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Abstract

Land managers often need to predict watershed-scale erosion rates after disturbance or

other land cover changes. This study compared commonly used hillslope erosion models to

simulate post-fire sediment yields (SY) at both hillslope and watershed scales within the High
Park Fire, Colorado, U.S.A. At hillslope scale, simulated SY from four models— RUSLE,
AGWA/KINEROS?2, WEPP, and a site-specific regression model—were compared to observed
SY at 29 hillslopes. At the watershed scale, RUSLE, AGWA/KINEROS2, and WEPP were

applied to simulate spatial patterns of SY for two 14-16 km? watersheds using different scales

(0.5-25 ha) of hillslope discretization. Simulated spatial patterns were compared between models

and to densities of channel heads across the watersheds. Three additional erosion algorithms

were implemented within a land surface model to evaluate effects of parameter uncertainty. At

the hillslope scale, SY was only significantly correlated to observed SY for the empirical model,

but at the watershed scale, sediment loads were significantly correlated to observed channel head

densities for all models. Watershed sediment load increased with the size of the hillslope sub-

units due to the nonlinear effects of hillslope length on simulated erosion. SY’s were closest in

magnitude to expected watershed-scale SY when models were divided into the smallest

hillslopes. These findings demonstrate that current erosion models are fairly consistent at

identifying areas with low and high erosion potential, but the wide range of predicted SY and

poor fit to observed SY highlight the need for better field observations and model calibration to

obtain more accurate simulations.

Keywords: Erosion model, Hillslope scale, Watershed scale, WEPP, RUSLE, KINEROS2

Highlights

Evaluated performance of erosion models at hillslope and watershed scales
Simulated hillslope sediment yields did not correlate with measured values
Simulated watershed sediment yields were correlated with observed rill densities
Longer hillslopes within watershed simulations led to greater sediment loads

Parameter uncertainty caused >2 orders of magnitude variability in sediment yields
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1. Introduction

Soil erosion is a common problem in disturbed landscapes that has motivated the
development of many models to help land and water managers predict erosion magnitudes and
examine causes of variability in erosion rates (Merritt et al., 2003; Aksoy and Kavvas, 2005).
Erosion models can be used to evaluate how management actions or disturbances affect soil loss,
sedimentation, and/or water quality degradation. Models can also be applied to estimate spatial
patterns of erosion, identify areas where land use changes such as timber harvest or road
construction should be restricted, and determine where erosion mitigation would be most
beneficial after large disturbances like wildfire (Miller et al. 2016). Most erosion models have
been developed for agricultural areas using data collected from small plots or hillslopes
(Wischmeier and Smith, 1965; Flanagan and Nearing, 1995), but they are often applied to predict
erosion over large watersheds with diverse topography, soils, and land cover (e.g., Millward and
Mersey, 1999; Fu et al., 2005; Baigorria and Romero, 2007; Shen et al., 2009). Evaluations of
erosion model performance at the watershed scale are limited, making it difficult for land and
water managers to identify which erosion model is most appropriate for their local conditions
and scales of analysis.

Erosion models for land management have varying computational approaches. In the
U.S., two common erosion models are the Watershed Erosion Prediction Project (WEPP)
(Flanagan and Nearing, 1995) and the kinematic runoff and erosion model (KINEROS?2) (Smith
et al., 1995), both of which have been adapted for post-fire applications. Both are physically-
based erosion models with long histories of code development. The empirical Revised Universal
Soil Loss Equation (RUSLE) (Renard et al., 1997) is perhaps the most frequently applied erosion
model, and it is often integrated into decision support tools (Sharp et al. 2018; Gannon et al.
2019). Hydrologic models are becoming increasingly modularized, which facilitates integration
of different types of erosion simulation modules (Ahuja et al., 2005; Stewart et al., 2017). Yet,
even as erosion model types have proliferated, measurements to evaluate their performance
remain sparse.

In this paper we evaluate the performance of erosion models at multiple scales of analysis
and offer guidance about selecting models for erosion simulation. We conducted this model
analysis for two 14-16 km? burned watersheds with specific objectives to: (1) evaluate the

performance of the models for simulating hillslope erosion; (2) compare total magnitudes and
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spatial patterns of simulated erosion across watersheds divided into varying sizes of hillslopes;
(3) quantify potential effects of parameter uncertainty on simulated watershed-scale erosion, and
(4) evaluate the relative accuracy of models at the watershed scale using a combination of

quantitative and qualitative observations of surface erosion.

2. Background
2.1. Erosion models

One of the oldest and most widely used erosion models is the Universal Soil Loss
Equation (USLE) (Wischmeir and Smith, 1965). This empirical model was developed from small
plot data collected at research sites across the U.S. Most plots were 2 m (6 ft) wide by 22 m (72
ft) long, and slopes matched the local terrain (Laflen and Flanagan, 2013). USLE predicts annual
total erosion as a function of rainfall erosivity, soil erodibility, length, slope, cover, and erosion
control practices. Modifications to the length-slope and cover factors resulted in the Revised
Universal Soil Loss Equation (RUSLE) (Renard et al., 1997). Many models incorporate some
version of USLE to simulate erosion (Laflen and Flanagan, 2013). One of these, the Modified
Universal Soil Loss Equation (MUSLE), replaced rainfall erosivity with storm runoff volume
and peak runoff rate to predict erosion from individual storms (Williams, 1975; Williams and
Berndt, 1977). USLE and its variants are easily integrated with other models because the
equations all have analytical solutions. While USLE was designed for individual hillslope use,
gridded versions have also been developed to predict erosion across large areas (Theobald et al.,
2010; Lischert et al., 2014; Yochum and Norman, 2014).

