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Abstract 25 

The inclusion of unwanted targets in hydroacoustic surveys biases estimates of fish 26 

abundance. Thus, knowledge of frequency-dependent responses of unwanted targets 27 

(e.g., pelagic macroinvertebrates) can help ensure that transducer frequencies are used 28 

that minimize this bias. We determined how fish density estimates varied across 29 

multiple frequencies when the larval stage of a midge, Chaoborus, was present in the 30 

water column. We hypothesized that fish density estimates would increase with 31 

increasing transducer frequency, owing to greater backscattering by Chaoborus at 32 

higher frequencies than lower ones, which allows it to be included with the 33 

backscattering caused by fish. We found that fish density estimates were always greater 34 

at higher frequencies (e.g., 120 and 200 kHz) compared to a lower one (70 kHz) in 35 

several productive north-temperate reservoirs. Furthermore, pairwise comparisons of 36 

total (i.e., fish plus Chaoborus) backscattering showed that significantly more 37 

backscattering occurred at higher rather than lower frequencies. We also found that fish 38 

density estimates varied between spring and summer, partially owing to inter-seasonal 39 

size variation in Chaoborus that influenced its backscattering. Beyond demonstrating 40 

why the presence of pelagic macroinvertebrates needs to be considered when 41 

estimating fish abundance with hydroacoustics, we provide methods to identify and 42 

reduce this bias. 43 

 44 

Key words: phantom midge, Mysis, fish acoustics, Dorosoma cepedianum, diel vertical 45 

migration, geostatistics 46 
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1. Introduction 48 

As with all sampling methods used to estimate fish abundance, hydroacoustic 49 

surveys are not without bias. One potential problem is that hydroacoustic surveys do not 50 

exclusively detect the targets of interest (i.e., fish). For example, many 51 

macroinvertebrates, such as Mysis spp. (Rudstam et al., 2008; Axenrot et al., 2009), 52 

corixids (Kubecka et al., 2000), chironomids (Kubecka et al., 2000), Chaoborus spp. 53 

(Knudsen et al., 2006), jellyfish (Colombo et al., 2009), and krill (Simard and Lavoie, 54 

1999) have measurable backscattering at frequencies commonly used during fish 55 

hydroacoustic assessment surveys. Therefore, fish abundance estimates could include 56 

contributions from non-target organisms, resulting in overestimates of fish abundance 57 

(Jurvelius et al., 2008; Rudstam et al., 2008). Owing to the commonality of pelagic 58 

macroinvertebrates in small natural lakes (Schindler et al., 1993), the Great Lakes 59 

(Beeton, 1960), man-made reservoirs (Chimney et al., 1981), estuaries (Moriarty et al., 60 

2012), and oceans (Atkinson et al., 2004), the need to quantify and understand this bias 61 

seems paramount, regardless of ecosystem type. 62 

The degree of bias from pelagic macroinvertebrates can be influenced by the design 63 

of the hydroacoustic survey, as well as the behaviors and biological attributes of the 64 

macroinvertebrates. Hydroacoustic surveys of fish abundance are routinely conducted 65 

at night because fish typically disperse from schools in reduced light, allowing for more 66 

precise estimates of fish abundance (Drastik et al., 2009). However, many other (non-67 

fish) organisms, such as bentho-pelagic macroinvertebrates, also often reside in the 68 

water column at night. For example, Mysis spp. (Rudstam et al., 1989), Chaoborus spp. 69 

(La Row and Marzolf, 1970), and krill (Cotte and Simard, 2005) engage in diel vertical 70 
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migration behavior, where individuals reduce predation risk by occupying deeper, darker 71 

water (or sediments) during the day and moving into the water column at night to feed 72 

and/or find more suitable habitat. Other macroinvertebrates, such as chironomids, also 73 

emerge from the benthos during the day and are present in the water column and at the 74 

surface at night (Sjöberg and Danell, 1982). Bias from macroinvertebrates is further 75 

enhanced by organisms with an air bladder (i.e., Chaoborus), which may resonate at 76 

certain transducer frequencies and therefore contribute more backscatter than expected 77 

based on their size alone (Jones and Xie, 1994; Eckmann, 1998). 78 

Not accounting for macroinvertebrates in the water column during a hydroacoustic 79 

survey of fish abundance can result in a biased fish estimate. For example, smelt 80 

(Osmerus eperlanus) density in Lake Hiidenvesi, Finland was overestimated by up to 81 

55% when the presence of Chaoborus was not considered (Malinen et al., 2005). This 82 

bias can be reduced, however, by conducting hydroacoustic surveys using frequencies 83 

at which the backscattering from non-target organisms is lower. Knudsen et al. (2006) 84 

evaluated the acoustic backscattering response of Chaoborus at six different 85 

frequencies, ranging 38–710 kHz. These authors detected the greatest response at 200 86 

kHz and attributed the higher backscattering at that frequency to resonance by the air 87 

sacs of Chaoborus. Further, these authors found that the backscattering strength varied 88 

with Chaoborus size. For this reason, Knudsen et al. (2006) recommended using lower 89 

frequencies (e.g., <200 kHz) during fish assessments in the presence of Chaoborus. 90 

Studies in other ecosystems (e.g., Malinen et al., 2005; Jurvelius et al., 2008; Knudsen 91 

and Larsson, 2009) have also concluded that fish abundance estimates measured at 92 
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200 kHz are biased high when macroinvertebrates (e.g., Chaoborus) are present, and 93 

that lower frequencies should be used.  94 

Herein, we sought to evaluate the potential for a vertically migrating 95 

macroinvertebrate, Chaoborus, to bias hydroacoustic surveys of fish density in shallow, 96 

eutrophic reservoirs common to the eastern United States, as well as provide methods 97 

to reduce any observed bias. Specifically, we sampled with 70-, 120-, 200-, and 430-98 

kHz frequencies during two seasons (spring and summer) to identify how estimates of 99 

fish density change with frequency in the presence of Chaoborus, an abundant 100 

organism in these ecosystems. To determine whether backscatter from Chaoborus 101 

contributed to total acoustic backscatter in our study reservoirs, we first examined the 102 

ability of our hydroacoustics system to estimate Chaoborus abundance. To further 103 

understand the influence of Chaoborus on our acoustic surveys, we also: 1) compared 104 

total (i.e., both fish and Chaoborus) acoustic backscattering (NASC, m2∙nmi-2) from 105 

every pairwise combination of frequencies; and 2) determined the frequency-response 106 

of reservoir organisms (i.e., both fish and Chaoborus) during spring and summer using 107 

four different frequencies (70, 120, 200, and 430 kHz). We then evaluated how 108 

estimates of fish density varied with transducer frequency and the season sampled. 109 

Overall, our findings show frequency-dependent and season-specific biases that should 110 

be considered when developing hydroacoustic assessment protocols to estimate fish 111 

abundance in the presence of pelagic macroinvertebrates such as Chaoborus.  112 

 113 
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2. Methods 114 

2.1 Study ecosystems and species 115 

We conducted mobile hydroacoustic surveys and trawled for fish at night to 116 

estimate fish density in three Ohio (USA) reservoirs (i.e., Acton Lake, Alum Creek Lake, 117 

and Hoover Reservoir; Figure 1) during spring (May or June) and summer (August) of 118 

2017. As with other Ohio reservoirs, our three study ecosystems are small, shallow, 119 

warm, and biologically productive (Table 1), and have seasonal hypolimnetic hypoxia 120 

during the summer through early fall. The high productivity of these reservoirs stems 121 

from their agricultural- and urban-based watersheds (Vanni et al., 2005).  122 

These reservoirs support a fish community consisting of piscivores and 123 

planktivores. Top predators in these reservoirs are typified by largemouth bass 124 

(Micropterus salmoides) and saugeye (Sander vitreus canadensis), with their forage 125 

base primarily composed of planktivorous fishes, including gizzard shad (Dorosoma 126 

cepedianum), crappies (Pomoxis spp.), sunfishes (Lepomis spp.), and brook silverside 127 

(Labidesthes sicculus). The main species of interest for this study was gizzard shad 128 

(Dorosoma cepedianum), which has historically been the most abundant prey species in 129 

Ohio reservoirs (Sieber Denlinger et al., 2006; Hale et al., 2008; Dillon et al., 2019).  130 

All of our study reservoirs have populations of the vertically migrating, 131 

macroinvertebrate Chaoborus punctipennis. Chaoborus tend to reside in bottom 132 

sediments during daylight hours and move into the water column at night (La Row and 133 

