

## 1 PEMIP: Post-fire Erosion Model Inter-comparison Project

2  
3 Stephanie K. Kampf<sup>a</sup>\*, Benjamin M. Gannon<sup>b</sup>, Codie Wilson<sup>c</sup>, Freddy Saavedra<sup>d</sup>, Mary Ellen  
4 Miller<sup>e</sup>, Aaron Heldmyer<sup>f</sup>, Ben Livneh<sup>f,g</sup>, Peter Nelson<sup>h</sup>, Lee MacDonald<sup>i</sup>

5  
6 <sup>a</sup>\*Corresponding author, Department of Ecosystem Science and Sustainability, Colorado State  
7 University, Fort Collins, CO 80523-1476, U.S.A. stephanie.kampf@colostate.edu.

8 ORCID 0000-0001-8991-2679

9 <sup>b</sup>Colorado Forest Restoration Institute, Colorado State University, Fort Collins, CO 80523-1472,  
10 U.S.A. benjamin.gannon@colostate.edu

11 <sup>c</sup>Natural Resources Ecology Laboratory, 1499 Campus Delivery, Fort Collins, CO 80523-1499,  
12 USA. codie.wilson@colostate.edu

13 <sup>d</sup>Laboratorio de Teledetección Ambiental, Departamento de Ciencias Geográficas, Facultad de  
14 Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile; HUB Ambiental  
15 UPLA, freddy.saavedra@upla.cl

16 <sup>e</sup>Michigan Tech Research Institute, Michigan Technical University, 3600 Green Court,  
17 Suite 100, Ann Arbor, MI 48105, USA. memiller@mtu.edu

18 <sup>f</sup>Department of Civil, Environmental, and Architectural Engineering, University of Colorado  
19 Boulder, USA. Aaron.Heldmyer@colorado.edu

20 <sup>g</sup>Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder,  
21 USA. Ben.Livneh@colorado.edu

22 <sup>h</sup>Department of Civil and Environmental Engineering, Colorado State University, 1372 Campus  
23 Delivery, Fort Collins, CO 80523-1372, USA. peter.nelson@colostate.edu

24 <sup>i</sup>Natural Resources Ecology Laboratory, 1499 Campus Delivery, Fort Collins, CO 80523-1499,  
25 USA. lee.macdonald@colostate.edu

26

27

28

29

30

31

32      **Abstract**

33      Land managers often need to predict watershed-scale erosion rates after disturbance or  
34      other land cover changes. This study compared commonly used hillslope erosion models to  
35      simulate post-fire sediment yields (SY) at both hillslope and watershed scales within the High  
36      Park Fire, Colorado, U.S.A. At hillslope scale, simulated SY from four models—RUSLE,  
37      AGWA/KINEROS2, WEPP, and a site-specific regression model—were compared to observed  
38      SY at 29 hillslopes. At the watershed scale, RUSLE, AGWA/KINEROS2, and WEPP were  
39      applied to simulate spatial patterns of SY for two 14-16 km<sup>2</sup> watersheds using different scales  
40      (0.5-25 ha) of hillslope discretization. Simulated spatial patterns were compared between models  
41      and to densities of channel heads across the watersheds. Three additional erosion algorithms  
42      were implemented within a land surface model to evaluate effects of parameter uncertainty. At  
43      the hillslope scale, SY was only significantly correlated to observed SY for the empirical model,  
44      but at the watershed scale, sediment loads were significantly correlated to observed channel head  
45      densities for all models. Watershed sediment load increased with the size of the hillslope sub-  
46      units due to the nonlinear effects of hillslope length on simulated erosion. SY's were closest in  
47      magnitude to expected watershed-scale SY when models were divided into the smallest  
48      hillslopes. These findings demonstrate that current erosion models are fairly consistent at  
49      identifying areas with low and high erosion potential, but the wide range of predicted SY and  
50      poor fit to observed SY highlight the need for better field observations and model calibration to  
51      obtain more accurate simulations.

52

53      **Keywords:** Erosion model, Hillslope scale, Watershed scale, WEPP, RUSLE, KINEROS2

54

55      **Highlights**

56      • Evaluated performance of erosion models at hillslope and watershed scales  
57      • Simulated hillslope sediment yields did not correlate with measured values  
58      • Simulated watershed sediment yields were correlated with observed rill densities  
59      • Longer hillslopes within watershed simulations led to greater sediment loads  
60      • Parameter uncertainty caused >2 orders of magnitude variability in sediment yields

61

62        **1. Introduction**

63        Soil erosion is a common problem in disturbed landscapes that has motivated the  
64        development of many models to help land and water managers predict erosion magnitudes and  
65        examine causes of variability in erosion rates (Merritt et al., 2003; Aksoy and Kavvas, 2005).  
66        Erosion models can be used to evaluate how management actions or disturbances affect soil loss,  
67        sedimentation, and/or water quality degradation. Models can also be applied to estimate spatial  
68        patterns of erosion, identify areas where land use changes such as timber harvest or road  
69        construction should be restricted, and determine where erosion mitigation would be most  
70        beneficial after large disturbances like wildfire (Miller et al. 2016). Most erosion models have  
71        been developed for agricultural areas using data collected from small plots or hillslopes  
72        (Wischmeier and Smith, 1965; Flanagan and Nearing, 1995), but they are often applied to predict  
73        erosion over large watersheds with diverse topography, soils, and land cover (e.g., Millward and  
74        Mersey, 1999; Fu et al., 2005; Baigorria and Romero, 2007; Shen et al., 2009). Evaluations of  
75        erosion model performance at the watershed scale are limited, making it difficult for land and  
76        water managers to identify which erosion model is most appropriate for their local conditions  
77        and scales of analysis.

78        Erosion models for land management have varying computational approaches. In the  
79        U.S., two common erosion models are the Watershed Erosion Prediction Project (WEPP)  
80        (Flanagan and Nearing, 1995) and the kinematic runoff and erosion model (KINEROS2) (Smith  
81        et al., 1995), both of which have been adapted for post-fire applications. Both are physically-  
82        based erosion models with long histories of code development. The empirical Revised Universal  
83        Soil Loss Equation (RUSLE) (Renard et al., 1997) is perhaps the most frequently applied erosion  
84        model, and it is often integrated into decision support tools (Sharp et al. 2018; Gannon et al.  
85        2019). Hydrologic models are becoming increasingly modularized, which facilitates integration  
86        of different types of erosion simulation modules (Ahuja et al., 2005; Stewart et al., 2017). Yet,  
87        even as erosion model types have proliferated, measurements to evaluate their performance  
88        remain sparse.

89        In this paper we evaluate the performance of erosion models at multiple scales of analysis  
90        and offer guidance about selecting models for erosion simulation. We conducted this model  
91        analysis for two 14-16 km<sup>2</sup> burned watersheds with specific objectives to: (1) evaluate the  
92        performance of the models for simulating hillslope erosion; (2) compare total magnitudes and

93 spatial patterns of simulated erosion across watersheds divided into varying sizes of hillslopes;  
94 (3) quantify potential effects of parameter uncertainty on simulated watershed-scale erosion, and  
95 (4) evaluate the relative accuracy of models at the watershed scale using a combination of  
96 quantitative and qualitative observations of surface erosion.

97

## 98 **2. Background**

### 99 **2.1. Erosion models**

100 One of the oldest and most widely used erosion models is the Universal Soil Loss  
101 Equation (USLE) (Wischmeir and Smith, 1965). This empirical model was developed from small  
102 plot data collected at research sites across the U.S. Most plots were 2 m (6 ft) wide by 22 m (72  
103 ft) long, and slopes matched the local terrain (Laflen and Flanagan, 2013). USLE predicts annual  
104 total erosion as a function of rainfall erosivity, soil erodibility, length, slope, cover, and erosion  
105 control practices. Modifications to the length-slope and cover factors resulted in the Revised  
106 Universal Soil Loss Equation (RUSLE) (Renard et al., 1997). Many models incorporate some  
107 version of USLE to simulate erosion (Laflen and Flanagan, 2013). One of these, the Modified  
108 Universal Soil Loss Equation (MUSLE), replaced rainfall erosivity with storm runoff volume  
109 and peak runoff rate to predict erosion from individual storms (Williams, 1975; Williams and  
110 Berndt, 1977). USLE and its variants are easily integrated with other models because the  
111 equations all have analytical solutions. While USLE was designed for individual hillslope use,  
112 gridded versions have also been developed to predict erosion across large areas (Theobald et al.,  
113 2010; Lischert et al., 2014; Yochum and Norman, 2014).

114 Although easy to implement, USLE and its variants are not well-suited to predict  
115 changing erosion conditions over time because they do not represent time varying soil moisture  
116 and infiltration. To simulate these time varying processes and their effects on erosion,  
117 researchers at the USDA Agricultural Research Service (ARS) developed the Water Erosion  
118 Prediction Project (WEPP) (Flanagan and Nearing, 1995). The project used the field data  
119 collected for USLE as well as additional field experiments conducted on 9-11 m (30-36 ft) long  
120 and 0.5-3 m (2-10 ft) plots (Laflen et al., 1991). The resulting WEPP model simulates erosion  
121 and deposition within hillslopes as functions of rainfall input during storms, overland flow  
122 generation, detachment of sediment by overland flow in rill and inter-rill areas, and flow  
123 competency to transport sediment (Flanagan and Nearing, 1995). WEPP can use historical

124 climate data to represent actual storms, but typically simulations are run for many stochastic  
125 weather scenarios ( $\geq 50$ ). Each hillslope can be decomposed into multiple overland flow  
126 elements (sections) with different slopes. WEPP can also account for plant growth and residue  
127 decomposition, evapotranspiration, deep percolation and subsurface lateral flows (Dun et al.,  
128 2009; Srivastava, 2013). WEPP consists of two versions: a hillslope version to estimate the  
129 distribution of erosion on a hillslope and a watershed version that links hillslopes with channels  
130 and in-stream structures to estimate sediment delivery from small watersheds. Multiple  
131 standalone and online modelling interfaces are available for parameterizing and running WEPP  
132 (Miller et al., 2017; Frankenberger et al., 2011; Benda et al. 2007; Elliot, 2004; Renschler, 2003).

133 Separate from the development of WEPP, scientists at the USDA-ARS developed  
134 KINEROS2, the KINEmatic runoff and EROSION model (Woolhiser et al., 1990; Smith et al.,  
135 1995). KINEROS2 is a physically-based model that simulates both rain splash erosion as a  
136 function of rain rate and hydraulic erosion as a function of overland flow rate. KINEROS2  
137 predicts erosion for rectangular planes, which are connected by channels for watershed-scale  
138 modeling (Goodrich et al., 2012). Planes in KINEROS2 can be assigned a single slope or divided  
139 into multiple segments. Sediment outputs are represented by distributions of up to five particle  
140 size classes. The model is designed to simulate single rainfall-runoff events rather than long-term  
141 erosion. To facilitate application over larger areas, the Automated Geospatial Watershed  
142 Assessment tool (AGWA) can be used to discretize hillslopes and compile parameters for  
143 running KINEROS2 in the ArcGIS environment (Miller et al., 2007). Field studies to guide  
144 parameter estimation have not been conducted for the erosion submodels in KINEROS2, so this  
145 model has not been as widely applied as the WEPP model.

146 Erosion modules have also been added to other hydrologic models originally designed for  
147 streamflow simulation. For example, Stewart et al. (2017) incorporated multiple erosion modules  
148 into the Variable Infiltration Capacity (VIC) model, which simulates land surface processes and  
149 streamflow generation for large river basins (Liang et al., 1994). This single unified framework  
150 standardizes the sediment model inputs and VIC boundary conditions to facilitate consistent  
151 comparison across simulations that apply different erosion modules. The erosion modules  
152 incorporated into VIC include MUSLE, the Hydrologic Simulation Program Fortran (HSPF), and  
153 the Distributed Hydrology Soil Vegetation Model (DHSVM). HSPF (Johnson and Davis, 1980;  
154 Bicknell et al., 1996) was initially developed by the U.S. Environmental Protection Agency to

155 simulate contaminant transport, and it represents surface runoff generation using a conceptual  
156 approach. DHSVM (Wigmota et al., 1994) uses the erosion simulation approach from the  
157 Systeme Hydrologique European – Sediment (SHE-SED) model (Wicks and Bathurst, 1996) to  
158 compute sediment detachment and transport for individual elements (analogous to hillslopes)  
159 connected by stream reaches. DHSVM simulates overland flow for individual grid cells,  
160 connected to each other via topographic routing, and detached sediment is transported as  
161 suspended sediment based on the transport capacity of overland flow (Doten et al., 2006).

