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Abstract 

Knowledge Infrastructure is an intellectual framework for creating, sharing, and distributing 

knowledge. In this paper, we use Knowledge Infrastructure to address common barriers to entry 

to numerical modeling in Earth sciences: computational modeling education, replicating 

published model results, and reusing published models to extend research. We outline six critical 

functional requirements: 1) workflows designed for new users; 2) a community-supported 

collaborative web platform; 3) distributed data storage; 4) a software environment; 5) a 

personalized cloud-based high-performance computing platform; and 6) a standardized open 

source modeling framework.  Our methods meet these functional requirements by providing 

three interactive computational narratives for hands-on, problem-based research demonstrating 

how to use Landlab on HydroShare. Landlab is an open-source toolkit for building, coupling, 

and exploring two-dimensional numerical models. HydroShare is an online collaborative 

environment for the sharing of data and models. We describe the methods we are using to 

accelerate knowledge development by providing a suite of modular and interoperable process 

components that allows students, domain experts, collaborators, researchers, and sponsors to 

learn by exploring shared data and modeling resources.  The system is designed to support uses 

on the continuum from fully-developed modelling applications to prototyping research software 

tools. 

1 Introduction 

 

Modeling in Earth sciences began with the use of hand-written mathematical formulas that were 

developed from observational evidence, conjecture, or hypothesis, and shared through 

conversation and correspondence. As richness and complexity of our available Earth 

observations have grown in parallel with technological advances in computational resources 

(supercomputing, high-performance computing, and cloud computing), our models now focus on 

couplings among atmospheric, hydrologic, ecologic, geomorphic and human-impacted processes 

(e.g., Tucker and Hancock, 2010; Yetemen et al., 2015a, b; Han et al., 2014, Anders et al., 2008; 

Pande and Sivapalan, 2016). Advances in internet-based cyberinfrastructure research tools and 

technology, also broadly considered as Knowledge Infrastructure (KI), have expanded our 

capacity for structured collaborations in research (Edwards et al., 2013). However, these 

advances often come at the expense of raising the technological bar for entry into numerical 

modeling. Here, with examples from Earth science, we discuss these advances as enablers that 

include three key features: 1) a community platform that allows dynamic interactions among 

developers, researchers, and new users; 2) clear documentation of theoretical and mathematical 

details that are often lost for new users of complex model programs; and 3) model 

reproducibility.  For example, sharing the code and data within a community portal with 

computational capacity allows new users to easily find and test training materials, developers to 

easily distribute open workshop materials, and communities to build new research networks. 

Further, as technology is integrated in the research with greater sophistication, it is increasingly a 
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challenge to keep the fundamental equations that define the driving assumptions in the model 

structure accessible to software users. Using methods such as inclusion of equations and 

references in online documents, can avoid the ‘black box’ syndrome and improve ease of 

learning, transparency, and usability of the modeling code. This provides the Domain of 

Applicability (Netzeva et al., 2005), or ‘building ignorance into the system (Edwards et al., 

2018) to be clear on the purpose and limits of the model. Experimental design is addressed by 

illustrating three different areas where model reproducibility can have an impact on advancing 

science: classroom and peer-to-peer education, replicating published results, and reusing models 

to build new research products.  

 

Knowledge Infrastructure (KI) is an emerging intellectual framework to understand and improve 

how people create, share, interpret observations and modeled results, and distribute knowledge, 

which has dramatically changed and is continually transformed by internet technologies. KIs are 

most simply defined as “robust networks of people, artifacts, and institutions that generate, share, 

and maintain specific knowledge about the human and natural worlds” (Borgman and Traweek, 

2012). In Earth and hydrologic sciences, interpreting observational and model simulated data is a 

fundamental task, but systematic acquisition for interpretations and machine readability is not 

common practice among environmental research infrastructures (Stocker et al., 2018). KI 

advances us beyond cyberinfrastructure, which is limited to distributed computer, information, 

and communication technologies, by including networks of groups and institutions, and the 

cultural practices of developing and sharing computational narratives (Brooks, 1997; Perez and 

Granger, 2015).  Computational narratives are the algorithmic processes involved in creating and 

interpreting computed representations (Mani, 2013). In our case, the algorithmic processes are 

Earth surface models, and the computed representation is the results of the analytical research 

and how those results are summarized. Recent developments in the use of advanced cyber-

infrastructure in Earth science include tools used to support hydroinformatics, such as 

HydroShare (Tarboton et al., 2014a; Tarboton et al., 2014b; Tarboton et al., 2018) and the 

CUAHSI JupyterHub service (Castronova, 2017; Perez and Granger, 2015). Development efforts 

concentrate on the application of information and communication technologies (ICTs) targeted 

for geospatial analytics (Yin et al., 2017) and hydrologic data types and models (Horsburgh et 

al., 2016; Morsy et al., 2017, Strauch et al., 2018) by providing resources for open-source 

practices, including sharing of data and models, and providing cloud computing. With expert 

knowledge or user experience designed to support non-experts, these platforms can be 

effectively used for expanding and broadening our capacity to investigate hydrologic and Earth 

system processes.  

 

In model-based investigations, reproducibility increases confidence in results and improves 

interpretation about what results do and do not mean; lack of reproducibility limits the expansion 

and growth of knowledge (Hutton et al., 2016; Nosek et al., 2015). The advancement of 

knowledge and lowering the barriers to reproducibility can be enabled by KI that supports 
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collaborative research, education, and curriculum development, and improves standards for 

technology practices for publication of research and the description of research presented in 

journal articles.  Web-based interactive computing environments, such as Jupyter Notebooks 

(Perez and Granger, 2015), are designed to execute models and perform data analytics, and have 

become increasingly prevalent to improve reproducibility of research in the past few years (Shen, 

2014), especially with early adopters in the biological sciences (Gross et al., 2014; Ragan-Kelley 

et al., 2013; Ding and Schloss, 2014).   Francis (2018) created a reference of 36 Jupyter 

Notebooks currently available on the web, with limited examples of experiments in the Earth 

sciences community. One of the first interactive notebooks that we know of was published by 

Shen (2014), which provided computational resources for executing code snippets exploring 

astronomy data. This was available online as an interactive Notebook for three years (2014-

2017), and it was replaced with a static view of an example execution of the Notebook in 

November 2017.  Luo et al. (2016) have shown that interacting with web-based models (through 

a graphical user interface) in classroom environments improves higher-level thinking and 

attitudes about complex landscape evolution models. We do not know of any collections of 

Notebooks published with the supporting infrastructure available for authors to maintain 

accessible interactive Notebooks for their readers in hydrologic sciences and Earth surface 

modeling communities, or studies on how interacting with model code improves educational or 

research outcomes.   

 

Recent efforts to provide online computing capacity for Earth science research and education 

included landscape evolution modeling such as the WILSIM model (Luo et al., 2004; 2016), and 

watershed hydrology and erosion modeling using WEPP (Laflen et al., 1991; Laflen et al., 1997; 

Flanagan et al., 2001). While these recent web-based modeling approaches lower the bar for 

model execution, model options and the level of interaction of the users with models are 

constrained by the limited to the set of options envisioned by the developers. These tools rely on 

graphical user interfaces (GUI) with limited user inputs (parameter values, or scenario choices), 

but they do not provide an interactive software environment for user collaboration and co-

creation of knowledge.   To develop a persistent, collaborative environment that will have a 

profound transformational effect on our society (Newman et al., 2003), we need to identify and 

overcome the barriers that are currently preventing rapid adoption of Knowledge Infrastructure 

for Earth surface modelers. 

 

This paper is motivated by the following questions:  Can current software infrastructure and 

research communities (1) facilitate rapid adoption and scientific advancement of complex Earth 

surface models, (2) lower the bar for entry into modeling, (3) improve collaborations among 

scientists and science partners, and (4) to develop usable science and sustainable open source 

software? In addressing these questions, our aim is to explore Knowledge Infrastructure using 

advanced data access and computational resources beyond what an individual scientist would 

normally have available (Bandaragoda et al., 2006).   Below we first describe three emerging 
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open-source modeling practices to lower the bar into modeling (Section 2). In our methods, 

(Section 3), we review basic elements of KI and substantiate it with specific technical details as 

implemented in HydroShare, the CI platform we use in this study.  In the results (Section 4), we 

focus on the use of the Landlab Earth surface modeling toolkit (Hobley et al., 2017), deployed on 

HydroShare, in three use cases that employ emerging open-source modeling practices to lower 

barriers in modeling with specific workflows designed with interactive notebooks aimed at Earth 

science education, and reuse and replication of a research model.  Our discussion (Section 5) 

explores the barriers we have identified, followed by Conclusions (Section 6) on our approach to 

address the motivating questions and current limitations. 

