

1 Pacific cod or tikhookeanskaya treska (*Gadus macrocephalus*) in the Chukchi Sea during recent
2 warm years: Distribution by life stage and age-0 diet and condition.

3

4 Daniel W. Cooper^{a*}, Kristin Cieciel^b, Louise Copeman^{a,c}, Pavel O. Emelin^d, Elizabeth
5 Logerwell^a, Nissa Ferm^a, Jesse Lamb^a, Robert Levine^e, Kelia Axler^a, Rebecca A. Woodgate^f,
6 Lyle Britt^a, Robert Lauth^a, Benjamin Laurel^a, Alexei M. Orlov^g.

7

8

9 ^aAlaska Fisheries Science Center, NOAA, National Marine Fisheries Service

10 ^bAlaska Regional Office, NOAA, National Marine Fisheries Service

11 ^cCooperative Institute for Marine Ecosystem and Resources Studies, University of Oregon

12 ^dRussian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia

13 ^eSchool of Oceanography, University of Washington, Seattle, WA, USA

14 ^fUniversity of Washington, Seattle, USA

15 ^gShirshov Institute of Oceanology of the Russian Academy of Sciences, Moscow, Russia;
16 Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow,
17 Russia; Dagestan State University, Makhachkala, Russia; Tomsk State University, Tomsk,
18 Russia; Caspian Institute of Biological Resources, Dagestan Federal Research Center of the
19 Russian Academy of Sciences, Makhachkala, Russia

20

21 *Corresponding author.

22 E-mail address: dan.cooper@noaa.gov (D. W. Cooper)

23

24

25 ABSTRACT

26

27 Many fish species have moved poleward with ocean warming, and species distribution shifts can
28 occur because of adult fish movement, or juveniles can recruit to new areas. In the Bering Sea,
29 recent studies document a dramatic northward shift in the distribution of *Gadus macrocephalus*
30 (Pacific cod in English and tikhookeanskaya treska in Russian) during a period of ocean
31 warming, but it is unknown whether the current northward distribution shift continues into the

32 Chukchi Sea. Here, we use catch data from multiple gear types to present larval, age-0, and
33 older Pacific cod distributions from before (2010 and 2012) and during (2017, 2018, and 2019)
34 recent Chukchi Sea warming events. We also report on the habitat, diet, and condition of age-0
35 Pacific cod, which were present in the eastern Chukchi Sea in recent warm years (2017 and
36 2019), but were absent in a cold year (2012). We hypothesize that age-0 recruitment to the
37 eastern Chukchi Sea is associated with recent warm temperatures and increased northward
38 transport through the Bering Strait in the spring. Age-0 fish were present in both benthic and
39 pelagic habitats and diets reflected prey resources at these capture locations. Age-1 Pacific cod
40 were observed in the western Chukchi Sea in 2018 and 2019, indicating possible overwinter
41 survival of age-0 fish, although there was little evidence that they survive and/or remain in the
42 Chukchi Sea to age-2. Observed low lipid accumulation in age-0 Pacific cod from the Chukchi
43 Sea suggests juvenile overwinter mortality may be relatively high compared to more boreal
44 regions (e.g. Gulf of Alaska). Adult Pacific cod were also observed in the Chukchi Sea during
45 2018 and 2019. Although densities in the western Chukchi Sea were very low compared to the
46 Bering Sea, the adults are the first known (to us) records from the Chukchi Sea. The increased
47 presence of multiple age-classes of Pacific cod in the Chukchi Sea suggests poleward shifts in
48 both nursery areas and adult summer habitat beyond the Bering Sea, but the quantity and quality
49 (e.g. summer productivity and overwintering potential) of these habitats will require continued
50 surveys.

51

52 **Keywords**

53 Pacific cod, *Gadus macrocephalus*, Chukchi Sea, larvae, juvenile, adult, transport, condition

54

55 **1. Introduction**

56

57 The ranges of many marine fish species have moved poleward in response to recent warming
58 temperatures (Mueter and Litzow, 2008; Nye et al., 2009; Kotwicki and Lauth, 2013; Wildes et
59 al., this issue), which is impacting fisheries and ecosystems (Mueter and Litzow, 2008; Figueira
60 and Booth, 2010; Hollowed et al., 2013). Distribution shifts caused by temperature often vary by
61 ontogenetic stage (Morley et al., 2017; Barbeaux and Hollowed, 2018), because species may
62 expand their range by multiple mechanisms, including movement of subadults and adults (Nye et

63 al., 2009; Hill et al., 2016), or juveniles recruiting to new areas and remaining there as they grow
64 (Rindorf and Lewy, 2006; Nye et al., 2009; Figueira and Booth, 2010).

65

66 Currents on the eastern Bering Sea (EBS; Fig. 1) shelf generally move from the south to the
67 north to the Bering Strait (Stabeno et al., 2016). Net flow though the Bering Strait is from the
68 Bering Sea into the Chukchi Sea (Woodgate, 2018) and currents continue northwards through the
69 Chukchi Sea (Stabeno et al., 2018). Summer temperatures in the Bering and Chukchi Seas have
70 increased in recent years (Stabeno and Bell, 2019; Danielson et al., 2020; Woodgate and Peralta-
71 Ferriz, 2021). In the EBS, sea-ice coverage during winter and spring causes an area of cold (<2
72 °C) bottom water known as the cold pool, which persists through the summer (Wyllie-Echeverria
73 and Wooster, 1998; Stabeno et al., 2001). The annual spatial extent of the cold pool varies with
74 annual sea-ice extent and can extend far into the southeastern Bering Sea in cold years, or be
75 limited to areas of the northern Bering Sea (NBS) in warm years (Overland et al., 2012; Stabeno
76 et al., 2012). In recent decades, the Bering Sea has alternated between multi-year periods of
77 cold and warm summer ocean bottom temperatures (Overland et al., 2012; Stabeno et al., 2012;
78 Baker et al. 2020a), including a cold period from 2007 through 2013, and a warm period which
79 began in 2014 (Stabeno and Bell, 2019). Temperatures of the Bering Sea inflow entering the
80 Chukchi Sea during the summer have increased in recent years (Woodgate and Peralta-Ferriz,
81 2021), and temperatures on the Chukchi Sea shelf were historically high from 2014 – 2018
82 (Danielson et al., 2020).

83

84 The summer distribution of *Gadus macrocephalus* (Pacific cod in English or tikhookeanskaya
85 treska in Russian, hereafter referred to as “cod”) shifted northward in the EBS during the recent
86 warm period (Thompson, 2018; Stevenson and Lauth, 2019; Baker, 2021), likely in response to
87 the spatial reduction of the cold pool in the EBS, and warmer summer bottom temperatures in the
88 NBS (Stevenson and Lauth, 2019). Sub-adult and adult cod abundance increased by more than
89 900% in the NBS between 2010 and 2017 (Stevenson and Lauth, 2019). The size range of cod
90 inhabiting the NBS has also changed: in 2010, the surveyed population was comprised of
91 juvenile fish from 10 to about 35 cm fork length (FL), and also larger adults > 60 cm FL, with
92 few fish in the intermediate size range. However, in 2017, there was a continuous length
93 distribution of cod from juveniles through adults (Stevenson and Lauth, 2019). In 2017, cod

94 densities in the NBS were elevated near the Bering Strait (Stevenson and Lauth, 2019), which is
95 at the southern border of the Chukchi Sea (Fig. 1), indicating that the population distribution may
96 have continued into the unsampled southern Chukchi Sea. However, cod distribution and
97 abundance have not been examined in the Chukchi Sea during the recent warm period, and the
98 life stages and size distributions of any cod recently present in the Chukchi Sea are also
99 unknown.

100

101 Juvenile cod have been documented in the Chukchi Sea (Barber et al., 1997; Mecklenburg et al.,
102 2011, 2018; Logerwell et al., 2015) and Beaufort Sea (Andriashov, 1937; Rand and Logerwell,
103 2010), however, relatively few records exist and habitat of juvenile cod in the Chukchi Sea has
104 not been examined (Mecklenburg et al., 2011). In the Chukchi Sea, the largest reported cod were
105 33 cm (Logerwell et al., 2015), 31 cm (Barber et al., 1997), and 17.6 and 8.7 cm total length
106 (TL) (Mecklenburg et al., 2011), which are below the smallest known size of maturity for cod in
107 the EBS or Gulf of Alaska (Stark, 2007). In the EBS, age-0 cod inhabit nearshore benthic
108 habitat, or pelagic habitat in offshore deeper areas (Hurst et al., 2015). Because size and
109 energetic storage are important factors contributing to the overwintering survival of juvenile
110 marine fishes (Sogard, 1997; Hurst, 2007), it is unclear whether small boreal gadids such as cod
111 can survive long periods of cold in low productivity habitats typical of the Chukchi Sea.

112

113 The juvenile cod observed in the Chukchi Sea may be sourced from larvae advected northward
114 from the Bering Sea. Cod spawn in the EBS from March to mid-April as far north as the
115 continental shelf break at about 60°N latitude (Neidetcher et al., 2014) and eggs likely remain at
116 their spawned location because they are demersal (Thomson, 1963; Fadeev, 2005). Larvae
117 become more buoyant at hatch (Laurel et al., 2010) and are typically in surface waters where
118 they have been reported in the EBS from April through June (Matarese et al., 2003) and in the
119 western Bering Sea (WBS) in June (Bulatov, 1986). Ocean currents during the larval period may
120 carry larvae from the NBS to the Chukchi Sea through the Bering Strait. A mooring (A3)
121 located just north of the Bering Strait (Fig. 1), provides hourly time series of ocean temperatures
122 and currents from which estimates of the northward transport through the Bering Strait have been
123 made (Woodgate, 2018).

124

125 The objectives of this study were to 1) investigate thermal and ocean transport conditions which
126 could affect cod larvae transported between the NBS and Chukchi Sea; 2) describe cod
127 distribution in the Chukchi Sea by life stage before (2010 and 2012) and during (2017, 2018,
128 2019) the recent period of warm summer ocean temperatures in the Chukchi Sea; and 3)
129 understand the potential survival trajectories of age-0 cod in the Chukchi sea by comparing their
130 habitat, size, diet and condition to juveniles collected farther south, in the Gulf of Alaska (GOA).