## 162        2.2.        Post-fire applications

163        Many of the models described in the previous section have been applied to simulate post-  
164 fire erosion. These applications involve changing model parameters to represent post-fire  
165 conditions; for instance, decreasing ground cover, reducing soil infiltration capacity, increasing  
166 soil erodibility, decreasing surface roughness, and decreasing root cohesion (Miller et al., 2003;  
167 Elliott, 2004; Canfield and Goodrich, 2005; Doten et al., 2006; Robichaud et al., 2007; Larsen  
168 and MacDonald, 2007; Miller et al., 2012; Miller et al., 2016; Elliott et al., 2016; Robichaud et  
169 al., 2016; Jones et al. 2017; Srivastava et al., 2018; Gannon et al., 2019). Given the limited  
170 availability of post-fire erosion data, most erosion modeling studies do not compare simulated  
171 erosion to observations. Of the studies that do incorporate observations, simulated erosion rates  
172 are not well-correlated to individual hillslope observations, but models tend to perform better  
173 when hillslopes are grouped (Larsen and MacDonald, 2007; Miller et al., 2012) or when relative  
174 ranks of erosion rates are compared between simulations and observations (Robichaud et al.  
175 2016). Empirical regression models for predicting post-fire erosion have been developed for  
176 specific study areas (Benavides-Solorio and MacDonald, 2005; Schmeer et al., 2018), and these  
177 tend to have stronger performance than the process-based erosion models. However, the models  
178 do not perform as well when applied to new areas not used in model development (Schmeer et  
179 al., 2018), and regression models do not represent physical processes directly.

180        Prior model-observation comparisons have been conducted at the hillslope scale, where  
181 erosion is caused by overland flow. How well these models perform at watershed scale remains  
182 largely unknown. Sediment yields tend to decline with greater drainage area due to deposition  
183 along flow paths, but these scaling relationships have substantial variability (Wagenbrenner and  
184 Robichaud, 2014). The few studies that have evaluated stream sediment yields after fire have  
185 used only suspended sediment (e.g. Kunze and Stednick, 2006; Desilets et al., 2007), which may

186 lead to inaccurate sediment yield predictions when there is substantial bedload transport and/or  
187 deposition. Post-fire streams can have rapid and frequent changes in channel geometry (e.g.  
188 Brogan et al., 2019a,b; Wilson 2019), so accurate sediment yield measurement would require  
189 continuously monitoring suspended sediment, bed load, changes in channel geometry at the  
190 watershed outlet, and a method for deriving accurate streamflow. Given the cost and labor  
191 required for such measurements, observations of post-fire erosion at the watershed scale remain  
192 limited.

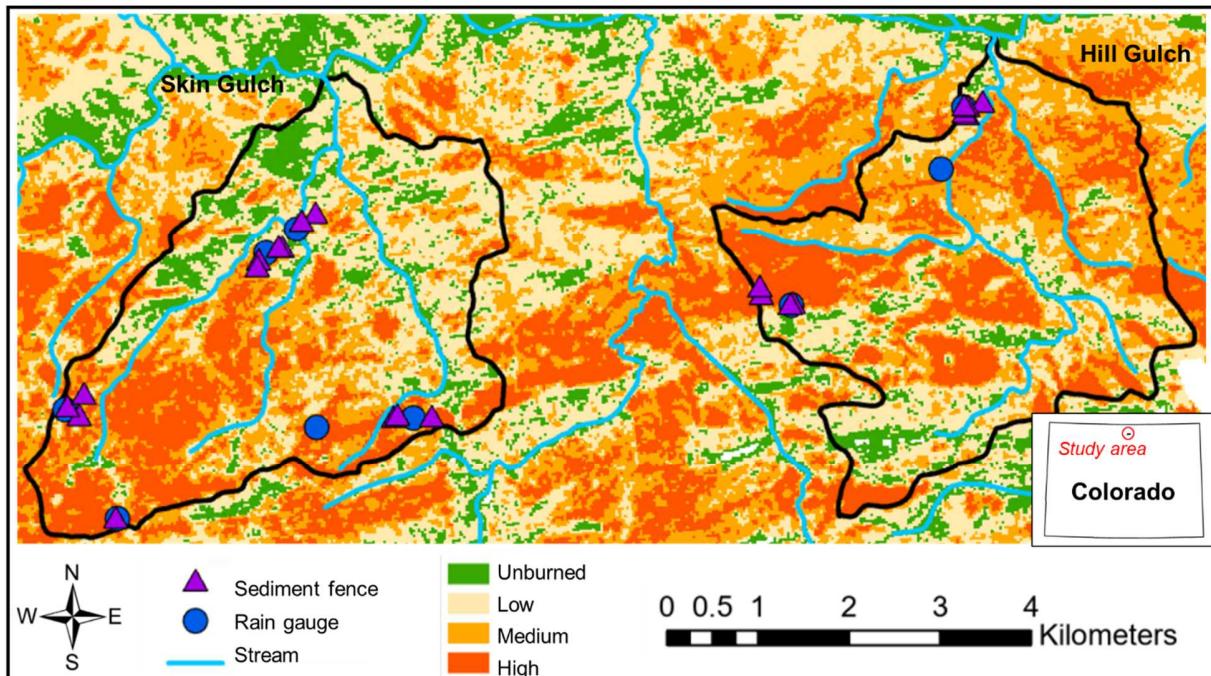
193 **3. Methods**

194 **3.1. Study area**

195 We focused our analysis on two watersheds that burned in the 2012 High Park Fire in  
196 northern Colorado to make use of previous field observations for model evaluation (Kampf et al.,  
197 2016; Schmeer et al., 2018; Brogan et al., 2019b). This fire burned over 350 km<sup>2</sup> of primarily  
198 forested land. Researchers conducted post-fire erosion and channel monitoring within two ~14-  
199 16 km<sup>2</sup> watersheds called Skin Gulch and Hill Gulch (Figure 1). These watersheds were burned  
200 at moderate to high severity over 65-70% of their area (Brogan et al., 2019b; Schmeer et al.,  
201 2018) and range in elevation from 1740-2580 m. Prior to the fire, land cover was primarily  
202 ponderosa pine (*Pinus ponderosa*) woodland and forest with some shrublands and grasslands at  
203 lower elevations and mixed conifer forest at higher elevations. The climate is semiarid, with  
204 mean annual precipitation between 440-600 mm (PRISM Climate Group). Soils are mostly  
205 shallow sandy loams, and bedrock outcrops are common on steep slopes.

206 Erosion rates were measured from late 2012-2015 at 29 sediment fences that captured the  
207 sediment eroded from convergent hillslopes. The mass of sediment collected in each sediment  
208 fence was measured in the field, converted to dry mass, and normalized by hillslope drainage  
209 area to give sediment yields (SY). Drainage areas of these hillslopes ranged from 0.1-1.5 ha,  
210 with slopes from 11-65% and lengths from 48-270 m. Eight of the hillslopes were mulched with  
211 straw or wood chips after the fire to reduce erosion. The hillslopes were installed in clusters of  
212 four to seven sites in the upper, middle, and lower elevations of the study watersheds, with each  
213 cluster containing at least one tipping bucket rain gauge (details in Schmeer et al. 2018). This  
214 paper focuses on modeling the total erosion during a sequence of rain storms in summer 2013,

215 which included 12 convective thunderstorms in July and August and one large long-duration  
216 storm in September that produced more than 250 mm of rainfall (Kampf et al., 2016). We  
217 selected the time period from June–October 2013 for our analysis because the majority of the  
218 post-fire erosion measured at these sites was produced in this time frame.



219  
220 **Fig. 1** Study watersheds, Skin Gulch and Hill Gulch, overlying the Monitoring Trends in Burn  
221 Severity (MTBS) burn severity map for the 2012 High Park Fire in Colorado. Locations  
222 of field measurements for rainfall (rain gauges) and sediment yield (sediment fences) also  
223 shown  
224

### 225 **3.2. Model applications**

226 We applied four models to simulate seasonal total SY at the hillslope scale: the regression  
227 model of Schmeer et al. (2018), RUSLE, WEPP, and AGWA/KINEROS2. Each model is  
228 described in detail in the following sections. Hillslope-scale models were each evaluated using  
229 correlation analyses and comparisons of summary statistics between simulated and observed  
230 hillslope SY. We then applied RUSLE, WEPP, and AGWA-KINEROS2 to simulate watershed-  
231 scale SY for each of the two study watersheds with varying sizes of hillslope sub-units to  
232 examine which models and sizes of hillslope sub-units best approximate the observed spatial  
233 patterns of erosion and expected watershed SY. Finally, to evaluate how parameter uncertainty

234 affects watershed-scale simulations, we created ensembles of possible watershed-scale erosion  
235 rates using the erosion modules within VIC. Each of these steps is described in detail below.

236

### 237 **3.2.1. Empirical model**

238 The empirical model from Schmeer et al. (2018) was developed for the hillslope scale  
239 using the observed hillslope characteristics and SY. The model equation is:

240 
$$SY = K_1 + K_2 \times (P^\alpha \times B^\beta \times L^\gamma) + \varepsilon \quad (1)$$

241 where SY is the sediment yield ( $Mg\ ha^{-1}$ );  $K_1$  is an additive shift that adjusts for overall bias in  
242 the empirical model (Equation 1 of Schmeer et al., 2018);  $P$  is the depth (mm) of rainfall from  
243 June-Sept.;  $B$  is the percent of bare soil (%B), and  $L$  is the maximum flow length (m) of each  
244 hillslope. The powers ( $\alpha$ ,  $\beta$ , and  $\gamma$ ) and the empirical coefficient ( $K_2$ ) were identified by Schmeer  
245 et al. (2018) as those that minimized average prediction error ( $\varepsilon$ ):  $K_1 = -0.05$ ,  $K_2*1000 = 5.6$ ,  $\alpha =$   
246  $1.1$ ,  $\beta = 1.5$ ,  $\gamma = -1.1$ ,  $\varepsilon = 3.7$ .

247 We ran this model for the observed hillslopes using two different sets of input: (1) field  
248 observations, and (2) values derived from spatial datasets; these spatial dataset values are needed  
249 to apply models at the watershed scale. Both model runs used field values of  $P$  from the nearest  
250 rain gauge to each hillslope. The field values of %B are from field ground cover measurements,  
251 which were point counts along transects (Schmeer et al., 2018). Derived values of %B were  
252 assigned based on burn severity classes from the Monitoring Trends in Burn Severity (MTBS)  
253 map (Eidenshink et al., 2007) and the default cover values in Disturbed WEPP for forest, and  
254 low to high severity fire (Elliot, 2004). Unburned areas were assigned bare soil values of 0%;  
255 low severity fire 15%; moderate severity fire 35%, and high severity fire 55%. We assigned the  
256 average observed mulch cover for spring 2013 (38%) to all mulched hillslopes. Field  
257 observations of  $L$  came from Schmeer et al. (2018), and derived values of  $L$  were determined  
258 using the hillslope delineation tool in AGWA.

259

### 260 **3.2.2. RUSLE**

261 The RUSLE model is a hillslope-scale model, but it can be applied at watershed scale by  
262 dividing watersheds up into hillslopes and summing the total erosion. RUSLE applies the  
263 equation:

264 
$$A = RKLSCP \quad (2)$$

265 where A is the soil erosion rate ( $\text{Mg ha}^{-1} \text{ hr}^{-1}$ ); R is the rainfall erosivity ( $\text{EI}_{30}$ ); K is the soil  
266 erodibility; L is the length factor; S is the slope factor; C is the cover factor; P is the erosion  
267 control practice factor.