2 Methods 

2.1 Emerging practices for modeling 

The use of cyberinfrastructure to reproduce experiments and share data is expanding. Open 

source cyber-infrastructure platforms for research publication are designed to facilitate the use of 

existing models by making input data and model code publicly available online and providing 

software tools for pre- and post-processing data, running models, sharing data, and formally 

publishing with a digital object identifier (Freeman, 2005; Atkins, 2003).  Using recent examples 

in water monitoring (Horsburgh et al., 2017; Jones et al., 2017; Mihalevich, B.A. 2017), 

landslide modeling (Strauch et al., 2018), and data science (Freire et al., 2016), we identified 

three critical open-source technology practices supported by KI expected to scientific 

discoveries: 

 

2.1.1 Code development in an open source environment 

Evolving software versions, hardware requirements, numerical methods, and code quality limit 

the ability to replicate and reuse model applications. Developing models from a personal 

computer (PC) requires installing a suite of specialized software tools and access to 

computational hardware to visualize, store, and prepare model inputs and outputs. Thus, 

reproducing a study by others often depends on the ability to reproduce the software 

environment.   

 

2.1.2 Cyber-training in numerical modeling education 

The use of numerical models for science education should not diminish the instruction time for 

basic science. Costs that sometimes arise from using models in the classroom include time 

needed for extensive technological instruction, and technical troubleshooting. These costs can be 

avoided by developing software infrastructure that accesses computational and data intensive 

models from a web browser, thereby avoiding the need for any software installations, enabling 

classroom experiences for students that improves understanding of existing theory, and generates 

curiosity to propose hypotheses and design further modeling, field, and laboratory experiments.   

 

2.1.3 Cyber-interactions in Collaboration 
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In most research projects, skills for code development, diagnostics, and model execution are 

limited to a few individuals (graduate students, postdocs, etc). However, most modelers would 

agree that coding errors can be more effectively identified, more user-friendly codes can be 

designed, and new research ideas can be developed when other experts have access to models for 

evaluation, experimentation, and testing.     Therefore, the use of Knowledge Infrastructure for 

research studies where scientists and stakeholders can interact with, execute, and visualize 

various components of coupled models used in collaborative projects, can provide a research 

process for rapid development of ideas and research products, leading to more usable science 

(Lemos et al. 2012). 

2.2 Knowledge Infrastructure Design 

Our approach includes the following six methodological, software, and hardware components 

that can address the barriers to computational modeling: 1) User Experience Design is the 

conceptual and evolving design of the CI that includes all the practices developed to efficiently 

accomplish collaborative online tasks based on personal, collaborator, and institutional cultural 

preferences (e.g. workflow practices for using software to run models and perform data analysis). 

The user experience design guides the development of the  framework, and in research software, 

includes contributions from both developers and new users; 2) a community-supported 

collaborative web platform that interacts with a high performance computing (HPC) and data 

storage nodes, allows for computationally intensive computing, and supports open source 

publishing and privacy (Section 3.2); 3) data storage that may be distributed to different 

locations (Section 3.3); 4) a software environment that provides a library of software and 

programming languages, supporting model applications, version control,  data analytics, and 

facilitates the execution of numerical models (Section 3.4); 5) a cloud-based high performance 

computing (CHPC) platform that hosts the software environment, models, and personal user 

space (Section 3.5); and 6) a standardized modeling framework (Section 3.6). The adoption, 

ongoing adaptation, and growth of an infrastructure system is fundamentally dependent on 

personal research choices, collaborative dependencies, and institutional policies (Section 3.7).  
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Figure 1. Illustration of six basic elements for a knowledge cyberinfrastructure for interactive 

community modeling and exploration.  Research software communities maintain support of 

operations between Docker Containers and software environment. Domain science communities 

maintain support for version control and user communications specific to modeling frameworks.  

2.3 Community supported collaborative web platform: HydroShare 

HydroShare (www.hydroshare.org) is an online collaborative platform developed to address the 

growing computer modeling and data storage and sharing needs of the community. It supports 

the sharing of data and models, developed as HydroShare resources, and facilitates the execution 

of numerical models deployed on tools, or web apps associated with or linked to HydroShare. 

HydroShare is operated by the Consortium of Universities for the Advancement of Hydrologic 

Science, Inc. (CUAHSI; www.cuahsi.org) and in our research serves as the Community 

Supported Collaborative Web Platform (Figure 1, Box 2).  A web browser is the interface to 

HydroShare, which provides access to hydrologic and Earth surface models and data that are 

saved as resources in HydroShare. The architecture of HydroShare is designed to support: (1) 

resource storage, (2) resource exploration, and (3) actions on resources. These are implemented 

using system components that are relatively loosely coupled and interact through APIs. The 

loose coupling takes advantage of Services Oriented Architecture (SOA) that enhances 

robustness as components can be upgraded and advanced relatively independently.  
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2.3.1 Resource Storage 

Content that can be shared within HydroShare is diverse, including digital objects that represent 

multiple hydrologic data types, models and model instances, documents, and other content types 

commonly used in hydrologic research (Horsburgh et al., 2016).  A “resource” is the discrete unit 

of digital content within HydroShare. Resources are cast as “social objects” that can be 

published, collaborated around, annotated, discovered, and accessed (Horsburgh et al., 2016). In 

this resource-centric approach, a resource is the granular unit used for management and access 

control.  HydroShare resources include hydrologic time series, geographic feature (vector data), 

geographic raster (gridded data), multidimensional space-time data sets (e.g., NetCDF), and 

composite resources that represent combinations of these data types, as well as collections that 

group together different resources. Model Programs and Model Instances are additional types of 

content that can be shared and manipulated within HydroShare.   Metadata is maintained that 

tracks system-level attributes of the resource, including timestamps of creation and modification, 

ownership, access control rules, etc. Persistent identifiers, access control, versioning, sharing, 

and discovery are all managed at the resource level in HydroShare. This holds metadata in a 

standardized and machine-readable way to promote interoperability with other systems. 

HydroShare’s overarching resource data model is an implementation of the Open Archives 

Initiative Object Reuse and Exchange (OAI-ORE) standard (Lagoze et al., 2008). OAI-ORE is a 

standard for the description and exchange of web resources.  HydroShare uses the Integrated 

Rule-Oriented Data System (iRODS) (Moore, 2008; iRODS Consortium, 2016; Yi et al., 2018) 

as its distributed network storage back end. iRODS provides a virtual file system for physical 

storage distributed across multiple locations and enables data federation across geographically 

dispersed institutions (Yi et al., 2018).  
 

2.3.2 Resource exploration, discovery and management.   

The primary user interface for HydroShare is the website hosted at www.hydroshare.org, 

developed using the Django web framework (Django Project, 2018) and Mezzanine content 

management system (Mezzanine Project, 2018).  Together, these technologies are used to build a 

system for archiving data and metadata for each resource; and provides a landing page where 

metadata can be entered and edited, or content files added or removed. On the landing page users 

can specify sharing status, e.g. private or public, and manage who has access to edit or view the 

content. A resource may be permanently published in which case it is precluded from further 

editing and assigned a citable digital object identifier (DOI).  The Django website also provides a 

"My Resources" page for listing data that belong to or have been shared with each user, a 

"Discover" page that supports keyword and map based search for content based on their spatial 

coverage information using the Apaches SOLR search platform (Solr Project, 2018), and a 

"Collaborate" page for users to create or join groups aligned around specific water 

themes.   Collectively these web pages provide a system where users can discover and manage 

the content to which they have access, including changing access control settings, and creating 
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new content. The business logic of resource and content types, and access control is all managed 

using standard Python Django software packages.  

 

2.3.3 Actions on resources through web apps. 

The HydroShare repository, broadly consisting  of iRODS middleware for managing data storage 

and a Django website for content  discovery and management, is extended by independent web 

applications that allow users to perform actions on HydroShare data.  Using a services-oriented 

software pattern, HydroShare has been designed to support this interaction with 3rd-party 

applications using a Representative State Transfer (REST) application programming interface 

(API).  The industry-standard OAuth protocol is used to manage authentication and interface 

with HydroShare’s access and control model, which is necessary to support interaction with 

remotely hosted web applications via the API.  Flexible web app launching functionality has 

been established through a HydroShare resource type that defines the URL and parameters for 

invoking the web application. These web app resources can be created by any HydroShare user 

to interact with 3rd-party web applications that are designed to act on HydroShare content. 

HydroShare web applications can be hosted anywhere and have the potential to provide users 

with a gateway to high performance computing. 

2.4  Software Environment: CUAHSI JupyterHub  

This paper makes use of a JupyterHub web application developed and maintained by CUAHSI 

(https://jupyter.cuahsi.org) that leverages Jupyter notebook technology. Jupyter notebooks are an 

effective way to document research analysis, workflows, and modeling procedures in a 

reproducible manner (Kluyver et al., 2016). The CUAHSI-JupyterHub service is under active 

development to support (1) computationally intensive research, (2) data intensive research, (3) 

education and the dissemination of knowledge, and (4) reproducible science. These goals are 

made possible through the development of data transfer mechanisms to move data between 

HydroShare and the JupyterHub environment as seamlessly as possible. Moreover, HydroShare 

provides a mechanism for users to launch notebook workflows and their associated datasets into 

a pre-configured, isolated, remote compute environment. Each compute environment is created 

on-the-fly and contains a persistent data store for performing hydrologic analysis in a manner 

that is insulated from all other users. This is possible by leveraging operating-system-level 

virtualization software such as Docker (Merkel, 2014). Each user instance runs the Ubuntu Linux 

operating system and is pre-configured with scientific Python and R libraries, software for 

interacting with the HydroShare REST API, and various physical models including as Landlab. 

