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Abstract 32 

 Land managers often need to predict watershed-scale erosion rates after disturbance or 33 

other land cover changes. This study compared commonly used hillslope erosion models to 34 

simulate post-fire sediment yields (SY) at both hillslope and watershed scales within the High 35 

Park Fire, Colorado, U.S.A. At hillslope scale, simulated SY from four models— RUSLE, 36 

AGWA/KINEROS2, WEPP, and a site-specific regression model—were compared to observed 37 

SY at 29 hillslopes. At the watershed scale, RUSLE, AGWA/KINEROS2, and WEPP were 38 

applied to simulate spatial patterns of SY for two 14-16 km2 watersheds using different scales 39 

(0.5-25 ha) of hillslope discretization. Simulated spatial patterns were compared between models 40 

and to densities of channel heads across the watersheds. Three additional erosion algorithms 41 

were implemented within a land surface model to evaluate effects of parameter uncertainty. At 42 

the hillslope scale, SY was only significantly correlated to observed SY for the empirical model, 43 

but at the watershed scale, sediment loads were significantly correlated to observed channel head 44 

densities for all models. Watershed sediment load increased with the size of the hillslope sub-45 

units due to the nonlinear effects of hillslope length on simulated erosion. SY’s were closest in 46 

magnitude to expected watershed-scale SY when models were divided into the smallest 47 

hillslopes. These findings demonstrate that current erosion models are fairly consistent at 48 

identifying areas with low and high erosion potential, but the wide range of predicted SY and 49 

poor fit to observed SY highlight the need for better field observations and model calibration to 50 

obtain more accurate simulations.  51 

 52 

Keywords: Erosion model, Hillslope scale, Watershed scale, WEPP, RUSLE, KINEROS2 53 

 54 

Highlights 55 

• Evaluated performance of erosion models at hillslope and watershed scales 56 

• Simulated hillslope sediment yields did not correlate with measured values 57 

• Simulated watershed sediment yields were correlated with observed rill densities 58 

• Longer hillslopes within watershed simulations led to greater sediment loads 59 

• Parameter uncertainty caused >2 orders of magnitude variability in sediment yields 60 

  61 
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1. Introduction 62 

Soil erosion is a common problem in disturbed landscapes that has motivated the 63 

development of many models to help land and water managers predict erosion magnitudes and 64 

examine causes of variability in erosion rates (Merritt et al., 2003; Aksoy and Kavvas, 2005). 65 

Erosion models can be used to evaluate how management actions or disturbances affect soil loss, 66 

sedimentation, and/or water quality degradation. Models can also be applied to estimate spatial 67 

patterns of erosion, identify areas where land use changes such as timber harvest or road 68 

construction should be restricted, and determine where erosion mitigation would be most 69 

beneficial after large disturbances like wildfire (Miller et al. 2016). Most erosion models have 70 

been developed for agricultural areas using data collected from small plots or hillslopes 71 

(Wischmeier and Smith, 1965; Flanagan and Nearing, 1995), but they are often applied to predict 72 

erosion over large watersheds with diverse topography, soils, and land cover (e.g., Millward and 73 

Mersey, 1999; Fu et al., 2005; Baigorria and Romero, 2007; Shen et al., 2009). Evaluations of 74 

erosion model performance at the watershed scale are limited, making it difficult for land and 75 

water managers to identify which erosion model is most appropriate for their local conditions 76 

and scales of analysis.  77 

Erosion models for land management have varying computational approaches. In the 78 

U.S., two common erosion models are the Watershed Erosion Prediction Project (WEPP) 79 

(Flanagan and Nearing, 1995) and the kinematic runoff and erosion model (KINEROS2) (Smith 80 

et al., 1995), both of which have been adapted for post-fire applications. Both are physically-81 

based erosion models with long histories of code development. The empirical Revised Universal 82 

Soil Loss Equation (RUSLE) (Renard et al., 1997) is perhaps the most frequently applied erosion 83 

model, and it is often integrated into decision support tools (Sharp et al. 2018; Gannon et al. 84 

2019). Hydrologic models are becoming increasingly modularized, which facilitates integration 85 

of different types of erosion simulation modules (Ahuja et al., 2005; Stewart et al., 2017). Yet, 86 

even as erosion model types have proliferated, measurements to evaluate their performance 87 

remain sparse.  88 

In this paper we evaluate the performance of erosion models at multiple scales of analysis 89 

and offer guidance about selecting models for erosion simulation. We conducted this model 90 

analysis for two 14-16 km2 burned watersheds with specific objectives to: (1) evaluate the 91 

performance of the models for simulating hillslope erosion; (2) compare total magnitudes and 92 
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spatial patterns of simulated erosion across watersheds divided into varying sizes of hillslopes; 93 

(3) quantify potential effects of parameter uncertainty on simulated watershed-scale erosion, and 94 

(4) evaluate the relative accuracy of models at the watershed scale using a combination of 95 

quantitative and qualitative observations of surface erosion.   96 

 97 

2. Background 98 

2.1. Erosion models 99 

One of the oldest and most widely used erosion models is the Universal Soil Loss 100 

Equation (USLE) (Wischmeir and Smith, 1965). This empirical model was developed from small 101 

plot data collected at research sites across the U.S. Most plots were 2 m (6 ft) wide by 22 m (72 102 

ft) long, and slopes matched the local terrain (Laflen and Flanagan, 2013). USLE predicts annual 103 

total erosion as a function of rainfall erosivity, soil erodibility, length, slope, cover, and erosion 104 

control practices. Modifications to the length-slope and cover factors resulted in the Revised 105 

Universal Soil Loss Equation (RUSLE) (Renard et al., 1997). Many models incorporate some 106 

version of USLE to simulate erosion (Laflen and Flanagan, 2013). One of these, the Modified 107 

