

1 **Validation of Annual Growth Zone Formation in Gray Triggerfish *Balistes***
2 ***capriscus* Dorsal Spines, Vertebrae, and Otoliths**

3 Jennifer C. Potts ^a, Walter D. Rogers ^{b*}, Troy C. Rezek ^c, Amanda R. Rezek ^d

4 *a. NOAA Fisheries Southeast Fisheries Science Center, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC*
5 *28516, USA. Jennifer.Potts@noaa.gov. ORCID ID: 0000-0002-4961-034X*

6 *b. Cooperative Institute for Marine and Atmospheric Studies, University of Miami, in support of NOAA Fisheries*
7 *Southeast Fisheries Science Center, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC 28516, USA.*
8 *Walt.Rogers@noaa.gov. ORCID ID: 0000-0002-1371-2918. (*corresponding author)*

9 *c. CSS-Inc., Under Contract to NOAA National Centers for Coastal Ocean Science, 101 Pivers Island Road, Beaufort,*
10 *NC 28516, USA. Troy.Rezek@noaa.gov*

11 *d. NOAA Fisheries Southeast Fisheries Science Center, Beaufort Laboratory, 101 Pivers Island Road, Beaufort, NC*
12 *28516, USA. Amanda.Rezek@noaa.gov*

13 **ABSTRACT**

14 Uncertainty in age estimates from dorsal spines has been a persistent issue in stock
15 assessments of gray triggerfish, *Balistes capriscus*. This study sought to validate the annual
16 deposition of growth zones on dorsal spines, vertebrae, and otoliths of gray triggerfish through
17 chemical marking. Fish (n=101) were collected from offshore habitats and held in an
18 aquaculture facility. 74 adult fish were chemically marked with a 50 mg/kg body weight
19 injection of calcein, and reared for an average of 527 days post-marking. At intervals, fish were
20 sacrificed and first dorsal spines, vertebrae, and otoliths were extracted and sectioned. Annuli ,
21 were enumerated for spines (n=96), vertebrae (n=94), and otoliths (n=48) and ranged from 0-11
22 annuli for spines and vertebrae, and 1-12 annuli for otoliths. Age bias plots showed strong
23 agreement between spine and vertebra annuli counts for all observed ages, while counts from
24 spines and vertebrae appeared to underage beginning at age 5 when compared to otolith
25 annuli counts. Tests of symmetry indicated that the annuli counts between paired age
26 structures were not biased ($p > 0.05$). Analysis of growth zones observed distal to calcein marks
27 in all of the age structures confirmed that these zones were deposited annually, and the
28 expected number of these zones, or annuli, were observed in 91% of spine, 90% of vertebrae,
29 and 100% of otolith sections. Marginal increment analysis of ageing structures indicated that
30 annuli form during summer months. Percentages of annuli deposited on the margins peaked in
31 June for spines (58%) and otoliths (29%), and August for vertebrae (30%).. Results from this
32 study validate the annual deposition of growth zones but further consideration needs to be
33 taken when ageing older than age-4.

34 **Keywords:** Gray triggerfish, *Balistes capriscus*, age validation, otoliths, dorsal spines.

35

36

37 **1. Introduction**

38

39 Triggerfishes, Balistidae, are distributed throughout the Atlantic, Pacific, and Indian
40 Oceans, and are most abundant in tropical and sub-tropical waters (Matsuura 2015). Species in
41 this family are targeted in recreational and commercial fisheries across the planet (FAO 2021).
42 Age and growth studies have been conducted for various Balistid species, including Picasso
43 triggerfish, *Rhinecanthus aculeatus* (Ziadi-Künzli and Tachihara 2012), black triggerfish,
44 *Melichthys niger* (Kavanagh and Olney 2006), finscale triggerfish, *Balistes polylepis* (Barroso-
45 Soto et al. 2007), and queen triggerfish, *Balistes vetula* (Manooch and Drennon 1987;
46 Albuquerque et al. 2011; Shervette and Hernández 2021). The most studied species in the
47 Balistid family has been the gray triggerfish *Balistes capriscus* Gmelin, 1789 (Table 1). This
48 moderately long-lived species supports fisheries in the eastern and western Atlantic Ocean, and
49 increased exploitation has been reported in stocks throughout its native range since the 1980's
50 (Johnson and Salomon 1984; Bernardes 2002; Aggrey-Flynn 2009; Burton et al. 2015; Kacem et
51 al. 2015; Shervette et al. 2020).

52 To support proper management of gray triggerfish recreational and commercial
53 fisheries, stock assessments are necessary. The most robust stock assessments utilize reliable
54 fish age data to estimate age structure, growth rates, and mortality in a given stock (Brander
55 1974; Yin and Sampson 2004). Ageing error can lead to the over-exploitation of a stock,
56 especially if the ages are underestimated (Campana 2001). To obtain accurate age estimates in
57 teleost fish, sagittal otoliths are generally the preferred ageing structure versus scales or
58 structures such as fin spines, fin rays, and vertebrae (Campana 2001). However, for practical

59 reasons, gray triggerfish sagittal otoliths are not routinely used to obtain ages used for stock
60 assessments, as they are small, fragile, and difficult to extract (Hood & Johnson 1997;
61 Bernardes 2002; Milazzo et al. 2004; Allman et al. 2016). Besides, otolith removal generally
62 requires mutilation of gray triggerfish carcasses, which is considered unacceptable by fish
63 vendors. Therefore, port agents on the docks or in fish houses cannot efficiently provide
64 otoliths as age samples for production ageing laboratories (Burton et al., 2015). Additionally,
65 sagittal otoliths of gray triggerfish have a unique shape, making it difficult to determine the best
66 spatial plane on which to section and read samples for age estimation (Shervette et al. 2020).
67 Compared to otoliths, dorsal spines are easier to remove and process for age determination.
68 For these reasons, the first dorsal spine is used as the primary ageing structure for gray
69 triggerfish stock assessments (Burton et al. 2015; SEDAR 2016).

70 Several gray triggerfish age and growth studies have noted difficulty in interpreting the
71 growth zones on dorsal spines (Bernardes 2002; Burton et al. 2015; Allman et al. 2017), and the
72 lack of validation of growth zone formation has left age readings in question. As fish grow, bony
73 tissue in spines can be resorbed or remodeled, causing difficulty in age determination (Panfili et
74 al. 2002). Shervette et al. (2020) suggested that ages read from spines were generally
75 underestimates compared to otolith ages. Bernardes (2002) and Allman et al. (2016) reported
76 that two translucent zones may be formed each year, while other studies reported just one
77 translucent zone per year. Jefferson et al. (2019), Ingram (2001), and Caverieri et al. (1981) also
78 discussed the formation of the first annulus, but did not agree specifically on which translucent
79 zone was the first annulus or how close to the focus it was formed. Due to these concerns
80 regarding dorsal spines as ageing structures, and their potential effects on management of the

81 U.S. South Atlantic stock of gray triggerfish (SEDAR 2016), fishery managers determined that an
82 age validation study for gray triggerfish was necessary.

83 A previous study in the Gulf of Mexico attempted to validate growth zone deposition on
84 the spines of gray triggerfish (Allman et al. 2016). In this study, eight fish were captured from
85 offshore habitats in the northern Gulf of Mexico, injected with oxytetracycline (OTC), and held
86 in an aquaculture facility with ambient light and mean seasonal bottom water temperatures
87 from the capture area. Four out of the eight fish survived for a period of 262 days from October
88 to July, and dorsal spines, fin rays, and vertebrae sections from each fish showed one
89 translucent zone (annulus) forming in the late winter months. Though the results of the OTC
90 experiment indicated one annulus formed per year, marginal increment analysis (MIA) of 2,411
91 spine samples and found that a second translucent zone appeared in the fall, around
92 September. Hence, further examination of growth zone formation on gray triggerfish age
93 structures was warranted.

94 The primary objective of our study was to validate the annual deposition of growth
95 zones on the first dorsal spines, vertebrae, and otoliths of gray triggerfish by capturing juvenile
96 fish from surface and adults from bottom habitats, chemically marking them, and holding them
97 in an aquaculture facility for intervallic durations. The resulting estimates of age, and
98 interpretation of the micro-structure obtained from dorsal spines, vertebrae, and otoliths were
99 compared to elucidate differences among the three ageing structures and aid in determining
100 the most effective age structure for production ageing in support of stock assessments.

101

102 **2. Materials and methods**

103 *2.1. Fish collection and rearing*

104 Gray triggerfish were collected off the coast of North Carolina with hook and line (n=69),
105 traps (n=19) and dip net (n=13) during December 2014 – Spring 2016 and transported to the
106 NOAA Beaufort Laboratory marine aquaculture facilities. To eliminate potential protozoan
107 parasites, all fish were treated for 24 hours with 30ppm formalin immersion, then 14 days with
108 a CuSO₄ (0.15 ppm) immersion. Adult fish were reared in two recirculating aquaculture (RAS)
109 systems, each consisting of three 2.3 m³ (600 gallon) round fiberglass tanks. Juvenile fish were
110 reared in a RAS system consisting of three 0.5 m³ (130 gallon) semi-round polyethylene tanks.
111 All RAS systems were equipped with mechanical filtration and bio-filtration along with an UV
112 sterilizer. These systems were housed in a climate-controlled facility and had inline heat pumps
113 and chillers to control water temperature to replicate offshore bottom temperature data
114 collected from long-term monitoring programs conducted at the NOAA Beaufort laboratory.
115 Skylights were installed in the aquaculture facility to allow ambient light into the rearing tanks,
116 ensuring natural diurnal light cycles. Water temperature, salinity, alkalinity, dissolved oxygen,
117 pH, total ammonia, nitrites, and nitrates were measured daily and adjusted to replicate
118 ambient seawater parameters. Gray triggerfish were fed a daily diet of cut squid and
119 commercial marine finfish pellets, and uneaten food was removed from the bottom of tanks
120 after feeding. Rearing tanks were scrubbed daily with abrasive pads, and fish waste was
121 removed via siphon.

122

123 *2.2. Marking*

124 Adult gray triggerfish were chemically marked on March 25, 2015 (n = 47), March 1,
125 2016 (n = 2), June 16, 2016 (n = 12), and October 11, 2016 (n = 13). Live fish were anesthetized
126 by submersion in a 75 mg/L solution of Tricaine-S, and a sterile syringe was used to inject a 50
127 mg/kg body weight dose of calcein into muscle tissue below the dorsal fin rays (Monaghan,
128 1993). To make the injectable solution, calcein was mixed into a 0.9% bacteriostatic solution
129 buffered to a pH of 7.3 at a concentration of 60mg/mL. Following injection, the fish were
130 returned to rearing tanks for recovery.

131 *2.3. Processing*

132 All fish in this experiment were sampled to obtain the spines, vertebrae and otoliths
133 from the same fish. Fish that died before the end of the experiment were measured for fork
134 length (FL, cm), weighed (g), and frozen whole in plastic bags for subsequent processing. Upon
135 completion of the rearing period, fish were euthanized using a lethal dose of Tricaine-S and
136 placed in an ice slurry according to Institutional Animal Care and Use Committee (IACUC)
137 guidelines. After length and weight measurements were taken, first dorsal spines were
138 removed using a knife to create identical incisions in the flesh immediately anterior and
139 posterior to the spine. Once the incisions were made, the spine was released from the fish with
140 the condyle intact. The vertebral column was excised from each fish using heavy-duty snips,
141 and a strand of wire was run through the notochord opening to hold the column together. The
142 vertebral column was then boiled to remove attached soft tissue, and the second and third
143 anterior vertebrae were detached for ageing purposes. The otoliths were extracted by using a

144 serrated knife to cut through the cranium approximately 20 mm behind the eye and in line with
145 the operculum opening to expose the brain cavity and otic capsule. The entire vestibular
146 process containing the lapilli, asterisci, and sagitta was extracted with fine-tipped forceps then
147 stored in microcentrifuge vials with ethanol for further processing. Sagittal otoliths were
148 dissected from the vestibular process, rinsed in water, and allowed to dry.