A typical workflow is to launch the CUAHSI-JupyterHub web application from a HydroShare 

resource, programmatically collect any necessary data using the HydroShare REST API, perform 

modeling and analysis, and finally save results back to HydroShare. After these data, i.e. Jupyter 

notebook and data files, are saved back to the HydroShare repository, they can be shared with 
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other users and groups who can further analyze them in a similar way. This back and forth 

sharing enables collaboration in the development and analysis of Landlab models using the 

HydroShare repository and linked JupyterHub web app. 
 
 

2.4.1  Community supported development and operation 

CUAHSI supports the development and operation of CUAHSI JupyterHub as part of the 

HydroShare project (Idaszak et al., 2017) as well as through their cooperative agreement with 

NSF (see Acknowledgements). Development and operation efforts are divided into two 

categories, (1) system maintenance and user support, and (2) hydrologic research and modeling. 

The first category focuses primarily on maintaining existing capabilities, updating libraries, and 

performing system-level maintenance and upgrades. This includes overseeing the installation and 

compiling of Python (versions 2.7 and 3.6), R (version 3.4), scientific libraries such as Pandas, 

Dakota (Adams et al., 2015), SpotPy, NumPy, etc., and modeling applications, e.g. MODFLOW 

6, Landlab, TauDEM. The latter category consists of collaborative research to lower the barrier 

of entry to modern modeling applications such as the Structure for Unifying Multiple Modeling 

Alternatives (SUMMA) and the National Water Model (NWM) configuration of WRF-Hydro. 

These efforts are coordinated using an open source codebase in which code contributions 

undergo a review process and formal release schedule. Users provide feedback and requests via 

GitHub “bug” and “enhancement” tickets. 

 

2.4.2 Tools and Models 

One of the goals of CUAHSI Jupyterhub is to make it simple for users to access the software 

they need without some of the challenges associated with library dependencies, computer 

operating system or platform compatibility and installation challenges.  As such CUAHSI 

JupyterHub has installed and supports a range of software and tools commonly used for 

hydrologic analyses to help users get going quickly in their work; and, make their work more 

reproducible. It is intended for this set of software and models to grow as the platform is further 

developed.  Currently CUAHSI JupyterHub includes the following 

• Landlab, an Earth surface modeling toolkit that this paper focuses on as an example of 

the approach (Hobley et al., 2017) 

• TauDEM, a set of GIS tools for terrain analysis and watershed delineation (Tarboton, 

2018; Tesfa et al., 2011) 

• MODFLOW Groundwater Model 

• The Structure for Unifying Multiple Modeling Alternatives (SUMMA) (Clark et al., 

2008; 2011; 2015b; 2015a) model framework that allows for formal evaluation of 

multiple working hypotheses on model representations of physical processes. 

• iRODS iCommands component for accessing large files efficiently from the HydroShare 

repository using iRODS 
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• Python tools for working with HydroShare Observation Data Model 2 (ODM2) time 

series content types (Horsburgh et al., 2016) 

• The WaterML R package (Kadlec et al., 2015) 
 
 

2.4.3 Landlab Community 

Landlab has four main release per year (February, May, August, November) which accompany 

Landlab's quarterly newsletter "The Landlab Lookout". The newsletter alerts users that a new 

version is available, describes what's new in the release, and gives a summary of Landlab-related 

news (such as Landlab-themed clinics, publications using Landlab, etc.). Occasionally, 

intermediate releases will happen in conjunction with annual community meetings that include 

presentations or workshops that feature Landlab (for instance, American Geophysical Union 

Annual Meeting (December recurring), Geological Society of America (July recurring), 

Community Surface Dynamics Modeling System (May recurring)). This ensures that participants 

of these meetings can use the latest version of Landlab.  In addition to announcing new releases 

via the newsletter, Landlab developers also contact directly other researchers that use Landlab. 

For HydroShare, this means either submitting issues on the HydroShare JupyterHub Github 

repository or sending email directly to CUAHSI JupyterHub developers. This ensures that these 

projects provide their users with the most up-to-date Landlab versions. The role of version 

control is highlighted in Figure 1, as Domain science community support of research.  

2.5 Advanced Cyberinfrastructure and CyberGIS-Jupyter 

HydroShare has recently been developed to exploit cyberGIS (that is, geospatial information 

science and systems based on advanced computing and cyberinfrastructure) and high-

performance computing (HPC) (Wang 2010; Wang and Goodchild 2018). CyberGIS-Jupyter 

allows HydroShare Jupyter notebooks to harness HPC resources such as those provided by the 

NSF Extreme Science and Engineering Discovery Environment (XSEDE) and Resourcing Open 

Geospatial Education and Research (ROGER) supercomputer (Wang 2016). Specifically, 

CyberGIS-Jupyter encompasses the following three major functional components (Yin et al. 

2017): 

• JupyterHub is used to handle authentication and schedule standalone Jupyter 

servers.  After authentication, dedicated containers are sent to the Docker Swarm.  

• Docker Swarm is responsible for spawning and managing all Docker containers across a 

specific group of virtual machines (the swarm). The containerization provides fine-grain 

on-demand provisioning of cloud infrastructure as a service when a user launches a 

notebook. 

• Batch HPC is adapted to harness distributed parallel computing resources, high-

performance storage systems, and cyberGIS software to greatly expand the capabilities of 

a typical Jupyter notebook environment.  
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2.6 Modeling framework:  Landlab and its application on HydroShare 

A new paradigm in hydrologic and Earth system modeling is emerging where complex systems 

once coded in Fortran, C++ and cryptic scripts developed for research are being reconfigured in 

open-source Python, component-based systems.   Landlab is one such system based on a Python-

language programming library that supports efficient creation and/or coupling of 2D numerical 

models (Hobley et al., 2017).  It is a framework geared towards (but not limited to) Earth-surface 

dynamics. Landlab is composed of three main divisions of code: grid, components, and 

supporting utilities. The spatial template for modeling is created by the Landlab ModelGrid 

class. ModelGrid provides common structured and unstructured (e.g., Voronoi polygons) data 

structures where data fields can be attached to grid elements, and grid elements can be built as a 

structured or unstructured grid in a single line of code. Each physical process is coded into 

individual Landlab class, and added to the Landlab library as a Component, providing an 

ecosystem of hypothesized behavior of Earth system processes. Supporting utilities and driver 

scripts were developed to pre-process, post-process, and improve workflow efficiencies for 

coupling multiple components. Most components operate on, interact with and update grid fields. 

Components can be coupled via data exchange over the grid. A model driver is a Python script 

developed to import, instantiate, and run a single or multiple coupled Landlab components. 

Landlab utilities provide tools for input/output management and visualization.  In this paper we 

use models for coupled ecohydrology and spatial vegetation dynamics, flow routing (Adams et 

al., 2017), and landslide probability (Strauch et al., 2018) along with a recently developed 

climate data handling utility. As with the open-source nature of Landlab, a growing community 

of developers contribute numerical functions, process-based components, and utilities.  
 
 

A Landlab model developer who is interested to share a Landlab model application can develop 

their model drivers using a Jupyter notebook. This Jupyter notebook is then deployed on 

HydroShare, by “publishing” as a resource. Through this process the user obtains a DOI for their 

resource and the resource becomes available for others to use. Jupyter notebook interacts with 

the CUAHSI JupyterHub server and executes the model. In preparation of a Landlab JN there are 

few must-complete steps. These are listed in the pseudo code below, using an example that 

couples a storm driver, soil moisture, and vegetation dynamics components.  
 
 

2.7 User experience design for multiple learning pathways 

In this section, we describe how the Knowledge Infrastructure can be viewed from the lens of a 

research workflow presented in Appendix A: using Landlab on HydroShare.  Upon publication 

of a resource and its deployment to users, simply by sharing the location of the resource on 

HydroShare. Users may be composed of collaborators in a research project, stakeholders of 

watershed resources, and students, the users begin learning and exploring the code. In the figure 
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the user interactions with the model depicted in two levels. The user explores Landlab on 

HydroShare using the deployed model driver by changing parameter values of the process 

components and perhaps explores other components by adding them to the driver (lower curved-

arrow).  In the process of exploring the model the user may develop new ideas to develop new 

process representations presented as new components in Landlab or develop new ways of data 

visualization. These new developments on Landlab components will require the users to 

contribute their work to the Landlab repository and Landlab version updates and its further 

deployment on to HydroShare. These model developments can continue offline by installing and 

using Landlab on a personal computer, or other JupyterHub servers.  
 

