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ARTICLE INFO ABSTRACT

Keywords: Organic matter (OM) dynamics determine how much carbon is stored in ecosystems, a service that modulates

Organic matter storage climate. We synthesized research from across the US Long-Term Ecological Research (LTER) Network to assemble

goupled biogeochemical cycles a conceptual model of OM dynamics that is consistent with inter-disciplinary perspectives and emphasizes vul-
ransport

nerability of OM pools to disturbance. Guided by this conceptual model, we identified unanticipated patterns and
long-term trends in processing and transport of OM emerging from terrestrial, freshwater, wetland, and marine
ecosystems. Cross-ecosystem synthesis combined with a survey of researchers revealed several themes: 1) strong
effects of climate change on OM dynamics, 2) surprising patterns in OM storage and dynamics resulting from
coupling with nutrients, 3) characteristic and often complex legacies of land use and disturbance, 4) a significant
role of OM transport that is often overlooked in terrestrial ecosystems, and 5) prospects for reducing uncertainty
in forecasting OM dynamics by incorporating the chemical composition of OM. Cross-fertilization of perspectives
and approaches across LTER sites and other research networks can stimulate the comprehensive understanding
required to support large-scale characterizations of OM budgets and the role of ecosystems in regulating global

Organic matter composition
Stabilization
Cross-site synthesis

climate.
1. Introduction and shaped ecosystem productivity [7,8,65,76,123,131]. Storage of C
within ecosystems in turn provides the valued service of climate reg-
Organic matter (OM) dynamics in ecosystems are among the most ulation [83,86,125]. However, significant uncertainties in broad-scale
complex phenomena in environmental science, and the outcomes of OM patterns and trends of OM pools in soil, water, and primary produc-
dynamics have value to society. Vast transfers of carbon (C) from fos- ers (e.g., [46,143]) limit projections of OM storage and application of
sil, detrital, and soil pools to the atmosphere have warmed the climate management strategies, particularly regarding changes in large global
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pools, rates of processes that stabilize OM within ecosystems, and the
role of transport within and between ecosystems [14,149]. Resolving
these uncertainties requires integrating approaches across disciplines
and ecosystem types.

We synthesized insights from the US Long-Term Ecological Research
(LTER) network to highlight emerging understanding and critical uncer-
tainties about patterns, trends, stabilization processes, and transport of
OM within and between ecosystems. The LTER network consists of 28
sites including forest, grassland, dryland, lake, stream, wetland, coastal,
oceanic, polar, agricultural, and urban ecosystems (Supplemental Table
1) that study primary production, disturbance, fluxes of inorganic nu-
trients, populations and communities, and dynamics of OM [22]. Long-
term observations and experiments maintained by the LTER network
therefore represent a rich resource for analysis of the complex global
dynamics of OM.

Our analysis is anchored by a conceptual model of OM dynamics
developed to facilitate cross-ecosystem comparisons and stimulate inte-
grated approaches (Box 1). This conceptual model integrates geochem-
ical, ecosystem, and earth system perspectives and emphasizes the role
of disturbances that potentially destabilize OM stocks. The conceptual
model seeks to identify patterns and processes that are shared across
terrestrial, aquatic, and marine ecosystems. Anchored by the conceptual
model, we synthesized OM dynamics across the LTER network, includ-
ing a survey of LTER scientists, vignettes describing OM dynamics at
each site, and publications selected by researchers. These diverse ap-
proaches to qualitative synthesis complement efforts to quantitatively
model OM dynamics by highlighting critical interactions and complex-
ity that may be lacking in models or current large-scale assessments.
Specific objectives of the synthesis were to: 1) describe temporally dy-
namic patterns in OM storage, 2) highlight key processes that stabilize
or destabilize these storage pools, 3) characterize the nature and ex-
tent of OM transport within and between ecosystems, and 4) summa-
rize long-term trends in OM pools that have emerged from long-term
monitoring.

2. Factors influencing OM pools and transport

We administered a survey to gather qualitative assessments of the
factors governing the vulnerability of OM to transformation, loss, and
transport within and across ecosystem boundaries. The survey contained
queries about the relative importance of factors contributing to preser-
vation of OM in ecosystems that recent conceptual models and experi-
ments have identified as influential, including physical protection or iso-
lation, dilution, freezing, sorption, decomposer communities, chemical
composition of OM, nutrients, and redox [87,121,134,145]. The survey
also addressed potential vectors that transport OM within ecosystems
and across boundaries. Though studies of aquatic ecosystems routinely
address transport, conceptual and quantitative models have not yet cap-
tured the roles of multiple potential vectors transporting OM within
ecosystems and across ecosystem boundaries. Potential mechanisms in-
fluencing OM storage and transport were assessed on a 5-point Likert
scale, and respondents optionally contributed additional mechanisms
thought to influence preservation of OM at their LTER site that were
not captured by the survey (Supplemental Table 2). Finally, the survey
included open-ended queries assessing the most significant press and
pulse disturbances influencing OM dynamics at each LTER site. Of 28 to-
tal LTER sites, 24 responded, three of which (BNZ, MCM, PIE) provided
separate responses on freshwater, terrestrial, and/or marine ecosystems.
At each site, the survey was completed by a single investigator or by
small-group consensus. Disciplinary expertise of respondents included
oceanography, decomposition, geochemistry, microbial ecology, vege-
tation, and modeling.