149 Dorsal spines, vertebrae, and sagittal otoliths were sectioned using a low-speed saw
150 equipped with two 10-cm diamond-edged wafering blades separated by a 0.5 mm spacer.
151 Spines were processed following the methods of Burton et al. (2015), taking a single transverse
152 section cut immediately distal to the condyle groove of each spine (Figure 1a). Following the
153 methods from Ziadi-Künzli and Tachihara (2012), the third abdominal vertebrae were sectioned
154 along the median (sagittal) plane (Figure 1b). Because the sagittal otoliths were very fragile,
155 they were placed in silicone bullet molds and embedded in a two-part liquid epoxy prior to
156 mounting them for sectioning. Once the epoxy cured, the embedded otoliths were removed
157 from the mold and affixed to microscope slides using thermal adhesive. Embedded otoliths
158 were sectioned along the dorso-ventral plane (Figure 1c). Resulting spine, vertebra, and otolith
159 sections (0.4-0.5 mm thick) were attached to a microscope slide using a thermal adhesive and
160 covered with mounting medium.

161 *2.4. Analyses of Ageing Structures*

162 Dorsal spine, vertebra, and otolith sections were aged by two independent readers
163 without reference to the other structures, size of the fish, date of death, or date of chemical
164 marking. Spines were read using the protocol established during an inter-agency age

165 determination workshop (Kolmos et al. 2013). Sections from each of the age structures were
166 viewed primarily under reflected light using a stereomicroscope at 15-40x magnification,
167 though some sections were viewed using both reflected and transmitted light. When
168 illuminated using an LED epi-fluorescent light source, calcein marks were revealed as neon
169 yellow bands on sections (Figure 2). Images for each section were captured using a digital
170 camera attached to the stereomicroscope. Translucent growth zones on spine and vertebra
171 sections, and opaque growth zones otolith sections, were enumerated as annuli to estimate the
172 age of the fish. Consensus annuli counts and margin types were recorded after both readers
173 simultaneously re-examined samples for which annuli counts differed. Age bias plots were
174 created to visualize differences in annuli counts between the three structures. Based on the
175 recommendation by McBride (2015), Evans and Hoenig (1998) and Bowker (1948) tests of
176 symmetry were performed to examine bias between annuli counts from different structures.

177 *2.5 Timing of Annulus Formation*

178 Marginal increment analysis was conducted to estimate periodicity of annulus formation
179 in spines, vertebrae, and otoliths. The margin of each section was recorded as translucent or
180 opaque. Additionally, an index of margin type was developed to describe completeness of
181 annulus formation on the margin. This index categorized annulus formation by comparing
182 accretion of material on the margin to that of the previously formed annulus. The codes for the
183 relative marginal index were noted as follows:

184 1 = Complete annulus on margin;

185 2 = Growth zone < 1/3 the width of the previously formed annulus;

186 3 = Growth zone 1/3 - 2/3 the width of previously formed annulus;

187 4 = Growth zone > 2/3 the width of the previously formed annulus.

188 Percentage of sections with translucent or opaque margins and marginal index (1-4) were

189 plotted against month of sacrifice to create a timeline of annulus formation.

190 The location of calcein marks within spine sections was also analyzed to estimate

191 periodicity of annulus formation. Since both the dates of marking and sacrifice were known, a

192 chronology of annulus formation could be determined by examining the accretion of material in

193 the spines after the mark was applied (Figure 3). Similar to the codes for the marginal condition

194 index, location of the calcein marks on a given spine section were coded as follows:

195 1 = Mark lies immediately distal to translucent zone/proximal to opaque zone.

196 2 = Mark lies 1/3 of the distance between two translucent zones (annuli);

197 3 = Mark lies 1/3 to 2/3 of the distance between two translucent zones (annuli);

198 4 = Mark lies more than 2/3 of the distance between two translucent zones (annuli),

199 and/or immediately proximal to the subsequent translucent zone.

200 The percentage of sections with each mark code (1-4) was plotted against month of marking.

201 *2.6 Estimating Growth*

202 Following the MIA, a calendar and fractional ages were calculated for each sample. The

203 calendar age was based on the annuli count, the marginal index, and the month of capture.

204 The annuli count was advanced by one for samples that were collected in the months prior to

205 complete annulus formation, and exhibited a margin type of 3 or 4. For all other samples, the
206 annuli count equaled the calendar age.

207 Fractional age (A_f) was calculated based on the calendar age (A_c), month of capture
208 (M_c) and the month of peak spawning (M_s) in the U.S. South Atlantic, which is July (SEDAR
209 2016), using the following equation:

$$A_f = A_c + \left(\frac{M_c - M_s}{12} \right)$$

210 Von Bertalanffy growth parameters were calculated from length-at-fractional age data
211 for each structure, both individually and for only those samples that had paired structures.
212 These parameters were then compared to the parameters calculated for the most recent South
213 Atlantic gray triggerfish stock assessment, SEDAR 41 (SEDAR, 2014). The resulting formula was:

$$L_t = L_\infty (1 - e^{-k(t-t_0)})$$

214 where L_t = fish length at age, L_∞ = theoretical asymptotic length, k = growth coefficient, and t_0 =
215 theoretical age at length of zero.

216

217 **3. Results**

218 A total of 101 gray triggerfish were successfully held in tanks during the study, 74 of
219 which were marked with calcein. Fish ranged in size from 31 – 498 mm fork length (FL) (Figure
220 4). Fish survived from 5 days to 29 months after calcein marking (Figure 5). Those marked in
221 March 2015 (n=47) were held for an average of 24 months, while fish marked in March 2016

222 (n=2) were held for 16 months; marked in June 2016 were held for 1.5 months (n = 12; tank
223 mortality); and fish marked in October 2016 were held for an average of 9 months (n = 13). The
224 remaining fish (n = 27), which were not marked with calcein, were some of the smallest fish in
225 the study that were captured in traps or dipnets at opportunistic times.

226 Translucent and opaque growth zones were observed in all ageing structures from the
227 captive rearing period. Narrow translucent zones were counted as annuli on spine and vertebra
228 sections, and narrow opaque zones were counted as annuli on otolith sections. In some of the
229 spine and vertebrae sections, thin and discontinuous translucent zones appeared to form in
230 close proximity to more distinct translucent zones. These “doublets” did not appear in all of the
231 sections and were not enumerated as annuli. Annuli counts for spines (n=96), vertebrae (n=94),
232 and otoliths (n=48) ranged from 0-11 for spines and vertebrae, and 1-12 for otoliths. Fewer
233 otolith samples were examined due to difficulties in the extraction and sectioning processes.
234 The average percent error (APE) between independent readers was 8.5% for spines, 13.0% for
235 vertebrae, and 13.7 % for otoliths.

236 Age bias plots showed strong agreement and low bias between spine and vertebra
237 annuli counts for all observed ages. Counts of spines and vertebrae appeared to under-age
238 beginning at age 4 when compared to otolith annuli counts (Figure 6). Annuli counts agreed for
239 57.3% of spine-vertebra pairs, 52.2% of spine-otolith pairs, and 53.2% of vertebra-otolith pairs.
240 Respectively, 93.3%, 82.6%, and 85.1% of annuli counts for these pairs were within one year of
241 each other (Table 2a). The Evans and Hoenig (1998) and Bowker (1948) tests indicated that the
242 paired age data were not biased ($p > 0.05$) (Table 2b).

243 Marginal increment analysis of the of ageing structures indicated that annuli form in
244 summer months. The highest percent of translucent margins occurred in June for spines (58%)
245 and in August for vertebrae (30%). In otoliths, the highest percentage of opaque margins
246 occurred in June (29%) (Figure 7).

247 Calcein marks were observed in spine (n=68), vertebrae (n=72), and otolith (n=37)
248 sections. In some of the spine and vertebrae sections, calcein marks that were applied in March
249 generally appeared at the beginning of wide opaque zones while marks applied in October
250 appeared within or at the end of these zones. This suggests that narrow translucent zones
251 could begin to form during the late fall/early winter (Figure 8).

252 The expected number of post-mark annuli was present in 62 of 68 spine sections, 65 of
253 72 vertebrae sections, and in all of the otolith sections. Analysis of calcein mark location
254 revealed that the majority of March and June marks were coded as 1 or 2 (narrow), while the
255 majority of the October marks were coded as 3 or 4 (wide; Table 3).

256 Based on the MIA, the annuli count from each spine and otolith was converted to calendar age.
257 To generate a calendar age, annuli counts were advanced by one for fish sacrificed between January and
258 June whose age structure had a margin type of 3 or 4. If the margin type was 1 or 2 in the same span of
259 months, annuli count was set equal to the calendar age. If the fish was sacrificed during July through
260 December, regardless of margin type, then the annuli count was set equal to the calendar age for that
261 fish. These calendar ages were used to calculate fractional ages for estimation of growth.

262 The von Bertalanffy growth parameters were calculated based on the spine and otolith
263 length-at-fractional age for all data available for each structure and for the data from paired

264 readings (limited to samples that had both a spine and otolith from the same fish). The
265 resulting von Bertalanffy growth equations for all available data were:

$$L_{t(\text{spines})} = 492.4(1 - e^{-0.31(t+0.50)})$$

$$L_{t(\text{otoliths})} = 425.1(1 - e^{-0.55(t+0.5)})$$

266 For paired readings, the equations were:

$$L_{t(\text{spines})} = 484.2(1 - e^{-0.33(t+0.69)})$$

$$L_{t(\text{otoliths})} = 434.7(1 - e^{-0.55(t+0.06)})$$

267 Parameter values are summarized in Table 4 and Figure 9.

268 **4. Discussion**

269

270 The annual deposition of growth zones on dorsal spines, vertebrae, and otoliths of gray
271 triggerfish was successfully validated. In aggregate, fish survived in tanks for an average of 527
272 days after chemical marking, nearly double the duration of previous studies. Water
273 temperature and diurnal light cycles were successfully maintained to replicate ambient
274 conditions. The expected number of growth zones, or annuli, distal to the chemical mark was
275 present on >90% of spines and vertebrae, and on 100% of the otoliths.

276 Marginal increment analysis of growth zones in spines indicated that one annulus
277 formed between June and August. These findings agree with previous studies of this species
278 showing annulus formation in late spring to summer in South Atlantic (Burton et al. 2015;

279 Moore 2001) and Gulf of Mexico (Johnson and Saloman 1984). According to these studies,
280 annulus formation coincided with the spawning/nesting season. In the south Atlantic and Gulf
281 of Mexico, gray triggerfish generally spawn in the spring and summer months, with peaks
282 occurring in June and July (Kelley-Stormer et al. 2017, Wilson et al. 1995). During these periods,
283 fish devote considerable energy to reproduction versus somatic growth. Therefore, it makes
284 sense that slow-growth zones would form concurrent with spring/summer spawning (Moore
285 2001, Ingram 2001, Bernardes 2002).

286 Other studies have reported divergent patterns of annulus formation in gray triggerfish
287 spines. In the Gulf of Mexico, Allman et al. (2016) reported that peak translucent zone
288 formation in spines occurred in February and March, with a smaller peak occurring in
289 September. Bernardes (2002) reported a similar bimodal pattern of translucent zone formation
290 in fish from the Brazilian coast, with peaks occurring in both winter and summer months. These
291 studies postulate that decreases in temperature and food supply in winter, and reproductive
292 activity during summer, contribute to translucent zone formation. The presence of faint and
293 discontinuous “doublets” in our study corroborate the findings from Allman et al. (2016) and
294 Bernardes (2002) where thinner translucent growth zones were observed to have inconsistent
295 spacing when compared to true translucent annuli. These secondary translucent zones, or
296 doublets, should not be counted as annuli.

297 In the majority of the spine sections from fish marked in March, calcein marks appeared
298 distal to narrow translucent zones, while marks applied in October appeared proximal to the
299 translucent zones (Figure 8). These observations support the assertion that a translucent zone,
300 or annulus, may begin to form in late winter to early spring months, as was reported in MIA

301 results from Burton et al. (2015). Because the majority of the fish in our study (90%) died
302 between May and September, it was difficult to report exactly when the annulus on the spines
303 began to form. Both our study and Burton et al (2015) agree that annulus on dorsal spines
304 essentially finish forming by the end of June.