2.8 Data and Models for Three Computational Narratives  

To illustrate our methods for lowering the barriers to computational modeling, we have 

developed three computational narratives for user experience (UX) (Table 1). A computational 

narrative can be considered a story that can be told about the data by executing scripts that 

generate data analysis and visualization in the provided workflow.   Recognizing that every 

experience is made of many parts that contribute to the adoption and evolution of tool 

development, and the narrative (see Section 5, Inductive and/or Deductive) can provide a 

framework for a user to generate their own story by exploring the science topic with interactive 

tools. A UX can be described as a computer-human interaction.  The importance of UX design is 

becoming more widely recognized in science and technology development to achieve the desired 

outcome of the UX such as improving the knowledge-base and cognitive capabilities of users 

(Baldwin, 2013; Glassdoor, 2017).    Given that an experience may be generated by any 

interaction, we designed three example computational narratives to generate individual 

experiences, share understanding on existing theory, and to open doors for future developments 

(Forlizzi and Ford, 2000).   In the first case, we give an example of how to use this infrastructure 

(Figure 1) to develop training and educational materials for classroom curriculum. This example 

focuses on the use of flexible components in a modeling framework to demonstrate two 

approaches for flow routing, from simple to more complex solution of the same shallow water 

equation, with inductive narrative workflows designed to orient new users to a focused set of 

theoretical concepts that can be explored with minimum background in the computational 

infrastructure or coding.    

 

In the second case, we illustrate how a researcher may execute a model to replicate reported 

findings in a published study on annual landslide probability. We particularly focus on how the 

use of a controlled software environment provides easy access to new users of the tool and 

facilitates the exploration of other questions associated with the processes investigated using the 

same tool and data. This is an example of a deductive workflow, where new hypotheses are 

tested using a published set of tools and data.  In the third computational narrative, we present a 
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more sophisticated example for executing a published ecohydrology model, enhanced and 

applied in a new location. It uses a component bundling idea for efficient scenario building to 

explore eco-hydrologic response to a climatic gradient mediated by elevation. This example 

illustrates a research cycle that includes both inductive and deductive workflows to generate new 

understanding. Computational narratives demonstrate how to use Knowledge Infrastructure to 

educate, replicate, and reuse Earth surface models where the user interacts with the infrastructure 

to develop their own story. 

 

Table 1.  Three study problems were designed with a focus to 1) explore, 2) replication, and 3) 

reuse research.  Computational narratives demonstrate how to use Knowledge Infrastructure for 

computation and visualization of Earth surface models where the user interacts with the 

infrastructure to develop their own story.   
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Notebooks are designed with up to 10 sections. For example, for the example (see 4.1), Section 1 

introduces the theory and the conceptual design of the models. For example, in the first notebook 

we begin with the theory of the 1-D Saint Venant equation for transient shallow water flow, 

which is at the core of many hydrodynamic models.  Data Science and Cyberinfrastructure 

methods are provided in Section 2.0, followed by Landlab Methods (Section 3.0). Sections 1 to 3 

are designed to function as an interactive textbook or reference. In the section labeled ‘Make 

Model Decisions’ (Section 4.0), our aim is to clearly distinguish the component-based options 

for designing a model experiment. For example, in the first notebook we provide options for 

designing a storm hydrograph based on the choice of basin, storm intensity, and routing 

method.  Model Computations (Section 5.0) and Results (Section 6.0) provide code to execute 

the model, visualize results, and export data. Discussion (7.0), Conclusions (8.0), and Saving 

results to HydroShare (Section 9.0) are designed to support graduate level coursework in 

Hydrologic Processes and Modeling. Finally, users are provided shell script prompts that can be 

executed in the Jupyter Notebook to remove data from the JupyterHub server after completing 

their work (Section 10). 

3 Results 

In our results we describe three computational narratives we designed to lower barriers to 

computational modeling using the CI described in Section 2.  We relied on Juptyer notebooks for 

sharing the following computational narratives and designed the sequence of commentary text 

and code blocks to be generally useful to Earth surface modeling research communities. Hanney 

and Savin-Badem (2013) suggest that combining project and problem-based learning may be the 

best practice for generating engagement, critical thinking, and creativity, with the use of 

problem-based learning as an important tool for providing authentic experiences, highly valued 

by all learners (Kokotsaki et al., 2016).    
 
3.1 Notebook 1: Exploring runoff hydrographs with Landlab 

  
3.1.1. Notebook 1 Overview 

This notebook provides resources to compare two different flow routing schemes, kinematic 
wave and overland flow (2D de’Almeida (2012) solution of the Saint Venant equation), as 
explained on the notebook in detail, in two different landscapes for a given rate of rainfall excess 
(rainfall in excess of infiltration). The notebook can be used to investigate process-based 
questions on the generation of overland flow hydrographs across the landscape in relation to the 
role of runoff rate, watershed topography, network structure, and surface roughness, and it 
allows to compare and contrast the properties of streamflow hydrographs generated by the two 
different flow routing algorithms.  To provide a contrast between different landscape shapes, this 
notebook uses two domains: a watershed from central Arizona, Spring Creek and a modeled 
rectangular landscape obtained by running an existing fluvial landscape evolution model driver 
in Landlab (Adams et al., 2017). Both landscapes have a drainage area of 36 km2 and a cell size 
of 30 m.   Rain falls on the landscape and flows downhill, driving overland flow and a 
hydrograph at every location on the landscape. In this notebook, we track the hydrograph at three 
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points in the watershed.  We recommend that the users review introductory concepts of overland 
flow and hydrographs before using this notebook and develop familiarity with the term’s rainfall 
intensity and duration, as well as peak discharge, hydrograph time to peak, rising limb and 
falling limb. our aim is to clearly distinguish the component-based options for designing a storm 
hydrograph based on the choice of basin, storm intensity, and routing method.  
  
  3.1.2 Notebook 1 Interactive Steps 
 
The notebook is designed to run the model several times, each time changing the rainfall 
characteristics, routing methods or watershed on which flow is routed. Different combinations of 
model components (or ‘model instance’) will generate different hydrographs through which the 
user can explore how different parameters affect hydrograph characteristics. We have provided 
code to import spatial data linked to the original source of the use of this notebook (Adams et al., 
2017) published on HydroShare, so that code can be reproducibly executed with the original 
ascii text files on a personal computer. In initial runs, the user does not need to change any code, 
but different scenarios can be developed by switching between test watersheds by changing 
model parameters such as basin_flag to equal “Spring Creek” or to “Square”. Table 2 lists the 
parameters used to obtain the results shown in Figure 2. To generate a storm hydrograph over a 
modeled time period; approximately 50,000 model timesteps (seconds) could take up to ten 
minutes of computational run-time (Section 5.0) on existing computer infrastructure (in 
development for XSEDE; also possible on commercial cloud platforms). We illustrated outputs 
from the flow routing notebook in Figure 2. The user selects which Landlab component to run: 
KinwaveImplicitOverlandflow or Overlandflow components.  

Table 2. Parameters used to obtain Spring Creek High Intensity model comparisons between 
kinematic wave and overland flow model.  
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Figure 2. Illustration of flow routing outputs. (a) Elevation map of Spring Creek, central CO 

with locations (outlet, midstream, upstream) where hydrographs are plotted. (b, d) Hydrographs 

plotted at three locations shown in (a) driven by the high intensity rainfall option using 

KinwaveImplicitOverlandflow and Overlandflow components, respectively. (c, e) Flow depth 

maps during peak flow for KinwaveImplicitOverlandflow and Overlandflow components, 

respectively. Results were produced on HydroShare using the Landlab modeling framework.  
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3.1.3 Impacts on Numerical Modeling Education.   

 
Using an interactive notebook as a component of the science and engineering curriculum is 
expected to increase student and faculty access to modeling tools. Rather than relying on 
software in a computer laboratory or asking students to install new software on their computers, 
the code can be used in any classroom by every student with access to any computer with a web 
browser.  The example illustrates how model methods and output options can be developed to 
enhance multifaceted learning experience of the process of interest. In the first notebook there 
are three main components and various scenarios to explore: two different watersheds, two 
routing methods and three different storms. Students can simultaneously run scenarios by 
systematically changing the flags (e.g. routing_method, basin_flag and storm_flag), re-running 
all code blocks sequentially, and saving the resulting hydrograph plots for each scenario to use in 
project reporting or homework. The two different flow routing methods show the outcome of 
including the gradients of fluid pressure and bed elevation, and friction terms of the shallow 
water equation with different assumptions on hydrographs. Multiple locations for plotting 
hydrographs in two watersheds will show the role of catchment size and properties. Different 
excess rainfall intensities are for exploring how increased runoff depth change the hydrograph 
properties. Advanced students may use the code to build their own visualization, Landlab 
components, or model optimizations.  Because all students can gain hands on experience with the 
model and code during the classroom instruction, it increases the opportunity and depth of 
discussions between classmates by providing peer-to-peer learning environment.  
 