Universal Soil Loss Equation (MUSLE), replaced rainfall erosivity with storm runoff volume 108 

and peak runoff rate to predict erosion from individual storms (Williams, 1975; Williams and 109 

Berndt, 1977). USLE and its variants are easily integrated with other models because the 110 

equations all have analytical solutions. While USLE was designed for individual hillslope use, 111 

gridded versions have also been developed to predict erosion across large areas (Theobald et al., 112 

2010; Lischert et al., 2014; Yochum and Norman, 2014). 113 

Although easy to implement, USLE and its variants are not well-suited to predict 114 

changing erosion conditions over time because they do not represent time varying soil moisture 115 

and infiltration. To simulate these time varying processes and their effects on erosion, 116 

researchers at the USDA Agricultural Research Service (ARS) developed the Water Erosion 117 

Prediction Project (WEPP) (Flanagan and Nearing, 1995). The project used the field data 118 

collected for USLE as well as additional field experiments conducted on 9-11 m (30-36 ft) long 119 

and 0.5-3 m (2-10 ft) plots (Laflen et al., 1991). The resulting WEPP model simulates erosion 120 

and deposition within hillslopes as functions of rainfall input during storms, overland flow 121 

generation, detachment of sediment by overland flow in rill and inter-rill areas, and flow 122 

competency to transport sediment (Flanagan and Nearing, 1995). WEPP can use historical 123 
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climate data to represent actual storms, but typically simulations are run for many stochastic 124 

weather scenarios (≥ 50). Each hillslope can be decomposed into multiple overland flow 125 

elements (sections) with different slopes. WEPP can also account for plant growth and residue 126 

decomposition, evapotranspiration, deep percolation and subsurface lateral flows (Dun et al., 127 

2009; Srivastava, 2013). WEPP consists of two versions: a hillslope version to estimate the 128 

distribution of erosion on a hillslope and a watershed version that links hillslopes with channels 129 

and in-stream structures to estimate sediment delivery from small watersheds.  Multiple 130 

standalone and online modelling interfaces are available for parameterizing and running WEPP 131 

(Miller et al., 2017; Frankenberger et al., 2011; Benda et al. 2007; Elliot, 2004; Renschler, 2003).  132 

Separate from the development of WEPP, scientists at the USDA-ARS developed 133 

KINEROS2, the KINEmatic runoff and EROSion model (Woolhiser et al., 1990; Smith et al., 134 

1995). KINEROS2 is a physically-based model that simulates both rain splash erosion as a 135 

function of rain rate and hydraulic erosion as a function of overland flow rate. KINEROS2 136 

predicts erosion for rectangular planes, which are connected by channels for watershed-scale 137 

modeling (Goodrich et al., 2012). Planes in KINEROS2 can be assigned a single slope or divided 138 

into multiple segments. Sediment outputs are represented by distributions of up to five particle 139 

size classes. The model is designed to simulate single rainfall-runoff events rather than long-term 140 

erosion. To facilitate application over larger areas, the Automated Geospatial Watershed 141 

Assessment tool (AGWA) can be used to discretize hillslopes and compile parameters for 142 

running KINEROS2 in the ArcGIS environment (Miller et al., 2007). Field studies to guide 143 

parameter estimation have not been conducted for the erosion submodels in KINEROS2, so this 144 

model has not been as widely applied as the WEPP model.   145 

Erosion modules have also been added to other hydrologic models originally designed for 146 

streamflow simulation. For example, Stewart et al. (2017) incorporated multiple erosion modules 147 

into the Variable Infiltration Capacity (VIC) model, which simulates land surface processes and 148 

streamflow generation for large river basins (Liang et al., 1994). This single unified framework 149 

standardizes the sediment model inputs and VIC boundary conditions to facilitate consistent 150 

comparison across simulations that apply different erosion modules. The erosion modules 151 

incorporated into VIC include MUSLE, the Hydrologic Simulation Program Fortran (HSPF), and 152 

the Distributed Hydrology Soil Vegetation Model (DHSVM). HSPF (Johnson and Davis, 1980; 153 

Bicknell et al., 1996) was initially developed by the U.S. Environmental Protection Agency to 154 
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simulate contaminant transport, and it represents surface runoff generation using a conceptual 155 

approach. DHSVM (Wigmosta et al., 1994) uses the erosion simulation approach from the 156 

Systeme Hydrologique European – Sediment (SHE-SED) model (Wicks and Bathurst, 1996) to 157 

compute sediment detachment and transport for individual elements (analogous to hillslopes) 158 

connected by stream reaches. DHSVM simulates overland flow for individual grid cells, 159 

connected to each other via topographic routing, and detached sediment is transported as 160 

suspended sediment based on the transport capacity of overland flow (Doten et al., 2006).  161 

2.2. Post-fire applications 162 

Many of the models described in the previous section have been applied to simulate post-163 

fire erosion. These applications involve changing model parameters to represent post-fire 164 

conditions; for instance, decreasing ground cover, reducing soil infiltration capacity, increasing 165 

soil erodibility, decreasing surface roughness, and decreasing root cohesion (Miller et al., 2003; 166 

Elliott, 2004; Canfield and Goodrich, 2005; Doten et al., 2006; Robichaud et al., 2007; Larsen 167 

and MacDonald, 2007; Miller et al., 2012; Miller et al., 2016; Elliott et al., 2016; Robichaud et 168 

al., 2016; Jones et al. 2017; Srivastava et al., 2018; Gannon et al., 2019). Given the limited 169 

availability of post-fire erosion data, most erosion modeling studies do not compare simulated 170 

erosion to observations. Of the studies that do incorporate observations, simulated erosion rates 171 

are not well-correlated to individual hillslope observations, but models tend to perform better 172 

when hillslopes are grouped (Larsen and MacDonald, 2007; Miller et al., 2012) or when relative 173 

ranks of erosion rates are compared between simulations and observations (Robichaud et al. 174 

