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Abstract

The inclusion of unwanted targets in hydroacoustic surveys biases estimates of fish
abundance. Thus, knowledge of frequency-dependent responses of unwanted targets
(e.g., pelagic macroinvertebrates) can help ensure that transducer frequencies are used
that minimize this bias. We determined how fish density estimates varied across
multiple frequencies when the larval stage of a midge, Chaoborus, was present in the
water column. We hypothesized that fish density estimates would increase with
increasing transducer frequency, owing to greater backscattering by Chaoborus at
higher frequencies than lower ones, which allows it to be included with the
backscattering caused by fish. We found that fish density estimates were always greater
at higher frequencies (e.g., 120 and 200 kHz) compared to a lower one (70 kHz) in
several productive north-temperate reservoirs. Furthermore, pairwise comparisons of
total (i.e., fish plus Chaoborus) backscattering showed that significantly more
backscattering occurred at higher rather than lower frequencies. We also found that fish
density estimates varied between spring and summer, partially owing to inter-seasonal
size variation in Chaoborus that influenced its backscattering. Beyond demonstrating
why the presence of pelagic macroinvertebrates needs to be considered when
estimating fish abundance with hydroacoustics, we provide methods to identify and

reduce this bias.

Key words: phantom midge, Mysis, fish acoustics, Dorosoma cepedianum, diel vertical

migration, geostatistics
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1. Introduction

As with all sampling methods used to estimate fish abundance, hydroacoustic
surveys are not without bias. One potential problem is that hydroacoustic surveys do not
exclusively detect the targets of interest (i.e., fish). For example, many
macroinvertebrates, such as Mysis spp. (Rudstam et al., 2008; Axenrot et al., 2009),
corixids (Kubecka et al., 2000), chironomids (Kubecka et al., 2000), Chaoborus spp.
(Knudsen et al., 2006), jellyfish (Colombo et al., 2009), and krill (Simard and Lavoie,
1999) have measurable backscattering at frequencies commonly used during fish
hydroacoustic assessment surveys. Therefore, fish abundance estimates could include
contributions from non-target organisms, resulting in overestimates of fish abundance
(Jurvelius et al., 2008; Rudstam et al., 2008). Owing to the commonality of pelagic
macroinvertebrates in small natural lakes (Schindler et al., 1993), the Great Lakes
(Beeton, 1960), man-made reservoirs (Chimney et al., 1981), estuaries (Moriarty et al.,
2012), and oceans (Atkinson et al., 2004), the need to quantify and understand this bias
seems paramount, regardless of ecosystem type.

The degree of bias from pelagic macroinvertebrates can be influenced by the design
of the hydroacoustic survey, as well as the behaviors and biological attributes of the
macroinvertebrates. Hydroacoustic surveys of fish abundance are routinely conducted
at night because fish typically disperse from schools in reduced light, allowing for more
precise estimates of fish abundance (Drastik et al., 2009). However, many other (non-
fish) organisms, such as bentho-pelagic macroinvertebrates, also often reside in the
water column at night. For example, Mysis spp. (Rudstam et al., 1989), Chaoborus spp.

(La Row and Marzolf, 1970), and krill (Cotte and Simard, 2005) engage in diel vertical
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migration behavior, where individuals reduce predation risk by occupying deeper, darker
water (or sediments) during the day and moving into the water column at night to feed
and/or find more suitable habitat. Other macroinvertebrates, such as chironomids, also
emerge from the benthos during the day and are present in the water column and at the
surface at night (Sjéberg and Danell, 1982). Bias from macroinvertebrates is further
enhanced by organisms with an air bladder (i.e., Chaoborus), which may resonate at
certain transducer frequencies and therefore contribute more backscatter than expected
based on their size alone (Jones and Xie, 1994; Eckmann, 1998).

Not accounting for macroinvertebrates in the water column during a hydroacoustic
survey of fish abundance can result in a biased fish estimate. For example, smelt
(Osmerus eperlanus) density in Lake Hiidenvesi, Finland was overestimated by up to
55% when the presence of Chaoborus was not considered (Malinen et al., 2005). This
bias can be reduced, however, by conducting hydroacoustic surveys using frequencies
at which the backscattering from non-target organisms is lower. Knudsen et al. (2006)
evaluated the acoustic backscattering response of Chaoborus at six different
frequencies, ranging 38—710 kHz. These authors detected the greatest response at 200
kHz and attributed the higher backscattering at that frequency to resonance by the air
sacs of Chaoborus. Further, these authors found that the backscattering strength varied
with Chaoborus size. For this reason, Knudsen et al. (2006) recommended using lower
frequencies (e.g., <200 kHz) during fish assessments in the presence of Chaoborus.
Studies in other ecosystems (e.g., Malinen et al., 2005; Jurvelius et al., 2008; Knudsen

and Larsson, 2009) have also concluded that fish abundance estimates measured at
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200 kHz are biased high when macroinvertebrates (e.g., Chaoborus) are present, and
that lower frequencies should be used.

Herein, we sought to evaluate the potential for a vertically migrating
macroinvertebrate, Chaoborus, to bias hydroacoustic surveys of fish density in shallow,
eutrophic reservoirs common to the eastern United States, as well as provide methods
to reduce any observed bias. Specifically, we sampled with 70-, 120-, 200-, and 430-
kHz frequencies during two seasons (spring and summer) to identify how estimates of
fish density change with frequency in the presence of Chaoborus, an abundant
organism in these ecosystems. To determine whether backscatter from Chaoborus
contributed to total acoustic backscatter in our study reservoirs, we first examined the
ability of our hydroacoustics system to estimate Chaoborus abundance. To further
understand the influence of Chaoborus on our acoustic surveys, we also: 1) compared
total (i.e., both fish and Chaoborus) acoustic backscattering (NASC, m2-nmi-2) from
every pairwise combination of frequencies; and 2) determined the frequency-response
of reservoir organisms (i.e., both fish and Chaoborus) during spring and summer using
four different frequencies (70, 120, 200, and 430 kHz). We then evaluated how
estimates of fish density varied with transducer frequency and the season sampled.
Overall, our findings show frequency-dependent and season-specific biases that should
be considered when developing hydroacoustic assessment protocols to estimate fish

abundance in the presence of pelagic macroinvertebrates such as Chaoborus.
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2. Methods

2.1 Study ecosystems and species

We conducted mobile hydroacoustic surveys and trawled for fish at night to
estimate fish density in three Ohio (USA) reservoirs (i.e., Acton Lake, Alum Creek Lake,
and Hoover Reservoir; Figure 1) during spring (May or June) and summer (August) of
2017. As with other Ohio reservoirs, our three study ecosystems are small, shallow,
warm, and biologically productive (Table 1), and have seasonal hypolimnetic hypoxia
during the summer through early fall. The high productivity of these reservoirs stems
from their agricultural- and urban-based watersheds (Vanni et al., 2005).

These reservoirs support a fish community consisting of piscivores and
planktivores. Top predators in these reservoirs are typified by largemouth bass
(Micropterus salmoides) and saugeye (Sander vitreus canadensis), with their forage
base primarily composed of planktivorous fishes, including gizzard shad (Dorosoma
cepedianum), crappies (Pomoxis spp.), sunfishes (Lepomis spp.), and brook silverside
(Labidesthes sicculus). The main species of interest for this study was gizzard shad
(Dorosoma cepedianum), which has historically been the most abundant prey species in
Ohio reservoirs (Sieber Denlinger et al., 2006; Hale et al., 2008; Dillon et al., 2019).