268 For R we used the closest rain gauge to each hillslope to compute  $\text{EI}_{30}$  from June-October  
269 2013. For soil erodibility we used the whole soil K factor from the Soil Survey Geographic  
270 Database (SSURGO), which is a soil database with soil units mapped at scales of 1:12,000 to  
271 1:63,360 (Soil Survey Staff, 2014). We used the coarser 1:250,000 State Soils Geographic  
272 Database (STATSGO) for areas where SSURGO data did not include K factor values. Each  
273 hillslope was assigned the K value from the soil survey polygon covering the largest total area in  
274 the hillslope. We followed the methods of Yochum and Norman (2015) to calculate the K factor  
275 for all components within each soil map unit as the depth-weighted mean for the top 15 cm of  
276 soil for each component, and as the area-weighted mean for any non-water or non-rock  
277 components of the map unit. K was converted to metric units ( $\text{Mg ha hr ha}^{-1} \text{ MJ}^{-1} \text{ mm}^{-1}$ )  
278 according to Renard et al. (1997). K was adjusted for post-fire conditions using multiplication  
279 factors to increase the K for different levels of burn severity: 1.5 for low severity; 1.75 for  
280 moderate severity, and 2.0 for high severity (Schmeer, 2014).

281 L is the length factor, defined as:

$$282 L = \left( \frac{\lambda}{22.13} \right)^m \quad (3)$$

283 where  $\lambda$  is the slope length (m), and  $m$  is an exponent related to the ratio of rill to interrill  
284 erosion, expressed as:

$$285 m = \frac{\beta}{1+\beta} \quad (4)$$

286

287 where  $\beta$  is expressed as:

$$288 \beta = \frac{(\sin \theta / 0.0896)}{[3.0 (\sin \theta)^{0.8} + 0.56]} \quad (5)$$

289

290 and  $\theta$  is the slope angle in radians.

291

292 The slope factor, S, for soils with primarily surface flow and high susceptibility to  
293 erosion is defined as

$$294 S = 10.8 \sin \theta + 0.03 \quad (6)$$

295 for slopes < 9%, and as

$$S = (\sin \theta / 0.0896)^{0.6} \quad (7)$$

297 for slopes  $\geq 9\%$ , where  $\theta$  is the slope angle in radians.

298 C is the cover factor, which we assigned based on mean field measurements by burn  
299 severity from Larsen and MacDonald (2007); low, moderate, and high burn severity were  
300 assigned C factors of 0.01, 0.05, and 0.20 respectively. Finally, P is the support practice factor,  
301 which is used to represent mulch. Areas with >50% straw or wood shred mulch were assigned a  
302 value of 0.22 (Schmeer 2014). All other areas were assigned a P factor of 1.

303

### 304 **3.2.3. WEPP and AGWA-KINEROS2**

305 WEPP and AGWA-KINEROS2 were applied both for the observed hillslope simulations  
306 and for the watershed-scale simulations. Contributing areas for each hillslope were delineated for  
307 WEPP Watershed using WEPP's delineation tool, the Topographic Parameterization (TOPAZ)  
308 (Garbrecht and Martz, 1997), and for KINEROS2 using AGWA. Precipitation input was  
309 assigned using the nearest tipping bucket rain gauge (Figure 1). WEPP requires additional  
310 atmospheric variables: temperature, solar radiation, dew point, wind speed, and wind direction.  
311 Values were compiled from the Red Feather Lakes Remote Automated Weather Station  
312 (RAWS), which is about 20 km NW of the study watersheds; although these atmospheric  
313 variables are required by WEPP they have limited influence on erosion rates. KINEROS2  
314 requires initial soil moisture values prior to each event; because we did not have soil moisture  
315 measurements we set these to the default value of 0.2. Soil parameters required by the models  
316 include saturated hydraulic conductivity, particle sizes as percent sand, silt, and clay, rock  
317 content, and porosity. These values were taken from SSURGO and STATSGO as described in  
318 section 3.2.2. Land cover parameters required by the models include percent cover, interception  
319 storage, and surface roughness. These were taken from the Existing Vegetation Type (EVT)  
320 developed by the LANDFIRE program using decision tree models, field data, Landsat imagery,  
321 elevation, and biophysical gradient data combined with the soil burn severity map to change land  
322 cover parameters for each burn severity class (Elliott, 2004; Canfield and Goodrich, 2005;  
323 Robichaud et al., 2007). Both WEPP and AGWA have built-in approaches for assigning soil and  
324 vegetation parameters and for modifying parameters based on burn severity class. We did not

325 calibrate the models because we were interested in how these tools perform for management  
326 applications, where erosion observations are not available.

327

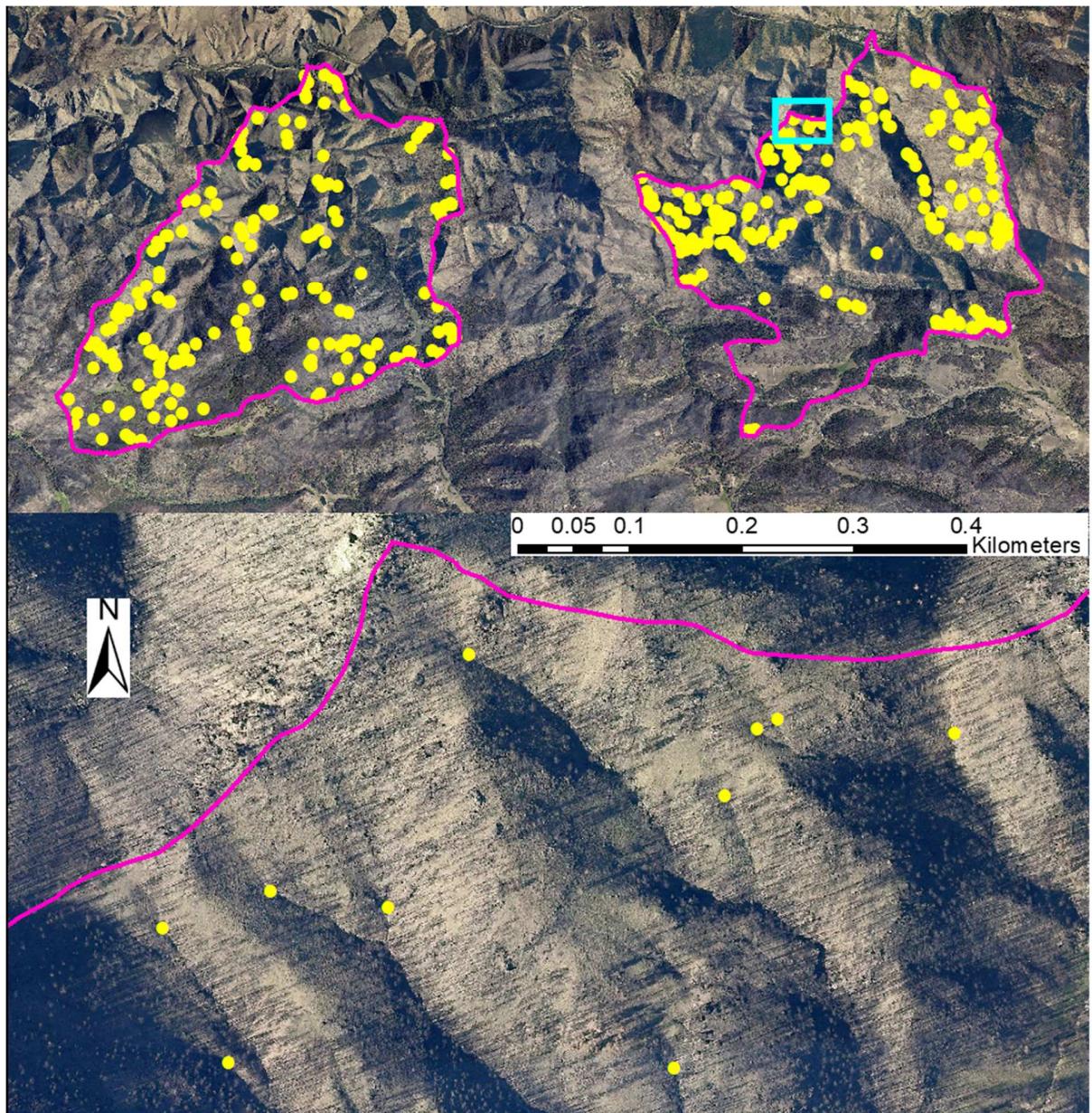
### 328 **3.2.4. Watershed-scale simulations**

329 Watershed-scale sediment loads are often estimated by summing the sediment loads of all  
330 hillslopes within the watershed, which are sensitive to the size of the hillslope sub-units. To  
331 understand the influence of hillslope size, we developed a range of watershed-scale simulations  
332 by dividing up the watersheds into hillslopes with different target sizes: 0.5, 1, 2.5, 5, 10, 15, and  
333 25 ha using a 10 m digital elevation model. This range of sizes was based on the ability of  
334 TOPAZ to define hillslopes at different resolutions; TOPAZ failed when the target hillslope size  
335 was smaller or larger than this range. We then used the hillslope delineation algorithm within  
336 AGWA to create hillslopes with the same set of target areas for AGWA-KINEROS2. The  
337 hillslope delineations are similar but not exactly the same for WEPP and AGWA-KINEROS2,  
338 except at 25 ha target areas. Precipitation inputs and parameter values for each model came from  
339 the same sources described for the hillslope simulations. In addition to the simulations for  
340 hillslopes of different sizes, we applied a gridded version of RUSLE to 30 m raster cells across  
341 each watershed (Winchell et al., 2008; Gannon et al. 2019); this comparison was added because  
342 gridded RUSLE has become a popular approach for erosion modeling.

343 To evaluate effects of parameter uncertainty on watershed-scale sediment yields we used  
344 the erosion modules in VIC (i.e., MUSLE, HSPF, DHSVM). Each module was run for all ranges  
345 of hillslope sizes using variable plausible parameter values. Initial parameter settings were based  
346 on Livneh et al. (2013; 2015) and Stewart et al. (2017), who applied the VIC erosion modules to  
347 simulations for this region. VIC vegetation settings were adjusted to account for wildfire effects  
348 using the same percent cover estimates generated for each hillslope in AGWA-KINEROS2.  
349 Parameters that most affected erosion rates were identified for each erosion module using a  
350 Sobol sensitivity analysis. This led to selection of eight VIC soil parameters, which were varied  
351 using bounds from published studies (Demaria et al., 2007; Troy et al., 2008; Yanto et al., 2017),  
352 as well as nine suspended sediment loading (SSL) parameters, which were varied using bounds  
353 from Doten et al. (2006), Maidment (1993), and Donigian and Love (2003).

354 To evaluate the spatial patterns of simulated erosion within watersheds we compared  
355 simulated erosion rates to the density of channel heads. The channel density in the study area

356 increased dramatically after the fire due to post-fire erosion (Henkle et al., 2011; Wohl 2013).  
357 We visually identified locations of channel heads at the tops of rills or gullies (Figure 2) from  
358 National Ecological Observatory Network (NEON) aerial camera images with 25 cm resolution  
359 for June 28-July 16, 2013 and Larimer County 0.2 m resolution imagery obtained from  
360 Pictometry for September 1, 2012. Rills and gullies were distinguishable from the main stream  
361 channels because the larger streams typically still retained some riparian vegetation. We  
362 computed the fraction of watershed total channel heads within each of the 25 ha hillslopes and  
363 evaluated the correlations of these values with fractions of total simulated sediment load  
364 predicted in the models. The channel head density is a reasonable surrogate for relative erosion  
365 rates across the watersheds, as it was infeasible to measure absolute erosion rates for sub-  
366 watersheds larger than 1.5 ha.



