CALIBR VALID 

GR4J vs LBRM, mean 

GHNCD-CaPA 

9/14 

(p=0.42) 

13/14 

(p<0.01) 

12/14 

(p=0.01) 

14/14 

(p<0.01) 

GHCND vs CaPA, 

mean GR4J-LBRM 

12/14 

(p=0.01) 

 5/14 

(p=0.42) 

13/14 

(p<0.01) 

 7/14 

(p=1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 6: NSE √ and NSE (Nash-Sutcliffe Efficiency index) values obtained with the GHCND precipitation dataset, 

minus NSE values obtained with CaPA precipitation, in calibration (CALIBR) or validation (VALID), and with the 

LBRM or GR4J models. Values are in percent, so that a value of 5 corresponds, for example, to a NSE of 70 

%with CaPA and of 75 % with GHCND precipitation. 

 

  LBRM GR4J 

    NSE √ NSE NSE √ NSE 

Subbasin Country CALIBR VALID CALIBR VALID CALIBR VALID CALIBR VALID 

1 CA 0.1 6.4 0.9 4.7 0.1 2.6 -0.9 1.6 

3 US 1.1 2.4 0.6 2.3 3.0 10.5 2.5 8.8 

4bis US 3.9 -3.4 6.3 -0.7 2.9 -7.7 6.7 -9.8 

5 US 1.8 3.2 1.9 3.7 3.8 3.1 4.5 5.7 

6 US -0.2 -2.5 1.2 -5.9 5.6 2.2 7.5 -0.9 

7 US 3.9 -0.2 3.5 -1.7 9.4 -1.8 14.4 2.1 

8 US 5.8 -3.5 6.4 0.0 11.0 -0.6 10.7 -5.2 

10 CA 2.1 0.6 2.3 0.8 1.7 1.0 5.5 3.4 

10bis CA 1.0 1.7 1.0 3.0 2.1 -2.5 7.0 -3.5 

11 CA 2.2 -0.4 -0.2 -3.7 1.6 -0.8 2.1 4.8 

12 CA 2.6 -0.6 2.1 -4.1 3.0 -3.2 2.3 -6.5 

13 CA 1.6 0.5 -1.3 -2.3 -3.5 -5.4 -2.3 -3.8 

14 CA 1.9 5.5 2.4 6.6 -0.3 3.0 -1.0 3.3 

15 CA 0.9 -1.8 1.7 -3.8 -1.6 -16.5 1.5 -16.2 

median U.S. 2.8 -1.4 2.7 -0.3 4.7 0.8 7.1 0.6 

median CA 1.7 0.6 1.3 -0.7 0.9 -1.7 1.8 -1.0 

median 1.9 0.1 1.8 -0.3 2.5 -0.7 3.5 0.4 

number of positive cases 13/14 7/14 12/14 7/14 11/14 6/14 11/14 7/14 

 

 

 

 

 

 

 

 

 

 

 



Table 7: Statistics for the LBRM (Large-Basin Runoff Model) parameters after calibration taking all cases into account (28: 14 catchments and 2 

precipitation datasets). Lin= linear, res= reservoir, coeff= coefficient, evap= evaporation, perco= percolation, USZ= Upper Soil Zone, std= standard 

deviation, LSZ= Lower Soil Zone, Tbase = base temperature, val. = value. 

 

Parameters 

/ statistics 

Tbase 
Snowmelt 

factor 

Lin. res. 

coeff: 

perc. 

Partial lin. 

res. coeff: 

USZ evap 

Lin. res. 

coeff: 

interflow 

Lin. res. 

coeff: deep 

perco. 

Partial lin. 

res. coeff: 

LSZ evap 

Lin. res. 

coeff: 

groundwater 

Lin. res. 

coeff: 

surface flow 

USZ 

thickness  

˚C cm/˚C/d  day-1  m-3  day-1 day-1 m-3 day-1 day-1 cm 

mean 6.2 4.4E-01 8.0E-02 1.4E-07 6.5E-01 6.6E-01 1.0E-07 2.2E-02 2.3E-01 15.2 

Lowest val. 3.8 7.1E-04 1.5E-03 1.0E-09 1.6E-03 1.0E-05 1.0E-12 1.1E-06 5.7E-02 2.2 

Highest val. 9.7 1.0E+00 1.7E+00 9.9E-07 8.6E+00 7.8E+00 5.0E-07 4.3E-01 9.9E-01 77.0 

std 2.0 2.0E-01 3.1E-01 2.6E-07 1.7E+00 1.7E+00 1.9E-07 8.2E-02 2.3E-01 15.3 

 

 

 

 

 

 

 

 

 

 

 



Table 8: Statistics for the GR4J (modèle du Génie Rural à 4 paramètres Journalier) parameters after calibration separating the 28 final parameter 

sets in two cases depending on the relative values of X1 and X3, either of similar magnitude (or X1 > X3), or with X1 way lower than X3 (X1 << X3).  

 

  

Parameters 

/ statistics 

X1: Capacity 

of production 

store (mm) 

X2: Water 

exchange 

coefficient 

(mm) 

X3: Capacity 

of routing 

store (mm) 

X4: UH time 

base (days) 

X5: degree-

day factor 

X6: snowpack 

inertia factor 

X1 higher 

or similar 

to X3, 19 

cases 

mean 561.12 -0.36 97.87 2.63 7.36 0.06 

lowest 69.06 -3.93 13.03 1.22 3.35 0.00 

highest 2089.42 2.93 288.86 5.50 18.12 0.31 

std 566.67 1.76 95.15 1.26 3.51 0.09 

X1 << X3, 

9 cases 

mean 21.11 -4.23 506.06 3.64 8.47 0.09 

lowest 12.42 -14.22 362.33 1.31 6.61 0.00 

highest 49.37 2.59 693.86 6.55 10.53 0.35 

std 11.89 5.21 118.06 1.81 1.29 0.11 

 

 

 

 

 

 

 

 

 

 

 



Table 9: Daily runoff simulation performances when assessed for the 57,460-km2 Lake Ontario area (see text). 

CAL= calibration, VAL= validation, NSE= Nash-Sutcliffe Efficiency index. The mean of runoff simulated with the 

four different combination possibilities (mean GR4J-LBRM-CAPA-GHCND) was assessed. The last column shows 

performances obtained with a unique GR4J model applied to this large area using GHCND precipitation.  

 

  GHCND CaPA mean GR4J - 

LBRM - GHCND - 

CaPA 

GR4J 

unique 

GHCND   CAL VAL CAL VAL 

  GR4J LBRM GR4J LBRM GR4J LBRM GR4J LBRM CAL VAL CAL VAL 

NSE √ 0.92 0.90 0.87 0.82 0.87 0.89 0.86 0.81 0.92 0.86 0.88 0.80 

NSE 0.92 0.91 0.88 0.84 0.88 0.90 0.86 0.83 0.92 0.88 0.89 0.81 

NSE ln 0.91 0.91 0.87 0.85 0.87 0.90 0.85 0.83 0.91 0.87 0.88 0.80 

PBIAS 2.95 4.49 2.38 6.80 1.96 1.64 2.58 4.03 2.76 3.95 

-

0.32 

-

1.57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