2016). Empirical regression models for predicting post-fire erosion have been developed for 175 

specific study areas (Benavides-Solorio and MacDonald, 2005; Schmeer et al., 2018), and these 176 

tend to have stronger performance than the process-based erosion models. However, the models 177 

do not perform as well when applied to new areas not used in model development (Schmeer et 178 

al., 2018), and regression models do not represent physical processes directly.  179 

Prior model-observation comparisons have been conducted at the hillslope scale, where 180 

erosion is caused by overland flow. How well these models perform at watershed scale remains 181 

largely unknown. Sediment yields tend to decline with greater drainage area due to deposition 182 

along flow paths, but these scaling relationships have substantial variability (Wagenbrenner and 183 

Robichaud, 2014). The few studies that have evaluated stream sediment yields after fire have 184 

used only suspended sediment (e.g. Kunze and Stednick, 2006; Desilets et al., 2007), which may 185 
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lead to inaccurate sediment yield predictions when there is substantial bedload transport and/or 186 

deposition. Post-fire streams can have rapid and frequent changes in channel geometry (e.g. 187 

Brogan et al., 2019a,b; Wilson 2019), so accurate sediment yield measurement would require 188 

continuously monitoring suspended sediment, bed load, changes in channel geometry at the 189 

watershed outlet, and a method for deriving accurate streamflow. Given the cost and labor 190 

required for such measurements, observations of post-fire erosion at the watershed scale remain 191 

limited.   192 

3. Methods 193 

3.1. Study area 194 

We focused our analysis on two watersheds that burned in the 2012 High Park Fire in 195 

northern Colorado to make use of previous field observations for model evaluation (Kampf et al., 196 

2016; Schmeer et al., 2018; Brogan et al., 2019b). This fire burned over 350 km2 of primarily 197 

forested land. Researchers conducted post-fire erosion and channel monitoring within two ~14-198 

16 km2 watersheds called Skin Gulch and Hill Gulch (Figure 1). These watersheds were burned 199 

at moderate to high severity over 65-70% of their area (Brogan et al., 2019b; Schmeer et al., 200 

2018) and range in elevation from 1740-2580 m. Prior to the fire, land cover was primarily 201 

ponderosa pine (Pinus ponderosa) woodland and forest with some shrublands and grasslands at 202 

lower elevations and mixed conifer forest at higher elevations. The climate is semiarid, with 203 

mean annual precipitation between 440-600 mm (PRISM Climate Group). Soils are mostly 204 

shallow sandy loams, and bedrock outcrops are common on steep slopes. 205 

 Erosion rates were measured from late 2012-2015 at 29 sediment fences that captured the 206 

sediment eroded from convergent hillslopes. The mass of sediment collected in each sediment 207 

fence was measured in the field, converted to dry mass, and normalized by hillslope drainage 208 

area to give sediment yields (SY). Drainage areas of these hillslopes ranged from 0.1-1.5 ha, 209 

with slopes from 11-65% and lengths from 48-270 m. Eight of the hillslopes were mulched with 210 

straw or wood chips after the fire to reduce erosion. The hillslopes were installed in clusters of 211 

four to seven sites in the upper, middle, and lower elevations of the study watersheds, with each 212 

cluster containing at least one tipping bucket rain gauge (details in Schmeer et al. 2018). This 213 

paper focuses on modeling the total erosion during a sequence of rain storms in summer 2013, 214 
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which included 12 convective thunderstorms in July and August and one large long-duration 215 

storm in September that produced more than 250 mm of rainfall (Kampf et al., 2016). We 216 

selected the time period from June-October 2013 for our analysis because the majority of the 217 

post-fire erosion measured at these sites was produced in this time frame.  218 

 219 

Fig. 1 Study watersheds, Skin Gulch and Hill Gulch, overlying the Monitoring Trends in Burn 220 

Severity (MTBS) burn severity map for the 2012 High Park Fire in Colorado. Locations 221 

of field measurements for rainfall (rain gauges) and sediment yield (sediment fences) also 222 

shown  223 

 224 

3.2. Model applications 225 

We applied four models to simulate seasonal total SY at the hillslope scale: the regression 226 

model of Schmeer et al. (2018), RUSLE, WEPP, and AGWA/KINEROS2. Each model is 227 

described in detail in the following sections. Hillslope-scale models were each evaluated using 228 

correlation analyses and comparisons of summary statistics between simulated and observed 229 

hillslope SY. We then applied RUSLE, WEPP, and AGWA-KINEROS2 to simulate watershed-230 

scale SY for each of the two study watersheds with varying sizes of hillslope sub-units to 231 

examine which models and sizes of hillslope sub-units best approximate the observed spatial 232 

patterns of erosion and expected watershed SY. Finally, to evaluate how parameter uncertainty 233 
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affects watershed-scale simulations, we created ensembles of possible watershed-scale erosion 234 

rates using the erosion modules within VIC. Each of these steps is described in detail below.  235 

 236 

3.2.1. Empirical model  237 

The empirical model from Schmeer et al. (2018) was developed for the hillslope scale 238 

using the observed hillslope characteristics and SY. The model equation is: 239 

�� = �� + ��  ×  (��  ×  
�  ×  ��) +  �    (1)  240 

where SY is the sediment yield (Mg ha-1); K1 is an additive shift that adjusts for overall bias in 241 

the empirical model (Equation 1 of Schmeer et al., 2018); P is the depth (mm) of rainfall from 242 

June-Sept.; B is the percent of bare soil (%B), and L is the maximum flow length (m) of each 243 

hillslope. The powers (α, β, and γ) and the empirical coefficient (K2) were identified by Schmeer 244 

et al. (2018) as those that minimized average prediction error (ε): K1 = -0.05, K2*1000 = 5.6, α = 245 