305 The ages estimated from paired otoliths and spine sections showed strong agreement to
306 age-4, after which spine readings began to underestimate age compared to otoliths. Spines are
307 the preferred ageing structure used to obtain direct age data used for fisheries stock
308 assessments; therefore, it is important to examine potential ageing inconsistencies in these
309 structures. Systematic under-ageing can lead to biased estimates of spawning stock biomass,
310 mortality, recruitment, and growth rates among other parameters used in stock assessments
311 (Mills and Beamish 1980, Reeves 2003, Yule et al. 2008, Henriquez et al. 2016). The effects of
312 under-ageing on growth models were of particular concern in our study. The age data obtained
313 from spines caused the Von Bertalanffy growth model to have a larger asymptotic length (L_∞)
314 and a smaller growth coefficient (k) than what was estimated from otolith age data (Figure 9).
315 However, both growth models (all available data and paired readings) showed that asymptotic
316 growth was generally achieved by age-5. The population growth model used in the previous
317 U.S. Atlantic stock assessment (SEDAR 2016) estimated growth parameters intermediate to
318 those estimated in our study, though caution should be taken when comparing growth models
319 from our study to those used in stock assessments due to discrepancies in sample sizes (Table
320 4).

321 All analyses presented in this report were based upon consensus ages among readers,
322 but upon closer inspection, some spine sections exhibited unusually wide translucent zones as

323 seen at lower magnification (15x - 20x). Examination of these spine sections under higher
324 magnification (up to 40x) revealed that wide translucent areas contained compacted growth
325 zones (Figure 10). Carroll (2022) observed a similar phenomenon in goliath grouper spine
326 sections where “stacked” annuli were observed on the margin at increased magnification,
327 especially in sections from older fish. In our study, once these compacted growth zones were
328 enumerated as annuli, age readings of spines matched more closely to otolith readings for older
329 fish. This suggests that increasing magnification when viewing spine sections, and counting
330 compacted growth zones within wide translucent zones, may alleviate under-ageing errors. We
331 strongly recommend that production ageing laboratories conduct ageing workshops to explore
332 this new ageing methodology.

333 Additional work was done, as a result of this study, to develop new age reading
334 methodology and re-read a subset of spine sections used for age data in the SEDAR 41 stock
335 assessment (SEDAR 2016). The new age reading methodology is detailed as follows:

- 336 1. Sections should initially be examined at 15x – 20x magnification.
- 337 2. The first annulus should be a distinct translucent zone that is lobate in shape and
338 continuous all the way around the section.
- 339 3. Any faint and/or discontinuous translucent zone located close in proximity to a more
340 distinct translucent zone should be considered a doublet and not counted.
- 341 4. For all samples with five or more annuli, zoom in on the margins or any wide
342 translucent zone up to 40x magnification to look for additional growth zones.

343

344 Compared to the age readings using the new methodology, the original ages recorded
345 for the SEDAR 41 stock assessment appeared to be underestimates, specifically for samples
346 aged 5 or older (Figure 11). We feel that using the new methodology produces annuli counts
347 that more closely reflect the true age of the fish.

348 Our study represents the most comprehensive effort to date using chemical marking to
349 directly validate annulus formation in gray triggerfish ageing structures. Two full years of fish
350 growth were observed in some samples, allowing for a robust documentation of annulus
351 formation. Previous studies were limited by sample size and experimental duration. While
352 marginal increment analysis has the ability to verify annulus formation, direct validation of age
353 estimates using chemical marking is the “gold standard” for these studies (Beamish and
354 McFarlane 1983; Campana 2001, Allman et al. 2016). This validation is crucial in producing
355 robust age-based stock assessments. The results of this study reinforce the utility of the first
356 dorsal spine as the practical ageing structure for gray triggerfish; however, increased care needs
357 to be taken when examining sections from older fish. Work is underway to build a larger
358 catalogue of paired spine and otolith samples, the analysis of which will create a more
359 complete picture of gray triggerfish ageing.

360

361

362

363

364

365 **Declarations**

366 *Compliance with Ethical Standards*

367 Fish were handled and cared for according to the guidelines of the Animal Welfare Act (AWA)

368 and with the U.S. Government Principles for the Utilization and Care of Vertebrate Animals

369 Used in Testing, Research, and Training (USGP) OSTP CFR, May 20, 1985, Vol. 50, No. 97

370 *Data Availability Statement*

371 The datasets generated during and/or analyzed during the current study are available from the

372 corresponding author upon reasonable request.

373 **Acknowledgements**

374 We acknowledge J. Morris as the steward of the NOAA Beaufort Lab aquaculture facility.

375 Without his cooperation, this study would not be possible. G. Fisher assisted with fish

376 husbandry. Funding was provided by the NOAA Fisheries Marine Fisheries Initiative (MARFIN):

377 16-MARFIN-INHOUSE-009.

378

379

380

381

382

383

384

385

386

387 **References**

388 Aggrey-Fynn, J., 2009. Distribution and growth of grey triggerfish, *Balistes capriscus* (family:
389 Balistidae), in Western Gulf of Guinea. *West African Journal of Applied Ecology*, 15, 3–
390 11.

391 Albuquerque, C. Q., Martins, A., Júnior, N., Araújo, J., & Ribeiro, A., 2011. Age and growth of the
392 queen triggerfish *Balistes vetula* (Tetraodontiformes, Balistidae) of the Central Coast of
393 Brazil. *Braz. J. Oceanogr.*, 59(3), 231–239.

394 Allman, R. J., Fioramonti, C. L., Patterson, W. F. III, & Pacicco, A. E., 2016. Validation of annual
395 growth zone formation in gray triggerfish *Balistes capriscus* dorsal spines, fin rays, and
396 vertebrae. *Gulf Mex. Sci.*, 33(1), 68–76. <https://doi.org/10.18785/goms.3301.06>

397 Allman, R. J., Patterson, W. F. III, Fioramonti, C. L., & Pacicco, A. E., 2017. Factors affecting
398 estimates of size at age and growth in grey triggerfish *Balistes capriscus* from the
399 northern Gulf of Mexico. *J. Fish. Biol.*, 92(2), 386–398. <https://doi.org/10.1111/jfb.13518>

400 Barroso-Soto, I., Castillo-Gallardo, E., Quiñonez-Velázquez, C., & Morán-Angulo, R. E., 2007. Age
401 and growth of the finescale triggerfish, *Balistes polylepis* (Teleostei: Balistidae), on the
402 coast of Mazatlán, Sinaloa, Mexico. *Pac. Sci.*, 61(1), 121–127.

403 Beamish, R. J., & McFarlane, G. A., 1983. The forgotten requirement for age validation in
404 fisheries biology. *Trans. Am. Fish. Soc.*, 112(6), 735–743.

405 Bernardes, R. Á., 2002. Age, growth, longevity of the gray triggerfish, *Balistes capriscus*
406 (Tetraodontiformes: Balistidae), from the Southeastern Brazilian coast. *Scientia Marina*,
407 66(2), 167–173.

408 Bowker, A. H., 1948. A test for symmetry in contingency tables. *J. Am. Stat. Assoc.*, 43(244),
409 572–574.

410 Burton, M. L., Potts, J. C., Carr, D. R., Cooper, M., & Lewis, J., 2015. Age, growth, and mortality
411 of gray triggerfish (*Balistes capriscus*) from the southeastern United States. *Fish. Bull.*,
412 113(1), 27–39. <https://doi.org/10.7755/FB.113.1.3>

413 Campana, S. E., 2001. Accuracy, precision and quality control in age determination, including a
414 review of the use and abuse of age validation methods. *J. Fish Biol.*, 59(2), 197–242.

415 Carroll, J., 2022. Dorsal fin spines and rays as non-lethal ageing structures for goliath grouper
416 *Epinephelus itajara*. (M.S. thesis). Available from University of Florida Digital Collections
417 https://uflibflvc.primo.exlibrisgroup.com/permalink/01FALSC_UFL/6ad6fc/alma99383927013906597

419 Caverivière, A., M. Kulbicki, J. Konan, & Gerlotto, F., 1981. Bilan des connaissances actuelles sur
420 *Balistes carolinensis* dans le Golfe de Guinée. *Doc. Sci. Rech. Océanogr. Abidjan*, 12(1), 1-
421 78.

422 Evans, G. T., & Hoenig, J. M., 1998. Testing and viewing symmetry in contingency tables, with
423 application to readers of fish ages. *Biometrics*, 54(2), 620-629.

424 FAO, 2021. FAO Yearbook. Fishery and Aquaculture Statistics 2019. Rome, Italy.

425 Henríquez, V., Licandeo, R., Cubillos, L. A., & Cox, S. P. (2016). Interactions between aging error
426 and selectivity in statistical catch-at-age models: Simulations and implications for
427 assessment of the Chilean Patagonian toothfish fishery. *ICES J. Mar. Sci.*, 73(4), 1074-
428 1090.

429 Hood, P. B., & Johnson, A. K., 1997. A study of the age structure, growth, maturity schedules,
430 and fecundity of gray triggerfish (*Balistes capriscus*), red porgy (*Pagrus pagrus*), and
431 vermillion snapper (*Rhomboplites aurorubens*) from the eastern Gulf of Mexico. Marine
432 Fisheries Initiative Final Report FO499-95-F. Florida Marine Research Institute, St.
433 Petersburg, FL.

434 Ingram, G. W., Jr., 2001. Stock structure of gray triggerfish, *Balistes capriscus*, on multiple
435 spatial scales in the Gulf of Mexico (Doctoral dissertation, The University of South
436 Alabama, Mobile, Alabama). Retrieved from <https://sedarweb.org/documents/sedar-82-rd21-stock-structure-of-gray-triggerfish-balistes-capriscus-on-multiple-spatial-scales-in-the-gulf-of-mexico>.

439 Ismen A., Turkoglu, M. & Yigin, C., 2004. The Age, Growth and Reproduction of Gray Triggerfish
440 (*Balistes capriscus*, Gmelin, 1789) in Iskenderun Bay. *Pak. J. Biol. Sci.* 7, 2135-2138.

441 Jefferson, A. E., Allman, R. J., Pacicco, A. E., Franks, J. S., Hernandez, F. J., Albins, M. A., Powers,
442 S. P., Shipp, R. L., & Dryman, J. M., 2019. Age and growth of gray triggerfish (*Balistes
443 capriscus*) from a north-central Gulf of Mexico artificial reef zone. *Bull. Mar. Sci.*, 95(2),
444 177-195. <https://doi.org/10.5343/bms.2018.0025>

445 Johnson, A. G., & Saloman, C. H., 1984. Age, growth, and mortality of gray triggerfish, *Balistes
446 capriscus*, from the northeastern Gulf of Mexico. *Fish. Bull.*, 82(3), 485-492.

447 Kacem, H., Boudaya, L., & Neifar, L., 2015. Age, growth and longevity of the grey triggerfish,
448 *Balistes capriscus* Gmelin, 1789 (Teleostei, Balistidae) in the Gulf of Gabès, southern
449 Tunisia, Mediterranean Sea. *J. Mar. Biol. Assoc. U. K.*, 95(5), 1061-1067.

450 Kavanagh, K., & Olney, J., 2006. Ecological correlates of population density and behavior in the
451 circumtropical black triggerfish *Melichthys niger* (Balistidae). *Environ. Biol. Fishes.*, 76(2),
452 387-398.

453 Kelly-Stormer, A., Shervette, V., Kolmos, K., Wyanski, D., Smart, T., McDonough, C., & Reichert,
454 M. J. M., 2017. Gray triggerfish reproductive biology, age, and growth off the Atlantic
455 coast of the southeastern USA. *Trans Am. Fish. Soc.*, 146(3), 523–538.
456 <https://doi.org/10.1080/00028487.2017.1281165>

457 Kolmos, K., Ballenger, J., & Shervette, V., 2013. Report on age determination and reproductive
458 classification workshops for gray triggerfish (*Balistes capriscus*), September 2011 and
459 October 2012. SEDAR32-DW03. SEDAR, North Charleston, SC. 42 pp.