Although easy to implement, USLE and its variants are not well-suited to predict
changing erosion conditions over time because they do not represent time varying soil moisture
and infiltration. To simulate these time varying processes and their effects on erosion,
researchers at the USDA Agricultural Research Service (ARS) developed the Water Erosion
Prediction Project (WEPP) (Flanagan and Nearing, 1995). The project used the field data
collected for USLE as well as additional field experiments conducted on 9-11 m (30-36 ft) long
and 0.5-3 m (2-10 ft) plots (Laflen et al., 1991). The resulting WEPP model simulates erosion
and deposition within hillslopes as functions of rainfall input during storms, overland flow
generation, detachment of sediment by overland flow in rill and inter-rill areas, and flow

competency to transport sediment (Flanagan and Nearing, 1995). WEPP can use historical
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climate data to represent actual storms, but typically simulations are run for many stochastic
weather scenarios (> 50). Each hillslope can be decomposed into multiple overland flow
elements (sections) with different slopes. WEPP can also account for plant growth and residue
decomposition, evapotranspiration, deep percolation and subsurface lateral flows (Dun et al.,
20009; Srivastava, 2013). WEPP consists of two versions: a hillslope version to estimate the
distribution of erosion on a hillslope and a watershed version that links hillslopes with channels
and in-stream structures to estimate sediment delivery from small watersheds. Multiple
standalone and online modelling interfaces are available for parameterizing and running WEPP
(Miller et al., 2017; Frankenberger et al., 2011; Benda et al. 2007; Elliot, 2004; Renschler, 2003).

Separate from the development of WEPP, scientists at the USDA-ARS developed
KINEROS2, the KINEmatic runoff and EROSion model (Woolhiser et al., 1990; Smith et al.,
1995). KINEROS?2 is a physically-based model that simulates both rain splash erosion as a
function of rain rate and hydraulic erosion as a function of overland flow rate. KINEROS2
predicts erosion for rectangular planes, which are connected by channels for watershed-scale
modeling (Goodrich et al., 2012). Planes in KINEROS?2 can be assigned a single slope or divided
into multiple segments. Sediment outputs are represented by distributions of up to five particle
size classes. The model is designed to simulate single rainfall-runoff events rather than long-term
erosion. To facilitate application over larger areas, the Automated Geospatial Watershed
Assessment tool (AGWA) can be used to discretize hillslopes and compile parameters for
running KINEROS?2 in the ArcGIS environment (Miller et al., 2007). Field studies to guide
parameter estimation have not been conducted for the erosion submodels in KINEROS2, so this
model has not been as widely applied as the WEPP model.

Erosion modules have also been added to other hydrologic models originally designed for
streamflow simulation. For example, Stewart et al. (2017) incorporated multiple erosion modules
into the Variable Infiltration Capacity (VIC) model, which simulates land surface processes and
streamflow generation for large river basins (Liang et al., 1994). This single unified framework
standardizes the sediment model inputs and VIC boundary conditions to facilitate consistent
comparison across simulations that apply different erosion modules. The erosion modules
incorporated into VIC include MUSLE, the Hydrologic Simulation Program Fortran (HSPF), and
the Distributed Hydrology Soil Vegetation Model (DHSVM). HSPF (Johnson and Davis, 1980;
Bicknell et al., 1996) was initially developed by the U.S. Environmental Protection Agency to



155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

simulate contaminant transport, and it represents surface runoff generation using a conceptual
approach. DHSVM (Wigmosta et al., 1994) uses the erosion simulation approach from the
Systeme Hydrologique European — Sediment (SHE-SED) model (Wicks and Bathurst, 1996) to
compute sediment detachment and transport for individual elements (analogous to hillslopes)
connected by stream reaches. DHSVM simulates overland flow for individual grid cells,
connected to each other via topographic routing, and detached sediment is transported as

suspended sediment based on the transport capacity of overland flow (Doten et al., 2006).

2.2. Post-fire applications

Many of the models described in the previous section have been applied to simulate post-
fire erosion. These applications involve changing model parameters to represent post-fire
conditions; for instance, decreasing ground cover, reducing soil infiltration capacity, increasing
soil erodibility, decreasing surface roughness, and decreasing root cohesion (Miller et al., 2003;
Elliott, 2004; Canfield and Goodrich, 2005; Doten et al., 2006; Robichaud et al., 2007; Larsen
and MacDonald, 2007; Miller et al., 2012; Miller et al., 2016; Elliott et al., 2016; Robichaud et
al., 2016; Jones et al. 2017; Srivastava et al., 2018; Gannon et al., 2019). Given the limited
availability of post-fire erosion data, most erosion modeling studies do not compare simulated
erosion to observations. Of the studies that do incorporate observations, simulated erosion rates
are not well-correlated to individual hillslope observations, but models tend to perform better
when hillslopes are grouped (Larsen and MacDonald, 2007; Miller et al., 2012) or when relative
ranks of erosion rates are compared between simulations and observations (Robichaud et al.
2016). Empirical regression models for predicting post-fire erosion have been developed for
specific study areas (Benavides-Solorio and MacDonald, 2005; Schmeer et al., 2018), and these
tend to have stronger performance than the process-based erosion models. However, the models
do not perform as well when applied to new areas not used in model development (Schmeer et
al., 2018), and regression models do not represent physical processes directly.