Marzolf, 1970). When in the water column at night, resonance from their air sacs holds 134 

the potential to contribute to total backscattering estimates, which has been shown to 135 

bias estimates of fish density in other ecosystems (e.g., Malinen et al., 2005; Knudsen 136 
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et al. 2006). Because this potential bias from Chaoborus has not been measured or 137 

considered in annual hydroacoustic surveys of fish abundance by the Ohio Department 138 

of Natural Resources – Division of Wildlife (ODNR-DOW), which oversees fisheries 139 

management in Ohio reservoirs, the need to estimate this bias is paramount (JDC, co-140 

author, ODNR-DOW, pers. comm.)  141 

2.2 Abiotic data collection 142 

Contemporaneously to hydroacoustic surveys and trawls (see sections 2.3 and 143 

2.4), we collected abiotic data at three sites (Figure 1) to inform reservoir condition at 144 

the time of fish sampling. Vertical profiles of temperature (nearest 0.1 °C) and dissolved 145 

oxygen concentration (nearest 0.1 mg·L-1) were determined with a multi-parameter 146 

sonde (Model 6600, YSI, Inc., Yellow Springs, Ohio, USA) at 1-m depth increments 147 

from the surface to the bottom at each site (n = 3) in each reservoir. 148 

2.3 Hydroacoustic survey design 149 

Hydroacoustic data were collected with a BioSonics echosounder (DT-X; Seattle, 150 

Washington, USA) operating four split-beam transducers with different frequencies: 70-151 

kHz transducer (6.5 °, 3 dB beam angle; 3.7 m, 2x near-field); 120-kHz transducer (7.2 152 

°, 3 dB beam angle; 1.7 m, 2x near-field); 200-kHz transducer (6.9 °, 3 dB beam angle; 153 

1.1 m, 2x near-field); and 430-kHz transducer (6.9 °, 3 dB beam angle; 0.6 m, 2x near-154 

field). Even though each frequency transducer had a different near-field distance, the 155 

same exact portion of the water column was used within each analysis to enable fair 156 

comparisons across frequencies (see sections 2.5-2.7). For every survey, all 157 

transducers were oriented downward on a fixed plate secured to the side of the boat, 158 

and positioned 0.5 m below the water surface.  159 
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Hydroacoustic data collection followed procedures outlined in Dillon et al. (2019). 160 

Settings included a −130 dB threshold, 0.2-ms pulse duration, pulse rate of 10 pings·s-1, 161 

start range of 1 m, and a stop range that varied with reservoir depth. Surveys were 162 

conducted (depth permitting) in a zig-zag pattern (Figure 1). All mobile surveys began 163 

0.5 h after sunset, were conducted at a speed of 7 km·h-1 or slower, and were 164 

completed at least one hour before sunrise. We collected passive data at night for the 165 

length of one transect while moving at survey speed to quantify background noise in 166 

each reservoir (Parker-Stetter et al., 2009; Dillon et al., 2019). In our reservoirs, mean 167 

volume backscattering strength (Sv in dB) noise ranged -119.2 to -91.5 dB, whereas 168 

target strength (TS in dB) noise ranged -148.5 to -99.8 dB. 169 

We calibrated each transducer with a frequency-specific standard tungsten-170 

carbide reference sphere of known TS (38.1 mm diameter for 70 kHz; 38.1 mm 171 

diameter for 120 kHz; 36 mm diameter for 200 kHz; 17.5-mm diameter for 430 kHz; 172 

Foote et al., 1987) during spring and summer. Calibration offsets were then applied to 173 

the survey data based on the results from the closest date of field calibration (typically 174 

within one month). Using the equations of Del Grosso and Mader (1972) and Francois 175 

and Garrison (1982), we calculated speed of sound and absorption coefficients using 176 

the average temperature from the entire water column at the deepest site sampled in 177 

each reservoir. 178 

2.4 Biological collections 179 

We collected fish for species identification and total length (TL) measurements by 180 

towing (at 12–14 km·h-1) a 1-m high x 2-m wide neuston net (6,350-μm mesh) at the 181 

surface, and a 1-m high x 1-m wide framed trawl (3,175-μm mesh) at the surface and at 182 
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specific depths. Depths of sub-surface tows were chosen based on the greatest 183 

apparent abundance of fish (i.e., observed backscatter) observed in the concurrent 184 

hydroacoustic survey. Individual fish collected with surface net tows may not directly 185 

match those sampled by hydroacoustics at deeper depths. However, for the reasons 186 

outlined in Dillon et al. (2019), we are justified in the use of our surface net tows, as 187 

their main purpose was to collect as many individuals as possible. We conducted three 188 

tows with each net in each reservoir, with our net sampling spanning a distance of 189 

approximately 500 m (Figure 1). All captured individuals were euthanized, preserved in 190 

95% ethanol, and returned to the laboratory where they were identified to species and 191 

measured. We measured TL (nearest 1 mm) and wet mass (nearest 1 g) for a subset of 192 

up to 50 randomly selected individuals per species per trawl.  193 

We collected Chaoborus with a pump (TD5-300, Tsurumi Pump, Glendale 194 

Heights, Illinois, USA) at the same three sites sampled for abiotic data in each reservoir 195 

(Figure 1). Chaoborus were sampled at three discrete depths, with the depth of each 196 

sample chosen based on site-specific temperature and dissolved oxygen profiles such 197 

that individuals were collected in the epilimnion, metalimnion, and hypolimnion (Dillon et 198 

al., in review). Each pump sample filtered approximately 1 m3 of water. Up to 25 199 

randomly selected individuals from each discrete-depth sample at each site were 200 

measured (nearest 0.1 mm), and lengths were converted to dry mass (nearest 0.001 201 

mg) using an established regression (Chimney et al., 2007). Total Chaoborus biomass 202 

was calculated by multiplying the density of the sample by the average dry mass of the 203 

measured individuals. We tested for differences in mean length between Chaoborus 204 

captured during spring (May or June) and summer (August) with a Mann-Whitney U 205 
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Test, as Bartlett’s Test and visual examination of the data (histograms and Q-Q plots) 206 

revealed that the data were non-normally distributed. 207 

2.5 Hydroacoustic estimates of Chaoborus 208 

To determine whether backscatter from Chaoborus contributed to total acoustic 209 

backscatter in our study reservoirs, we first examined the ability of our hydroacoustics 210 

system to estimate Chaoborus abundance. To do this, we developed a relationship 211 

between a commonly used hydroacoustic index of biomass, Sv, and the pumped 212 

biomass estimate of Chaoborus by matching the same layer of the hydroacoustic 213 

survey to the same layer of the discrete-depth pump sample. Data from additional, but 214 

similar, sampling used to complete this analysis (section 2.5) is described in Appendix 215 

C. 216 

2.5.1 Hydroacoustic processing 217 

All hydroacoustic analyses were conducted in Echoview (Versions 7.1–8, Myriax 218 

Pty Ltd, Hobart, Tasmania, Australia) following the methods outlined in Dillon et al. 219 

(2019), which we briefly describe here. Estimates of background noise at 1-m depth 220 

were calculated using equations from Parker-Stetter et al. (2009) and then subtracted 221 

from the survey data in the linear domain. We also removed other instances of noise 222 

(i.e., from boat wakes, bubbles, methane gas, etc.) by manually scanning the 223 

echograms and delineating these areas as “bad data” in Echoview.  224 

We used the hydroacoustic data from the 70-, 200-, and 430- kHz frequencies to 225 

estimate the abundance of Chaoborus through a masking technique similar to one used 226 

by Rudstam et al. (2008), who separated echoes of a diel migrating invertebrate (Mysis 227 

spp.) from that of fish in Lake Ontario. First, a fish-exclusion threshold was applied to 228 
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the 70-kHz data (Rudstam et al. 2008). Only data from the 70-kHz frequency was 229 

thresholded for this analysis, as this frequency: 1) included the smallest acoustic 230 

contribution from Chaoborus (Knudsen et al., 2006; this study); 2) was used as the 231 

frequency that produced the most reliable estimate of fish density (see Results); and 3) 232 

was used as the frequency for masking fish echoes from the other higher frequencies 233 