131

132 **2. Methods**

133

134 *2.1. Bering Strait temperature and transport*

135

136 Monthly averaged near-bottom temperatures in April through June from 1998 through 2019
137 measured at a subsurface mooring were used to investigate the thermal exposure of any cod
138 larvae possibly in the Bering Strait during the larval period (Mooring A3 in Woodgate et al.,
139 2015; Woodgate, 2018; Woodgate and Peralta-Ferriz, 2021). This mooring is located ~35 km
140 north of the Bering Strait proper, at a point where water temperatures are considered to be a
141 meaningful average of the water temperatures in the eastern and western sides of the Bering
142 Strait (Woodgate, 2018). These measurements are made near bottom and represent the bottom
143 layer (~30-40 m) of the water column. In April – June, sea surface temperatures are ~ 1 to 2 °C
144 warmer than the near-bottom temperatures in the annual mean (Woodgate and Peralta-Ferriz,
145 2021; Woodgate, 2018, Fig. 14). Thus, depending on where they reside in the water column,
146 larvae in April – June may be exposed to warmer (~1 to 2 °C) temperatures than considered here.

147

148 Estimates of water volume transport from the NBS to the Chukchi Sea during the larval period
149 were obtained to investigate possible inter-annual differences in northward larval transport
150 through the Bering Strait. Monthly-averaged northward transport estimates during April – June
151 from 2000 – 2019 were calculated from the A3 mooring data (see Woodgate, 2018 for method),
152 and an average transport value for April – June was calculated for each year.

153

154 *2.2. Larval distributions*

155

156 Larval Pacific cod were sampled in the Bering and Chukchi Seas during research cruises as part
157 of the Arctic Shelf Growth, Advection, Respiration and Deposition (ASGARD) Rate
158 Measurements Project, the Distributed Biological Observatory (DBO), and the Arctic Integrated
159 Ecosystem Survey (AIES) funded by the North Pacific Research Board (NPRB) Arctic Integrated
160 Ecosystem Research Program (AIERP; Baker et al. 2020b, 2022a) in June 2017, June 2018,
161 August – September 2017, and August – September 2018 (Fig. 2) using a paired 60-cm diameter
162 bongo net (505- μ m mesh) towed obliquely from the surface to 10 m off the bottom (see Deary et
163 al., 2021 for a description of the sampling design for each survey). Samples were preserved at
164 sea in 5% formalin buffered with sodium borate and seawater and identified to the lowest
165 taxonomic level at the Plankton Sorting and Identification Center in Szczecin,
166 Poland. Taxonomic verifications took place at the National Oceanic and Atmospheric
167 Administration, Alaska Fisheries Science Center in Seattle, WA, USA. Flowmeters (General
168 Oceanics) attached to each net were used to calculate volume filtered for each net tow, enabling
169 calculating catch per unit effort (CPUE) defined as $(\log[x+1])$ where log is the natural log, and x
170 is the number of individuals 10 m^{-2} (See Matarese et al. 2003). Hydrographic data were collected
171 using a lowered conductivity-temperature-depth (CTD) profiler (SeaBird Electronics 911
172 plus) immediately prior to net deployments. Temperature ($^{\circ}\text{C}$) measurements were averaged over
173 the entire water column (deepest CTD cast was \sim 60 m) and nearest neighbor interpolated using
174 the “gstat” package in R (version 4.1.2; R Core Team 2021).

175

176 *2.3. Juvenile and adult distributions*

177

178 Cod juveniles and adults were caught in several trawl types used for multi-species surveys in the
179 eastern Chukchi Sea (ECS) and western Chukchi Sea (WCS) in cold years (2010 and 2012) and
180 recent warm years (2017 – 2019; Table 1 and Fig. 2).

181

182 *2.3.1. Surface trawl*

183

184 A Nordic 264 Rope Trawl (NETS Systems) was deployed at nearshore stations during AIES
185 surveys in the ECS in 2017 and 2019 (Table 1, Fig. 2). The rope trawl was 184 m long with non-
186 uniform hexagonal mesh in the wings and body (maximum mesh size = 162 cm) and a 1.2 cm

187 mesh liner in the codend. Tows were made at or near the surface for 30 minutes at 0.77 – 1.54
188 ms^{-1} (1.5 – 3 nautical miles hour $^{-1}$), and had typical trawl mouth openings of 20 m horizontally
189 and 19 m vertically. All sampling was performed during daylight hours. CPUE was calculated
190 as the number of fish divided by the surface area swept by the trawl. Surface area swept by the
191 trawl was calculated as the width of the trawl opening multiplied by the distance fished.
192 Distance fished was measured by Global Positioning System (GPS).

193

194 *2.3.2. Midwater trawl*

195

196 A modified-Marinovich midwater trawl (~34.5 m long, 12 m headrope, 6.4 to 1.8 cm mesh) with
197 a 0.3 cm mesh codend liner was deployed during AIES surveys in 2017 and 2019 in the ECS to
198 conduct targeted midwater hauls (Table 1, Fig. 2; De Robertis et al., 2017). Trawling location
199 and depth were determined based on identification of strong scattering layers in shipboard
200 acoustic data. CPUE of the midwater trawl was calculated as number of fish per trawl tow
201 divided by the volume filtered by the trawl. Volume filtered was calculated as the trawl mouth
202 opening multiplied by the distance fished. Distance fished was measured by GPS position. Net
203 opening was measured using observation from a net sonar (Simrad FS70) placed on the
204 headrope. For all hauls, the vertical net opening averaged 7.85 m (5.1 - 10.6 m range) and
205 horizontal opening averaged 7.49 m (5 - 9.1 m range). Average headrope depth of midwater
206 trawls was 32.1 m, ranging from 11.4 to 227.9 m, with an average ship speed during the tow of 1
207 – 1.5 m s^{-1} . Bottom depths of trawl locations ranged from 23 to 1130 m.

208

209 *2.3.3. Small-mesh benthic trawl*

210

211 A small-mesh benthic trawl was deployed in the ECS during the Arctic Ecosystem Integrated
212 Survey (Arctic EIS) in 2012, and during AIES surveys in 2017, and 2019 (Table 1, Fig. 2). The
213 trawl was a 3.05-m plumb staff beam trawl with a 7 mm mesh and 4 mm mesh codend liner
214 (Gunderson and Ellis, 1986). In 2012, a tickler chain preceded the footrope (Gunderson and
215 Ellis, 1986; Kotwicki et al., 2017). In 2017 and 2019, the tickler chain was removed, and the
216 trawl was modified with a footrope of 10.2 cm rubber discs over a steel chain as in Abookire and
217 Rose (2005). Mean trawl durations and ranges (minutes) were 2.9 (range = 2.8 – 7.4), 5.4 (range

218 = 4.0 – 9.1), and 6.0 (range = 2.8 – 8.9) in 2012, 2017, and 2019, respectively. Targeted towing
219 speed was 0.77 ms^{-1} (1.5 nautical miles hour $^{-1}$). CPUE was calculated as the number of cod in
220 the trawl tow divided by the area swept by the trawl. Area swept by the trawl was the effective
221 width of the trawl multiplied by the distance fished by the trawl. Effective trawl width of the
222 trawl was assumed to be 2.26 m in 2012 (Gunderson and Ellis, 1986; Kotwicki et al., 2017), and
223 2.1 m in 2017 and 2019 (Abookire and Rose, 2005). Distance fished was measured as the
224 distance between the locations that the trawl began and stopped contact with the bottom. Bottom
225 contact was determined by HOBO G acceleration data logger (Onset Corp.) placed in a
226 waterproof steel housing and hung from the footrope in a manner forcing the data logger to pivot
227 when it contacted the bottom. Time stamps from the acceleration data logger were used to match
228 the start and conclusion of trawl bottom contact with location from GPS data.

229

230 *2.3.4. Large-mesh benthic trawls*

231

232 A large-mesh benthic trawl (DT 27.1/24.4 bottom trawl; Zakharov et al., 2013) was deployed in
233 the WCS in 2010, 2018, and 2019 (Table 1, Fig. 2). Trawl mesh was 8.0 cm in the wings and
234 body, 6.0 cm in the intermediate, 3.0 cm in the codend, and the codend was equipped with a 10
235 mm mesh liner. Target trawl speed was $\sim 1.5 \text{ ms}^{-1}$ (3 nautical miles per hour) for a target
236 duration of 30 minutes. CPUE was calculated as the number or weight of cod in the tow divided
237 by the area swept by the trawl. Area swept by the trawl was calculated as the horizontal opening
238 of the trawl (16.2 m) multiplied by the distance fished by the trawl. Distance fished was the
239 distance between the locations that the trawl began and stopped contact with the bottom.

240

241 The large-mesh benthic trawl deployed in the ECS in 2012 (Table 1, Fig. 2) as part of the Arctic
242 EIS survey was an 83-112 Eastern Trawl (Stauffer, 2004). Deployment of the trawl in 2012 is
243 described by Kotwicki et al. (2017). The trawl horizontal opening was approximately 17 m.
244 Stretched mesh size was 10.2 cm in the wings and body, 8.9 cm in the intermediate and codend,
245 and the codend was equipped with a 3.2 cm mesh liner. Target trawl speed was $\sim 1.5 \text{ ms}^{-1}$ (3
246 nautical miles per hour) for a target duration of 15 minutes. CPUE was calculated as the number
247 of cod divided by the area swept of the trawl. Area swept was calculated as the distance fished
248 multiplied by the width of the trawl opening. Width of the trawl opening was measured with

249 acoustic net mensuration sensors (Marport Deep Sea Technologies, Inc.). Distance fished was
250 measured as the distance between the locations that the trawl began and stopped contact with the
251 bottom.

252

253 *2.3.5. Gulf of Alaska small-mesh demersal seine*

254

255 Age-0 juvenile cod were collected in August of 2017 during the annual summer nearshore seine
256 survey on Kodiak Island to compare condition to those collected in the ECS in 2017. The GOA
257 survey uses a 36 m demersal bag seine with 1 m wide seine wings at the ends expanding to 2.25
258 m in the middle. The mesh size was 13 mm within the wings and 5 mm in the bag-end. The seine
259 wings were attached to 25 m ropes for deployment using a small boat and was set parallel to
260 shore at a distance of 25 m away and then retrieved by two people standing on the shore,
261 effectively sampling ~900 m² of bottom habitat (see more details in Laurel et al., 2007).

