

1      **Statistical Analysis of Midlatitude Spread F using Multi-Station Digisonde Observations**

2      **P. Bhaneja, G.D. Earle<sup>1</sup>, T.W. Bullett<sup>2</sup>**

3      <sup>1</sup>Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

4      <sup>2</sup>Cooperative Institute for Research in Environmental Sciences, NOAA/NGDC, Boulder,  
5      Colorado, USA

6

7      **Abstract**

8      A comprehensive statistical study of midlatitude spread F (MSF) is presented for five  
9      midlatitude stations in the North American sector. These stations include Ramey AFB, Puerto  
10     Rico (18.5°N, 67.1°W, -14° declination angle), Wallops Island, Virginia (37.95°N, 75.5°W, -11°  
11     declination angle), Dyess, Texas (32.4°N, 99.8°W, 6.9° declination angle), Boulder, Colorado  
12     (40°N, 105.3°W, 10° declination angle), and Vandenberg AFB, California (34.8°N, 120.5°W, 13°  
13     declination angle). Pattern recognition algorithms are used to determine the presence of both  
14     range and frequency spread F. Data from 1996-2011 are analyzed, covering all of Solar Cycle 23  
15     and the beginning of Solar Cycle 24. Variations with respect to season and solar activity are  
16     presented, including the effects of the extended minimum between cycles 23 and 24.

17

18      **1. Introduction**

19      Midlatitude F region in the ionosphere is known to exhibit anomalies and irregularities as  
20     observed in the perturbations in the electron density values. Gravity waves and traveling  
21     ionospheric disturbances (TIDs) are considered to be a seeding mechanism which create density  
22     perturbations in the ionosphere leading to spread F at midlatitude regions [Kelley & Fukao,  
23     1991; Oliver *et al.*, 1994; Kazimirovsky *et al.*, 2002; Lastovicka, 2006; Rishbeth, 2006]. Hines  
24     [1960] established a connection between traveling ionospheric disturbances (TIDs) and gravity  
25     waves. Bowman [1990] conducted a study using digisonde data from Birbie Island and Moggill  
26     (both are near Brisbane, Australia) and found a strong correlation between daytime TIDs and  
27     nighttime spread F. Atmospheric buoyancy waves, commonly referred to as gravity waves are  
28     generated from a variety of sources, including thunderstorms [Wickwar & Carlson, 1999; Boska  
29     & Pauli, 2001; Walterscheid *et al.*, 2001; Kazimirovsky, 2002; Pulinets & Liu, 2004; Lasovicka,  
30     2006; Rishbeth, 2006; Lay *et al.*, 2015] and auroral disturbances [Davis, 1971; Wickwar &

31 *Carlson, 1999; Nygren et al., 2015*]. Some of the observed variability in the ionosphere is also  
32 due to the waves generated due to orography or seismic activity [*Wickwar & Carlson, 1999;*  
33 *Pulinets & Liu, 2004*].

34

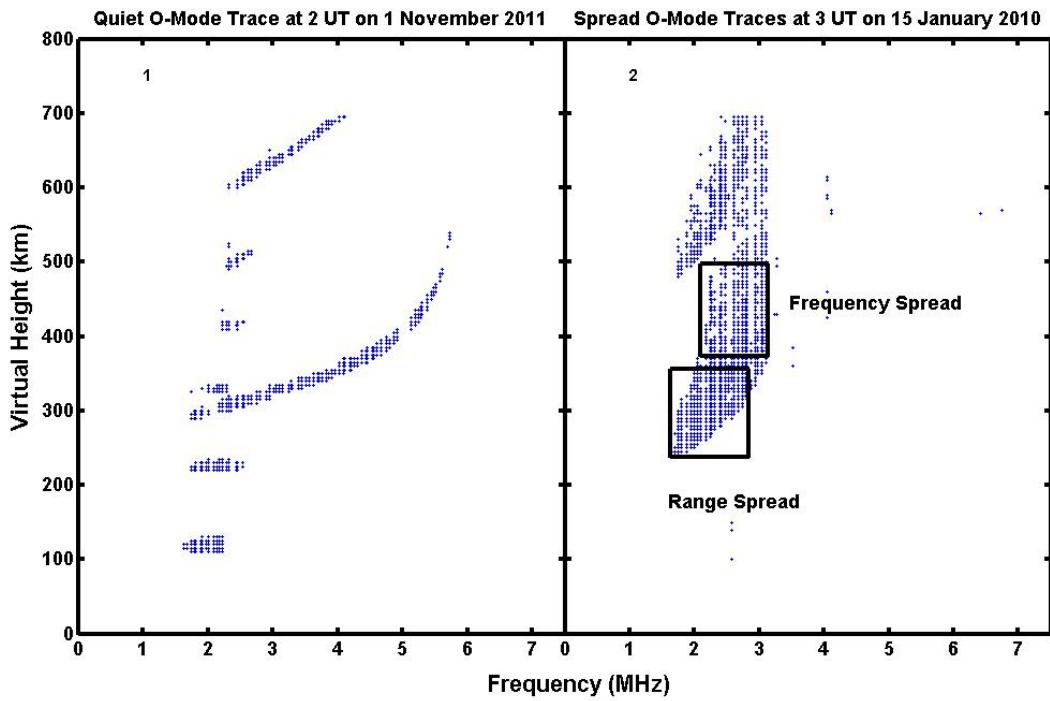
35 Secondary gravity waves can be launched by dissipating GWs in the thermosphere [*Vadas &*  
36 *Liu, 2009*]. These secondary waves are produced at high altitudes and when they break in the  
37 lower thermosphere they may travel horizontally for many hundreds of kilometers, potentially  
38 triggering plasma instabilities widely known as Perkins instability [*Perkins, 1973*]. *Behnke*  
39 [1979] made observations using the Arecibo observatory and noted structures like height layer  
40 bands in the plasma associated with large electric fields which were attributed to Perkins  
41 instability [*Perkins, 1973*]. *Mathews and Harper* [1972] also observed midlatitude spread F with  
42 the Arecibo incoherent scatter radar and on one occasion they concluded that spread F occurred  
43 due to the tilts in the ionosphere caused by enhanced ionization traveling at the location.

44

45 *Cosgrove and Tsunoda* [2002b, 2004] show that the sporadic E and the F layers in the  
46 midlatitude ionosphere are electrodynamically coupled and the electric fields arise from the  
47 polarization of the sporadic E layer in turn causing the height bands in the plasma associated  
48 with the Perkins instability [*Kelley et al., 2003; Tsunoda 2006; Cosgrove, 2007; Yokoyama et al.,*  
49 *2009*]. Our previous study for Wallops Island [*Bhaneja, 2009*] showed the occurrence of more  
50 spread F when the angle between the dusk terminator and local magnetic field (declination angle)  
51 was minimum indicating that efficient electric field mapping between conjugate hemispheres is  
52 important for the occurrence of spread F. Different large-scale vertical electric fields are also  
53 created by thunderstorms and orography [*Pulinets & Liu, 2004*]. The lightning induced  
54 phenomenon such as red sprites and blue jets create the anomalous electric field coupling to the  
55 ionosphere [*Lastovicka, 2006*].

56

57 Midlatitude spread-F is a night time phenomenon observed mainly using the ionosondes  
58 [*Bowman, 1990, 1994; Kelley, 2003, Bhaneja et al., 2009, Earle et al., 2010*] where the  
59 irregularities are observed on the ionograms which are plots of frequency vs. height obtained by  
60 reflections of the transmitted signal into the ionosphere when they match the plasma frequency


61 [Bhaneja *et al.*, 2009]. An ionosonde consists of a radio transmitter and a series of receivers that  
62 is capable of inferring atmospheric electron density variations through the transmission and  
63 reflection of radio waves in the ionosphere. The transmitted radio waves penetrate the plasma  
64 layer until the plasma is dense enough to reflect them; this occurs when the wave frequency  
65 matches the plasma frequency. The measurements taken include the reflected signal frequency,  
66 and the time between transmission and reception of the signal. The intensity of these reflected  
67 signals is graphically depicted as a function of frequency and virtual height to produce  
68 ionograms. Virtual height is defined as the product of the speed of light in vacuum and the total  
69 transit time of the reflected signal, divided by two.

70

71 Figure 1 shows two ionograms indicating different conditions of the ionosphere. 1.1 indicates  
72 a quiet ionosphere, represented by a single trace. A uniform ionospheric layer produces a  
73 smoothly varying response corresponding to the normal increase in plasma density/frequency  
74 versus altitude. In contrast, density corrugations in the ionosphere create multiple reflections  
75 over the footprint of the incident signal in the ionosphere, leading to multipath and a subsequent  
76 spreading of the measured response either in frequency (frequency spread F), height (range  
77 spread F), or both. 1.2 indicates a disturbed ionosphere, represented by multiple traces and/or  
78 unusually thick traces in the ionogram. Note that there is a second trace or hop visible in both the  
79 ionograms, which is due to double reflection of the pulse (from the ionosphere to the ground,  
80 back to the ionosphere and back to the receiver). These second hop traces contain no additional  
81 information, and are ignored in the analysis of the ionograms. Bowman [1981] originally  
82 suggested that gravity waves could cause such plasma density distortions in the ionosphere,  
83 which would be manifested as midlatitude spread F in ionograms. This hypothesis was  
84 empirically confirmed by simultaneous *in-situ* and remote observations, as reported by Earle *et*  
85 *al.* [2010].