(see below).  234 

The minimum TS threshold (Table A1) was chosen by examining the in situ 235 

single-target distributions from -75 to -30 dB and selecting a valley in the distribution. If 236 

no clear valley was observed in the in situ single target distribution, then we chose the 237 

minimum TS value by converting TL of individual fish captured in net/trawl tows to TS 238 

with a general dorsal-aspect equation (Love, 1977). Single targets were identified using 239 

a maximum beam compensation of 6 dB and the settings listed in Dillon et al. (2019). A 240 

range-dependent Sv threshold was set 6 dB less than the selected minimum TS value 241 

and input as the “Minimum TS threshold” setting in each Sv variable for every reservoir 242 

sampled (see Parker-Stetter et al., 2009).  243 

Pings between the 70- and either 200- or 430-kHz data were then matched for 244 

complete data overlap. In the Sv variable, the data were resampled as 10 data pixels∙m-245 

1 and dilated to allow masking areas around each fish target. A data range bitmap was 246 

then applied to the dilated data, which removed fish targets (and the area immediately 247 

around each fish target); we replaced the values in these areas as no data. Results 248 

from the bitmap were then applied as a mask over the 200- or 430-kHz Sv data so that 249 

only echoes from Chaoborus remained. 250 

2.5.2 Analysis 251 
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We examined the relationship between the average pump biomass estimate and 252 

the hydroacoustic estimate of Chaoborus biomass (S v) using least-squares linear 253 

regression. We developed four predictive models corresponding to the two frequencies 254 

(200 and 430 kHz) and seasons (spring: May or June; summer: August) used. We 255 

generated separate models for each period, owing to observed Chaoborus size 256 

differences between sampling seasons. We then used the intercept from these models 257 

to determine the TS of 1 g dry wt⋅m-3 of Chaoborus. Because of the linearity principle in 258 

fisheries acoustics, the slope of the relationship between the log10 of biomass or density 259 

and Sv in dB should have a slope of 0.1, if the target size is not density-dependent 260 

(Simmonds and MacLennan, 2005). We tested if the slope of each model was 261 

significantly different from 0.1 by determining if the 95% CI of the estimated slope 262 

encompassed 0.1. When the slope of the model was not significantly different from 0.1, 263 

we used the intercept estimates from these models to determine the TS (dB) of 1 g dry 264 

wtm-3 of Chaoborus. If the slope was significantly different from 0.1, we forced the slope 265 

of the line to equal 0.1 to get an intercept estimate, and then determined the TS (dB) of 266 

1 g dry wtm-3 of Chaoborus.   267 

2.6 Transducer frequency comparisons 268 

We explored how total backscattering (i.e., from fish and Chaoborus) differed 269 

among frequencies to help explain any observed differences in estimates of fish density 270 

among them. We compared cell-specific total backscattering responses (nautical area 271 

scattering coefficient, NASC, m2∙nautical mile-2 [nmi-2]) from every pairwise combination 272 

of frequencies (i.e., 70, 120, 200, and 430 kHz).  273 

2.6.1 Hydroacoustic processing 274 
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The hydroacoustic data processing differed in some ways from that described in 275 

section 2.5. While we subtracted noise estimates from the hydroacoustic data, as 276 

above, for the analyses conducted here only, data were not thresholded and we used a 277 

horizontal cell size of 250 m and vertical cell size of 2.5 m. This cell size was chosen for 278 

these analyses because it is beyond the distance where notable spatial correlation was 279 

present in our data (Figures A1–A3), and we were able to smooth over any areas where 280 

large fluctuations in the acoustic response might exist. We included all data from the 281 

depth of the 70-kHz transducer near-field (as this was the deepest near-field from any 282 

frequency transducer sampled) to the bottom exclusion zone (0.2 m off the detected 283 

bottom) for these analyses only, as Chaoborus were found at all depths in our 284 

reservoirs.  285 

2.6.2 Analysis 286 

Frequency-specific and cell-specific NASC values (m2∙nmi-2) were compared to 287 

one another with major-axis regressions (Warton et al., 2006) using the R-package 288 

“lmodel2” (Legendre, 2018). In so doing, we could test for common slopes and their fit 289 

to a 1:1 line (slope = 1, intercept = 0). A significant (α = 0.05) relationship between each 290 

pairwise combination of frequencies was tested using data from 99 permutations. 291 

Using the same data (i.e., 250- x 2.5- m cell size, noise removed, no 292 

thresholding), we identified which frequencies (70, 120, 200, 430 kHz) resulted in the 293 

highest backscattering of reservoir organisms (i.e., both fish and Chaoborus together) 294 

by examining the frequency-response of our data. We determined the frequency-295 

response during both spring and summer to account for potential differences in the 296 

frequency-dependent backscattering response associated with changes in organism 297 
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(i.e., fish and/or Chaoborus) size. The frequency-response (± 1 standard error, SE) was 298 

calculated as the average cell-specific (from a random selection of one third of the 299 

number of cells sampled in each reservoir) acoustic scattering (NASC, m2∙nmi-2) from 300 

each frequency sampled.  301 

2.7 Fish density estimation 302 

Only the three lower frequencies (70, 120, and 200 kHz) were used to calculate 303 

fish density because they are commonly used in fish abundance assessment surveys 304 

used by agencies, including in Ohio (Hale et al., 2008; Godlewska et al., 2009). 305 

2.7.1 Hydroacoustic processing 306 

Hydroacoustic data processing followed similar methods to those described 307 

above (sections 2.5 and 2.6), with noise being removed. Additionally, frequency-specific 308 

TS thresholds were applied to the data, using the methods described above (section 309 

2.5). We consider thresholding to be the most appropriate method for generating fish 310 

density estimates at each frequency, given the high density of Chaoborus observed in 311 

our ecosystems (Baran et al., 2019), as well as the lack of overlap in TS between 312 

known fish and Chaoborus at the lower frequencies sampled (see Discussion).  313 

Data processing was standardized to 50-m horizontal x 1-m vertical cells within 314 

each transect, regardless of transducer frequency or reservoir, and only focused on the 315 

1-m vertical interval from 4.2 to 5.2 m. We chose this 1-m depth-layer for analysis as its 316 

upper limit (4.2 m) corresponds to the shallowest depth surveyed by the 70-kHz 317 

transducer, owing to its 3.7 m, 2x near-field, and position below the water surface, and 318 

the lower limit (5.2 m) corresponds to the starting depth of the hypoxic hypolimnion 319 

(dissolved oxygen < 2.0 mg·L-1), which was present during August surveys (Dillon et al., 320 
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in review). We know from previous research that fish avoid hypolimnetic hypoxia in our 321 

study reservoirs (Burbacher 2011; Dillon et al., in review). We used Sawada et al.’s 322 

(1993) Nv index to identify cells with potentially biased in situ TS estimates, owing to 323 

overlapping single-target detections, and replaced those cells with the average TS from 324 

the same depth-layer (Dillon et al., 2019).  325 

2.7.2 Analysis 326 

We estimated cell-specific fish density via echo-integration, scaling the area 327 

backscattering coefficient (ABC, m2·m-2) by the average backscattering cross section 328 

(σbs, m2). Average fish density estimates (number of individuals·m-2) were then 329 

calculated using a geostatistical model that accounted for the spatial characteristics of 330 

our sampling design. Because we used a non-random sampling design (i.e., zig-zag 331 

transects; see Figure 1), classical statistical methods are inappropriate, as assumptions 332 

about randomized sampling (i.e., independence) were violated (Simard et al., 1992; 333 

Petitgas, 2001). By contrast, a geostatistical model-based approach does not require a 334 

randomized survey design as it explicitly models inherent spatial trends and correlation 335 

in the data (Rivoirard et al., 2000). For this reason, studies have evaluated the efficacy 336 

of using geostatistical methods and found that they provide more robust (e.g., more 337 

precise variance estimates) estimates of fish abundance than traditional statistical 338 

methods (e.g., Petitgas, 2001; Taylor et al., 2005). 339 

We describe our geostatistical models (hereafter referred to as spatial models), 340 

in brief, with details available in Appendix B. To satisfy assumptions of a Gaussian 341 

spatial model, density estimates from every frequency, season (spring or summer), and 342 

reservoir sampled were shifted (add 0.5 to each density measurement) and log10 343 
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transformed. The spatial model included a spatial trend term, as well as an error 344 

covariance that assumed an exponential covariance between different locations 345 

(measured in km). Our spatial models also included a nugget term in the error 346 

covariance, to account for possible measurement error or fine-scale spatial 347 

dependencies. Spatial trends were represented by terms for Northing (km), Easting 348 

(km), and their interaction, as exploratory data analyses indicated these trends were 349 

apparent in our data (PFC and RAD, unpub. data). The spatial model parameters were 350 

estimated using maximum likelihood. A spatial model was appropriate for our data 351 

analyses, as Akaike information criterion (AIC) analysis indicated preference for spatial 352 

models over non-spatial models for most surveys (Supplementary Material; Table S1). 353 