All of our study reservoirs have populations of the vertically migrating,
macroinvertebrate Chaoborus punctipennis. Chaoborus tend to reside in bottom
sediments during daylight hours and move into the water column at night (La Row and
Marzolf, 1970). When in the water column at night, resonance from their air sacs holds
the potential to contribute to total backscattering estimates, which has been shown to

bias estimates of fish density in other ecosystems (e.g., Malinen et al., 2005; Knudsen
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et al. 2006). Because this potential bias from Chaoborus has not been measured or
considered in annual hydroacoustic surveys of fish abundance by the Ohio Department
of Natural Resources — Division of Wildlife (ODNR-DOW), which oversees fisheries
management in Ohio reservoirs, the need to estimate this bias is paramount (JDC, co-
author, ODNR-DOW, pers. comm.)

2.2 Abiotic data collection

Contemporaneously to hydroacoustic surveys and trawls (see sections 2.3 and
2.4), we collected abiotic data at three sites (Figure 1) to inform reservoir condition at
the time of fish sampling. Vertical profiles of temperature (nearest 0.1 °C) and dissolved
oxygen concentration (nearest 0.1 mg-L-") were determined with a multi-parameter
sonde (Model 6600, YSI, Inc., Yellow Springs, Ohio, USA) at 1-m depth increments
from the surface to the bottom at each site (n = 3) in each reservoir.

2.3 Hydroacoustic survey design

Hydroacoustic data were collected with a BioSonics echosounder (DT-X; Seattle,
Washington, USA) operating four split-beam transducers with different frequencies: 70-
kHz transducer (6.5 °, 3 dB beam angle; 3.7 m, 2x near-field); 120-kHz transducer (7.2
°, 3 dB beam angle; 1.7 m, 2x near-field); 200-kHz transducer (6.9 °, 3 dB beam angle;
1.1 m, 2x near-field); and 430-kHz transducer (6.9 °, 3 dB beam angle; 0.6 m, 2x near-
field). Even though each frequency transducer had a different near-field distance, the
same exact portion of the water column was used within each analysis to enable fair
comparisons across frequencies (see sections 2.5-2.7). For every survey, all
transducers were oriented downward on a fixed plate secured to the side of the boat,

and positioned 0.5 m below the water surface.
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Hydroacoustic data collection followed procedures outlined in Dillon et al. (2019).
Settings included a —130 dB threshold, 0.2-ms pulse duration, pulse rate of 10 pings-s,
start range of 1 m, and a stop range that varied with reservoir depth. Surveys were
conducted (depth permitting) in a zig-zag pattern (Figure 1). All mobile surveys began
0.5 h after sunset, were conducted at a speed of 7 km-h-' or slower, and were
completed at least one hour before sunrise. We collected passive data at night for the
length of one transect while moving at survey speed to quantify background noise in
each reservoir (Parker-Stetter et al., 2009; Dillon et al., 2019). In our reservoirs, mean
volume backscattering strength (Sv in dB) noise ranged -119.2 to -91.5 dB, whereas
target strength (TS in dB) noise ranged -148.5 to -99.8 dB.

We calibrated each transducer with a frequency-specific standard tungsten-
carbide reference sphere of known TS (38.1 mm diameter for 70 kHz; 38.1 mm
diameter for 120 kHz; 36 mm diameter for 200 kHz; 17.5-mm diameter for 430 kHz;
Foote et al., 1987) during spring and summer. Calibration offsets were then applied to
the survey data based on the results from the closest date of field calibration (typically
within one month). Using the equations of Del Grosso and Mader (1972) and Francois
and Garrison (1982), we calculated speed of sound and absorption coefficients using
the average temperature from the entire water column at the deepest site sampled in

each reservoir.
2.4 Biological collections

We collected fish for species identification and total length (TL) measurements by
towing (at 12—14 km-h-') a 1-m high x 2-m wide neuston net (6,350-um mesh) at the

surface, and a 1-m high x 1-m wide framed trawl (3,175-ym mesh) at the surface and at
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specific depths. Depths of sub-surface tows were chosen based on the greatest
apparent abundance of fish (i.e., observed backscatter) observed in the concurrent
hydroacoustic survey. Individual fish collected with surface net tows may not directly
match those sampled by hydroacoustics at deeper depths. However, for the reasons
outlined in Dillon et al. (2019), we are justified in the use of our surface net tows, as
their main purpose was to collect as many individuals as possible. We conducted three
tows with each net in each reservoir, with our net sampling spanning a distance of
approximately 500 m (Figure 1). All captured individuals were euthanized, preserved in
95% ethanol, and returned to the laboratory where they were identified to species and
measured. We measured TL (nearest 1 mm) and wet mass (nearest 1 g) for a subset of
up to 50 randomly selected individuals per species per trawl.

We collected Chaoborus with a pump (TD5-300, Tsurumi Pump, Glendale
Heights, lllinois, USA) at the same three sites sampled for abiotic data in each reservoir
(Figure 1). Chaoborus were sampled at three discrete depths, with the depth of each
sample chosen based on site-specific temperature and dissolved oxygen profiles such
that individuals were collected in the epilimnion, metalimnion, and hypolimnion (Dillon et
al., in review). Each pump sample filtered approximately 1 m3 of water. Up to 25
randomly selected individuals from each discrete-depth sample at each site were
measured (nearest 0.1 mm), and lengths were converted to dry mass (nearest 0.001
mg) using an established regression (Chimney et al., 2007). Total Chaoborus biomass
was calculated by multiplying the density of the sample by the average dry mass of the
measured individuals. We tested for differences in mean length between Chaoborus

captured during spring (May or June) and summer (August) with a Mann-Whitney U
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Test, as Bartlett’s Test and visual examination of the data (histograms and Q-Q plots)
revealed that the data were non-normally distributed.
2.5 Hydroacoustic estimates of Chaoborus

To determine whether backscatter from Chaoborus contributed to total acoustic
backscatter in our study reservoirs, we first examined the ability of our hydroacoustics
system to estimate Chaoborus abundance. To do this, we developed a relationship
between a commonly used hydroacoustic index of biomass, Sy, and the pumped
biomass estimate of Chaoborus by matching the same layer of the hydroacoustic
survey to the same layer of the discrete-depth pump sample. Data from additional, but
similar, sampling used to complete this analysis (section 2.5) is described in Appendix
C.
2.5.1 Hydroacoustic processing

All hydroacoustic analyses were conducted in Echoview (Versions 7.1-8, Myriax
Pty Ltd, Hobart, Tasmania, Australia) following the methods outlined in Dillon et al.
(2019), which we briefly describe here. Estimates of background noise at 1-m depth
were calculated using equations from Parker-Stetter et al. (2009) and then subtracted
from the survey data in the linear domain. We also removed other instances of noise
(i.e., from boat wakes, bubbles, methane gas, etc.) by manually scanning the
echograms and delineating these areas as “bad data” in Echoview.

We used the hydroacoustic data from the 70-, 200-, and 430- kHz frequencies to
estimate the abundance of Chaoborus through a masking technique similar to one used
by Rudstam et al. (2008), who separated echoes of a diel migrating invertebrate (Mysis

spp.) from that of fish in Lake Ontario. First, a fish-exclusion threshold was applied to

10
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the 70-kHz data (Rudstam et al. 2008). Only data from the 70-kHz frequency was
thresholded for this analysis, as this frequency: 1) included the smallest acoustic
contribution from Chaoborus (Knudsen et al., 2006; this study); 2) was used as the
frequency that produced the most reliable estimate of fish density (see Results); and 3)
was used as the frequency for masking fish echoes from the other higher frequencies
(see below).

The minimum TS threshold (Table A1) was chosen by examining the in situ
single-target distributions from -75 to -30 dB and selecting a valley in the distribution. If
no clear valley was observed in the in situ single target distribution, then we chose the
minimum TS value by converting TL of individual fish captured in net/trawl tows to TS
with a general dorsal-aspect equation (Love, 1977). Single targets were identified using
a maximum beam compensation of 6 dB and the settings listed in Dillon et al. (2019). A
range-dependent S, threshold was set 6 dB less than the selected minimum TS value
and input as the “Minimum TS threshold” setting in each Sy variable for every reservoir
sampled (see Parker-Stetter et al., 2009).