86

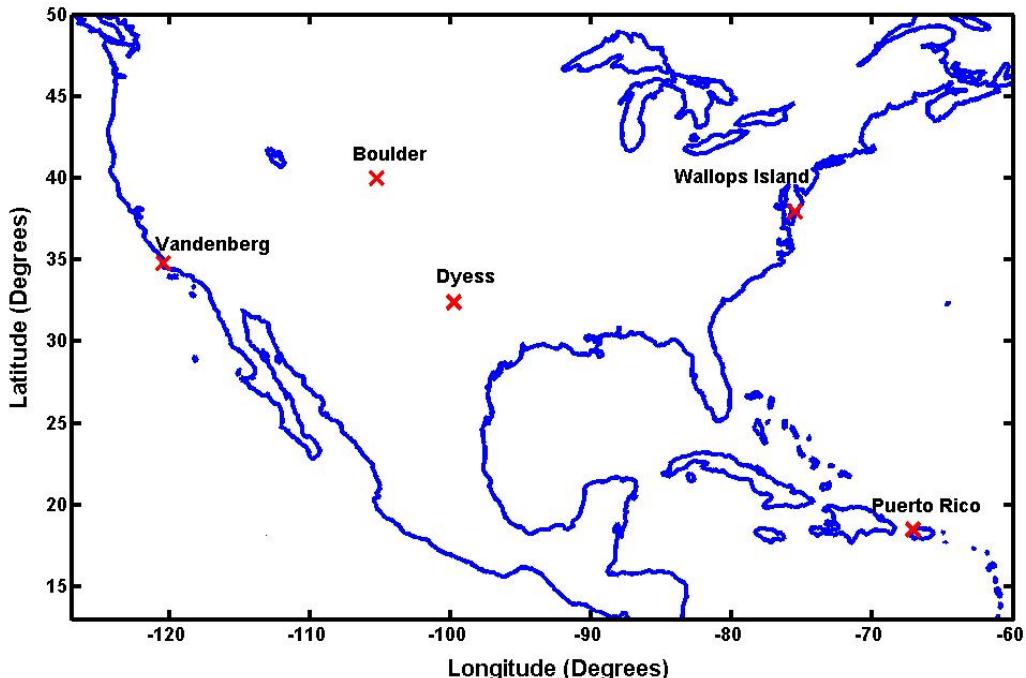
87 The spread F in the ionogram is historically classified into two types: range and frequency  
88 spread F. Range spread F refers to a condition in which there are multiple echoes at different  
89 ranges for each frequency. Frequency spread F is the case in which there are multiple echoes at  
90 different frequencies around the critical frequency for same height. Range and frequency  
91 spreading can occur simultaneously (as they are in the right panel in Figure 1) or separately.



94 **FIGURE 1 – 1. Midlatitude Non-Spread F event on 1 November 2011 at 2 UT. 2.**  
 95 **Midlatitude Spread F event on 15 January 2010 at 3 UT.**

97 *Bhaneja et al., [2009]* studied midlatitude spread F (MSF) at Wallops Island and determined  
 98 its seasonal and solar cycle variation over an entire solar cycle (1996-2006) and discovered an  
 99 interesting variation of MSF with the declination angle in that study. Here we are extending that  
 100 study to about sixteen years (1996-2011) and including four more North-American sites at  
 101 different longitudes from  $67.1^{\circ}\text{W}$  to  $120.5^{\circ}\text{W}$  with different declination angles from  $-14^{\circ}$  to  $13^{\circ}$   
 102 to study the gross features of seasonal, solar cycle and longitudinal variations of MSF. This  
 103 allows us to look and compare the variation of MSF with solar cycle and also with season for  
 104 five different American sector sites having different local geographic features; Puerto Rico in the  
 105 Caribbean, Wallops island on the east coast, Dyess in the southern plains, Boulder in the rocky  
 106 mountains and Vandenberg on the west coast. The widely varying locations and geographic  
 107 features at these sites enable an interesting look into the seasonal variation of MSF. We also look  
 108 at the relationship between MSF and the angle of the terminator relative to the geomagnetic field

109 (varying from  $-14^{\circ}$  to  $13^{\circ}$  for the sites in this study) to see if the temporal variation in field-  
110 aligned conductivity is correlated with MSF observations, as it appeared to be for Wallops Island  
111 in our earlier study [Bhaneja *et al.*, 2009]. We use the previously established pattern recognition  
112 algorithm from this paper with some modifications to automatically detect midlatitude spread F  
113 in ionograms from the five different stations to investigate the variations in range and frequency  
114 spread F with particular emphasis on how these variations correlate with season and solar cycle  
115 at each ionosonde station.


116

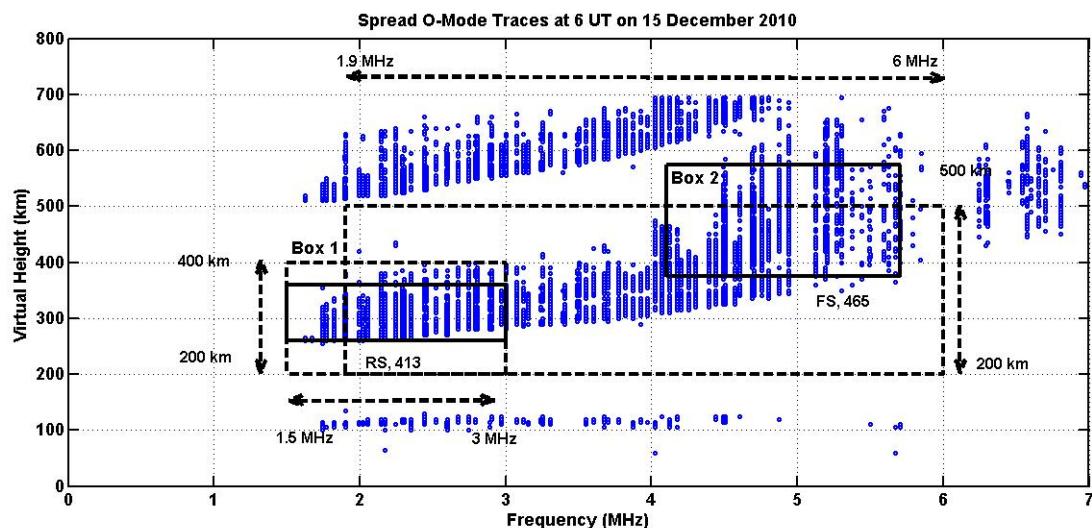
117 We discuss the ionosonde database and the algorithms used to objectively and automatically  
118 identify MSF events in section 2. The statistical results for the five stations are presented in  
119 section 3 while section 4 discusses how these results vary versus solar cycle and season and their  
120 correlation with geomagnetic influence. Section 5 summarizes the conclusions and suggests  
121 possible future paths of inquiry.

122

## 123 **2. Data Presentation**

124 The data used in this study have been obtained from digisondes placed at 5 North American  
125 midlatitude sites: Ramey AFB, Puerto Rico ( $18.5^{\circ}\text{N}$ ,  $67.1^{\circ}\text{W}$ ,  $-14^{\circ}$  declination angle), Wallops  
126 Island, Virginia ( $37.95^{\circ}\text{N}$ ,  $75.5^{\circ}\text{W}$ ,  $-11^{\circ}$  declination angle), Dyess, Texas ( $32.4^{\circ}\text{N}$ ,  $99.8^{\circ}\text{W}$ ,  $6.9^{\circ}$   
127 declination angle), Boulder, Colorado ( $40^{\circ}\text{N}$ ,  $105.3^{\circ}\text{W}$ ,  $10^{\circ}$  declination angle), and Vandenberg  
128 AFB, California ( $34.8^{\circ}\text{N}$ ,  $120.5^{\circ}\text{W}$ ,  $13^{\circ}$  declination angle). Figure 2 shows the five stations on the  
129 map of North-America. Previous studies on MSF have been conducted using ionosondes, but this  
130 study utilizes a more advanced instrument known as a digisonde [Bhaneja *et al.*, 2009, Bowman  
131 1994 and references therein]. The digisonde is essentially the advanced digital version of the  
132 standard continuous-wave ionosonde technique [Bibl & Reinisch, 1978]. This instrument  
133 measures the parameters required to characterize the reflected wave: amplitude, phase, and  
134 frequency, for both the ordinary (O) and extraordinary (X) component of the reflected waves  
135 [Rishbeth & Davis 2001; Bibl & Reinisch 1978].




136  
 137 **FIGURE 2- Map showing the location of the five different midlatitude stations across**  
 138 **North-America that are used in this study.**

139  
 140  
 141 **2.1 Data Analysis – methodology**  
 142 Sixteen years (1996-2011) of data have been analyzed from the digital ionosondes  
 143 (digisondes) in Puerto Rico, Wallops Island, Dyess and Vandenberg. Eight years (2004-2011)  
 144 years of data are available from the Boulder digisonde. Midlatitude spread F is a nighttime  
 145 phenomenon and thus the data for nighttime between 7 PM -6 AM LT (0-10 UT varying with  
 146 different time zones) are processed to identify spread conditions.

147  
 148 Raw digisonde data are filtered and processed to generate ionograms for statistical analysis in  
 149 the following manner. First the raw data are converted to a human readable text format using an  
 150 algorithm developed by Dr. T. Bullett and run through a noise threshold algorithm to remove data  
 151 that are questionable due to low signal to noise ratios. The remaining data are processed using an  
 152 edge detection and a pattern recognition algorithm designed to identify the two types of MSF

153 (see *Bhaneja et al.*, 2009) and has been explained here. O-mode data are used exclusively for this  
154 analysis, since this mode is insensitive to the local magnetic field intensity. Thus O-mode data  
155 can be analyzed without a need for sophisticated magnetic field models.