367

368 **Fig. 2** Visual evidence of surface erosion in 2012 Pictometry air photos. Top image shows  
 369 locations of digitized channel heads (yellow) in Skin Gulch (left) and Hill Gulch (right),  
 370 and bottom image zooms into the boxed area in Hill Gulch

371

372 We then compared total watershed-scale sediment load (SL, Mg) and SY ( $Mg\ ha^{-1}$ ) for  
 373 both study watersheds, each model (RUSLE, WEPP, AGWA-KINEROS2, and the VIC  
 374 modules), and each size of hillslope sub-units. For the models designed for spatial application  
 375 (RUSLE, WEPP, AGWA-KINEROS2), we also evaluated how the fraction of watershed total

376 SL for each hillslope varied between each of the models using Pearson and Spearman correlation  
377 analysis. We used fractions of total sediment load rather than actual SL values because  
378 magnitudes of SL varied substantially between models.

379

380 **4. Results**

381 **4.1. Hillslope scale**

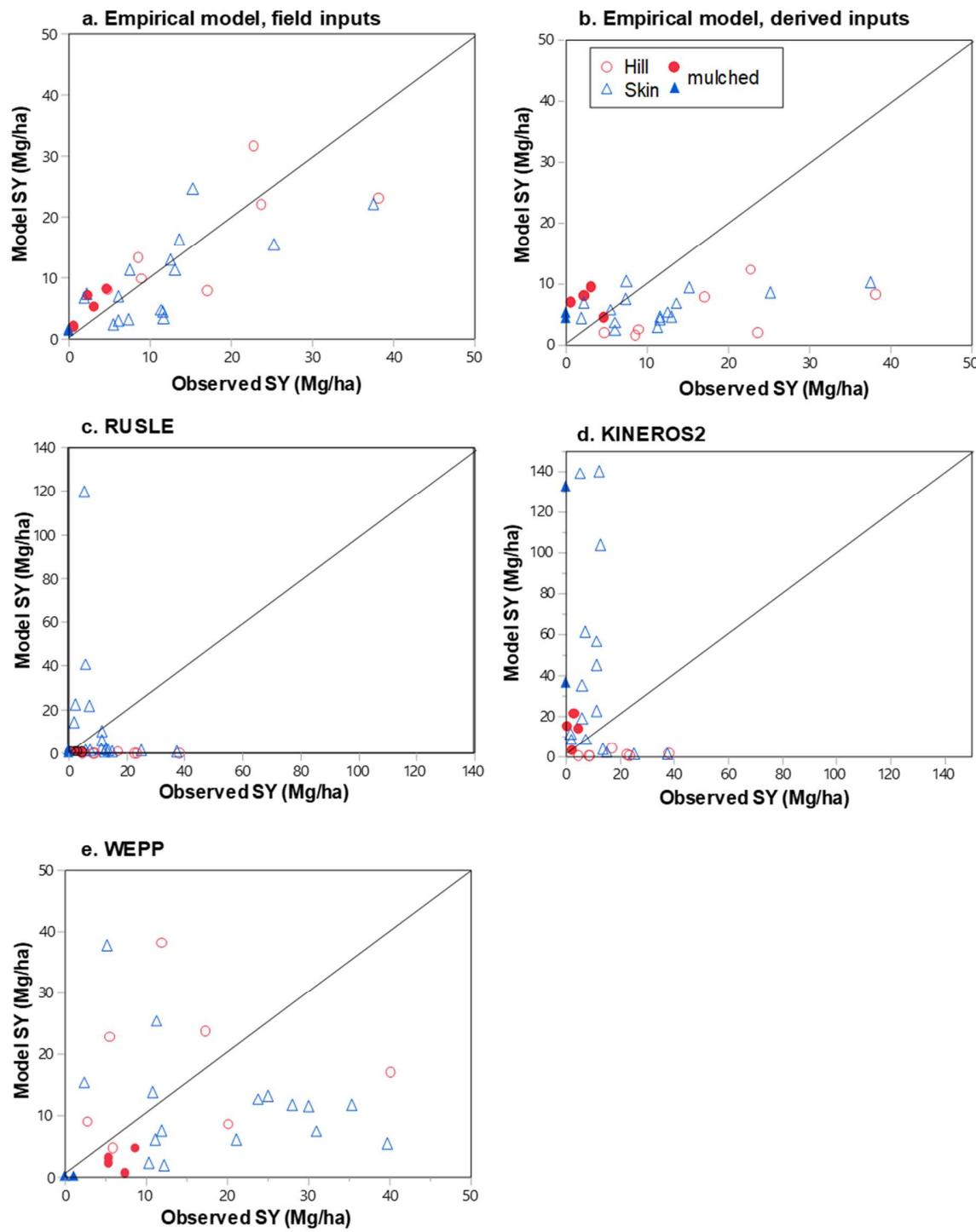
382 When compared to sediment yields measured at sediment fences, most of the models did  
383 not perform well. Only the empirical regression model was significantly correlated to observed  
384 seasonal total sediment yields (SY) when the original field measurements were used as inputs  
385 (Table 1, Figure 3a). When the regression model was applied using inputs from geospatial  
386 datasets, predictions of SY were not significantly correlated with observed SY (Figure 3b),  
387 primarily because the estimated percent bare soil using burn severity and mulch locations had no  
388 correlation to the observed percent bare soil ( $R^2=0.03$ ). This indicates that one major source of  
389 error in models applied to unmonitored areas is the accuracy of the geospatial datasets used to  
390 parameterize the models.

391 RUSLE mostly under-predicted SY, but five sites in Skin Gulch had predicted SY values  
392 that were much higher than observed (Figure 3c); these over-predicted sites all had long slopes  
393 ( $>150$  m). AGWA-KINEROS2 over-predicted SY for many of the Skin Gulch hillslopes and  
394 under-predicted SY for the un-mulched Hill Gulch hillslopes (Figure 3d). The range of SY  
395 predicted by WEPP was consistent with the observed range of SY, but the predicted values had  
396 no correlation with the observed values (Table 1; Figure 3e,f). Hillslope SY observations are  
397 often biased low because sediment fences can fill to capacity with sediment, and suspended  
398 sediment can bypass the collection fence (Wilson 2019). However, we did not identify any  
399 connection between under- or over-prediction of simulated SY and the locations where the  
400 sediment fences had over-topped with sediment.

401 Because of the lack of correlations between simulated and observed SY, we also  
402 compared the means and standard deviations of SY between observations and models. The  
403 empirical model with field-derived inputs and the WEPP model both produced mean SY values  
404 that were within 15% of the observed values (Table 1). RUSLE and AGWA-KINEROS2 over-  
405 predicted the mean and standard deviations of SY by factors of three or more, whereas the  
406 empirical model with derived inputs predicted only about half of the measured SY.

407 **Table 1.** Summary of model performance for simulating sediment yields compared to the  
 408 observed hillslope values. Asterisks indicate significant at  $p<0.05$ . Table also indicates the mean  
 409 and standard deviation of sediment yield ( $\text{Mg ha}^{-1}$ ) for both the observed and simulated values;  
 410 RMSE also in ( $\text{Mg ha}^{-1}$ ).

| Model                     | R <sup>2</sup> | RMSE | Intercept | Slope | Mean | Std Dev |
|---------------------------|----------------|------|-----------|-------|------|---------|
| Observed                  |                |      |           |       | 11.2 | 10.1    |
| Empirical, field inputs   | 0.60*          | 5.2  | 3.4*      | 0.61* | 10.2 | 8.0     |
| Empirical, derived inputs | 0.13           | 2.7  | 4.7*      | 0.10  | 5.8  | 2.9     |
| RUSLE                     | 0.04           | 23.2 | 13.6*     | -0.44 | 61.5 | 102.8   |
| AGWA-KINEROS2             | 0.07           | 43.0 | 42.9*     | -1.13 | 30.3 | 43.7    |
| WEPP                      | 0.00           | 10.3 | 10.4*     | 0.05  | 12.7 | 10.9    |



411

412 **Fig. 3** Simulated total sediment yield (SY) for June-October 2013 compared to observed SY at  
 413 hillslopes from (a) Schmeer et al. (2018) empirical model with inputs from field  
 414 measurements; (b) same as (a) except with inputs derived from geospatial data; (c)  
 415 RUSLE; (d) AGWA-KINEROS2; (e) WEPP. Line is 1:1. Data in Kampf et al (2020).

416

417        **4.2.        Watershed scale**

418        Each of the models produced different magnitudes and spatial patterns of seasonal total  
419        SY across the study watersheds. The ranges of watershed total SL (and SY) varied from  $9 \times 10^3$   
420        Mg ( $6 \text{ Mg ha}^{-1}$ ) in WEPP to  $2 \times 10^6$  Mg ( $2000 \text{ Mg ha}^{-1}$ ) in VIC-MUSLE, with values varying  
421        between models and with the size of hillslopes within each simulation (Table 2). In comparison,  
422        observed hillslopes had a mean SY of  $11 \text{ Mg ha}^{-1}$  and maximum of  $38 \text{ Mg ha}^{-1}$ , which converts  
423        to  $2 \times 10^4$  -  $4 \times 10^4$  Mg per watershed if the mean value is applied uniformly. Uncertainties in these  
424        watershed-scale estimates stem from variability in hillslope characteristics and burn severity, and  
425        uncertainties in hillslope-scale measurements; however, these values are a reasonable first-order  
426        estimate for evaluating models. Models with watershed-scale sediment loads in the expected  
427        range were WEPP, AGWA-KINEROS2, and the VIC modules with the smallest hillslope sizes.  
428        RUSLE values were all higher than the expected SY.

429        Each model predicted increasing SL with larger hillslope sizes (Figures 4, S1), except for  
430        WEPP in Skin Gulch, which predicted declining SL for the watershed simulations using the  
431        largest hillslope sub-units. Even though the total watershed area was the same for all simulations,  
432        the simulated SY increased non-linearly with greater hillslope length. This effect is greatest in  
433        the hillslope version of RUSLE because it does not simulate sediment deposition within  
434        hillslopes. This scale dependence in simulated SL is not present for the gridded version of  
435        RUSLE because the L and S factors are calculated for each 30 m pixel (Winchell et al., 2008)  
436        instead of for hillslopes of varying sizes. Gridded RUSLE total SL were 112,000-155,000 Mg for  
437        Skin and Hill Gulch, respectively, at the lower range of those predicted by the hillslope version  
438        of RUSLE.

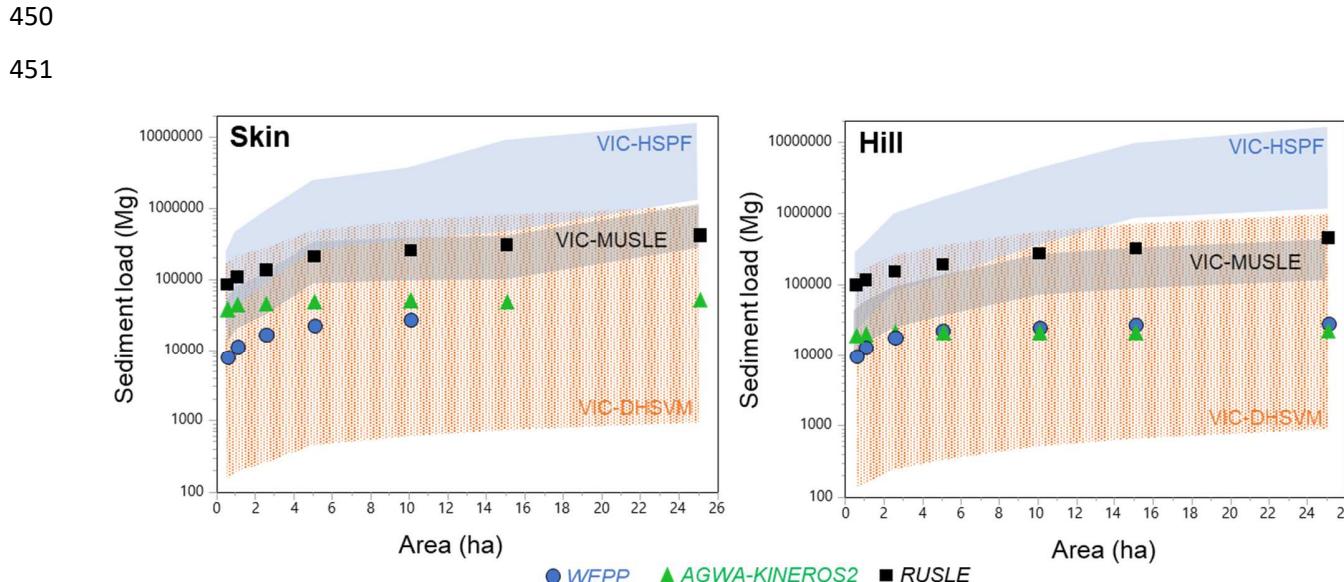
439        Simulated watershed-scale SL values were also sensitive to parameter selection, as shown  
440        in the VIC ensemble simulations (Figure 4, S1). Sediment loads were overall highest for VIC-  
441        HSPF and VIC-MUSLE, but VIC-DHSVM had the greatest sensitivity to parameter values, with  
442        simulated SL varying over two orders of magnitude across the ensembles of simulations for each  
443        scale of hillslope sub-units.