262

263 *2.4. Trawl survey temperatures*

264

265 Bottom temperatures were recorded at each station for the small- and large-mesh benthic trawls
266 in the ECS using an SBE-39 (Seabird Scientific, Inc.) temperature sensor attached to the trawl
267 headrope. Bottom temperatures in the WCS were recorded with either an SBE-19 or SBE-25
268 temperature sensor from CTD cast conducted at the trawl location. Gear temperatures for the
269 surface and midwater trawls were measured with CTD casts taken with an SBE 911 plus. Near
270 surface temperatures were used for the surface trawl, and temperatures averaged over the depth
271 range between the trawl headrope and footrope at the targeted trawl depth were used for the
272 midwater trawl. CTD casts were co-located with surface trawl tows; however, midwater trawl
273 tows were opportunistic and temperatures were obtained from the nearest CTD cast (the same
274 sampling grid as for the small-mesh benthic trawl each year; Fig. 2).

275

276

277 *2.5. Fish length and length-based age classification*

278

279 In the surface, midwater, and small-mesh benthic trawls, cod were measured to the nearest
280 millimeter at sea. In 2017, TL was measured, and in 2019, one large fish was measured to FL,
281 and the smaller fish were measured to standard length (SL). For comparison with laboratory data
282 and other studies of age-0 fish, lengths of juveniles were converted to SL. To compare sizes of
283 the juvenile cod with larger cod caught with the large-mesh trawls, lengths of juvenile fish were
284 converted to FL. Lengths of juvenile fish were converted between length types using length data
285 provided by Oregon State University, the AFSC's Auke Bay Laboratories and RACE Division's
286 Midwater Assessment and Conservation Engineering program for fish within the same size range
287 as the observed fish. The conversion factors were $SL = TL(0.902) + 1.284$ (based on 120
288 samples up to 110 mm in length) and $SL = FL(0.952) - 0.663$ (based on 11 samples up to 78 mm
289 in length). Cod caught in both large-mesh benthic trawls were measured at sea to the nearest cm
290 FL.

291
292 The length mode (49 – 103 mm FL) of small juveniles caught in the ECS in the small-mesh
293 benthic, midwater, and surface trawls was similar to reported lengths of age-0 fish in the EBS
294 during the summer (Hurst et al., 2012a; Hurst et al., 2015) and these fish will be referred to as
295 age-0 for this study. The larger length mode of juveniles (100 – 230 mm FL) caught in the large-
296 mesh benthic trawls in the ECS and WCS were smaller than age-1 fish in the Gulf of Alaska
297 during the summer (150 – 250 mm TL; Laurel et al., 2016a); however, they are assumed to be
298 age-1 based on length mode analysis (they were larger than the mode of age-0 fish), and will be
299 referred to as age-1 fish for this study. There was an overlap in the size ranges of the age-0 and
300 age-1 fish (100 – 103 mm FL); however, the size range contained only 3% of the fish in this
301 study. Zero fish between 230 mm and 550 mm FL were caught in this study. The larger cod
302 (550 – 780 mm FL) caught in this study are greater than the size of 50% maturity for cod from
303 the EBS and GOA (Stark, 2007) and are referred to as adults for this study.

304

305 2.6. Age-0 diets

306

307 Diets of the age-0 cod caught in the ECS in 2017 were analyzed by capture trawl type (small-
308 mesh benthic, midwater, and surface trawls) to investigate whether the age-0 cod captured in
309 different parts of the water column used different prey resources. Sample sizes were 40 fish

310 from 10 stations in the small-mesh benthic trawl, 28 fish from 6 stations in the midwater trawl,
311 and 40 fish from 5 stations in the surface trawl. Fish were frozen at sea. Stomachs were
312 dissected in the laboratory and stored in 10% formalin to fix stomach contents. Stomach
313 contents were sorted to lowest practical taxonomic resolution and developmental stage (as
314 appropriate) and weighed to the nearest 0.01 μ g, and counted.

315

316 To determine prey importance in the age-0 cod diets in each type of trawl, we used the
317 percentage of the prey-specific index of relative importance (%PSIRI) (Brown et al., 2012).
318 %PSIRI is calculated using frequency of occurrence (FO), prey-specific count (%PN_i), and prey-
319 specific weight (%PW_i), which were calculated using the following equations:

320 Frequency of occurrence (%FO):

$$321 \quad \%FO_i = \frac{n_i}{n} .$$

322 Prey-specific count (%PN):

$$323 \quad \%PN_i = \sum_{j=1}^n \%N_{ij}/n_i .$$

324 Prey-specific weight (%PW_i):

$$325 \quad \%PW_i = \sum_{j=1}^n \%W_{ij}/n_i ,$$

326 where %N_{ij} is the proportional count (PN_i) and %W_{ij} is the proportional weight (PW_i) of prey
327 category *i* in stomach sample *j*; *n*_{*i*} is the number of stomachs containing prey *i*, and *n* is the total
328 number of stomachs.

329 The %PSIRI was then calculated:

$$330 \quad \%PSIRI_i = \frac{\%FO_i * (\%PN_i + \%PW_i)}{2} .$$

331 %PSIRI was calculated for prey items at the lowest practical taxonomic resolution, and also for
332 prey items grouped by the following prey habitat types: endobenthic, epibenthic, hyperbenthic,

333 planktonic, or various (see Ferm et al., 2021 for a description, and a list of the habitat type for
334 each prey taxon in the supplemental materials). Each prey item was assigned a prey habitat type
335 based on a literature search.

336

337 The symmetric niche overlap coefficient (Pianka, 1973), was calculated to determine whether
338 there was niche overlap among the diets of cod caught in the different trawl types using:

339

340
$$O_{kl} = \frac{\sum_i^n p_{il}p_{ik}}{\sqrt{\sum_i^n p_{il}^2 \sum_i^n p_{ik}^2}},$$

341 where O_{kl} is the resource overlap index between capture trawl type k and l , and p_{il} is the
342 proportion of resource i that is used by capture trawl type l .

343 This resource overlap index produces values from 0 to 1, where 0 indicates that no resources are
344 shared and 1 indicates complete shared resource utilization between the cod collected in different
345 trawl types. To test whether the observed diet differences between pairs of trawl types were
346 significantly different (null hypothesis was there was no difference), we used the niche overlap
347 methods in the EcoSimR package. The package first created a matrix of prey weights (columns)
348 by trawl type at each station (rows). This matrix of prey weights was randomly shuffled 2000
349 times by row using the RA3 (default) algorithm in the EcoSim R package. For each
350 randomization, the O_{kl} value was calculated. The actual calculated O_{kl} values observed for each
351 trawl pair were compared to the histogram of O_{kl} values from the 2000 randomized data sets, and
352 the diet difference between the trawl types was considered statistically significant when the
353 actual O_{kl} values were outside the 95% percentile of the histogram of O_{kl} values from the
354 randomized data. All data analyses were conducted using R statistical analysis software (R Core
355 Team, 2020).

356

357 *2.7. Age-0 condition*

358

359 One-hundred and seventeen age-0 cod collected in the ECS in 2017 and 30 age-0 fish from the
360 annual August GOA beach seine survey in 2017 were saved for condition analyses. Fish from

361 the four different gear types described above, small-mesh benthic (n=45), midwater (n=31),
362 surface trawls (n=41) and the GOA beach seines (n=30) were frozen immediately at -20 °C and
363 maintained at -80 °C at the land-based laboratory. Samples were frozen and shipped overnight
364 from Alaska to the Marine Lipid Ecology Laboratory at Oregon State University's Center for
365 Marine Ecosystem and Resources Studies facility at the Hatfield Marine Science Center in
366 Newport, OR, USA. Samples were stored at -80 °C and dissected within 6 months of capture. At
367 the laboratory, all fish were measured to SL (± 0.1 mm) and wet weight (WWT; ± 0.0001 g). All
368 of the fish from the Chukchi Sea and 18 of the 30 fish from the GOA were used in the
369 biochemical analysis. For these fish, intestinal tracts were removed and fish were washed with
370 filtered seawater, blotted dry, and heads were removed for later otolith analysis. Fish were
371 bisected along a dorsal ventral plane and half of the tissues were frozen for other analyses while
372 half of the body tissues were placed in chloroform under nitrogen until extraction, within 1
373 month of sampling.

374

375 Cod tissues were homogenized in 2:1 chloroform:methanol according to Parrish (1987) using a
376 modified Folch procedure (Folch et al., 1956). Lipid extracts were derivatized through acid
377 transesterification using a Hilditch Reagent, H₂SO₄ in MeOH as described in Budge et al.
378 (2006). Fatty acid methyl esters (FAMEs) formed in the reaction were analyzed on an HP 7890
379 GC FID equipped with an autosampler and a DB wax+ GC column (Agilent Technologies, Inc.).
380 The column length was 30 m with an internal diameter of 0.25 mm and a film thickness of 0.25
381 μ m. The column temperature profile was as follows: 65 °C for 0.5 min, hold at 195 °C for
382 15 min after ramping at 40 °C min⁻¹, and hold at 220 °C for 1 min after ramping at 2 °C
383 min⁻¹. The carrier gas was hydrogen, flowing at a rate of 2 ml. min⁻¹. Injector temperature was
384 set at 250 °C and the detector temperature was constant at 250 °C. Peaks were identified using
385 retention times based upon standards purchased from Supelco (BAME, PUFA 1, 37 component
386 FAME, PUFA 3). Nu-Check Prep GLC 487 quantitative FA mixed standard was used to develop
387 correction factors for individual FAs. Chromatograms were integrated using Chem Station
388 (version A.01.02, Agilent). Total fatty acids were expressed in relation to fish WWT (g) to give
389 an index of total acyl lipid storage.

390

391 Regressions between \log_{10} (SL) and \log_{10} (WWT) as well as \log_{10} (SL) and fatty acid
392 concentrations (mg/g) were run as indices of morphometric- and lipid-based condition,
393 respectively. Residuals from these relationships were compared between the GOA and ECS
394 using a two-sample t-test.

395

396

397 **3. Results**

398

399 *3.1. Bering Strait temperature and transport*

400

401 Monthly-averaged near-bottom water temperatures in the Bering Strait in April were consistently
402 cold throughout the time series, ranging from -1.58 to -1.89 °C (Fig. 3). Both temperature and
403 inter-annual temperature variability increased in May, although May near-bottom temperatures
404 remained below 0 °C for all years except 2017 (Fig. 3). Inter-annual temperature variability
405 increased in June, with monthly averaged temperatures ranging from -0.83 to 2.95 °C. Any
406 larvae transported northward through the Bering Strait in June 2012 would have been exposed to
407 temperatures of about 0.5 – 1.5 °C (near bottom temperature of -0.5 °C plus 1 – 2 °C warmer in
408 the water column). June near-bottom temperatures from 2015 to 2019 were among the highest in
409 the time series. Larvae in June would have been exposed to temperatures of ~ 4 – 5 °C in 2017
410 and ~2.3 – 3.3 °C in 2019.

