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Abstract

The Great Lakes Runoff Inter-comparison Project for Lake Ontario (GRIP-O) aims to
compare different hydrologic models, using the same settings, in their ability to estimate runoff
for the Lake Ontario watershed. The watershed is challenging because many of its tributaries
have a regulated flow regime and a significant part remains ungauged. GRIP-O follows the GRIP-
M project which focused on Lake Michigan. It involves a comparison between two different
sources of precipitation data (CaPA- Canadian Precipitation Analysis and the GHCND- Global
Historical Climatology Network - Daily), and focuses here on two lumped models, GR4J (modéle
du Génie Rural a 4 paramétres Journalier) and LBRM (Large Basin Runoff Model).

Results indicate that both models perform very well, with GR4J performing slightly
better than LBRM and the GHCND precipitation dataset resulting in better simulations than
CaPA, for this area. Performances are, however, always very satisfactory whatever the
combination of model / precipitation data used, even for regulated catchments, and do not
show any clear correlation to any of the catchments' properties studied here. Results also tend
to confirm that the Area-Ratio Method is appropriate for extrapolating flows from the gauged
part of a catchment to the whole catchment including its ungauged parts, as demonstrated in

GRIP-M.
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Introduction

As a freshwater resource, the Laurentian Great Lakes provide many ecosystem services
including navigation, potable water supplies, recreational benefits, etc. Associated
environmental issues include pollution, erosion, climate change impacts, and flooding.
Integrating these considerations to optimize management practices requires the
implementation of reliable environmental models. In the Great Lakes, the main physical
processes related to the water cycle are stream runoff, over-lake precipitation and evaporation,
inter-lake and St. Lawrence channel routing, and groundwater processes. A cascade of distinct
models is generally applied to simulate Great Lakes’ water levels. Examples are the National
Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research
Laboratory (GLERL) Advanced Hydrologic Prediction System (AHPS; Gronewold et al., 2011) and
Environment and Climate Change Canada’s (ECCC) Water Cycle Prediction System (WCPS) for
water levels and thermo-dynamics of the Great Lakes (Fortin, ECCC 2016, personal
communication). Another good example of interconnected models which simulate many
physical processes is provided by Wiley et al. (2010). The study presented here focuses on
runoff from terrestrial areas conveyed to the lakes through their tributaries. The goal is to
simulate stream flows through hydrologic models.

In the field of hydrologic modeling, simulations are mainly performed by data-driven
models (Razavi and Coulibaly, 2012), lumped conceptual models, or (semi-)distributed physical
models. Models of the first two categories are relatively easy to implement and generally
require few input data and less powerful computational resources, but they are based on
conceptual and empirical equations and can represent stream flows only at one location (i.e.,
one point in a stream). Distributed or semi-distributed physical models, however, aim to
represent processes physically (although they often rely on many empirical equations) and
provide spatial details for several physical variables. Distributed physical models generally
require much more input data and computational time than lumped models.

Many numerical models have been applied to simulate runoff in the Great Lakes
watershed (Coon et al., 2011). Applications range from assessing climate change impacts on

lake levels (Angel and Kunkel, 2010; Chao, 1999; Croley, 2003; MacKay and Seglenieks, 2013),



land-use change effects on water quality (Mao and Cherkauer, 2009; Wiley et al., 2010), short-
to mid-term runoff and lake level forecasts (Croley and Lee, 1993; Croley and Hartmann, 1987;
Gronewold et al., 2011), or the comparison between different hydrologic platforms and
associated implementation strategies (Deacu et al., 2012; Fry et al., 2014; Haghnegahdar et al.,
2014). Based on these studies, some rainfall-runoff models provide reliable runoff simulations
for Great Lakes watersheds. Lumped models, such as the NOAA GLERL Large Basin Runoff
Model (LBRM; Croley and He, 2002) and the NOAA National Weather Service (NWS) model
(Burnash, 1995), and distributed physical models such as the MESH (Modélisation
Environnementale — Surface and Hydrology; Pietroniro et al., 2007), Watflood (Kouwen, 2010),
and the Precipitation-Runoff Modeling System (PRMS; Hay et al., 2011) are examples. In the
Lake Ontario watershed, Croley (1983) and Haghnegahdar et al. (2014) calibrated hydrologic
models with runoff observations to optimize simulations of this variable. The former
demonstrated that the LBRM worked well for simulating weekly flows, while the second
evaluated the MESH model on 15 Great Lakes subbasins, including two Lake Ontario subbasins.
However, even after calibration, the MESH model did not perform particularly well for
validation catchments (Nash-Sutcliffe values below 0.6).

The Great Lakes Runoff Inter-comparison Project for Lake Ontario (GRIP-O) involves a
comparison between two lumped models, namely GR4J (modéle du Génie Rural a 4 parametres
Journalier; Perrin et al., 2003) and LBRM. Although GR4J has not been applied yet in the Great
Lakes watershed, it was successfully applied in many different climatic conditions (e.g., Pagano
et al., 2010; Seiller et al., 2012). LBRM is the reference lumped model for the Great-Lakes, as it
is the only model that simulates runoff across the entire Great Lakes basin for operational
seasonal water budget forecasting applications. The inter-comparison between distributed
models will be addressed in a forthcoming paper (Gaborit et al., in preparation). It includes a
comparison with the best performing lumped models from the present study.

In addition to the above comparisons, two different sources for precipitation are
compared via their resulting hydrologic performances, namely the Global Historical Climatology
Network- Daily (GHCND, a collection of ground observations; Menne et al., 2012) and the

Canadian Precipitation Analysis (CaPA) datasets. CaPA has been evaluated using ground



measurements of precipitation and generally provided good predictions (Fortin et al., 2015;
Lespinas et al., 2015; Mahfouf et al., 2007). CaPA was, however, only compared once to
observed precipitation in terms of resulting hydrologic performances (Eum et al., 2014) for a
catchment in the Canadian Rocky Mountains and with the Variable Infiltration Capacity model
(VIC; Mao and Cherkauer, 2009). Deacu et al. (2012) compared CaPA precipitation and model
precipitation from the Canadian Global Environmental Multiscale (GEM) model in terms of the
resulting impacts on the Great Lakes' Net Basin Supply simulations (NBS). A Great Lake's NBS is
the sum of over-lake precipitation and runoff brought from its watershed, minus over-lake
evaporation, and does not take into account streamflow coming from an upstream Great Lake
(DeMarchi et al., 2009). Deacu et al. (2012) found that the Great Lakes' NBS was more
accurately simulated with model precipitation. However, NBS is the result of many processes
with a high level of associated uncertainty, making it difficult to accurately assess the quality of
precipitation data in this case.

Given the variety and number of existing models (Coon et al., 2011) and the need to
better understand the potential and limitations of hydrologic modeling (Gronewold and Fortin,
2012), a comparison of different runoff models is of interest. Each model has advantages not
only of simulation performances or possible applications but also of requirements. The Great
Lakes Runoff Inter-comparison Project for Lake Ontario (GRIP-O) further pursues a comparison
of runoff modeling tools for the Great Lakes watershed started by Fry et al. (2014). Fry et al.
(2014) compared various models in their ability to simulate historical runoff for the Lake
Michigan watershed by incorporating different calibration frameworks and input data. The
GRIP-O compares different models’ ability to simulate daily runoff from the Lake Ontario
watershed (Fig. 1). To achieve a fair comparison, the exact same forcings and calibration
framework were used in our simulations. To better manage the freshwater resources of Lake
Ontario, the ultimate aim of the GRIP-0O is the development of a reliable and efficient daily
runoff simulation platform for many environmental applications such as flood alerts and lake-

level forecasts.