156

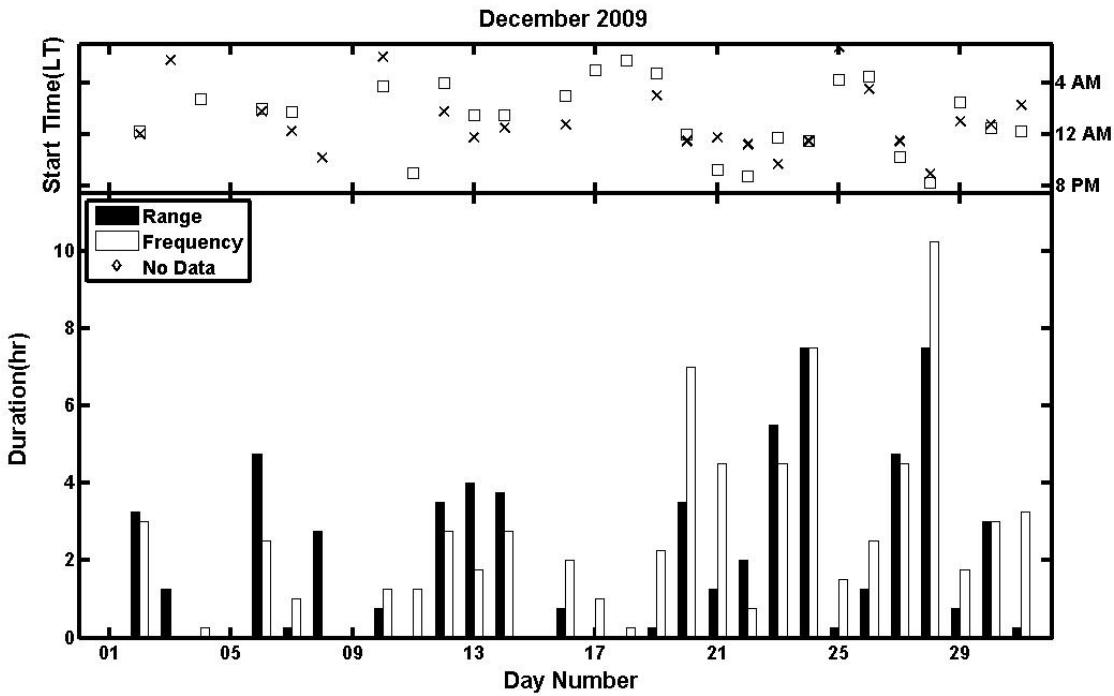


157  
158 **FIGURE 3 – An ionogram showing boxes (solid lines) drawn indicating range (RS) and**  
159 **frequency (FS) spread F for box 1 and box 2 respectively. The numbers beside the RS and**  
160 **FS indicate the pixel count inside the two boxes. The dashed box shows boundary**  
161 **conditions for night time spread F.**

162  
163 Figure 3 shows both range and frequency spread F identified by box 1 and box 2 (solid lines)  
164 respectively. To avoid human bias and analyze the large number of ionograms used in this study  
165 it is necessary to create autonomous algorithms for identifying spread F conditions. Figure 3  
166 illustrates this process, using the total pixel count in each box to determine the presence of  
167 spread F conditions. The locations of the two boxes vary for each ionogram and are determined  
168 using edge detection. In essence the algorithm determines the right and the bottom edges of  
169 boxes 1 and 2 respectively. The box 1 boundary limits for the edge detection are constrained to  
170 lie between 200-400 km and 1.5-3 MHz (dashed box). The bottom edge for box 1 is determined  
171 by counting the pixels for each altitude starting at 200 km; when the pixel count exceeds 6 the  
172 corresponding altitude is chosen as the bottom edge of box 1. The height of this box is fixed at  
173 100 km. Similarly for box 2, the box boundary limits are set to 200-500 km and 1.9-6 MHz

174 (dashed box). Also for box 2, for the spring to fall months from day 80 till day 300 for 0-1 UT,  
175 the box limits are 3.5-11 MHz, and for 2-10 UT it stays as 1.9-6 MHz. The right edge for box 2  
176 is determined by counting the pixels for each frequency starting at 6 MHz and proceeding to  
177 lower frequencies. When the pixel count exceeds 6, the corresponding frequency is chosen as the  
178 right edge of box 2. The width of this box is varied by the edge. If the right edge is determined to  
179 be greater than 5 MHz, the box width is 1.6 MHz, if the edge is between 3.2-5 MHz, the width is  
180 1 MHz, and less than 3.2, the width is 0.5 MHz. We then take the altitude of the frequency  
181 determined using edge detection. If the altitude is up to and equal to 300 km, the minimum and  
182 maximum height are taken as 10 km and 200 km respectively. If the altitude is between 300-400  
183 km, the minimum and maximum height are taken as 25 km and 175 km respectively. If the  
184 altitude is greater than 400 km the minimum and maximum height are 50 km and 150 km  
185 respectively. The final height of the box is then taken as the altitude minus the minimum height  
186 to the altitude plus the maximum height. For example, in Figure 3, the edge detection gave  
187 frequency as 5.7025 MHz at 400 km; the box 2 width was then 1.6 MHz, (5.7025 minus 1.6  
188 gives us 4.1), which made the box position from 4.1-5.7 MHz. The box 2 height was from  
189 altitude of 400 km minus the minimum height of 25 km and altitude of 400 km plus the  
190 maximum height of 175 km making our box 2 position from 375-575 km. These conditions for  
191 box 2 were set so as to reduce any overlap with the range spread in box 1. The limits on the two  
192 boxes have been chosen to cover night-time spread F while being careful not to include sporadic  
193 E and second hop traces.

194


195 Once the pixels are counted they are compared against a set threshold to determine spread F  
196 condition. These pixel counts are shown in the Figure 3 with RS and FS for range and frequency  
197 spread F for the two boxes. The thresholds are determined by randomly choosing a set of  
198 ionograms and determining the threshold counts for spread/non-spread conditions. These  
199 autonomous edge detection and pixel counting algorithms have been extensively debugged by  
200 spot-check comparisons with human perceptions for a wide variety of cases and conditions and  
201 these were found to be true for every single case. The goal of the algorithm is to identify range  
202 and frequency spread F without human biases and false positives. The statistics generated from

203 this autonomous spread F identification process should therefore be in excellent agreement with  
204 those using a “man-in-the-loop” judgment.

205

206 As spread F is a night time phenomenon, only data between 7 PM-6 AM local time are  
207 considered in this study. The digisondes used in this study operate continuously and produce  
208 ionograms at 15 minute intervals providing us with 44 ionograms/night for our study. A spread  
209 event is cataloged if continuity in spread ionograms is observed with no interruption of more  
210 than thirty minutes (two consecutive ionograms). If more than one event is observed for a night,  
211 only the longer event is recorded. If two events of equal length are observed, only first event is  
212 saved for further analysis. This approach has been justified and explained in *Bhaneja et al.*  
213 [2009].

214 Once a spread F event has been identified by the automated algorithm, the onset time,  
215 duration and type of spread F event are recorded and archived. This process is systematically  
216 applied to the data from all five stations. Using this very large MSF event database, statistical  
217 results are plotted to reveal the seasonal and solar cycle patterns for MSF. Some representative  
218 results for December 2009 at Wallops Island are shown in Figure 4. Statistics of this type for all  
219 five stations over all of solar cycle 23 (1996-2008) and the beginning of cycle 24 (2009-2011)  
220 were made and studied. Note that the station at Boulder only came online in 2004, and therefore  
221 a complete solar cycle is not available for this station.



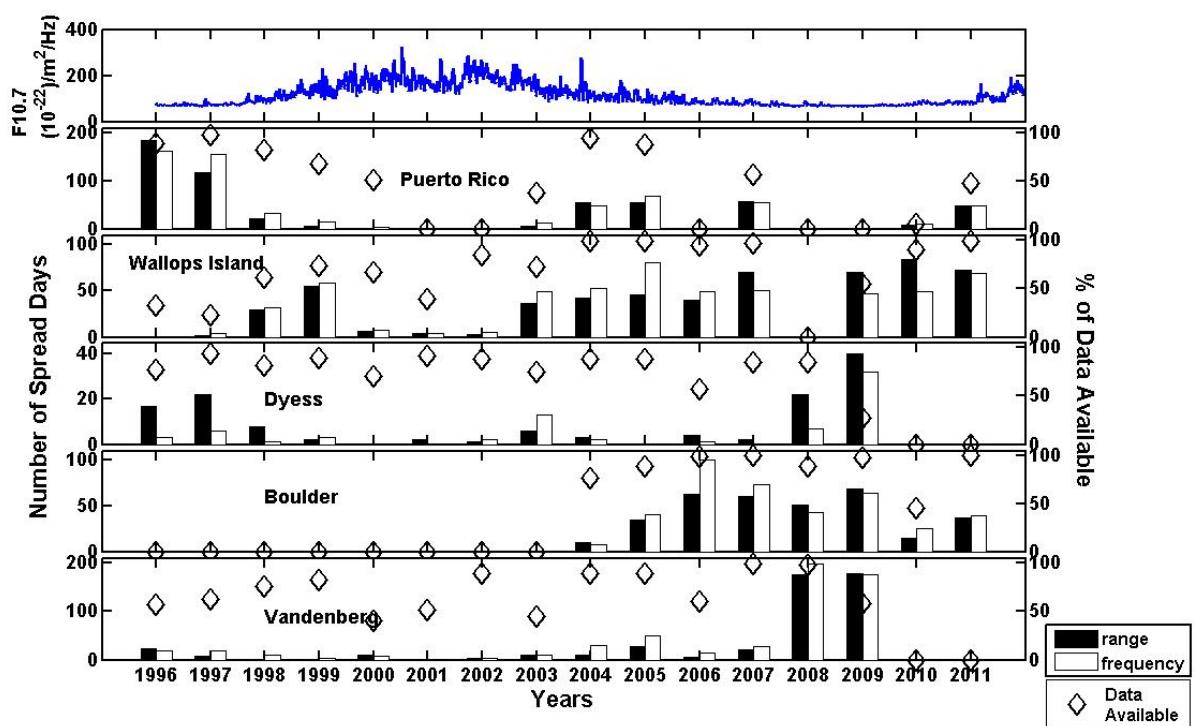
222

223 **FIGURE 4 – Monthly occurrence plot for December 2009 showing range and frequency**  
 224 **spread F onset time and duration for night time hours between 8PM-6AM LT. Black bars**  
 225 **indicate range spread F and white bars indicate frequency spread F. The cross symbol**  
 226 **denotes the start time for range spread F and the square symbol denotes the start time for**  
 227 **frequency spread F.**

228

## 229 **2.2 Statistical Results**

230 Automated processing as described above has been performed for the entire data set. Figures  
 231 5 and 6 show the solar variation for both types of MSF for all the stations. Figures 7 and 8 show  
 232 the seasonal variations of MSF. Figure 9 provides another contribution towards the seasonal  
 233 variation with the declination angle. Figure 10 shows the variation of MSF with geomagnetic  
 234 and solar activity.