Most LTER sites rated decomposer communities, nutrient limitation,
and substrate chemistry of high importance in influencing accessibility
of OM to loss, whereas relevance of photodegradation and redox was
heterogeneous across sites (Supplemental Fig. 1). Conceptual models
and experiments focused on OM storage in terrestrial or marine ecosys-
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tems have similarly emphasized the roles of microbial communities and
substrate chemistry, highlighting their interactive effects [3,71,89,118].
Survey responses generally concurred with emerging conceptual mod-
els that emphasize preservation of OM due to physical disconnection of
OM from microbial communities or environmental conditions that are
conducive to decomposition, such as aggregation, burial, and sorption
(Fig. 1; [47,87,119,121,152]). However, the perceived relative impor-
tance of some factors influencing preservation varied among freshwater,
marine, and terrestrial ecosystems. First, burial was rated as less impor-
tant to OM decomposition in terrestrial compared to marine ecosystems
(Fig. 1). We note that persistence of OM via burial in marine systems
may be similar to the effect of soil depth in terrestrial ecosystems, but
the mechanisms by which OM transport occurs are distinct. Second,
drying was rated of greater importance in terrestrial than freshwater
ecosystems (Fig. 1). Such contrasts likely reflect the environmental con-
ditions of different ecosystems, but also suggest that synthesis of concep-
tual models across ecosystem types might promote discovery of unifying
principles explaining OM storage.

Vectors of OM transport were assessed as nearly identical in rela-
tive importance whether movement occurred within ecosystems (data
not shown) or across ecosystem boundaries (Fig. 1). Such similarities
might reflect limited studies that distinguish between internal and cross-
boundary transport, and could be resolved with multi-scale studies of
transport. Water was of greater perceived importance for transport in
freshwater and marine than terrestrial ecosystems, whereas animals
were viewed with greater importance in marine and terrestrial ecosys-
tems (Fig. 1). Individual transport mechanisms are already recognized
as integral to dynamics of some OM pools, such as hydrologic flux in
river networks [114], particle sinking in oceans [13], and soil erosion
[27]. The survey results indicate that multiple vectors of transport might
significantly influence OM dynamics within or between ecosystems, but
this diversity of vectors is not yet represented in most conceptual or
predictive models of OM dynamics.

Expert assessment of the relative importance of factors influenc-
ing OM dynamics did not consistently follow gradients in temperature
(mean annual temperature; MAT) or precipitation (mean annual precip-
itation; MAP) encompassed by the LTER network. Likert-scored survey
items were analyzed by ordered logistic regression with MAT and MAP
as predictors and relative rankings of factors influencing OM dynamics
were largely heterogeneous with respect to MAP and MAT (Supplemen-
tal Fig. 2). Significant responses included an increased importance of
freezing in drier ecosystems, and increased importance of humans as
vectors of OM transport across ecosystem boundaries in warmer ecosys-
tems (Supplemental Fig. 2). Though precipitation and temperature drive
global patterns in OM storage and export (e.g., [11,21,36,411), the sur-
vey results highlight uncertainty regarding the influences of climate on
particular pathways of OM processing and storage.

Survey respondents listed the most important factors influencing
vulnerability of OM to loss from ecosystems (Fig. 2), as well as the
most important long-term (i.e., press) and short-term (i.e., pulse) global
changes. Climate was the most-cited factor thought to strongly influ-
ence OM dynamics at each site, followed by export processes, redox, and
OM composition (Fig. 2). Further, climate change was most frequently
cited as the primary long-term (press) catalyst of OM loss (18/23 re-
sponses), whereas the next most-cited global change, drought, was iden-
tified by only four sites. Other long-term threats included atmospheric
deposition, land use change, precipitation regime, sea-level rise, and
human decision-making. Changes in storm size and dynamics were the
most-cited short-term (pulse) factor influencing OM dynamics, identi-
fied by 8/14 respondents to this survey item. Other important short-term
changes included fire, thaw (ice or permafrost), and drying or drought.
The diversity of factors identified as threats to OM stores reflects views
emerging from personnel oriented by expertise in ecosystems, microbial
communities, and geochemistry and studies across a network of sites
encompassing terrestrial, freshwater, and marine ecosystems. These di-
verse perspectives suggest opportunities for cross-fertilization among
ecosystem types and disciplinary perspectives. For example, export, re-
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Box 1. Pools and fluxes of organic matter in ecosystems and the processes that influence their vulnerability to environmental change. Organic matter
dynamics are studied from diverse perspectives including those of ecologists, geochemists, and agronomists; in aquatic and terrestrial ecosystems; and with research
foci ranging from species to ecosystems. Here we develop a general conceptual model of OM dynamics that merges these perspectives to support development of
large-scale OM budgets and mechanistic models for projecting the responses and effects of ecosystems on global climate. This model encompasses patterns and
processes that are shared across terrestrial, aquatic, and marine ecosystems. Arrows represent fluxes between pools (boxes). Gray text represents processes that
mediate those fluxes and are subject to press and pulse disturbances.