Site Description



The total watershed area (Fig. 1) is about 83,000 km? of which around 19,000 km?
correspond to the lake surface. Although Lake Ontario receives water from the upstream Great
Lakes through the Niagara River, its watershed is defined as the land part which drains directly
into the lake; that is, not taking into account the areas which drain in the upstream Great Lakes.
This is to focus on the runoff component of Lake Ontario NBS, which does not take into account
water provided to the lake by the upstream Great Lakes (DeMarchi et al., 2009). The
U.S./Canada border follows the Niagara River, the middle of Lake Ontario, and the St.-Lawrence
River down to Cornwall, ON, which consists of the outlet of the Lake Ontario watershed as it is
defined here. Major cities inside the catchment include Toronto (subbasin 14), Hamilton
(subbasin 15), Rochester (subbasin 3/4bis), Syracuse (subbasin 5), and Kingston (subbasin 9), for
a total of about 11 million inhabitants (9 in Canada, 2 on the U.S. side). Apart from the cities,

the catchment is mainly rural (agriculture, pasture, forest).

Methods
Models

GR4J is a daily continuous lumped hydrologic model with four free parameters (Perrin et
al., 2003). It basically relies on two tanks which represent the soil and routing reservoirs of a
catchment and on the Unit Hydrograph theory to produce stream flows. It was coupled with
the two free-parameter CémaNeige snow module (Nicolle et al., 2011; Valéry, 2010).

The LBRM is also a daily continuous lumped hydrologic model; it includes a snow
module and has a total of nine free parameters by default. Originally developed by NOAA-
GLERL, it simulates water transport through a series of cascading tanks (Croley and He, 2002).
LBRM has been employed in a variety of research-oriented and operational applications,
ranging from hydrodynamic modeling studies (Anderson et al., 2010) to Great Lakes water-level
forecasting systems (Gronewold et al., 2011). Both models require daily watershed averages of
precipitation and of maximum and minimum temperature, as well as the catchment area. GR4J
also requires the mean watershed latitude, used in the potential evapotranspiration

formulation, and the mean watershed elevation (up to five elevation classes can be defined in



the Cémaneige snow module). It was implemented here using a unique elevation class for each

GRIP-O subbasin.

Spatial framework and study area characteristics

The spatial framework for the GRIP-O (Fig. 1) is slightly different from the one made by
Croley (1983) for the calibration of the LBRM model. We subdivided some subbasins (4 and
4bis, 10 and 10bis, 13 and 13bis; Fig. 1) in order for the data of the flow gauges to better
represent the total subbasin outflow in the case of calibration scheme 1 (i.e., for subbasins
containing several flow stations). However, this leaves some areas as ungauged, such as
subbasins 2, 4, 13bis, and 9. Subbasin 9 is considered ungauged because of the small area
covered by the gauge, despite the fact that it contains a flow station.

The two lumped models studied are subject to a specific calibration for each gauged
GRIP-0O subbasin identified in Figure 1. This is likely to lead to optimal hydrologic simulations for
the different subbasins than if performing global calibration over all the subbasins at once
(Gaborit et al., 2015), in which case a unique parameter set would be used for all subbasins.

A detailed and accurate delineation of Great Lakes subbasins, based on 1 arcsecond
(arcsec) data, has been published by Wang et al. (2015) as part of the Great Lakes Aquatic
Habitat Framework (GLAHF). GRIP-O subbasins rely instead on 30 arcsec flow direction data
from HydroSHEDS (Lehner et al., 2006). We used the 30-arcsec data to delineate the
watersheds because of the resulting gain in the required computational time for distributed
routing models. The same delineation was used for the lumped models. However, GLAHF
watershed boundaries were used as a guideline to correct the major discrepancies of the GRIPO
delineations based on 30-arcsec data. Cases involving "missing areas" in the GRIP-O subbasins
were, however, not addressed, such as for the area located right below the "10 bis" text of
Figure 1.

The gauge stations were selected based on their data availability and proximity to the
lake shoreline, so that a maximum coverage of the lake watershed could be reached with a
minimum of stream gauges with minor missing records, regardless of the type of flow regime

(i.e., natural or regulated). Of the 30 stream gauges of Figure 1, 27 have no missing data, two



are complete at 94%, and the 20-mile creek gauge (subbasin 1) is complete at 80% over the
GRIP-O period.

Regulation within the subbasins (Fig. 1) generally involves artificial reservoirs with dams.
Some information is available with regard to the location and size of the structures (Simley and
Carswell, 2009). A few consist of major hydraulic structures which are used for hydropower
production (such as on the Trent River in subbasin 12) or flooding prevention (such as the
Mount Morris dam on the Genesee River). However, no information was found with respect to
management policy or operating rules for these structures. Therefore, observed and simulated
flow time series downstream of the structures were assessed to gain insights about the effects
of the artificial structures which are not accounted for by the models. Canadian structures do
not result in frequent and abrupt streamflow fluctuations that the models cannot reproduce,
while some U.S. structures do (such as for the Oswego River, which shows strong fluctuations
with a period sometimes as short as one day). Overall, most artificial structures on the Lake
Ontario watershed seem to mainly involve simple management policies with a smooth effect on
downstream stream flows and could be seen as artificial reservoirs with a simple weir at their
outlet, hence resulting in artificial lakes. The effect of such structures is relatively well handled
by the models during calibration.

Some aquifers do exist in the vicinity of Lake Ontario. The main aquifers are located
between Lake Simcoe (west of subbasin 12) and Lake Ontario and consist of two confined
aquifers separated by impervious layers and an unconfined aquifer (the Oak Ridges Moraine).
These major aquifers are located in subbasins 14, 13, and 12 (Howard et al., 1996). The deepest
parts of the confined aquifers can be located down to 150 m below surface. The Oak Ridges
Moraine does contribute to stream baseflow for rivers of the aforementioned catchments;
Kassenaar and Wexler (2006) estimated that 90% of the Oak Ridges Moraine discharge does
contribute to the streams of the northern shore of Lake Ontario. No information was found
about the contribution from the deep, major confined aquifers to the streams of the Lake
Ontario watershed, but Harvey et al. (2000) demonstrated that water can be brought by
aquifers directly to the lake, i.e., without being released first into the streams. However, this

flux is generally considered negligible by operational hydrologists in comparison to the other



components of the lake's NBS (Lauren Fry, USACE 2015, personal communication). Many other
small aquifers do exist in the region (Singer et al., 2003, for an exhaustive review). Therefore,
the effect of these aquifers on the streamflow of Lake Ontario tributaries may represent a
challenge for hydrologic models, in addition to the regulated flow regime of many rivers in this
watershed (Fig. 1).

Finally, some diversions are performed in order to fill the Welland and New-York State
Barge (NYSB) canals. The Welland canal (located in subbasin 1) diverts water from Lake Erie into
Lake Ontario and involves flows of about 250 m3/s. The NYSB canal diverts about 30 m3/s in
summer from the Niagara River into the Genesee River (subbasin 3), and a little less than 30
m3/s is taken from the Genesee River to fill the NYSB canal between the Genesee and Oswego
rivers, so this diversion is not expected to significantly affect the Genesee River’s overall
balance. Finally, the Oswego River gauge station does not take the NYSB canal flow into
account. In summary, neither canal nor diversion is supposed to have any significant effect on
the Lake Ontario recorded tributary stream flows, but the aquifers may represent an additional

challenge for hydrologic models used in the GRIP-O.