444

445

446 **Table 2.** Summary of watershed total sediment loads (Mg) [and sediment yields ( $Mg\ ha^{-1}$ )] for  
447 each model and watershed divided into 0.5 ha and 25 ha target hillslope areas. RUSLE gridded  
448 values were calculated from a 30 m DEM. Values for MUSLE, HSPF, and DHSVM represent  
449 mean values calculated from ensemble simulations in VIC.

| Model         | Skin        |                  | Hill         |                  |
|---------------|-------------|------------------|--------------|------------------|
|               | 0.5ha       | 25ha             | 0.5ha        | 25ha             |
| RUSLE         | 88,000 [58] | 445,000 [292]    | 102,000 [72] | 470,000 [333]    |
| WEPP          | 9,100 [6]   | 27,000 [16]      | 10,200 [7]   | 27,100 [19]      |
| AGWA-KINEROS2 | 41,000 [27] | 55,300 [36]      | 20,300 [14]  | 23,700 [17]      |
| VIC-MUSLE     | 36,200 [24] | 248,000 [162]    | 30,600 [22]  | 99,300 [70]      |
| VIC-HSPF      | 38,700 [25] | 2,470,000 [1620] | 42,700 [30]  | 2,410,000 [1700] |
| VIC-DHSVM     | 43,400 [28] | 279,000 [183]    | 38,100 [27]  | 257,000 [182]    |
| RUSLE gridded |             | 112,000 [73]     |              | 155,000 [110]    |



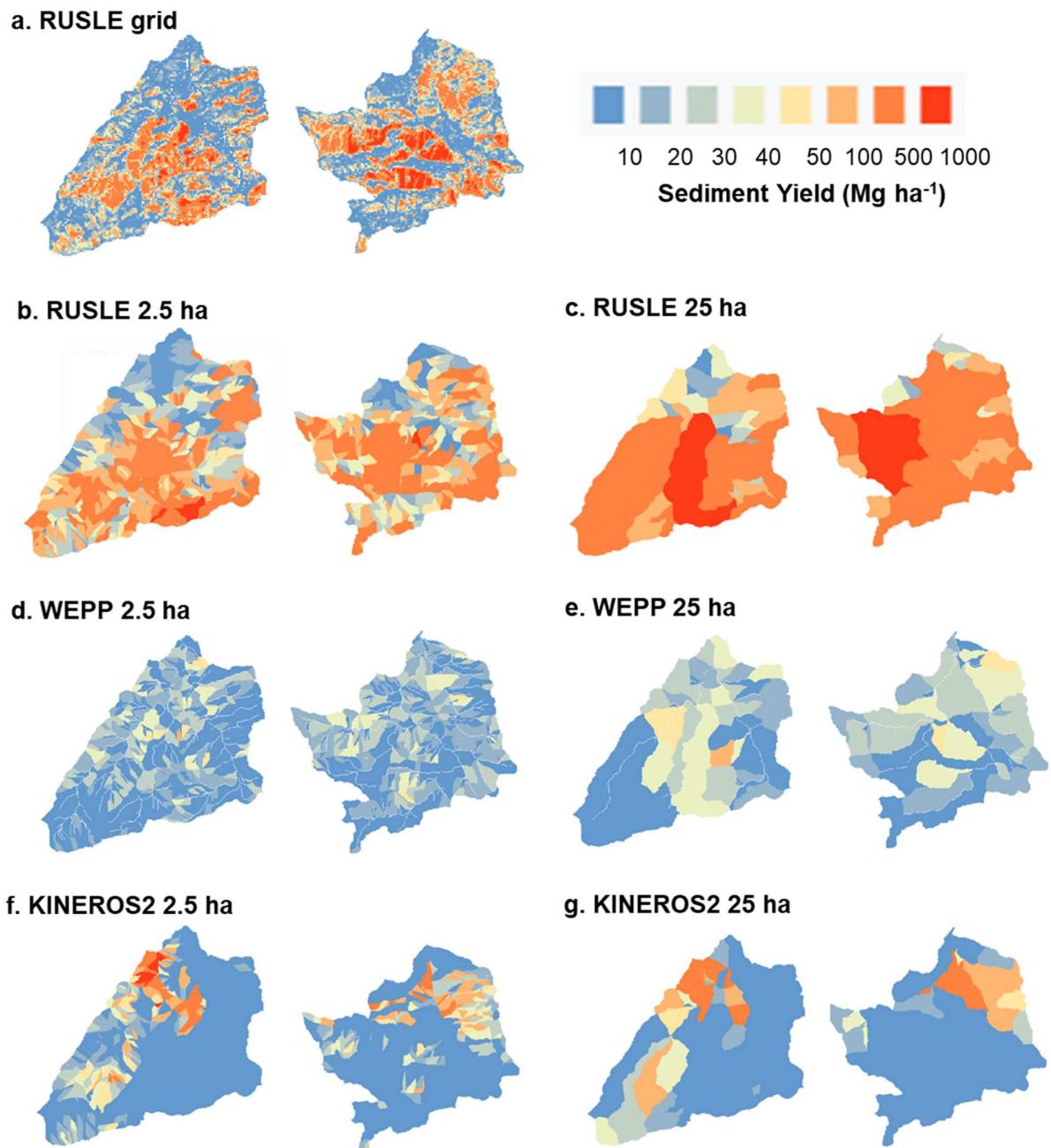
452  
453 **Fig. 4** Changes in simulated watershed total sediment loads with target hillslope area for Skin  
454 Gulch and Hill Gulch. Points are for WEPP, AGWA-KINEROS2, and RUSLE hillslope  
455 watershed totals, and shaded ranges are for the VIC modules with varying parameter  
456 values. Boxplots of VIC sediment loads in Figure S1. Data in Kampf et al. (2020).

457  
458 Spatial patterns of SY within watersheds are shown in Figure 5. For both Skin Gulch and  
459 Hill Gulch, gridded RUSLE produced the highest SY in the center portions of the watersheds,

460 where burn severity was high and slopes are steep. Simulated SY rates in these areas exceeded  
461 1,000 Mg ha<sup>-1</sup> for some individual grid cells (Figure 5a). These extreme rates were less common  
462 for RUSLE applied at 2.5 ha hillslope resolution, but they were present for some hillslopes at the  
463 25 ha resolution due to the long hillslope lengths (Figure 5b,c). WEPP simulated less spatial  
464 variability overall, but generally SY was highest in areas with high burn severity (Figure 5d,e).  
465 AGWA-KINEROS2 had isolated areas of very high erosion in both watersheds (>400 Mg ha<sup>-1</sup>)  
466 with low erosion in most other locations (< 1 Mg ha<sup>-1</sup>). Boundaries of the high erosion areas are  
467 similar to soil survey polygons, suggesting that this pattern relates to soil parameters.

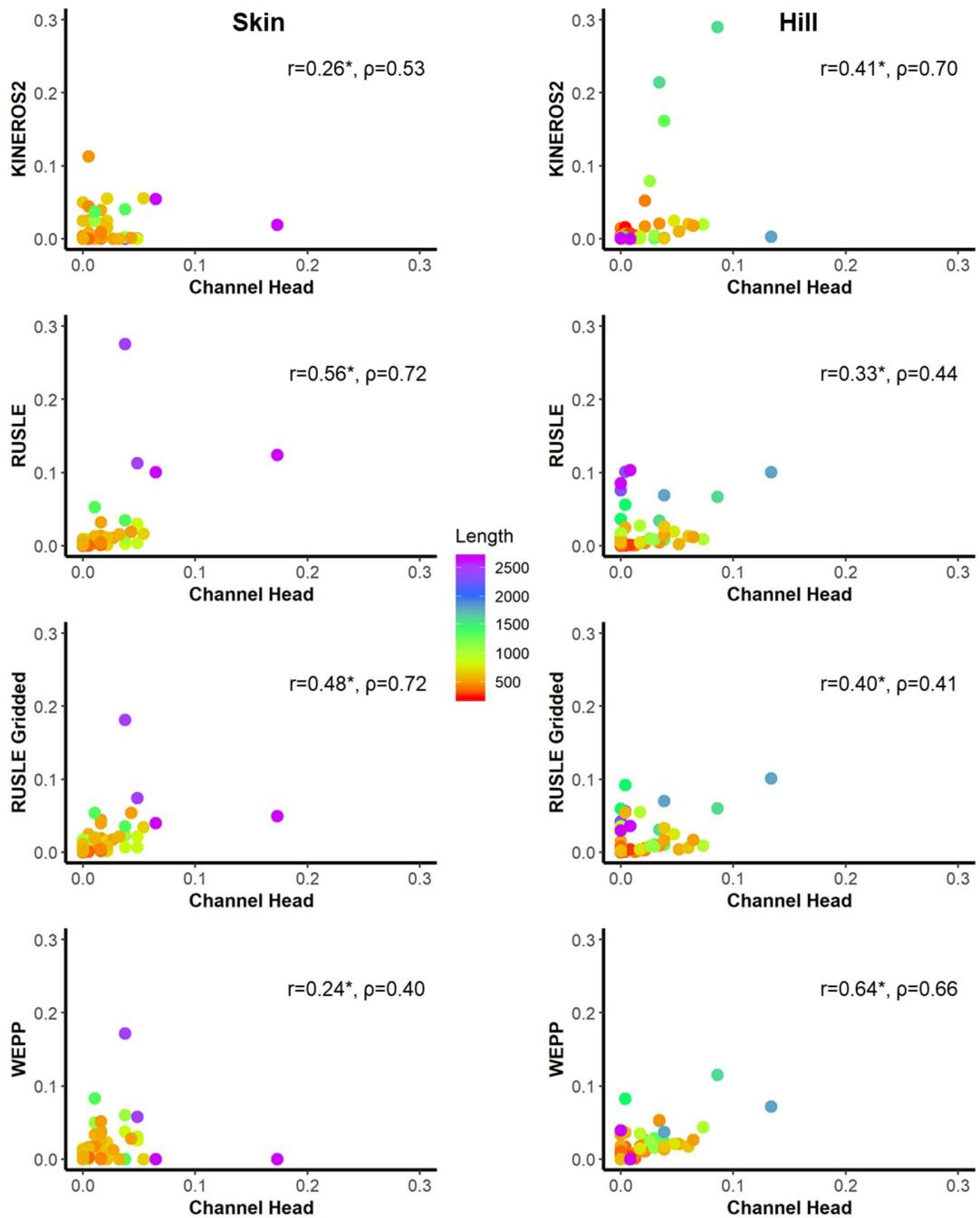
468 Correlation analysis (Figure S2) indicates more similarities between models than are  
469 evident visually (Figure 5). Correlations are strongest between gridded and hillslope versions of  
470 RUSLE ( $r=0.69-0.81$ ), which differed only in the original resolution of computations (Figure  
471 S2). Both versions of RUSLE were better correlated with WEPP ( $r=0.45-0.63$ ;  $\rho=0.56-0.63$ ) than  
472 with AGWA-KINEROS2 ( $r=0.01-0.26$ ;  $\rho=0.22-0.50$ ). WEPP was also significantly correlated  
473 with AGWA-KINEROS2 ( $r=0.58$ ;  $\rho=0.63$ ). Interestingly, the models were not consistent in  
474 simulating which of the two watersheds produced more erosion. RUSLE and WEPP simulated  
475 higher total sediment load and average sediment yield in Hill Gulch, whereas AGWA-  
476 KINEROS2, MUSLE, and DHSVM simulated higher total sediment load for Skin Gulch (Table  
477 2). Hill Gulch has higher average hillslope lengths, slopes, and soil erodibilities, which led to  
478 higher SL in RUSLE and WEPP. In AGWA-KINEROS2, the boundaries of areas with  
479 particularly high erosion in Skin Gulch (Figure 5f,g) corresponded with boundaries of soil  
480 polygons, so these patterns were likely heavily influenced by the of soil parameter values. VIC-  
481 MUSLE, VIC-HSPF, and VIC-DHSVM had parameter values based on those in AGWA-  
482 KINEROS2, so they also produced higher SL in Skin Gulch.