235

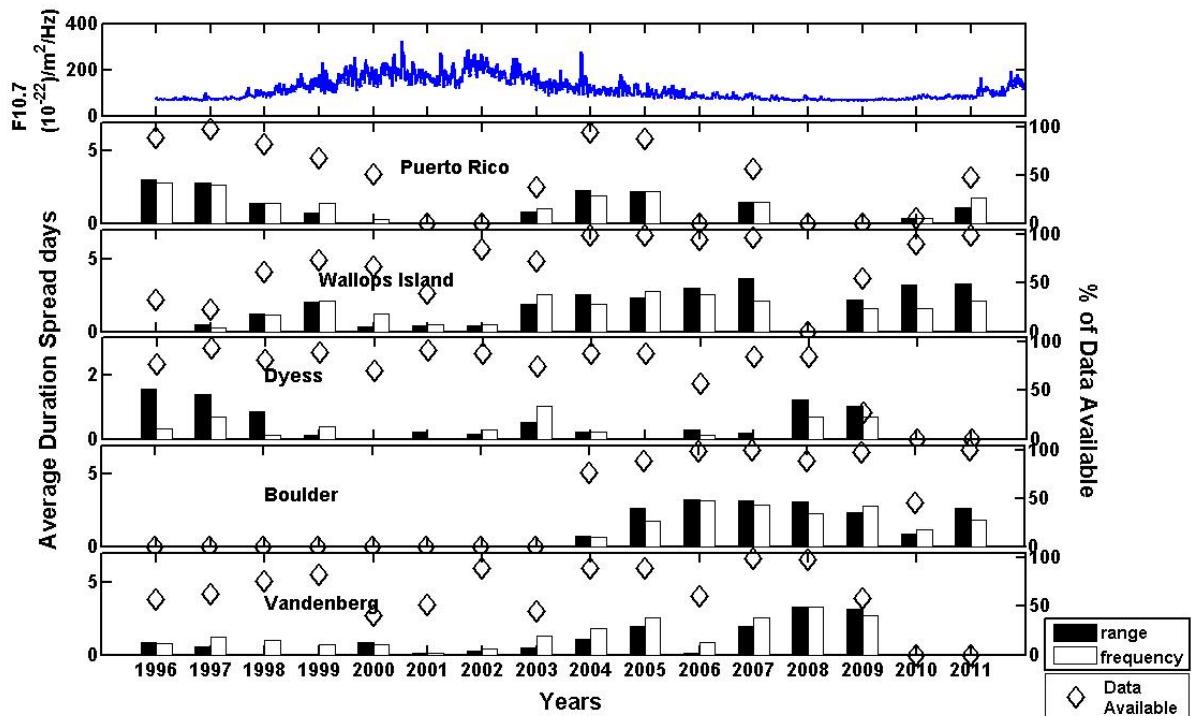
### 236 **2.2.1 Solar cycle variation**

237 Figure 5 shows the number of spread days for each year between 1996-2011 for the 5 sites.  
 238 The top panel shows the solar flux between 1996-2011, and the other 5 panels have stations in

239 order of increasing declination angle: Puerto Rico, Wallops Island, Dyess, Boulder and  
 240 Vandenberg. The left and right axes represent the number of spread days and percentage of data  
 241 available, respectively. Black bars represent range spread F while white bars represent frequency  
 242 spread F. The diamond symbols represent percentage of data available. There are no data  
 243 available for the Boulder ionosonde prior to 2004. Most of the MSF events are observed during  
 244 the solar minimum years (1996-1999 and 2005-2009), and this is consistently observed for all  
 245 five sites.

246




247

248 **FIGURE 5 – Plots show the solar cycle variation of spread F for 16 years (1996-2011) of**  
 249 **data for Wallops Island, Dyess, Vandenberg and Puerto Rico and 7 years (2004-2011) of**  
 250 **data for Boulder. The top panel shows the solar flux data which is higher during the solar**  
 251 **maximum years (2000-2002). The left-hand axis represents the number of spread days and**  
 252 **the right-hand axis displays the percentage of data available. The black bars represent**  
 253 **range spread F while the white bars represent frequency spread F. The diamond symbols**  
 254 **represent percentage of data available. The MSF events are more during solar minimum**  
 255 **than solar maximum.**

256

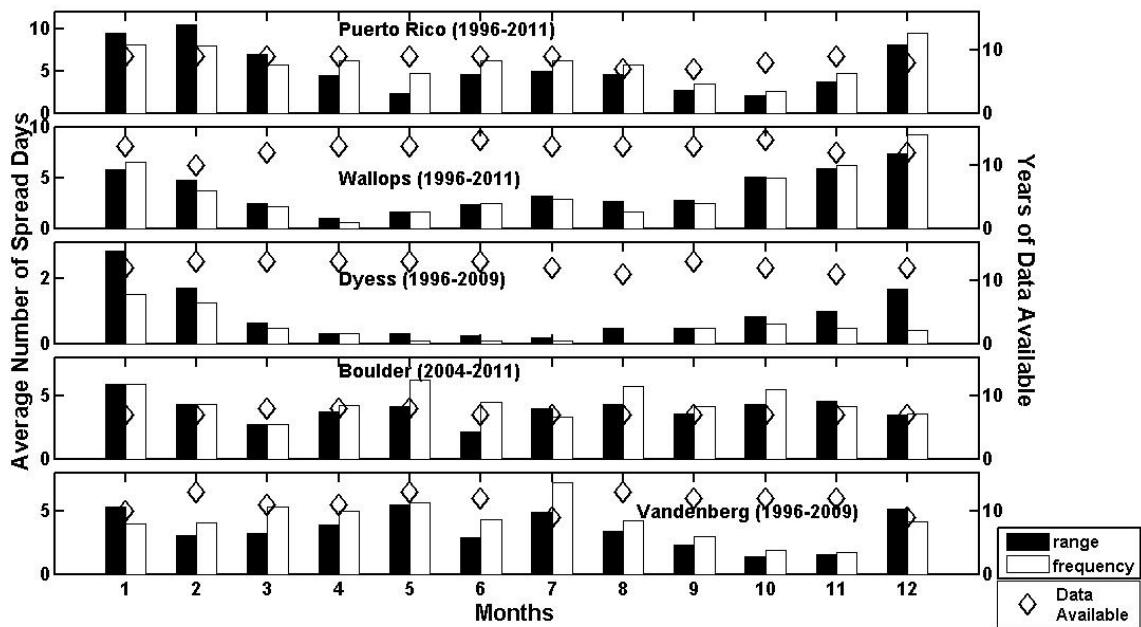
257 Figure 6 shows the average duration of spread days for each year between 1996-2011 for the  
 258 5 sites. This figure is similar in format to Figure 5, with the top panel showing solar flux and the  
 259 rest of the panels representing stations in order of decreasing longitude. The left and right hand  
 260 side axes represent the average duration of spread days and the percentage of data available,  
 261 respectively. The total number of hours for the longest duration spread F event on each night is  
 262 averaged for each year. The average duration of MSF events observed in each year is longer  
 263 during the solar minimum years (1996-1999 and 2005-2009), and this is consistently observed  
 264 for all five sites.

265



266

267 **FIGURE 6 – Plots shows the solar cycle variation of spread F for more than 15 years (1996-  
 268 2011) of data for Wallops Island, Dyess, Vandenberg and Puerto Rico and 7 years (2004-  
 269 2011) of data for Boulder. The top panel shows the solar flux data which is higher during  
 270 the solar maximum years (2000-2001). The left-hand axis represents the average duration  
 271 of spread days and the right-hand axis displays the percentage of data available. The black  
 272 bars represent range spread F while the white bars represent frequency spread F. The**


273 diamond symbols represent percentage of data available. The MSF events have longer  
274 duration during solar minimum than solar maximum.