Calibration schemes

Two different calibration schemes are used for this project: scheme 1, in which the
models are calibrated using an estimation of the whole catchment runoff derived from the
gauged observed flow and a simple Area-based Ratio Method (ARM); and scheme 2, which
consists of implementing the models over the gauged part of a subbasin. Because the ultimate
goal of the GRIP-0 is to develop efficient modeling tools to simulate runoff from the whole Lake
Ontario watershed, including its ungauged parts, calibration scheme 1 can be viewed as a first
step in this direction because it allows simulating runoff for the ungauged area of a gauged
subbasin (Fig. 1). The same protocol could also be used to estimate runoff for the whole Lake
Ontario watershed, by considering the total Lake Ontario watershed as a single catchment (and
applying a unique model over this large area; see section on runoff estimation for the whole
GRIP-O area). The ARM has proven reliable for estimating flows for ungauged portions of a

watershed, as long as its gauged fraction is higher than a certain threshold of about 40% (Fry et



al., 2014). The synthetic flows built this way make it possible to implement the hydrologic
model over the whole subbasin at once, thus taking into account rainfall over the ungauged
part of the catchment.

Other methods for estimating runoff from a complete subbasin exist but were not as
attractive as calibration scheme 1. For example, one could calibrate the model at the gauged
sites and then extend the simulated flows to the whole basin using the ARM, but this would
imply neglecting the difference in rainfall amounts between the gauged and ungauged areas.
One could also implement the model in two steps: a first one to calibrate it at the gauged sites,
and a second one to implement it over the whole catchment, using the true rainfall amounts
falling over its area and the parameter set derived from the first calibration. Calibration scheme
2 actually corresponds to the first part of this approach, but it requires two implementations of
the same model for each subbasin.

To determine which is the best practice among these two different possibilities is
beyond the scope of this work, but the preferred two are used in the GRIP-O: both are easy to
implement and make use of the "true" forcings. It was first envisioned to only use calibration
scheme 1 for all gauged subbasins for consistency with the former GRIP-M (Fry et al., 2014),
but calibration scheme 2 corresponds to a practice commonly used in hydrology, i.e.,
implementing and calibrating the models at the gauged sites (with true observed flows). As a
consequence, an arbitrary subdivision was made between the subbasins: when one contains
several gauges, calibration scheme 1 is applied (5 cases); when it contains a unique most-
downstream gauge (Fig. 1, 8 cases), the second scheme is used. However, these two calibration

schemes are not compared here because they were not both applied to each of the subbasins.

Precipitation sources

The first source of precipitation consists of the Canadian Precipitation Analysis (CaPA), a
system relying on modeled precipitation fields derived from the Canadian Regional
Deterministic Prediction System (RDPS) but corrected with ground-based precipitation
observations. More precisely, we chose to use the 24-h CaPA data of the 2.4 b8 version

(Lespinas et al., 2015), which consists of gridded fields of 24-hourly accumulated precipitation,



corrected by ground stations but not by radar fields, which is the case for CaPA 3.0 (Fortin et al.,
2015). No reanalysis was yet available for CaPA 3.0 over the time period of interest to the GRIP-
O. Both 6- and 24-h accumulations are available from CaPA 2.4 b8. It was decided to use the 24-
h product because more ground stations are generally available in real-time at the 24-h interval
than at the 6-h interval, making the 24- h CaPA product more tied to observations than the 6-h
one. The resolution of CaPA 2.4 b8 is 0.125 degree (or 450 arcsec, around 15 km near Lake
Ontario). CaPA is designed for near real-time application and is thus a fully automated
precipitation analysis procedure.

The second main source of precipitation data available for the GRIP-O consists of the
Global Historical Climatology Network- Daily (GHCND version), developed by the NOAA National
Climate Data Center (NCDC), which incorporates many data sources all over the globe, such as
weather and climate stations as well as observations from volunteer observers in the U.S. and
Canada. The data were interpolated on a 15 arcsec grid (around 450 m near Lake Ontario) using
a nearest neighbor (or Thiessen polygons) method.

Table 1 shows the number of ground stations per GRIP-O subbasin (Fig. 1) for each
precipitation dataset. The density of the GHCND is higher than that of the stations used in CaPA
because CaPA only uses stations for which data is available in real-time at the Canadian Centre
for Meteorological and Environmental Prediction (CCMEP). The GHCND network density,
however, varies between 2004 and 2011 (the GRIP-O period): it increases in the U.S. basins and
decreases in Canada (Table 1). Watershed averages were computed based on the gridded
products and the subbasin shapes, either for the whole subbasin in case of calibration scheme 1
or for its gauged area for scheme 2. Both models were provided with daily basin averages of
maximum and minimum temperature based on the data contained in the GHCND (same
stations as the precipitation ones), even in the case of providing the models with CaPA

precipitation.

Calibration details
Because calibrating a hydrologic model over a set of 4 to 5 years is generally enough to

achieve reasonable model robustness (e.g., Refsgaard et al., 1996), the calibration period was



chosen to range from June 1, 2007 to the end (4.5 years). The validation period extends from
June 1, 2005 to June 1, 2007 (2 years), with the first year of data (June 1, 2004 to June 1, 2005)
being used for spin-up. The objective function used in calibration consists in the Nash-Sutcliffe
Efficiency criterion (NSE; Nash and Sutcliffe, 1970) but computed taking the square-root of the
observed and simulated flow time series, in order to avoid overemphasizing peak-flow events,
and will be referred to as "NSE V" throughout the paper. Other evaluation criteria used in this
study consist in the common Nash-Sutcliffe criterion (NSE), the Nash criterion calculated over
the log of the flows (NSE In), and a bias criterion (in equation 1 below) indicates a simulation's

overall water budget fit.

Yi=1,n(Qobs;—Qsim;)

Equation (1) PBIAS = == m(Qobs)

GR4J and the "Cémaneige" snow module have a total of six free parameters, and LBRM
was implemented here using ten free parameters (the upper soil zone capacity, USZ, in addition
to its nine conventional ones; Table 2). The calibration algorithm consists in the Dynamically
Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007). DDS is designed for
calibration problems with many parameters and automatically scales the search within the
maximum number of user-specified model runs. A maximum of 2000 model runs was allowed
during a calibration trial, and three distinct trials (each starting with a different initial parameter
set) were performed for each model, precipitation dataset, and subbasin. For each model and
subbasin, the best of the three trials was finally kept to compute the validation performances.
Table 2 presents the parameter ranges used in calibration. The initial parameter sets were

randomly selected inside the prescribed intervals.

Results and Discussion

Best hydrologic simulations

What are the best possible hydrologic simulation performances for the area under study and
how do the models account for regulation impacts on runoff? Among the four different model
combinations examined (LBRM or GR4J model, CaPA or GHCND precipitation dataset), the best
simulation performances were generally achieved with GR4J and the GHCND dataset (Table 3).

Moreover, performances obtained with the latter combination a priori consist of some of the



best possible hydrologic simulation performances for the area under study. Indeed, the GHCND
dataset consists of a dense network of ground-based stations for precipitation and
temperature, and GR4J generally stands among the best hydrologic models in multi-model
comparison studies (e.g., Pagano et al., 2010; Seiller et al., 2012).

However, it is always possible to improve local simulation performances, but results
presented in this section nevertheless represent the benchmark to which other experiments
will be compared.