Pings between the 70- and either 200- or 430-kHz data were then matched for
complete data overlap. In the Sy variable, the data were resampled as 10 data pixels-m-
T and dilated to allow masking areas around each fish target. A data range bitmap was
then applied to the dilated data, which removed fish targets (and the area immediately
around each fish target); we replaced the values in these areas as no data. Results
from the bitmap were then applied as a mask over the 200- or 430-kHz S, data so that
only echoes from Chaoborus remained.

2.5.2 Analysis

11
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We examined the relationship between the average pump biomass estimate and
the hydroacoustic estimate of Chaoborus biomass (S ) using least-squares linear
regression. We developed four predictive models corresponding to the two frequencies
(200 and 430 kHz) and seasons (spring: May or June; summer: August) used. We
generated separate models for each period, owing to observed Chaoborus size
differences between sampling seasons. We then used the intercept from these models
to determine the TS of 1 g dry wtlih® of Chaoborus. Because of the linearity principle in
fisheries acoustics, the slope of the relationship between the logio of biomass or density
and Sy in dB should have a slope of 0.1, if the target size is not density-dependent
(Simmonds and MacLennan, 2005). We tested if the slope of each model was
significantly different from 0.1 by determining if the 95% CI of the estimated slope
encompassed 0.1. When the slope of the model was not significantly different from 0.1,
we used the intercept estimates from these models to determine the TS (dB) of 1 g dry
wtm-3 of Chaoborus. If the slope was significantly different from 0.1, we forced the slope
of the line to equal 0.1 to get an intercept estimate, and then determined the TS (dB) of
1 g dry wtm-2 of Chaoborus.

2.6 Transducer frequency comparisons

We explored how total backscattering (i.e., from fish and Chaoborus) differed
among frequencies to help explain any observed differences in estimates of fish density
among them. We compared cell-specific total backscattering responses (nautical area
scattering coefficient, NASC, m2-nautical mile? [nmi-2]) from every pairwise combination
of frequencies (i.e., 70, 120, 200, and 430 kHz).

2.6.1 Hydroacoustic processing

12
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The hydroacoustic data processing differed in some ways from that described in
section 2.5. While we subtracted noise estimates from the hydroacoustic data, as
above, for the analyses conducted here only, data were not thresholded and we used a
horizontal cell size of 250 m and vertical cell size of 2.5 m. This cell size was chosen for
these analyses because it is beyond the distance where notable spatial correlation was
present in our data (Figures A1-A3), and we were able to smooth over any areas where
large fluctuations in the acoustic response might exist. We included all data from the
depth of the 70-kHz transducer near-field (as this was the deepest near-field from any
frequency transducer sampled) to the bottom exclusion zone (0.2 m off the detected
bottom) for these analyses only, as Chaoborus were found at all depths in our
reservoirs.

2.6.2 Analysis

Frequency-specific and cell-specific NASC values (m?-nmi2) were compared to
one another with major-axis regressions (Warton et al., 2006) using the R-package
“Imodel2” (Legendre, 2018). In so doing, we could test for common slopes and their fit
to a 1:1 line (slope = 1, intercept = 0). A significant (a = 0.05) relationship between each
pairwise combination of frequencies was tested using data from 99 permutations.

Using the same data (i.e., 250- x 2.5- m cell size, noise removed, no
thresholding), we identified which frequencies (70, 120, 200, 430 kHz) resulted in the
highest backscattering of reservoir organisms (i.e., both fish and Chaoborus together)
by examining the frequency-response of our data. We determined the frequency-
response during both spring and summer to account for potential differences in the

frequency-dependent backscattering response associated with changes in organism
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(i.e., fish and/or Chaoborus) size. The frequency-response (+ 1 standard error, SE) was
calculated as the average cell-specific (from a random selection of one third of the
number of cells sampled in each reservoir) acoustic scattering (NASC, m2-nmi-2) from
each frequency sampled.

2.7 Fish density estimation

Only the three lower frequencies (70, 120, and 200 kHz) were used to calculate
fish density because they are commonly used in fish abundance assessment surveys
used by agencies, including in Ohio (Hale et al., 2008; Godlewska et al., 2009).

2.7.1 Hydroacoustic processing

Hydroacoustic data processing followed similar methods to those described
above (sections 2.5 and 2.6), with noise being removed. Additionally, frequency-specific
TS thresholds were applied to the data, using the methods described above (section
2.5). We consider thresholding to be the most appropriate method for generating fish
density estimates at each frequency, given the high density of Chaoborus observed in
our ecosystems (Baran et al., 2019), as well as the lack of overlap in TS between
known fish and Chaoborus at the lower frequencies sampled (see Discussion).

Data processing was standardized to 50-m horizontal x 1-m vertical cells within
each transect, regardless of transducer frequency or reservoir, and only focused on the
1-m vertical interval from 4.2 to 5.2 m. We chose this 1-m depth-layer for analysis as its
upper limit (4.2 m) corresponds to the shallowest depth surveyed by the 70-kHz
transducer, owing to its 3.7 m, 2x near-field, and position below the water surface, and
the lower limit (5.2 m) corresponds to the starting depth of the hypoxic hypolimnion

(dissolved oxygen < 2.0 mg-L-"), which was present during August surveys (Dillon et al.,
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in review). We know from previous research that fish avoid hypolimnetic hypoxia in our
study reservoirs (Burbacher 2011; Dillon et al., in review). We used Sawada et al.’s
(1993) Ny index to identify cells with potentially biased in situ TS estimates, owing to
overlapping single-target detections, and replaced those cells with the average TS from
the same depth-layer (Dillon et al., 2019).
2.7.2 Analysis

We estimated cell-specific fish density via echo-integration, scaling the area
backscattering coefficient (ABC, m2-m-2) by the average backscattering cross section
(obs, m?). Average fish density estimates (number of individuals-m-2) were then
calculated using a geostatistical model that accounted for the spatial characteristics of
our sampling design. Because we used a non-random sampling design (i.e., zig-zag
transects; see Figure 1), classical statistical methods are inappropriate, as assumptions
about randomized sampling (i.e., independence) were violated (Simard et al., 1992;
Petitgas, 2001). By contrast, a geostatistical model-based approach does not require a
randomized survey design as it explicitly models inherent spatial trends and correlation
in the data (Rivoirard et al., 2000). For this reason, studies have evaluated the efficacy
of using geostatistical methods and found that they provide more robust (e.g., more
precise variance estimates) estimates of fish abundance than traditional statistical
methods (e.g., Petitgas, 2001; Taylor et al., 2005).

We describe our geostatistical models (hereafter referred to as spatial models),
in brief, with details available in Appendix B. To satisfy assumptions of a Gaussian
spatial model, density estimates from every frequency, season (spring or summer), and

reservoir sampled were shifted (add 0.5 to each density measurement) and log1o
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transformed. The spatial model included a spatial trend term, as well as an error
covariance that assumed an exponential covariance between different locations
(measured in km). Our spatial models also included a nugget term in the error
covariance, to account for possible measurement error or fine-scale spatial
dependencies. Spatial trends were represented by terms for Northing (km), Easting
(km), and their interaction, as exploratory data analyses indicated these trends were
apparent in our data (PFC and RAD, unpub. data). The spatial model parameters were
estimated using maximum likelihood. A spatial model was appropriate for our data
analyses, as Akaike information criterion (AIC) analysis indicated preference for spatial
models over non-spatial models for most surveys (Supplementary Material; Table S1).
Summaries of the spatial models showed that estimates of model terms (i.e., intercept,
Northing, Easting, and their interaction), and the significance of these terms varied with
the reservoir and season sampled (Supplementary Material: Tables S2—-S4). Further,
while mean density estimates were similar between the spatial and non-spatial models,
the error (SE) estimates from the spatial model were generally smaller than those
calculated from the non-spatial model (Supplementary Material: Table S5, Figure S1).
Thus, based on the non-random sampling design, the AIC values, and lower observed
SE of the estimates, we used the spatial model to calculate average fish density for all
of our surveys.