460 Manooch, C.S., & Drennon, C.L., 1987. Age and growth of yellowtail snapper and queen
461 triggerfish collected from the U.S. Virgin Islands and Puerto Rico. *Fish. Res.*, 6(1), 53-68.

462 Matsuura, K., 2015. Taxonomy and systematics of tetraodontiform fishes: a review focusing
463 primarily on progress in the period from 1980 to 2014. *Ichthyol. Res.*, 62, 72–113.
464 <https://doi.org/10.1007/s10228-014-0444-5>

465 McBride, R. S., 2015. Diagnosis of paired age agreement: a simulation of accuracy and precision
466 effects. *ICES J. Mar. Sci.*, 72(7), 2149 – 2167.

467 Milazzo, A., Beltrano, A. M., Bono, G., Cannizzaro, L., Gagliano, M. R., Rizzo, P., & Vitale, S.,
468 2004. Age determination of the triggerfish *Balistes carolinensis* through the reading of
469 the otolith and the first dorsal spine. *Biologia Marina Mediterranea*, 11(2), 603-606.

470 Mills, K. H., & Beamish, R. J., 1980. Comparison of fin-ray and scale age determinations for lake
471 whitefish (*Coregonus clupeaformis*) and their implications for estimates of growth and
472 annual survival. *Can. J. Fish. Aquat. Sci.*, 37(3), 534–544.

473 Monaghan, J. P., Jr., 1993. Notes: Comparison of Calcein and Tetracycline as Chemical Markers
474 in Summer Flounder. *Trans Am. Fish. Soc.*, 122(2), 298-301.
475 [https://doi.org/10.1577/1548-8659\(1993\)122<0298:NCOCAT>2.3.CO;2](https://doi.org/10.1577/1548-8659(1993)122<0298:NCOCAT>2.3.CO;2)

476 Moore, J. L., 2001. Age, growth, and reproduction of the gray triggerfish, *Balistes capriscus* of
477 the southeastern United States, 1992–1997. Master’s thesis, University of Charleston,
478 Charleston, South Carolina.

479 Ofori-Danson, P. K., 1989. Growth of grey triggerfish *Balistes capriscus*, based on growth checks
480 of the dorsal spine. *Fishbyte*, 7(3), 11-12.

481 Panfili, J., Pontual, H. (de), Troadec, H., & Wright, P. J. (Eds.), 2002. *Manual of fish
482 sclerochronology*. Brest, France: Ifremer-IRD coedition.

483 Reeves, S. A., 2003. A simulation study of the implications of age-reading errors for stock
484 assessment and management advice. *ICES J. Mar. Sci.*, 60(2), 314–328.

485 SEDAR, 2016. SEDAR 41 – South Atlantic Gray Triggerfish Assessment Report. SEDAR, North
486 Charleston SC. 428 pp. Available online at: <http://sedarweb.org/sedar-41>.

487 Shervette, V. R., & Hernández, J. M. R., 2022. Queen triggerfish *Balistes vetula*: Validation of
488 otolith-based age, growth, and longevity estimates via application of bomb radiocarbon.
489 *PLOS ONE*, 17(1), e0262281. <https://doi.org/10.1371/journal.pone.0262281>

490 Shervette, V. R., Rivera Hernández, J. M., & Nunoo, F. K. E., 2020. Age and growth of grey
491 triggerfish *Balistes capriscus* from trans-Atlantic populations. *J. Fish. Biol.*, 98(4), 1120-
492 1136.

493 Wilson, C. A., Nieland, D. L., & Stanley, A. L., 1995. Age, growth, and reproductive biology of
494 gray triggerfish (*Balistes capriscus*) from the northern Gulf of Mexico commercial
495 harvest. Marine Fisheries Initiative Final Report. Coastal Fisheries Institute, Louisiana
496 State University, Baton Rouge, LA.

497 Yule, D. L., Stockwell, J. D., Black, J. A., Cullis, K. I., Cholwek, G. A., & Myers, J. T., 2008. How
498 systematic age underestimation can impede understanding of fish population dynamics:
499 lessons learned from a Lake Superior cisco stock. *Trans Am. Fish. Soc.*, 137(2), 481-495.

500 Ziadi-Künzli, F., & Tachihara, K., 2012. Validation of age and growth of the Picasso triggerfish
501 (Balistidae: *Rhinecanthus aculeatus*) from Okinawa Island, Japan, using sectioned
502 vertebrae and dorsal spines. *J. Oceanogr.*, 68(6), 817-829.

503

504

505

506

507

508

509

510

511

512

513 **Tables**

514 **Table 1** Published life history studies of gray triggerfish, *Balistes capriscus*, with reported
 515 maximum ages from spines. Otolith ages were reported in one study (Shervette et al. 2020).

Study	Location	Age Structure	Validation method	Max age (yrs) reported
Johnson and Saloman, 1984	U.S. Gulf of Mexico – NW Florida	First dorsal spine	Monthly frequency of annulus (translucent zone) on margin	13
Burton et al., 2015	U.S. Southeastern Atlantic	First dorsal spine	Marginal Increment Analysis	15
Kelly-Stormer et al., 2017	U.S. Southeastern Atlantic	First dorsal spine	Monthly frequency of annulus (translucent zone) on margin	12
Allman et al., 2017	U.S. Gulf of Mexico – NW Florida	First dorsal spine	Chemical marking, monthly frequency of annulus (translucent zone) on margin.	None reported
Shervette et al., 2020	U.S. South Atlantic – North Carolina and South Carolina	First dorsal spine and whole sagittal otoliths	None reported	Spines (sp)= 11; Otoliths (ot) = 13
Shervette et al., 2020	West Africa - Ghana	First dorsal spine	None reported	9
Caveriviere et al., 1981	West Africa – Senegal and Ivory Coast	First dorsal spine	Monthly frequency of annulus (translucent zone) on margin	Senegal (S) = 6 Ivory Coast (IC) = 7
Ofori-Danson, 1989	West Africa - Ghana	First dorsal spine	None reported	4
Aggrey-Fynn, 2001	West Africa – Western Gulf of Guinea	First dorsal spine	None reported	11
Bernardes, 2002	Brazil	First dorsal spine	Monthly frequency of annulus (translucent zone) on margin	11
İşmen et al., 2004	Mediterranean Sea İskenderun Bau	First dorsal spine	None reported	3
Milazzo et al., 2004	Mediterranean Sea – Strait of Sicily	First dorsal spine and whole otolith	None reported	7
Kacem et al., 2015	Mediterranean Sea – Gulf of Gabes	First dorsal spine	Marginal increment analysis	13

516 **Table 2a** Percent agreement of age readings (annuli counts) from gray triggerfish, *Balistes*
517 *capriscus*, spine-vertebra, spine-otolith, and vertebra-otolith pairs. The first row depicts the
518 percentage of structure pairs from the same fish that had the exact same age reading (annuli
519 count). The second row depicts the percentage of structure pairs from the same fish that had
520 age readings that were within one year of one another.

	Spine-Vert	Spine-Oto	Vert-Oto
Agreement (%)	56.82	52.17	53.19
Agreement ± 1 (%)	93.26	82.61	85.11

521

522 **Table 2b** Tests of symmetry between age readings (annuli counts) from gray triggerfish, *Balistes*
523 *capriscus*, spine-vertebra, spine-otolith, and vertebra-otolith pairs.

524

Tests of Symmetry	Spine-Vert	Spine-Oto	Vert-Oto
Evans Hoenig (chi square, p)	5.79, 0.55	4.34, 0.50	7.6, 0.80
Bowker (chi square, p)	16.34, 0.29	11.33, 0.50	12.33, 0.26

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545 **Table 3** Relative location of chemical mark on spine sections of gray triggerfish, *Balistes*
546 *capriscus*, by month of chemical marking. 1 = mark lies immediately distal to translucent
547 zone/proximal to opaque zone; 2 = mark lies 1/3 of the distance between two translucent
548 zones (annuli); 3 = mark lies 1/3 to 2/3 of the distance between two translucent zones (annuli);
549 4 = mark lies more than 2/3 of the distance between two translucent zones (annuli), and/or
550 immediately proximal to the subsequent translucent zone.

	Mar.	June	Oct.
% Mark Code 1	41.25	4.76	0
% Mark Code 2	33.75	57.14	13.04
% Mark Code 3	5.00	28.57	17.39
% Mark Code 4	20.00	9.52	69.56

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571 **Table 4** Von Bertalanffy growth parameters (± 1 standard error) estimated from gray
 572 triggerfish, *Balistes capriscus*, spine and otolith age data from the age validation study. Data
 573 from all specimens were used for separate spine and otolith models. Data from specimens that
 574 had pairs of spines and otoliths were included in the paired comparison models. Population
 575 growth model parameters from the most recent stock assessment, SEDAR 41, are included for
 576 reference (SEDAR, 2016).

577

	Age Structure	L_∞	k	t_0
All data available (present study)	Spine (n = 96)	492.4 (28.3)	0.31 (0.05)	-0.50 (0.18)
	Otolith (n = 48)	435.1 (20.4)	0.55 (0.15)	-0.05 (0.36)
Paired spine and otolith readings (present study)	Spine (n = 46)	484.2 (51.7)	0.33 (0.14)	-0.69 (0.67)
	Otolith (n = 46)	434.7 (21.3)	0.55 (0.15)	-0.06 (0.37)
SEDAR 41	n = 8,102	453.2 (23.3)	0.34 (0.12)	-0.98 (0.66)

578

Figure Captions

Fig. 1. Image of a gray triggerfish, *Balistes capriscus*, a. dorsal spine, b. vertebra, and c. sagittal otolith. Red arrows indicate the orientation of the two blades of the low-speed wafering saw used to section the samples. A spacer was placed between the two blades to produce sections that were 0.4-0.5 mm thick.

Fig. 2. Image of a gray triggerfish, *Balistes capriscus*, dorsal spine section (left), vertebra section (middle), and whole sagittal otolith (right). Yellow/green bands are calcein marks that were illuminated using an LED epifluorescent light source attached to a stereomicroscope.

Fig. 3. Illustration of the codes used to assess the relative placement of the calcein mark in relation to the annulus (translucent growth zone) on the spine of a gray triggerfish, *Balistes capriscus*. 1 = mark lies immediately distal to translucent zone/proximal to opaque zone; 2 = mark lies 1/3 of the distance between two translucent zones (annuli); 3 = mark lies 1/3 to 2/3 of the distance between two translucent zones (annuli); 4 = mark lies more than 2/3 of the distance between two translucent zones (annuli), and/or immediately proximal to the subsequent translucent zone.

Fig. 4. Histogram depicting fork lengths of gray triggerfish, *Balistes capriscus*, plotted against number of individuals per 25 mm fork length bin. Fork lengths were recorded upon the completion of the experiment, concurrent with the removal of ageing structures.

Fig. 5. Histogram depicting the survival duration (month) after chemical marking of gray triggerfish, *Balistes capriscus*, in the age validation study.

Fig. 6. Bias plots of gray triggerfish, *Balistes capriscus*, age readings (years) in the age validation study. Plot a depicts the mean vertebra annuli counts (black dots) compared to spine annuli counts. Plot b depicts mean spine annuli counts (black dots) compared to otolith annuli counts. Plot c depicts the mean vertebra annuli counts (black dots) compared to otolith annuli counts.

Fig. 7. Results of marginal increment analysis of gray triggerfish, *Balistes capriscus*, a. spines, b. vertebrae, and c. otoliths. Histogram bars represent the percentage of margin types, by month, according to the relative marginal index. Black lines represent the monthly percentage of completely formed annuli on the margins of the ageing structures. Margin types: 1 = complete annulus on margin; 2 = growth zone < 1/3 the width of the previously formed annulus; 3 = growth zone 1/3 - 2/3 the width of previously formed annulus; 4 = growth zone > 2/3 the width of the previously formed annulus.