A few conclusions can be drawn from Table 3. Simulation performances are not related
to any of the subbasins' main properties (country affiliation, area, elevation, type of flow
regime) or to the calibration scheme or catchment gauged percentage. Very satisfying
performances were obtained even in the worst case scenario (influenced flow regime,
calibration scheme 1 with synthetic observed flows) and a relatively low gauged fraction (see,
for example, subbasin 10bis). At the same time, cases which were a priori expected to lead to
some of the best results (natural or less influenced flow regime, calibration scheme 2) often
display poorer performances (subbasins 4bis and 6). This was also true for the three other
model combinations (LBRM / GR4J and GHCND/ CaPA precipitation).

Simulated hydrographs generally closely follow the observed ones, even for regulated
catchments [Fig. 2; see Electronic Supplementary Material (ESM) Fig. S1. Flow regulation in the
Lake Ontario watershed mainly consists of artificial reservoirs (see section on spatial framework
and study area characteristics) with a weir at their outlet (static control which the models can a
priori account for during calibration. However, good performances are obtained even for
subbasin 5 (Oswego River, Table 3), despite the fact that it involves a more sophisticated type
of control which results in frequent streamflow fluctuations for the observed time-series which
the hydrologic models cannot reproduce (see ESM Fig. S1.). For this subbasin, the observed
general flow dynamic is, nevertheless, well captured by the smoother simulated flows.

Furthermore, if some aquifers do significantly contribute base flow to some streams of
the Lake Ontario watershed (e.g., the northern shore of Lake Ontario), they neither prevent the
hydrologic models from successfully reproducing streamflow dynamics, nor do they lead to a

strong underestimation of the overall water balance (Table 3).



The GR4J model is well adapted to hydrologic modeling of the Lake Ontario watershed.
Model performances obtained here are promising both for the future implementation of
distributed models and the estimation of the whole lake's runoff. Indeed, the regulated
downstream flow gauges (Fig. 1), together with the gauges on "natural" streams, cover about
74% of the total Lake Ontario watershed land surface. Natural flows represent 20% of the
watershed area under study. Therefore, if only natural flows would demonstrate good
simulation performances, runoff for the whole watershed could be hardly estimated with the
ARM (see Fry et al., 2014, for the reliability of a catchment's runoff estimation as a function of
its gauged fraction). But, this is not the case here.

The fact that no calibration scheme systematically leads to better performances than
the other, as observed with the three other model combinations, further supports the
methodology used to simulate runoff for the ungauged part of a gauged catchment (calibration
scheme 1). Using synthetic flows (derived from observed ones and the simple ARM process) to
calibrate a model leads to satisfactory simulation performances even in the case where only 40-
60% of the subbasin is gauged (see subbasins 6, 10bis, 13, 14 and 15 in Table 3). This also tends
to further confirm findings of the GRIP-M (Fry et al., 2014), namely that the ARM can provide
reliable runoff estimations for a whole subbasin even if less than half of it is gauged. To further
confirm this, calibration scheme 2 was tested for subbasins 6 and 14, so that both schemes
could be truly compared for these catchments. The results (see ESM Table S1.) confirm that
performances are extremely close for both, sometimes even slightly better with calibration
scheme 1.

Validation performances are often lower than in calibration, especially when evaluating
the NSE criterion. However, this drop of performances between calibration and validation is
smaller when using CaPA precipitation, indicating that the models can be robust and that the
drop of performances between calibration and validation is more related to the precipitation
data than to the model structure. Although performances are generally lower in validation with
GHCND precipitation, they remain satisfactory for most of the subbasins (Table 3).

Finally, the GR4J exhibits satisfactory values for the three different NSE criteria (Table 3)

(both in calibration and validation). This result indicates that the different components of



streamflow are well reproduced by the model (baseflow, interflow, surface runoff, low-flow
periods, floodings). Although no test was performed with using the traditional NSE criterion as
the objective function, it is argued that using NSE V as the objective function is a reasonable
choice when using GR4J but not the LBRM (see below). The relevance of using NSE V as the

objective function was already demonstrated, for example by Oudin et al. (2006).

Model and precipitation dataset inter-comparison

Can a relatively new model to Great Lakes hydrological modeling (GR4J) be
implemented and demonstrate similar or better success than the LBRM, and which
precipitation product results in the better runoff simulations at a subbasin scale? In order to
determine if differences in performance observed between the two hydrological models and
the two precipitation datasets are statistically significant, a two-sided sign test is used (see for
example Walpole and Myers, 1985). The sign test is performed on the sign of the differences in
performance, assuming independence across basins. It does not inform us on the magnitude of
the mean difference in performance, but rather on whether or not one model or one
precipitation dataset is expected to outperform the other on a majority of watersheds. The
number of cases for which GR4J outperforms LBRM and the number of cases for which GHCND
outperforms CaPA are reported in Table 5, together with the associated p-values.

Results from Table 4 suggest that GR4J performs generally better than LBRM
considering NSE V values (the objective function) in calibration. However, results from Table 5
indicate that for this criterion (NSE V) it cannot be stated with confidence that GR4J is better
than LBRM (the difference is not statistically significant). The superiority of GR4J over LBRM is,
however, significant for the NSE criterion (Table 5, both in calibration and validation), which
puts the emphasis on high streamflow values. Because performing well in peak flow events is
one of the main requirements for a hydrologic model, calibrating the LBRM using the NSE v
objective function may not be a good choice, as it generally has difficulty for peak events (Figs.

2 and 3).



Table 6 contains some valuable information for comparing the GHCND and CaPA
precipitation datasets. Using the GHCND precipitation dataset leads to better calibration
performances than when using the CaPA dataset (Tables 4 and 5). This suggests that the daily
average catchment precipitation derived from the GHCND data and using the Thiessen Polygon
method is closer to the real amounts than the values derived from CaPA are. This also makes
sense considering that the GHCND network density is higher than the density of the real-time
ground stations used in CaPA (Table 1).

When comparing the U.S. or Canadian side of the Lake Ontario watershed, the model
performances are quite different (Table 6). In Canada, model performances resulting from
GHCND and CaPA precipitation are close (Table 6), while in the U.S. (median U.S.), the
difference resulting from using one source or the other is more pronounced. Because the
density of the GHCND is much higher than the density of the ground stations used in CaPA, it
can be concluded with some confidence that the daily basin averages of precipitation are well
reproduced by CaPA in Canada. This is confirmed when looking at the correlation between
CaPA and GHCND daily watershed averages of precipitation (see ESM Table S3.).

However, the differences in performance between GHCND and CaPA are less
pronounced in validation than in calibration, and are not statistically significant according to the
sign test (Table 5). In fact, for the NSE V criterion, CaPA outperforms GHCND in validation for a
majority of watersheds (9 out of 14). In particular, CaPA leads to better performances than the
GHCND in validation for some catchments such as the 4bis, 8, 12 and 15 subbasins. This cannot
be attributed to a lower GHCND network density in validation (Table 1). However, the
catchments displaying this behavior are in areas where the GHCND density is generally low for
the calibration period.

We suggest the lumped models learn to compensate for a spatial misrepresentation of
GHCND precipitation during calibration (and for the catchments mentioned earlier) but that this
compensation is not suited anymore in validation because the GHCND density changes over
time (Table 1), resulting in a better model temporal robustness with CaPA than with GHCND

(Table 6). Although not clearly shown here, performances obtained with CaPA precipitation



lead to models with a strong temporal robustness (see ESM Table S4.), which therefore

supports the relevance of this comparison study.