3.1.4. Notebook 1 Access 

To run this notebook, go to this HydroShare resource (Bandaragoda et al., 2018), click on the 

blue “Open With” button, select JupyterHub (conceptually this will bring you to block 4 in 

Figure 1), and execute the first three code blocks of the Welcome page to connect with the cloud 

computing environment.  These steps will certify you are a HydroShare user, download the data 

and Notebooks from this HydroShare resource to a personal user space in the HydroShare cloud, 

and print a report of the data that has been downloaded.  Click on the hyperlink for 

explore_routing_tutorial.ipynb below the third code block to launch the Notebook described in 

this section.  Alternatively, advanced users (edits are required to remove HydroShare 

dependencies) can download the Notebook to run on a personal computer with an installed 

version of Landlab. The Notebook can be directly downloaded (no requirement to become a 

HydroShare User) at this link: explore_routing_tutorial.ipynb, or viewed on Github in the 

Landlab organization, tutorials repository, see the explore_flow_routing folder.  

3.2 Notebook 2: Replicate a landslide model to explore fire impacts on slope instability in 

a watershed within a regional study 

3.2.1. Notebook 2 Overview 
Landslides are notoriously challenging to predict (van Westen et al. 2006).  A new model 
developed as a component in Landlab (LandslideProbability) offers the ability to predict the 
probability of shallow landslide initiation at regional scales. Probability of landsliding is 
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calculated by the infinite-slope stability equation using a Monte Carlo approach by introducing 
uncertainty to soil, vegetation, and recharge variables. This model was first implemented in a 
2,700 km2 area in the North Cascades National Park Complex (NOCA) of Washington State 
(Figure 3), where annual probability and return period for shallow landslide initiation was 
mapped for different soil depth products (Figure 4) (Strauch et al. 2018).  Considering the 
uncertainty of soil depth, root cohesion, and mechanical soil properties, the model predicts 20% 
to 40% of the area with a landslide return period of 1 in 100 years or less (Figure 4). In 
comparison to Notebook 1 designed for classroom use, this notebook is designed to replicate 
model results from Strauch et al. (2018) in Thunder Creek watershed, located within  NOCA. It 
calculates the probability of shallow landslide initiation at a 30-m rectangular grid resolution 
across the watershed using gridded datasets of landscape characteristics for topography (slope 
and upslope catchment area), land use and land cover (vegetation type, root cohesion), soil 
(internal friction angle and transmissivity) and annual maximum daily subsurface flow recharge 
rate derived from a previously run hydrologic model. All the resources needed for model 
application are obtained from the existing HydroShare resource from Strauch et al. (2018). Code 
is provided to import data from the regional NOCA area and create a subset of this data covering 
Thunder Creek watershed through import of a watershed boundary shapefile.  The mean relative 
wetness and probability of saturated conditions at each grid cell are also calculated in the process 
of calculating the probability of landsliding. The notebook is designed for exploring the 
sensitivity of landsliding to environmental conditions that lead to loss of root cohesion, such as a 
wildfire or timber harvest. 

 
Figure 3. (a) Example debris avalanches (cyan) mapped in three areas within NOCA. Contours 
are in 100- m intervals. Aerial image source from World Imagery, Esri Inc.; (b) elevation 
distribution of the relative frequency of mapped debris avalanche source areas ; and (c) High 
elevation rock and glacier surrounding Spiral Glacier in North Cascades showing a bedrock 
glacier cirque with thin barren soils and moraine deposits (photo by John Scurlock with 
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permission), (d) elevation (ft) for NOCA model extent from Strauch et al. (2018), and (e) for the 
subset for the Thunder Creek extent. (Figures a-c adapted in entirety from Strauch et al., 2018 
under CC BY 4.0). 
  

 
Figure 4. Maps show modeled landslide return periods using Landlab for NOCA overlain with 
mapped debris avalanches, including zoomed in areas at top for greater detail.  The uncertainty 
of soil depth was characterized from a long-term soil evolution model (M-SD LT). Cumulative 
distribution of return periods for SSURGO soil depth (SSURGO-SD), modeled soil depth (M-
SD), and modeled soil depth considering long-term dynamics (M-SD LT) scenarios, plotted on a 
log-log scale using the Weibull plotting position.  (Figure adapted in entirety from Strauch et al., 
2018 under CC BY 4.0). 
  

3.2.2. Notebook 2 Interactive Steps 
The Notebook is organized with an introduction (Section 1.0) to the Infinite Slope Factor of 
Safety Equation, which predicts the ratio of stabilizing to destabilizing forces on a hillslope 
plane, and the Monte Carlo solution developed to compute probability of landslide 
initiation.  Data Science and Cyberinfrastructure methods are provided in Section 2.0 that 
describe specifics of accessing existing spatial data, extracting information for the watershed of 
interest, followed by Landlab Methods for setting model parameters. In the subsection labeled 
‘Specify Recharge’’ our aim is to clearly distinguish the component-based options for studying 
the impact of assumptions related to recharge and hydrologic forcing on landslide 
probability.  At the end of this section, the number of Monte Carlo iterations is assigned. In 
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Section 3.0 (Results), the model is executed for Thunder Creek and the results are visualized. 
Steps for saving results back to HydroShare are listed in Section 4.0.  
  
To support graduate level coursework in hydrologic processes and modeling, we include code 
blocks that print more explanatory variables and numerical values to verify results are as 
reported in Strauch et al. (2018).  In this demonstration notebook, the user imports necessary 
Python utilities and libraries and reviews the data needed to execute the landslide model. Code is 
provided to import data from the regional NOCA area and create a subset of this data covering 
Thunder Creek watershed through import of a watershed boundary shapefile. One of four 
recharge options is  specified, and the user loads existing mapped landslides to overlay on the 
landscape to compare with the probabilistic landslide hazard map. The user specifies the number 
of iterations to use in a Monte Carlo simulation, then runs the LandslideProbability component 
with two cohesion assumptions. The first cohesion assumption is based on existing conditions as 
described in Strauch et al., (2018). The second cohesion assumption (generating a second model 
instance) approximates post-fire conditions where root cohesion is reduced by 70%. This 
represents the reduced root cohesion following a wildfire as existing roots decay following 
wildfire while new roots begin to regenerate (Sidle, 1992; Istanbulluoglu et al., 2004).  Finally, 
maps are generated to compare the results of the stability analyses and results can be saved back 
to HydroShare (Figure 5).  
  

 
Figure 5.  Landslide probability estimates in the Thunder Creek watershed (photo) increase 
given post-fire root cohesion assumptions (70% less), as compared to the original cohesion 
assumptions in Strauch et al. (2018).  As an example of cyberinfrastructure functionality, the 
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notebook replicates published findings, as well as tests the parameter function described in the 
peer-reviewed publication. Inset maps and cumulative distribution plots of the spatial probability 
of landsliding for pre-fire and post-fire conditions.  
  
Replication of the Strauch et al. (2018) model in Thunder Creek for potential postfire conditions 
clearly show an increase in annual probability of failure (PF) during when the root cohesion is 
reduced following wildfire. In the pre-fire simulation, 25% of the landslide is unconditionally 
unstable PF=1.0, meaning that the soil cannot stand on these slopes. This high annual probability 
is a conservative estimate and it is largely due to the use of the SSURGO soil depth product in 
this application. Strauch et al. (2018) discussed how more processed based modeling of soil 
depth reduce PF to more realistic ranges. With wildfire impact unconditionally unstable regions 
grew to >40% of the watershed. Before fires, ~40% of the watershed is unconditionally stable 
PF=0.0. These regions are located in the lower portions of U-shaped pro-glacial valleys (Figure 
5). With a vegetation disturbance such as wildfire, this fraction is reduced to <5%, which could 
lead increased sediment input from the sides of U-shaped valley directly to the valley floor, and 
result in decline of aquatic habitat quality.  
  
     3.2.3. Impacts on replicating scientific findings  

This notebook is designed for Earth scientists and stakeholders who are interested in 

understanding the landslide hazard risk as a probability in space and time.  Running this 

notebook using Landlab leverages the software infrastructure of the Landlab Python toolkit, 

which standardizes the handling of spatial-temporal data. Executing the notebook on HydroShare 

allows the ability to store necessary data, deploy the model via a super computer, and see the 

results, which can be evaluated and shared.  Thus, the notebook becomes a one-stop online 

platform for demonstrating the landslide model and facilitating ease of model augmentation. 

Current barriers to conducting landslide hazard analysis includes the ability to consider 

landscape variability, data uncertainty, and hydrological triggering mechanisms over a large 

spatial scale. This narrative helps reduce the barrier of significant time investment to 

implementing a complex model by providing the necessary data and code for implementing the 

Landlab LandslideProbability component.  As a result, the researcher can see what the model 

requires and how it runs to produce the results presented in a publication. The notebook can 

provide an example that can be modified to use in a new study effectively across the 

nation.   Additionally, the barrier to accessing compiled observations and research products is 

overcome with this notebook, including compiled spatial-temporal visualizations that can be 

used to communicate results.  