To quantify how much the spatially-varying fish density estimates (logio
transformed) differed among frequencies and between seasons, we developed a
functional analysis of variance (ANOVA) model (Kaufman and Sain, 2010) for each

reservoir. We used this approach given that assumptions of independence and equal
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variances were not met, which precluded the use of a simpler ANOVA. Each functional
ANOVA model included a spatial trend (with terms for Northing, Easting, and their
interaction), a spatially-varying term for frequency, a spatially-varying term for season,
and a spatially-varying term for the errors. We assumed an exponential covariance for
each spatially varying term. We only included a nugget term for the error term. The
functional ANOVA model was fit using maximum likelihood (see Appendix B for further

details).

3. Results

3.1 Fish collections

The majority (by abundance) of the trawl catch was gizzard shad in Acton Lake
(100%), whereas brook silverside was caught in greater abundance in Alum Creek Lake
(78%) and Hoover Reservoir (74%). The mean TL (x 1 SD) of gizzard shad captured in
Acton Lake was 54 + 19 mm, in Alum Creek Lake was 89 + 8 mm, and in Hoover
Reservoir was 66 £ 18 mm. The mean TL of brook silverside was 52 + 28 mm in Alum
Creek Lake, and 59 + 15 mm in Hoover Reservoir. The range of fish TLs recorded
(regardless of species) was 20—95 mm in Acton Lake, 24—95 mm in Alum Creek Lake,
and 30-90 mm in Hoover Reservoir.
3.2 Chaoborus collections

Depth-specific pump sampling confirmed the presence of Chaoborus in our study
ecosystems (Table 2; Figure 2). We captured a wide size-range of Chaoborus in
conjunction with our hydroacoustic surveys (Table 2; Figure 2). Similar patterns in the
mean TL (£ 1 SD) of Chaoborus were observed across the three reservoirs sampled,
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with a higher abundance of smaller Chaoborus being captured during summer (3.3 +
2.1 mm) than during spring (5.9 £ 2.9 mm) (Mann-Whitney test; W = 483380; P < 0.01;
Table 2; Figure 2). Further, more individuals were captured during summer (mean
density ranged 256 to 688 individuals-m-2) than during spring (mean density ranged 43
to 229 individuals-m-) in all three reservoirs (Table 2).
3.3 Hydroacoustic estimates of Chaoborus

The relationship between the hydroacoustic estimate of Chaoborus abundance
and the estimate of Chaoborus biomass from pump samples varied with the frequency
of transducer (200 vs. 430 kHz) and sampling season (Table 3; Figure 3). However,
simple least-squares regression results indicated a significant relationship between the
hydroacoustic and biomass estimates of Chaoborus for every frequency and time period
sampled (Table 3). The models with the highest coefficients of determination (R2 ranged
0.94-0.97) included data from spring (May or June), whereas models from summer
(August) had R2 values that ranged 0.36—0.52 (Table 3). The resultant hydroacoustic
portrayal of Chaoborus is shown in Figure 4 (right panels).

Estimated slopes of these regression lines ranged 0.05-0.13 (Table 3) and
significantly differed from 0.1 for all models. During spring, the TS of 1 g dry wt-m3 of
Chaoborus was larger at 200 kHz (TS = -21.1 dB) than at 430 kHz (TS = -45.8 dB). The
opposite pattern was found during summer, where a larger TS value was observed at
430 (TS =-13.1 dB) than at 200 kHz (TS = -37.2 dB). When all of the data were pooled
(between seasons), the overall TS value for 1 g dry wt-m-3 of Chaoborus was -35.4 dB
at 200 kHz and -26.8 dB at 430 kHz.

3.4 Transducer frequency comparisons
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Pairwise comparisons of total (i.e., from both fish and Chaoborus) NASC (m2-nmi-
2) in the same cell between frequencies showed a consistent pattern of more
backscattering at higher frequencies (Figure 5). Our analyses revealed significant
differences (P = 0.01) between total backscattering for every comparison, with the
calculated slopes indicating that backscattering was greater at higher frequencies than
at lower ones (Table 4). A visual representation of this finding can be seen in our
snapshots of the frequency-specific thresholded echograms (Figure 4), where higher Sy
values were observed at higher frequencies.

The frequency-dependent response of total (i.e., from both fish and Chaoborus)
NASC was similar among reservoirs, but varied between seasons (Figure 6). During
spring (May or June), we observed a hump-shaped curve in the frequency-response,
with a peak at 200 kHz. However, during summer (August), we found an increasing
trend in the frequency-response, with the echo energy return at 430 kHz almost twice
that at 200 kHz (Figure 6). NASC values were highest in Hoover Reservoir during spring
and in Acton Lake during summer, with Alum Creek Lake always being the lowest
(Figure 6).

3.5 Fish density estimates

Based on the observed increase in area backscattering with frequency (see
Figures 4-6), we were not surprised that estimates of average fish density increased
with the transducer frequency used during both seasons (Table 5). The average fish
density calculated for Acton Lake during August at 200 kHz was 5.1 times greater than
at 70 kHz. For Alum Creek Lake, it was 2.6 times greater, and for Hoover Reservoir, it

was 3.6 times greater (Table 5). The magnitude of the difference in fish density
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estimates between 120-kHz and 200-kHz transducers was usually smaller than when
comparing density estimates calculated at 70 kHz to either of the two higher
frequencies. No clear pattern among frequencies or among reservoirs was evident in
observed differences in fish density estimates between spring and summer (Table 5).
Generally, the standard error of the fish density estimate increased with increasing
frequency during both seasons (Table 5).

Results from the functional ANOVA showed that differences in fish density
estimates were attributable to multiple factors, with the amount of variance explained by
each spatially varying parameter differing among reservoirs (Table 6). Across all three
reservoirs, sampling season explained more variance in the fish density estimates than
the transducer frequency (comparing partial sill parameters; Table 6). These changing
patterns of acoustic backscattering between spring and summer likely represent
changing population demographics (e.g., abundance, size distributions) of fish,
Chaoborus, or both. Interestingly, spatial patterns in the fish density estimates differed
among frequencies, as the largest range parameters and correlation at 100 m were
found for the frequency term (except the range parameter for Acton Lake; see Table 5).
The calculated nugget was similar among reservoirs (see Table 6), which was likely due

to measurement error or other small-scale spatial features.