Parameter values

When looking at parameter values obtained after calibration (Table 2), no clear
difference could be identified between using the CaPA or GHCND precipitation dataset for
either of the two models. Parameter values were generally close with the two different
precipitation sources. The values are not shown here for all of the catchments (see ESM Table
S5), but a few statistics are shown for these values as it could be of some interest to initialize
future GR4J or LBRM implementations over nearby catchments and/or similar climatic areas.
Tables 7 and 8 are devoted to such a purpose.

As GR4J could end up with two main types of parameter sets, depending on if the
production store maximum capacity was much lower than the routing store maximum capacity
or not, these two cases were distinguished to compute the statistics of Table 8. The production
store capacity is supposed to conceptually represent soil depth (Harlan et al., 2010). In some
cases (4/14 with GHCND and 5/14 with CaPA), the GR4J production capacity (X1, mm) was very
low compared to the routing store capacity (X3, mm) with values generally below 30 mm for
the former. This is not considered a realistic value for the Lake Ontario watershed based on
observed soil depth data (~1.4 m) but also according to GR4J general range of parameter values
(Perrin et al., 2003).

These very low values obtained after calibration with GR4J for the X1 parameter (and
accompanied by high values for the X3 routing store capacity) are attributed to flow regulation
because they were only observed in the case of partly regulated subbasins, such as subbasins 3,
5, 8, and 12. As regulation in these watersheds is mainly due to artificial reservoirs, the low X1
and high X3 values (Table 8) obtained for these catchments could be seen as an effort made by
the model to optimally represent the effect of regulation on simulated stream flows by trying to
represent a big routing reservoir (X3). Because this reservoir then captures 90% of runoff
generated by the production store (X1), a high X3 value may logically call for a low X1 value to

still be able to represent peak flows. Additional tests performed in the case of the very low X1



values revealed that they were not due to local optima found during calibration, as changing
the initial parameter values did systematically lead to the same unconventional values.
Moreover, the good model temporal robustness obtained with these unconventional X1 and X3
parameter values, along with the very satisfactory simulated hydrographs which they achieve,
demonstrates the relevance of the second type of parameter values described in Table 8.
Despite the satisfactory performances obtained even for subbasins with regulation structures, it
would be interesting to test the methodology proposed by Moulin et al. (2005) to better

account for major hydraulic structures in GR4J, but this is dedicated to future work.

Additional model tests

Additional model combinations were performed in order to assess the sensitivity of the
evaluation metrics considering the observed and simulated time-series in a different way or in
more detail. A test was performed by computing the scores with 7-day averages of flow values
to hinder the effect of daily fluctuations induced by regulation on observed flows such as those
of the Genesee and Oswego Rivers. Doing so did not lead to a significant increase of
performances for the rivers subject to such fluctuations (see ESM Table S6.), and does not
mitigate the effect of regulation by slightly changing the time-step of the time-series.

Performances were also assessed on a seasonal basis for the winter (November to May)
or summer (June to October) periods, but still using a daily-time-step. The analysis was limited
to the calibration period. Winter performances tend to be better than summer ones in terms of
all NSE criteria used in this study (see ESM Table S7). This is common in hydrology, as winter
processes are generally less chaotic and easier to reproduce than summer ones. For example,
winter stream flows in the area considered are frequently governed by temperature via
snowmelt processes. In summer, convective storms can be localized over very small areas and
can be poorly captured by observation networks. The better winter performances in
comparison to summer ones are also due to the NSE criterion itself, which is generally better
for higher streamflows (see Martinec and Rango, 1989).

Apart from this, there is not much information which can be derived from this seasonal

analysis. It is only highlighted that despite better than summer ones, winter NSE values are



almost never higher than overall values for the whole calibration period. In summer,
performances remain at least satisfactory, with most of the values comprised between 60 and
80%. The scores related to seasonal or weekly performances can be found in ESM Table S6 and

S7.

Runoff estimation for the whole GRIP-O area

What is the best approach for estimating runoff, including its ungauged areas, for the
entire Lake Ontario watershed? In order to have a better overview of the performance of Lake
Ontario runoff simulations, the sum of runoff from the models implemented locally over each
of the 14 GRIP-O gauged catchments (Fig. 1) was evaluated. The total area covered by the
models is about 53,460 km?. Runoff observations used for the 53,460-km? area actually
correspond to estimations because they are derived from runoff truly observed for the gauged
47,330-km? area (brown part of Fig. 1) and the ARM. This estimate should be close to reality as
more than 88% of the studied area is gauged.

A test of the model level of detail was made with implementation of a unique GR4J
model over the entire 53,460-km? area using the GHCND. In this case, the GR4J model was
calibrated using precipitation and temperature values corresponding to weighted averages of
the 14 subbasins' time-series and the sum of locally observed flows as reference. When using a
unique model, the entire area is conceptually interpreted as a unique watershed with one main
river, which is far from reality (Fig. 1). The unique model was implemented considering five
different elevation classes of equal size and still the NSE V value as objective function. A unique
model is faster to implement than many local ones. This test is inspired from Croley (1983) who
showed very promising results by doing so with LBRM.

In general, the simulated whole watershed performances are very good (Table 9) and
are, in fact, better than performances obtained for any of the local subbasins- whatever the
guality criterion considered (Table 3). This result suggests that the local model biases are
compensated when grouping the catchments altogether. Moreover, as the NSE criterion is a
skill score comparing simulated values to the mean of the observed flows, the reference is

easier to gain the upper hand on when the flow dynamics are very strong, as is the case for the



entire area (Fig. 4). When taking the mean of values simulated with the four combination
possibilities (two models and two precipitation datasets), performances are as good or better
than the best of the four independent combinations, except for the PBIAS criterion which
stands somewhere in between the extreme values obtained with the individual combinations.

All four individual combinations of Table 9 display robust performances, which again
highlights the compensation of local biases; it can be seen in validation (Table 3). In all cases
observed, runoff is generally underestimated by the local models (Tables 3 and 9), which can be
more precisely linked to the underestimation of peak flow events with local models (Fig. 4). It is
nonetheless evident that both of the two lumped models used here, namely GR4J and LBRM,
are able to produce very decent estimations of Lake Ontario runoff, which could be useful to
several potential challenges in the field of water management and streamflow / lake level
predictions.

Using a unigue GR4J model to save computation time and effort for estimating runoff
for the whole GRIP-O area described earlier proved to be promising. Although values for the
different NSE criteria are slightly smaller for this unique model in comparison to performances
obtained by summing all local models together (Table 9, Fig. 4), the opposite is true for the
PBIAS criterion. As a consequence and depending on the targeted application, it may be
preferable to use a uniqgue model for the whole GRIP-O area than a set of models implemented
on local subbasins, such as estimating the general contribution from the entire Lake Ontario
area to the lake. In this case, it would a priori be preferable to use a unique model over the
entire area and calibrate it with synthetic historic flow records derived from the ARM (i.e., using
calibration scheme 1 for the entire Lake Ontario area). This way, the model could benefit from a
better approximation of precipitation and temperature over the watershed, by taking into
account the values over the ungauged parts of the watershed.

Tests were also performed calibrating the uniqgue model using the conventional NSE
criterion, but results were almost exactly the same (not shown but available upon request),
which tends to suggest that for GR4J, calibrating on NSE V or NSE does not change model
performances. A calibration test with the NSE instead of NSE V criterion performed on the

Moira watershed (and still with GR4J and the GHCND precipitation) even revealed poorer



simulation results with the former conventional criterion than with the objective function used
in this work. Using five elevation classes leads to slightly better performances and hydrographs
than with a unique elevation class (result available upon request), but this difference may be

more significant in the case of watersheds with more pronounced topography.