 

3.2.4. Notebook 2 Access 

To replicate a published regional Landlab shallow landslide model to explore changes in forest 

cover at a subcatchment scale, within the NOCA study area, using the Jupyter notebook 

replicate_landslide_model_for_fire.ipynb available on HydroShare, see Bandaragoda et al., 

(2018). 
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3.3  Notebook 3. Reuse an Ecohydrology Model with Gridded Hydrometeorology 
Forcing 
 
3.3.1. Notebook 3 Overview 

In semiarid regions climate change and human impact can lead to dramatic changes in the 
composition and organization of Plant Functional Types (PFTs), such as trees and shrubs, and 
thus the biomass production of the ecosystem. Ecohydrologic vegetation dynamics models are 
tools that can be used to explore the role of climatology on the spatial organization of PFTs 
(Fatichi et al., 2016). In this notebook, we adapt Landlab’s ecohydrologic vegetation dynamics 
model to illustrate how an existing model can be reused by enhancing and developing a 
workflow at a new location, in our case for studying the role of elevation-dependent precipitation 
and temperature gradients on PFTs using historical gridded daily weather data from Livneh et al. 
(2015). Broad elevation bands, low (1200-1700 m), medium (1700-2000 m)  and high (2000-
2500 m) are developed and the ecohydrology model in Landlab is implemented to simulate the 
resultant organization of PFTs at each elevation band in the state of New Mexico on hypothetical 
flat surfaces with a spatially homogenous soil textural properties (Figure 6).  
  
The Landlab ecohydrology mode we used, is based on  CATGraSS (Cellular Automaton Tree 
Grass Shrub Simulator), a discrete time Cellular Automaton (CA) model for spatial evolution of 
PFTs (Zhou et al., 2013). In CATGraSS each cell in the domain can be occupied by a single 
PFT: Tree, Shrub, Grass or left unoccupied as bare soil. The model couples local ecohydrologic 
vegetation dynamics, which simulate biomass production based on local soil moisture and actual 
evapotranspiration, with spatial processes for plant establishment and mortality controlled by 
seed dispersal rules, water stress tolerance, and space availability. Trees and shrubs disperse 
seeds to their neighbors. Grass seeds are assumed to be available everywhere. Establishment of 
plants in bare cells is determined probabilistically based on water stress of PFTs neighboring the 
bare cells. Plants with lower water stress have higher probability of establishment. Plant 
mortality is simulated probabilistically as a result of aging and drought stress. The model is 
driven by rainfall pulses (observed or generated), solar radiation and temperature. The latter two 
variables can also be used to prescribe a seasonal potential evapotranspiration input. In Landlab, 
the model is implemented as a set of interacting components, each describing a different element 
of the coupled system: PrecipitationDistribution, Radiation, PotentialEvapotranspiration, 
SoilMoisture, Vegetation (component for local growth), and VegCA (component for cellular 
automaton rules).   
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a) b)  

 
Figure 6. Map of elevation bands in New Mexico State (a) used to extract gridded 
Hydrometeorological forcing data Elevation bins are referred to as: Low elevation (1200-1700 
m), mid elevation (1700-2000 m), and high elevation (2000-2500 m).  The vegetation patterns 
from aerial imagery of New Mexico are distinct within these bands (b).  
 
 

3.3.2. Notebook 3 Interactive Steps and model results 

 

In this notebook, we define the geographic subset (New Mexico) within North America and 

download gridded hydrometeorologic data from Livneh et al. (2015) for this region. Then, we 

bin this data into three elevation ranges by considering elevation of centroids of the cells in the 

gridded dataset and calculate the spatial means of daily precipitation, maximum and minimum 

temperature for each bin. These data are used to force the ecohydrology model at each elevation 

bin. The hydrometeorological data handling steps are executed in a separate notebook  named 

observatory_gridmet_newmexico.ipynb,located in the folder ogh_newmexico, which runs a 

recently developed Python package for automated retrieval, preprocessing, and visualization of 

gridded hydrometeorology data products (Phuong et al., 2018). As we described in the Jupyter 

notebook for this example, we found that the Livneh et al (2015) data had a wet bias in 

precipitation. This bias is corrected by gathering weather station data (Moore (2011)) that span 

the range of the elevation bins we used from the Livneh et al. (2015) data. Time series of bias 

corrected annual precipitation and mean monthly temperature show wetter and cooler conditions 

as elevation grows  (Figure 7). There is a positive trend in annual precipitation from 1950 to 

1990, followed by a slight negative trend. In the application of this notebook we suggest the 

users to explore the model outputs to see if this precipitation trend had any impact on the spatial 

cover fractions of PFTs. Following the bias correction, the three elevation bins resulted in 
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climatology’s from arid, in the low elevation bin, to semiarid conditions in the high elevation bin 

according to the aridity index classification (Nash et al., 1999), discussed in relation to model 

results below. Since the historical data extends only for 64 years (Figure 7), we extended the 

record to by tiling the daily historical data to facilitate longer vegetation development 

simulations. The limitation of this approach is that the same climate repeats itself in every 64 

years.   
 
 

 
Figure 7. Climate data downloaded and processed from Livneh et al. (2015). a)  Annual 

precipitation plotted with respect to time for each elevation band. b) Mean monthly daily 

minimum and maximum temperatures for each elevation band.  

The notebook presents three model runs to explore the role of elevation-dependent changes in the 

regional climatology on modeled spatial patterns of PFTs (shrub, grass, tree), and plots the time 

series of annual areal cover fraction of each PFT that emerge in the domain for a model run time 

of 1500 years.   The Notebook begins with an introduction (Section 1.0) to the Landlab 

Ecohydrology model, and the Landlab components used to build this model. Data Science and 

Cyberinfrastructure methods are provided (Section 2.0), followed by Climate Methods (Section 

3.0) and Ecohydrology Modeling using Landlab Methods (Section 4.0).  Finally, instructions to 

Save the results back into HydroShare (Section 5.0) are given.    



27 
 

 
 
 

Figure 8.  Spatial Organization of PFTs at year 1503 (left column)  and Annual areal cover 

fraction of each PFT plotted with respect to time (right column) for; a) low elevation landscapes 

(1200 m to 1700 m), b) mid elevation landscapes (1700 m to 2000 m), and c) high elevation 

landscapes (2000 m to 2500 m). 
 

Starting with a randomly distributed equal fractions of tree, grass, shrub vegetation and bare soil, 

the model organizes the spatial distribution of PFTs through time. In the low elevation band 

(MAP = 217mm, PET = 1601mm/y, Aridity Index (AI) = 7.34) the local climate can be 

considered arid, AI>5 (Nash et al., 1999).  Drought-tolerant shrub vegetation outcompetes trees, 
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leaving a few trees behind, while grass gradually retreats, leading to an ecosystem where shrubs 

dominate but co-exist with grass as a secondary PFT. The modeled PFT map (Figure 8 a, left) 

shows pockets of grass clusters within the shrub domain. A few small clusters of trees still exist 

in very low fraction of the domain.  It would be interesting to explore how the grass-shrub 

interplay shape over longer time using this model. Note that the bell-shaped response of grass, 

and to an extent, shrubs in this simulation can be attributed to the trends in the precipitation data 

in the historical period, giving 5% to 10% boost to the areal grass coverage and ~ 5% for shrubs. 

The repetition of the bell-shaped response is due to the tiling of the historical precipitation and 

temperature data. 

 

In the mid elevations (MAP = 285mm, PET = 1427mm/y, AI = 5) in the arid to semiarid climate 

transition (Nash et al., 1999), the conditions are cooler and wetter compared to low elevation 

band in this example. These conditions provide moisture to sustain enough healthy trees allowing 

them to outcompete shrubs, as trees can spread seeds to longer distances than shrubs for 

establishment, to become the primary PFT. Grass grows in empty spaces that are not surrounded 

by healthy trees or shrubs due to two reasons; 1) the availability of seeds everywhere, 2) lack of 

PFTs that outcompete them for establishment, as trees and shrubs are competing. This leads to an 

ecosystem dominated by trees but co-existing with grass as secondary PFT and shrubs as the 

tertiary PFT (Figure 8 b, right). It will be worthwhile to check whether this ecosystem can 

sustain the co-existence of the three PFTs for longer periods of time.   

 

At high elevations (MAP = 353mm, PET = 1293mm/y, AI = 3.66), climate is the coolest and 

wettest among the three elevation bands and fall in the semi-arid category (Nash et al., 1999). 

Trees dominate shrubs gradually, leading to an ecosystem dominated by trees, while grass 

retreats gradually and stabilize. Only few small shrub clusters remain after 1500 year. Users can 

run this model longer to see if shrubs will completely disappear from the ecosystem.    In 

addition to running the notebooks for a longer period of time as discussed above, one can also 

edit the model inputs by modifying the file ecohyd_inputs.yaml (located in the folder 

supporting_files) and explore various hypotheses, for example by changing the soil texture or 

modifying vegetation parameters to explore how local vegetation dynamics can impact the 

spatial organization of plants.  
 