Prior model-observation comparisons have been conducted at the hillslope scale, where
erosion is caused by overland flow. How well these models perform at watershed scale remains
largely unknown. Sediment yields tend to decline with greater drainage area due to deposition
along flow paths, but these scaling relationships have substantial variability (Wagenbrenner and
Robichaud, 2014). The few studies that have evaluated stream sediment yields after fire have

used only suspended sediment (e.g. Kunze and Stednick, 2006; Desilets et al., 2007), which may
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lead to inaccurate sediment yield predictions when there is substantial bedload transport and/or
deposition. Post-fire streams can have rapid and frequent changes in channel geometry (e.g.
Brogan et al., 2019a,b; Wilson 2019), so accurate sediment yield measurement would require
continuously monitoring suspended sediment, bed load, changes in channel geometry at the
watershed outlet, and a method for deriving accurate streamflow. Given the cost and labor

required for such measurements, observations of post-fire erosion at the watershed scale remain

limited.
3. Methods
3.1. Study area

We focused our analysis on two watersheds that burned in the 2012 High Park Fire in
northern Colorado to make use of previous field observations for model evaluation (Kampf et al.,
2016; Schmeer et al., 2018; Brogan et al., 2019b). This fire burned over 350 km? of primarily
forested land. Researchers conducted post-fire erosion and channel monitoring within two ~14-
16 km? watersheds called Skin Gulch and Hill Gulch (Figure 1). These watersheds were burned
at moderate to high severity over 65-70% of their area (Brogan et al., 2019b; Schmeer et al.,
2018) and range in elevation from 1740-2580 m. Prior to the fire, land cover was primarily
ponderosa pine (Pinus ponderosa) woodland and forest with some shrublands and grasslands at
lower elevations and mixed conifer forest at higher elevations. The climate is semiarid, with
mean annual precipitation between 440-600 mm (PRISM Climate Group). Soils are mostly
shallow sandy loams, and bedrock outcrops are common on steep slopes.

Erosion rates were measured from late 2012-2015 at 29 sediment fences that captured the
sediment eroded from convergent hillslopes. The mass of sediment collected in each sediment
fence was measured in the field, converted to dry mass, and normalized by hillslope drainage
area to give sediment yields (SY). Drainage areas of these hillslopes ranged from 0.1-1.5 ha,
with slopes from 11-65% and lengths from 48-270 m. Eight of the hillslopes were mulched with
straw or wood chips after the fire to reduce erosion. The hillslopes were installed in clusters of
four to seven sites in the upper, middle, and lower elevations of the study watersheds, with each
cluster containing at least one tipping bucket rain gauge (details in Schmeer et al. 2018). This

paper focuses on modeling the total erosion during a sequence of rain storms in summer 2013,
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which included 12 convective thunderstorms in July and August and one large long-duration
storm in September that produced more than 250 mm of rainfall (Kampf et al., 2016). We
selected the time period from June-October 2013 for our analysis because the majority of the

post-fire erosion measured at these sites was produced in this time frame.

Q
Study area

Colorado

N A . I Unburned
f
W%E ° 2::";‘:;:”"‘* Low 005 1 2 3 4
1 Medium Kilometers
S Stream -High

Fig. 1 Study watersheds, Skin Gulch and Hill Gulch, overlying the Monitoring Trends in Burn
Severity (MTBS) burn severity map for the 2012 High Park Fire in Colorado. Locations
of field measurements for rainfall (rain gauges) and sediment yield (sediment fences) also

shown

3.2. Model applications
We applied four models to simulate seasonal total SY at the hillslope scale: the regression

model of Schmeer et al. (2018), RUSLE, WEPP, and AGWA/KINEROS?2. Each model is
described in detail in the following sections. Hillslope-scale models were each evaluated using
correlation analyses and comparisons of summary statistics between simulated and observed
hillslope SY. We then applied RUSLE, WEPP, and AGWA-KINEROS2 to simulate watershed-
scale SY for each of the two study watersheds with varying sizes of hillslope sub-units to
examine which models and sizes of hillslope sub-units best approximate the observed spatial

patterns of erosion and expected watershed SY. Finally, to evaluate how parameter uncertainty
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affects watershed-scale simulations, we created ensembles of possible watershed-scale erosion

rates using the erosion modules within VIC. Each of these steps is described in detail below.

3.2.1. Empirical model

The empirical model from Schmeer et al. (2018) was developed for the hillslope scale
using the observed hillslope characteristics and SY. The model equation is:

SY =K, +K, x (P* X BE x L) + ¢ (1)
where SY is the sediment yield (Mg ha™'); K; is an additive shift that adjusts for overall bias in
the empirical model (Equation 1 of Schmeer et al., 2018); P is the depth (mm) of rainfall from
June-Sept.; B is the percent of bare soil (%B), and L is the maximum flow length (m) of each
hillslope. The powers (0, [3, and y) and the empirical coefficient (K») were identified by Schmeer
et al. (2018) as those that minimized average prediction error (€): K; = -0.05, Ko*1000 = 5.6, o =
1.I,B=15y=-1.1,e=3.7.