We define non-living OM as the pool that is accessible to decomposer organisms, whose activity determines its rate of decay. The size of the non-living OM pool in
an ecosystem is determined by the balance between inputs to OM from autotrophs (either directly or via consumption by heterotrophs) plus imports of OM from other
ecosystems and losses of OM via decomposition, fire, photodegradation, and exports. Within the accessible OM pool, factors such as nutrient limitation, energetics
(as influenced by substrate chemistry, redox, and the availability of electron acceptors), the community composition and physiology of decomposers (that determine
degradative capabilities, C use efficiency, and stoichiometry), pH, and solar radiation determine the relative reactivity of OM. Organic matter in the accessible pool
can be made inaccessible by processes such as sorption or complexation with minerals; physical protection within soil and sediment aggregates; burial; freezing;
abiotic and biotic transformations; and impediments to diffusion, such as dilution of organisms or substrates, or soil drying. The size of the non-living OM pool is
further influenced by import and export processes such as harvest and movement of food and waste; animal migration; and movement in air, sediments, and water
as a result of wind-driven processes like erosion and dispersal; water-driven processes including advection, tides, runoff, and currents; and gravity-driven processes
like settling and mass wasting. Finally, abiotic processes such as fire and photodegradation can mineralize OM and contribute to losses and transformations along
the continuum from reactive to unreactive OM.

The vulnerability of the non-living OM pool to environmental press and pulse disturbances depends on how those disturbances alter the various processes
involved in inputs to and losses from the OM pool. For instance, OM will be vulnerable to environmental changes that alter the reactivity of OM, such as changes in
climate, solar radiation, atmospheric deposition, or disturbance regimes that in turn alter autotrophic and heterotrophic community composition, substrate chemistry,
temperature, moisture, pH, and redox. Environmental changes that move OM from the inaccessible to the accessible pool, such as permafrost thaw, tillage, and
drainage, will promote decomposition and OM loss, whereas changes that render OM inaccessible, such as burial and flooding, will promote OM accumulation. In
addition, OM will be vulnerable to environmental changes that promote or diminish transport of OM across ecosystem boundaries, such as climate change effects on
sea level, stratification of water bodies, ocean currents, surface runoff, landslides, and animal migration or dispersal.
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dox conditions, and burial processes were frequently cited as key to de-
termining the vulnerability of OM to loss from ecosystems, yet these
mechanisms are infrequently included in conceptual models of terres-
trial OM storage.

3. Organic matter processing, patterns, trends, and transport

We synthesized current understanding of patterns, processing, trans-
port, and temporal trends in OM dynamics and storage derived from the
LTER network. This qualitative synthesis of experiments, monitoring,
and models was facilitated by four approaches: 1) site-specific modifica-
tions and emphases added to a draft of the conceptual framework (Box 1)
presented at the 2018 LTER All Scientists Meeting (n = 15 sites); 2) ref-
erences submitted in support of responses to the previously described
survey; 3) a vignette highlighting a key set of findings related to OM dy-
namics at each site (n = 17 sites), and 4) a query regarding insights into
OM resulting from long-term experiments and monitoring (n = 10 sites).

3.1. Patterns
Documenting the spatial and temporal patterns of OM distribution

establishes the present state and future scenarios of ecosystem OM stor-
age, reducing uncertainty in managing this ecosystem service. L. Long-

standing research, including studies at LTER sites prior to inception
of the network, has linked patterns in storage and processing of OM
in terrestrial and wetland ecosystems to five state factors of soil and
ecosystem formation [67]: climate, parent material, topography, organ-
isms, and time (e.g., [144] [BNZ], [10] [CWTI, [62] [ARC], [33] [GCE],
[2] [SEV]). Research in marine and freshwater ecosystems established
the roles of light regime, inundation, salinity, currents, and vertical mix-
ing in organizing the distribution of OM (e.g., [111] [MCM], [50] [NES],
[94] [FCE], [132] [CCE], [135] [CCE]). Current efforts have integrated
some of these data into shared databases, but additional work is needed
to leverage the breadth of OM data across ecosystems from the LTER and
other research networks [147,148]. Below we highlight how the LTER
network has built on these established templates to characterize non-
stationary patterns in OM dynamics, which is required for forecasting.

Land use and its legacies shape spatial and temporal patterns in OM
dynamics. For example, soils of urban, temperate grasslands are more
organic-rich than surrounding forests (BES; [109,113]). Similarly, en-
hanced storage of OM in soils of urban, arid ecosystems relative to na-
tive desert occurs because relatively large stores of OM are a legacy
of fertilized and irrigated agriculture that preceded urbanization, and
atmospheric deposition of OM derived in part from fossil fuel com-
bustion contributes significantly to the OM pool in urban soils (CAP;
[55,74,75]). Urban land use and water management practices also re-
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Fig. 3. Long-term consequences of land management for OM storage in grasslands (KNZ). In temperate grasslands, restoration of native prairie following long-term
tillage resulted in multi-decadal accumulation of soil OM and recovery of soil aggregate C distribution across a 35-year restoration chronosequence. A model of C
recovery based on observations of soil OM (0-10 cm) indicates that more than two centuries will be required to achieve 90% of soil C stock in never cultivated
prairie (left; [153]), whereas the distribution of C among aggregate fractions becomes similar to never cultivated prairie within three decades (right; [154]).

sulted in increased concentration of labile dissolved OM in streams rel-
ative to undeveloped catchments and increased rates of microbial min-
eralization and photooxidation, suggesting enhanced potential for CO,
evasion from streams (CAP, BES; [40,52,73]). However, structures de-
signed to retain water in urban watersheds are effective at reducing
loads of dissolved OM (CAP; [52]).