Summaries of the spatial models showed that estimates of model terms (i.e., intercept, 354 

Northing, Easting, and their interaction), and the significance of these terms varied with 355 

the reservoir and season sampled (Supplementary Material: Tables S2–S4). Further, 356 

while mean density estimates were similar between the spatial and non-spatial models, 357 

the error (SE) estimates from the spatial model were generally smaller than those 358 

calculated from the non-spatial model (Supplementary Material: Table S5, Figure S1). 359 

Thus, based on the non-random sampling design, the AIC values, and lower observed 360 

SE of the estimates, we used the spatial model to calculate average fish density for all 361 

of our surveys. 362 

To quantify how much the spatially-varying fish density estimates (log10 363 

transformed) differed among frequencies and between seasons, we developed a 364 

functional analysis of variance (ANOVA) model (Kaufman and Sain, 2010) for each 365 

reservoir. We used this approach given that assumptions of independence and equal 366 
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variances were not met, which precluded the use of a simpler ANOVA. Each functional 367 

ANOVA model included a spatial trend (with terms for Northing, Easting, and their 368 

interaction), a spatially-varying term for frequency, a spatially-varying term for season, 369 

and a spatially-varying term for the errors. We assumed an exponential covariance for 370 

each spatially varying term. We only included a nugget term for the error term. The 371 

functional ANOVA model was fit using maximum likelihood (see Appendix B for further 372 

details). 373 

 374 

3. Results 375 

3.1 Fish collections 376 

The majority (by abundance) of the trawl catch was gizzard shad in Acton Lake 377 

(100%), whereas brook silverside was caught in greater abundance in Alum Creek Lake 378 

(78%) and Hoover Reservoir (74%). The mean TL (± 1 SD) of gizzard shad captured in 379 

Acton Lake was 54 ± 19 mm, in Alum Creek Lake was 89 ± 8 mm, and in Hoover 380 

Reservoir was 66 ± 18 mm. The mean TL of brook silverside was 52 ± 28 mm in Alum 381 

Creek Lake, and 59 ± 15 mm in Hoover Reservoir. The range of fish TLs recorded 382 

(regardless of species) was 20–95 mm in Acton Lake, 24–95 mm in Alum Creek Lake, 383 

and 30–90 mm in Hoover Reservoir.  384 

3.2 Chaoborus collections 385 

Depth-specific pump sampling confirmed the presence of Chaoborus in our study 386 

ecosystems (Table 2; Figure 2). We captured a wide size-range of Chaoborus in 387 

conjunction with our hydroacoustic surveys (Table 2; Figure 2). Similar patterns in the 388 

mean TL (± 1 SD) of Chaoborus were observed across the three reservoirs sampled, 389 
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with a higher abundance of smaller Chaoborus being captured during summer (3.3 ± 390 

2.1 mm) than during spring (5.9 ± 2.9 mm) (Mann-Whitney test; W = 483380; P < 0.01; 391 

Table 2; Figure 2). Further, more individuals were captured during summer (mean 392 

density ranged 256 to 688 individuals·m-2) than during spring (mean density ranged 43 393 

to 229 individuals·m-2) in all three reservoirs (Table 2).  394 

3.3 Hydroacoustic estimates of Chaoborus 395 

The relationship between the hydroacoustic estimate of Chaoborus abundance 396 

and the estimate of Chaoborus biomass from pump samples varied with the frequency 397 

of transducer (200 vs. 430 kHz) and sampling season (Table 3; Figure 3). However, 398 

simple least-squares regression results indicated a significant relationship between the 399 

hydroacoustic and biomass estimates of Chaoborus for every frequency and time period 400 

sampled (Table 3). The models with the highest coefficients of determination (R2 ranged 401 

0.94–0.97) included data from spring (May or June), whereas models from summer 402 

(August) had R2 values that ranged 0.36–0.52 (Table 3). The resultant hydroacoustic 403 

portrayal of Chaoborus is shown in Figure 4 (right panels). 404 

Estimated slopes of these regression lines ranged 0.05–0.13 (Table 3) and 405 

significantly differed from 0.1 for all models. During spring, the TS of 1 g dry wt∙m-3 of 406 

Chaoborus was larger at 200 kHz (TS = -21.1 dB) than at 430 kHz (TS = -45.8 dB). The 407 

opposite pattern was found during summer, where a larger TS value was observed at 408 

430 (TS = -13.1 dB) than at 200 kHz (TS = -37.2 dB). When all of the data were pooled 409 

(between seasons), the overall TS value for 1 g dry wt∙m-3 of Chaoborus was -35.4 dB 410 

at 200 kHz and -26.8 dB at 430 kHz. 411 

3.4 Transducer frequency comparisons 412 
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Pairwise comparisons of total (i.e., from both fish and Chaoborus) NASC (m2∙nmi-413 

2) in the same cell between frequencies showed a consistent pattern of more 414 

backscattering at higher frequencies (Figure 5). Our analyses revealed significant 415 

differences (P = 0.01) between total backscattering for every comparison, with the 416 

calculated slopes indicating that backscattering was greater at higher frequencies than 417 

at lower ones (Table 4). A visual representation of this finding can be seen in our 418 

snapshots of the frequency-specific thresholded echograms (Figure 4), where higher Sv 419 

values were observed at higher frequencies.  420 

The frequency-dependent response of total (i.e., from both fish and Chaoborus) 421 

NASC was similar among reservoirs, but varied between seasons (Figure 6). During 422 

spring (May or June), we observed a hump-shaped curve in the frequency-response, 423 

with a peak at 200 kHz. However, during summer (August), we found an increasing 424 

trend in the frequency-response, with the echo energy return at 430 kHz almost twice 425 

that at 200 kHz (Figure 6). NASC values were highest in Hoover Reservoir during spring 426 

and in Acton Lake during summer, with Alum Creek Lake always being the lowest 427 

(Figure 6). 428 

3.5 Fish density estimates 429 

Based on the observed increase in area backscattering with frequency (see 430 

Figures 4–6), we were not surprised that estimates of average fish density increased 431 

with the transducer frequency used during both seasons (Table 5). The average fish 432 

density calculated for Acton Lake during August at 200 kHz was 5.1 times greater than 433 

at 70 kHz. For Alum Creek Lake, it was 2.6 times greater, and for Hoover Reservoir, it 434 

was 3.6 times greater (Table 5). The magnitude of the difference in fish density 435 
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estimates between 120-kHz and 200-kHz transducers was usually smaller than when 436 

comparing density estimates calculated at 70 kHz to either of the two higher 437 

frequencies. No clear pattern among frequencies or among reservoirs was evident in 438 

observed differences in fish density estimates between spring and summer (Table 5). 439 

Generally, the standard error of the fish density estimate increased with increasing 440 

frequency during both seasons (Table 5). 441 

 Results from the functional ANOVA showed that differences in fish density 442 

estimates were attributable to multiple factors, with the amount of variance explained by 443 

each spatially varying parameter differing among reservoirs (Table 6). Across all three 444 

reservoirs, sampling season explained more variance in the fish density estimates than 445 

the transducer frequency (comparing partial sill parameters; Table 6). These changing 446 

patterns of acoustic backscattering between spring and summer likely represent 447 

changing population demographics (e.g., abundance, size distributions) of fish, 448 

Chaoborus, or both. Interestingly, spatial patterns in the fish density estimates differed 449 

among frequencies, as the largest range parameters and correlation at 100 m were 450 

found for the frequency term (except the range parameter for Acton Lake; see Table 5). 451 

The calculated nugget was similar among reservoirs (see Table 6), which was likely due 452 

to measurement error or other small-scale spatial features. 453 

 454 

4. Discussion 455 

The primary goal of our study was to improve the ability of fishery assessment 456 

biologists and researchers to use hydroacoustics to estimate fish density in the 457 

presence of pelagic macroinvertebrates that are residing in the water column. Towards 458 
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this end, we explored how estimates of fish density varied with hydroacoustic 459 

transducer frequency (70, 120, and 200 kHz) and sampling season (spring vs. summer) 460 

in three Ohio reservoirs with an abundance of Chaoborus, a vertically migrating 461 

macroinvertebrate that has air sacs, which resonate much like the air bladder of fish.  462 