1.1, β = 1.5, γ = -1.1, ε = 3.7.  246 

We ran this model for the observed hillslopes using two different sets of input: (1) field 247 

observations, and (2) values derived from spatial datasets; these spatial dataset values are needed 248 

to apply models at the watershed scale. Both model runs used field values of P from the nearest 249 

rain gauge to each hillslope. The field values of %B are from field ground cover measurements, 250 

which were point counts along transects (Schmeer et al., 2018). Derived values of %B were 251 

assigned based on burn severity classes from the Monitoring Trends in Burn Severity (MTBS) 252 

map (Eidenshink et al., 2007) and the default cover values in Disturbed WEPP for forest, and 253 

low to high severity fire (Elliot, 2004). Unburned areas were assigned bare soil values of 0%; 254 

low severity fire 15%; moderate severity fire 35%, and high severity fire 55%. We assigned the 255 

average observed mulch cover for spring 2013 (38%) to all mulched hillslopes. Field 256 

observations of L came from Schmeer et al. (2018), and derived values of L were determined 257 

using the hillslope delineation tool in AGWA.  258 

  259 

3.2.2. RUSLE 260 

The RUSLE model is a hillslope-scale model, but it can be applied at watershed scale by 261 

dividing watersheds up into hillslopes and summing the total erosion. RUSLE applies the 262 

equation: 263 

A=RKLSCP     (2)  264 
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where A is the soil erosion rate (Mg ha-1 hr-1); R is the rainfall erosivity (EI30); K is the soil 265 

erodibility; L is the length factor; S is the slope factor; C is the cover factor; P is the erosion 266 

control practice factor.  267 

For R we used the closest rain gauge to each hillslope to compute EI30 from June-October 268 

2013. For soil erodibility we used the whole soil K factor from the Soil Survey Geographic 269 

Database (SSURGO), which is a soil database with soil units mapped at scales of 1:12,000 to 270 

1:63,360 (Soil Survey Staff, 2014). We used the coarser 1:250,000 State Soils Geographic 271 

Database (STATSGO) for areas where SSURGO data did not include K factor values. Each 272 

hillslope was assigned the K value from the soil survey polygon covering the largest total area in 273 

the hillslope. We followed the methods of Yochum and Norman (2015) to calculate the K factor 274 

for all components within each soil map unit as the depth-weighted mean for the top 15 cm of 275 

soil for each component, and as the area-weighted mean for any non-water or non-rock 276 

components of the map unit. K was converted to metric units (Mg ha hr ha-1 MJ-1 mm-1) 277 

according to Renard et al. (1997). K was adjusted for post-fire conditions using multiplication 278 

factors to increase the K for different levels of burn severity: 1.5 for low severity; 1.75 for 279 

moderate severity, and 2.0 for high severity (Schmeer, 2014).  280 

L is the length factor, defined as:  281 

� = � �
��.����

     (3) 282 

where λ is the slope length (m), and m is an exponent related to the ratio of rill to interrill 283 

erosion, expressed as: 284 

� = �
���     (4) 285 

 286 

where β is expressed as:  287 

� =  (sin � 0.0896)⁄
[3.0 (sin �)'.( + 0.56]+   (5) 288 

 289 

and θ is the slope angle in radians.  290 

 291 

The slope factor, S, for soils with primarily surface flow and high susceptibility to 292 

erosion is defined as 293 

� =  10.8 sin � + 0.03   (6) 294 
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for slopes < 9%, and as  295 

� = (sin � 0.0896)'.-⁄    (7) 296 

for slopes ≥ 9%, where θ is the slope angle in radians.  297 

C is the cover factor, which we assigned based on mean field measurements by burn 298 

severity from Larsen and MacDonald (2007); low, moderate, and high burn severity were 299 

assigned C factors of 0.01, 0.05, and 0.20 respectively. Finally, P is the support practice factor, 300 

which is used to represent mulch. Areas with >50% straw or wood shred mulch were assigned a 301 

value of 0.22 (Schmeer 2014). All other areas were assigned a P factor of 1.  302 

 303 

3.2.3. WEPP and AGWA-KINEROS2 304 

WEPP and AGWA-KINEROS2 were applied both for the observed hillslope simulations 305 

and for the watershed-scale simulations. Contributing areas for each hillslope were delineated for 306 

WEPP Watershed using WEPP’s delineation tool, the Topographic Parameterization (TOPAZ) 307 

(Garbrecht and Martz, 1997), and for KINEROS2 using AGWA. Precipitation input was 308 

assigned using the nearest tipping bucket rain gauge (Figure 1). WEPP requires additional 309 

atmospheric variables: temperature, solar radiation, dew point, wind speed, and wind direction. 310 

Values were compiled from the Red Feather Lakes Remote Automated Weather Station 311 

(RAWS), which is about 20 km NW of the study watersheds; although these atmospheric 312 

variables are required by WEPP they have limited influence on erosion rates. KINEROS2 313 

requires initial soil moisture values prior to each event; because we did not have soil moisture 314 

measurements we set these to the default value of 0.2. Soil parameters required by the models 315 

include saturated hydraulic conductivity, particle sizes as percent sand, silt, and clay, rock 316 

content, and porosity. These values were taken from SSURGO and STATSGO as described in 317 

section 3.2.2. Land cover parameters required by the models include percent cover, interception 318 

storage, and surface roughness. These were taken from the Existing Vegetation Type (EVT) 319 

developed by the LANDFIRE program using decision tree models, field data, Landsat imagery, 320 

elevation, and biophysical gradient data combined with the soil burn severity map to change land 321 

cover parameters for each burn severity class (Elliott, 2004; Canfield and Goodrich, 2005; 322 

Robichaud et al., 2007). Both WEPP and AGWA have built-in approaches for assigning soil and 323 

vegetation parameters and for modifying parameters based on burn severity class. We did not 324 