411

412 Net northward transport from the NBS to the Chukchi Sea averaged over the larval period
413 (April-June) increased over the past two decades from ~ 0.7 Sv (1Sv= $10^6 m^3 s^{-1}$) in 2000 to ~ 1.5
414 Sv in 2017, the record maximum (Fig. 3).

415

416 *3.2. Larval distributions and temperatures*

417

418 Pacific cod larvae were present in the NBS near the Bering Strait in June 2017 at sites where
419 water temperatures ranged from 2.6 to 3.7 °C on average (Fig. 4A) and in the northeastern
420 Chukchi Sea in August 2018 where temperatures ranged from 1.3 to 2.5 °C (Fig. 4B). Larvae
421 were absent in August 2017 and June 2018. Larvae caught in June 2017 were 8 – 14 mm SL,
422 and the single larva caught in the northeastern Chukchi Sea was 8 mm SL.

423

424 *3.3. Age-0 cod in the ECS*

425

426 *3.3.1 Distribution and temperature*

427

428 Age-0 cod ranging in length from 45 to 94 mm SL (49 – 103 mm FL) were caught in the surface,
429 midwater, and small-mesh benthic trawls in 2017 and 2019 in the ECS (Fig. 5). Age-0 cod were
430 absent from the ECS in 2012; however, the only trawl type deployed in 2012 capable of catching
431 small juveniles was the small-mesh benthic trawl. Detailed results are reported by trawl type.

432

433 In 2017, age-0 cod were present in the surface trawl catch at one station near Point Lay, and at
434 several stations from the vicinity of Cape Lisburne to the southern end of the survey area (Fig.
435 6A). In 2019, age-0 cod were caught only at the most northerly surface trawl station, between
436 Point Lay and Cape Lisburne (Fig. 6B). Surface temperatures where age-0 cod were present in
437 the surface trawl ranged from 5.0 – 6.2 °C in 2017, and surface temperature was 9.3 °C at the one
438 station with age-0 presence in 2019. In both years, age-0 cod were present at stations near the
439 median temperatures of all available surface trawl stations (Fig. 7). Bottom temperatures at
440 stations where age-0 cod were caught in the surface trawl were slightly colder than surface
441 temperatures (range = 4.1 – 5.6 °C) in 2017; however, bottom temperature was slightly warmer
442 at the one station with age-0 presence in 2019 (Fig. 7).

443

444 In 2017, age-0 cod were present in the midwater trawl catch at stations from offshore of Point
445 Lay south to the vicinity of Point Hope (Fig. 6C). In 2019, the observed distribution of age-0
446 cod shifted north, with absences near Point Hope and Cape Lisburne, and presences north of
447 Point Lay (Fig. 6D). Age-0 cod were present in the midwater trawl catch at stations with gear
448 temperatures ranging from 4.6 – 6.7 °C and 2.3 – 10.0 °C in 2017 and 2019, respectively. Age-0

449 cod were almost exclusively caught in the midwater trawl at locations warmer than the median
450 temperature of all midwater trawls (Fig. 7). At stations with age-0 presence, bottom
451 temperatures were colder than the midwater gear temperatures, however, generally by less than 1
452 °C (Fig. 7).

453

454 In 2012, age-0 cod were absent at all 40 stations sampled with the small-mesh benthic trawl (Fig.
455 8A). In 2017, age-0 cod were present at 11 of 59 sampled stations, from offshore of Point Lay
456 south to the southern edge of the sampling grid, including at 7 stations which had been sampled
457 in 2012 (Fig. 8B). CPUEs at stations with fish presence in 2017 ranged from about 1350 –
458 46,000 age-0s km^{-2} . In 2019, age-0 cod were present at 4 of 49 sampled stations, at CPUEs
459 ranging from about 1700 – 7,100 age-0s km^{-2} (Fig. 8C). Age-0 cod were present in bottom
460 temperatures ranging from 2.5 to 5.9 °C and 4.4 to 9.5 °C in 2017 and 2019, respectively.
461 Station bottom temperatures during the 2017 and 2019 surveys ranged from below 0 °C in the
462 northern part of the survey area to near or exceeding 10 °C in the inshore and southern part of the
463 survey grids each year (Figs. 7 and 8). In the mooring data, June temperatures in the Bering
464 Strait were colder in 2012 than in 2017 and 2019 (Fig. 3), and summer bottom temperatures were
465 colder in the northern and offshore stations in 2012 than in 2017 and 2019 (Fig. 8). However,
466 bottom temperatures at the southern and nearshore stations with age-0 cod presence in 2017 were
467 generally warmer in 2012 than in 2017 (Fig. 8), and the range of available bottom temperatures
468 surveyed by the bottom trawl in 2012 included the temperature range where age-0 cod were
469 present in 2012 and 2019 (Fig. 7).

470

471 *3.3.2 Age-0 catch rates by depth*

472

473 Catch rates of age-0 cod by bottom depth varied by gear type in a similar pattern each year (Fig.
474 9). The highest catch rates in the small-mesh benthic trawl were between 20 and 29 m and 30 to
475 39 m bottom depth in 2017 and 2019, respectively, and in both years, catch rates were lower at
476 depths greater than 40 m. In contrast, the highest catch rates in the midwater trawl were at
477 greater bottom depths; between 40 and 59 m in 2017, and between 40 and 49 m in 2019. Catch
478 rates in the surface trawl were highest in the 20 – 29 m bottom depth range, however, the surface

479 trawl was fished only at nearshore station and most surface trawls occurred over relatively
480 shallow bottom depths.

481

482 *3.3.3. Age-0 diet by gear type*

483

484 Age-0 cod collected in all the surface, midwater, and small-mesh benthic trawls in 2017
485 consumed a variety of prey taxa (Table 2, Fig. 10). Copepods were the most important
486 (importance measured by % PSIRI) prey taxa for fish collected in all three gears (Fig. 10), with
487 benthic-caught fish primarily consuming the epibenthic calanoid copepod species *Eurytemora*
488 *herdmani* (PSIRI = 13.55%), while the surface- and midwater-caught fish primarily consumed
489 various pelagic calanoid copepods (PSIRI = 70.54% and 26.40% for the surface and midwater
490 trawls, respectively). The benthic-caught age-0 cod also consumed near equal percentages of a
491 taxonomically-broad suite of prey items; including benthic prey taxa such as polychaetes,
492 benthic amphipods, benthic decapods, and benthic cnidarians (anemones). The most important
493 prey taxa for the pelagic-caught fish, after calanoid copepods, were decapods for the surface
494 trawl-caught fish, and fish (unidentified Gadidae) and decapods for the midwater trawl-caught
495 fish. The niche overlap indices for diets of age-0 cod caught in the benthic and pelagic trawls
496 were low (benthic and midwater = 0.01, benthic and surface = 0.08), indicating little overlap in
497 diets, although only the difference between the benthic and midwater values was statistically
498 significant ($P = 0.0175$), and there was somewhat higher overlap for the diets of the two pelagic
499 trawls (surface and midwater = 0.2). Grouped by general habitat classifications, prey of the
500 pelagic-caught fish were almost entirely pelagic or unknown, while the benthic-caught fish also
501 consumed endo-, epi-, and hyper-benthic prey (Fig. 10).

502

503 *3.3.4. Age-0 condition: ECS versus GOA*

504

505 Two measures of condition, length-weight residuals and total fatty acid concentration, were
506 compared between age-0 cod from the ECS and the nearshore GOA (Fig. 11). Age-0 cod from
507 the GOA were longer and heavier than age-0 cod from the ECS even though they were collected
508 in August compared to fish collected in September in the ECS. Fish from the GOA in August
509 averaged ~80 mm SL and weighed 5 grams while fish from the ECS were ~67 mm SL and 3

510 grams. The residuals from the log-length and log-weight relationship demonstrated that fish
511 from the GOA were heavier at a given length than fish from the ECS. Total fatty acids per
512 WWT did not increase with length ($r^2=0.02$). The residuals from the length to total fatty acids
513 relationship showed that fish from the GOA had a higher concentration of fatty acids per WWT
514 at a given length than fish from the ECS ($p<0.001$). Both morphometric condition and that based
515 on length-lipid concentration showed that fish from the GOA were in better condition at the end
516 of the summer/fall than fish from the ECS.

517

518 *3.4. Age-1 and adults*

519

520 *3.4.1. WCS distributions and temperatures*

521

522 Cod were absent from the trawl sampling in the WCS in 2010 (Fig. 12). Both age-1 juveniles
523 and adults were present in the WCS in 2018 and 2019 (Fig. 12). In both years, there was a
524 length mode of juveniles (assumed to be age-1), from 130 – 180 and 100 – 230 mm FL in 2018
525 and 2019, respectively, and larger adult-sized fish, from 660 – 780 and 550 – 750 mm FL in
526 2018 and 2019, respectively (Fig. 5). Although there were two juveniles larger than 180 mm FL
527 in 2019, there was little evidence of a new length mode of fish greater than 180 mm FL in 2019,
528 and these two fish are also assumed to be age-1. CPUEs of age-1 cod at stations where they
529 were present ranged from 23 – 133 and 9 – 95 fish km^{-2} in 2018 and 2019, respectively. A total
530 of five adult cod were caught in 2018 and four in 2019. Estimated densities of adult-sized fish,
531 where they were present, ranged from 12 – 24 and 10 – 22 fish km^{-2} in 2018 and 2019,
532 respectively. CPUEs by weight for the age-1 and adults combined at stations where they were
533 present, and in units for comparison with previous reports in the Bering Sea were 0.004 – 1.54
534 and 0.0018 – 1.073 kg ha^{-1} in 2018 and 2019, respectively.

535

536 Bottom temperatures where cod were present ranged from 1.9 – 4.7 $^{\circ}\text{C}$ and 3.3 – 4.7 $^{\circ}\text{C}$ for age-
537 1s and adults, respectively in 2018 (Fig. 7), and from 1.4 – 4.9 $^{\circ}\text{C}$ and 0.4 – 4.9 $^{\circ}\text{C}$ for age-1s
538 and adults, respectively in 2019 (Fig. 7). Although 2010 was a year with cold temperatures in
539 the Bering Strait in June (Fig. 3), much of the sampled area in the southwestern Chukchi Sea in

540 2010 was within the bottom temperature range that contained cod in 2018 and 2019 (Figs. 7 and
541 12).