Collectively, our findings demonstrate that pelagic macroinvertebrates can bias 463 

estimates of fish density, especially when a high-frequency transducer (e.g., 200 or 430 464 

kHz) is used, and that the degree of bias is season-dependent, owing to changes in the 465 

demographics of Chaoborus. Below, we discuss these findings in detail and offer 466 

recommendations that can benefit the design and analysis of hydroacoustics 467 

assessment surveys of fish populations in the presence of non-target organisms such 468 

as Chaoborus.   469 

4.1 Bias associated with high-frequency transducers 470 

Our calculated estimates of fish density varied with transducer frequency. At 200 471 

kHz, fish density estimates ranged 1.8- to 5.1-fold greater than those made with a 70-472 

kHz transducer. Estimated fish densities at 120 kHz were intermediate to the 70- and 473 

200-kHz transducers, though most were similar to those at 200 kHz. We attribute the 474 

differences in fish density among frequencies to the presence of Chaoborus in our study 475 

ecosystems. Because our assessment of total (i.e., both fish and Chaoborus) 476 

backscattering increased with increasing transducer frequency, we recommend using a 477 

lower frequency transducer (e.g., 70 kHz) when estimating fish density in the presence 478 

of Chaoborus. Our findings indicate that doing so would reduce bias, and hence, 479 

improve estimates of fish density. 480 
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Such wide differences in density estimates among frequencies were initially 481 

surprising, as recent work has shown that different frequencies can produce similar fish 482 

abundance estimates (Godlewska et al., 2009), especially when fish density is low 483 

(Guillard et al., 2014; Mouget et al., 2019). However, consideration of the presence of 484 

Chaoborus in our study ecosystems helps explain the observed differences in estimates 485 

of fish density. Previous studies have found that strong backscattering by Chaoborus 486 

can result in fish estimates that are biased high (see Eckmann, 1998; Malinen et al., 487 

2005; Jurvelius et al., 2008; Knudsen and Larsson, 2009). The ability to calculate bias-488 

free and robust estimates of fish density is important, as it can help understand fish 489 

population and food web dynamics, which also explains why it is a top priority for 490 

management agencies such as the ODNR-DOW (sensu Drastik et al., 2017; Dillon et 491 

al., 2019; JDC, ODNR-DOW, co-author, pers. comm.).  492 

We are confident in our conclusion that Chaoborus is responsible for the 493 

discrepancy in fish density estimates across frequencies because no other known 494 

macroinvertebrate “scatterers” are known to reside in our surveyed ecosystems. While 495 

zooplankton were captured in our discrete-depth pump samples (Dillon et al., in review), 496 

Ohio reservoirs are generally characterized by small zooplankton taxa (e.g., Rotifera, 497 

Eubosmina; Bremigan and Stein, 1994; Vanni et al., 2005) that are unlikely to contribute 498 

acoustic backscattering. Furthermore, the larger cladoceran and copepod zooplankton 499 

that are present in our reservoirs have been found to contribute negligible amounts of 500 

backscatter at the frequencies investigated herein (Northcote, 1964; Frouzova et al., 501 

2004). Instead, we argue that the observed increase in backscattering with increasing 502 

frequency resulted from Chaoborus, a macroinvertebrate known to migrate into the 503 
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water column at night, and which also has two pairs of air sacs (Teraguchi, 1975) that 504 

likely resonate at the higher frequencies used herein.  505 

4.2 Removal of bias using thresholding 506 

The method that we presented in this study to generate a less-biased estimate of 507 

fish density in the presence of macroinvertebrates involved simple thresholding with a 508 

low-frequency (70 kHz) transducer. As with many hydroacoustic analysis decisions, our 509 

ability to derive a bias-free estimate of fish density in the presence of Chaoborus can be 510 

viewed as a compromise between excluding backscattering from Chaoborus, and 511 

including that from fish (Malinen et al., 2001; sensu Simmonds and MacLennan, 2005). 512 

While other methods to achieve this goal are available in the literature (Eckmann, 1998; 513 

Wagner-Dobler and Jacobs, 1988; Malinen et al., 2005; Jurvelius et al., 2008), most of 514 

these methods require fish and macroinvertebrates to be separated in space or to have 515 

different target strength (TS) distributions (but, see Baran et al., 2019). These 516 

conditions, however, were never met for any hydroacoustic survey in our ecosystems. 517 

Even though fewer Chaoborus were present in the water column during the day 518 

compared to at night, we still observed Chaoborus at all depths at all times (Dillon et al., 519 

in review). Additionally, the schooling behavior of our main fish species of interest 520 

(gizzard shad), precluded us from sampling during the day, as it is established practice 521 

to estimate abundance of gizzard shad at night (Vondracek and Degan, 1995).  522 

Our method of thresholding to generate a fish density estimate appears robust, 523 

as our selection of frequency-specific minimum TS values did not bias the differences in 524 

fish density that were observed among frequencies. According to hydroacoustic theory, 525 

fish density should increase as TS values become smaller. However, we selected a 526 
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smaller minimum TS value at 70 kHz than at either 120 or 200 kHz (Table A1). Thus, 527 

the higher estimates of fish density observed at either 120 or 200 kHz did not stem from 528 

our selection of the minimum TS value, and is more likely attributable to interference 529 

from Chaoborus. Further, across our reservoirs and both sampling seasons, the largest 530 

selected minimum TS value (-61 dB; Table A1) corresponded to an estimated fish total 531 

length (TL) of 17 mm (Love, 1977), which is a smaller-sized fish than was captured by 532 

our nets. The size-class of fish observed in Ohio reservoirs during the time of sampling 533 

(20–95 mm) is not sufficiently different from the known TS of Chaoborus; a 20 mm fish 534 

(TS = -59.9 dB at 200 kHz and -59.7 dB at 120 kHz; Love, 1977) would be within 6 dB 535 

of the TS of Chaoborus at both 200 kHz (TS = -60 to -64 dB; Jones and Xie, 1994; 536 

Knudsen et al., 2006) and 120 kHz (TS = -64 to -66 dB; Baran et al., 2019). Thus, 200 537 

and 120 kHz appear to be inappropriate frequencies to use for estimation of fish 538 

abundance in the presence of Chaoborus (Knudsen et al., 2006; Jurvelius et al., 2008; 539 

Knudsen and Larsson, 2009; this study). Further, our transducer comparison identified 540 

70 kHz as the frequency with the lowest total backscattering response and thus, most 541 

appropriate frequency to use for fish density estimation (of the frequencies tested).  542 

Although we only estimated fish density within a 1-m layer of the water column 543 

(from 4.2 to 5.2 m depth), we would expect to find the same pattern (i.e., increasing fish 544 

density with increasing transducer frequency) had a larger portion of the water column 545 

been included in the analysis. We expect this pattern to hold as both gizzard shad and 546 

Chaoborus abundance are known to be greater at shallower rather than deeper depths 547 

at the time of sampling (i.e., at night; Dillon et al., 2019; Dillon et al., in review; JDC, 548 
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ODNR-DOW, coauthor, unpublished data). Thus, potentially even more bias from 549 

Chaoborus in fish density estimates would have been observed at shallower depths.  550 

Unfortunately, we were constricted to conducting our analyses in a 1-m depth 551 

layer, as the acoustic near-field increases with decreasing transducer frequency, 552 

reducing the proportion of the water column sampled. In our case, the 2x near-field 553 

distance of the 70-kHz transducer was calculated to be 3.7 m, restricting our 554 

measurements to waters deeper than 4.2 m (depth location of the transducer plus the 555 

2x near-field). Thus, to avoid bias from Chaoborus, at least in our ecosystems, our 556 

hydroacoustic estimates of fish may be biased low, due to the availability bias of our 70-557 

kHz transducer (i.e., fish occupying depths of the water column that are within the near-558 

field of the 70-kHz transducer). This tradeoff in biases (availability of fish versus 559 

Chaoborus backscatter) is important to be aware of, even though we have clearly 560 

demonstrated the importance of considering bias from Chaoborus. We suggest that an 561 

unbiased, relative index of fish abundance (i.e., reducing bias from Chaoborus by using 562 

a 70-kHz transducer) is better than a biased, absolute fish abundance estimate (i.e., 563 

using a 200-kHz transducer that samples a larger portion of the water column), as it 564 

would provide a more accurate estimate of fish abundance in the ecosystem. Once the 565 

extent of bias from Chaoborus in fish density estimates at higher compared to lower 566 

frequencies is quantified, as shown in this study, additional steps can then be taken to 567 

address the fish availability bias. Two potential solutions that hold the potential to 568 

overcome biases associated with the deep near-field associated with low-frequency 569 