4. Discussion

The primary goal of our study was to improve the ability of fishery assessment
biologists and researchers to use hydroacoustics to estimate fish density in the

presence of pelagic macroinvertebrates that are residing in the water column. Towards
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this end, we explored how estimates of fish density varied with hydroacoustic
transducer frequency (70, 120, and 200 kHz) and sampling season (spring vs. summer)
in three Ohio reservoirs with an abundance of Chaoborus, a vertically migrating
macroinvertebrate that has air sacs, which resonate much like the air bladder of fish.
Collectively, our findings demonstrate that pelagic macroinvertebrates can bias
estimates of fish density, especially when a high-frequency transducer (e.g., 200 or 430
kHz) is used, and that the degree of bias is season-dependent, owing to changes in the
demographics of Chaoborus. Below, we discuss these findings in detail and offer
recommendations that can benefit the design and analysis of hydroacoustics
assessment surveys of fish populations in the presence of non-target organisms such
as Chaoborus.
4.1 Bias associated with high-frequency transducers

Our calculated estimates of fish density varied with transducer frequency. At 200
kHz, fish density estimates ranged 1.8- to 5.1-fold greater than those made with a 70-
kHz transducer. Estimated fish densities at 120 kHz were intermediate to the 70- and
200-kHz transducers, though most were similar to those at 200 kHz. We attribute the
differences in fish density among frequencies to the presence of Chaoborus in our study
ecosystems. Because our assessment of total (i.e., both fish and Chaoborus)
backscattering increased with increasing transducer frequency, we recommend using a
lower frequency transducer (e.g., 70 kHz) when estimating fish density in the presence
of Chaoborus. Our findings indicate that doing so would reduce bias, and hence,

improve estimates of fish density.

21



481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

Such wide differences in density estimates among frequencies were initially
surprising, as recent work has shown that different frequencies can produce similar fish
abundance estimates (Godlewska et al., 2009), especially when fish density is low
(Guillard et al., 2014; Mouget et al., 2019). However, consideration of the presence of
Chaoborus in our study ecosystems helps explain the observed differences in estimates
of fish density. Previous studies have found that strong backscattering by Chaoborus
can result in fish estimates that are biased high (see Eckmann, 1998; Malinen et al.,
2005; Jurvelius et al., 2008; Knudsen and Larsson, 2009). The ability to calculate bias-
free and robust estimates of fish density is important, as it can help understand fish
population and food web dynamics, which also explains why it is a top priority for
management agencies such as the ODNR-DOW (sensu Drastik et al., 2017; Dillon et
al., 2019; JDC, ODNR-DOW, co-author, pers. comm.).

We are confident in our conclusion that Chaoborus is responsible for the
discrepancy in fish density estimates across frequencies because no other known
macroinvertebrate “scatterers” are known to reside in our surveyed ecosystems. While
zooplankton were captured in our discrete-depth pump samples (Dillon et al., in review),
Ohio reservoirs are generally characterized by small zooplankton taxa (e.g., Rotifera,
Eubosmina; Bremigan and Stein, 1994; Vanni et al., 2005) that are unlikely to contribute
acoustic backscattering. Furthermore, the larger cladoceran and copepod zooplankton
that are present in our reservoirs have been found to contribute negligible amounts of
backscatter at the frequencies investigated herein (Northcote, 1964; Frouzova et al.,
2004). Instead, we argue that the observed increase in backscattering with increasing

frequency resulted from Chaoborus, a macroinvertebrate known to migrate into the
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water column at night, and which also has two pairs of air sacs (Teraguchi, 1975) that
likely resonate at the higher frequencies used herein.
4.2 Removal of bias using thresholding

The method that we presented in this study to generate a less-biased estimate of
fish density in the presence of macroinvertebrates involved simple thresholding with a
low-frequency (70 kHz) transducer. As with many hydroacoustic analysis decisions, our
ability to derive a bias-free estimate of fish density in the presence of Chaoborus can be
viewed as a compromise between excluding backscattering from Chaoborus, and
including that from fish (Malinen et al., 2001; sensu Simmonds and MacLennan, 2005).
While other methods to achieve this goal are available in the literature (Eckmann, 1998;
Wagner-Dobler and Jacobs, 1988; Malinen et al., 2005; Jurvelius et al., 2008), most of
these methods require fish and macroinvertebrates to be separated in space or to have
different target strength (TS) distributions (but, see Baran et al., 2019). These
conditions, however, were never met for any hydroacoustic survey in our ecosystems.
Even though fewer Chaoborus were present in the water column during the day
compared to at night, we still observed Chaoborus at all depths at all times (Dillon et al.,
in review). Additionally, the schooling behavior of our main fish species of interest
(gizzard shad), precluded us from sampling during the day, as it is established practice
to estimate abundance of gizzard shad at night (Vondracek and Degan, 1995).

Our method of thresholding to generate a fish density estimate appears robust,
as our selection of frequency-specific minimum TS values did not bias the differences in
fish density that were observed among frequencies. According to hydroacoustic theory,

fish density should increase as TS values become smaller. However, we selected a
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smaller minimum TS value at 70 kHz than at either 120 or 200 kHz (Table A1). Thus,
the higher estimates of fish density observed at either 120 or 200 kHz did not stem from
our selection of the minimum TS value, and is more likely attributable to interference
from Chaoborus. Further, across our reservoirs and both sampling seasons, the largest
selected minimum TS value (-61 dB; Table A1) corresponded to an estimated fish total
length (TL) of 17 mm (Love, 1977), which is a smaller-sized fish than was captured by
our nets. The size-class of fish observed in Ohio reservoirs during the time of sampling
(20-95 mm) is not sufficiently different from the known TS of Chaoborus; a 20 mm fish
(TS =-59.9 dB at 200 kHz and -59.7 dB at 120 kHz; Love, 1977) would be within 6 dB
of the TS of Chaoborus at both 200 kHz (TS = -60 to -64 dB; Jones and Xie, 1994;
Knudsen et al., 2006) and 120 kHz (TS = -64 to -66 dB; Baran et al., 2019). Thus, 200
and 120 kHz appear to be inappropriate frequencies to use for estimation of fish
abundance in the presence of Chaoborus (Knudsen et al., 2006; Jurvelius et al., 2008;
Knudsen and Larsson, 2009; this study). Further, our transducer comparison identified
70 kHz as the frequency with the lowest total backscattering response and thus, most
appropriate frequency to use for fish density estimation (of the frequencies tested).
Although we only estimated fish density within a 1-m layer of the water column
(from 4.2 to 5.2 m depth), we would expect to find the same pattern (i.e., increasing fish
density with increasing transducer frequency) had a larger portion of the water column
been included in the analysis. We expect this pattern to hold as both gizzard shad and
Chaoborus abundance are known to be greater at shallower rather than deeper depths

at the time of sampling (i.e., at night; Dillon et al., 2019; Dillon et al., in review; JDC,
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ODNR-DOW, coauthor, unpublished data). Thus, potentially even more bias from
Chaoborus in fish density estimates would have been observed at shallower depths.
Unfortunately, we were constricted to conducting our analyses in a 1-m depth
layer, as the acoustic near-field increases with decreasing transducer frequency,
reducing the proportion of the water column sampled. In our case, the 2x near-field
distance of the 70-kHz transducer was calculated to be 3.7 m, restricting our
measurements to waters deeper than 4.2 m (depth location of the transducer plus the
2x near-field). Thus, to avoid bias from Chaoborus, at least in our ecosystems, our
hydroacoustic estimates of fish may be biased low, due to the availability bias of our 70-
kHz transducer (i.e., fish occupying depths of the water column that are within the near-
field of the 70-kHz transducer). This tradeoff in biases (availability of fish versus
Chaoborus backscatter) is important to be aware of, even though we have clearly
demonstrated the importance of considering bias from Chaoborus. We suggest that an
unbiased, relative index of fish abundance (i.e., reducing bias from Chaoborus by using
a 70-kHz transducer) is better than a biased, absolute fish abundance estimate (i.e.,
using a 200-kHz transducer that samples a larger portion of the water column), as it
would provide a more accurate estimate of fish abundance in the ecosystem. Once the
extent of bias from Chaoborus in fish density estimates at higher compared to lower
frequencies is quantified, as shown in this study, additional steps can then be taken to
address the fish availability bias. Two potential solutions that hold the potential to
overcome biases associated with the deep near-field associated with low-frequency
(e.g., 70 kHz) transducers include: 1) using a transducer with a wide beam angle, which

will shrink the near-field of the transducer; or 2) using an upward-facing rather than