483 The simulated patterns of relative erosion amounts (fractions of watershed total SL) for  
484 25 ha hillslopes were significantly correlated with the fraction of total channel heads ( $r=0.26-$   
485 0.64;  $\rho=0.41-0.72$ ) (Figure 6), indicating the models all produced erosion patterns similar to  
486 those of post-fire rilling and gullying. AGWA-KINEROS2 simulations diverged most from the  
487 channel head pattern for intermediate-length hillslopes in Hill Gulch, whereas RUSLE had more  
488 outliers for the longest hillslopes in Skin Gulch because of the strong influence of length on  
489 RUSLE sediment yields.



490  
491  
492  
493  
494  
495

**Fig. 5** Spatial patterns of simulated sediment yields (SY) for Skin Gulch (left) and Hill Gulch (right) using (a) RUSLE with values computed by 30 m grid cell; (b,c) RUSLE hillslope; (d,e) WEPP for hillslope polygons, and (f,g) AGWA-KINEROS2 for hillslope polygons. Target hillslope areas in (b,d,f) are 2.5 ha, and those for (c,e,g) are 25 ha



496

497 **Fig. 6** Fraction of watershed total sediment load vs. fraction of watershed total channel heads by  
 498 25 ha hillslope divisions (Figure 5c,e,g). Pearson ( $r$ ) and Spearman ( $\rho$ ) correlation  
 499 coefficients given for each combination of values; \* indicates significant at  $p<0.05$   
 500 Significance of  $\rho$  could not be computed due to ties. Colors of points indicate hillslope  
 501 length in meters.

502

503        **5. Discussion**

504        Our results confirm prior studies showing that uncalibrated hillslope-scale erosion models  
505 are not well correlated with hillslope erosion observations (Larsen and MacDonald 2007; Miller  
506 et al. 2012). One major source of error in applying un-calibrated models to new locations is the  
507 accuracy of input parameters derived from geospatial datasets. In particular, improvements are  
508 needed in surface cover data, as bare soil is the primary variable responsible for increased post-  
509 fire erosion in Colorado (Larsen et al., 2009). Accurate representation of bare soil from satellite  
510 or airborne remote sensing data is inherently challenging because of the fine-scale heterogeneity  
511 of regrowth, but estimates could be improved with more extensive field cover measurements for  
512 training remote sensing image classifications. We recommend collecting field ground cover data  
513 where possible to support applications of erosion models for management purposes. Soil  
514 property data can also introduce error because the spatial resolution of soil survey polygons is  
515 often coarser than the size of modeled hillslopes. Many soil survey polygons contain multiple  
516 soil components, and boundaries between different surveys can cause abrupt changes in  
517 parameters. Conducting full soil surveys in new management areas is likely infeasible in most  
518 circumstances, but modelers could consider conducting sensitivity analyses, varying soil  
519 parameter values to evaluate their effects on simulated sediment yields. Finally, in the case study  
520 presented here, uncertainties in observed SY, particularly under-catch of sediment, also affected  
521 model-observation comparisons.

522        Although higher quality input data should improve model results, it may not be realistic  
523 to expect uncalibrated hillslope erosion models to simulate SY accurately for individual  
524 hillslopes. Each hillslope has unique and heterogeneous topography, soil, vegetation, and rainfall  
525 patterns, leading to complex internal erosion and deposition patterns that are challenging both to  
526 measure and to model. However, the reliability of these models over larger watershed areas is  
527 generally more important for management considerations, as models can guide decisions on  
528 which watersheds to target for erosion control. We found that RUSLE over-predicted erosion at  
529 the watershed scale compared to our empirical estimate, whereas WEPP and AGWA-  
530 KINEROS2 produced values that were more consistent with expected values from field  
531 observations. In part, RUSLE may overpredict because it represents gross erosion, while both  
532 erosion and deposition are modeled in WEPP and AGWA-KINEROS2. Managers should use the  
533 spatial erosion patterns simulated by these models to map areas of low and high erosion rather

534 than rely on the magnitudes of simulated sediment load. The relative patterns of erosion are more  
535 consistent between models than the watershed-scale sediment loads. In the watersheds evaluated  
536 here, the relative erosion patterns were significantly correlated with mapped patterns of rilling  
537 and gullying, albeit with substantial scatter in the relationships (Figure 6). This indicates that the  
538 models can identify areas that experienced high post-fire erosion, although the spatial patterns  
539 may not be entirely consistent between models.

540 For all models, watershed-scale sediment loads were closest to our empirical estimate  
541 when hillslopes were divided into the smallest areas (i.e., 0.5 ha). In USLE and WEPP smaller  
542 hillslopes were more realistic because the models were originally developed using plot-scale  
543 data. Relationships between simulated SY and input variables are scale-dependent in hillslope  
544 models because they use length to predict erosion rates (Wu et al., 2008; Ghaffari, 2011; Fu et  
545 al., 2015). When such models are applied to larger slopes than those for which they were  
546 developed, they may not adequately represent the erosion and deposition processes. Longer flow  
547 paths can enable greater rill and gully development, leading to concentrated flow with greater  
548 transport capacity and higher SY (Pietraszek, 2006); however, longer flow paths can also provide  
549 more opportunities for sediment to be deposited within hillslopes (Afshar et al. 2010), leading to  
550 complex and highly variable scaling relationships (Wagenbrenner and Robichaud, 2014). WEPP  
551 and AGWA-KINEROS2 allow for both erosion and deposition within hillslopes, whereas  
552 RUSLE, VIC-MUSLE, and VIC-HSPF do not. This leads to greater sensitivity to hillslope scale  
553 in the latter models. RUSLE sediment yields progressively increase with longer slopes unless a  
554 slope length threshold is applied (Nearing et al., 1990). In RUSLE, SY also increases with slope  
555 based in part on the ratio of rill to interrill erosion which increases with slope (McCool et al.,  
556 1989). Many of the study area hillslopes also had steeper slopes than were used for RUSLE  
557 development (Nearing, 1997; Renard et al., 1997). When applying these models to new  
558 watersheds that do not have erosion observations, we recommend using a fine hillslope  
559 resolution, ideally with lengths between 10-100 m, which is most comparable to the plots used to  
560 develop USLE, RUSLE, and WEPP.

561 An additional consideration in selecting a model is the time scale of information needed.  
562 RUSLE is intended for long time scales (seasonal, annual). WEPP simulates individual storms,  
563 but results are usually evaluated as the sums of sediment yields over seasons or years. AGWA-  
564 KINEROS2 is an event-based model that is typically applied for individual rain storms. Here we

565 compared these models in terms of their seasonal total erosion simulations to maintain  
566 consistency between the three models, but further evaluation of WEPP and AGWA-KINEROS2  
567 could consider simulations of individual storms. Although RUSLE does not simulate the runoff  
568 response to time-varying rainfall and snowmelt; adding a runoff factor to RUSLE can improve  
569 its performance (Kinnell 2010). Overall, our results demonstrate that simulations are likely to be  
570 most accurate when run with fine spatial discretization (small hillslopes) and short time steps that  
571 allow simulating erosion from individual storms. These finer resolution simulations aggregate to  
572 more realistic sediment loads for large spatial scales (watersheds) and long time scales (seasons,  
573 years).

## 574 **6. Conclusions**

575 This study compared the performance of erosion models commonly used in watershed  
576 management. Although most of the models were developed at hillslope scale, managers often  
577 employ them for watershed scale prediction. With the exception of a site-specific regression  
578 model, we found that none of the model simulations of sediment yield correlated well with SY  
579 measured at hillslope sediment fences, probably due to a combination of measurement and model  
580 uncertainties. RUSLE and AGWA-KINEROS2 predicted wider ranges of SY than those  
581 observed in the field and substantially over-predicted some hillslope SY values, whereas WEPP  
582 predicted a range of SY more consistent with field measurements. One large source of potential  
583 error stems from geospatial datasets used to parameterize hillslope models; accurate maps of  
584 ground cover are particularly important for erosion simulations. Given the heterogeneity of land  
585 surface properties within hillslopes, it is unrealistic to expect an erosion model parameterized  
586 with geospatial data to perform well for individual hillslopes. The models were somewhat more  
587 consistent with one another in their simulated spatial patterns of erosion across watersheds, and  
588 they all simulated erosion patterns that significantly correlated with visual observations of rill  
589 and gully channel heads. This means that although the models did not capture the site-specific  
590 factors that affect individual hillslopes, they were able to identify areas with high post-fire  
591 erosion within watersheds, though with some variability in patterns between models.

592 The models differed more in their predictions of watershed-scale sediment loads, which  
593 varied by orders of magnitude. At watershed scale, WEPP and AGWA-KINEROS2 had  
594 sediment loads in the range expected from scaling up our hillslope observations, whereas

595 RUSLE exceeded the expected range. Departure from the expected range became greater for  
596 larger size hillslopes, so erosion models should be applied on small (<1 ha) hillslopes to avoid  
597 unrealistic increases in simulated SY caused by long slope lengths. VIC erosion model  
598 applications also highlighted substantial variability in watershed sediment loads due to parameter  
599 selection, particularly for soil parameters. Because of the high uncertainty in watershed sediment  
600 loads, users should consider making management decisions based on relative erosion patterns  
601 rather than sediment load quantities. Collecting field erosion data across multiple scales from  
602 hillslopes to watersheds is critical to future improvements in simulating watershed-scale erosion.

603  
604

## 605 **Acknowledgements**

606 Post-fire erosion monitoring was funded by National Science Foundation grants [DIB-  
607 1230205] and [DIB-1339928]. Model evaluation was supported by the Colorado Water Center.  
608 Thanks to Bill Elliott and Pete Robichaud for WEPP training and theoretical background. F.  
609 Saavedra's research has been supported by Comisión Nacional de Investigación Científica y  
610 Tecnológica (CONICYT-FONDECYT) Postdoctoral [3170651] project, and C. Wilson was  
611 supported by National Science Foundation [Grant No. DGE-0966346]. Thanks to reviewers for  
612 their helpful comments. Data available in Kampf et al. (2020).

613

614 **References**

615 Afshar, F. A., Ayoubi, S., & Jalalian, A., 2010. Soil redistribution rate and its relationship with  
616 soil organic carbon and total nitrogen using  $^{137}\text{Cs}$  technique in a cultivated complex  
617 hillslope in western Iran. *J Environ Radioact.* 101(8), 606-614.  
618 <https://doi.org/10.1016/j.jenvrad.2010.03.008>.

619 Ahuja, L. R., Ii, J. A., David, O., 2005. Developing natural resource models using the object  
620 modeling system: feasibility and challenges. *Adv Geosci.* 4, 29-36.

621 Aksoy, H., Kavvas, M. L., 2005. A review of hillslope and watershed scale erosion and sediment  
622 transport models. *Catena.* 64(2-3), 247-271. <https://doi.org/10.1016/j.catena.2005.08.008>.