(e.g., 70 kHz) transducers include: 1) using a transducer with a wide beam angle, which 570 

will shrink the near-field of the transducer; or 2) using an upward-facing rather than 571 
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downward-looking transducer (e.g., Baran et al., 2019). Collectively, these results 572 

highlight the need to be mindful of potential tradeoffs (e.g., other biases in fish density 573 

estimation) that might emerge when seeking to eliminate biases associated with pelagic 574 

macroinvertebrates such as Chaoborus. Recognition of these tradeoffs in choosing 575 

acoustics gear (i.e., transducers) is applicable to any ecosystem. 576 

4.3 Influence of season on frequency-dependent biases 577 

Interestingly, along with the observed transducer frequency responses, fish 578 

density estimates varied with the time period of sampling in our three study reservoirs. 579 

This result is not surprising when we consider that Chaoborus population demographics 580 

(e.g., length distributions, abundances) differed between spring (May or June) and 581 

summer (August); average lengths decreased from spring to summer. Our expectation 582 

is that these changes would influence estimates of fish density, with scattering at a 583 

lower frequency being greater during spring (when Chaoborus individuals are large) 584 

than during summer (when Chaoborus individuals are small). A size-dependent 585 

scattering-response of Chaoborus is unsurprising, as Knudsen et al. (2006) found that 586 

longer individuals had greater mean TS values relative to shorter individuals. 587 

Additionally, we found more Chaoborus during summer when backscattering was lower, 588 

than during spring, suggesting that size is more important than density when accounting 589 

for potential biases associated with Chaoborus backscattering. 590 

Some research (e.g., Knudsen et al., 2006; Wagner-Dobler and Jacobs, 1988) 591 

has been skeptical regarding the use of acoustics to estimate Chaoborus densities. 592 

Contrary to this skepticism, however, we observed a significant relationship between 593 

Chaoborus biomass calculated from discrete-depth pump samples and the 594 
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corresponding hydroacoustic estimates of biomass (Sv) in those depth-layers. While this 595 

relationship varied with transducer frequency (200 or 430 kHz) and sampling season, 596 

the observed predictive relationships were all strong and positive, with R2 values 597 

ranging 0.36–0.97. Collectively, the observed patterns in the frequency-dependent 598 

response, combined with our predictive Chaoborus hydroacoustic abundance models, 599 

provide added confidence that Chaoborus are driving variation in estimates of fish 600 

density among transducer frequencies. Variation in the frequency-dependent response 601 

between spring and summer also indicates that seasonal changes in estimated fish 602 

density can arise, not only because of demographic changes in the fish population, but 603 

also because of demographic variation in the resident Chaoborus population. These 604 

findings demonstrate the need to consider the dynamics of Chaoborus, or other pelagic 605 

macroinvertebrates, when choosing what season to assess the target fish population 606 

with hydroacoustics. 607 

  608 

5. Conclusions 609 

Hydroacoustic estimates of fish density varied considerably across our study 610 

ecosystems, owing to both characteristics of the sampling gear used (i.e., transducer 611 

frequency) and the resident biota (i.e., Chaoborus). The large observed differences in 612 

estimates of fish density at different frequencies appear primarily due to the frequency-613 

dependent backscattering response of Chaoborus. Specifically, we found estimates of 614 

fish density to be 1.8- to 5.1-fold higher with a 200-kHz transducer than with a 70-kHz 615 

transducer across our three study reservoirs. We also found that total (i.e., combined 616 

fish and Chaoborus) backscattering increased with increasing transducer frequency, 617 
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with the greatest total backscattering always observed at the higher frequencies (200 618 

kHz and 430 kHz, depending on the season of sampling). We are confident that 619 

Chaoborus in the water column is the source of our overestimation of fish density, as we 620 

found high Chaoborus densities in our study ecosystems, as well as strong correlations 621 

between hydroacoustic estimates of Chaoborus and observed biomass in pump 622 

samples. Overall, we stress the need to consider and reduce bias associated with the 623 

presence of pelagic macroinvertebrates such as Chaoborus during hydroacoustic 624 

surveys, which may change seasonally due to changes in their demographics (e.g., 625 

length, abundance). Because both empirical and theoretical data suggest that small 626 

Chaoborus individuals resonate less than larger individuals, even when at a high 627 

density, we recommend conducting fish abundance surveys during times when 628 

Chaoborus are small in size, if practical. Additionally, we recommend choosing a low-629 

frequency (e.g., 70 kHz) transducer for sampling fish wherever possible—perhaps 630 

mounted in an upward-facing direction in shallow ecosystems— to also help reduce 631 

potential bias from vertically migrating Chaoborus from the outset. Following these 632 

recommendations would offer researchers and fishery management agencies alike a 633 

means to generate more robust estimates of fish abundance in ecosystems that also 634 

support large populations of pelagic macroinvertebrates. 635 
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TABLES 793 

Table 1. Characteristics of the three Ohio reservoirs sampled for this study during 2017. 794 

Surface area, average depth (zAvg), and maximum (zMax) depth are reported for the 795 

entire reservoir. Total phosphorus concentration (TP) and chlorophyll a concentration 796 

(Chla) were measured as part of standard Ohio Department of Natural Resources-797 

Division of Wildlife water quality surveys.  798 

Reservoir 
Surface area 

(km2) 

zAvg 

(m) 

zMax 

(m) 

TP 

(µg·L) 

Chla 

(µg·L) 

Survey 

date 

Acton Lake 2.4 3.4 9.5 85.7 57.7 May 30 

      August 14 

Alum Creek Lake 13.5 6.6 19.3 19.8 8.8 May 25 

      August 28 

Hoover Reservoir 11.7 5.7 20.9 40.3 24.4 June 8 

      August 31 
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Table 2. Mean density (# individuals·m-2 ± 1 SD) and mean total length (mm ± 1 SD) of 799 

Chaoborus captured at night in discrete-depth pump samples in Acton Lake, Alum 800 

Creek Lake, and Hoover Reservoir (Ohio) during spring (May or June) and summer 801 

(August), 2017. 802 

 803 

Reservoir Attribute Spring Summer 

Acton Lake density 229 ± 14 688 ± 273 

 length 7.3 ± 1.8 3.7 ± 2.5 

Alum Creek Lake density 43 ± 52 309 ± 35 

 length 4.0 ± 2.9 2.8 ± 1.5 

Hoover Reservoir density 82 ± 28 256 ± 91 

 length 6.2 ± 3.0 3.5 ± 2.0 

   804 
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Table 3. Results from least-squares regressions used to quantify the relationship between hydroacoustic estimates of 805 

Chaoborus acoustic energy (Sv, dB; a proxy for biomass) and Chaoborus biomass (log10 (g dry wt⋅m-3)) from discrete-806 

depth pump samples collected in three Ohio reservoirs (Acton Lake, Alum Creek Lake, and Hoover Reservoir) during 807 

2017. Four regressions (see “Data” column) were conducted corresponding to the two frequencies (200 and 430 kHz) and 808 

two seasons (Spring: May or June; Summer: August) of hydroacoustic data collection. We also calculated the target 809 

strength (TS, dB) of 1 g dry wt⋅m-3 of Chaoborus for each dataset when the slope of the line did not significantly differ from 810 

0.1. TS values with an asterisk (*) were calculated after forcing the slope of the regression line for that model (August, 200 811 

kHz) to equal 0.1, as the original slope differed from 0.1. Significant terms (α = 0.05) are presented in bold. 812 

Data Variable Slope ± 1 SE P Overall model R2 TS 

Spring, 200 kHz Intercept 2.11 ± 0.64 0.03 F1, 4 = 59.08, P < 0.01 0.94 -21.1 

Sv 0.08 ± 0.01 < 0.01    

Spring, 430 kHz Intercept 4.58 ± 0.68  < 0.01 F1, 4 = 115.74, P < 0.01 0.97 -45.8 

Sv 0.13 ± 0.01 < 0.01    

Summer, 200 kHz Intercept 0.50 ± 1.11 0.66 F1, 11 = 6.11, P = 0.03 0.36 -37.2* 

Sv 0.05 ± 0.02 0.03    

Summer, 430 kHz Intercept 1.31 ± 1.33 0.36 F1, 7 = 7.57, P = 0.03 0.52 -13.1 

Sv 0.07 ± 0.03 0.03    
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 813 

 814 
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 Table 4. Statistics describing pairwise comparisons (x-axis:y-axis) of frequency-specific 815 

(70, 120, 200, and 430 kHz) estimates of total nautical area scattering coefficient 816 