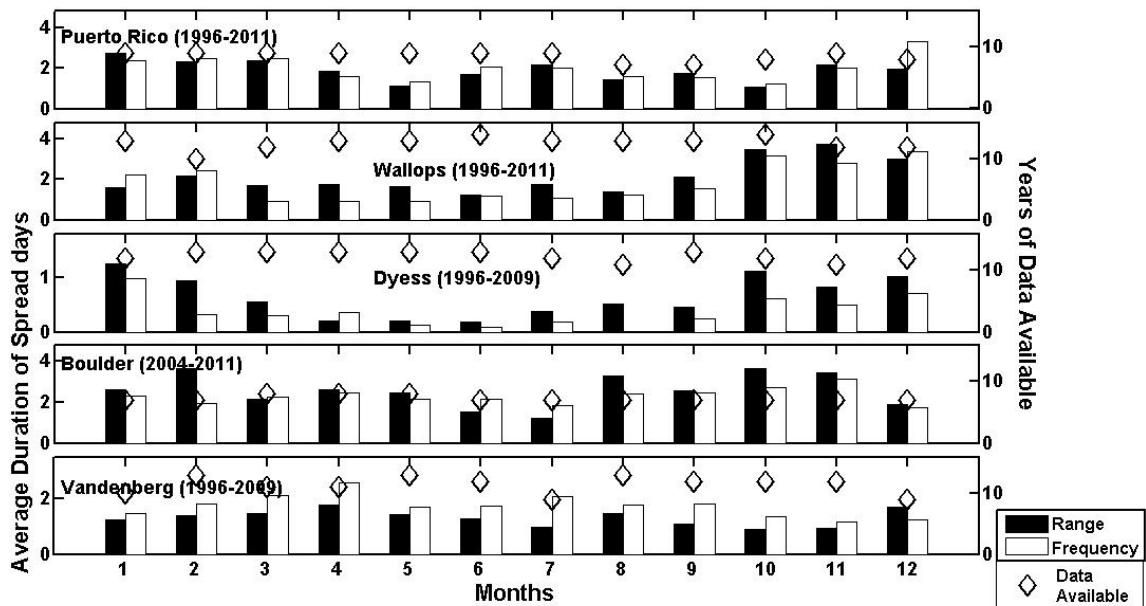
275

276

## 277 2.2.2 Seasonal variation

278 Figure 7 shows the average number of spread days per month for a given year. The average is  
279 calculated by first obtaining the sum of spread F nights for each month for each available year.  
280 These sums for each year are divided by the number of available years of data to obtain the  
281 averages. Black bars represent range spread F while white bars represent frequency spread F. The  
282 diamond symbols represent the numbers of years of data available for each month. MSF is  
283 common during the months of December and January but vary differently during the other  
284 months for all the sites. All the stations show different seasonal variations for MSF, presumably  
285 due to their varying longitudes.




286

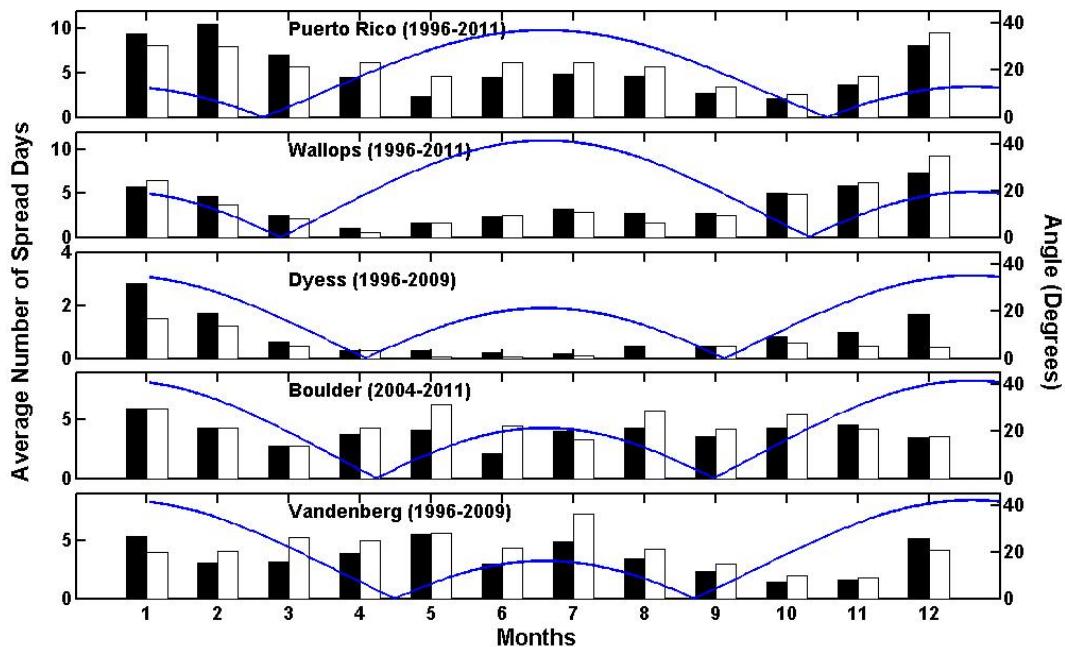
287 **FIGURE 7 – Plots shows the seasonal variation of spread F. The data have been plot for**  
288 **each month for more than 15 years (1996-2011) of data for Wallops Island, Dyess,**  
289 **Vandenberg and Puerto Rico and 7 years (2004-2011) of data for Boulder. The left-hand**  
290 **axis represents the average number of spread days and the right-hand axis displays the**

291 years of months of data available. The black bars represent range spread F while the white  
 292 bars represent frequency spread F. The diamond symbols represent data available. All the  
 293 sites show varying seasonal variation of MSF. MSF is common during the months of  
 294 December and January but vary differently during the other months for all the sites. There  
 295 is clearly a seasonal dependence on various factors such as the different longitudes,  
 296 declination angles, terrestrial weather systems, and orography.

297

298 Figure 8 shows the average duration of spread days per month averaged for all the available  
 299 years. The total number of spread F hours for the longest duration events on each night are  
 300 accumulated each month and then divided by the total number of spread F nights. These monthly  
 301 averages are then divided by the number of available years of data to obtain the averages. The  
 302 duration of the MSF for the different stations also show different seasonal variations, presumably  
 303 due to their varying longitudes.




304

305 **FIGURE 8 –** Plots shows the seasonal variation of spread F. The data have been plotted for  
 306 each month for more than 15 years (1996-2011) of data for Wallops Island, Dyess,  
 307 Vandenberg and Puerto Rico and 7 years (2004-2011) of data for Boulder. The left-hand  
 308 axis displays the average duration of spread days and the right-hand axis displays the years  
 309 of months of data available. The black bars represent range spread F while the white bars

310 represent frequency spread F. The diamond symbols represent data available. All the sites  
311 show varying seasonal variation of MSF. There is clearly a seasonal dependence on various  
312 factors such as the different longitudes, declination angles, terrestrial weather systems, and  
313 orography.

314

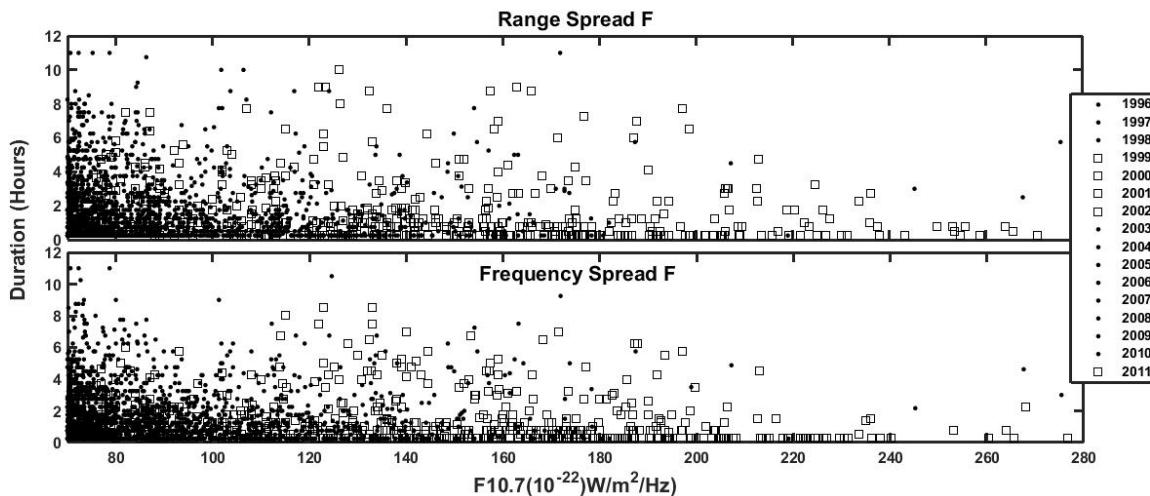
315 Figure 9 shows the average number of spread F days per month for a given year plotted along  
316 with the angle between the declination angle and the terminator (represented by the black line).  
317 The angle variation is plotted with the spread F to compare its variation around the seasons.