12 

 

calibrate the models because we were interested in how these tools perform for management 325 

applications, where erosion observations are not available.  326 

 327 

3.2.4. Watershed-scale simulations 328 

Watershed-scale sediment loads are often estimated by summing the sediment loads of all 329 

hillslopes within the watershed, which are sensitive to the size of the hillslope sub-units. To 330 

understand the influence of hillslope size, we developed a range of watershed-scale simulations 331 

by dividing up the watersheds into hillslopes with different target sizes: 0.5, 1, 2.5, 5, 10, 15, and 332 

25 ha using a 10 m digital elevation model. This range of sizes was based on the ability of 333 

TOPAZ to define hillslopes at different resolutions; TOPAZ failed when the target hillslope size 334 

was smaller or larger than this range. We then used the hillslope delineation algorithm within 335 

AGWA to create hillslopes with the same set of target areas for AGWA-KINEROS2. The 336 

hillslope delineations are similar but not exactly the same for WEPP and AGWA-KINEROS2, 337 

except at 25 ha target areas. Precipitation inputs and parameter values for each model came from 338 

the same sources described for the hillslope simulations. In addition to the simulations for 339 

hillslopes of different sizes, we applied a gridded version of RUSLE to 30 m raster cells across 340 

each watershed (Winchell et al., 2008; Gannon et al. 2019); this comparison was added because 341 

gridded RUSLE has become a popular approach for erosion modeling. 342 

To evaluate effects of parameter uncertainty on watershed-scale sediment yields we used 343 

the erosion modules in VIC (i.e., MUSLE, HSPF, DHSVM). Each module was run for all ranges 344 

of hillslope sizes using variable plausible parameter values. Initial parameter settings were based 345 

on Livneh et al. (2013; 2015) and Stewart et al. (2017), who applied the VIC erosion modules to 346 

simulations for this region. VIC vegetation settings were adjusted to account for wildfire effects 347 

using the same percent cover estimates generated for each hillslope in AGWA-KINEROS2. 348 

Parameters that most affected erosion rates were identified for each erosion module using a 349 

Sobol sensitivity analysis. This led to selection of eight VIC soil parameters, which were varied 350 

using bounds from published studies (Demaria et al., 2007; Troy et al., 2008; Yanto et al., 2017), 351 

as well as nine suspended sediment loading (SSL) parameters, which were varied using bounds 352 

from Doten et al. (2006), Maidment (1993), and Donigian and Love (2003). 353 

To evaluate the spatial patterns of simulated erosion within watersheds we compared 354 

simulated erosion rates to the density of channel heads. The channel density in the study area 355 
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increased dramatically after the fire due to post-fire erosion (Henkle et al., 2011; Wohl 2013). 356 

We visually identified locations of channel heads at the tops of rills or gullies (Figure 2) from  357 

National Ecological Observatory Network (NEON) aerial camera images with 25 cm resolution 358 

for June 28-July 16, 2013 and Larimer County 0.2 m resolution imagery obtained from 359 

Pictometry for September 1, 2012. Rills and gullies were distinguishable from the main stream 360 

channels because the larger streams typically still retained some riparian vegetation. We 361 

computed the fraction of watershed total channel heads within each of the 25 ha hillslopes and 362 

evaluated the correlations of these values with fractions of total simulated sediment load 363 

predicted in the models. The channel head density is a reasonable surrogate for relative erosion 364 

rates across the watersheds, as it was infeasible to measure absolute erosion rates for sub-365 

watersheds larger than 1.5 ha.  366 
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 367 

Fig. 2 Visual evidence of surface erosion in 2012 Pictometry air photos. Top image shows 368 

locations of digitized channel heads (yellow) in Skin Gulch (left) and Hill Gulch (right), 369 

and bottom image zooms into the boxed area in Hill Gulch  370 

 371 

We then compared total watershed-scale sediment load (SL, Mg) and SY (Mg ha-1) for 372 

both study watersheds, each model (RUSLE, WEPP, AGWA-KINEROS2, and the VIC 373 

modules), and each size of hillslope sub-units. For the models designed for spatial application 374 

(RUSLE, WEPP, AGWA-KINEROS2), we also evaluated how the fraction of watershed total 375 
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SL for each hillslope varied between each of the models using Pearson and Spearman correlation 376 

analysis. We used fractions of total sediment load rather than actual SL values because 377 

magnitudes of SL varied substantially between models.  378 

 379 

4. Results 380 

4.1. Hillslope scale  381 

When compared to sediment yields measured at sediment fences, most of the models did 382 

not perform well. Only the empirical regression model was significantly correlated to observed 383 

seasonal total sediment yields (SY) when the original field measurements were used as inputs 384 

(Table 1, Figure 3a). When the regression model was applied using inputs from geospatial 385 

datasets, predictions of SY were not significantly correlated with observed SY (Figure 3b), 386 

primarily because the estimated percent bare soil using burn severity and mulch locations had no 387 

correlation to the observed percent bare soil (R2=0.03). This indicates that one major source of 388 

error in models applied to unmonitored areas is the accuracy of the geospatial datasets used to 389 

parameterize the models.  390 

RUSLE mostly under-predicted SY, but five sites in Skin Gulch had predicted SY values 391 

that were much higher than observed (Figure 3c); these over-predicted sites all had long slopes 392 

(>150 m). AGWA-KINEROS2 over-predicted SY for many of the Skin Gulch hillslopes and 393 

under-predicted SY for the un-mulched Hill Gulch hillslopes (Figure 3d). The range of SY 394 

predicted by WEPP was consistent with the observed range of SY, but the predicted values had 395 

no correlation with the observed values (Table 1; Figure 3e,f). Hillslope SY observations are 396 

often biased low because sediment fences can fill to capacity with sediment, and suspended 397 

sediment can bypass the collection fence (Wilson 2019). However, we did not identify any 398 

connection between under- or over-prediction of simulated SY and the locations where the 399 

sediment fences had over-topped with sediment.   400 

Because of the lack of correlations between simulated and observed SY, we also 401 

compared the means and standard deviations of SY between observations and models. The 402 

empirical model with field-derived inputs and the WEPP model both produced mean SY values 403 

that were within 15% of the observed values (Table 1). RUSLE and AGWA-KINEROS2 over-404 

predicted the mean and standard deviations of SY by factors of three or more, whereas the 405 

empirical model with derived inputs predicted only about half of the measured SY.  406 
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Table 1. Summary of model performance for simulating sediment yields compared to the 407 

observed hillslope values. Asterisks indicate significant at p<0.05. Table also indicates the mean 408 

and standard deviation of sediment yield (Mg ha-1) for both the observed and simulated values; 409 