Agriculture has large, biome-specific effects on OM storage. OM stor-
age declines when boreal forests, which are characterized by large OM
stores in the forest floor, are converted to agriculture (BNZ; [49]). Cul-
tivation practices, such as soil tillage, can influence the magnitude of
OM lost during agriculture. For example, significant declines in soil OM
followed 20 years of plowing, compared to smaller losses from no-till
and plowed cover crops (KBS; [126]). Accumulation of OM then follows
abandonment of agriculture or active restoration of temperate ecosys-
tems to native vegetation cover. Agricultural lands restored to grassland
continue to accumulate soil OM for at least a century following restora-
tion, whereas the distribution of C among aggregate fractions becomes
representative of never-cultivated prairie soil on a decadal time scale
(KNZ; Fig. 3; Scott et al. 2017).

Projections of OM storage following cultivation and harvest remain
uncertain due to complex trajectories and varying time scales associ-
ated with recovery of OM pools. Recovery of C pools following harvest
of old-growth forest occurs on a century time scale, and depends on
the amount of large wood remaining after harvest relative to the rate
at which forests re-establish (AND; [58]). Reduced forest harvest com-
bined with agriculture abandonment has led to increased OM storage in
re-growing northeastern US forests on a similar timescale, and this pat-
tern is attributed to OM in tree biomass, though the contribution of soil
storage remains uncertain (HFR; [43]). OM in mineral soil, the largest
pool of soil OM in temperate forests, was lost and accumulated slowly in
the decade following an experimental harvest, slowing recovery of OM
storage in the ecosystem despite rapidly regrowing vegetation (HBR;
[53]). Subsequent intermittent disturbances to vegetation growth fur-
ther delay recovery of balanced inputs and outputs of OM (HBR; [42]).
Accurately projecting change in large, heterogeneous pools such as soil
OM remains challenging and tracking changes in particular components
of large pools might lend mechanistic understanding needed to more ac-
curately estimate changes in total OM storage. For example, catchments
clearcut forty years ago exported less total DOM, but more microbial
and protein-like DOM than unharvested catchments, which could in-
dicate that recovery of plant and humic fractions lags recovery of less
reactive microbial products (HBR; [23]).

Disturbance regimes contribute to spatially heterogeneous and tem-
porally dynamic OM stocks. Increasingly intense fire regimes and longer

fire seasons significantly reduce stocks of soil OM in the boreal forest
(BNZ; [141]), and along with increasing temperature, shift OM storage
from the forest floor to aboveground biomass (BNZ; [1,72]). Experimen-
tally increased fire frequencies reduced storage of biomass and soil OM
in temperate savannas (CDR; [105]) and in arid grasslands (SEV; [64]).
Soil OM was also enhanced by suppression of fire and removal of graz-
ers in more mesic temperate grasslands, though the increase in soil OM
storage under low fire frequencies was associated with increased woody
plant cover and loss of grassland habitat (KNZ; [29]). Responses of OM
pools to fire are due in part to variation in the strength of nitrogen lim-
itation and effects of fire on N availability, highlighting the importance
of OM-nutrient interactions (e.g., [104]).

Large storms and long-term patterns in the frequency of storms have
long-lasting and widespread influence on OM storage. Disturbance of
tropical forests by hurricanes was simulated in an experiment that en-
hanced organic debris deposition and removed the tree canopy. Exper-
imental litterfall enhanced storage of OM in tropical soils at depths
>50 cm 10 years after the manipulation, but canopy loss partially coun-
teracted this effect (LUQ; [51]). Regions or time periods (e.g., El Nifio)
subject to more frequent or intense storms suppress giant kelp growth
due to wave action (SBC; [115]), not only influencing productivity of
kelp forests, but also diminishing export of kelp detritus and storage on
sandy beaches (SBC; [117]).

Insect outbreaks can reshape ecosystem OM storage, particularly in
combination with changing climate. For example, hemlock-dominated
stands in a northeastern forest have become a net source of C to the
atmosphere due to the widespread outbreak of hemlock wooly adel-
gid, whose spread is closely tied to climate (HFR; [43]). A girdling ex-
periment simulating tree mortality expected due to insect outbreaks in
an arid ecosystem did not enhance growth of an unmanipulated, com-
petitor tree species because a simultaneous drought suppressed vegeta-
tion growth. This experiment suggested that insect outbreaks concurrent
with drought could ultimately cause replacement of woodlands with
grasslands, which store less soil OM in this region (SEV; [97,106,112]).