We ran this model for the observed hillslopes using two different sets of input: (1) field
observations, and (2) values derived from spatial datasets; these spatial dataset values are needed
to apply models at the watershed scale. Both model runs used field values of P from the nearest
rain gauge to each hillslope. The field values of %B are from field ground cover measurements,
which were point counts along transects (Schmeer et al., 2018). Derived values of %B were
assigned based on burn severity classes from the Monitoring Trends in Burn Severity (MTBS)
map (Eidenshink et al., 2007) and the default cover values in Disturbed WEPP for forest, and
low to high severity fire (Elliot, 2004). Unburned areas were assigned bare soil values of 0%;
low severity fire 15%; moderate severity fire 35%, and high severity fire 55%. We assigned the
average observed mulch cover for spring 2013 (38%) to all mulched hillslopes. Field
observations of L. came from Schmeer et al. (2018), and derived values of L were determined

using the hillslope delineation tool in AGWA.

3.2.2. RUSLE
The RUSLE model is a hillslope-scale model, but it can be applied at watershed scale by
dividing watersheds up into hillslopes and summing the total erosion. RUSLE applies the
equation:

A=RKLSCP 2)
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where A is the soil erosion rate (Mg ha™! hr'!); R is the rainfall erosivity (Elz); K is the soil
erodibility; L is the length factor; S is the slope factor; C is the cover factor; P is the erosion
control practice factor.

For R we used the closest rain gauge to each hillslope to compute El3o from June-October
2013. For soil erodibility we used the whole soil K factor from the Soil Survey Geographic
Database (SSURGO), which is a soil database with soil units mapped at scales of 1:12,000 to
1:63,360 (Soil Survey Staff, 2014). We used the coarser 1:250,000 State Soils Geographic
Database (STATSGO) for areas where SSURGO data did not include K factor values. Each
hillslope was assigned the K value from the soil survey polygon covering the largest total area in
the hillslope. We followed the methods of Yochum and Norman (2015) to calculate the K factor
for all components within each soil map unit as the depth-weighted mean for the top 15 cm of
soil for each component, and as the area-weighted mean for any non-water or non-rock
components of the map unit. K was converted to metric units (Mg ha hr ha'! MJ' mm™)
according to Renard et al. (1997). K was adjusted for post-fire conditions using multiplication
factors to increase the K for different levels of burn severity: 1.5 for low severity; 1.75 for
moderate severity, and 2.0 for high severity (Schmeer, 2014).

L is the length factor, defined as:
A m
L = (_) 3)

22.13
where A is the slope length (m), and m is an exponent related to the ratio of rill to interrill

erosion, expressed as:

m=-Lt_ )

where [3 is expressed as:

_ (sin6,0.0896
p= 0 )/ [3.0 (sin 6)°% + 0.56] )

and 0 is the slope angle in radians.

The slope factor, S, for soils with primarily surface flow and high susceptibility to
erosion is defined as

S = 10.8sin6 + 0.03 (6)

10
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for slopes < 9%, and as
S = (sin#/0.0896)%¢ (7
for slopes > 9%, where 0 is the slope angle in radians.

C is the cover factor, which we assigned based on mean field measurements by burn
severity from Larsen and MacDonald (2007); low, moderate, and high burn severity were
assigned C factors of 0.01, 0.05, and 0.20 respectively. Finally, P is the support practice factor,
which is used to represent mulch. Areas with >50% straw or wood shred mulch were assigned a

value of 0.22 (Schmeer 2014). All other areas were assigned a P factor of 1.

3.2.3. WEPP and AGWA-KINEROS2
WEPP and AGWA-KINEROS?2 were applied both for the observed hillslope simulations

and for the watershed-scale simulations. Contributing areas for each hillslope were delineated for
WEPP Watershed using WEPP’s delineation tool, the Topographic Parameterization (TOPAZ)
(Garbrecht and Martz, 1997), and for KINEROS?2 using AGWA. Precipitation input was
assigned using the nearest tipping bucket rain gauge (Figure 1). WEPP requires additional
atmospheric variables: temperature, solar radiation, dew point, wind speed, and wind direction.
Values were compiled from the Red Feather Lakes Remote Automated Weather Station
(RAWS), which is about 20 km NW of the study watersheds; although these atmospheric
variables are required by WEPP they have limited influence on erosion rates. KINEROS2
requires initial soil moisture values prior to each event; because we did not have soil moisture
measurements we set these to the default value of 0.2. Soil parameters required by the models
include saturated hydraulic conductivity, particle sizes as percent sand, silt, and clay, rock
content, and porosity. These values were taken from SSURGO and STATSGO as described in
section 3.2.2. Land cover parameters required by the models include percent cover, interception
storage, and surface roughness. These were taken from the Existing Vegetation Type (EVT)
developed by the LANDFIRE program using decision tree models, field data, Landsat imagery,
elevation, and biophysical gradient data combined with the soil burn severity map to change land
cover parameters for each burn severity class (Elliott, 2004; Canfield and Goodrich, 2005;
Robichaud et al., 2007). Both WEPP and AGWA have built-in approaches for assigning soil and

vegetation parameters and for modifying parameters based on burn severity class. We did not

11
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calibrate the models because we were interested in how these tools perform for management

applications, where erosion observations are not available.