318

319 **FIGURE 9 –** Plots show the seasonal variation of range and frequency spread F of the  
320 different sites having different magnetic declinations from -14, -11, 6.9, 10 and 13 degrees.  
321 The left-hand axis displays the average number of spread days and the right-hand axis  
322 displays the angle in degrees. The black bars represent range spread F while the white bars  
323 represent frequency spread F. The line represents the angle between the dusk terminator  
324 and the local magnetic field. The spread F varies with the different locations. Puerto Rico,  
325 Wallops, and Vandenberg seem to have more spread events for the lower declination angles;  
326 this holds more for Wallops Island, than for Puerto Rico and Vandenberg. Also, there is

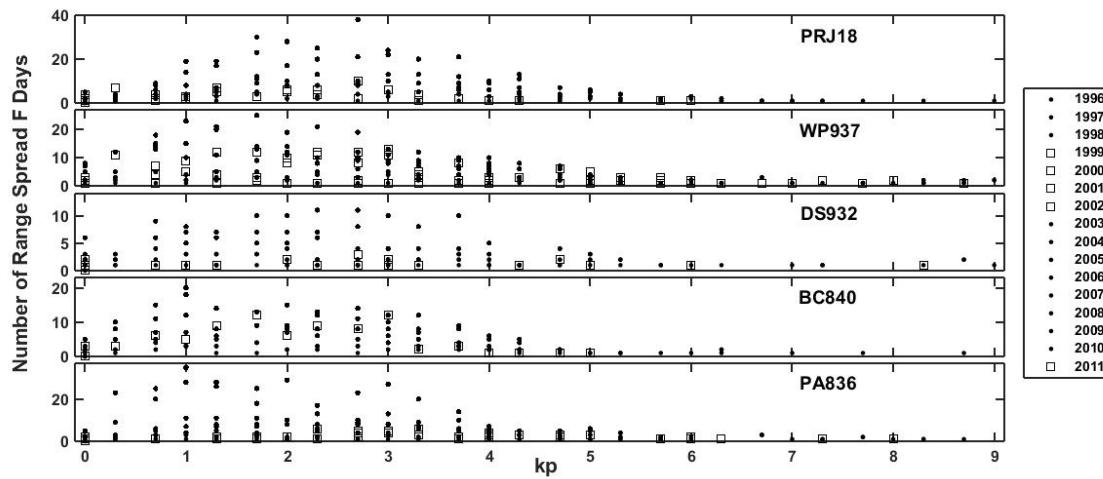
327 **more spread F during winter for Wallops and Dyess, while there is more during spring and**  
328 **summer for Boulder and Vandenberg.**


329  
330 Figures 5-9 show that both the occurrence probability and the duration of MSF events have  
331 varying seasonal and solar cycle patterns that are different for each of the five sites. This  
332 suggests that geographical locations, orographic features, and/or local weather patterns may be  
333 important factors in the characteristics of gravity waves that propagate to ionospheric altitudes,  
334 and on their effects on the ionosphere.

335  
336

### 337 **2.2.3 Geomagnetic variation**

338 Figure 10 shows both the duration of range (top panel) and frequency (bottom panel) spread  
339 F events versus the F10.7. The average duration for the five stations for the corresponding years  
340 is taken and plotted. The solar minimum (1996-1998, 2003-2010) years are shown as filled  
341 circles while solar maximum (1999-2002, 2011) years are shown as squares. Most long duration  
342 events for both range and frequency spread F occur during the solar minimum years. Few longer  
343 duration events occur during solar maximum years.


344



345  
346 **FIGURE 10 – Plots show the average duration of range and frequency spread F events for**  
347 **the five stations versus F10.7. The solar minimum (1996-1998, 2003-2010) years are shown**  
348 **as filled circles while solar maximum (1999-2002, 2011) years are shown as squares.**

349

350 Figure 11 shows the number of range spread F events for the corresponding kp values. For  
 351 each spread F event, the maximum Kp value from the previous 12-hour periods are used. Due to  
 352 the different spread F events corresponding to different kp values for each station, we have made  
 353 the plots for separate stations. The solar minimum (1996-1998, 2003-2010) years are shown as  
 354 filled circles while solar maximum (1999-2002, 2011) years are shown as squares. Most of the  
 355 spread F events occur during low kp values below 5 and very few occur for high kp values.



356

357 **FIGURE 11 – Plot show the geomagnetic variation of range spread F. The number of range**  
 358 **spread F events versus kp values for all the stations. The solar minimum (1996-1998, 2003-**  
 359 **2010) years are shown as filled circles while solar maximum (1999-2002, 2011) years are**  
 360 **shown as squares. Most spread F events are for lower kp values.**

361

### 362 3. Discussion

363 The data presented here indicate that the occurrence rate and duration of midlatitude spread F  
 364 are higher during solar minimum than during solar maximum as is evident from Figures 5 and 6.  
 365 It can be seen from the plots that this statement applies for all five North-American stations.  
 366 During 1996-1999 and 2004-2010, which are the solar minimum years, there are significantly  
 367 more spread F events, and their duration is longer than in the solar maximum period. During the  
 368 solar maximum in 2000-2003 (indicated by the higher solar flux values during those years), there  
 369 are fewer events of shorter duration. *Bowman* [1992] similarly shows higher occurrence of MSF  
 370 for solar minimum then solar maximum using data from Australia. This pattern suggests that

371 lower thermospheric temperatures and neutral densities are conditions that may enable the  
372 physical processes that lead to MSF. Gravity waves are considered to be the primary source of  
373 MSF and these waves tend to have larger amplitudes at a given altitude during solar minimum  
374 than during solar maximum when they propagate to higher altitudes [Vadas, 2007]. Thus, it can  
375 be inferred from its solar cycle dependence that the amplitudes of gravity waves in the lower  
376 thermosphere may be a key factor in generating MSF.

377

378 *Martinis et al.* [2010] showed an anti-correlation between medium scale TIDs and solar  
379 activity using imaging data at Arecibo. *Candido* [2008] discussed similar results for Brazil,  
380 stating that most of the observable medium scale TIDs occur during low solar activity as  
381 compared with high solar activity. TIDs are plasma manifestations of atmospheric gravity waves  
382 propagating in the thermosphere [Kotake *et al.*, 2007]. Solar cycle 23-24 had an unusually long  
383 solar minimum and had reportedly the lowest thermospheric densities ever recorded [Emmert *et*  
384 *al.*, 2010] as well as an extended contracted ionosphere [Klenzing *et al.*, 2011], so it is not  
385 surprising that the occurrence rates for MSF in the North-American sector maximize in this  
386 period. Figure 5 shows the highest number of spread F days during 2008-2009 for Wallops,  
387 Dyess, Boulder and Vandenberg. There are no data available for Puerto Rico for those two years,  
388 but Puerto Rico shows a similar pattern for the previous solar minimum during 1996-1997.  
389 Another interesting observation evident in Figure 5 is that most stations experience more range  
390 spread F events during solar minimum, and more frequency spread F events during solar  
391 maximum. This pattern has also been reported by *Abdu et al.* [1983] over Fortaleza, Brazil and  
392 also by *Candido et al.* [2011] over Cachoeira Paulista, Brazil.

393

394 The seasonal variation is particularly interesting, since this has not been thoroughly studied.  
395 Figures 7-9 show the seasonal variation of the MSF for all five stations; all the stations show  
396 different seasonal variations, presumably due to their varying longitudes, declinations, or  
397 localized forcing from lower altitude sources. The observations are summarized in Table 1. The  
398 seasonal variation provides a longitudinal variation of spread F, and each station has MSF during  
399 different seasons; in Ramey, Puerto Rico during winter, in Wallops Island, Virginia during vernal  
400 equinox and winter, in Dyess, Texas during winter solstice, in Boulder, Colorado during early

401 summer and autumn equinox and in Vandenberg, California during summer and winter solstice.  
 402 These figures also indicate that MSF is common at all latitudes in this study during the months of  
 403 December and January. This coincides with the general notion of the occurrence of medium scale  
 404 gravity waves for the north-American region during the winter solstice [Martinis *et al.*, 2010].  
 405 The seasonal dependence of MSF at Puerto Rico is similar to previously published statistics of  
 406 MSTIDs observed at Arecibo [Martinis *et al.*, 2010]. Another observation is that the MSF occurs  
 407 the least during spring equinox for all the sites except for Vandenberg and being all the way on  
 408 the west coast may have some contribution towards this occurrence or non-occurrence factor.

409

| Stations                 | Latitude | Longitude | Declination | Season with maximum MSF occurrences | Season with minimum MSF occurrences |
|--------------------------|----------|-----------|-------------|-------------------------------------|-------------------------------------|
| Ramey, Puerto Rico       | 18.5°    | 67.1°     | -14°        | Winter solstice                     | Spring equinox,<br>Vernal equinox   |
| Wallops Island, Virginia | 37.95°   | 74.5°     | -11°        | Vernal equinox, winter solstice     | Spring equinox,<br>Summer           |
| Dyess, Texas             | 32.4°    | 99.8°     | 6.9°        | Winter solstice                     | Spring, Summer,<br>Vernal Equinox   |
| Boulder, Colorado        | 40°      | 105.3°    | 10°         | Early summer, autumn equinox        | Spring Equinox,<br>Winter           |
| Vandenberg, California   | 34.8°    | 120.5°    | 13°         | Summer solstice,<br>winter solstice | Fall                                |

410

411 **TABLE 1-Summary of seasonal variation of MSF**

412

413 Another interesting feature of the data, shown in Figure 9, is the variation of MSF with the  
 414 angle of declination. The data from different stations Puerto Rico, Wallops Island, Dyess,  
 415 Boulder and Vandenberg with declination angles -14°, -11°, 6.9°, 10° and 13° respectively are  
 416 plotted. Out of the five stations, three, viz. Puerto Rico, Wallops, and Vandenberg seem to have  
 417 more spread events for the lower declination angles; this holds more for Wallops Island, than for

418 Puerto Rico and Vandenberg. Also, there is more spread F during winter for Wallops and Dyess  
419 while there is more spread F during spring and summer for Boulder and Vandenberg, which is  
420 yet another variation with the different declination angles. The varying dip angles which are  
421  $46.4^\circ$ ,  $66.2^\circ$ ,  $61.3^\circ$ ,  $67^\circ$  and  $59.3^\circ$  for Puerto Rico, Wallops Island, Dyess, Boulder and  
422 Vandenberg respectively do not show any significant effect in the statistics. Wallops and Boulder  
423 have similar dip angles as do Dyess and Vandenberg, but with different spread patterns. The  
424 Perkins instability growth rate is inversely proportional to the dip angle, making it decrease with  
425 the increase in the dip angle, but there is no such pattern observed with our data.