Dynamic hydrologic conditions, including spatial and temporal pat-
terns in inundation, precipitation, waves, and vertical mixing also con-
tribute to spatially and temporally variable OM storage and dynam-
ics. Sea-level rise increases the duration of flooding on salt marshes,
where inundation preserves OM in sediments due to low redox poten-
tial, but also diminishes primary production, suggesting an eventual tip-
ping point in the capacity for accumulation of OM (PIE; [44]). Further,
increasing salinity in tidal salt marshes in response to sea level rise re-
duces soil OM as compared to brackish and tidal freshwater marshes
and forests (GCE; [34]). Water residence time constrains processing and
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storage of allochthonous OM in temperate lakes, with greater oppor-
tunities for storage in lakes where stream and groundwater discharges
are smaller components of the lake water budget (NTL; [56]). In both
nearshore and pelagic marine ecosystems, long-term variation in net
primary production and detrital OM exports are correlated with supply
of nitrate and/or iron delivered by upwelling from deep waters (CCE,
SBC; [19,138]). Hydrologic conditions also shape OM storage in terres-
trial ecosystems. For example, soil OM content of desert grasslands is
preserved under hot, dry conditions, and declines when precipitation
exceeds a seasonal threshold, likely due to stimulation of water-limited
decomposer activity and water loss to runoff [64,142]. However, fewer
studies explicitly address hydrologic effects on OM distribution in ter-
restrial ecosystems, where hydrology might influence redox conditions
or availability of limiting substrates. Investigation of similar hydrologic
effects to those established in aquatic ecosystems might therefore reduce
uncertainty in projecting changes to stocks of terrestrial OM.

Understanding the relationships of OM storage with disturbance
events and regimes can guide management activities to promote OM
storage in ecosystems. For example, seeding replaced seagrass beds lost
to disease and hurricanes while enhancing OM stores in estuarine sedi-
ments, with greater accumulation under highest seagrass density (VCR;
[48]). In contrast to many examples of OM loss following disturbance,
some pools may be resistant to disturbance, and the mechanisms sup-
porting resistance could inform restoration activities. For example, tem-
porally stable DOM concentrations in wetlands subject to fire, drought,
and hurricanes suggest that large OM pools and intact hydrologic con-
nections maintain stable flows of OM from terrestrial to aquatic ecosys-
tems (FCE; [79]). Overall, whereas the LTER network and other long-
term studies have established the roles of disturbance regimes in struc-
turing spatial and temporal patterns in OM storage, existing conceptual
models infrequently represent disturbance or explicitly consider only a
single disturbance type (e.g., [88,121,152]). Thus, merging empirical
characterization of disturbance effects with models presents an oppor-
tunity to advance theoretical understanding and enhance management
of OM storage.

3.2. Processing

Long-term experiments, spanning up to multiple decades, have con-
tributed to understanding how ecosystems process OM. Decomposi-
tion experiments revealing species-specific decay rates and ubiquity of
“slow” and “fast” phases of decomposition across ecosystems underscore
the long-known influence of chemical composition of detritus on decom-
position rate (16 LTER sites; [28,57,59]). Addition of leaf litter over
decadal scales resulted in little change in pools of soil OM in forests,
indicating the role of labile pools in priming decomposition of older
OM (AND, HFR; [81]). In the same long-term experiment, removal of
root inputs reduced storage of particulate OM, but increased mineral-
associated fractions (AND; [107]). Shorter-term decomposition experi-
ments have additionally emphasized photodegradation as a mechanism
of OM transformation and loss across multiple biomes and ecosystem
types, even under lower light conditions beneath forest canopies (SEV,
CDR, ARG; [16,32]).

Experiments simulating aspects of global change have often caused
rapid changes in inputs and losses of OM (e.g., photosynthesis and res-
piration). Experimental drought applied over six months that was in-
tended to simulate projected climate change in the sub-tropics reduced
potential storage of OM in freshwater wetlands due to decreased pri-
mary production and increased ecosystem respiration (FCE; [91]). In
contrast, simulating drought over three years in desert grasslands caused
declines in both soil respiration and primary production, but changes in
storage of soil OM have not yet been observed (SEV; [80,102]), perhaps
due to rapid microbial decomposition of recalcitrant C pools [129]. In
tidal marshes, experimental, chronic saltwater intrusion reduced CO,
and CH,4 emissions, but also reduced belowground biomass, leading to
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soil subsidence and decreased OM stocks after two to four years of treat-
ment (GCE; [61,133]).

Multi-year experiments have revealed non-linear effects of global
change, particularly warming, on OM storage and losses. Experimen-
tal, summertime warming of an arctic tundra ecosystem for 6-9 years
increased OM storage, largely due to increases in total plant biomass
driven by growth of particular species, and this effect was observed af-
ter several years of treatment (ARC; [25,128]). In contrast, experimental
warming caused losses from sub-arctic tundra over a similar time scale
when warming was sustained over winter, due to increased soil respi-
ration in winter that exceeded gains in primary production during sum-
mer warming (BNZ; [92]). Soils from a mid-latitude hardwood forest
lost OM nonlinearly over 26 years of experimental warming, with sub-
stantial C loss after initiation of warming, and diminishing losses over
time, as well as periods showing little to no C loss (HFR; [95]). How-
ever, when evaluated from a whole ecosystem perspective, increases in
plant biomass due to forest regrowth and climate change over this same
period offset soil C losses due to experimental warming (HFR; [43]).
Significant changes in C storage and fluxes in response to global change
experiments portend large changes in C stocks in diverse ecosystems,
but time-varying responses underscore the importance of maintaining
experiments over long time periods to resolve both the mechanisms link-
ing OM dynamics to global change and the non-linear trajectories of OM
storage.