3.2.4. Watershed-scale simulations

Watershed-scale sediment loads are often estimated by summing the sediment loads of all
hillslopes within the watershed, which are sensitive to the size of the hillslope sub-units. To
understand the influence of hillslope size, we developed a range of watershed-scale simulations
by dividing up the watersheds into hillslopes with different target sizes: 0.5, 1, 2.5, 5, 10, 15, and
25 ha using a 10 m digital elevation model. This range of sizes was based on the ability of
TOPAZ to define hillslopes at different resolutions; TOPAZ failed when the target hillslope size
was smaller or larger than this range. We then used the hillslope delineation algorithm within
AGWA to create hillslopes with the same set of target areas for AGWA-KINEROS?2. The
hillslope delineations are similar but not exactly the same for WEPP and AGWA-KINEROS?2,
except at 25 ha target areas. Precipitation inputs and parameter values for each model came from
the same sources described for the hillslope simulations. In addition to the simulations for
hillslopes of different sizes, we applied a gridded version of RUSLE to 30 m raster cells across
each watershed (Winchell et al., 2008; Gannon et al. 2019); this comparison was added because
gridded RUSLE has become a popular approach for erosion modeling.

To evaluate effects of parameter uncertainty on watershed-scale sediment yields we used
the erosion modules in VIC (i.e., MUSLE, HSPF, DHSVM). Each module was run for all ranges
of hillslope sizes using variable plausible parameter values. Initial parameter settings were based
on Livneh et al. (2013; 2015) and Stewart et al. (2017), who applied the VIC erosion modules to
simulations for this region. VIC vegetation settings were adjusted to account for wildfire effects
using the same percent cover estimates generated for each hillslope in AGWA-KINEROS?2.
Parameters that most affected erosion rates were identified for each erosion module using a
Sobol sensitivity analysis. This led to selection of eight VIC soil parameters, which were varied
using bounds from published studies (Demaria et al., 2007; Troy et al., 2008; Yanto et al., 2017),
as well as nine suspended sediment loading (SSL) parameters, which were varied using bounds
from Doten et al. (2006), Maidment (1993), and Donigian and Love (2003).

To evaluate the spatial patterns of simulated erosion within watersheds we compared

simulated erosion rates to the density of channel heads. The channel density in the study area
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increased dramatically after the fire due to post-fire erosion (Henkle et al., 2011; Wohl 2013).
We visually identified locations of channel heads at the tops of rills or gullies (Figure 2) from
National Ecological Observatory Network (NEON) aerial camera images with 25 cm resolution
for June 28-July 16, 2013 and Larimer County 0.2 m resolution imagery obtained from
Pictometry for September 1, 2012. Rills and gullies were distinguishable from the main stream
channels because the larger streams typically still retained some riparian vegetation. We
computed the fraction of watershed total channel heads within each of the 25 ha hillslopes and
evaluated the correlations of these values with fractions of total simulated sediment load
predicted in the models. The channel head density is a reasonable surrogate for relative erosion
rates across the watersheds, as it was infeasible to measure absolute erosion rates for sub-

watersheds larger than 1.5 ha.
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Fig. 2 Visual evidence of surface erosion in 2012 Pictometry air photos. Top image shows
locations of digitized channel heads (yellow) in Skin Gulch (left) and Hill Gulch (right),

and bottom image zooms into the boxed area in Hill Gulch

We then compared total watershed-scale sediment load (SL, Mg) and SY (Mg ha™') for
both study watersheds, each model (RUSLE, WEPP, AGWA-KINEROS2, and the VIC
modules), and each size of hillslope sub-units. For the models designed for spatial application

(RUSLE, WEPP, AGWA-KINEROS?2), we also evaluated how the fraction of watershed total
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SL for each hillslope varied between each of the models using Pearson and Spearman correlation
analysis. We used fractions of total sediment load rather than actual SL values because

magnitudes of SL varied substantially between models.

4. Results
4.1. Hillslope scale

When compared to sediment yields measured at sediment fences, most of the models did
not perform well. Only the empirical regression model was significantly correlated to observed
seasonal total sediment yields (SY) when the original field measurements were used as inputs
(Table 1, Figure 3a). When the regression model was applied using inputs from geospatial
datasets, predictions of SY were not significantly correlated with observed SY (Figure 3b),
primarily because the estimated percent bare soil using burn severity and mulch locations had no
correlation to the observed percent bare soil (R?>=0.03). This indicates that one major source of
error in models applied to unmonitored areas is the accuracy of the geospatial datasets used to
parameterize the models.

RUSLE mostly under-predicted SY, but five sites in Skin Gulch had predicted SY values
that were much higher than observed (Figure 3c); these over-predicted sites all had long slopes
(>150 m). AGWA-KINEROS?2 over-predicted SY for many of the Skin Gulch hillslopes and
under-predicted SY for the un-mulched Hill Gulch hillslopes (Figure 3d). The range of SY
predicted by WEPP was consistent with the observed range of SY, but the predicted values had
no correlation with the observed values (Table 1; Figure 3e,f). Hillslope SY observations are
often biased low because sediment fences can fill to capacity with sediment, and suspended
sediment can bypass the collection fence (Wilson 2019). However, we did not identify any
connection between under- or over-prediction of simulated SY and the locations where the
sediment fences had over-topped with sediment.