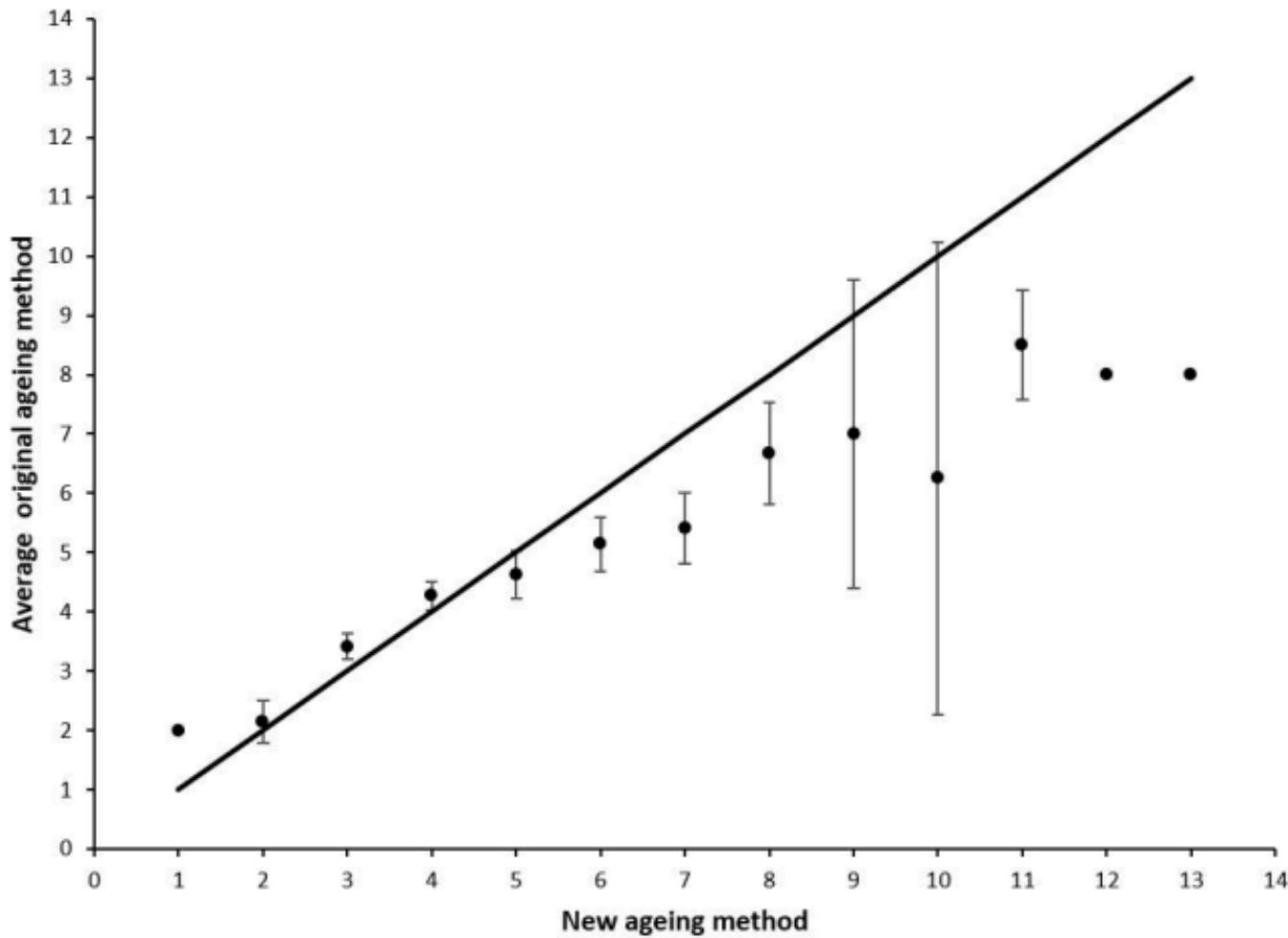
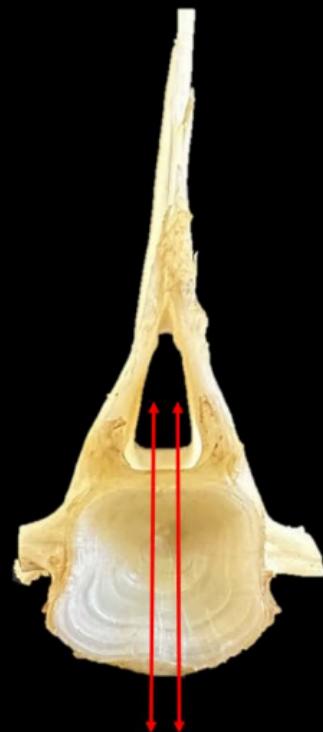
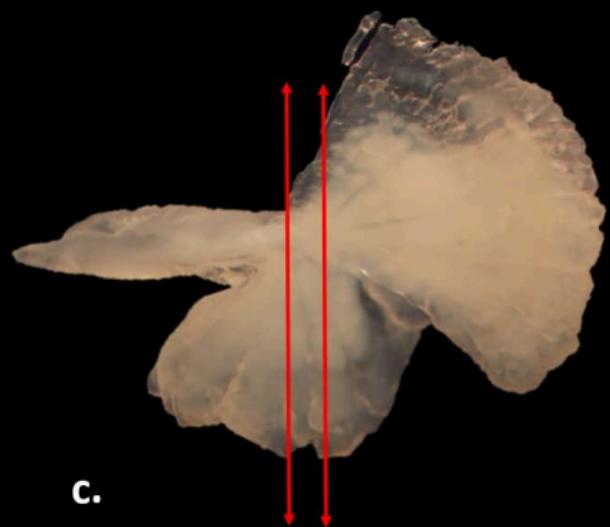

Fig. 8. Images of gray triggerfish, *Balistes capriscus*, spine sections. Black arrows point to locations on the sections that correspond with dates of calcein chemical marking and dates of sacrifice. Yellow/green bands are the calcein chemical mark.

Fig. 9. Von Bertalanffy growth models for gray triggerfish, *Balistes capriscus*, estimated from spine and otolith age readings for: a. all data available in the study (n = 96 for spines and n = 48

for otoliths) and b. Paired spine and otolith age readings: $n = 46$. Fractional age (years) was plotted against fork length (mm).

Fig. 10. Images of an otolith section and spine section from the same individual gray triggerfish, *Balistes capriscus*. Yellow arrows represent initial age readings (otolith age = 12 and spine age = 5). Inset is magnified area of spine containing wide translucent zone showing compacted growth zones (yellow dots). The faint yellow/green mark on the spine section is the calcein chemical mark.


Fig. 11. Gray triggerfish, *Balistes capriscus*, age bias plot of dorsal spine-based readings using the original age reading methodology compared to readings using the new methodology developed as a result of this study. The 1:1 line represents readings using the new ageing methodology in which increased magnification was used to examine wide translucent zones on the margins. The black dots represent the average age from the original readings that do not employ the new ageing methodology. Error bars represent the 95% confidence interval.


a.

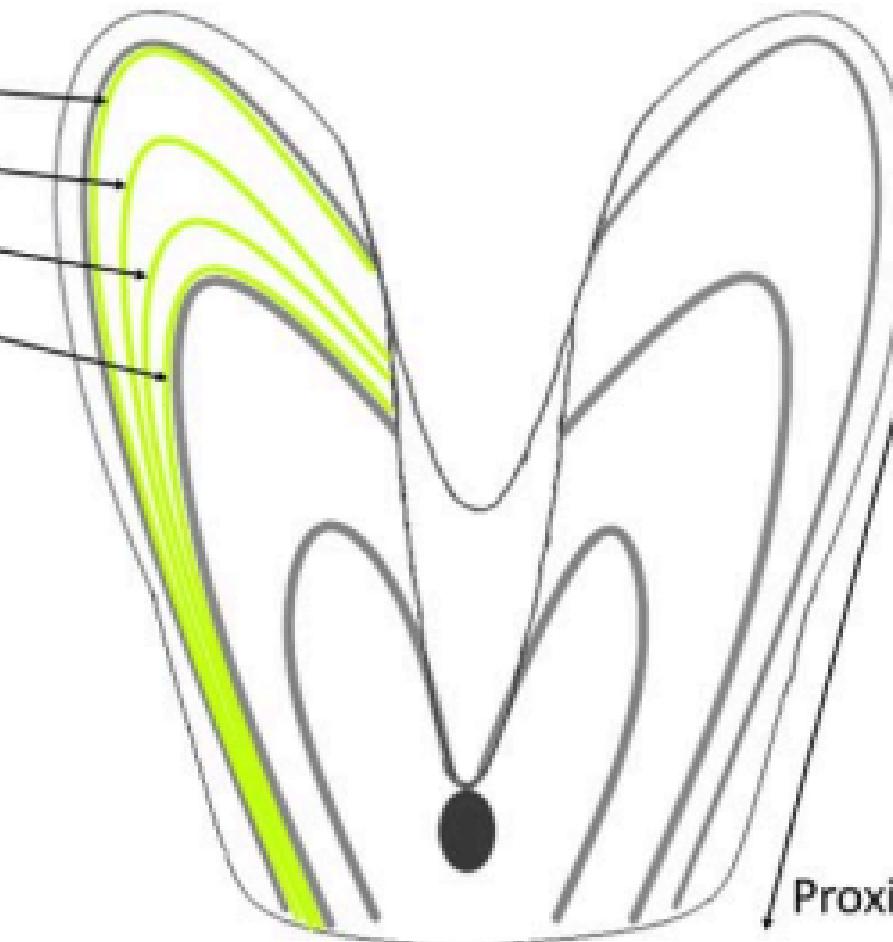


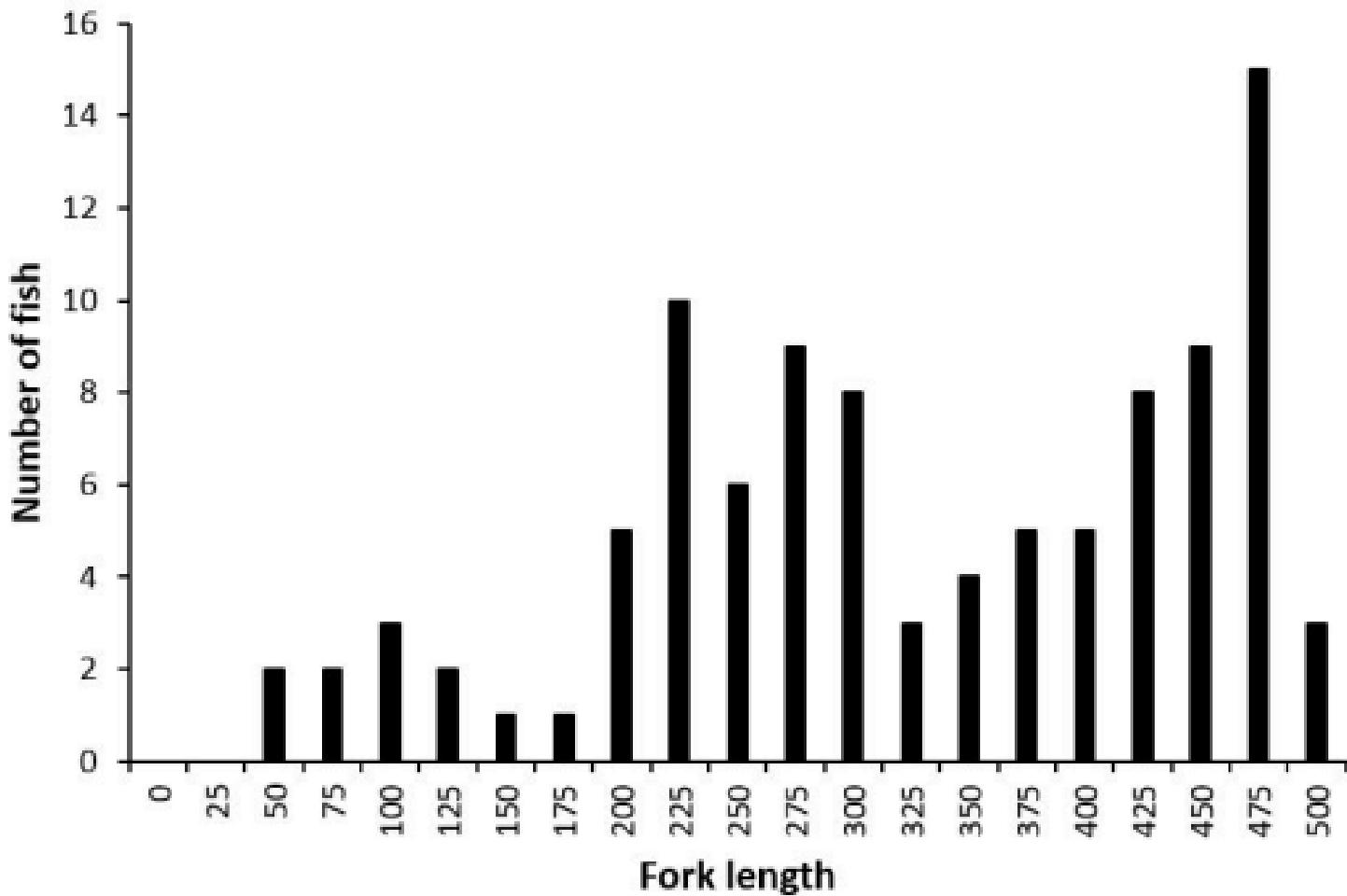
b.