25



572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

downward-looking transducer (e.g., Baran et al., 2019). Collectively, these results
highlight the need to be mindful of potential tradeoffs (e.g., other biases in fish density
estimation) that might emerge when seeking to eliminate biases associated with pelagic
macroinvertebrates such as Chaoborus. Recognition of these tradeoffs in choosing
acoustics gear (i.e., transducers) is applicable to any ecosystem.
4.3 Influence of season on frequency-dependent biases

Interestingly, along with the observed transducer frequency responses, fish
density estimates varied with the time period of sampling in our three study reservoirs.
This result is not surprising when we consider that Chaoborus population demographics
(e.g., length distributions, abundances) differed between spring (May or June) and
summer (August); average lengths decreased from spring to summer. Our expectation
is that these changes would influence estimates of fish density, with scattering at a
lower frequency being greater during spring (when Chaoborus individuals are large)
than during summer (when Chaoborus individuals are small). A size-dependent
scattering-response of Chaoborus is unsurprising, as Knudsen et al. (2006) found that
longer individuals had greater mean TS values relative to shorter individuals.
Additionally, we found more Chaoborus during summer when backscattering was lower,
than during spring, suggesting that size is more important than density when accounting
for potential biases associated with Chaoborus backscattering.

Some research (e.g., Knudsen et al., 2006; Wagner-Dobler and Jacobs, 1988)
has been skeptical regarding the use of acoustics to estimate Chaoborus densities.
Contrary to this skepticism, however, we observed a significant relationship between

Chaoborus biomass calculated from discrete-depth pump samples and the
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corresponding hydroacoustic estimates of biomass (Sv) in those depth-layers. While this
relationship varied with transducer frequency (200 or 430 kHz) and sampling season,
the observed predictive relationships were all strong and positive, with R2 values
ranging 0.36—0.97. Collectively, the observed patterns in the frequency-dependent
response, combined with our predictive Chaoborus hydroacoustic abundance models,
provide added confidence that Chaoborus are driving variation in estimates of fish
density among transducer frequencies. Variation in the frequency-dependent response
between spring and summer also indicates that seasonal changes in estimated fish
density can arise, not only because of demographic changes in the fish population, but
also because of demographic variation in the resident Chaoborus population. These
findings demonstrate the need to consider the dynamics of Chaoborus, or other pelagic
macroinvertebrates, when choosing what season to assess the target fish population

with hydroacoustics.

5. Conclusions
Hydroacoustic estimates of fish density varied considerably across our study

ecosystems, owing to both characteristics of the sampling gear used (i.e., transducer
frequency) and the resident biota (i.e., Chaoborus). The large observed differences in
estimates of fish density at different frequencies appear primarily due to the frequency-
dependent backscattering response of Chaoborus. Specifically, we found estimates of
fish density to be 1.8- to 5.1-fold higher with a 200-kHz transducer than with a 70-kHz
transducer across our three study reservoirs. We also found that total (i.e., combined

fish and Chaoborus) backscattering increased with increasing transducer frequency,
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618  with the greatest total backscattering always observed at the higher frequencies (200
619 kHz and 430 kHz, depending on the season of sampling). We are confident that

620  Chaoborus in the water column is the source of our overestimation of fish density, as we
621  found high Chaoborus densities in our study ecosystems, as well as strong correlations
622  between hydroacoustic estimates of Chaoborus and observed biomass in pump

623  samples. Overall, we stress the need to consider and reduce bias associated with the
624  presence of pelagic macroinvertebrates such as Chaoborus during hydroacoustic

625  surveys, which may change seasonally due to changes in their demographics (e.g.,

626 length, abundance). Because both empirical and theoretical data suggest that small
627  Chaoborus individuals resonate less than larger individuals, even when at a high

628  density, we recommend conducting fish abundance surveys during times when

629  Chaoborus are small in size, if practical. Additionally, we recommend choosing a low-
630 frequency (e.g., 70 kHz) transducer for sampling fish wherever possible—perhaps

631  mounted in an upward-facing direction in shallow ecosystems— to also help reduce
632 potential bias from vertically migrating Chaoborus from the outset. Following these

633  recommendations would offer researchers and fishery management agencies alike a
634  means to generate more robust estimates of fish abundance in ecosystems that also
635  support large populations of pelagic macroinvertebrates.
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TABLES

Table 1. Characteristics of the three Ohio reservoirs sampled for this study during 2017.
Surface area, average depth (zavg), and maximum (zmax) depth are reported for the
entire reservoir. Total phosphorus concentration (TP) and chlorophyll a concentration
(Chla) were measured as part of standard Ohio Department of Natural Resources-

Division of Wildlife water quality surveys.

Surfacearea  zayg Zmax TP Chla Survey
Reservoir
(km?) (m)  (m) (ug-l) (ug-L) date
Acton Lake 2.4 3.4 95 857 57.7 May 30
August 14
Alum Creek Lake 13.5 6.6 19.3 19.8 8.8 May 25
August 28
Hoover Reservoir 11.7 57 209 40.3 24.4 June 8
August 31
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799  Table 2. Mean density (# individuals-m2 + 1 SD) and mean total length (mm + 1 SD) of
800  Chaoborus captured at night in discrete-depth pump samples in Acton Lake, Alum
801  Creek Lake, and Hoover Reservoir (Ohio) during spring (May or June) and summer

802  (August), 2017.

803
Reservoir Attribute Spring Summer
Acton Lake density 229 + 14 688 + 273
length 7.3+1.8 3.7+£25
Alum Creek Lake density 43 + 52 309 £ 35
length 4.0+29 28+1.5
Hoover Reservoir density 82 £28 256 + 91
length 6.2+3.0 35+2.0
804
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805 Table 3. Results from least-squares regressions used to quantify the relationship between hydroacoustic estimates of

806  Chaoborus acoustic energy (Sv, dB; a proxy for biomass) and Chaoborus biomass (logio (g dry wtih-3)) from discrete-

807  depth pump samples collected in three Ohio reservoirs (Acton Lake, Alum Creek Lake, and Hoover Reservoir) during

808 2017. Four regressions (see “Data” column) were conducted corresponding to the two frequencies (200 and 430 kHz) and

809 two seasons (Spring: May or June; Summer: August) of hydroacoustic data collection. We also calculated the target

810  strength (TS, dB) of 1 g dry wtlth-3 of Chaoborus for each dataset when the slope of the line did not significantly differ from

811  0.1. TS values with an asterisk (*) were calculated after forcing the slope of the regression line for that model (August, 200

812  kHz) to equal 0.1, as the original slope differed from 0.1. Significant terms (a = 0.05) are presented in bold.

Data Variable Slope +1 SE P Overall model R? TS

Spring, 200 kHz Intercept 2.11 £ 0.64 0.03 F4,4=59.08, P <0.01 0.94 -21.1
Sv 0.08 + 0.01 < 0.01

Spring, 430 kHz Intercept 4.58 + 0.68 <001 F14=115.74,P<0.01 0.97 -45.8
Sv 0.13 £ 0.01 < 0.01

Summer, 200 kHz Intercept 0.50 +1.11 0.66 Fi,11=6.11, P =0.03 0.36 -37.2*
Sv 0.05 + 0.02 0.03

Summer, 430 kHz Intercept 1.31 £1.33 0.36 F4,7=757,P=0.03 0.52 -13.1
Sv 0.07 £ 0.03 0.03
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821
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823

824

825

Table 4. Statistics describing pairwise comparisons (x-axis:y-axis) of frequency-specific

(70, 120, 200, and 430 kHz) estimates of total nautical area scattering coefficient

(NASC, m2-nmi-2), calculated with major-axis regression. All slopes were significantly

greater than one (a = 0.05). NASC includes all scattering after noise was subtracted

from the data. Data were not thresholded. Cl = confidence interval. All data were

collected in three Ohio reservoirs during spring (May or June) and summer (August),

2017.