Because of the lack of correlations between simulated and observed SY, we also
compared the means and standard deviations of SY between observations and models. The
empirical model with field-derived inputs and the WEPP model both produced mean SY values
that were within 15% of the observed values (Table 1). RUSLE and AGWA-KINEROS2 over-
predicted the mean and standard deviations of SY by factors of three or more, whereas the

empirical model with derived inputs predicted only about half of the measured SY.
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Table 1. Summary of model performance for simulating sediment yields compared to the

observed hillslope values. Asterisks indicate significant at p<0.05. Table also indicates the mean

and standard deviation of sediment yield (Mg ha™!) for both the observed and simulated values;

RMSE also in (Mg ha').

Model R? RMSE Intercept Slope Mean Std Dev
Observed 11.2 10.1
Empirical, field inputs 0.60* 5.2 3.4* 0.61°%* 10.2 8.0
Empirical, derived inputs 0.13 2.7 4.7* 0.10 5.8 2.9
RUSLE 0.04 23.2 13.6* -0.44 61.5 102.8
AGWA-KINEROS2 0.07 43.0 42.9% -1.13 30.3 43.7
WEPP 0.00 10.3 10.4* 0.05 12.7 10.9
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Fig. 3 Simulated total sediment yield (SY) for June-October 2013 compared to observed SY at

hillslopes from (a) Schmeer et al. (2018) empirical model with inputs from field
measurements; (b) same as (a) except with inputs derived from geospatial data; (c)

RUSLE; (d) AGWA-KINEROS?2; (e) WEPP. Line is 1:1. Data in Kampf et al (2020).
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4.2, Watershed scale

Each of the models produced different magnitudes and spatial patterns of seasonal total
SY across the study watersheds. The ranges of watershed total SL (and SY) varied from 9x10°
Mg (6 Mg ha'') in WEPP to 2x10° Mg (2000 Mg ha™') in VIC-MUSLE, with values varying
between models and with the size of hillslopes within each simulation (Table 2). In comparison,
observed hillslopes had a mean SY of 11 Mg ha! and maximum of 38 Mg ha'!, which converts
to 2x10* - 4x10* Mg per watershed if the mean value is applied uniformly. Uncertainties in these
watershed-scale estimates stem from variability in hillslope characteristics and burn severity, and
uncertainties in hillslope-scale measurements; however, these values are a reasonable first-order
estimate for evaluating models. Models with watershed-scale sediment loads in the expected
range were WEPP, AGWA-KINEROS?2, and the VIC modules with the smallest hillslope sizes.
RUSLE values were all higher than the expected SY.

Each model predicted increasing SL with larger hillslope sizes (Figures 4, S1), except for
WEPP in Skin Gulch, which predicted declining SL for the watershed simulations using the
largest hillslope sub-units. Even though the total watershed area was the same for all simulations,
the simulated SY increased non-linearly with greater hillslope length. This effect is greatest in
the hillslope version of RUSLE because it does not simulate sediment deposition within
hillslopes. This scale dependence in simulated SL is not present for the gridded version of
RUSLE because the L and S factors are calculated for each 30 m pixel (Winchell et al., 2008)
instead of for hillslopes of varying sizes. Gridded RUSLE total SL were 112,000-155,000 Mg for
Skin and Hill Gulch, respectively, at the lower range of those predicted by the hillslope version
of RUSLE.

Simulated watershed-scale SL values were also sensitive to parameter selection, as shown
in the VIC ensemble simulations (Figure 4, S1). Sediment loads were overall highest for VIC-
HSPF and VIC-MUSLE, but VIC-DHSVM had the greatest sensitivity to parameter values, with
simulated SL varying over two orders of magnitude across the ensembles of simulations for each

scale of hillslope sub-units.
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446  Table 2. Summary of watershed total sediment loads (Mg) [and sediment yields (Mg ha!)] for
447  each model and watershed divided into 0.5 ha and 25 ha target hillslope areas. RUSLE gridded
448  values were calculated from a 30 m DEM. Values for MUSLE, HSPF, and DHSVM represent
449  mean values calculated from ensemble simulations in VIC.
Model Skin Hill
0.5ha 25ha 0.5ha 25ha
RUSLE 88,000 [58] 445,000 [292] 102,000 [72] 470,000 [333]
WEPP 9,100 [6] 27,000 [16] 10,200 [7] 27,100 [19]
AGWA-KINEROS2 41,000 [27] 55,300 [36] 20,300 [14] 23,700 [17]
VIC-MUSLE 36,200 [24] 248,000 [162] 30,600 [22] 99,300 [70]
VIC-HSPF 38,700 [25] 2,470,000 [1620] 42,700 [30] 2,410,000 [1700]
VIC-DHSVM 43,400 [28] 279,000 [183] 38,100 [27] 257,000 [182]
RUSLE gridded 112,000 [73] 155,000 [110]
450
451
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452
453  Fig. 4 Changes in simulated watershed total sediment loads with target hillslope area for Skin
454 Gulch and Hill Gulch. Points are for WEPP, AGWA-KINEROS?2, and RUSLE hillslope
455 watershed totals, and shaded ranges are for the VIC modules with varying parameter
456 values. Boxplots of VIC sediment loads in Figure S1. Data in Kampf et al. (2020).
457
458 Spatial patterns of SY within watersheds are shown in Figure 5. For both Skin Gulch and