426

427 The occurrence of more spread F when the angle between the dusk terminator and local  
428 magnetic field is minimum indicates that efficient electric field mapping between conjugate  
429 hemispheres is important for the occurrence of spread F. The process of E-fields mapping along  
430 the magnetic flux tube is more efficient when both ends of the tube experience sunset at roughly  
431 the same time. The reduced conductivity along the entire flux tube would lead to better E-field  
432 mapping because the fields would not drive currents in the E-regions of either hemisphere, so the  
433 plasma motions perpendicular to B could be sustained for longer periods (the fields wouldn't be  
434 shorted out). Similar hypothesis for equatorial spread F has been proposed by *Tsunoda* [1985]  
435 and shown by *Aarons* [1993] for equatorial scintillation. *Abdu* *et al.*, [1992] also talks about  
436 declination angle control over the sporadic E and F layers. A conjugate point equatorial  
437 experiment in Brazil conducted by *Abdu* *et al.*, [2009] shows similar electrodynamic coupling  
438 during sunset hours giving rise to spread F conditions. Even though these were equatorial region  
439 studies, from our earlier Wallops Island study [*Bhaneja*, 2009], we conjectured that the  
440 alignment of the terminator and the flux tube might be an important factor in MSF generation.  
441 This new study includes more data from more geographically distributed sites, and it reveals that  
442 the terminator/flux tube alignment condition seems to hold for some stations (including Wallops  
443 Island, Puerto Rico and Vandenberg) but not for others. Thus, we are forced to conclude that the  
444 terminator/flux tube alignment condition may be a factor in MSF development, but it is not the  
445 only factor of significance, and is in fact not the dominant factor in MSF formation.

446

447 MSF can also vary due to solar effect and geomagnetic forcing as seen in Figures 10 and 11.  
448 Figure 10 shows that most long duration range and frequency spread F events occur during solar  
449 minimum (1996-1998 and 2003-2010) years. During the solar maximum (1999-2002, 2011)  
450 years, the events are shorter. There are a few longer events during solar maximum too, but most  
451 of them are short duration events. This observation is similar to what we see from Figures 5 and  
452 6. Figure 11 shows the geomagnetic variation of MSF for all the different stations. The number  
453 of range spread F events occur more for low and moderate kp events while very few events occur  
454 for higher kp values. This also holds true for the solar minimum years which has more number of  
455 range spread F days for low kp values. It can be seen from the plots that this statement applies  
456 for all five North-American stations. The same pattern holds for frequency spread F and for the  
457 duration of both range and frequency spread F events. All the panels show that MSF is more  
458 prevalent during quiet times and during solar minimum.

459

460 The other major factor in MSF formation is the troposphere weather forcing; the prevalence  
461 and/or severity of thunderstorms, lightning, hurricanes, and tropical disturbances. The  
462 thunderstorms can also sometimes cause an increase in sporadic E and through that in the  
463 electron density in the F region [Kazimirovsky, 2002]. Presence of sporadic E events can also  
464 coincide with MSF events due to the electrodynamic coupling between the E and F regions  
465 [Kelley *et al.*, 2003; Haldoupis *et al.*, 2003; Cosgrove, 2007 and references therein]. We noticed  
466 this for Boulder where sporadic E is heavily observed and most of the times these events were  
467 coincident with MSF occurrences. The same goes for Puerto Rico being in lower latitudes also  
468 had more sporadic E events and some of them were coincident with massive spread F events.  
469 These terrestrial weather patterns vary with season that competes with or overcomes the  
470 declination and terminator alignment criterion. Another effect of thunderstorms is the  
471 manifestation of waves, mainly short -period gravity waves and these affect the F region [Lay *et*  
472 *al.*, 2013, Lay *et al.*, 2015]. These wave patterns are visible in the critical frequency and the  
473 electron density values. We conducted spectral analysis for some individual months and  
474 observed short-period wave signatures from 30 minutes to 4 hours in the foF2 values. But we  
475 need to analyze this deeply and also include weather data including lightning and storm data to  
476 find any correlations.

477

478 Another factor can be the surface features such as the orographic factors [Pulinets & Liu,  
479 2004]. The Mountain ranges affect the motion of weather systems and produce lee waves that  
480 may have seasonal dependences affecting sites in different ways. This is of particular importance  
481 for the Boulder ionosonde which coincidentally also exhibits a lot of sporadic E events along  
482 with a disturbed second hop or reflection on the ionograms indicating a geographical impact on  
483 the observations. Coastal effects may also play a role. Puerto Rico is in the Caribbean, Wallops  
484 is an island on the east coast, Dyess is inland and Vandenberg is in the west coast.

485

#### 486 Conclusion

487 This statistical study has established the seasonal and solar cycle variations of midlatitude  
488 spread F at five different North-American sites spanning the range between Puerto Rico and  
489 California. There are more and longer events during solar minimum years for all 5 stations.  
490 Increased MSF is detected at Dyess and Vandenberg during the extreme solar minimum years  
491 (2008-2009) relative to the previous solar minimum (1996-1997). The seasonal variation  
492 provides a longitudinal variation of spread F, and each station has maximum MSF occurrence  
493 during different seasons; winter in Puerto Rico, vernal equinox and winter in Virginia, winter  
494 solstice in Texas, early summer and autumn equinox in Colorado and summer and winter solstice  
495 periods in California. The minimum MSF happens during spring equinox for all the sites except  
496 for Vandenberg. Another interesting pattern is observed for Puerto Rico, Wallops, and  
497 Vandenberg: these three sites have more spread F when the angle between the magnetic field line  
498 and the terminator is minimum. This is an interesting observation as all these three sites have  
499 different declination angles, ranging from  $-14^\circ$ ,  $-11^\circ$ , and  $13^\circ$  respectively. Also, there is more  
500 spread F during winter for Wallops and Dyess while there is more during spring and summer for  
501 Boulder and Vandenberg, which is yet another variation with the different declination angles.  
502 Declination angle alone is not enough to explain the occurrence of MSF however, since the  
503 relationship does not hold at all five sites. We must therefore conclude that while low  
504 conductivity along the entire flux tube may be important to MSF development, it is clearly not  
505 the dominant factor.

506

507        Further study needs to be conducted to determine the reason behind the observed seasonal  
508        pattern. Some stations seem to show the MSF due to possible electrodynamical coupling, others  
509        show a clear discrepancy, indicating that there might be other physical factors contributing or  
510        suppressing the conditions responsible for spread F. Geomagnetic variations have a very weak  
511        influence on MSF and this holds for each individual station in this study. To determine if the  
512        seasonal variation is due to tropospheric and orographic influences, further study should be  
513        conducted that uses weather conditions prior to each event. This may be achieved by using  
514        weather satellite images or other meteorological data. The past solar cycle is an ideal time period  
515        for such a study, since it was so long and so quiet geomagnetically. We intend to extend our  
516        work by creating a model to look at these factors and their impacts on MSF wherein we will  
517        possibly include more stations. Constructing and validating an empirical model is a significant  
518        task and is the next step. Having a model that can predict average behavior of mid-latitude  
519        spread F will hopefully be a great contribution to space science.

520

521

522

523        **Acknowledgements.** The data for this research was obtained from National Geophysical Data  
524        center, NGDC/NOAA at Boulder, Colorado. Preeti Bhaneja also thanks Dr. Jeff Klenzing for his  
525        invaluable help and advice and Dr. Patrick Roddy for editing help.

526

## 527        **References**

- 528        1. Aarons, J., The longitudinal morphology of equatorial F-layer irregularities relevant to their  
529        occurrence, *Space Science Reviews*, 63, 209-243, 1993.
- 530        2. Abdu, M. A., deMedeiros, R.T., and Nakamura, Y., Latitudinal and magnetic flux tube  
531        extension of the equatorial spread F irregularities, *J. Geophys. Res.*, 88(A6), 4861–4868,  
532        doi:10.1029/JA088iA06p04861, 1983.
- 533        3. Abdu, M. A., Batista, I.S., and Sobral, J.H.A., A new aspect of magnetic declination control  
534        of equatorial spread F and F region dynamo, *J. Geophys. Res.*, 97(A10), 14897–14904,  
535        doi:[10.1029/92JA00826](https://doi.org/10.1029/92JA00826), 1992.

536 4. Abdu, M. A., Batista, I.S., Reinisch, B.W., de Souza, J.R., Sobral, J.H.A., Pedersen, T.R.,  
537 Medeiros, A.F., Schuch, N.J., de Paula, E.R., and Groves, K.M., Conjugate Point Equatorial  
538 Experiment (COPEX) campaign in Brazil: Electrodynamics highlights on spread F  
539 development conditions and day-to-day variability, *J. Geophys. Res.*, 114, A04308,  
540 doi:10.1029/2008JA013749, 2009.

541 5. Behnke, R., F layer height bands in the nocturnal ionosphere over Arecibo, *J. Geophys. Res.*,  
542 84, 974, 1979.

543 6. Bhaneja, P., Earle, G.D., Bishop, R.L., Bullett, T.W., Mabie, J., Redmon, R., A statistical  
544 study of midlatitude spread F at Wallops Island, Virginia, *J. Geophys. Res.*, 114, A04301,  
545 doi:10.1029/2008JA013212, 2009.

546 7. Bibl, K., and Reinisch, B.W., The universal digital ionosonde, *Radio Science*, 13(3), 519-  
547 530, 1978.

548 8. Boska, J., and Sauli, P., Observations of gravity waves of meteorological origin in the F-  
549 region ionosphere, *Phys. Chem. Earth*, 26, 6, 425-428, 2001.