542

543 *3.4.2. ECS distributions and temperatures*

544

545 Age-1 cod were present at three stations in 2012 in the large-mesh benthic trawl in the ECS (Fig.
546 12). These age-1s ranged in size from 100 – 130 mm FL (Fig. 5), and CPUE from 44 – 106 fish
547 km⁻². Adults were absent at all stations in the ECS in 2012.

548

549 Bottom temperatures where age-1 cod were present in 2012 in the large-mesh benthic trawl
550 sampling ranged from 1.3 – 9.9 °C (Fig. 7). Similar to 2010 in the WCS, 2012 was a year with
551 cold June water temperature in the Bering Strait, (Fig. 3); however, much of the sampled area in
552 the shallow southeastern Chukchi Sea in 2012 was as warm as or warmer than areas with age-1
553 and adult presence in the WCS in 2018 and 2019 (Figs. 7 and 12).

554

555 In addition to the age-0 cod caught in the midwater trawl (section 3.3.1), one much larger (64.7
556 cm FL) adult was caught using the midwater trawl during a tow that fished near the benthos at
557 the southern end of the survey area in 2019 (Fig. 6).

558

559 **4. Discussion**

560

561 Age-0 cod were absent from the Chukchi Sea in a cold year (2012) and present in recent warm
562 years (2017 and 2019) of this study. Increased temperatures could explain the age-0 cod
563 presence in the Chukchi Sea though several mechanisms, including increased temperature-
564 dependent larval growth and survival near the Bering Strait, increased springtime transport
565 through the Bering Strait, and/or more larvae arriving at the Bering Strait due to changes in the
566 EBS.

567

568 Warmer springtime temperatures in the NBS possibly led to age-0 cod presence in the Chukchi
569 Sea in recent warm years. In 2012, a cold year, larvae near the Bering Strait in June would have
570 been exposed to cold (estimated ~0.5 to 1.5 °C) water. The growth of cod larvae is highly

571 temperature-dependent and survival in the laboratory is reduced at 2 °C (Hurst et al., 2010).
572 Unfed yolksac larvae can survive lower temperatures (e.g., 0 °C), but growth and development
573 rates are very slow (Laurel et al., 2008) and hatch success is poor (Laurel and Rogers, 2020). It
574 is therefore unlikely that eggs and larvae have historically occupied these Arctic regions where
575 juveniles have recently been observed. We note that larvae were observed near the Bering Strait
576 in June in a warm year (2017), which would have likely contributed to better larval survival and
577 increased presence of age-0 fish in the Chukchi Sea in 2017 and 2019. Warm June temperatures
578 at the Bering Strait also occurred in a previous year (2007) when age-0-sized cod were observed
579 in the Chukchi Sea (Mecklenburg et al., 2011).

580

581 The observed higher springtime transport in recent warm years could also contribute to age-0
582 presence in the Chukchi Sea. Larvae were present in the NBS in June 2017, and the observed
583 increased northward springtime transport in 2017 and other recent years could have advected
584 them into the Chukchi Sea. Walleye pollock (*Gadus chalcogrammus*), a pelagic boreal species
585 has also been observed in the Chukchi Sea in recent years of high transport (Orlov et al., 2019,
586 2020, 2021; Levine et al., this issue; Antonov et al., this issue; Emelyanova et al., this issue).
587 Similar trends have also been noted in pelagic forage fishes in the same years (Baker et al.,
588 2022b).

589

590 Age-0 cod presence in the Chukchi Sea could also be due to a supply of larvae from the Bering
591 Sea reaching the Bering Strait in recent years. Pacific cod spawning in the EBS occurred from
592 March through April in 2005 and 2006 as far north as the shelf break east of St. Matthew Island
593 (Neidetcker et al., 2014). Larvae originating from this location could be transported by the
594 Bering Slope Current (Stabeno et al., 2016), and could reach the north side of St. Lawrence
595 Island in about 4 months (Fig. 12 in Stabeno et al., 2016). Given size at hatch of about 5 mm
596 (Laurel et al., 2008), growth rates of about 0.5 – 0.1 mm/day for pre-flexion larvae estimated
597 from laboratory experiments at temperatures of 1-6 °C (Hurst et al., 2010), and four months of
598 larval transport, these larvae may have reached north of St. Lawrence Island at a size range of
599 about 11 – 17 mm, which is similar to the observed larval size of about 8 – 14 mm in this area in
600 June 2017. However, even if the larvae were spawned in March and traveled as fast as historical
601 currents, with an estimated 20 – 30 day egg incubation period (Laurel et al. 2008) and four

602 months in the Bering Slope Current, they would not arrive until August. It seems likely that if
603 the larvae observed near the Bering Strait were from the Bering Sea, they either spawned earlier
604 than previous reports, were spawned north of previous reports, or were transported by increased
605 current speeds. Another possibility is that changes due to warmer temperatures in the EBS or
606 NBS caused successful larval delivery to the Chukchi Sea by other mechanisms (or a
607 combination of mechanisms), such as improving egg survival (Laurel and Rogers, 2020), or
608 improving larval prey fields (Laurel et al. 2021). It seems especially unlikely that the 8mm SL
609 larvae observed in the northeastern Chukchi Sea in August 2018 was spawned as far south as the
610 known spawning areas in the EBS, implying spawning must occur north of previously
611 documented spawning areas.

612

613 Age-0 fish from other temperate areas have expanded their nursery habitat in recent years in
614 response to increased larval transport or warmer temperatures. Age-0 nursery areas for Atlantic
615 cod, *Gadus morhua*, shifted northward in the North Sea during years with increased northward
616 winds during the larval period and warm ocean temperatures (Rindorf and Lewy, 2006). In the
617 Barents Sea, age-0 fish from several species including Atlantic cod expanded their geographical
618 habitat in an unusually warm year, and were also larger than the long-term average (Eriksen et
619 al., 2020).

620

621 Recent adult cod presence in the Chukchi Sea in 2018, and 2019, and absence in 2010 and 2012
622 may also be related to warmer temperatures in the NBS and Bering Strait in the spring. Adult
623 cod avoid the cold pool in the EBS (Kotwicki and Lauth, 2013), and the movement of adult cod
624 into the NBS between 2010 and 2017 coincides with a reduction in the cold pool in the NBS
625 (Stevenson and Lauth, 2019; Baker, 2021). Preliminary tagging data suggests that adult cod
626 move from the EBS into the NBS after sea ice has retreated northward in the spring and summer
627 (J. Nielsen, Kingfisher Marine Research, and S. McDermott, AFSC, personal communication,
628 February 23, 2021). Based on these tagging data, it is possible that the early ice retreat in both
629 2018 and 2019 (Stabeno and Bell, 2019; Siddon et al., 2020) allowed the fish to reach the Bering
630 Strait early enough in the year to continue northward into the Chukchi Sea by August.

631 Increased temperatures on the Chukchi Sea shelf in the summer are less likely to be the cause of
632 the increased cod presence in recent years than temperatures in the spring in the NBS and Bering
633 Strait. Annual summer water temperatures on the ECS shelf have increased since 2014
634 (Danielson et al., 2020); however, even in the earlier and colder years of this study (2010 and
635 2012), when age-0 and adult cod were absent, some of the sampled habitat was warm enough
636 (based on observed presence in 2017 and 2019) to support cod. The entire water column of the
637 relatively shallow southeastern Chukchi Sea warms in the summer due to both advection and
638 wind mixing (Grebmeier et al., 2015; Woodgate et al., 2015), and the nearshore areas are in the
639 Alaska Coastal Current, which is typically warmer than the rest of the shelf from June to at least
640 October (Woodgate et al., 2010; Woodgate, 2018). Even in the cold years of this study, the
641 Chukchi Sea appeared warm enough during the summer for age-0 and adult cod to be present.

642

643 Age-0 cod in the Chukchi Sea use both pelagic and demersal habitats, which is similar to their
644 habitat use in the EBS (Hurst et al., 2015). Diet differences between age-0 fish in pelagic and
645 benthic habitats imply that age-0 cod remain at a habitat type for, at minimum, a daily feeding
646 cycle. It should be noted that the age-0 fish from the benthic and midwater trawls that had
647 significantly different diets were from different geographic areas, and prey field differences
648 could be responsible for the observed diet differences. Nevertheless, the benthic-caught fish ate
649 predominately benthic prey items, and the midwater-caught fish ate predominately pelagic prey
650 items. In the EBS, age-0 cod are pelagic over deeper water and benthic in nearshore shallower
651 areas, which is possibly related to temperature; the juveniles occupy demersal habitat in inshore
652 areas with relatively warm bottom temperatures, and occupy warmer pelagic habitat when they
653 are over deep water with cold benthic habitat (Hurst et al., 2015). Age-0 habitat use in the
654 Chukchi Sea fits the same general pattern, with the addition that some fish use the pelagic
655 nearshore habitat. This may mean that, in addition to temperature, fish in nearshore areas may
656 select their depth in the water column based on some other factor, such as localized prey fields,
657 or salinity.

658

659 The absence of a length mode of juveniles in the ECS in 2019 larger than that observed in 2018
660 suggests that the age-1 cod in 2018 may not have survived to age-2. All previous reports of cod

661 from the ECS have been of juvenile-sized fish (Barber et al., 1997; Mecklenburg et al., 2011,
662 2018; Logerwell et al., 2015). It seems that cod juveniles in the Chukchi Sea either suffer high
663 mortality rates, or migrate to other areas prior to adulthood.

664

665 The juveniles in the Chukchi Sea may not be able to successfully grow and provision themselves
666 well enough to survive to become adults. Condition (lipid densities and weight at length) was
667 lower in the 2017 age-0 cod from the Chukchi Sea than those from the GOA. Lipid densities
668 were also lower in the age-0 cod in this study than in co-occurring gadids in the Chukchi Sea in
669 2017 (Copeman et al., this issue). The age-0 cod in the Chukchi Sea in this study inhabited
670 colder waters (2017, 2 – 6 °C) than age-0 cod during the summer in the EBS (~6 – 12 °C; Hurst
671 et al. 2015; Hurst et al., 2018) and the Gulf of Alaska (~8 – 11 °C; Abookire et al., 2007; Laurel
672 et al., 2016a). Further, summer temperatures in the Chukchi Sea are lower than those modeled
673 for maximum growth (~11.0 to 11.5 °C) and maximum lipid accumulation (10 °C) in controlled
674 laboratory growth experiments (Laurel et al., 2016b; Hurst et al., 2010; Hurst et al., 2012b;
675 Copeman et al., 2017). Thus, temperatures during the summer in the Chukchi Sea may be too
676 low for juvenile cod to achieve sufficient size or energetic thresholds to survive long, low-
677 productive Arctic winters. Future monitoring of age-0 cod in the Chukchi Sea should include
678 both growth and condition metrics.