Conclusion

The first phase of the GRIP-O project, involving the implementation of the two lumped
GR4J and LBRM hydrological models on the land area of the Lake Ontario watershed, has shown
that both models were very efficient in simulating the lake's tributary stream flows. Both
models are robust and perform well, whatever the precipitation dataset used as input.
However, GR4J performs generally better than LBRM considering the NSE criterion. This
suggests that using the NSE V value as the objective may not be the best choice for
implementing LBRM, which would probably achieve better hydrologic simulations using the
conventional NSE criterion. For the model combinations performed during this work, GR4J
appears to be better than LBRM, but more tests, including additional watersheds, should be
performed.

The GHCND dataset leads to better performances than CaPA precipitation in calibration,
but not in validation, which is probably linked to the fact that the GHCND network changes over
time. Overall, CaPA leads to hydrologic performances very close to the ones obtained with the
GHCND for some GRIP-O subbasins, even in the case where the network of ground stations
used in CaPA has a significantly lower density than the GHCND stations. This suggests that CaPA
is a very useful source of daily precipitation data.

As a consequence, the model combination leading to the best hydrologic performances
consists of the GR4J model driven by the GHCND forcings. Numerous possibilities could still be
tested, for example, by calibrating the models with the conventional NSE values or by using
multi-objective functions that would focus at the same time on the streamflow and snow water
equivalent simulations. The results from GR4J and the GHCND forcings will be further used as a
benchmark for future hydrological modelling experiments on Lake Ontario, such as an

evaluation of distributed models.



The two different calibration schemes used resulted in very satisfactory performances.
Using synthetic streamflow time-series for a whole subbasin, derived from observed data and a
simple area-ratio method, resulted in a promising and efficient way to estimate the
contribution of ungauged parts of a gauged subbasin.

Despite flow regulation affecting most of the GRIP-O subbasins, it did not prevent the
models from achieving very satisfactory performances. The models, through calibration,
generally mimic the effect of flow regulation, except for some of the U.S. basins (e.g., Oswego
River), which involve dynamically sophisticated modifications to the natural flow regime but did
not prevent the models from following the general flow trends.

In the light of the performances obtained in this study, promising results are expected in
regard of the estimation of runoff for the entire Lake Ontario area (64,000 km?, Fig. 1). Indeed,
performances are even better when looking at the total 53,460-km? GRIP-O area as a whole
instead of performances for local catchments. Moreover, even a unique GR4J model
implemented over the total area resulted in very satisfying performances, especially for the
PBIAS criterion, which could save a lot of computation time when interested in runoff for the
entire Lake Ontario area. For that, a possibility would be to calibrate a unique GR4J model on
the total gauged area of Lake Ontario (Fig. 1) and then to transfer the parameter set to a unique
model for the entire Lake Ontario watershed, including its ungauged parts. This would allow
taking into account rainfall and temperature data over the ungauged parts of the whole
watershed. Runoff simulations for the entire Lake Ontario watershed provide a better
understanding of long-term water supply trends (the GRIP-O period can be extended, for
example, using CaPA).

Considering the promising results obtained during this work with lumped conceptual
models, the second phase of the project will focus on the implementation of a distributed,
physically based model developed at Environment and Climate Change Canada and named
GEM-Hydro. Physically-based distributed models are interesting because they offer more
possible applications than lumped models by representing the physical processes occurring
everywhere inside the watershed. The area of Lake Ontario is thus relevant to distributed

modeling, as detailed datasets exist for land use/land cover and soil texture. However, the



performances of the lumped models will be hard to achieve with distributed models, given that
lumped models can, through calibration, more easily accommodate themselves with systematic
deficiencies in the forcing data. The good performance of lumped models could serve as a

hydrological simulation target for more sophisticated models.
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List of Tables:

Table 1: Number of precipitation ground stations per GRIPO subbasin (see Figure 1) for the
GHCND and CaPA datasets.

Table 2: Parameter ranges used in calibration; one of the three GR4J trials was performed with
GRA4J default initial parameter values indicated here; other trials were made with a random
initial parameter set; coeff: coefficient; UH: Unit Hydrograph; USZ: Upper Soil Zone; LSZ: Lower
Soil Zone.

Table 3: Evaluation metrics obtained with GR4J and the GHCND precipitation dataset. All values
are in percent; optimal value is 100 except for PBIAS (0). NSE V, NSE Ln: NSE values computed
with either the square-root or log of the flows, respectively. See section on methods for more
details. NSE=Nash-Sutcliffe Efficiency index, PBIAS=Percent Bias, CA=Canada.

Table 4: NSE (Nash-Sutcliffe Efficiency index) values obtained with GR4J, minus NSE values from
LBRM. CALIBR=calibration,VALID=validation, GHCND=Global Historical Climatology Network-
Daily, CaPA=Canadian Precipitation Analysis. Values are in percent, so that a value of 5 in the
Table corresponds for example to a NSE of 75% for GR4J and 70% for LBRM.

Table 5. The number of positive cases associated to the inter-comparison study, i.e., the
number of cases with the GR4J model or GHCND precipitation showing better performances
than LBRM or CaPA, respectively. For the comparison of GR4J vs LBRM or GHCND vs CaPA, the
number of cases displayed in Table 6 was derived from the mean of performances along the
two precipitation datasets or models, respectively. The p-value of the two-sided sign test is
displayed in parenthesis. A number equal or greater than 12 out of 14 cases is considered
significant (i.e., a p-value of less than 5%). CALIBR=calibration, VALID=validation, GHCND=Global
Historical Climatology Network- Daily, CaPA=Canadian Precipitation Analysis.

Table 6: NSE Vv and NSE (Nash-Sutcliffe Efficiency index) values obtained with the GHCND
precipitation dataset, minus NSE values obtained with CaPA precipitation, in calibration
(CALIBR) or validation (VALID), and with the LBRM or GR4J models. Values are in percent, so
that a value of 5 corresponds, for example, to a NSE of 70 %with CaPA and of 75 % with GHCND
precipitation.

Table 7: Statistics for the LBRM (Large-Basin Runoff Model) parameters after calibration taking
all cases into account (28: 14 catchments and 2 precipitation datasets). Lin= linear, res=



reservoir, coeff= coefficient, evap= evaporation, perco= percolation, USZ= Upper Soil Zone, std=
standard deviation, LSZ= Lower Soil Zone, Tbase = base temperature, val. = value.

Table 8: Statistics for the GR4J (modéle du Génie Rural a 4 paramétres Journalier) parameters

after calibration separating the 28 final parameter sets in two cases depending on the relative
values of X1 and X3, either of similar magnitude (or X1 > X3), or with X1 way lower than X3 (X1
<< X3).

Table 9: Daily runoff simulation performances when assessed for the 57,460-km? Lake Ontario
area (see text). CAL= calibration, VAL= validation, NSE= Nash-Sutcliffe Efficiency index. The
mean of runoff simulated with the four different combination possibilities (mean GR4J-LBRM-
CAPA-GHCND) was assessed. The last column shows performances obtained with a unique GR4J
model applied to this large area using GHCND precipitation.

Figure captions

Figure 1: Lake Ontario subbasin delineation (GRIP-O subbasins). GLAHF subbasins depict the
delineation performed by the Great Lakes Aquatic Habitat Framework. The main watershed
outlet is located at Cornwall, ON. All dots correspond to most-downstream flow gauges
selected for model calibrations; blue ones correspond to rivers with natural flow regimes while
red ones are located on regulated rivers. The light (orange in online version) area represents
the gauged area (about 74% of the total - dark (green in on-line version) - Lake Ontario
watershed).