459  Hill Gulch, gridded RUSLE produced the highest SY in the center portions of the watersheds,
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where burn severity was high and slopes are steep. Simulated SY rates in these areas exceeded
1,000 Mg ha! for some individual grid cells (Figure 5a). These extreme rates were less common
for RUSLE applied at 2.5 ha hillslope resolution, but they were present for some hillslopes at the
25 ha resolution due to the long hillslope lengths (Figure 5b,c). WEPP simulated less spatial
variability overall, but generally SY was highest in areas with high burn severity (Figure 5d,e).
AGWA-KINEROS? had isolated areas of very high erosion in both watersheds (>400 Mg ha!)
with low erosion in most other locations (< 1 Mg ha!). Boundaries of the high erosion areas are
similar to soil survey polygons, suggesting that this pattern relates to soil parameters.

Correlation analysis (Figure S2) indicates more similarities between models than are
evident visually (Figure 5). Correlations are strongest between gridded and hillslope versions of
RUSLE (r=0.69-0.81), which differed only in the original resolution of computations (Figure
S2). Both versions of RUSLE were better correlated with WEPP (r=0.45-0.63; p=0.56-0.63) than
with AGWA-KINEROS?2 (r=0.01-0.26; p=0.22-0.50). WEPP was also significantly correlated
with AGWA-KINEROS?2 (r=0.58; p=0.63). Interestingly, the models were not consistent in
simulating which of the two watersheds produced more erosion. RUSLE and WEPP simulated
higher total sediment load and average sediment yield in Hill Gulch, whereas AGWA-
KINEROS2, MUSLE, and DHSVM simulated higher total sediment load for Skin Gulch (Table
2). Hill Gulch has higher average hillslope lengths, slopes, and soil erodibilities, which led to
higher SL in RUSLE and WEPP. In AGWA-KINEROS?2, the boundaries of areas with
particularly high erosion in Skin Gulch (Figure 5f,g) corresponded with boundaries of soil
polygons, so these patterns were likely heavily influenced by the of soil parameter values. VIC-
MUSLE, VIC-HSPF, and VIC-DHSVM had parameter values based on those in AGWA-
KINEROS?2, so they also produced higher SL in Skin Gulch.

The simulated patterns of relative erosion amounts (fractions of watershed total SL) for
25 ha hillslopes were significantly correlated with the fraction of total channel heads (r=0.26-
0.64; p=0.41-0.72) (Figure 6), indicating the models all produced erosion patterns similar to
those of post-fire rilling and gullying. AGWA-KINEROS?2 simulations diverged most from the
channel head pattern for intermediate-length hillslopes in Hill Gulch, whereas RUSLE had more
outliers for the longest hillslopes in Skin Gulch because of the strong influence of length on

RUSLE sediment yields.
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Fig. 5 Spatial patterns of simulated sediment yields (SY) for Skin Gulch (left) and Hill Gulch
(right) using (a) RUSLE with values computed by 30 m grid cell; (b,c) RUSLE hillslope;
(d,e) WEPP for hillslope polygons, and (f,g) AGWA-KINEROS?2 for hillslope polygons.

Target hillslope areas in (b,d,f) are 2.5 ha, and those for (c,e,g) are 25 ha
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coefficients given for each combination of values; * indicates significant at p<0.05

Significance of p could not be computed due to ties. Colors of points indicate hillslope
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22



503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

5. Discussion

Our results confirm prior studies showing that uncalibrated hillslope-scale erosion models
are not well correlated with hillslope erosion observations (Larsen and MacDonald 2007; Miller
et al. 2012). One major source of error in applying un-calibrated models to new locations is the
accuracy of input parameters derived from geospatial datasets. In particular, improvements are
needed in surface cover data, as bare soil is the primary variable responsible for increased post-
fire erosion in Colorado (Larsen et al., 2009). Accurate representation of bare soil from satellite
or airborne remote sensing data is inherently challenging because of the fine-scale heterogeneity
of regrowth, but estimates could be improved with more extensive field cover measurements for
training remote sensing image classifications. We recommend collecting field ground cover data
where possible to support applications of erosion models for management purposes. Soil
property data can also introduce error because the spatial resolution of soil survey polygons is
often coarser than the size of modeled hillslopes. Many soil survey polygons contain multiple
soil components, and boundaries between different surveys can cause abrupt changes in
parameters. Conducting full soil surveys in new management areas is likely infeasible in most
circumstances, but modelers could consider conducting sensitivity analyses, varying soil
parameter values to evaluate their effects on simulated sediment yields. Finally, in the case study
presented here, uncertainties in observed SY, particularly under-catch of sediment, also affected
model-observation comparisons.