RMSE also in (Mg ha-1).  410 

Model R2 RMSE Intercept Slope Mean Std Dev 

Observed     11.2 10.1 

Empirical, field inputs 0.60* 5.2 3.4* 0.61* 10.2 8.0 

Empirical, derived inputs 0.13 2.7 4.7* 0.10 5.8 2.9 

RUSLE 0.04 23.2 13.6* -0.44 61.5 102.8 

AGWA-KINEROS2 0.07 43.0 42.9* -1.13 30.3 43.7 

WEPP 0.00 10.3 10.4* 0.05 12.7 10.9 
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 411 

Fig. 3 Simulated total sediment yield (SY) for June-October 2013 compared to observed SY at 412 

hillslopes from (a) Schmeer et al. (2018) empirical model with inputs from field 413 

measurements; (b) same as (a) except with inputs derived from geospatial data; (c) 414 

RUSLE; (d) AGWA-KINEROS2; (e) WEPP. Line is 1:1. Data in Kampf et al (2020). 415 
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 416 

4.2. Watershed scale  417 

Each of the models produced different magnitudes and spatial patterns of seasonal total 418 

SY across the study watersheds. The ranges of watershed total SL (and SY) varied from 9x103 419 

Mg (6 Mg ha-1) in WEPP to 2x106 Mg (2000 Mg ha-1) in VIC-MUSLE, with values varying 420 

between models and with the size of hillslopes within each simulation (Table 2). In comparison, 421 

observed hillslopes had a mean SY of 11 Mg ha-1 and maximum of 38 Mg ha-1, which converts 422 

to 2x104 - 4x104 Mg per watershed if the mean value is applied uniformly. Uncertainties in these 423 

watershed-scale estimates stem from variability in hillslope characteristics and burn severity, and 424 

uncertainties in hillslope-scale measurements; however, these values are a reasonable first-order 425 

estimate for evaluating models. Models with watershed-scale sediment loads in the expected 426 

range were WEPP, AGWA-KINEROS2, and the VIC modules with the smallest hillslope sizes. 427 

RUSLE values were all higher than the expected SY.  428 

Each model predicted increasing SL with larger hillslope sizes (Figures 4, S1), except for 429 

WEPP in Skin Gulch, which predicted declining SL for the watershed simulations using the 430 

largest hillslope sub-units. Even though the total watershed area was the same for all simulations, 431 

the simulated SY increased non-linearly with greater hillslope length. This effect is greatest in 432 

the hillslope version of RUSLE because it does not simulate sediment deposition within 433 

hillslopes. This scale dependence in simulated SL is not present for the gridded version of 434 

RUSLE because the L and S factors are calculated for each 30 m pixel (Winchell et al., 2008) 435 

instead of for hillslopes of varying sizes. Gridded RUSLE total SL were 112,000-155,000 Mg for 436 

Skin and Hill Gulch, respectively, at the lower range of those predicted by the hillslope version 437 

of RUSLE.  438 

Simulated watershed-scale SL values were also sensitive to parameter selection, as shown 439 

in the VIC ensemble simulations (Figure 4, S1). Sediment loads were overall highest for VIC-440 

HSPF and VIC-MUSLE, but VIC-DHSVM had the greatest sensitivity to parameter values, with 441 

simulated SL varying over two orders of magnitude across the ensembles of simulations for each 442 

scale of hillslope sub-units.  443 

 444 

  445 
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Table 2. Summary of watershed total sediment loads (Mg) [and sediment yields (Mg ha-1)] for 446 

each model and watershed divided into 0.5 ha and 25 ha target hillslope areas. RUSLE gridded 447 

values were calculated from a 30 m DEM. Values for MUSLE, HSPF, and DHSVM represent 448 

mean values calculated from ensemble simulations in VIC.  449 

Model Skin Hill 

0.5ha 25ha 0.5ha 25ha 

RUSLE  88,000 [58] 445,000 [292] 102,000 [72] 470,000 [333] 

WEPP 9,100 [6] 27,000 [16] 10,200 [7] 27,100 [19] 

AGWA-KINEROS2 41,000 [27] 55,300 [36] 20,300 [14] 23,700 [17] 

VIC-MUSLE 36,200 [24] 248,000 [162] 30,600 [22] 99,300 [70] 

VIC-HSPF 38,700 [25] 2,470,000 [1620] 42,700 [30] 2,410,000 [1700] 

VIC-DHSVM 43,400 [28] 279,000 [183] 38,100 [27] 257,000 [182] 

RUSLE gridded 112,000 [73] 155,000 [110] 

 450 

 451 

 452 

Fig. 4 Changes in simulated watershed total sediment loads with target hillslope area for Skin 453 

Gulch and Hill Gulch. Points are for WEPP, AGWA-KINEROS2, and RUSLE hillslope 454 

watershed totals, and shaded ranges are for the VIC modules with varying parameter 455 

values. Boxplots of VIC sediment loads in Figure S1. Data in Kampf et al. (2020). 456 

 457 

Spatial patterns of SY within watersheds are shown in Figure 5. For both Skin Gulch and 458 

Hill Gulch, gridded RUSLE produced the highest SY in the center portions of the watersheds, 459 
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where burn severity was high and slopes are steep. Simulated SY rates in these areas exceeded 460 