679

680 The abundance of age-0 cod in the ECS is potentially high enough to be ecologically meaningful
681 if they could survive to adulthood. Only small numbers of juveniles were caught with our small-
682 mesh benthic trawl, but catch rates in the nearshore areas of the ECS were similar to catch rates
683 in EBS nursery areas using a similar trawl (Hurst et al., 2015; Table 3); however, they were one
684 order of magnitude lower than catch rates in GOA nursery areas in high-abundance years (Table
685 3). An abundance estimate based on our limited number of stations in 2017 should be viewed
686 with caution, but it provides a general sense of the potential number of cod juveniles in the ECS
687 in 2017. Benthic trawl catch rates in the ECS were highest from 67 °N to 69 °N inshore of 40 m
688 bottom depth, an area of approximately 14,500 km². Mean catch rates here were approximately
689 12,000 fish per km². Assuming the trawl caught all of the fish in the towpath, and our sampling
690 was representative of the area, mean density multiplied by area would equal approximately 174
691 million fish present in 2017 within the area from 67°N to 69 °N inshore of 40 m bottom depth.

692 Alternatively, estimating abundance from the mean catch rates and area of the entire survey area
693 south of 70 °N provides an estimate of approximately 150 million fish. Even if these estimates
694 are high, there were tens of millions of age-0 cod in the ECS in 2017. If these or future age-0
695 cod survive to adulthood, and either remain in the Chukchi Sea or successfully migrate to other
696 spawning areas, it would mean a northward expansion of cod nursery area habitat, which is one
697 type of poleward distribution shift that has been documented in marine fish due to ocean
698 warming (Rindorf and Lewy, 2006; Nye et al., 2009; Figueira and Booth, 2010).

699

700 Densities of adult and age-1 cod estimated in this study are very low compared to reports from
701 the Bering Sea. CPUE by weight for combined age-1 and adult fish at stations where fish were
702 present ranged from 0.0018 to 1.5 kg/ha in this study. Even in 2010, when cod were considered
703 “almost completely absent” from the NBS, cod CPUE values at some stations were greater than
704 10 kg/ha, and CPUE values in the EBS may be greater than 50 kg/ha (Stevenson and Lauth,
705 2019). These catch rate comparisons are between the DT 27.1/24.4 bottom trawl used in the
706 WCS in this study, and the 83-112 trawl used in the NBS and EBS, however, catchability
707 differences seem unlikely to cause the much lower CPUE values observed in the WCS in this
708 study. In the western Bering Sea (WBS), cod densities have been reported from surveys using
709 the same large-mesh trawl as used in the WCS in this study (Shuntov et al., 2014). Cod
710 densities in the WBS were summarized by statistical regions and depth range over the time
711 period from 2006 through 2012. In regions and depth ranges where cod are present in the WBS,
712 reported mean densities ranged from 235 to 7,631 kg ha-1, however, these densities assumed that
713 only 40% of fish encountering the trawl were retained by the trawl (Shuntov et al., 2014). To
714 make these numbers comparable to the CPUE units used in this study (100% of fish retained),
715 the values reported by Shuntov et al. (2014) were multiplied by 0.4. These converted mean
716 CPUE values are 94 to 3,052 kg ha-1 and are much higher than even the peak CPUE values
717 observed in the Chukchi Sea in this study.

718

719 Although estimated densities were low, the adult cod observed in the WCS (and the one adult
720 caught in the ECS) in this study are among the first known (to us) adult Pacific cod caught in the
721 Chukchi Sea. The only other is an adult Pacific cod caught in a subsistence fishing net near
722 Point Hope, AK, in August 2020, and reported as a novel occurrence to the Alaska Arctic

723 Observatory and Knowledge Hub (AAOKH; Donna Hauser, International Arctic Research
724 Center, University of Alaska Fairbanks, personal communication, January 29, 2021). The lack
725 of observed intermediate size ranges of fish between age-1 and adults makes it likely that there is
726 not a self-recruiting cod population in the Chukchi Sea, and that the adults likely moved
727 northward from the Bering Sea, similar to how adults moved into the NBS from the EBS
728 (Stevenson and Lauth, 2019). Only one adult was caught in the ECS during this study, but it was
729 caught when the pelagic midwater trawl was incidentally fished on the bottom while targeting a
730 deep acoustic layer. It is possible that adults and larger juveniles were also present at other
731 sampling stations in the ECS in the recent warm years of this study, but avoided the pelagic and
732 small-mesh benthic sampling gear. Adult cod are primarily benthic (Fadeev, 2005; Nichol et al.,
733 2007) and would not be available to the pelagic trawls, and could also likely avoid the small-
734 mesh benthic trawl due to the small mouth opening and slow fishing speeds (Itaya et al., 2007).
735 Therefore, the presence of larger juvenile and adult cod in the ECS is unknown and will remain
736 unknown until the area is surveyed across a range of habitats with gear suited to their capture
737 (see Emelin et al., this issue).

738
739 Differences in abundance and distribution between the ECS and WCS for all life stages would be
740 interesting to study, but trawl type differences in recent years make this difficult. The ECS has
741 been surveyed with trawls likely to catch age-0 fish, and the WCS has been surveyed with gear
742 likely to catch larger juveniles and adults.

743
744 The data presented here show that multiple life stages of Pacific cod were present in the Chukchi
745 Sea in recent warm years, which suggests that the species is expanding into the Chukchi Sea by
746 both recruitment of age-0 fish, and adult movement. However, the true extent of this range
747 expansion, its potential to persist into the future, and the ultimate fate of individuals that move
748 into the Chukchi Sea, are still unknown. Monitoring surveys designed to estimate abundances
749 and condition of multiple life stages are required to better understand this poleward distribution
750 shift, and to assess its impacts to the ecosystem.

751

752 **5. Conclusions**

753

754 Age-0 sized Pacific cod were present in the eastern Chukchi Sea during a recent warm period
755 and absent during a previous cold period. Pacific cod larvae were present south of the Bering
756 Strait during June in a recent warm year. Increased springtime water temperatures near the
757 Bering Strait and increased springtime northward transport through the Bering Strait during the
758 recent warm period may allow larvae from the northern Bering Sea to be transported through the
759 Bering Strait, and thus the northern Bering Sea is a likely source of the age-0 Pacific cod
760 observed in the Chukchi Sea.

761

762 Age-1 sized Pacific cod were present in the western Chukchi Sea during the recent warm period
763 suggesting that some of the age-0 fish in the Chukchi Sea may survive the first winter. However,
764 condition of the age-0 fish was much lower in the Chukchi Sea than in the Gulf of Alaska. Poor
765 age-0 condition and absence of any juveniles older than age-1 suggest that Pacific cod are not
766 currently surviving to adulthood in the Chukchi Sea. Collection gear deployed in the western
767 Chukchi Sea may not retain age-0 fish, and collection gear deployed in the eastern Chukchi Sea
768 may not retain age-1 or older demersal fish limiting comparisons between the two areas.

769

770 Adult Pacific cod were present in both the western and eastern Chukchi Sea during the recent
771 warm period. Absence of intermediate-sized juveniles suggest that these adults moved into the
772 Chukchi Sea from the Bering Sea.

773

774

775

776

777 **Acknowledgments**

778

779 We thank Aleksey Somov (TINRO, Vladivostok, Russia) for first noticing the difference
780 between juvenile saffron cod (*Eleginops gracilis*) and Pacific cod in our trawl catches during the
781 2017 AIERP cruise. We also thank the captains, crews, and scientists aboard the RV *TINRO*, FV
782 *Alaska Knight*, RV *Ocean Starr*, RV *Professor Levanidov*, RV *Sikuliaq*, and USCGC *Healy* for
783 deploying gear and processing the catches. We thank James Orr and Duane Stevenson of the
784 AFSC for visually confirming the identification of some Pacific cod voucher specimens, as well

785 as Sharon Wildes and others at the AFSC for genetic confirmation of vouchered fish
786 identification. We thank Brian Voss, Director of the NOAA Western Center Regional Library
787 for locating several historical publications. Phyllis Stabeno graciously answered Dan Cooper's
788 questions about currents in the Eastern Bering Sea. We thank the Plankton Sorting and
789 Identification Center in Szczecin, Poland, and the Alaska Fisheries Science Center
790 ichthyoplankton team for their larval fish taxonomic expertise. We thank Carlissa Salant and
791 Michelle Stowell at the Marine Lipid Ecology Lab in Newport, OR, for help with juvenile fish
792 dissection and fatty acid analyses. This work is contribution EcoFOCI-1001 to NOAA's
793 Ecosystems and Fisheries-Oceanography Coordinated Investigations (EcoFOCI), and was
794 funded by the North Pacific Research Board Arctic Integrated Research Program, and NOAA
795 Essential Fish Habitat research funds. Preparation of this paper was conducted within the
796 framework of the Russian State Task of the Russian Federal Research Institute of Fisheries and
797 Oceanography, VNIRO (P.O.E.) and Russian State Task FMWE-2022-0004 of Shirshov Institute
798 of Oceanology of the Russian Academy of Sciences, IO RAS (A.M.O.). Funding for the Bering
799 Strait mooring work is currently through NSF-OPP, (awards: PLR-1304052, 1758565), and
800 Bering Strait mooring data and products are available at
801 psc.apl.washington.edu/BeringStrait.html. The 2012 Arctic ecosystem integrated survey (EIS)
802 was funded by the Bureau of Ocean Energy Management (BOEM), and the Coastal Impact
803 Assistance Program (CIAP). This is NPPR manuscript ArcticIERP-34. Ingrid Spies and Duane
804 Stevenson of the AFSC, and two anonymous reviewers provided thoughtful reviews of previous
805 versions of the MS and greatly improved the final version.

806

807

808 **References**

809

810 Abookire, A.A., Duffy-Anderson, J., Jump, C. 2007. Habitat associations and diet of young-of-
811 the-year Pacific cod (*Gadus macrocephalus*) near Kodiak, Alaska. Mar. Biol. 150(4):713–726,
812 doi.org/10.1007/s00227-006-0391-4.

813

814 Abookire, A.A., Piatt, J.F., Norcross, B.L. 2001. Juvenile groundfish habitat in Kachemak Bay,
815 Alaska, during late summer. Alaska Fish. Res. Bull. 8(1):45–56.