Motivated by widespread nutrient enrichment of terrestrial and
aquatic ecosystems by fertilizer use and atmospheric deposition, long-
term fertilization experiments have revealed the strong coupling of C
with other elemental cycles. Decadal-scale fertilization of a tidal fresh-
water marsh with nitrogen or phosphorus alone decreased soil OM,
though OM storage increased when nitrogen and phosphorus were
added together because of increased belowground macrophyte biomass
(GCE; [156]). Nitrogen fertilization of a tropical forest increased total
OM storage in soil after five years despite more rapid decomposition
of actively cycling C, due to increased turnover time of slowly cycling
pools (LUQ; [35]). Similarly, 20 years of nitrogen addition to a temper-
ate hardwood forest suppressed decomposition, resulting in increased
storage of OM in soils (HRF; [45]), an effect that counterbalanced ob-
served losses of soil OM from experimentally warmed plots in the same
forest (Fig. 4). In contrast, 12 years of nitrogen addition to temperate
grasslands resulted in decreased rate of OM storage relative to N inputs
as plant communities shifted from a species-rich assemblage of native
grasses to one composed of fewer species (CDR; [146]). In alpine tun-
dra, nitrogen fertilization also changed species composition, but accel-
erated the decomposition of light-fraction soil OM, increasing relative
abundance of compounds with longer turnover times, without chang-
ing total soil OM stocks (NWT; [12,99]). Experimental replacement of
calcium lost due to acid rain in a temperate forest simulated the long-
term trajectories of OM storage that are expected under declining acid
deposition, which has resulted from changes in environmental policy.
Despite increasing tree biomass, calcium addition caused large losses of
OM from organic soils, though it remains unclear whether biological or
chemical processes contributed to the loss (HBR; [6,68]).

Fertilization experiments have also revealed surprising consequences
of coupled elemental cycles that contribute to the dynamics of ecosys-
tems over decadal or greater timescales. Phosphorus fertilization of a
tundra stream caused a 10-fold increase in OM storage as moss biomass,
though this sustained effect did not occur until seven years after initi-
ation of the experiment (ARC; [130]). Fertilization of terrestrial tundra
with nitrogen and phosphorus resulted in increased plant biomass with
effects that were greater after nine, compared to three years; however,
after 20 years, loss of OM from deep soils resulted in net loss of OM
from the ecosystem despite continued increases in aboveground biomass
(ARG; [25,90,128]). In temperate salt marshes, nine years of nitrogen
addition increased rates of decomposition and decreased belowground
production, which collapsed tidal creekbanks, underscoring a structural
role of OM in these ecosystems (PIE; [37]).
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Recent conceptual models and mechanistic studies have empha-
sized that interactions between microbial communities and the chem-
ical composition of OM govern OM storage and processing in ecosys-
tems [71,87,89,152]. Long-term studies of the LTER network have clar-
ified how disturbance regimes and environmental change influence OM
dynamics, emphasizing patterns at broad spatial scales and revealing
non-linear changes that occur over multiple years. Integrating long-term
studies of OM dynamics with observations of microbial communities and
chemical composition of OM, particularly within an experimental con-
text, could reveal cross-scale interactions that ultimately determine the
persistence of OM within ecosystems.

3.3. Transport

Transport by wind, water, animals, and mass transfer alters pat-
terns of OM storage, and can stimulate consumers and microbial res-
piration in receiving ecosystems. Transport processes have been most
thoroughly studied in aquatic ecosystems or in a catchment context. For
example, streams draining catchments that contain extensive wetlands
or low-lying topography have higher concentration of dissolved organic
C, likely due to connectivity with ecosystems supporting low rates of
decomposition (PIE, BNZ, BLE; [31,60,151]). Seasonality of dissolved
OM in alpine lakes is also shaped by topography, whereby elevation
constrains terrestrial productivity, and therefore the potential for in-
puts of allochthonous dissolved OM to lakes (NWT; [96]). Export of dis-
solved OM from catchments also responds to land management, climate,
and their interactions. For example, long-term monitoring has docu-
mented declines in DOM export during hurricanes in tropical forests,
due to rerouting of hydrologic flowpaths and decreased contribution
of throughfall (LUQ; [93,127]). In temperate forests, experimental log-
ging that removed large wood diminished export of dissolved OM in
streams (AND; [82]). Model projections based on long-term monitoring
of a freshwater slough also suggest declining export of dissolved OM in
response to water management, saltwater intrusion, and drought (FCE;
[116]).