550 9. Bowman, G.G., The nature of ionospheric spread-F irregularities in mid-latitude regions, *J.*  
551 *Atmosphere and Solar-Terrestrial Phys.*, 43, 65-79, 1981.

552 10. Bowman, G.G., A review of some recent work on mid-latitude spread-F occurrence as  
553 detected by ionosondes, *J. Geomag. Geoelectr.*, 42, 109, 1990.

554 11. Bowman, G.G., Upper-atmosphere neutral-particle density variations compared with  
555 spread-F occurrence rates at locations around the world, *Ann. Geophys.*, 10, 676, 1992.

556 12. Bowman, G.G., Short-Term Delays in the Occurrence of Mid-Latitude Ionospheric  
557 Disturbances Following Other Geophysical and Solar Events, *J. Geomag. Geoelectr.*, 46,  
558 297 309, 1994.

559 13. Candido, C., Pimenta, A., Bittencourt, J.A., and Becker-Guedes, F., Statistical analysis of  
560 the occurrence of medium-scale traveling ionospheric disturbances over Brazilian low  
561 latitudes using OI 630.0 nm emission all-sky images, *Geophys. Res. Lett.*, 35, L17105,  
562 doi:10.1029/2008GL035043, 2008.

563 14. Candido, C.M.N., Batista, I.S., Becker-Guedes, F., Abdu, M.A., Sobral, J.H.A., and  
564 Takahashi, H., Spread F occurrence over a southern anomaly crest location in Brazil during

565        June solstice of solar minimum activity, *J. Geophys. Res.*, 116, A06316,  
566        doi:10.1029/2010JA016374, 2011.

567        15. Cosgrove, R. B., and Tsunoda, R.T., A direction-dependent instability of sporadic E layers  
568        in the nighttime midlatitude ionosphere, *Geophys. Res. Lett.*, 29(18), 1864,  
569        doi:10.1029/2002GL014669, 2002b.

570        16. Cosgrove, R.B., and Tsunoda, R.T., Instability of the E-F coupled nighttime midlatitude  
571        ionosphere, *J. Geophys. Res.*, 109, A04305, doi:10.1029/2003JA010243, 2004.

572        17. Cosgrove, R. B., Generation of mesoscale F layer structure and electric fields by the  
573        combined Perkins and Es layer instabilities, in simulations, *Ann. Geophys.*, 25, 1579, 2007.

574        18. Davis, M.J., On polar substorms as the source of large-scale traveling ionospheric  
575        disturbances, *J. Geophys. Res.*, 76, 4525, 1971.

576        19. Earle, G. D., Bhaneja, P., Roddy, P.A., C. M. Swenson, C.M., Barjatya, A., Bishop, R.L.,  
577        Bullett, T.W., Crowley, G., Redmon, R., Groves, K., Cosgrove, R., Sharon L. Vadas, A  
578        comprehensive rocket and radar study of midlatitude spread *F*, *J. Geophys. Res.*, 115,  
579        A12339, doi:10.1029/2010JA015503, 2010.

580        20. Emmert, J.T., Lean, J.L., and Picone, J.M., Recod-low thermospheric density during the  
581        2008 solar minimum, *Geophys. Res. Letters*, 37, L12102, doi:10.1029/2010GL043671,  
582        2010.

583        21. Haldoupis, C., Kelley, M.C., Hussey, G.C., and Sergei Shalimov, S., Role of unstable  
584        sporadic-E layers in the generation of midlatitude spread F, *J. Geophys. Res.*, 108, A12,  
585        1446, doi:10.1029/2003JA009956, 2003.

586        22. Hines, C.O., Internal atmospheric gravity waves at ionospheric heights, *Can. J. Phys.*, 38,  
587        1441–1480, 1960.

588        23. Kelley, M.C., and Fukao, S, Turbulent Upwelling of the Mid-Latitude Ionosphere 2.  
589        Theoretical Framework, *J. Geophys. Res.*, 96, 3747-3753, 1991.

590        24. Kelley, M.C., Haldoupis, C., Nicolls, M. J., Makela, J.J., Belehaki, A., Shalimov, S., and  
591        Wong, V. K., Case studies of coupling between the E and F regions during unstable  
592        sporadic-E conditions, *J. Geophys. Res.*, 108, A12, 1447, doi:10.1029/2003JA009955,  
593        2003.

594 25. Kazimirovsky, E.S., Coupling from below as a source of ionospheric variability: a review,  
595 *Annals Geophys.*, 45, 1, 2002.

596 26. Kazimirovsky, E.S., Herraiz, M., De La Morena, B.A., Effects on the ionosphere due to  
597 phenomenon occurring below it: a review, *Surveys in Geophys.*, 24, 139-184, 2003.

598 27. Klenzing, J., Simoes, F., Ivanov, S., Heelis, R.A., Bilitza, D., Pfaff, R., and Rowland, D.,  
599 Topside equatorial ionospheric density and composition during and after extreme solar  
600 minimum, *J. Geophys. Res.*, 116, A12330, doi:10.1029/2011JA017213, 2011.

601 28. Kotake, N., Otuska, Y., Ogawa, T., Tsugawa, T., and Saito A., Statistical study of medium-  
602 scale traveling ionospheric disturbances observed with the GPS networks in Southern  
603 California, *Earth Planets Space*, 59, 95-102, 2007.

604 29. Lastovicka, J., Forcing of the ionosphere by waves from below, *J. Atmos. Solar-Terres.  
605 Physics*, 68, 479-497, 2006.

606 30. Lay, E. H., Shao, X-M., and Carrano, C.S., Variation in total electron content above large  
607 thunderstorms, *Geophys. Res. Letters*, 40, 1945-1949, doi:10.1002/grl.50499, 2013.

608 31. Lay, E. H., Shao, X-M., Kendrick, A.K., and Carrano, C.S., Ionospheric acoustic and  
609 gravity waves associated with midlatitude thunderstorms, *J. Geophys. Res.*,  
610 10.1002/2015JA021334, 2015.

611 32. Martinis, C., Baumgardner, J., Wrotten J., and Mendillo, M., Seasonal dependence of  
612 MSTIDs obtained from 630.0 nm airglow imaging at Arecibo, *Geophys. Res. Lett.*, 37,  
613 L11103, doi:10.1029/2010GL043569, 2010.

614 33. Mathews, J.D., and Harper, R.M., Incoherent scatter radar observations of spread-F  
615 producing ionospheric structures at Arecibo, *J. Atmos. Terr. Phys.*, 34, 1119-1127, 1972.

616 34. Nygrén, T., Aikio, A.T., Voiculescu, M., and Cai, L., Radar observations of simultaneous  
617 traveling ionospheric disturbances and atmospheric gravity waves. *J. Geophys.  
618 Res.*, 120, 3949-3960. doi:10.1002/2014JA020794, 2015.

619 35. Oliver, W.L., et al., Middle and upper atmosphere radar observations of ionospheric density  
620 gradients produced by gravity wave packets, *J. Geophys. Res.*, Vol 99, No. A4, 6321-6329,  
621 1994.

622 36. Perkins, F., Spread F and Ionospheric Currents, *J. Geophys. Res.*, 78, 218-226, 1973.

623 37. Pulinets, S.A., and Liu, J.Y., Ionospheric variability unrelated to solar and geomagnetic  
624 activity, *Adv. Space Res.*, 34, 1926-1933, 2004.

625 38. Rishbeth, H., F-region links with the lower atmosphere? *J. Atmos. Solar-Terres. Phys.*, 68,  
626 469-478, 2006.

627 39. Rishbeth, H., and Davis, C.J., The 70<sup>th</sup> anniversary of ionospheric sounding, *Engineering  
628 science and education journal*, 139-144, 2001.

629 40. Tsunoda, R. T., Control of the seasonal and longitudinal occurrence of equatorial  
630 scintillations by the longitudinal gradient in integrated E region Pederson conductivity, *J.  
631 Geophys. Res.*, 90, A1, 447-456, 1985.

632 41. Tsunoda, R. T., On the coupling of layer instabilities in the nighttime midlatitude  
633 ionosphere, *J. Geophys. Res.*, 111, A11304, doi:10.1029/2006JA011630, 2006.

634 42. Vadas, S.L., Horizontal and vertical propagation and dissipation of gravity waves in the  
635 thermosphere from lower atmospheric and thermospheric sources, *J. Geophys. Res.*, 112,  
636 A06305, doi: 10.1029/2006JA011845, 2007.

637 43. Vadas, S.L., and Liu, H.-L., The generation of large-scale gravity waves and neutral winds  
638 in the thermosphere from the dissipation of convectively generated gravity waves, *J.  
639 Geophys. Res.*, 114, A10310, doi: 10.1029/2009JA014108, 2009.

640 44. Yokoyama, T., Hysell, D.L., Otsuka, Y., and Yamamoto, M., Three-dimensional  
641 simulation of the coupled Perkins and Es-layer instabilities in the nighttime midlatitude  
642 ionosphere, *J. Geophys. Res.*, 114, A03308, doi:10.1029/2008JA013789, 2009.

643 45. Walterscheid, R. L., Schubert, G., and Brinkman, D. G., Small-scale gravity waves in the  
644 upper mesosphere and lower thermosphere generated by deep tropical convection, *J.  
645 Geophys. Res.*, 106, D23, 31825-31832, 2001.

646 46. Wickwar, V.B., and Carlson, H.C., Ionospheric and thermospheric couplings: vertical,  
647 latitudinal and longitudinal, *J. Atmos. Solar-Terres.*, 61, 141-152, 1999.

648 47. Figure1 coastline information obtained from: [http://www.ngdc.noaa.gov/mgg\\_coastline/](http://www.ngdc.noaa.gov/mgg_coastline/).