3.3.3 Impacts on use and reuse of research models 

This notebook is designed for Earth scientists who are interested in understanding the influence 

of climate on long-term climate-driven changes the spatial vegetation patterns in semi-arid 

landscapes. The ecohydrologic vegetation dynamics model built in Landlab leverages the 

framework’s flexibility for building numerical models from components and utilities available in 

its library. In this example, we have demonstrated how to use a Landlab model multiple times on 
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HydroShare using downloaded gridded meteorological datasets with the OGH library (Phuong et 

al., 2018).  
 
 

3.3.4 Notebook 3 Access 

To reuse this ecohydrology model using Landlab and HydroShare in our New Mexico example 

or for another location in the continental United States, use the Jupyter notebook 

reuse_ecohydrology_gridhydromet.ipynb available on HydroShare, see Bandaragoda et al., 

(2018) or  this link.  

4 Discussion 

Broadly speaking, cyberinfrastructure can be considered a social construct -- components of 

hardware and software are built by a community of developers based on a perceived need, or by 

employing user experience research to guide design decisions.  When the design of the CI system 

is a creative and problem-solving endeavor developed with a community committed to using it 

for their research and education, with feedback and investments of resources -- in which case, the 

CI be considered Knowledge Infrastructure. We define Knowledge Infrastructure as a web-based 

system of tools that can be adapted and co-opted to develop technological and sociological 

solutions to emerging problems of complex systems by efficiently connecting researchers, their 

data and models, private and public users, and investors committed to long-term maintenance 

and operations of distributed computing resources.  Through the work of developing a 

description of how others can interact with our Earth surface model results, we learned that the 

CI outlined in Figure 1 is just one realization of how to synthesize CI components to run Landlab 

models on HydroShare. We expect that this model will evolve with each research application, 

model, and user, especially as technology advances and user input improves usability. All users 

benefit when systematic processes support training for learning new tools and incorporating 

emerging technology into scientific methods.  
 

There are two main challenges to conducting sophisticated Earth surface model applications, 1) 

they are computationally and data intensive, and 2) communication of methods and results 

through traditional peer reviewed journal publications, conference presentations, as well as 

student-mentor and peer-peer relationships, may not be efficient at ensuring reproducible results. 

Here we consider “reproducible” to include both the ability to replicate published results (e.g. 

testable by editors, reviewers, or readers), and to reuse the research products as a baseline for 

future studies (e.g. accessible code and data).  Reproducibility in Earth surface modeling is time 

and resources expensive; and addressing the challenges above is common across most of 

computationally intensive sciences requiring research software development. For example, a 

spatially distributed numerical model application for landslide risk should be reproducible both 

at the site where model is calibrated and applied in a paper, and the cyberinfrastructure should 
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provide the flexibility for the same model to be applied at another site just by changing several 

spatial inputs on the same platform. For another example, an individual researcher may choose a 

personal cyberinfrastructure system (Horsburgh et al., 2016) that they design, develop, and/or 

inherit from colleagues.  Whereas a research collaboration, such as a study by multiple domain 

scientists and institutions, may require co-design of Knowledge Infrastructure to address a broad 

range of formal and informal processes that support the ongoing development of research 

products.   

 

We submit for consideration by the Earth surface research community that more attention on 

designing both personal cyberinfrastructure and shared Knowledge Infrastructure will accelerate 

our research productivity.  The aim is to deploy the latest technologies in such a way as to 

minimize the researchers’ effort to acquire expertise in technologies outside their domain, and to 

better enable domain scientists to focus their attention on the theoretical underpinnings and 

development of new process-based understanding of the Earth system.  In the current rapidly 

evolving environment of computer technologies, the community of researchers often needs to 

keep pace with technological advancements, such as new computational platforms (high 

performance and cloud computing), open source modeling frameworks, and software paradigms, 

libraries and tools. We identified five barriers that can be addressed with Knowledge 

Infrastructure design in research (Section 5.1).  We found that these barriers can be lowered by 

including user input in the system development process (Section 5.2), which we expect to 

advance science through simultaneously supporting both inductive and deductive learning 

processes (Section 5.3).  

 

4.1 Defining five common barriers  

During our work we notices five common barriers, and sought to lower these for more students 

and researchers to utilize community resources for numerical modeling:  

1. Unclear processes in conducting open research. Vocabulary, workflow, and metrics 

for success are not well understood and standards of practice are at the early stages of 

development.   

2. Technological requirements for hands-on learning. Training and workforce 

development using large datasets and high-performance computing requires expertise 

beyond the experience of most domain scientists.   

3. Hardware and software requirements for using online infrastructure in workshops 

and classrooms. Software installations and model run time on local computers limits the 

time available to introduce new concepts and tools.   

4. Compiled observations and research products (e.g. model results) are difficult to 

access. Data-driven introduction to science concepts is time intensive and there are no 

best practices for classroom interaction with large datasets and coupled spatial-temporal 

visualizations of published model results.  
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5. Time investment and expertise required to begin using a complex model is too 

high.  In many collaborations, only one model expert can execute, interact and 

manipulate the model, which limits building deeper understanding and communicating 

about implementing new ideas. 
 
4.2 Development based on user input 

Cyberinfrastructure can be effective at lowering common barriers if it is designed based on input 

of users.  User information may include cultural, formal, and informal preferences for conducting 

research and sharing data.  Inclusion of user practices to support transfer of knowledge between 

users, extends cyber-infrastructure to knowledge-infrastructure (KI). For example, design of KI 

to support the use of the infrastructure to improve communications among users is generally 

perceived to have the potential to lead to rapid advancements in process and system-level 

understanding through data analysis and modeling.  Scientists and users from multiple research 

and decision-making communities have shared needs to expand their understanding of processes 

at specific locations on the Earth surface. For research communities, the focus is always on 

advancing scientific understanding. For other user communities, such as those applying the latest 

research to improve data collection, or operating resources based on observational and modeled 

data, the focus may be on incrementally developing systems to use the gained knowledge to 

adapt to changing conditions (Mees, 2017; Dilling et al., 2017; Hughes S.A., 2014; Nalau et al., 

2015; Baker et al, 2012).    Regardless of the academic labeling of the system (CI or KI), users 

and developers want a simple work experience where they launch a web browser and quickly get 

to work -- in plain language, using online infrastructure (OI). Regardless of what the purposes of 

modeling and the background of users might be, the OI should give enough confidence to users 

to run models, reproduce and reuse model applications, analyze results, and communicate their 

findings and unique perspectives on the complex system behavior they are investigating.  
 

4.3 Development to advance science 

 

To encourage continuous scientific advancement in the Earth science domain, we advocate that 

researchers develop their data and models using cyberinfrastructure that enables replication and 

reuse and consider leveraging open source data and models wherever possible. This approach is 

ideal for doctoral students such that their data and models would be developed with certain 

standards and shared in an open source system, that can be replicated, reused and advanced by 

other investigators.  Additionally, code reproducibility rapidly builds the knowledge and skills of 

other students, thus, shortening the learning curve for modeling, allowing more time to progress 

research in a domain of science that is supported by using the model, and not distracting from 

work on a primary research question with data and modeling technical issues.   If a user follows 

an inductive learning narrative, they may use a workflow (Figure 9, top to bottom workflow) that 

starts with a new idea, and ends with testing a hypothesis, or an inductive learning approach 
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(Section 5.3.1).  If a user follows a deductive learning narrative, they may begin with a pre-

existing experiment or toolset, test a hypothesis, and then develop new ideas from what they 

learn during the tests (Fig.10, bottom to top workflow). Next, we describe how both inductive 

and deductive narratives are supported.  
 
 

 
Figure 9. Illustration of community learning and discovery process by code access and 

utilization among scientists. Key: Triangle = Synthesis/Merge, Circle = Connector, Square = 

Process, Quadrilateral = Manual or Machine Operation, Cylinder = Database.   Inductive 

processes are supported when, for example, a Landlab user has a new idea for a component, 

develops the Landlab application, and publishes it on HydroShare (formally with DOI or get a 

publicly accessible URL), and reviewers can test the experiment with cloud 

resources.  Deductive processes are supported when new Earth observations are published on 

HydroShare, used to test hypotheses or principals using published models, and results shown to 

lead to scientific advancements or the development of new ideas.  
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4.3.1 Inductive learning approach 

 

An inductive learning approach develops evidence and inference by selecting a hypothesized 

process representation within a system (e.g., landscape), testing that hypothesis, and depending 

on the outcome develop a refined hypothesis of the process and further design testable numerical 

and field experiments. This approach is crucial for advancing theoretical concepts for each 

process and identifying process couplings. Most Earth science models require laborious work to 

make them suitable for inductive learning. Recent component-based frameworks like Landlab 

(Hobley et al., 2017) and SUMMA (Clarke et al., 2016)) are developed with the perspective that 

they can be used for inductive learning and research centered on developing a new idea and 

making use of other published and tested components in the complex system to test one new idea 

at a time.  