Imported OM subsidizes heterotrophs in recipient ecosystems. For
example, respiration exceeds primary production in Antarctic lakes,

where primary production is limited by light under thick ice cover and
polar night, implying import of OM from streams and upwelling (MCM;
[111]). Groundwater delivers large loads of terrestrially-derived dis-
solved OM to Arctic lagoons and this hydrologic flux of OM is expected
to increase as permafrost thaws, potentially supporting productivity of
coastal food webs (BLE; [30]). Transport processes are a primary con-
straint on OM dynamics in marine ecosystems, where nutrients delivered
by vertical mixing and advection stimulate net primary production, and
non-sinking OM is also exported from nearshore regions of high pro-
ductivity to less productive ecosystems both on and offshore (CCE, SBC;
Fig. 5; [38,77,135]). Large fluxes of OM from pelagic zones also subsi-
dize nearshore marine ecosystems, including inputs of kelp wrack that
support detrital food webs on sandy beaches (SBC; [85]) and stimulate
bacterial production in coral reefs by delivery of dissolved OM derived
offshore (MCR; [100]). Importantly, dissolved and gaseous fluxes in re-
ceiving ecosystems can be as large as net ecosystem production of the
donor ecosystem (HBR; [42]) and therefore integration of C budgets
across ecosystem boundaries will reduce uncertainty in estimates of C
storage (e.g., [21]).

Transport processes also enhance storage by relocating OM to com-
partments with low capacity for processing. For example, vertical export
of OM in pelagic ecosystems enhances storage of OM in sediments. Sink-
ing rates increase with nutrient inputs due to influences on phytoplank-
ton community composition, biomass, and grazing rates, which in turn
influence the magnitude of export (CCE; Figure 5a & b; [84,98,140]).
Subduction of particulate and dissolved OM at fronts, eddies, and fila-
ments can additionally account for a quarter of C sequestration in coastal
upwelling ecosystems (CCE; Figure 5c; [137]). However, these events
occur less frequently during warm periods and under rising tempera-
ture (CCE; [69,70]). Climate change is also causing increased inputs of
colored dissolved OM, which reduce primary production, and limit stor-
age of OM at depth (NGA, NES; [4,5]). In contrast, diminished sea ice in
Antarctica has resulted in increased rates of marine primary production
and export of OM to depth where it may be stored over longer timescales
(PAL; [122]).

Although studies of transport processes have focused on outcomes
for aquatic ecosystems, soil OM and biomass of terrestrial ecosystems
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Fig. 5. Transport of OM in pelagic ecosystems occurs vertically via sinking detritus that connects the surface to deep ocean and by lateral movement of non-sinking
OM (CCE). A) Sinking flux (i.e., export) of OM is strongly related to rates of net primary production in the photic zone [155]. B) The rate of OM export by sinking
is further influenced by supply and differential influences of nitrate and iron on phytoplankton (y-axis scale as in A; [138]). C) Lateral transport of OM may be
important for supporting offshore food webs, as evidenced by coastal-to-offshore gradients in recently produced non-sinking forms of OM (i.e., suspended particulate
and dissolved OM; [135]), and water mass trajectories in the surface ocean that originate in more productive regions (0 water age days) and move toward less

productive regions (>50 water age days) [24].

are often structured by contemporary and historic legacies of transport.
For example, sediments transported from ancient lakebeds supply OM
to valleys in Antarctica (MCM,; [20]). Drylands incur significant losses of
dissolved and particulate OM by wind and overland flow, with greatest
losses in shrublands where inter-plant space is larger, and limited loss
from grasslands or under annual plant cover (JRN, SEV; [18,103,142]).
Wind-driven loss of particulate OM in aridlands is further accelerated
by fire, where experimental burns demonstrated high rates of wind ero-
sion and redistribution of OM from shrubs to bare microsites or grass-
lands (SEV; [39]). These examples highlight significant roles of transport
in OM dynamics of terrestrial ecosystems and suggest that frameworks
emphasizing connectivity, water residence time, or donor/recipient dy-
namics (e.g., [118,152]) might clarify spatial and temporal dynamics of
OM storage and processing in terrestrial ecosystems.

3.4. Trends

Accurately describing C dynamics under continued or accelerating
changes in climate, land use, and environmental policy remains a bar-
rier to projecting ecosystem feedbacks with global change [15]. The
LTER network provides complementary long-term data that document
trends, modeled projections based on contemporary dynamics, and ex-
periments that evaluate potential trajectories of OM dynamics. Mainte-
nance of these records increasingly reveals surprises that are difficult to
predict from short-term observation or retrospective analysis alone.

Rapid climate warming at high latitudes and high elevations has
caused some of the clearest trends and most significant temporal
changes in OM dynamics. Earlier snowmelt and ice-off are associated
with increased primary production in alpine lakes and greater au-
tochthonous dissolved OM production that alters freshwater commu-
nity composition and function (NWT; [110]). A model parameterized
using data from a rare fire in Arctic tundra projected a net increase in
OM stored in the ecosystem over centuries despite loss of soil OM in the
fire, due to positive responses of tundra vegetation to enhanced nutrient
availability under climate warming (ARC; [157]). Declining discharge-
normalized concentration of dissolved OM in an Arctic river over the
past several decades was hypothesized to result from deepening hy-
drologic flowpaths that bypass organic soils as permafrost thaws (ARC;
[78]). Indeed, warming experiments have predicted loss of soil OM from
sub-arctic tundra due to permafrost thaw, with significant loss of old C

(BNZ; [108,124]), and alpine ecosystems also show trends of sustained
soil OM loss from permafrost thaw (NWT; Knowles et al. 2019).