Comparison R2 P Slope Slope: 95% Cl Intercept Intercept: 95% CI
70:120kHz  0.74 0.01 293 2.83, 3.04 3.45 -2.87,9.39
70:200 kHz  0.79 0.01 3.67 3.56, 3.78 30.49 23.54, 37.04
70:430kHz  0.38 0.01 8.86 8.23, 9.59 -92.90 -136.32, -55.58
120:200 kHz 0.78 0.01 1.30 1.26, 1.35 16.34 8.84, 23.54
120:430 kHz 0.47 0.01 2.79 2.62,2.97 -61.85 -95.30, -31.97
200:430 kHz 0.66 0.01 1.87 1.80, 1.96 -32.11 -52.80, -12.77
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826  Table 5. Statistics from the spatial models used to describe frequency-specific (70, 120, and 200 kHz) estimates of mean
827  fish density (# individuals-m-2) in Acton Lake, Alum Creek Lake, and Hoover Reservoir (Ohio) during spring (May or June)

828 and summer (August), 2017. Thresholds applied are in Table A1. SE = standard error; Cl = confidence interval.

Spring Summer
Reservoir Frequency Density SE 95% ClI Density SE 95% CI
Acton Lake 70 kHz 0.38 0.01 0.37,0.39 0.47 0.01 0.44, 0.49
120 kHz 0.77 0.03 0.72,0.82 0.68 0.03 0.63,0.74
200 kHz 0.69 0.03 0.64,0.74 2.40 0.20 2.05,2.83
Alum Creek Lake 70 kHz 1.06 0.08 0.91,1.23 0.32 0.00 0.31,0.33
120 kHz 1.37 0.07 1.25,1.51 0.58 0.02  0.54,0.62
200 kHz 3.02 0.22 262,347 0.84 0.04 0.77,0.91
Hoover Reservoir 70 kHz 0.69 0.03 0.63, 0.76 0.61 0.02 0.57, 0.64
120 kHz 1.41 0.04 1.34,1.48 2.18 0.13 1.93, 2.44
200 kHz 1.74 0.08 1.60, 1.90 219 0.12 1.95, 2.44
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829 Table 6. Results from the functional ANOVA used to determine the difference between
830 fish density estimates (# individuals-m2; see Table 4) calculated at the three different
831 transducer frequencies (70, 120, and 200 kHz) during two seasons (Spring: May or

832  June; Summer: August) in Acton Lake, Alum Creek Lake, and Hoover Reservoir, 2017.
833  The partial sill indicates the variance accounted for by each spatial term in the functional
834  ANOVA model, and the range parameter and correlation at 100 m show the relationship
835 between the terms in the model and distance. A larger range parameter indicates strong
836  spatial covariance of that term in the model. The estimated nugget term for the error

837 terms are: Acton Lake = 0.23; Alum Creek Lake = 0.12; and Hoover Reservoir = 0.16.

Reservoir Parameter  Partial Range Correlation at 100
Sill Parameter m
Acton Lake Intercept <0.01 0.21 0.98
Season 0.16 0.21 0.62
Frequency 0.05 0.19 0.58
Error 0.18 2.38 0.41
Alum Creek Lake Intercept 0.04 0.15 0.52
Season 0.21 <0.01 <0.01
Frequency 0.09 1.59 x 105 1.00
Error 0.20 0.12 0.27
Hoover Reservoir  Intercept 0.08 0.03 0.05
Season 0.20 0.04 0.09
Frequency <0.01 11.16 0.99
Error 0.02 5390.01 0.09

838
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FIGURE CAPTIONS

Figure 1. Location of Ohio in North America (A), and the survey design in Acton Lake
(B), Alum Creek Lake (C), and Hoover Reservoir (D). The hydroacoustic (solid
lines), trawling (dashed lines with circle end caps), and abiotic/discrete-depth pump
sampling (squares) sites are displayed on each map.

Figure 2. Length distribution of Chaoborus from discrete-depth pump samples collected
in Acton Lake, Alum Creek Lake, and Hoover Reservoir (Ohio) during 2017. These
data were used to build the predictive models between observed Chaoborus
biomass and hydroacoustic estimates of Chaoborus abundance. Each column
represents a different season (Spring: May or June; Summer: August) sampled and
each row is a specific reservoir. Sampling in the additional reservoirs is described in
Appendix C.

Figure 3. Relationships between hydroacoustic estimates of Chaoborus mean volume
backscattering strength (Sv), which is a proxy for biomass, and estimated
Chaoborus biomass (dry wt) in discrete-depth pump samples collected in Acton
Lake, Alum Creek Lake, and Hoover Reservoir (Ohio) during 2017. Data are
presented from multiple reservoirs, years, times of day, frequencies (200 kHz = left
panels; 430 kHz = right panels), and seasons (spring: May or June = top panels;
summer: August = bottom panels).

Figure 4. Hydroacoustic echograms showing the mean volume backscattering strength
(Sv) of fish and Chaoborus at multiple transducer frequencies (70, 120, and 200 kHz
for fish; 430 kHz for Chaoborus) in Acton Lake (top panels), Alum Creek Lake

(middle panels), and Hoover Reservoir (bottom panels) during August 2017. Fish
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echograms were thresholded with frequency-specific minimum TS values (Table
A1). The Chaoborus echogram was created by masking fish from the 70-kHz
echogram over Sy from the 430-kHz echogram. Columns correspond to transducer
frequency, which increase from left to right. The horizontal axis is 250 m in length.
Note: the near-field of each transducer is frequency-specific and not indicated on the
echograms.

Figure 5. Relationships between total (i.e., both fish and Chaoborus) cell-specific NASC
for pairwise combinations of transducer frequencies (70, 120, 200 and 430 kHz)
during spring (May or June; black circle) and summer (August; open square) in
Acton Lake, Alum Creek Lake, and Hoover Reservoir (Ohio) during 2017. The solid
line is the best-fit major-axis regression line for data from both spring and summer.
Data were not thresholded, although background noise was removed.

Figure 6. Frequency-specific (70, 120, and 200 kHz ) response of total backscattering
(i.e., both fish and Chaoborus) in Acton Lake, Alum Creek Lake, and Hoover
Reservoir (Ohio) during 2017. Values are mean + 1 SE NASC from one third of the
number of cells sampled in each reservoir at night during spring (May or June) and
summer (August). Data were not thresholded, although background noise was

removed.
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Appendix A.

Table A.1. The frequency-specific (70, 120, and 200 kHz) fish target strength threshold (TS min; dB) applied in Acton

Lake, Alum Creek Lake, and Hoover Reservoir (Ohio) during Spring (May or June) and Summer (August), 2017.

Reservoir Survey date TS min: 70 kHz TS min: 120 kHz TS min: 200 kHz

Acton Lake May 30 -61 -60 -63
August 14 -65 -60 -63

Alum Creek Lake May 25 -63 -62 -63
August 28 -63 -62 -63

Hoover Reservoir June 8 -62 -60 -63
August 31 -63 -62 -64
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A. FIGURE CAPTIONS

Figure A.1. Estimated covariance structure of the geostatistical model for all transducer
frequencies (70, 120, and 200 kHz) used to sample fish during May and August
2017 in Acton Lake, Ohio. Except for the 200-kHz transducer in August, the spatial

correlation was close to zero at 0.2 km.

Figure A.2. Estimated covariance structure of the geostatistical model for all transducer
frequencies (70, 120, and 200 kHz) used to sample fish during May and August
2017 in Alum Creek Lake, Ohio. Except for the 70-kHz and 200-kHz transducer in

May, the spatial correlation is close to zero at 0.2 km.