1,000 Mg ha-1 for some individual grid cells (Figure 5a). These extreme rates were less common 461 

for RUSLE applied at 2.5 ha hillslope resolution, but they were present for some hillslopes at the 462 

25 ha resolution due to the long hillslope lengths (Figure 5b,c). WEPP simulated less spatial 463 

variability overall, but generally SY was highest in areas with high burn severity (Figure 5d,e). 464 

AGWA-KINEROS2 had isolated areas of very high erosion in both watersheds (>400 Mg ha-1) 465 

with low erosion in most other locations (< 1 Mg ha-1). Boundaries of the high erosion areas are 466 

similar to soil survey polygons, suggesting that this pattern relates to soil parameters.  467 

Correlation analysis (Figure S2) indicates more similarities between models than are 468 

evident visually (Figure 5). Correlations are strongest between gridded and hillslope versions of 469 

RUSLE (r=0.69-0.81), which differed only in the original resolution of computations (Figure 470 

S2). Both versions of RUSLE were better correlated with WEPP (r=0.45-0.63; ρ=0.56-0.63) than 471 

with AGWA-KINEROS2 (r=0.01-0.26; ρ=0.22-0.50). WEPP was also significantly correlated 472 

with AGWA-KINEROS2 (r=0.58; ρ=0.63). Interestingly, the models were not consistent in 473 

simulating which of the two watersheds produced more erosion. RUSLE and WEPP simulated 474 

higher total sediment load and average sediment yield in Hill Gulch, whereas AGWA-475 

KINEROS2, MUSLE, and DHSVM simulated higher total sediment load for Skin Gulch (Table 476 

2). Hill Gulch has higher average hillslope lengths, slopes, and soil erodibilities, which led to 477 

higher SL in RUSLE and WEPP. In AGWA-KINEROS2, the boundaries of areas with 478 

particularly high erosion in Skin Gulch (Figure 5f,g) corresponded with boundaries of soil 479 

polygons, so these patterns were likely heavily influenced by the of soil parameter values. VIC-480 

MUSLE, VIC-HSPF, and VIC-DHSVM had parameter values based on those in AGWA-481 

KINEROS2, so they also produced higher SL in Skin Gulch.  482 

The simulated patterns of relative erosion amounts (fractions of watershed total SL) for 483 

25 ha hillslopes were significantly correlated with the fraction of total channel heads (r=0.26-484 

0.64; ρ=0.41-0.72) (Figure 6), indicating the models all produced erosion patterns similar to 485 

those of post-fire rilling and gullying. AGWA-KINEROS2 simulations diverged most from the 486 

channel head pattern for intermediate-length hillslopes in Hill Gulch, whereas RUSLE had more 487 

outliers for the longest hillslopes in Skin Gulch because of the strong influence of length on 488 

RUSLE sediment yields.  489 
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 490 

Fig. 5 Spatial patterns of simulated sediment yields (SY) for Skin Gulch (left) and Hill Gulch 491 

(right) using (a) RUSLE with values computed by 30 m grid cell; (b,c) RUSLE hillslope; 492 

(d,e) WEPP for hillslope polygons, and (f,g) AGWA-KINEROS2 for hillslope polygons. 493 

Target hillslope areas in (b,d,f) are 2.5 ha, and those for (c,e,g) are 25 ha  494 

 495 
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 496 

Fig. 6 Fraction of watershed total sediment load vs. fraction of watershed total channel heads by 497 

25 ha hillslope divisions (Figure 5c,e,g). Pearson (r) and Spearman (ρ) correlation 498 

coefficients given for each combination of values; * indicates significant at p<0.05 499 

Significance of ρ could not be computed due to ties. Colors of points indicate hillslope 500 

length in meters.    501 

 502 
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5. Discussion 503 

Our results confirm prior studies showing that uncalibrated hillslope-scale erosion models 504 

are not well correlated with hillslope erosion observations (Larsen and MacDonald 2007; Miller 505 

et al. 2012). One major source of error in applying un-calibrated models to new locations is the 506 

accuracy of input parameters derived from geospatial datasets. In particular, improvements are 507 

needed in surface cover data, as bare soil is the primary variable responsible for increased post-508 

fire erosion in Colorado (Larsen et al., 2009). Accurate representation of bare soil from satellite 509 

or airborne remote sensing data is inherently challenging because of the fine-scale heterogeneity 510 

of regrowth, but estimates could be improved with more extensive field cover measurements for 511 

training remote sensing image classifications. We recommend collecting field ground cover data 512 

where possible to support applications of erosion models for management purposes. Soil 513 

property data can also introduce error because the spatial resolution of soil survey polygons is 514 

often coarser than the size of modeled hillslopes. Many soil survey polygons contain multiple 515 

soil components, and boundaries between different surveys can cause abrupt changes in 516 

parameters. Conducting full soil surveys in new management areas is likely infeasible in most 517 

circumstances, but modelers could consider conducting sensitivity analyses, varying soil 518 

parameter values to evaluate their effects on simulated sediment yields. Finally, in the case study 519 

presented here, uncertainties in observed SY, particularly under-catch of sediment, also affected 520 

model-observation comparisons.  521 

Although higher quality input data should improve model results, it may not be realistic 522 

to expect uncalibrated hillslope erosion models to simulate SY accurately for individual 523 

hillslopes. Each hillslope has unique and heterogeneous topography, soil, vegetation, and rainfall 524 

patterns, leading to complex internal erosion and deposition patterns that are challenging both to 525 

measure and to model. However, the reliability of these models over larger watershed areas is 526 

generally more important for management considerations, as models can guide decisions on 527 

which watersheds to target for erosion control. We found that RUSLE over-predicted erosion at 528 

the watershed scale compared to our empirical estimate, whereas WEPP and AGWA-529 