 

4.3.2  Deductive learning approach 
 

A deductive approach is useful when given a precompiled set of model inputs, outputs, and 

coupled system of process models; the user or cooperative research group can develop new 

hypotheses to test given emerging research and new observations.  This is a common workflow 

in science and engineering where a model in published, and the code and data are shared such 

that when new observations or tools are added onto a published package during continuing 

research, these addenda are added to an existing library and new ideas for tools, experiments, and 

data collection emerge.    

 

The preliminary development of Landlab focused on workflow designs where users would begin 

code development by testing new ideas using published Python scripts to develop process 

representations of individual Earth system processes.  The result is a Landlab environment 

(Figure 9) with an ecosystem of process components, where users can test new ideas resulting in 

the development of new components that contribute to a shared and expanding library. While it 

is common in Earth surface numerical modeling communities to build on and contribute to 

existing models, the Landlab approach provides a way for new users to begin learning and 

contributing by developing simple Python scripts that could be executed from a terminal 

command line.   Landlab provides a means for new users to use an inductive learning approach 

to study one Earth surface process at a time, without having to first master the use of pre-existing 

complex model and to contribute code to expand processes represented in the model. Running 

Landlab on HydroShare (Figure 1) provides new users the opportunity to quickly begin 

exploring Landlab models with minimal software requirements (a web browser and internet 

connection). Landlab and HydroShare development and research community can continuously 
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improve and evolve, for example, by implementing an automated updating system that would 

maintain Landlab version on HydroShare with automated tests the ensure new versions of 

Landlab continue working with all HydroShare resources that use Landlab.   

5 Conclusions 

To illustrate how common barriers to Earth surface modeling can be lowered using Knowledge 

Infrastructure, we have developed three interactive computational narratives using Landlab on 

HydroShare. Landlab is a recently developed Python-based Earth surface modeling toolkit 

(Hobley et al., 2017). HydroShare is an hydroinformatics cyberinfrastructure that can be used to 

store and share hydrologic data and models (Idaszak et al., 2017; www.hydroshare.org).  The 

infrastructure design and methods are illustrated as an interchangeable set of hardware and 

software components. For our case study we combine an online community repository 

(HydroShare), modeling framework (Landlab), software environment (dockerized JupyterHub 

server), and storage (iRODS), with a community approach to advancing scientific progress using 

Earth surface models.  We demonstrate how to use this system in a classroom setting to explore 

spatio-temporal data, network processes (e.g. hydrologic routing), replicate published results 

from a complex model in a controlled software environment (e.g. landslide model sensitivity to 

fire-related parameters), and how to use the same system to reuse flexible components to design 

a model experiment (e.g. ecohydrology model sensitivity to elevation and climate) that can be 

used generate new results in any location in the continental United States.   

 

These use cases we present have been designed to illustrate a range of functions and show the 

benefits of using Knowledge Infrastructure given a range of science topics to address common 

challenges to using online systems for collaborative numerical modeling.  In the past, running 

distributed hydrology, landslide and ecohydrologic vegetation dynamics Landlab model 

components required access to a powerful computer, an installation of Python, and an installation 

of Landlab. Now, any user can log into HydroShare through a live internet browser from any 

computer/tablet/mobile and run this model, without having to install any software. The user can 

explore the models further by changing the model parameters, climate forcings, or building their 

own model with community support. The demonstrated Knowledge Infrastructure, enabled by 

advanced cyberinfrastructure, is designed to support researchers in more efficiently advancing 

Earth system sciences.  
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6 Abbreviations 

• Knowledge Infrastructure (KI) 

• Cyberinfrastructure (CI) 

• Consortium of Universities for the Advancement of Hydrologic Science, Inc. 

(CUAHSI) 

• Community Surface Dynamics Modeling System (CSDMS) 

• Information and communication technologies (ICTs) 

• Graphical user interfaces (GUI) 

• Personal computer (PC) 

• High performance computing (HPC) 

• Cloud-based high-performance computing (CHPC) 

• Services Oriented Architecture (SOA) 

• Open Archives Initiative Object Reuse and Exchange (OAI-ORE) standard 

• Digital object identifier (DOI) 

• Representative State Transfer (REST) 

• Application programming interface (API) 

• Structure for Unifying Multiple Modeling Alternatives (SUMMA) 

• National Water Model (NWM) 

• Observation Data Model 2 (ODM2) 

• Extreme Science and Engineering Discovery Environment (XSEDE) 

• Resourcing Open Geospatial Education and Research (ROGER) supercomputer 

• User experience (UX) 
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9 Figures and Tables 

1. Figure 1. Illustration of six basic elements for a knowledge cyberinfrastructure for 

interactive community modeling and exploration.  Research software communities 

maintain support of operations between Docker Containers and software 

environment. Domain science communities maintain support for version control and 

user communications specific to modeling frameworks.  

2. Table 1.  Three study problems were designed with a focus to 1) explore, 2) 

replication, and 3) reuse research.  Computational narratives demonstrate how to use 

Knowledge Infrastructure for computation and visualization of Earth surface models 

where the user interacts with the infrastructure to develop their own story.   

3. Table 2. Parameters used to obtain Spring Creek High Intensity model comparisons 
between kinematic wave and overland flow model.  

4. Figure 2. Illustration of flow routing outputs. (a) Elevation map of Spring Creek, 

central CO with locations (outlet, midstream, upstream) where hydrographs are 

plotted. (b, d) Hydrographs plotted at three locations shown in (a) driven by the high 

intensity rainfall option using KinwaveImplicitOverlandflow and Overlandflow 

components, respectively. (c, e) Flow depth maps during peak flow for 

KinwaveImplicitOverlandflow and Overlandflow components, respectively. Results 

were produced on HydroShare using the Landlab modeling framework.  
5. Figure 3. (a) Example debris avalanches (cyan) mapped in three areas within NOCA. 

Contours are in 100- m intervals. Aerial image source from World Imagery, Esri Inc.; 
(b) elevation distribution of the relative frequency of mapped debris avalanche source 
areas ; and (c) High elevation rock and glacier surrounding Spiral Glacier in North 
Cascades showing a bedrock glacier cirque with thin barren soils and moraine 
deposits (photo by John Scurlock with permission), (d) elevation (ft) for NOCA 
model extent from Strauch et al. (2018), and (e) for the subset for the Thunder Creek 
extent. (Figures a-c adapted in entirety from Strauch et al., 2018 under CC BY 4.0). 

6. Figure 4. Maps show modeled landslide return periods using Landlab for NOCA 
overlain with mapped debris avalanches, including zoomed in areas at top for greater 
detail.  The uncertainty of soil depth was characterized from a long-term soil 
evolution model (M-SD LT). Cumulative distribution of return periods for SSURGO 
soil depth (SSURGO-SD), modeled soil depth (M-SD), and modeled soil depth 
considering long-term dynamics (M-SD LT) scenarios, plotted on a log-log scale 
using the Weibull plotting position.  (Figure adapted in entirety from Strauch et al., 
2018 under CC BY 4.0). 

7. Figure 5.  Landslide probability estimates in the Thunder Creek watershed (photo) 
increase given post-fire root cohesion assumptions (70% less), as compared to the 
original cohesion assumptions in Strauch et al. (2018).  As an example of 
cyberinfrastructure functionality, the notebook replicates published findings, as well 
as tests the parameter function described in the peer-reviewed publication. Inset maps 
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and cumulative distribution plots of the spatial probability of landsliding for pre-fire 
and post-fire conditions.  

8. Figure 6. Map of elevation bands in New Mexico State (a) used to extract gridded 

Hydrometeorological forcing data Elevation bins are referred to as: Low elevation 

(1200-1700 m), mid elevation (1700-2000 m), and high elevation (2000-2500 

m).  The vegetation patterns from aerial imagery of New Mexico are distinct within 

these bands (b).  

9. Figure 7. Climate data downloaded and processed from Livneh et al. (2015). 

a)  Annual precipitation plotted with respect to time for each elevation band. b) Mean 

monthly daily minimum and maximum temperatures for each elevation band.  

10. Figure 8.  Spatial Organization of PFTs at year 1503 (left column)  and Annual areal 

cover fraction of each PFT plotted with respect to time (right column) for; a) low 

elevation landscapes (1200 m to 1700 m), b) mid elevation landscapes (1700 m to 

2000 m), and c) high elevation landscapes (2000 m to 2500 m). 

11. Figure 9. Illustration of community learning and discovery process by code access 

and utilization among scientists. Key: Triangle = Synthesis/Merge, Circle = Connector, 

Square = Process, Quadrilateral = Manual or Machine Operation, Cylinder = 

Database.   Inductive processes are supported when, for example, a Landlab user 

has a new idea for a component, develops the Landlab application, and publishes it 

on HydroShare (formally with DOI or get a publicly accessible URL), and reviewers 

can test the experiment with cloud resources.  Deductive processes are supported 

when new Earth observations are published on HydroShare, used to test hypotheses 

or principals using published models, and results shown to lead to scientific 

advancements or the development of new ideas.  