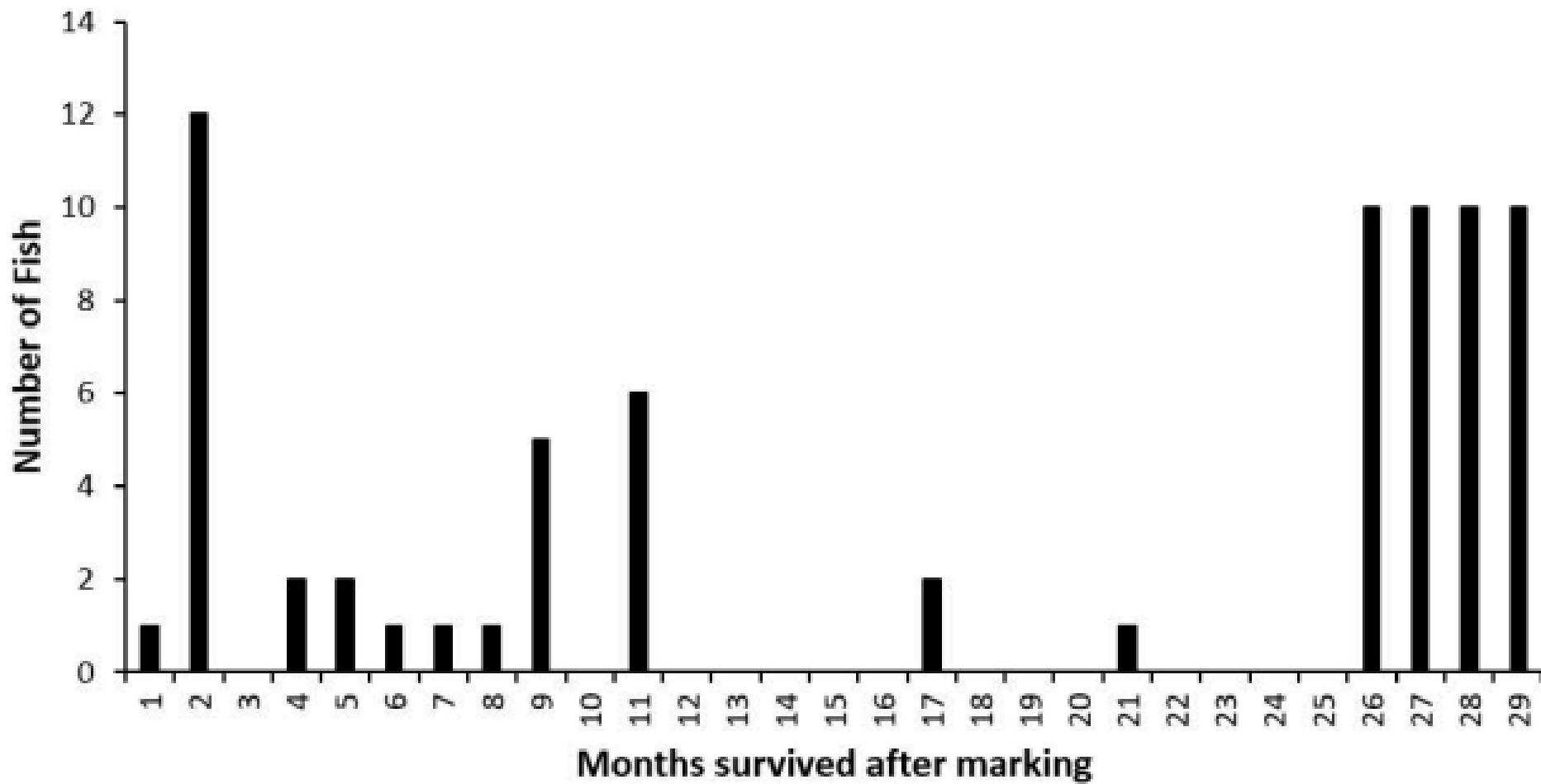
c.