Although higher quality input data should improve model results, it may not be realistic
to expect uncalibrated hillslope erosion models to simulate SY accurately for individual
hillslopes. Each hillslope has unique and heterogeneous topography, soil, vegetation, and rainfall
patterns, leading to complex internal erosion and deposition patterns that are challenging both to
measure and to model. However, the reliability of these models over larger watershed areas is
generally more important for management considerations, as models can guide decisions on
which watersheds to target for erosion control. We found that RUSLE over-predicted erosion at
the watershed scale compared to our empirical estimate, whereas WEPP and AGWA-
KINEROS?2 produced values that were more consistent with expected values from field
observations. In part, RUSLE may overpredict because it represents gross erosion, while both
erosion and deposition are modeled in WEPP and AGWA-KINEROS2. Managers should use the

spatial erosion patterns simulated by these models to map areas of low and high erosion rather
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than rely on the magnitudes of simulated sediment load. The relative patterns of erosion are more
consistent between models than the watershed-scale sediment loads. In the watersheds evaluated
here, the relative erosion patterns were significantly correlated with mapped patterns of rilling
and gullying, albeit with substantial scatter in the relationships (Figure 6). This indicates that the
models can identify areas that experienced high post-fire erosion, although the spatial patterns
may not be entirely consistent between models.

For all models, watershed-scale sediment loads were closest to our empirical estimate
when hillslopes were divided into the smallest areas (i.e., 0.5 ha). In USLE and WEPP smaller
hillslopes were more realistic because the models were originally developed using plot-scale
data. Relationships between simulated SY and input variables are scale-dependent in hillslope
models because they use length to predict erosion rates (Wu et al., 2008; Ghaffari, 2011; Fu et
al., 2015). When such models are applied to larger slopes than those for which they were
developed, they may not adequately represent the erosion and deposition processes. Longer flow
paths can enable greater rill and gully development, leading to concentrated flow with greater
transport capacity and higher SY (Pietraszek, 2006); however, longer flow paths can also provide
more opportunities for sediment to be deposited within hillslopes (Afshar et al. 2010), leading to
complex and highly variable scaling relationships (Wagenbrenner and Robichaud, 2014). WEPP
and AGWA-KINEROS?2 allow for both erosion and deposition within hillslopes, whereas
RUSLE, VIC-MUSLE, and VIC-HSPF do not. This leads to greater sensitivity to hillslope scale
in the latter models. RUSLE sediment yields progressively increase with longer slopes unless a
slope length threshold is applied (Nearing et al., 1990). In RUSLE, SY also increases with slope
based in part on the ratio of rill to interrill erosion which increases with slope (McCool et al.,
1989). Many of the study area hillslopes also had steeper slopes than were used for RUSLE
development (Nearing, 1997; Renard et al., 1997). When applying these models to new
watersheds that do not have erosion observations, we recommend using a fine hillslope
resolution, ideally with lengths between 10-100 m, which is most comparable to the plots used to
develop USLE, RUSLE, and WEPP.

An additional consideration in selecting a model is the time scale of information needed.
RUSLE is intended for long time scales (seasonal, annual). WEPP simulates individual storms,
but results are usually evaluated as the sums of sediment yields over seasons or years. AGWA-

KINEROS?2 is an event-based model that is typically applied for individual rain storms. Here we
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compared these models in terms of their seasonal total erosion simulations to maintain
consistency between the three models, but further evaluation of WEPP and AGWA-KINEROS?2
could consider simulations of individual storms. Although RUSLE does not simulate the runoff
response to time-varying rainfall and snowmelt; adding a runoff factor to RUSLE can improve
its performance (Kinnell 2010). Overall, our results demonstrate that simulations are likely to be
most accurate when run with fine spatial discretization (small hillslopes) and short time steps that
allow simulating erosion from individual storms. These finer resolution simulations aggregate to
more realistic sediment loads for large spatial scales (watersheds) and long time scales (seasons,

years).

6. Conclusions

This study compared the performance of erosion models commonly used in watershed
management. Although most of the models were developed at hillslope scale, managers often
employ them for watershed scale prediction. With the exception of a site-specific regression
model, we found that none of the model simulations of sediment yield correlated well with SY
measured at hillslope sediment fences, probably due to a combination of measurement and model
uncertainties. RUSLE and AGWA-KINEROS?2 predicted wider ranges of SY than those
observed in the field and substantially over-predicted some hillslope SY values, whereas WEPP
predicted a range of SY more consistent with field measurements. One large source of potential
error stems from geospatial datasets used to parameterize hillslope models; accurate maps of
ground cover are particularly important for erosion simulations. Given the heterogeneity of land
surface properties within hillslopes, it is unrealistic to expect an erosion model parameterized
with geospatial data to perform well for individual hillslopes. The models were somewhat more
consistent with one another in their simulated spatial patterns of erosion across watersheds, and
they all simulated erosion patterns that significantly correlated with visual observations of rill
and gully channel heads. This means that although the models did not capture the site-specific
factors that affect individual hillslopes, they were able to identify areas with high post-fire
erosion within watersheds, though with some variability in patterns between models.

The models differed more in their predictions of watershed-scale sediment loads, which
varied by orders of magnitude. At watershed scale, WEPP and AGWA-KINEROS?2 had

sediment loads in the range expected from scaling up our hillslope observations, whereas
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RUSLE exceeded the expected range. Departure from the expected range became greater for
larger size hillslopes, so erosion models should be applied on small (<1 ha) hillslopes to avoid
unrealistic increases in simulated SY caused by long slope lengths. VIC erosion model
applications also highlighted substantial variability in watershed sediment loads due to parameter
selection, particularly for soil parameters. Because of the high uncertainty in watershed sediment
loads, users should consider making management decisions based on relative erosion patterns
rather than sediment load quantities. Collecting field erosion data across multiple scales from

hillslopes to watersheds is critical to future improvements in simulating watershed-scale erosion.
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