816

817 Abookire, A.A., Rose, C.S. 2005. Modifications to a plumb staff beam trawl for sampling
818 uneven, complex habitats. Fish. Res. 71(2):247–254, doi.org/10.1016/j.fishres.2004.06.006.

819

820 Andriashhev, A.P. 1937. A contribution to the knowledge of the fishes from the Bering and
821 Chukchi Seas. Explor. Mers. U.R.S.S. 25:292–355. (English summary).

822

823 Antonov, N.P., Emelin, P.O., Maznikova, O.A., Sheibak, A.Yu., Trofimova, A.O., Benzik, A.N.,
824 Nosov, M.A., Orlov, A.M. 2021. Walleye pollock *Gadus chalcogrammus* in the western Chukchi
825 Sea: promising target of Arctic fishery? Deep-Sea Res. II: Topical Stud. Oceanogr. (this issue).

826

827 Baker, M.R. 2021. Contrast of warm and cold phases in the Bering Sea to understand
828 spatial distributions of Arctic and sub-Arctic gadids. Polar Biol. 44(6):1–43,
829 doi.org/10.1007/s00300-021-02856-x.

830

831 Baker, M.R., De Robertis, A., Levine, R., Cooper, D.W., Farley, E.V. 2022b. Spatial distribution
832 of Arctic sand lance in the Chukchi Sea related to the physical environment. Deep-Sea Res. II:
833 Topical Stud. Oceanogr. (this issue).

834

835 Baker, M.R., Farley, E.V., Danielson, S.L., Mordy, C., Stafford, K.M., Dickson, D.M.S. 2022a.
836 Integrated research in the Arctic – ecosystem linkages and shifts in the northern Bering Sea and
837 eastern and western Chukchi Seas. Deep-Sea Res. II: Topical Stud. Oceanogr. (this issue).

838

839 Baker, M.R., Farley, E.V., Ladd, C., Danielson, S.L., Stafford, K.M., Huntington, H.P., Dickson.
840 D.M. 2020b. Integrated Ecosystem research in the Pacific Arctic-understanding ecosystem
841 processes timing and change. Deep-Sea Res. II: Topical Stud. Oceanogr. 177:104850,
842 doi.org/10.1016/j.dsr2.2020.104850

843

844 Baker, M.R., Kivva, K.K., Pisareva, M.N., Watson, J.T., Selivanova, J. 2020a. Shifts in the
845 physical environment in the Pacific Arctic and implications for ecological timing and conditions.
846 Deep-Sea Res. II: Topical Stud. Oceanogr. 177:104802, doi.org/10.1016/j.dsr2.2020.104802

847

848 Barbeaux, S.J., Hollowed, A.B. 2018. Ontogeny matters: Climate variability and effects on fish
849 distribution in the eastern Bering Sea. Fish. Oceanogr. 1:1–15.

850

851 Barber, W.E., Smith, R.L., Vallarino, M., Meyer, R.M. 1997. Demersal fish assemblages of the
852 northeastern Chukchi Sea, Alaska. Fish. Bull., U.S. 95:195–209.

853

854 Brown, S.C., Bizzarro, J.J., Cailliet, G.M., Ebert, D.A. 2012. Breaking with tradition: redefining
855 measures for diet description with a case study of the Aleutian skate *Bathyraja aleutica* (Gilbert
856 1896). Environ. Biol. Fishes 95(1):3–20.

857

858 Budge, S.M., Iverson, S.J., Koopman, H.N. 2006. Studying trophic ecology in marine
859 ecosystems using fatty acids: A primer on analysis and interpretation. Mar. Mammal Sci.
860 22:759–801.

861

862 Bulatov, O.A. 1986. Distribution of eggs and larvae of codfishes (subfamily Gadinae) in the
863 Pacific waters of Kamchatka and western Bering Sea. In: Codfishes of the Far Eastern seas.
864 Vladivostok, TINRO. pp. 89–102 (In Russian)

865

866 Copeman, L.A., Laurel, B.J., Spencer, M., Sremba, A. 2017. Temperature impacts on lipid
867 allocation among juvenile gadid species at the Pacific Arctic-Boreal interface: an experimental
868 laboratory approach. Mar. Ecol. Prog. Ser. 566:183–198, doi.org/10.3354/meps12040.

869

870 Copeman, L.A., Salant, C.D., Stowell, M.A., Spencer, M.L., Kimmel, D.G., Pinchuk, A.I.,
871 Laurel, B.J. Annual and spatial variation in the condition and lipid storage of juvenile Chukchi
872 Sea gadids during a recent period of environmental warming (2012 to 2019). Deep-Sea Res. II:
873 Topical Stud. Oceanogr. (this issue).

874

875 Danielson, S.L., Ahkinga, O., Ashjian, C., Basyuk, E., Cooper, L.W., Eisner, L., Farley, E. and
876 others. 2020. Manifestation and consequences of warming and altered heat fluxes over the
877 Bering and Chukchi Sea continental shelves. Deep-Sea Res. II: Topical Stud. Oceanogr.
878 177:104781.

879

880 Deary, A.L., Vestfals, C.D., Mueter, F.J., Logerwell, E.A., Goldstein, E.D., Stabeno, P.J.,
881 Danielson, S.L., Hopcroft, R.R., Duffy-Anderson, J.T. 2021. Seasonal abundance, distribution,
882 and growth of the early life stages of polar cod (*Boreogadus saida*) and saffron cod (*Eleginops*
883 *gracilis*) in the US Arctic. Polar Biol. 44:2055–2076, doi.org/10.1007/s00300-021-02940-2.

884

885 De Robertis, A., Taylor, K., Wilson, C.D., Farley, E.V. 2017. Abundance and distribution of
886 Arctic cod (*Boreogadus saida*) and other pelagic fishes over the U.S. Continental Shelf of the
887 Northern Bering and Chukchi Seas. Deep-Sea Res. II: Topical Stud. Oceanogr. 135:51–65,
888 doi.org/10.1016/j.dsr2.2016.03.002.

889

890 Emelyanova, O.R., Grigorov, I.V., Orlov, A.M., Orlova S.Yu. 2021. Polymorphism of mtDNA
891 gene *Cyt b* of the Chukchi Sea walleye pollock, *Gadus chalcogrammus* (Gadidae, Gadiformes)
892 Deep-Sea Res. II: Topical Stud. Oceanogr. (this issue).

893

894 Emelin, P.O., Maznikova, O.A., Benzic, A.N., Sheibak, A.Y., Trofimova, A.O., Orlov, A. 2022.
895 Invader's portrait: biological characteristics of walleye pollock *Gadus chalcogrammus* in the
896 western Chukchi Sea. Deep-Sea Res. II: Topical Stud. Oceanogr. (this issue).

897

898 Eriksen, E., Bagøien, E., Strand, E., Primicerio, R., Prokhorova, T., Trofimov, A., Prokopchuk, I.
899 2020. The record-warm Barents Sea and 0-group fish response to abnormal conditions. Frontiers
900 in Marine Science 7:1–19, doi.org/10.3389/fmars.2020.00338.

901

902 Fadeev, N.S. 2005. Guide to biology and fisheries of fishes of the North Pacific Ocean.

903 Vladivostok, TINRO-Center. 366 p.

904

905 Ferm, N.C., Duffy-Anderson, J., Hurst, T.P. 2021. Functional foraging habits and dietary overlap

906 of yellowfin sole (*Limanda aspera*) and northern rock sole (*Lepidopsetta polyxystra*) in a coastal

907 nursery of the Bering Sea. Fish. Bull. 120:1–12, doi.org/10.7755/FB.120.1.1.

908

909 Figueira, W.F., Booth, D.J. 2010. Increasing ocean temperatures allow tropical fishes to

910 survive overwinter in temperate waters. Global Change Biol. 16:506–516.

911

912 Folch, J., Less, M., Sloane Stanley, G.H. 1956. A simple method for the isolation and

913 purification of total lipids from animal tissues. J. Biological Chem. 22:497–509.

914

915 Grebmeier, J.M., Bluhm, B.A., Cooper, L.W., Danielson, S.L., Arrigo, K.R., Blanchard, A.L.,

916 Clarke, J.T., Day, R.H., Frey, K.E., Gradinger, R.R., Kedra, M., Konar, B., Kuletz, K.J., Lee, S.

917 H., Lovvorn, J.R., Norcross, B.L., Okkonen, S.R. 2015. Ecosystem characteristics and processes

918 facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific

919 Arctic. Prog. Oceanogr. 136:92–114, doi.org/10.1016/j.pocean.2015.05.006.

920

921 Gunderson, D.R., Ellis, I.E. 1986. Development of a plumb staff beam trawl for sampling

922 demersal fauna. Fish. Res. 4(1):35–41, doi.org/10.1016/0165-7836(86)90026-3.

923

924 Hill, N.J., Tobin, A.J., Reside, A.E., Pepperell, J.G., Bridge, T.C.L. 2016. Dynamic habitat

925 suitability modeling reveals rapid poleward distribution shift in a mobile apex predator. Global

926 Change Biol. 22:1086–1096.

927

928 Hollowed, A.B., Barange, M., Beamish, R., Brander, K., Cochrane, K., Drinkwater, K.,

929 Foreman, M., Hare, J., Holt, J., Ito, S-I., Kim, S., King, J., Loeng, H., MacKenzie, B., Mueter, F.,

930 Okey, T., Peck, M. A., Radchenko, V., Rice, J., Schirripa, M., Yatsu, A., and Yamanaka, Y.

931 2013. Projected impacts of climate change on marine fish and fisheries. ICES J. Mar. Sci.
932 70:1023–1037.

933

934 Hurst, T.P. 2007. Causes and consequences of winter mortality in fishes. J. Fish Biol. 71:315–
935 345.

936

937 Hurst, T.P., Cooper, D.W., Duffy-Anderson, J.T., Farely, E.V. 2015. Contrasting coastal and
938 shelf nursery habitats of Pacific cod in the southeast Bering Sea. ICES J. Mar. Sci. 72(2):515–
939 527, doi.org/10.1093/icesjms/fsu141.

940

941 Hurst, T.P., Laurel, B.J., Ciannelli, L. 2010. Ontogenetic patterns and temperature-dependent
942 growth rates in early life stages of Pacific cod (*Gadus macrocephalus*). Fish. Bull., U.S.
943 108:382–392.

944

945 Hurst, T.P., Miller, J.A., Ferm, N., Heintz, R.A., Farley, E.V. 2018. Spatial variation in potential
946 and realized growth of juvenile Pacific cod in the southeastern Bering Sea. Mar. Ecol. Prog. Ser.
947 590:171–185, doi.org/10.3354/meps12494.