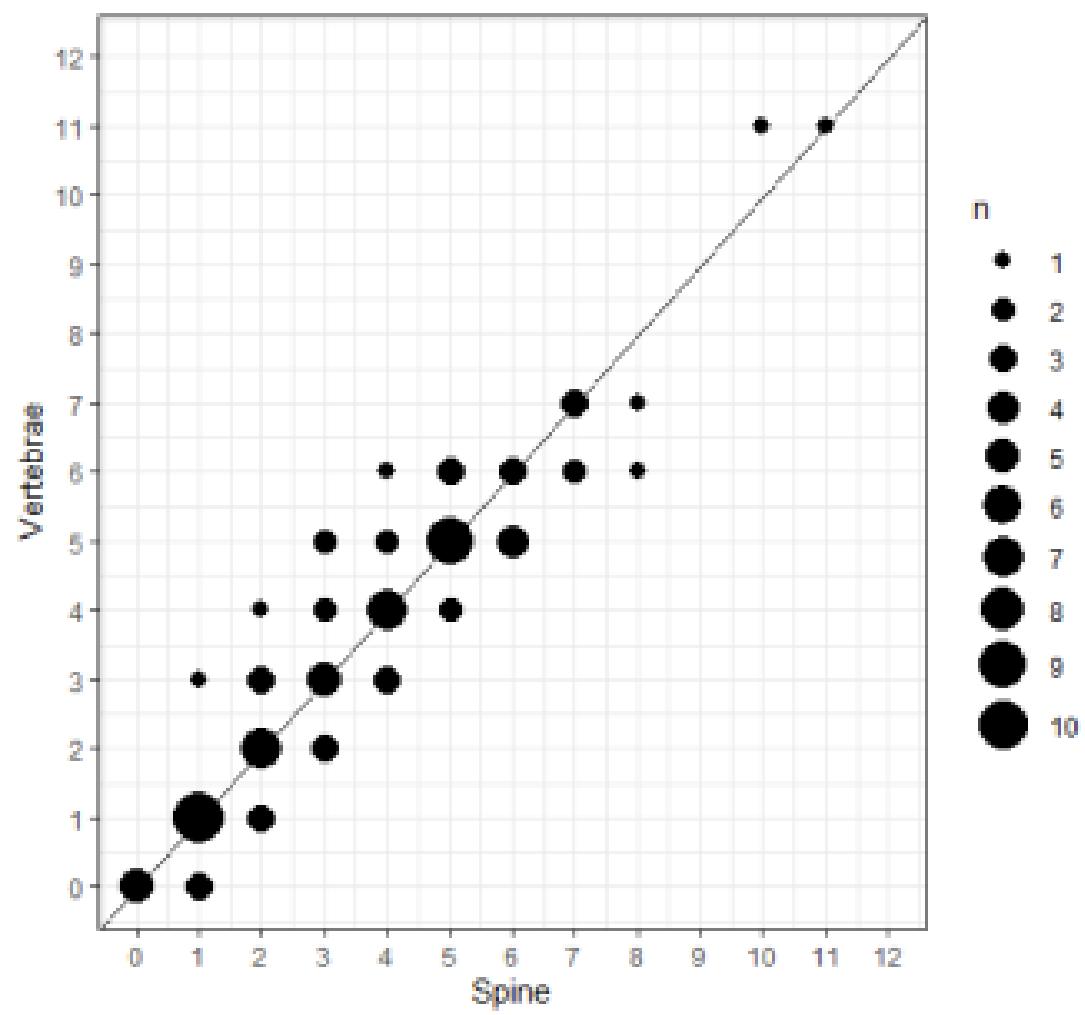
1 mm

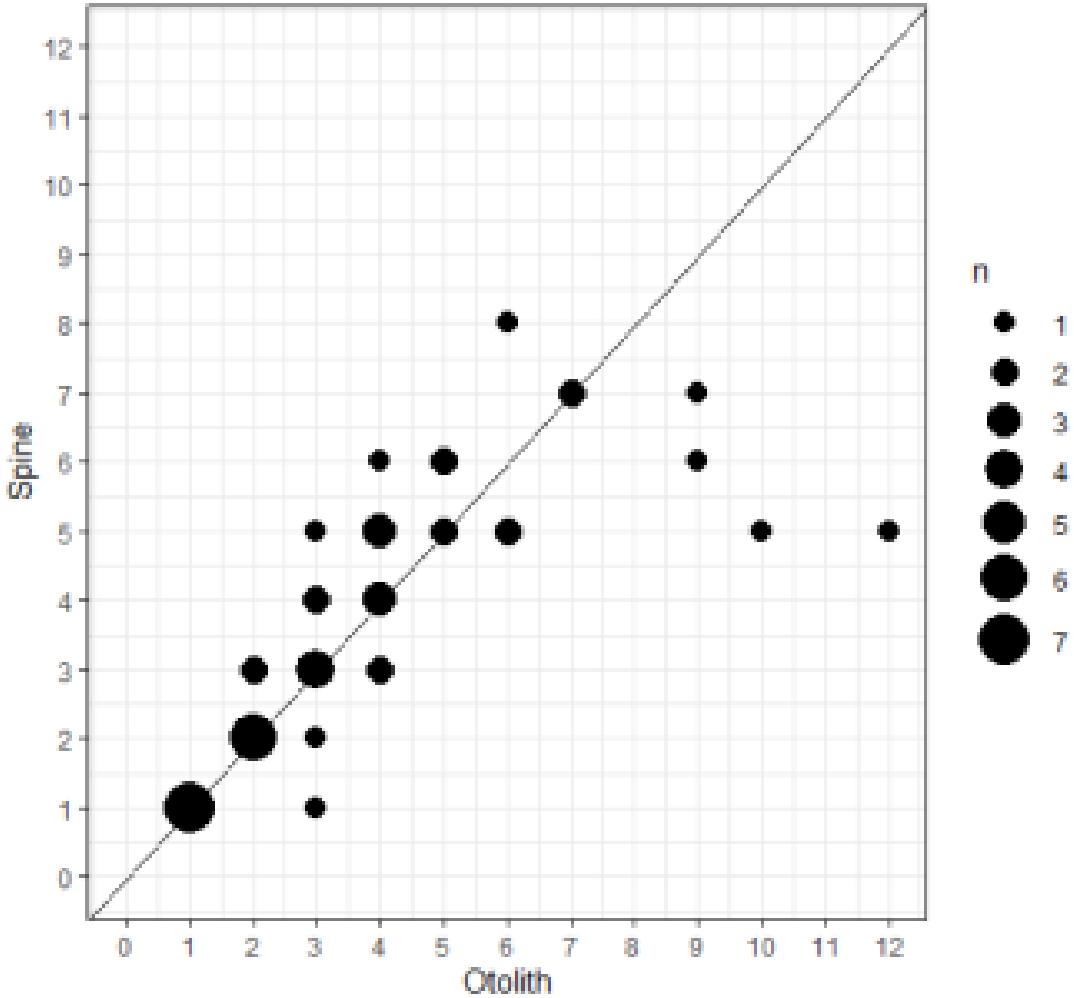
Mark Code 4

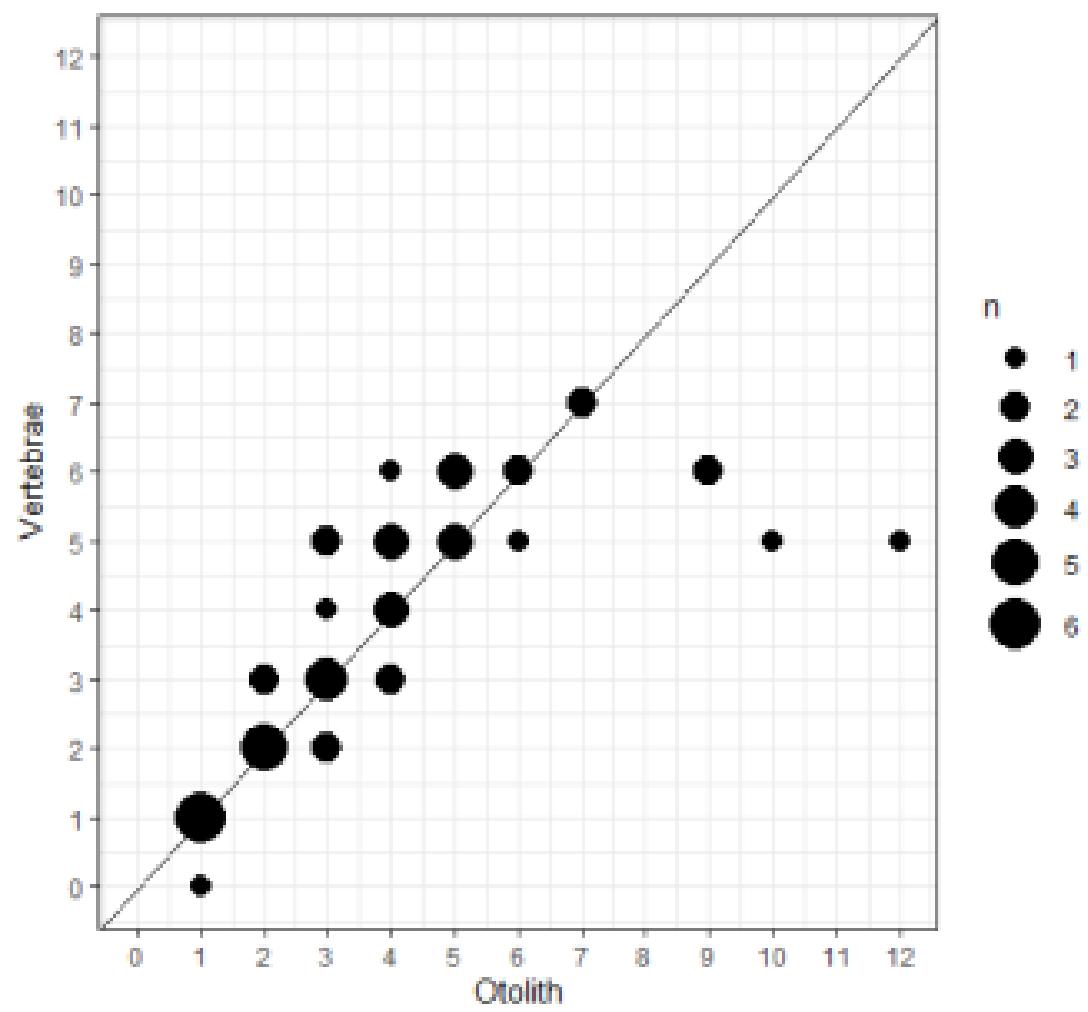

Mark Code 3

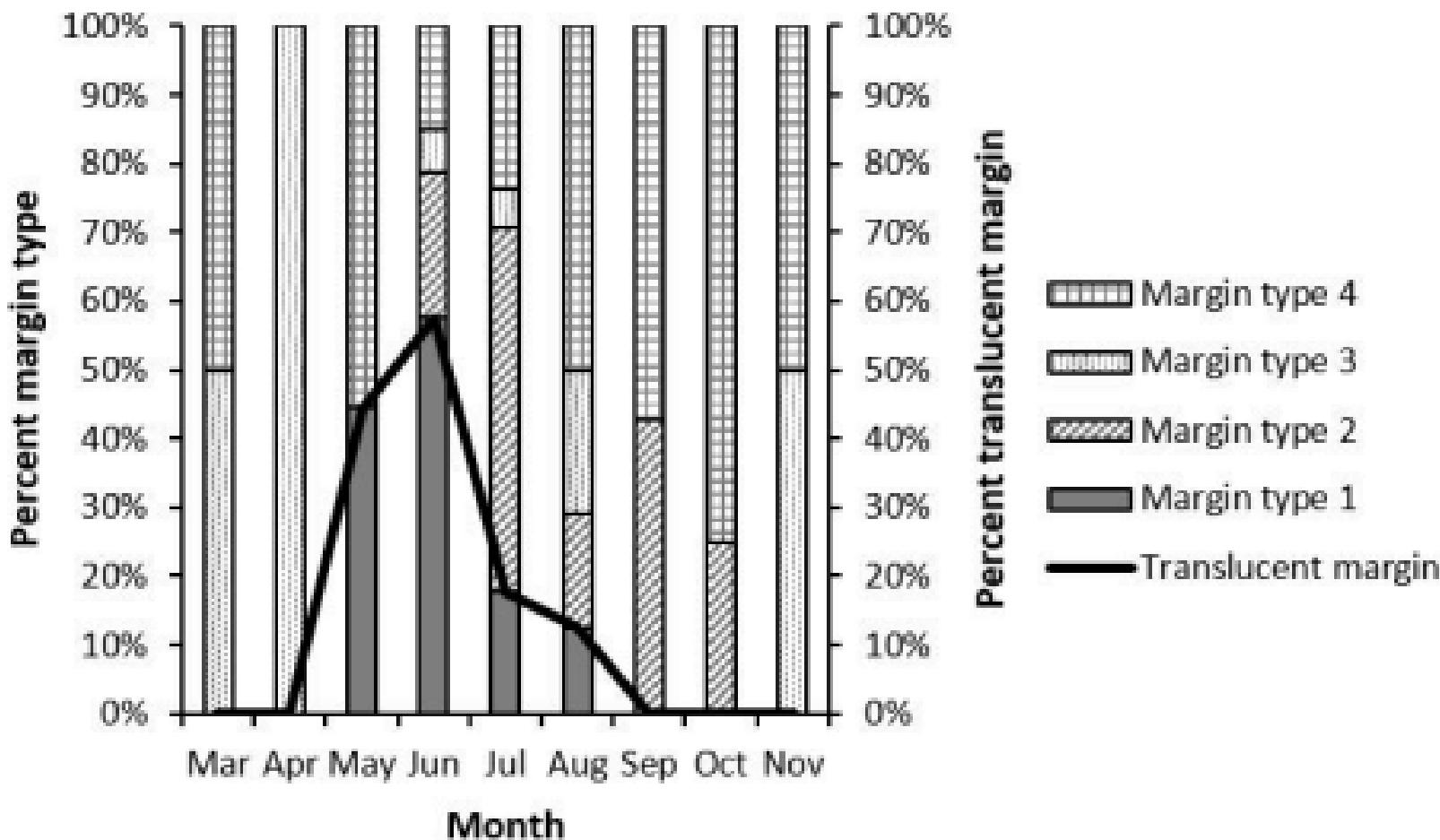

Mark Code 2

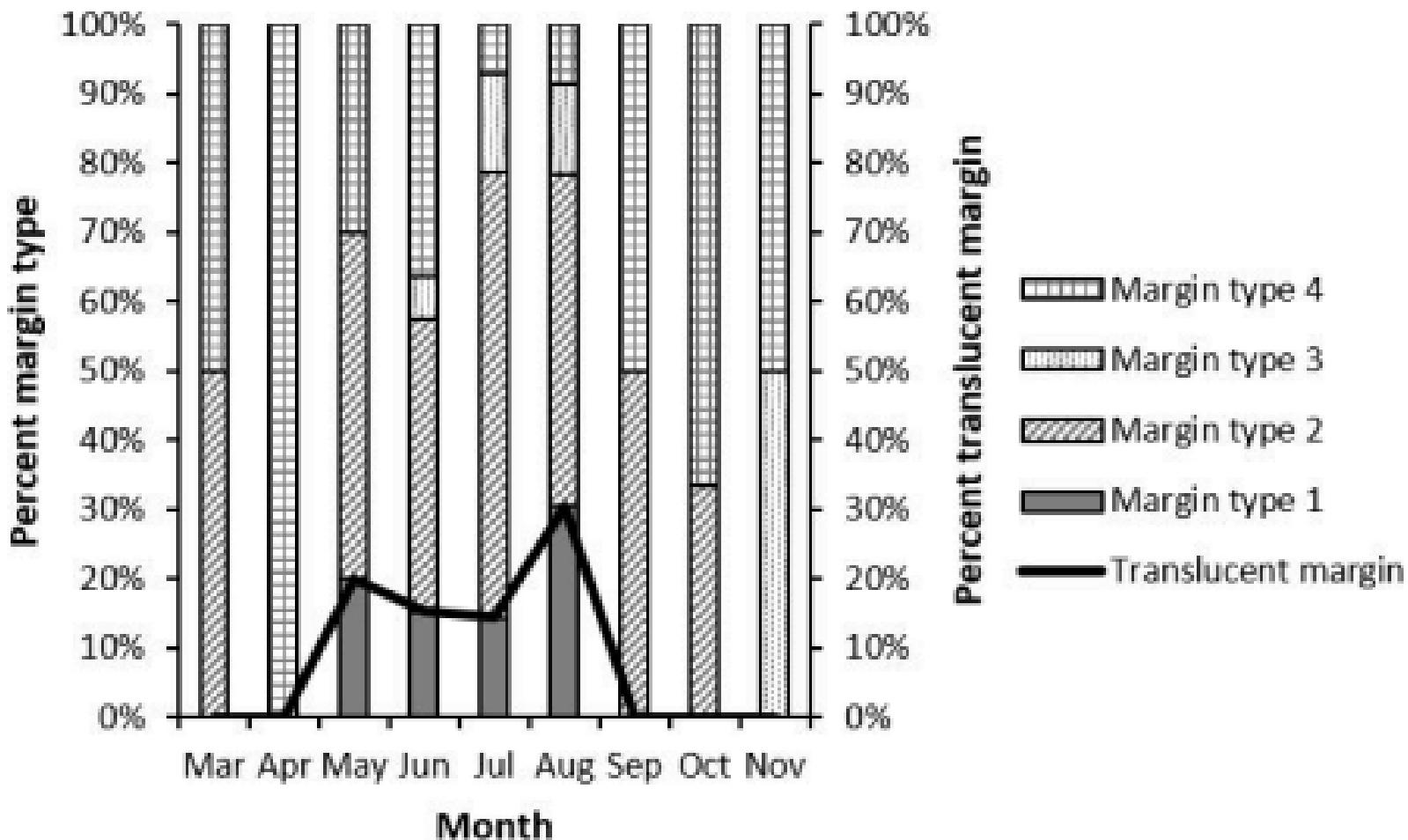

Mark Code 1

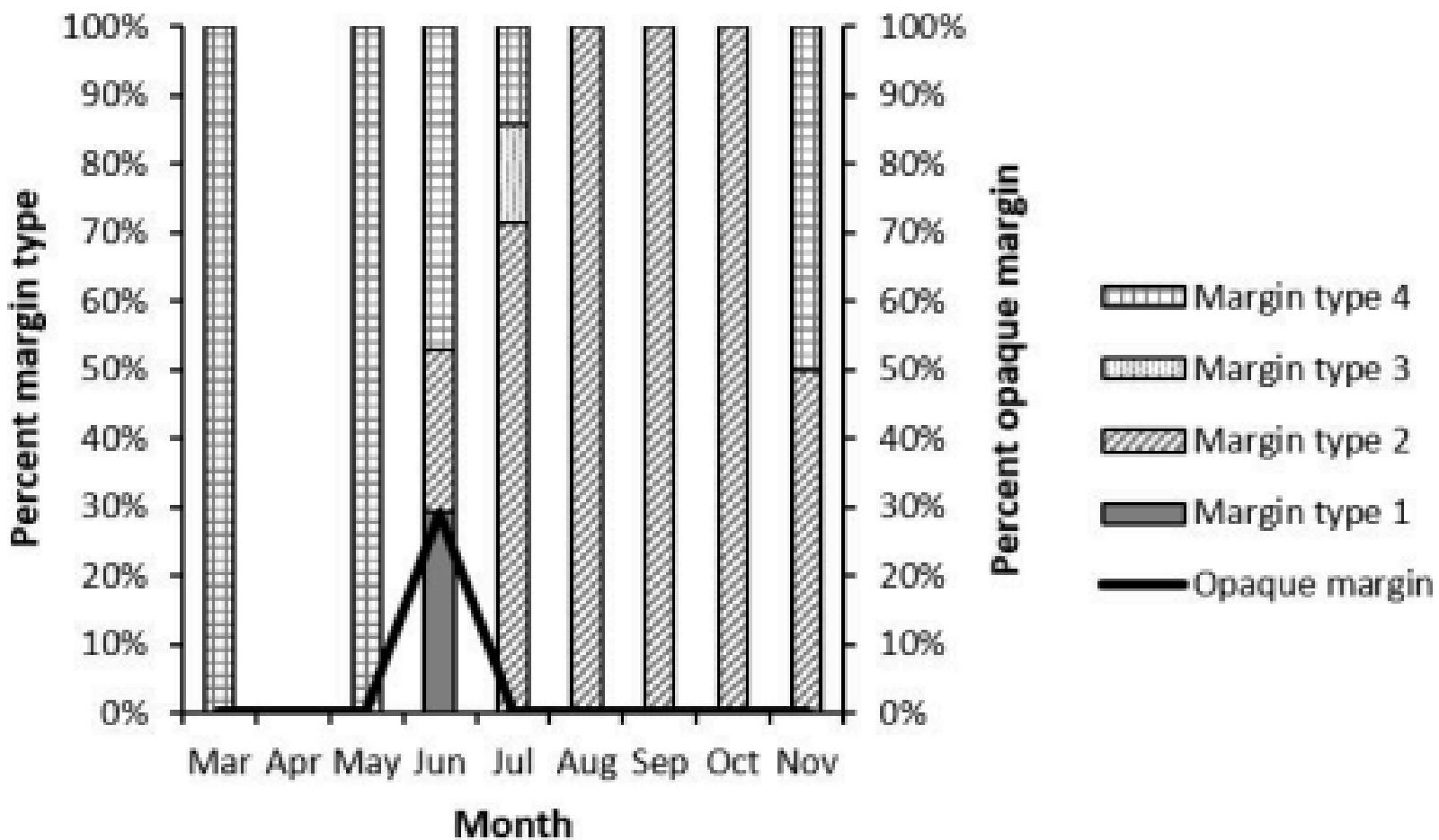