(NASC, m2∙nmi-2), calculated with major-axis regression. All slopes were significantly 817 

greater than one (α = 0.05). NASC includes all scattering after noise was subtracted 818 

from the data. Data were not thresholded. CI = confidence interval. All data were 819 

collected in three Ohio reservoirs during spring (May or June) and summer (August), 820 

2017. 821 

 822 

  823 

 824 

  825 

Comparison R2 P Slope Slope: 95% CI Intercept Intercept: 95% CI 

70:120 kHz 0.74 0.01 2.93 2.83, 3.04 3.45 -2.87, 9.39 

70:200 kHz 0.79 0.01 3.67 3.56, 3.78 30.49 23.54, 37.04 

70:430 kHz 0.38 0.01 8.86 8.23, 9.59 -92.90 -136.32, -55.58 

120:200 kHz 0.78 0.01 1.30 1.26, 1.35 16.34 8.84, 23.54 

120:430 kHz 0.47 0.01 2.79 2.62, 2.97 -61.85 -95.30, -31.97 

200:430 kHz 0.66 0.01 1.87 1.80, 1.96 -32.11 -52.80, -12.77 
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Table 5. Statistics from the spatial models used to describe frequency-specific (70, 120, and 200 kHz) estimates of mean 826 

fish density (# individuals·m-2) in Acton Lake, Alum Creek Lake, and Hoover Reservoir (Ohio) during spring (May or June) 827 

and summer (August), 2017. Thresholds applied are in Table A1. SE = standard error; CI = confidence interval. 828 

  Spring Summer 

Reservoir Frequency Density SE 95% CI Density SE 95% CI 

Acton Lake 70 kHz 0.38 0.01 0.37, 0.39 0.47 0.01 0.44, 0.49 

 120 kHz 0.77 0.03 0.72, 0.82 0.68 0.03 0.63, 0.74 

 200 kHz 0.69 0.03 0.64, 0.74 2.40 0.20 2.05, 2.83 

Alum Creek Lake 70 kHz 1.06 0.08 0.91, 1.23 0.32 0.00 0.31, 0.33 

 120 kHz 1.37 0.07 1.25, 1.51 0.58 0.02 0.54, 0.62 

 200 kHz 3.02 0.22 2.62, 3.47 0.84 0.04 0.77, 0.91 

Hoover Reservoir 70 kHz 0.69 0.03 0.63, 0.76 0.61 0.02 0.57, 0.64 

 120 kHz 1.41 0.04 1.34, 1.48 2.18 0.13 1.93, 2.44 

 200 kHz 1.74 0.08 1.60, 1.90 2.19 0.12 1.95, 2.44 
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Table 6. Results from the functional ANOVA used to determine the difference between 829 

fish density estimates (# individuals·m-2; see Table 4) calculated at the three different 830 

transducer frequencies (70, 120, and 200 kHz) during two seasons (Spring: May or 831 

June; Summer: August) in Acton Lake, Alum Creek Lake, and Hoover Reservoir, 2017. 832 

The partial sill indicates the variance accounted for by each spatial term in the functional 833 

ANOVA model, and the range parameter and correlation at 100 m show the relationship 834 

between the terms in the model and distance. A larger range parameter indicates strong 835 

spatial covariance of that term in the model. The estimated nugget term for the error 836 

terms are: Acton Lake = 0.23; Alum Creek Lake = 0.12; and Hoover Reservoir = 0.16. 837 

  838 

Reservoir Parameter Partial 

Sill 

Range 

Parameter 

Correlation at 100 

m 

Acton Lake Intercept <0.01 0.21 0.98 

 Season 0.16 0.21 0.62 

 Frequency 0.05 0.19 0.58 

 Error 0.18 2.38 0.41 

Alum Creek Lake Intercept 0.04 0.15 0.52 

 Season 0.21 <0.01 <0.01 

 Frequency 0.09 1.59 x 105 1.00 

 Error 0.20 0.12 0.27 

Hoover Reservoir Intercept 0.08 0.03 0.05 

 Season 0.20 0.04 0.09 

 Frequency <0.01 11.16 0.99 

 Error 0.02 5390.01 0.09 
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FIGURE CAPTIONS 839 

Figure 1. Location of Ohio in North America (A), and the survey design in Acton Lake 840 

(B), Alum Creek Lake (C), and Hoover Reservoir (D). The hydroacoustic (solid 841 

lines), trawling (dashed lines with circle end caps), and abiotic/discrete-depth pump 842 

sampling (squares) sites are displayed on each map. 843 

Figure 2. Length distribution of Chaoborus from discrete-depth pump samples collected 844 

in Acton Lake, Alum Creek Lake, and Hoover Reservoir (Ohio) during 2017. These 845 

data were used to build the predictive models between observed Chaoborus 846 

biomass and hydroacoustic estimates of Chaoborus abundance. Each column 847 

represents a different season (Spring: May or June; Summer: August) sampled and 848 

each row is a specific reservoir. Sampling in the additional reservoirs is described in 849 

Appendix C. 850 

Figure 3. Relationships between hydroacoustic estimates of Chaoborus mean volume 851 

backscattering strength (Sv), which is a proxy for biomass, and estimated 852 

Chaoborus biomass (dry wt) in discrete-depth pump samples collected in Acton 853 

Lake, Alum Creek Lake, and Hoover Reservoir (Ohio) during 2017. Data are 854 

presented from multiple reservoirs, years, times of day, frequencies (200 kHz = left 855 

panels; 430 kHz = right panels), and seasons (spring: May or June = top panels; 856 

summer: August = bottom panels). 857 

Figure 4. Hydroacoustic echograms showing the mean volume backscattering strength 858 

(Sv) of fish and Chaoborus at multiple transducer frequencies (70, 120, and 200 kHz 859 

for fish; 430 kHz for Chaoborus) in Acton Lake (top panels), Alum Creek Lake 860 

(middle panels), and Hoover Reservoir (bottom panels) during August 2017. Fish 861 
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echograms were thresholded with frequency-specific minimum TS values (Table 862 

A1). The Chaoborus echogram was created by masking fish from the 70-kHz 863 

echogram over Sv from the 430-kHz echogram. Columns correspond to transducer 864 

frequency, which increase from left to right. The horizontal axis is 250 m in length. 865 

Note: the near-field of each transducer is frequency-specific and not indicated on the 866 

echograms. 867 

Figure 5. Relationships between total (i.e., both fish and Chaoborus) cell-specific NASC 868 

for pairwise combinations of transducer frequencies (70, 120, 200 and 430 kHz) 869 

during spring (May or June; black circle) and summer (August; open square) in 870 

Acton Lake, Alum Creek Lake, and Hoover Reservoir (Ohio) during 2017. The solid 871 

line is the best-fit major-axis regression line for data from both spring and summer. 872 

Data were not thresholded, although background noise was removed. 873 

Figure 6. Frequency-specific (70, 120, and 200 kHz ) response of total backscattering 874 

(i.e., both fish and Chaoborus) in Acton Lake, Alum Creek Lake, and Hoover 875 

Reservoir (Ohio) during 2017. Values are mean ± 1 SE NASC from one third of the 876 

number of cells sampled in each reservoir at night during spring (May or June) and 877 

summer (August). Data were not thresholded, although background noise was 878 

removed. 879 

 880 
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Appendix A. 881 

Table A.1. The frequency-specific (70, 120, and 200 kHz) fish target strength threshold (TS min; dB) applied in Acton 882 

Lake, Alum Creek Lake, and Hoover Reservoir (Ohio) during Spring (May or June) and Summer (August), 2017.  883 

Reservoir Survey date TS min: 70 kHz TS min: 120 kHz TS min: 200 kHz 

Acton Lake May 30 -61 -60 -63 

 August 14 -65 -60 -63 

Alum Creek Lake May 25 -63 -62 -63 

 August 28 -63 -62 -63 

Hoover Reservoir June 8 -62 -60 -63 

 August 31 -63 -62 -64 
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A. FIGURE CAPTIONS 884 

Figure A.1. Estimated covariance structure of the geostatistical model for all transducer 885 

frequencies (70, 120, and 200 kHz) used to sample fish during May and August 886 

2017 in Acton Lake, Ohio. Except for the 200-kHz transducer in August, the spatial 887 

correlation was close to zero at 0.2 km. 888 

 889 

Figure A.2. Estimated covariance structure of the geostatistical model for all transducer 890 

frequencies (70, 120, and 200 kHz) used to sample fish during May and August 891 

2017 in Alum Creek Lake, Ohio. Except for the 70-kHz and 200-kHz transducer in 892 