623 Baigorria, G. A., Romero, C. C., 2007. Assessment of erosion hotspots in a watershed:  
624 integrating the WEPP model and GIS in a case study in the Peruvian Andes. *Environ  
625 Modell Softw.* 22(8), 1175-1183. <https://doi.org/10.1016/j.envsoft.2006.06.012>.

626 Benavides-Solorio, J.D.D., MacDonald, L.H., 2005. Measurement and prediction of post-fire  
627 erosion at the hillslope scale, Colorado Front Range. *Int J Wildland Fire.* 14, 457–474.  
628 <http://dx.doi.org/10.1071/WF05042>.

629 Benda, L., Miller, D., Andras, K., Bigelow, P., Reeves, G, Michael, D., 2007. NetMap: a new  
630 tool in support of watershed science and resource management. *Forest Science* 53(2):  
631 206–219. <https://doi.org/10.1093/forestscience/53.2.206>.

632 Bicknell, B. R., A. S. Donigian, Jr., T. H. Jobes, Chinnaswamy, R.V., 1996. Modeling Nitrogen  
633 Cycling and Export in Forested Watersheds Using HSPF. U.S. Environmental Protection  
634 Agency, National Exposure Research Laboratory, Ecosystems Research Division,  
635 Athens, Georgia, USA.

636 Brogan, D.J., MacDonald, L.H., Nelson, P.A., Morgan, J.A., 2019a. Geomorphic complexity and  
637 sensitivity in channels to fire and floods in mountain catchments. *Geomorphology.* 337,  
638 53–68. <https://doi.org/10.1016/j.geomorph.2019.03.031>

639 Brogan, D.J., Nelson, P.A., MacDonald, L.H., 2019b. Spatial and temporal patterns of sediment  
640 storage and erosion following a wildfire and extreme flood. *Earth Surf Dynam.* 7, 563–  
641 590. <https://doi.org/10.5194/esurf-7-563-2019>

642 Canfield, H.E., Goodrich, D.C., 2005. Suggested changes to AGWA to account for fire (V 2.1).

643 Demaria, E.M., Nijssen, B., Wagener, T., 2007. Monte Carlo sensitivity analysis of land surface  
644 parameters using the Variable Infiltration Capacity model. *J Geophys Res-Atmos.* 112.  
645 <https://doi.org/10.1029/2006JD007534>

646 Desilets, S. L., Nijssen, B., Ekwurzel, B., Ferré, T. P., 2007. Post-wildfire changes in suspended  
647 sediment rating curves: Sabino Canyon, Arizona. *Hydrol Process.* 21(11), 1413-1423.  
648 <https://doi.org/10.1002/hyp.6352>.

649 Donigian, A.S., Love, J.T., 2003. Sediment calibration procedures and guidelines for watershed  
650 modeling. *Proceedings of the Water Environment Federation 2003.* 728-747.  
651 <https://doi.org/10.2175/193864703784828345>.

652 Doten, C. O., Bowling, L. C., Lanini, J. S., Maurer, E. P., Lettenmaier, D. P., 2006. A spatially  
653 distributed model for the dynamic prediction of sediment erosion and transport in  
654 mountainous forested watersheds. *Water Resour Res.* 42, W04417.  
655 <https://doi.org/10.1029/2004WR003829>

656 Dun, S., Wu, J. Q., Elliot, W. J., Robichaud, P. R., Flanagan, D. C., Frankenberger, J. R., Brown,  
657 R.E, Xu, A.C., 2009. Adapting the Water Erosion Prediction Project (WEPP) model for  
658 forest applications. *J Hydrol.* 366(1-4), 46-54.  
659 <https://doi.org/10.1016/j.jhydrol.2008.12.019>.

660 Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z. L., Quayle, B., Howard, S., 2007. A project for  
661 monitoring trends in burn severity. *Fire Ecol.* 3(1), 3-21.  
662 <https://doi.org/10.4996/fireecology.0301003>.

663 Elliot, W. J., 2004. WEPP internet interfaces for forest erosion prediction. *J Am Water Resour  
664 As.* 40(2), 299-309. <https://doi.org/10.1111/j.1752-1688.2004.tb01030.x>.

665 Elliot, W. J., Miller, M. E., Enstice, N., 2016. Targeting forest management through fire and  
666 erosion modelling. *Int J Wildland Fire.* 25(8), 876-887.  
667 <https://doi.org/10.1071/WF15007>.

668 Flanagan,D.C., Nearing, M.A., 1995. Water Erosion Prediction Project Hillslope Profile and  
669 Watershed Model Documentation.NSERL Report No.10,West Lafayette,IN: National  
670 Soil Erosion Research Laboratory

671 Frankenberger, J. R., Dun, S., Flanagan, D. C., Wu, J. Q., Elliot, W. J., 2011. Development of a  
672 GIS interface for WEPP model application to Great Lakes forested watersheds. In ISELE

673 Paper Number 11139. Paper presented at the international symposium on erosion and  
674 landscape evolution; September 18-21, 2011; Anchorage, AK. 8 p.

675 Fu, B. J., Zhao, W. W., Chen, L. D., Zhang, Q. J., Lü, Y. H., Gulinck, H., Poesen, J., 2005.  
676 Assessment of soil erosion at large watershed scale using RUSLE and GIS: a case study  
677 in the Loess Plateau of China. *Land Degrad Dev.* 16(1), 73-85.  
678 <https://doi.org/10.1002/ldr.646>.

679 Fu, S., Cao, L., Liu, B., Wu, Z., Savabi, M. R., 2015. Effects of DEM grid size on predicting soil  
680 loss from small watersheds in China. *Environ Earth Sci.* 73(5), 2141-2151.  
681 <https://doi.org/10.1007/s12665-014-3564-3>.

682 Gannon, B. M., Wei, Y., MacDonald L.H., Kampf, S.K., Jones, K.W., Cannon, J.B., Wolk, B.H.,  
683 Cheng, A.S., Addington R.N., Thompson, M.P., 2019. Prioritising fuels reduction for  
684 water supply protection. *Int J Wildland Fire.* 28, 785-803.  
685 <https://doi.org/10.1071/WF18182>.

686 Garbrecht, J., Martz, L. W., 1997. The assignment of drainage direction over flat surfaces in  
687 raster digital elevation models. *J Hydrol.* 193(1-4), 204-213.  
688 [https://doi.org/10.1016/S0022-1694\(96\)03138-1](https://doi.org/10.1016/S0022-1694(96)03138-1).

689 Ghaffari, G., 2011. The impact of DEM resolution on runoff and sediment modelling results. *Res*  
690 *J Environ Sci.* 5(8), 691-702.

691 Goodrich, D. C., Burns, I. S., Unkrich, C. L., Semmens, D. J., Guertin, D. P., Hernandez, M.,  
692 Yatheendradas, S., Kennedy, J.R., Levick, L. R., 2012. KINEROS2/AGWA: model use,  
693 calibration, and validation. *T ASABE.* 55(4), 1561-1574.

694 Henkle, J. E., Wohl, E., & Beckman, N. (2011). Locations of channel heads in the semiarid  
695 Colorado Front Range, USA. *Geomorphology*, 129(3-4), 309-319.  
696 <https://doi.org/10.1016/j.geomorph.2011.02.026>.

697 Johnson, R. C., Imhoff, J. C., & Davis, H. H. (1980). User's Manual of the Hydrologie  
698 Simulation Program-FORTRAN (HSPF). US Environmental Protection Agency, Athens,  
699 GA. EPA-600/9/80-015.

700 Jones, K. W., Cannon, J. B., Saavedra, F. A., Kampf, S. K., Addington, R. N., Cheng, A. S.,  
701 MacDonald, L.H., Wilson, C., Wolk, B., 2017. Return on investment from fuel treatments  
702 to reduce severe wildfire and erosion in a watershed investment program in Colorado. *J*  
703 *Environ Manage.* 198, 66-77. <https://doi.org/10.1016/j.jenvman.2017.05.023>.

704 Kampf, S. K., Brogan, D. J., Schmeer, S., MacDonald, L. H., Nelson, P. A., 2016. How do  
705 geomorphic effects of rainfall vary with storm type and spatial scale in a post-fire  
706 landscape?. *Geomorphology*. 273, 39-51.  
707 <https://doi.org/10.1016/j.geomorph.2016.08.001>.

708 Kampf, S., Schmeer, S., MacDonald, L., Gannon, B., Saavedra, F., Miller, M.E., Heldmeyer, A.,  
709 Livneh, B. 2020. High Park Fire hillslope erosion data and watershed simulations,  
710 HydroShare, <https://doi.org/10.4211/hs.b3ca27267d0c4a23b7f459917e3067ec>

711 Kinnell, P. I. A., 2010. Event soil loss, runoff and the Universal Soil Loss Equation family of  
712 models: A review. *J Hydrol.* 385(1-4), 384-397.  
713 <https://doi.org/10.1016/j.jhydrol.2010.01.024>.

714 Kunze, M. D., Stednick, J. D., 2006. Streamflow and suspended sediment yield following the  
715 2000 Bobcat fire, Colorado. *Hydrol Process.* 20(8), 1661-1681.  
716 <https://doi.org/10.1002/hyp.5954>.

717 Laflen, J. M., Flanagan, D. C., 2013. The development of US soil erosion prediction and  
718 modeling. *International Soil and Water Conservation Research.* 1(2), 1-11.  
719 [https://doi.org/10.1016/S2095-6339\(15\)30034-4](https://doi.org/10.1016/S2095-6339(15)30034-4).

720 Laflen, J.M., Elliot, W.J., Simanton, R., Holzhey, S., Kohl, K.D., 1991. WEPP soil erodibility  
721 experiments for rangeland and cropland soils. *J Soil Water Conserv.* 46(1), 39-44.

722 Larsen, I. J., MacDonald, L. H., 2007. Predicting postfire sediment yields at the hillslope scale:  
723 Testing RUSLE and Disturbed WEPP. *Water Resour Res.* 43(11).  
724 <https://doi.org/10.1029/2006WR005560>.

725 Larsen, I.J., MacDonald, L.H., Brown, E., Rough, D., Welsh, M.J., Pietraszek, J.H., Libohova,  
726 Z., Benavides-Solorio, J.D., Schaffrath, K., 2009. Causes of post-fire runoff and erosion:  
727 water repellency, cover, or soil sealing? *Soil Sci Soc Am J.* 73, 1393-1407.  
728 <https://doi.org/10.2136/sssaj2007.0432>

729 Liang, X., Lettenmaier, D. P., Wood, E. F., Burges, S. J., 1994. A simple hydrologically based  
730 model of land surface water and energy fluxes for general circulation models. *J Geophys*  
731 *Res-Atmos.* 99(D7), 14415-14428. <https://doi.org/10.1029/94JD00483>.

732 Litschert, S.E., Theobald, D.M., Brown, T.C., 2014. Effects of climate change and wildfire on  
733 soil loss in the Southern Rockies Ecoregion. *Catena*. 118, 206-219.  
734 <http://dx.doi.org/10.1016/j.catena.2014.01.007>

735 Livneh, B., Bohn, T.J., Pierce, D.W., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D.R.,  
736 Brekke, L., 2015. A spatially comprehensive, hydrometeorological data set for Mexico,  
737 the U.S., and Southern Canada 1950–2013. *Sci Data.* 2, 150042.  
738 <https://doi.org/10.1038/sdata.2015.42>

739 Livneh, B., Rosenberg, E.A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K.M., Maurer, E.P.,  
740 Lettenmaier, D.P., 2013. A Long-Term Hydrologically Based Dataset of Land Surface  
741 Fluxes and States for the Conterminous United States: Update and Extensions. *J Climate.*  
742 26, 9384–9392. <https://doi.org/10.1175/JCLI-D-12-00508.1>

743 Maidment, D.R., 1993. *Handbook of Hydrology*. McGraw-Hill, New York.

744 McCool, D.K., Foster, G.R., Mutchler, C.K., Meyer, L.D., 1989. Revised slope length factor for  
745 the Universal Soil Loss Equation. *T ASAE.* 32, 1571–1576.  
746 <https://doi.org/10.13031/2013.31192>

747 Merritt, W. S., Letcher, R. A., Jakeman, A. J., 2003. A review of erosion and sediment transport  
748 models. *Environ Modell Softw.* 18(8-9), 761-799. [https://doi.org/10.1016/S1364-8152\(03\)00078-1](https://doi.org/10.1016/S1364-8152(03)00078-1).