Distal


Proximal

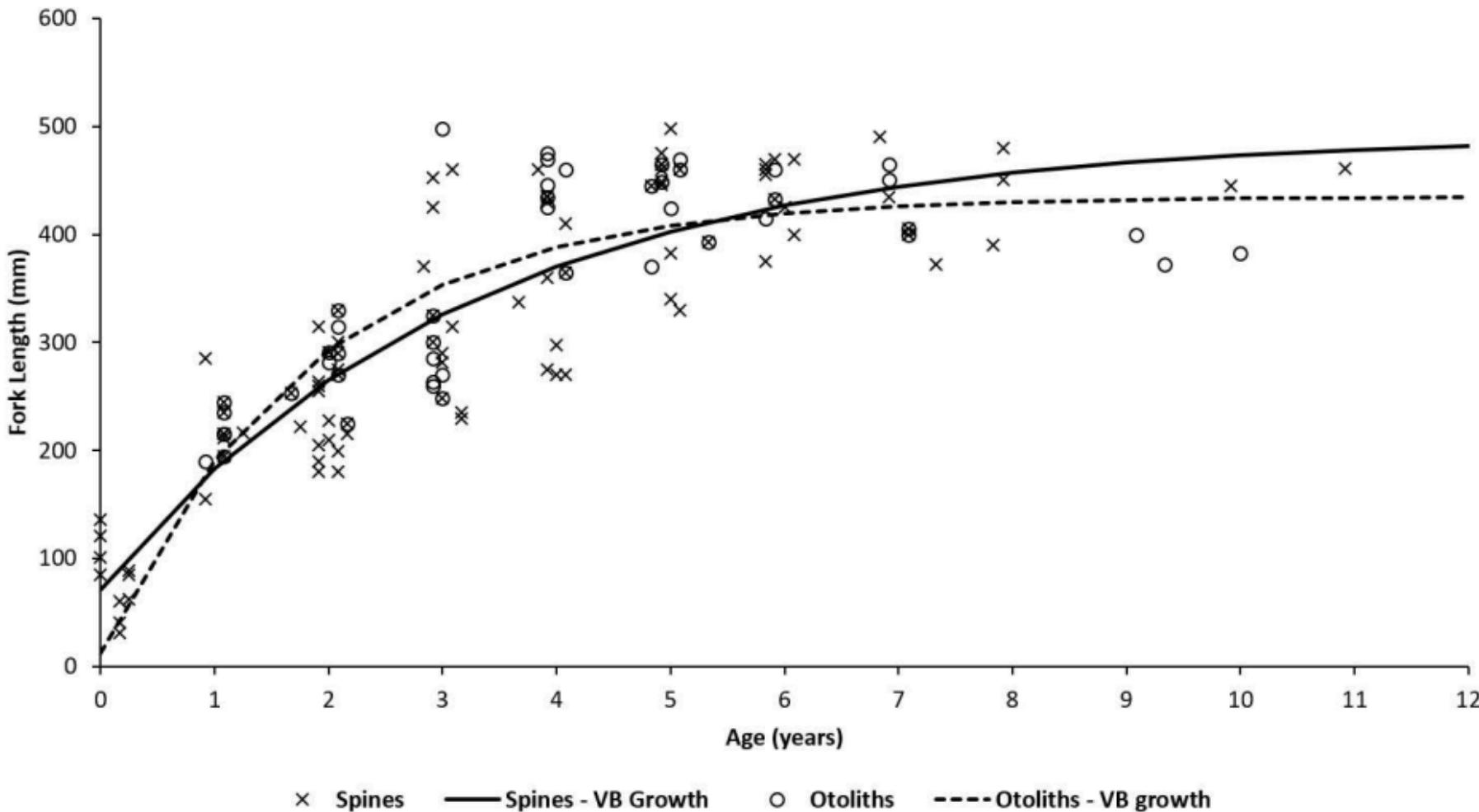


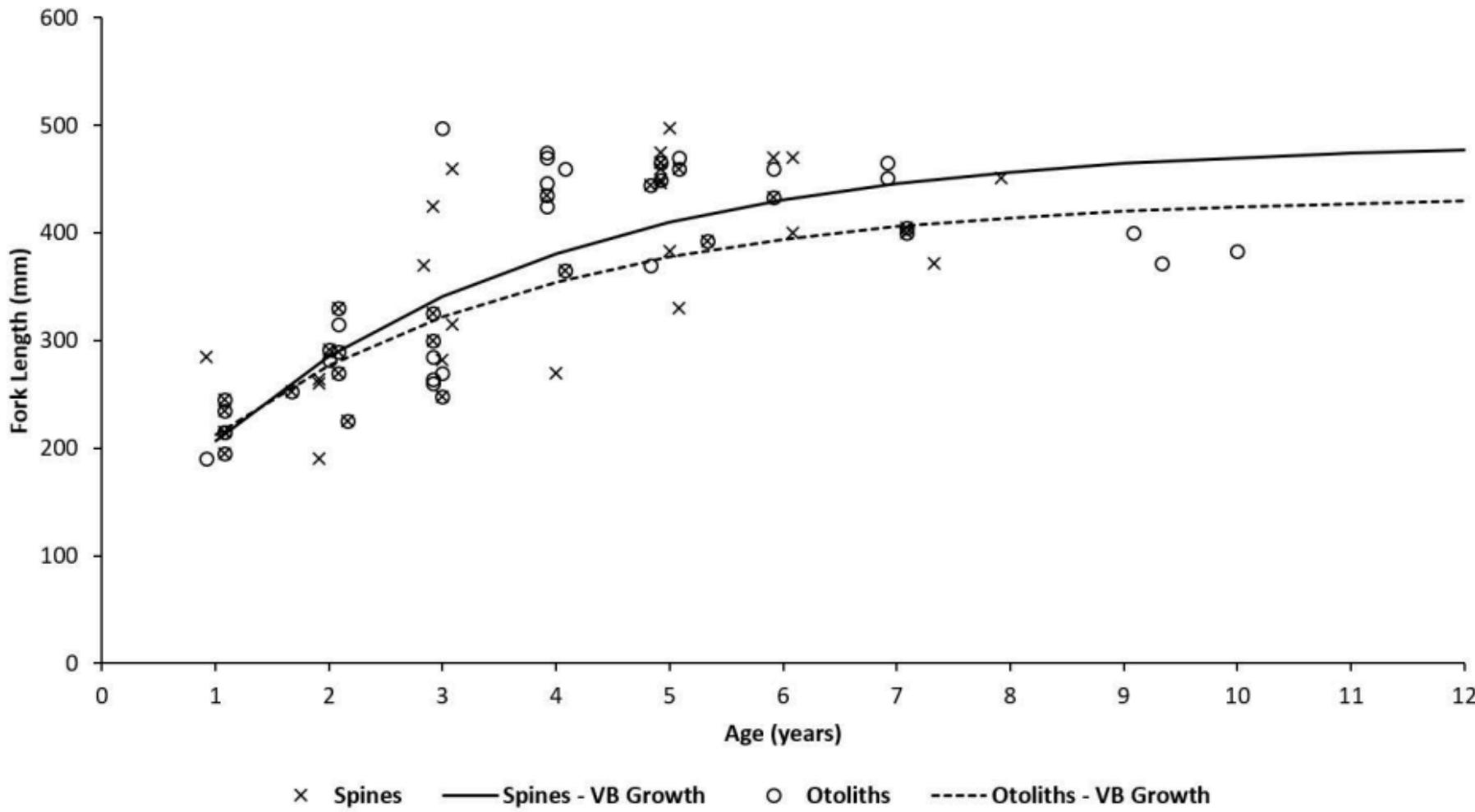


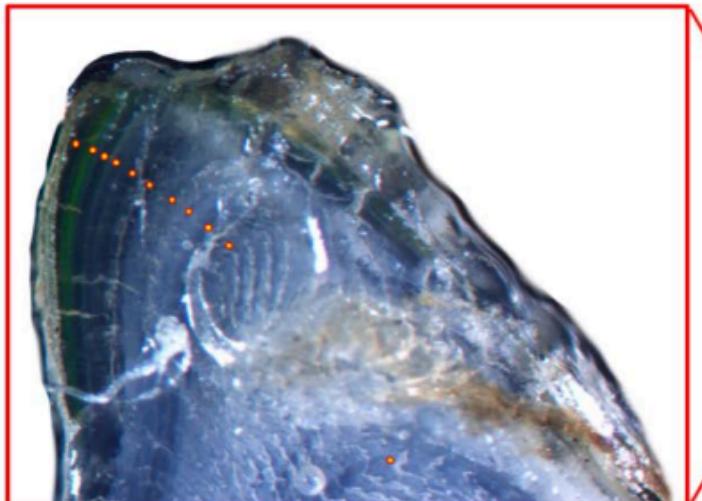




Sacrifice Date:
Jun 7, 2017


Mark Date:
Mar 25, 2015




Sacrifice Date:
8/9/2017

Mark Date:
Oct 11, 2016

1mm

Otolith section

Spine section