In warmer biomes, responses of OM to recent climate change are
more nuanced. For example, desert grassland has limited OM-storage
potential in most years relative to shrubland (SEV; [2]). However, net
ecosystem exchange of arid grassland and shrubland ecosystems was re-
silient to a short-term (two years) drought, though lower-than-average
precipitation in winter decreased OM storage in shrublands over the last
100 years (SEV; [9]). In temperate lakes, trends in dissolved OM concen-
tration were also variable (24 years of observation), but the composition
of the dissolved OM changed in concert with drought severity, suggest-
ing recent declines in allochthony and increased photobleaching (NTL;
Figure 6; [66]). A decade of observation in coastal marshes detected de-
clines in biomass in years with elevated temperature, but increases in
years with high discharge, projecting a decline in biomass with ongoing
warming and drought (GCE; [150]). In contrast, soil OM has accumu-
lated over the past 50 years due to encroachment of native grasslands by
woody shrubs on barrier islands (VCR; [17]). In pelagic marine ecosys-
tems, primary production and the communities responsible for that pro-
duction are linked to nutrient availability, which responds to changing
surface ocean temperatures, resulting in variable frequency and magni-
tude of episodic vertical transport of particulate OM and sequestration
in deep sediments over the past 20 years (CCE; Figure 5; [132]). Both
macro- and micronutrient limitation can control vertical flux; for ex-
ample, iron limitation in some regions could constrain production and
velocity of sinking biomass (CCE; [63]).

Overall, analysis of long-term data suggests that large losses of OM
have occurred from high-latitude and high-elevation ecosystems and
will continue under ongoing warming. Complex trajectories of OM dy-
namics in warmer biomes add uncertainty to the future of OM stor-
age there. However, relatively few studies have characterized long-term
trends in OM, and accumulating long-term datasets provide an under-
used opportunity to project trajectories of OM dynamics and storage.
Long-term datasets, including observations of both OM pools and fluxes
collected by the LTER network, are critical to accurately projecting tra-
jectories of OM storage in ecosystems, particularly because they capture
non-linear dynamics less likely observed during short-term monitoring.
Maintaining long-term experiments has further proven valuable in re-
vealing surprises and drivers of OM dynamics that are difficult to detect
from monitoring alone.
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4. Summary

Integrating approaches and foci among ecosystem types and disci-
plines is required to unify understanding of OM dynamics across larger
spatial scales and longer timescales, and to provide accurate estimates
of OM storage in ecosystems. This synthesis of OM research from the US
LTER Network revealed opportunities to accelerate such understanding.
For example, quantifying the chemical composition of OM pools alongside
tracking temporal dynamics in pool sizes has revealed the mechanisms
of OM processing and long-term monitoring of OM composition might
complement attempts to quantify changes in the size of large, hetero-
geneous pools. Cross-fertilization of perspectives founded in different
ecosystem types also offers opportunities to expand the scope of OM
budgets. For example, a transport-focused perspective that emphasizes
the role of hydrologic import and exports of OM in aquatic ecosystems
has been little applied in terrestrial ecosystems. Quantifying the role
of transport in terrestrial ecosystems might decrease uncertainty in lo-
cal OM budgets and contribute to holistic estimates of OM storage over
larger spatial scales.

Synthesis of monitoring, experiments, and modeling revealed pat-
terns that could be leveraged to project future trajectories of OM stor-
age in ecosystems. Climate change, including warming, variation in tim-
ing and amount of precipitation, and sea-level rise, resulted in net loss of
OM from many ecosystems. In terrestrial ecosystems, effects of warming
and precipitation regime are known with greatest certainty in cold and
dry climates, respectively. Though warming can enhance autotrophic
biomass or primary production, increased heterotrophic activity or con-
current disturbances can offset this increase, resulting in losses of OM
(Box 1). Effects of changing precipitation varied with regional cli-
mate, whereby drought reduced OM stores in mesic ecosystems, but
OM was lost from drylands under increased precipitation. Long-term
observations and experiments have contributed these critical insights,
and maintenance of ongoing time series, coupled with additional ex-
periments to evaluate interactions of multiple global changes, offers
the empirical support needed to project OM storage under continued
change.

Fertilization experiments and spatial or temporal gradients of fertil-
ity have revealed strong coupling between C and other elemental cycles,
with emergent patterns in OM dynamics often tracking the duration
of observations. The effects of fertilization on OM storage depended
upon the relative strength of nutrient limitation for autotrophs and het-
erotrophs, wherein provision of nutrients limiting to heterotrophs typ-
ically offset OM gains resulting from nutrient stimulation of primary
production. Fertilization also caused changes in species composition
or dominance, which reorganized the locations of OM storage within
ecosystems. The central role of nutrients in OM budgets underscores the
value of continuing long-term fertilization studies.

Experiments and space-for-time substitution approaches have iden-
tified significant changes in OM storage due to changing land use and
disturbance legacies, finding recovery over decadal to century scales. Re-
covery trajectories depended on the relative size of OM pools and rate
of primary production before and after the disturbance. Complex re-
sponses to disturbance might be resolved by continuing long-term ex-
periments. Ultimately, quantifying responses of the major components
of net ecosystem C balance (Box 1; [26]) within a long-term context
reduced uncertainty in estimates or trajectories of OM storage. Finally,
this synthesis emphasized that OM storage contributes to the physical
structure of ecosystems as well as to biotic composition and processes,
highlighting cascading influences of loss of OM on ecosystem structure
and function.
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