Figure 2: Hydrographs in calibration for the Moira River (subbasin 11), derived from empirical
measurements, the GR4J) model (modéle du Génie Rural a 4 paramétres Journalier), and the
LBRM model (Large-Basin Runoff Model). GHCND (Global Historical Climatology Network- Daily)
precipitation data used.



Figure 3: Subbasin 15 plots of simulated versus observed flows (Q) or square-root of the flows
(vQ) for the whole GRIP-O period and with the GHCND precipitation data. GR4J = modéle du
Génie Rural a 4 parametres Journalier, LBRM = Large-Basin Runoff Model.

Figure 4: comparison between hydrographs for the 57,460 km? Lake Ontario area obtained
either with summing runoff from the 14 local GR4J models (GR4J_locals) or with the unique
GR4J model (GR4J_unique) calibrated over the whole area. In both cases, runoff was produced
with using the GHCND precipitation.
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Table 1: Number of precipitation ground stations per GRIPO subbasin (see Figure 1) for the GHCND and CaPA

datasets.

number of rain gauges

density (gauges/1000 km?)

Area
Subbasin  Country (km?) CaPA GHCND (2004) GHCND (2011) CaPA GHCND (2004) GHCND (2011)

1 CA 1087 5 7 3 5 6 3

3 USA 6455 15 17 22 2 3 3
4bis USA 450 0 2 5 0 4 11
5 USA 13928 20 27 74 1 2 5

6 USA 2406 0 2 3 0 1 1

7 USA 5917 4 9 15 1 2 3

8 USA 4977 3 4 6 1 1 1
10 CA 2688 0 4 2 0 1 1
10bis CA 2062 1 2 1 0 1 0
11 CA 2853 1 5 3 0 2 1
12 CA 12516 2 15 9 0 1 1
13 CA 1538 2 4 2 1 3 1
14 CA 2689 5 11 7 2 4 3
15 CA 2246 2 7 5 1 3 2



Table 2: Parameter ranges used in calibration; one of the three GR4J trials was performed with GR4J default
initial parameter values indicated here; other trials were made with a random initial parameter set; coeff:
coefficient; UH: Unit Hydrograph; USZ: Upper Soil Zone; LSZ: Lower Soil Zone.

GR4J free
LBRM free n low upper X n low  upper
uni aramete uni
parameters (10) bound bound P (6) bound bound
rs
x1:
Capacity
Tbase °C 1.00E-04 10 of mm 10 2500
productio
n store
x2: Water
Snowmelt factor c¢m/°C/day 1.00E-04 5 exchange mm  -15 10
coeff
x3:
linear reservoir Capacity
. day? 1.00E-04 100 . mm 10 700
coeff: percolation of routing
store
partial linear
. x4: UH
reservoir coeff: m-3 1.00E-09 1.00E-06 | . day 0 7
time base
USZ evap
x5:
linear reservoir degree-
. day? 1.00E-04 10 - 1 30
coeff: interflow day
factor
. . X6:
linear reservoir
snowpac
coeff: deep day? 1.00E-05 10 . - 0 1
] k inertia
percolation
factor
partial linear
reservoir coeff: m-3 1.00E-12  5.00E-07
LSZ evap.
linear reservoir
coeff: day? 1.00E-06 1
groundwater
linear reservoir
coeff: surface day? 1.00E-03 50
flow
USZ Capacity cm 1.00E+00 100




Table 3: Evaluation metrics obtained with GR4J and the GHCND precipitation dataset. All values are in percent; optimal value is 100 except for

PBIAS (0). NSE v, NSE Ln: NSE values computed with either the square-root or log of the flows, respectively. See section on methods for more

details. NSE=Nash-Sutcliffe Efficiency index, PBIAS=Percent Bias, CA=Canada.

CAL VAL
Subbasin Cal. Flow mean NSE  NSE NSE  NSE

# country scheme Station % gauged  Area(km?) regime elev. (m) | NSE v Ln  PBIAS | NSE v Ln  PBIAS
1 CA 2 20 mile N/A 307 natural 198 77.0 798 765 16.3 | 791 82.7 76.3 10.6
3 USA 2 Genessee N/A 6317 regulated 418 81.0 831 79.0 24 81.6 839 829 -1.2

4bis USA 2 Irondequoit N/A 326 natural 172 66.8 714 657 24 553 615 626 -0.5
5 USA 2 Oswego N/A 13287 regulated 259 83.7 832 794 22 |693 711 69.1 39
6 USA 1 N/A 40 2406 mixed 264 714 762 758 23 635 706 742 12.8
7 USA 2 Black river N/A 4847 regulated 471 792 819 817 23 |725 746 747 34
8 USA 2 Oswegatchie N/A 2543 regulated 250 785 821 837 16 |682 769 799 -16
10 CA 2 Salmon CA N/A 912 regulated 196 86.2 883 811 70 | 828 834 722 1.7

10bis CA 1 N/A 44.2 944 mixed 115 822 887 848 7.9 76.6 824 81.2 1.8
11 CA 2 Moira N/A 2582 regulated 228 88.2 896 843 43 83.6 82.7 755 3.0
12 CA 1 N/A 88 12515.5 regulated 282 731 728 66.1 4.3 620 672 62.7 -50
13 CA 1 N/A 40.3 1537.5 natural 178 62.2 66.4 63.1 2.8 577 624 613 8.3
14 CA 1 N/A 61.3 2689.4 mixed 209 788 783 709 46 |715 760 76.4 69
15 CA 1 N/A 63 2245.8 mixed 263 804 817 782 -05 | 665 683 670 -04




Table 4: NSE (Nash-Sutcliffe Efficiency index) values obtained with GR4J, minus NSE values from LBRM.
CALIBR=calibration,VALID=validation, GHCND=Global Historical Climatology Network- Daily, CaPA=Canadian
Precipitation Analysis. Values are in percent, so that a value of 5 in the Table corresponds for example to a NSE
of 75% for GR4J and 70% for LBRM.

GHCND precipitation CAPA precipitation
NSE v NSE NSE v NSE
Subbasin Country CALIBR  VALID CALIBR  VALID | CALIBR VALID CALIBR VALID
1 CA 9.1 9.7 12.8 18.6 9.1 13.6 14.6 21.7
3 us 2.9 8.5 33 8.6 1.0 0.5 14 2.1
4bis us -2.6 5.9 4.0 9.8 -1.6 10.2 35 19.0
5 us -4.0 0.0 -4.6 11 -6.0 0.1 -7.2 -0.8
6 us 8.1 9.8 10.3 12.0 23 5.1 4.0 6.9
7 us 4.1 4.9 5.4 9.7 -14 6.5 -5.5 5.9
8 us 5.8 13.7 3.6 7.4 0.6 10.8 -0.8 12.6
10 CA -1.9 33 -2.6 5.2 -1.5 2.8 -5.9 2.6
10bis CA 2.8 2.6 4.0 11 1.6 6.7 -2.0 7.6
11 CA 0.0 4.7 4.4 14.5 0.6 5.1 2.0 6.0
12 CA -2.4 2.4 0.4 7.8 -2.8 4.9 0.2 10.1
13 CA 0.5 -1.8 9.4 14 5.6 4.2 10.5 2.9
14 CA 0.5 3.0 4.8 5.5 2.7 5.5 8.1 8.8
15 CA -3.7 -8.7 2.0 -4.4 0.8 6.0 8.0 8.1
median US 3.5 7.2 3.8 9.1 -0.4 5.8 0.3 6.4
median CA 0.2 2.8 4.2 5.4 1.2 53 5.0 7.8
median 0.5 4.0 4.0 7.6 0.7 53 1.7 7.3
number of positive
cases 9/14 12/14 12/14 13/14 9/14 14/14 9/14 13/14




Table 5. The number of positive cases associated to the inter-comparison study, i.e., the number of cases with
the GR4J model or GHCND precipitation showing better performances than LBRM or CaPA, respectively. For
the comparison of GR4J vs LBRM or GHCND vs CaPA, the number of cases displayed in Table 6 was derived
from the mean of performances along the two precipitation datasets or models, respectively. The p-value of
the two-sided sign test is displayed in parenthesis. A number equal or greater than 12 out of 14 cases is
considered significant (i.e., a p-value of less than 5%). CALIBR=calibration, VALID=validation, GHCND=Global
Historical Climatology Network- Daily, CaPA=Canadian Precipitation Analysis.