KINEROS2 produced values that were more consistent with expected values from field 530 

observations. In part, RUSLE may overpredict because it represents gross erosion, while both 531 

erosion and deposition are modeled in WEPP and AGWA-KINEROS2. Managers should use the 532 

spatial erosion patterns simulated by these models to map areas of low and high erosion rather 533 
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than rely on the magnitudes of simulated sediment load. The relative patterns of erosion are more 534 

consistent between models than the watershed-scale sediment loads. In the watersheds evaluated 535 

here, the relative erosion patterns were significantly correlated with mapped patterns of rilling 536 

and gullying, albeit with substantial scatter in the relationships (Figure 6). This indicates that the 537 

models can identify areas that experienced high post-fire erosion, although the spatial patterns 538 

may not be entirely consistent between models.  539 

For all models, watershed-scale sediment loads were closest to our empirical estimate 540 

when hillslopes were divided into the smallest areas (i.e., 0.5 ha). In USLE and WEPP smaller 541 

hillslopes were more realistic because the models were originally developed using plot-scale 542 

data. Relationships between simulated SY and input variables are scale-dependent in hillslope 543 

models because they use length to predict erosion rates (Wu et al., 2008; Ghaffari, 2011; Fu et 544 

al., 2015). When such models are applied to larger slopes than those for which they were 545 

developed, they may not adequately represent the erosion and deposition processes. Longer flow 546 

paths can enable greater rill and gully development, leading to concentrated flow with greater 547 

transport capacity and higher SY (Pietraszek, 2006); however, longer flow paths can also provide 548 

more opportunities for sediment to be deposited within hillslopes (Afshar et al. 2010), leading to 549 

complex and highly variable scaling relationships (Wagenbrenner and Robichaud, 2014). WEPP 550 

and AGWA-KINEROS2 allow for both erosion and deposition within hillslopes, whereas 551 

RUSLE, VIC-MUSLE, and VIC-HSPF do not. This leads to greater sensitivity to hillslope scale 552 

in the latter models. RUSLE sediment yields progressively increase with longer slopes unless a 553 

slope length threshold is applied (Nearing et al., 1990). In RUSLE, SY also increases with slope 554 

based in part on the ratio of rill to interrill erosion which increases with slope (McCool et al., 555 

1989). Many of the study area hillslopes also had steeper slopes than were used for RUSLE 556 

development (Nearing, 1997; Renard et al., 1997). When applying these models to new 557 

watersheds that do not have erosion observations, we recommend using a fine hillslope 558 

resolution, ideally with lengths between 10-100 m, which is most comparable to the plots used to 559 

develop USLE, RUSLE, and WEPP. 560 

An additional consideration in selecting a model is the time scale of information needed. 561 

RUSLE is intended for long time scales (seasonal, annual). WEPP simulates individual storms, 562 

but results are usually evaluated as the sums of sediment yields over seasons or years. AGWA-563 

KINEROS2 is an event-based model that is typically applied for individual rain storms. Here we 564 
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compared these models in terms of their seasonal total erosion simulations to maintain 565 

consistency between the three models, but further evaluation of WEPP and AGWA-KINEROS2 566 

could consider simulations of individual storms. Although RUSLE does not simulate the runoff 567 

response to time-varying rainfall and snowmelt; adding a runoff factor to RUSLE can improve 568 

its performance (Kinnell 2010). Overall, our results demonstrate that simulations are likely to be 569 

most accurate when run with fine spatial discretization (small hillslopes) and short time steps that 570 

allow simulating erosion from individual storms. These finer resolution simulations aggregate to 571 

more realistic sediment loads for large spatial scales (watersheds) and long time scales (seasons, 572 

years).  573 

6. Conclusions 574 

This study compared the performance of erosion models commonly used in watershed 575 

management. Although most of the models were developed at hillslope scale, managers often 576 

employ them for watershed scale prediction. With the exception of a site-specific regression 577 

model, we found that none of the model simulations of sediment yield correlated well with SY 578 

measured at hillslope sediment fences, probably due to a combination of measurement and model 579 

uncertainties. RUSLE and AGWA-KINEROS2 predicted wider ranges of SY than those 580 

observed in the field and substantially over-predicted some hillslope SY values, whereas WEPP 581 

predicted a range of SY more consistent with field measurements. One large source of potential 582 

error stems from geospatial datasets used to parameterize hillslope models; accurate maps of 583 

ground cover are particularly important for erosion simulations. Given the heterogeneity of land 584 

surface properties within hillslopes, it is unrealistic to expect an erosion model parameterized 585 

with geospatial data to perform well for individual hillslopes. The models were somewhat more 586 

consistent with one another in their simulated spatial patterns of erosion across watersheds, and 587 

they all simulated erosion patterns that significantly correlated with visual observations of rill 588 

and gully channel heads. This means that although the models did not capture the site-specific 589 

factors that affect individual hillslopes, they were able to identify areas with high post-fire 590 

erosion within watersheds, though with some variability in patterns between models.  591 

The models differed more in their predictions of watershed-scale sediment loads, which 592 

varied by orders of magnitude. At watershed scale, WEPP and AGWA-KINEROS2 had 593 

sediment loads in the range expected from scaling up our hillslope observations, whereas 594 
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RUSLE exceeded the expected range. Departure from the expected range became greater for 595 

larger size hillslopes, so erosion models should be applied on small (<1 ha) hillslopes to avoid 596 

unrealistic increases in simulated SY caused by long slope lengths. VIC erosion model 597 

applications also highlighted substantial variability in watershed sediment loads due to parameter 598 

selection, particularly for soil parameters. Because of the high uncertainty in watershed sediment 599 

loads, users should consider making management decisions based on relative erosion patterns 600 

rather than sediment load quantities. Collecting field erosion data across multiple scales from 601 

hillslopes to watersheds is critical to future improvements in simulating watershed-scale erosion.  602 

 603 
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