750 Miller, J. D., Nyhan, J. W., Yool, S. R., 2003. Modeling potential erosion due to the Cerro  
751 Grande Fire with a GIS-based implementation of the Revised Universal Soil Loss  
752 Equation. *Int J Wildland Fire.* 12(1), 85-100. <https://doi.org/10.1071/WF02017>.

753 Miller, M. E., MacDonald, L. H., Robichaud, P. R., Elliot, W. J., 2012. Predicting post-fire  
754 hillslope erosion in forest lands of the western United States. *Int J Wildland Fire.* 20(8),  
755 982-999. <https://doi.org/10.1071/WF09142>.

756 Miller, M.E., Elliot, W.J., Billmire, M., Robichaud, P.R., Endsley, K.A., 2016. Rapid-response  
757 tools and datasets for post-fire remediation: linking remote sensing and process-based  
758 hydrological models. *Int J Wildland Fire.* 25(10), 1061-1073.  
759 <https://doi.org/10.1071/WF15162>.

760 Miller, S. N., Semmens, D. J., Goodrich, D. C., Hernandez, M., Miller, R. C., Kepner, W. G.,  
761 Guertin, D. P., 2007. The automated geospatial watershed assessment tool. *J Environ  
762 Modeling and Software.* 22(3), 365-377. <https://doi.org/10.1016/j.envsoft.2005.12.004>.

763 Miller, S., Rhodes, C., Robichaud, P., Ryan, S., Kovacs, J., Chambers, C., Rathburn, S., Heath,  
764 J., Kampf, S., Wilson, C., Brogan, D. Piehl, B., Miller, M.E., Giordanengo, J., Berryman,  
765 E., Rocca, M., 2017. Learn from the burn: the High Park Fire 5 years later. *Science You*

766 Can Use Bulletin, Issue 25. Fort Collins, CO: Rocky Mountain Research Station. 18 p.,  
767 18.

768 Millward, A. A., Mersey, J. E., 1999. Adapting the RUSLE to model soil erosion potential in a  
769 mountainous tropical watershed. *Catena*. 38(2), 109-129. [https://doi.org/10.1016/S0341-8162\(99\)00067-3](https://doi.org/10.1016/S0341-8162(99)00067-3).

770 Nearing, M. A., 1997. A single, continuous function for slope steepness influence on soil loss.  
771 *Soil Sci Soc Am J*. 61(3), 917-919.  
772 <https://doi.org/10.2136/sssaj1997.03615995006100030029x>.

773 Nearing, M. A., Deer-Ascough, L., Laflen, J. M., 1990. Sensitivity analysis of the WEPP  
774 hillslope profile erosion model. *T ASAE*. 33(3), 839-0849.

775 Pietraszek, J.H., 2006. Controls on Post-fire Erosion at the Hillslope Scale, Master's Thesis.  
776 Colorado State University: Fort Collins, CO; 124 pp.

777 Renard, K. G., Foster, G.R., Weesies, G.A., McCool, D. K., Yoder, D.C., 1997. Predicting soil  
778 erosion by water: A guide to conservation planning with the Revised Universal Soil Loss  
779 Equation (RUSLE). Agricultural Handbook No.703.U. S. Dept. of Agr.: Washington DC.  
780 384 pp.

781 Renschler, C.S., 2003. Designing geo-spatial interfaces to scale process models: The GeoWEPP  
782 approach. *Hydrol Process*. 17, 1005-1017. <https://doi.org/10.1002/hyp.1177>.

783 Robichaud, P. R., Elliot, W. J., Pierson, F. B., Hall, D. E., & Moffet, C. A. (2007). Predicting  
784 postfire erosion and mitigation effectiveness with a web-based probabilistic erosion  
785 model. *Catena*, 71(2), 229-241. <https://doi.org/10.1016/j.catena.2007.03.003>.

786 Robichaud, P. R., Elliot, W. J., Lewis, S. A., Miller, M. E., 2016. Validation of a probabilistic  
787 post-fire erosion model. *Int J Wildland Fire*. 25(3), 337-350.  
788 <https://doi.org/10.1071/WF14171>.

789 Schmeer, S. R., Kampf, S. K., MacDonald, L. H., Hewitt, J., Wilson, C., 2018. Empirical models  
790 of annual post-fire erosion on mulched and unmulched hillslopes. *Catena*. 163, 276-287.  
791 <https://doi.org/10.1016/j.catena.2017.12.029>.

792 Schmeer, S.R., 2014. Post-fire Erosion Response and Recovery, High Park Fire, Colorado (M.S.  
793 Thesis). Colorado State University.

794 Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson, E.,  
795 Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G.,

797 Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C.,  
798 Verutes, G., Kim, C.K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J.,  
799 Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M. Mandle, L., Hamel,  
800 P., Vogl, A.L., Rogers, L., Bierbower, W., Denu, D., Douglass, J., 2018. InVEST  
801 3.6.0.post62+ug.h3ee8dba1d711 User's Guide. The Natural Capital Project, Stanford  
802 University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.

803 Shen, Z. Y., Gong, Y. W., Li, Y. H., Hong, Q., Xu, L., Liu, R. M., 2009. A comparison of WEPP  
804 and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three  
805 Gorges Reservoir Area. *Agr Water Manage.* 96(10), 1435-1442.  
806 <https://doi.org/10.1016/j.agwat.2009.04.017>.

807 Smith, R. E., Goodrich, D. C., Woolhiser, D. A., Unkrich, C. L., 1995. Chapter 20: KINEROS:  
808 A kinematic runoff and erosion model, in: Singh, V.J. (Ed.), *In Computer Models of*  
809 *Watershed Hydrology*, Water Resources Publications, Highlands Ranch, pp. 697-732.

810 Soil Survey Staff, Natural Resources Conservation Service, United States Department of  
811 Agriculture. Soil Survey Geographic (SSURGO) Database. Available online at  
812 <https://sdmdataaccess.sc.egov.usda.gov>. Accessed 2014.

813 Soil Survey Staff, Natural Resources Conservation Service, United States Department of  
814 Agriculture. U.S. General Soil Map (STATSGO2). Available online at  
815 <https://sdmdataaccess.sc.egov.usda.gov>. Accessed 2014.

816 Srivastava, A., Wu, J. Q., Elliot, W. J., Brooks, E. S., Flanagan, D. C., 2018. A Simulation Study  
817 to Estimate Effects of Wildfire and Forest Management on Hydrology and Sediment in a  
818 Forested Watershed, Northwestern US. *T ASABE.* 61(5), 1579-1601.

819 Stewart, J. R., Livneh, B., Kasprzyk, J. R., Rajagopalan, B., Minear, J. T., Raseman, W. J., 2017.  
820 A multialgorithm approach to land surface modeling of suspended sediment in the  
821 Colorado Front Range. *J Adv Model Earth Sy.* 9(7), 2526-2544.  
822 <https://doi.org/10.1002/2017MS001120>.

823 Theobald, D.M., Merritt, D.M., Norman, J.B. III., 2010. Assessment of threats to riparian  
824 ecosystems in the western U.S.: a report presented to the Western Environmental Threats  
825 Assessment Center, Prineville, OR by the U.S.D.A., Stream Systems Technology Center  
826 and Colorado State University, Fort Collins, 61p.

827 Troy, T.J., Wood, E.F., Sheffield, J., 2008. An efficient calibration method for continental-scale  
828 land surface modeling. *Water Resour Res.* 44. <https://doi.org/10.1029/2007WR006513>

829 Wagenbrenner, J. W., Robichaud, P. R., 2014. Post-fire bedload sediment delivery across spatial  
830 scales in the interior western United States. *Earth Surf Proc Land.* 39(7), 865-876.

831 Wicks, J.M., Bathurst, J.C., 1996. SHESED: a physically based, distributed erosion and sediment  
832 yield component for the SHE hydrological modelling system. *J Hydrol.* 175, 213–238.  
833 [https://doi.org/10.1016/S0022-1694\(96\)80012-6](https://doi.org/10.1016/S0022-1694(96)80012-6)

834 Wigmosta, M.S., Vail, L.W., Lettenmaier, D.P., 1994. A distributed hydrology-vegetation model  
835 for complex terrain. *Water Resour Res.* 30, 1665–1679.  
836 <https://doi.org/10.1029/94WR00436>

837 Williams, J. R., 1975. Sediment yield predictions with universal equation using runoff energy  
838 factor. In:Present and Prospective Technology for Predicting Sediment Yields and  
839 Sources. ARS-S-40 Agr. Res. Serv.,U.S.Dept. Agr. Washington,D.C. pp.244-252.

840 Williams, J.R., Berndt, H.D., 1977. Sediment yield prediction based on watershed hydrology. T  
841 ASAE. 20(6), 1100-1104.

842 Wilson, C., 2019. The frequency, magnitude and connectivity of post-wildfire rainfall-runoff and  
843 sediment transport. PhD Dissertation, Colorado State University.

844 Winchell, M.F., Jackson, S.H., Wadley, A.M., Srinivasan, R., 2008. Extension and validation of  
845 a geographic information system-based method for calculating the Revised Universal Soil  
846 Loss Equation length-slope factor for erosion risk assessments in large watersheds. *J Soil*  
847 *Water Conserv.* 63, 105–111. <https://doi.org/10.2489/JSWC.63.3.105>

848 Wischmeier,W. H., Smith, D.D., 1965. Predicting rainfall-erosion losses from cropland east of  
849 the Rocky Mountains,Guide forselection of practices for soil and water conservation.  
850 Agriculture Handbook No. 282. Agricultural Research Service,U. S. Dept.of Agric.:  
851 Washington DC. 47 pp.

852 Wohl, E., 2013. Migration of channel heads following wildfire in the Colorado Front Range,  
853 USA. *Earth Surf Proc Land.* 38(9), 1049-1053. <https://doi.org/10.1002/esp.3429>.

854 Woolhiser, D. A., Smith, R. E., Goodrich, D. C., 1990. KINEROS, A Kinematic Runoff and  
855 Erosion Model: Documentation and User Manual. ARS-77. Tucson, Ariz.: USDA-ARS  
856 Southwest Watershed Research Center. Available at: [www.tucson.ars.ag.gov/kineros](http://www.tucson.ars.ag.gov/kineros).

857 Wu, S., Li, J., Huang, G. H., 2008. A study on DEM-derived primary topographic attributes for  
858 hydrologic applications: Sensitivity to elevation data resolution. *Appl Geogr.* 28(3), 210-  
859 223. <https://doi.org/10.1016/j.apgeog.2008.02.006>.

860 Yanto, Livneh, B., Rajagopalan, B., Kasprzyk, J., 2017. Hydrological model application under  
861 data scarcity for multiple watersheds, Java Island, Indonesia. *J Hydrol: Regional Studies.*  
862 9, 127–139. <https://doi.org/10.1016/j.ejrh.2016.09.007>

863 Yochum, S.E., Norman, J., 2014. West Fork Complex Fire: potential increase in flooding and  
864 erosion. U.S.D.A. Natural Resources Conservation Service Report, Colorado, 32 p.

865 Yochum, S.E., Norman, J.B., 2015. Wildfire-induced flooding and erosion-potential modeling:  
866 examples from Colorado, 2012 and 2013. Proceedings of the 3rd Joint Federal  
867 Interagency Conference on Sedimentation and Hydrologic Modeling, April 19-23, 2015,  
868 Reno, Nevada, USA, 953-964. <https://doi.org/10.13140/RG.2.1.4422.1923>.

869

870