Figure A.3. Estimated covariance structure of the geostatistical model for all transducer
frequencies (70, 120, and 200 kHz) used to sample fish in during June and August
2017 in Hoover Reservoir, Ohio. For all frequencies and both months, the spatial

correlation was close to zero at 0.2 km.
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902  Appendix B.

903 B.1. Spatial modeling of fish abundance

904 In a given reservoir, we recorded locations s = (n,e)T in Northing (n) and Easting
905 (e) coordinates in units of km, measured relative to the centroid of the reservoir. Our
906  spatial domain of interest was D C R?, a contiguous and convex set of locations with a
907  water depth of at least 4 m.

908 Then for a given reservoir, frequency, and season, we had m fish density

909 estimates (Y(s;) : i = 1,...,m), at locations s; = (n;,e;)T. Then, Z(s;) = log(Y(s) + 0.5)

910  denoted our shifted and transformed estimates with Z = (Z(s,), ...,Z(sm))T.

911 We assumed that the transformed (log1o) density estimates over the region
912 D,{Z(s) : s € D}, was a geostatistical process. More specifically, we had {Z(s)} as a
913  Gaussian process (GP) with mean p(s) and covariance C(s, s") for locations s and s’
914 inD. The spatial trend model we used at location s was:

915 w(sy) = Bo + Bin; + Boe; + Psnge;.

916  The covariance between locations s and s’ had the form

917 C(s,s") = 0,exp(—d(s,s')||/0;) + 051(s = s'), (B.1)

918 where 6; was the patrtial sill parameter, 6, the range parameter, 65 the nugget

919 parameter, I(+) the indicator function, and d(s, s') was the Euclidean distance between s
920 ands’.

921 We estimated the trend parameters 8 = (B,, 51, B2, B3)T and spatial covariance
922  parameters 8 = (64,0,,03)T from the data Z using maximum likelihood methods (e.g.,

923  Cressie, 1991). We used R code (R Core Team, 2018), available from
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https://github.com/petercraigmile/GSP, to fit the geostatistical models to each reservoir,

frequency, and time period sampled.

B.2. Predicting average fish density

Letting |D| = fSED ds denote the area of D, the average fish density over D, calculated
from the geostatistical density process {Y(s)} was

1
— Y(s) ds.
IDl SED

Using a set of K prediction locations p;, ..., px spaced 50 m apart, but restricted to cover

D, we estimated this integral using

K

1

Ez Y (pr).
k=1

However, we do not know the actual values of the process Y () at all locations in D.
Instead, using our model, we repeatedly obtained predictions of the shifted and log1o-
transformed process Z(-) at the prediction locations py, ..., pg, transformed the

predictions back to the original scale, and then summarized these simulations.

Then, let = (u(sy), ...u(sm))T denote the spatial trend at the data locations, and
n= (u(sl), ...u(sK))T denote the spatial trend at the predicted locations. Let V =
[C(sisj) :i=1,..,m,j = 1,..,m] denote the covariance matrix for the data Z, P =
[c(pipj):i=1,..,K,j =1,..,K] denote the covariance matrix at the predicted
locations, and € = [C(p;,s;) : i = 1,...,K,j = 1,..m] denote the covariance between the

predicted and data locations.
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Then, a prediction of the shifted and log-transformed process at all the prediction
locations simultaneously, Z, was drawn from a K-variate normal distribution with mean
n+CVZ —u]
and covariance
P—-CcvicT.
To provide an unbiased estimate of the abundance with measures of uncertainty
(SEs and Cls), we repeatedly obtained 1000 sets of predicted values of this process,

ZW,1=1,...,1000. Then, Z®(p;) denoted the Ith prediction at location p; and
YO (p;) = exp (Z(l) (Pi)) - 05
was the back-transformed prediction on the original density scale. Our estimate of the

average fish density from the [th prediction was:

K
1 -
A =—E O ).
1T g Y ()
k=1

We used the average of the 1000 4, values as our estimate of the average fish
density over D and the standard deviation of the values as our SE for the average fish
density over D. We obtained a 95% confidence interval (Cl) for the average fish density

by using 0.025 and 0.975 quantiles of the A4; values.

B.3. Functional ANOVA model

We used a functional analysis of variance (ANOVA) (Kaufman and Sain, 2010) to

model the spatially-varying relationship between frequency and season. While Kaufman
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and Sain (2010) used a Bayesian framework, we used a frequentist approach, fitting the
model in R using maximum likelihood.
For each reservoir, we let D denote the spatial domain of interest in the reservoir.
We let i = 1,2 denote spring (May or June) or summer (August) and let j = 1,2,3 denote
70, 120, and 200 kHz. We then let Z;;(s) be our shifted and log1o transformed fish
density estimate at location s e D. We modeled the following contrasts:
Wi1(s) = Z1,(s) — Z11(s) (120 kHz minus 70 kHz, spring);
Wi,(s) = Z15(s) — Z11(s) (200 kHz minus 70 kHz, spring);
Wy1(s) = Zy,(s) —Z,1(s) (120 kHz minus 70 kHz, summer);
W,,(s) = Z,3(s) — Z5,(s) (200 kHz minus 70 kHz, summer);
with the functional ANOVA model
Wij(s) = u(s) + a;(s) + 6;(s) + €(s), i=12,j=12,s€D.
We then defined the different spatially-varying terms in the model. We assumed
that the spatially-varying intercept term, {u(s) : s € D}, was a Gaussian process (GP)
with mean k,(s) and an exponential covariance with partial sill 6, ; and range parameter

02"

Cgu(s,s’) = Hﬂllexp(—d(s,s’)n/eﬂ_z) (B.2)
The mean term k,(s) was used to capture covariate effects over space; again, we
included the Northing, Easting, and their interaction.
Following Kaufman and Sain (2010), we supposed that the spatially-varying

season effect {a;(s) : se D,i = 1,2} was a GP, with zero mean and covariance
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Co,(s,s")
2 )
—Co,(s,s")
2 )

985 cov(a;(s),ay(s) =

986  where Cy, was an exponential covariance with partial sill 8, , and range parameter 6,
987 (defined similarly to (B.2)). Similarly, we assumed the spatially-varying frequency

988  contrast effects {SJ- (s):seD,j= 1,2} was a GP with zero mean and covariance

Cos(s,s’)
989 cov (6-(5) 5-:(5’)) = 2 ST
g —Cpy(s,s") Iy
2 ) )
990

991  where Cy, was an exponential covariance with partial sill 85, and range parameter 05,
992  (defined similarly to equation B.2).
993 To complete the model, we assumed that the spatially-varying error term
994  {€;;(s) : s € D} was an independent GP (over i and j) with mean zero and exponential
995  covariance with partial sill 6. 1, range parameter 6. ,, and nugget parameter 6, s,
996  (defined similarly to equation B. 1)). Note that only the error term {e;;(s)} contained a
997  nugget term to account for possible measurement error, or short-range spatial effects.
998
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Appendix C.

To develop our hydroacoustic method to estimate Chaoborus abundance, we
supplemented the data collected during 2017, as described in this study, with additional
collections. Specifically, we also conducted hydroacoustic surveys and trawling during
the day (as well as at night) for the reservoirs and dates that were described in the main
text (section 2.1). Alum Creek Lake and Hoover Reservoir were also sampled in their
entirety at night during August 2016, not just in the lower dam as with our 2017
sampling. An additional four reservoirs were sampled at night during August 2016 and
2017, including Burr Oak Lake, Pleasant Hill Lake, and Findlay #2 Reservoir (Findlay #2
Reservoir was only sampled during 2017). Similar hydroacoustic survey designs (i.e.,
zig-zag pattern; section 2.3) to the main manuscript were used in all additional

reservoirs.
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