NSE v NSE
CALIBR VALID CALIBR VALID
GR4J vs LBRM, mean 9/14 13/14 12/14 14/14
GHNCD-CaPA (p=0.42) (p<0.01) (p=0.01) (p<0.01)
GHCND vs CaPA, 12/14 5/14 13/14 7/14
mean GR4J-LBRM (p=0.01) (p=0.42) (p<0.01) (p=1)



Table 6: NSE V and NSE (Nash-Sutcliffe Efficiency index) values obtained with the GHCND precipitation dataset,
minus NSE values obtained with CaPA precipitation, in calibration (CALIBR) or validation (VALID), and with the
LBRM or GR4J models. Values are in percent, so that a value of 5 corresponds, for example, to a NSE of 70
%with CaPA and of 75 % with GHCND precipitation.

LBRM GR4)
NSE v NSE NSE v NSE
Subbasin Country CALIBR  VALID CALIBR VALID CALIBR  VALID CALIBR  VALID
1 CA 0.1 6.4 0.9 4.7 0.1 2.6 -0.9 1.6
3 us 1.1 2.4 0.6 2.3 3.0 10.5 2.5 8.8
4bis us 3.9 -3.4 6.3 -0.7 2.9 -7.7 6.7 -9.8
5 us 1.8 3.2 1.9 3.7 3.8 3.1 4.5 5.7
6 us -0.2 -2.5 1.2 -5.9 5.6 2.2 7.5 -0.9
7 us 3.9 -0.2 3.5 -1.7 9.4 -1.8 14.4 2.1
8 us 5.8 -3.5 6.4 0.0 11.0 -0.6 10.7 -5.2
10 CA 2.1 0.6 2.3 0.8 1.7 1.0 5.5 3.4
10bis CA 1.0 1.7 1.0 3.0 2.1 -2.5 7.0 -3.5
11 CA 2.2 -0.4 -0.2 -3.7 1.6 -0.8 2.1 4.8
12 CA 2.6 -0.6 2.1 -4.1 3.0 -3.2 2.3 -6.5
13 CA 1.6 0.5 -1.3 -2.3 -3.5 -54 -2.3 -3.8
14 CA 1.9 5.5 24 6.6 -0.3 3.0 -1.0 3.3
15 CA 0.9 -1.8 1.7 -3.8 -1.6 -16.5 1.5 -16.2
median U.S. 2.8 -1.4 2.7 -0.3 4.7 0.8 7.1 0.6
median CA 1.7 0.6 1.3 -0.7 0.9 -1.7 1.8 -1.0
median 1.9 0.1 1.8 -0.3 2.5 -0.7 3.5 0.4
number of positive cases | 13/14 7/14 12/14 7/14 11/14 6/14 11/14 7/14



Table 7: Statistics for the LBRM (Large-Basin Runoff Model) parameters after calibration taking all cases into account (28: 14 catchments and 2
precipitation datasets). Lin= linear, res= reservoir, coeff= coefficient, evap= evaporation, perco= percolation, USZ= Upper Soil Zone, std= standard
deviation, LSZ= Lower Soil Zone, Thase = base temperature, val. = value.

Lin. res. Partial lin.  Lin. res. Lin. res. Partial lin. Lin. res. Lin. res.

Snowmelt usz

Parameters | Thase coeff: res. coeff: coeff: coeff: deep  res. coeff: coeff: coeff: .

o factor . thickness
/ statistics perc. USZevap interflow perco. LSZ evap groundwater surface flow

°C cm/°C/d day? m-3 day? day? m-3 day? day? cm
mean 6.2 4.4E-01 8.0E-02 1.4E-07 6.5E-01 6.6E-01 1.0E-07 2.2E-02 2.3E-01 15.2
Lowest val. 3.8 7.1E-04  1.5E-03 1.0E-09 1.6E-03 1.0E-05 1.0E-12 1.1E-06 5.7E-02 2.2
Highest val. 9.7 1.0E+00 1.7E+00 9.9E-07 8.6E+00 7.8E+00 5.0E-07 4.3E-01 9.9E-01 77.0
std 2.0 2.0E-01 3.1E-01 2.6E-07 1.7E+00 1.7E+00 1.9E-07 8.2E-02 2.3E-01 15.3



Table 8: Statistics for the GR4J (modeéle du Génie Rural a 4 paramétres Journalier) parameters after calibration separating the 28 final parameter
sets in two cases depending on the relative values of X1 and X3, either of similar magnitude (or X1 > X3), or with X1 way lower than X3 (X1 << X3).

. X2: Water .
X1: Capacity X3: Capacity .
Parameters . exchange . X4: UH time X5: degree- X6: snowpack
o of production . of routing . .
/ statistics coefficient base (days) day factor inertia factor
store (mm) store (mm)
(mm)
X1 higher mean 561.12 -0.36 97.87 2.63 7.36 0.06
or similar lowest 69.06 -3.93 13.03 1.22 3.35 0.00
to X3, 19 highest 2089.42 2.93 288.86 5.50 18.12 0.31
cases std 566.67 1.76 95.15 1.26 3.51 0.09
mean 21.11 -4.23 506.06 3.64 8.47 0.09
X1 << X3, lowest 12.42 -14.22 362.33 1.31 6.61 0.00
9 cases highest 49.37 2.59 693.86 6.55 10.53 0.35
std 11.89 5.21 118.06 1.81 1.29 0.11




Table 9: Daily runoff simulation performances when assessed for the 57,460-km? Lake Ontario area (see text).
CAL= calibration, VAL= validation, NSE= Nash-Sutcliffe Efficiency index. The mean of runoff simulated with the
four different combination possibilities (mean GR4J-LBRM-CAPA-GHCND) was assessed. The last column shows
performances obtained with a unique GR4J model applied to this large area using GHCND precipitation.

GHCND CaPA mean GR4J - GR4)

! ! LBRM - GHCND - unique

CAL i VAL CAL i VAL CaPA GHCND
GR4) LBRM : GR4) LBRM | GR4) LBRM : GR4) LBRM CAL VAL CAL VAL
NSE v 092 0.90 : 0.87 0.82 | 0.87 0.89 : 0.86 0.81 0.92 0.86 0.88 0.80
NSE 092 091 : 0.88 0.84 | 0.88 0.90 : 0.86 0.83 0.92 0.88 0.89 0.81
NSE In 091 091 i 0.87 0.85 | 0.87 0.90 i 0.85 0.83 0.91 0.87 0.88 0.80

: : - -
PBIAS 295 4.49 : 238 6.80 | 196 1.64 : 258 4.03 2.76 3.95 0.32 1.57