May, the spatial correlation is close to zero at 0.2 km. 893 

 894 

Figure A.3. Estimated covariance structure of the geostatistical model for all transducer 895 

frequencies (70, 120, and 200 kHz) used to sample fish in during June and August 896 

2017 in Hoover Reservoir, Ohio. For all frequencies and both months, the spatial 897 

correlation was close to zero at 0.2 km. 898 

 899 

 900 

  901 
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Appendix B. 902 

B.1. Spatial modeling of fish abundance 903 

In a given reservoir, we recorded locations � = ��, ��	 in Northing (n) and Easting 904 

(e) coordinates in units of km, measured relative to the centroid of the reservoir. Our 905 

spatial domain of interest was 
 ∁ 
�, a contiguous and convex set of locations with a 906 

water depth of at least 4 m. 907 

Then for a given reservoir, frequency, and season, we had m fish density 908 

estimates ������ ∶ � = 1, … , ��, at locations �� = ���, ���	. Then, ����� = log����� + 0.5� 909 

denoted our shifted and transformed estimates with � = ���� �, … , ���!�"	
. 910 

We assumed that the transformed (log10) density estimates over the region 911 


, #���� ∶  � ∈ 
%, was a geostatistical process. More specifically, we had #����% as a 912 

Gaussian process (GP) with mean µ(s) and covariance &��, �'� for locations � and �' 913 

in 
. The spatial trend model we used at location � was: 914 

μ���� = )* + ) �� + )��� + )+����. 915 

The covariance between locations s and s’ had the form 916 

&��, �'� = , exp�−1��, �'�||/,�� + ,+4�� = �'�,  (B.1) 917 

where ,  was the partial sill parameter, ,� the range parameter, ,+ the nugget 918 

parameter, 4�∙� the indicator function, and 1��, �'� was the Euclidean distance between � 919 

and �'. 920 

We estimated the trend parameters ) = �)*, ) , )�, )+�	 and spatial covariance 921 

parameters , = �, , ,�, ,+�	 from the data � using maximum likelihood methods (e.g., 922 

Cressie, 1991). We used R code (R Core Team, 2018), available from 923 
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https://github.com/petercraigmile/GSP, to fit the geostatistical models to each reservoir, 924 

frequency, and time period sampled. 925 

 926 

B.2. Predicting average fish density 927 

Letting |
| = 6 1�7∈8  denote the area of 
, the average fish density over 
, calculated 928 

from the geostatistical density process #����% was 929 

1|
| 9 ����7∈8 1�. 930 

Using a set of : prediction locations ; , … , ;<  spaced 50 m apart, but restricted to cover 931 


, we estimated this integral using 932 

1: = ��;>�<

>? 
. 933 

However, we do not know the actual values of the process ��∙� at all locations in 
. 934 

Instead, using our model, we repeatedly obtained predictions of the shifted and log10-935 

transformed process ��∙� at the prediction locations ; , … , ;<, transformed the 936 

predictions back to the original scale, and then summarized these simulations. 937 

Then, let @ = �@�� �, … @��!�"	
 denote the spatial trend at the data locations, and  938 

η = �@�� �, … @��<�"	
 denote the spatial trend at the predicted locations. Let B =939 

C&���, �D" ∶ � = 1, … , �, E = 1, … , �F denote the covariance matrix for the data �, G =940 

C&�;� , ;D" ∶ � = 1, … , :, E = 1, … , :F denote the covariance matrix at the predicted 941 

locations, and & = C&�;� , �D" ∶ � = 1, … , :, E = 1, … �F denote the covariance between the 942 

predicted and data locations. 943 
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Then, a prediction of the shifted and log-transformed process at all the prediction 944 

locations simultaneously, �,H  was drawn from a :-variate normal distribution with mean 945 

η + CBJ K� − @L 946 

and covariance 947 

G − &BJ &	. 948 

To provide an unbiased estimate of the abundance with measures of uncertainty 949 

(SEs and CIs), we repeatedly obtained 1000 sets of predicted values of this process, 950 

�M�N�, O = 1, … ,1000. Then, �M�N��;�� denoted the Oth prediction at location ;� and 951 

�M �N��;�� = exp P�M�N��;��Q − 0.5 952 

was the back-transformed prediction on the original density scale. Our estimate of the 953 

average fish density from the Oth prediction was: 954 

RN = 1: = �M �N��;>�.<

>? 
 955 

We used the average of the 1000 RN values as our estimate of the average fish 956 

density over 
 and the standard deviation of the values as our SE for the average fish 957 

density over 
. We obtained a 95% confidence interval (CI) for the average fish density 958 

by using 0.025 and 0.975 quantiles of the RN values. 959 

 960 

B.3. Functional ANOVA model 961 

We used a functional analysis of variance (ANOVA) (Kaufman and Sain, 2010) to 962 

model the spatially-varying relationship between frequency and season. While Kaufman 963 
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and Sain (2010) used a Bayesian framework, we used a frequentist approach, fitting the 964 

model in R using maximum likelihood. 965 

For each reservoir, we let 
 denote the spatial domain of interest in the reservoir. 966 

We let � = 1,2 denote spring (May or June) or summer (August) and let E = 1,2,3 denote 967 

70, 120, and 200 kHz. We then let ��D��� be our shifted and log10 transformed fish 968 

density estimate at location � U 
. We modeled the following contrasts: 969 

V  ��� = � ���� − �  ���    (120 kHz minus 70 kHz, spring); 970 

V ���� = � +��� − �  ���    (200 kHz minus 70 kHz, spring); 971 

V� ��� = ������ − �� ��� (120 kHz minus 70 kHz, summer); 972 

V����� = ��+��� − �� ��� (200 kHz minus 70 kHz, summer); 973 

with the functional ANOVA model 974 

V�D��� = @��� + W���� + XD��� + U�D���,     � = 1,2, E = 1,2, � U 
. 975 

We then defined the different spatially-varying terms in the model. We assumed 976 

that the spatially-varying intercept term, #@��� ∶ � U 
%, was a Gaussian process (GP) 977 

with mean YZ��� and an exponential covariance with partial sill ,Z,  and range parameter 978 

,Z,�: 979 

&[\��, �'� = ,Z, exp�−1��, �'�||/,Z,�"  (B.2) 980 

The mean term YZ��� was used to capture covariate effects over space; again, we 981 

included the Northing, Easting, and their interaction. 982 

Following Kaufman and Sain (2010), we supposed that the spatially-varying 983 

season effect #W���� ∶ � U 
, � = 1,2% was a GP, with zero mean and covariance 984 
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cov�W����, _�`��'�" =
ab
c &[d��, �'�2 ,       � = �';

−&[d��, �'�2 ,     � ≠ �', 985 

where &[d was an exponential covariance with partial sill ,g,  and range parameter ,g,� 986 

(defined similarly to (B.2)). Similarly, we assumed the spatially-varying frequency 987 

contrast effects hXD��� ∶ � U 
, E = 1,2i was a GP with zero mean and covariance 988 

cov PXD���, XD`��'�Q =
ab
c &[j��, �'�

2 ,       E = E';
−&[j��, �'�

2 ,     E ≠ E', 989 

 990 

where &[j was an exponential covariance with partial sill ,k,  and range parameter ,k,� 991 

(defined similarly to equation B.2). 992 

To complete the model, we assumed that the spatially-varying error term 993 

hU�D��� ∶ � U 
i was an independent GP (over � and E) with mean zero and exponential 994 

covariance with partial sill ,l, , range parameter ,l,�, and nugget parameter ,l,+, 995 

(defined similarly to equation B. 1)). Note that only the error term hU�D���i contained a 996 

nugget term to account for possible measurement error, or short-range spatial effects.  997 

 998 
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Appendix C. 1008 

To develop our hydroacoustic method to estimate Chaoborus abundance, we 1009 

supplemented the data collected during 2017, as described in this study, with additional 1010 

collections. Specifically, we also conducted hydroacoustic surveys and trawling during 1011 

the day (as well as at night) for the reservoirs and dates that were described in the main 1012 

text (section 2.1). Alum Creek Lake and Hoover Reservoir were also sampled in their 1013 

entirety at night during August 2016, not just in the lower dam as with our 2017 1014 

sampling. An additional four reservoirs were sampled at night during August 2016 and 1015 

2017, including Burr Oak Lake, Pleasant Hill Lake, and Findlay #2 Reservoir (Findlay #2 1016 

Reservoir was only sampled during 2017). Similar hydroacoustic survey designs (i.e., 1017 

zig-zag pattern; section 2.3) to the main manuscript were used in all additional 1018 

reservoirs.  1019 
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