948

949 Hurst, T.P., Moss, J.H., Miller, J.A. 2012a. Distributional patterns of 0-group Pacific cod (*Gadus*
950 *macrocephalus*) in the eastern Bering Sea under variable recruitment and thermal conditions.
951 ICES J. Mar. Sci. 69:163–174.

952

953 Hurst, T.P., Munch, S.B., Lavalle, K.A. 2012b. Thermal reaction norms for growth vary among
954 cohorts of Pacific cod (*Gadus macrocephalus*). Mar. Biol. 159:2173–2183,
955 doi.org/10.1007/s00227-012-2003-9.

956

957 Itaya, K., Fujimori, Y., Shimizu, S., Komatsu, T., Miura, T. 2007. Effect of towing speed and net
958 mouth size on catch efficiency in framed midwater trawls. Fisheries Science 73:1007–1016.

959

960 Kotwicki, S., Lauth, R.R. 2013. Detecting temporal trends and environmentally-driven changes
961 in the spatial distribution of bottom fishes and crabs on the eastern Bering Sea shelf. Deep-Sea
962 Res. II: Topical Stud. Oceanogr. 94:231–243.

963

964 Kotwicki, S. Lauth, R.R., Williams, K., Goodman, S.E. 2017. Selectivity ratio: A useful tool for
965 comparing size selectivity of multiple survey gears. Fish. Res. 191:76–86.
966 doi.org/10.1016/j.fishres.2017.02.012.

967

968 Laurel, B.J., Copeman, L.A., Hurst, T.P. et al. 2010. The ecological significance of lipid/fatty
969 acid synthesis in developing eggs and newly hatched larvae of Pacific cod (*Gadus*
970 *macrocephalus*). Mar. Biol. 157:1713–1724, doi.org/10.1007/s00227-010-1445-1.

971

972 Laurel, B.J., Hunsicker, M.E., Ciannelli, L., Hurst, T.P., Duffy-Anderson, J., O’Malley, R.,
973 Behrenfeld, M. 2021. Regional warming exacerbates match/mismatch vulnerability for cod
974 larvae in Alaska. Prog. Oceanogr. 193:102555.

975

976 Laurel, B.J., Hurst, T.P., Copeman, L.A., Davis, M.W. 2008. The role of temperature on the
977 growth and survival of early and late hatching Pacific cod larvae (*Gadus macrocephalus*). J.
978 Plankton Res. 30(9):1051–1060.

979

980 Laurel, B.J., Knoth, B.A., Ryer, C.H. 2016a. Growth, mortality, and recruitment signals in age-0
981 gadids settling in coastal Gulf of Alaska. ICES J. Mar. Sci. 73(9):2227–2237,
982 doi.org/10.1093/icesjms/fsw039.

983

984 Laurel, B.J., and Rogers, L.A. 2020. Loss of spawning habitat and prerecruits of Pacific cod
985 during a Gulf of Alaska heatwave. Canadian J. of Fish. Aquat. Sci. 77(4):644-650,
986 doi.org/10.1139/cjfas-2019-0238.

987

988 Laurel, B.J., Spencer, M., Iseri, P., Copeman, L.A. 2016b. Temperature-dependent growth and
989 behavior of juvenile Arctic cod (*Boreogadus saida*) and co-occurring North Pacific gadids. Polar
990 Biol. 39:1127–1135, doi.org/10.1007/s00300-015-1761-5.

991

992 Laurel, J., Stoner, A.W., Ryer, C.H., Hurst, T.P., Abookire, A.A. 2007. Comparative habitat

993 associations in juvenile Pacific cod and other gadids using seines, baited cameras and laboratory

994 techniques. *J. Exp. Mar. Biol. Ecol.* 351(1–2):42–55.

995

996 Levine, R.M., De Robertis, A., Grunbaum, D., Wildes, S., Farley, E.V., Stabeno, P.J., Wilson,

997 C.D. Climate-driven shift in pelagic fish distributions in a rapidly changing Pacific Arctic. *Deep-*

998 *Sea Res.* II: Topical Stud. *Oceanogr.* (this issue).

999

1000 Logerwell, E., Busby, M., Carothers, C., Cotton, S., Duffy-Anderson, J., Farley, E., Goddard, P.,

1001 Heintz, R., Holladay, B., Horne, J., Johnson, S., Lauth, B., Moulton, L., Neff, D., Norcross, B.,

1002 Parker-Stetter, S., Seigle, J., Sformo, T. 2015. Fish communities across a spectrum of habitats in

1003 the western Beaufort Sea and Chukchi Sea, *Prog. Oceanogr.* 136:115–132,

1004 doi.org/10.1016/j.pocean.2015.05.013.

1005

1006 Matarese, A.C., Blood, D.M., Picquelle, S.J., Benson, J.L. 2003. Atlas of abundance and

1007 distribution patterns of ichthyoplankton from the northeast Pacific Ocean and Bering Sea

1008 ecosystems based on research conducted by the Alaska Fisheries Science Center (1972–1996).

1009 NOAA Prof. Paper NMFS 1, 281 p.

1010

1011 Mecklenburg, C.W., Lynghammar, A., Johannessen, E., Byrkjedal, I., Christiansen, J.S., Dolgov,

1012 A.V., Karamushko, T.A., Møller, P.R., Steinke, D., Wienerroither, R.M. 2018. Marine Fishes of

1013 the Arctic Region, Volume I. Conservation of Arctic Flora and Fauna Monitoring Series Report

1014 28.

1015

1016 Mecklenburg, C.W., Møller, P.R., Steinke, D. 2011. Biodiversity of arctic marine fishes:

1017 taxonomy and zoogeography. *Mar. Biodivers.* 41:109–140 and online resource 2.

1018

1019 Morley, J.W., Batt, R.D., Pinsky M.L. 2017. Marine assemblages respond rapidly to winter

1020 climate variability. *Global Change Biol.* 23:2590–2601, doi.org/10.1111/gcb.13578.

1021

1022 Mueter, F.J., Litzow, M.A. 2008. Sea ice retreat alters the biogeography of the Bering Sea
1023 continental shelf. *Ecol. Appl.* 18:309–320.

1024

1025 Neidetcher, S.K., Hurst, T.P., Ciannelli, L., Logerwell, E.A. 2014. Spawning phenology and
1026 geography of Aleutian Islands and eastern Bering Sea Pacific cod (*Gadus macrocephalus*).
1027 *Deep-Sea Res. II: Topical Stud. Oceanogr.* 109:204–214, doi.org/10.1016/j.dsr2.2013.12.006.

1028

1029 Nichol, D.G., Honkalehto, T., Thompson, G.G. 2007. Proximity of Pacific cod to the sea floor:
1030 Using archival tags to estimate fish availability to research bottom trawls. *Fish. Res.* 86:129–135.

1031

1032 Nye, J., Link, J., Hare, J., Overholtz, W. 2009. Changing spatial distribution of fish stocks in
1033 relation to climate and population size on the Northeast United States continental shelf. *Mar.*
1034 *Ecol. Prog. Ser.* 393:111–129, doi.org/10.3354/meps08220.

1035

1036 Orlov, A.M., Benzik, A.N., Vedishcheva, E.V., Gafitsky, S.V., Gorbatenko, K.M., Goryanina,
1037 S.V., Zubarevich, V.L., Kodryan, K.V., Nosov, M.A., Orlova, S.Yu., Pedchenko, A.P., Rybakov,
1038 M.O., Sokolov, A.M., Somov, A.A., Subbotin, S.N., Taptygin, M.Yu., Firsov, Yu.L.,
1039 Khleborodov, A.S., Chikilev, V.G., 2019. Fisheries research in the Chukchi Sea on the RV
1040 "Professor Levanidov" in August 2019: some preliminary results, *Trudy VNIRO* 178:206–220,
1041 doi.org/10.36038/2307-3497-2019-178-206-220.

1042

1043 Orlov, A.M., Gorbatenko, K.M., Benzik, A.N., Rybakov, M.O., Nosov, M.A., Orlova, S.Y.,
1044 2021. Biological research in the Siberian Arctic seas in summer–autumn 2019 (cruise of the R/V
1045 Professor Levanidov). *Oceanology* 61:295–296, doi.org/10.1134/S0001437021020156.

1046

1047 Orlov, A.M., Rabazanov, N.I., Nikiforov, A.I. 2020. Transoceanic migrations of fishlike animals
1048 and fish: norm or exclusion? *J. Ichthyol.* 60:242–262, doi.org/10.1134/S0032945220020125.

1049

1050 Overland, J.E., Wang, M., Wood, K.R., Percival, D.B., Bond, N.A. 2012. Recent Bering Sea
1051 warm and cold events in a 95-year context. *Deep-Sea Res. II: Topical Stud. Oceanogr.* 65–70:
1052 6–13.

1053

1054 Parrish, C.C. 1987. Separation of aquatic lipid classes by chromarod thin-layer chromatography

1055 with measurement by Iatroscan flame ionization detection. Canadian J. Fish. Aquat. Sci. 44:722–

1056 731.

1057

1058 Pianka, E.R. 1973. The structure of lizard communities. Annu. Rev. Ecol. and Systematics 4:53–

1059 74.

1060 R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for

1061 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

1062

1063 R Core Team (2021) R: A language and environment for statistical computing. R Foundation for

1064 Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

1065

1066 Rand, K., Logerwell, E.A. 2010. The first survey of the abundance of benthic fish and

1067 invertebrates in the offshore marine waters of the Beaufort Sea since the late 1970s. Polar Biol.

1068 34:475–488.

1069

1070 Rindorf, A., Lewy, P. 2006. Warm, windy winters drive cod north and homing of spawners

1071 keeps them there. J. Appl. Ecol. 43:445–453.

1072

1073 Shuntov, V.P., Volvenko, I.V., Kulik, V.V., Bocharov, L.N. 2014. Benthic macrofauna of the

1074 western part of the Bering Sea: occurrence, abundance, and biomass. 1977–2010. Edited by V.P.

1075 Shuntov and L.N. Bocharov. Vladivostok : TINRO-Centre, 803 pp.

1076

1077 Siddon, E.C., Zador, S. G., Hunt G. L. 2020. Ecological responses to climate perturbations and

1078 minimal sea ice in the northern Bering Sea. Deep-Sea Res. II: Topical Stud. Oceanogr. 181–

1079 182:104914, doi.org/10.1016/j.dsr2.2020.104914.

1080

1081 Sogard, S.M. 1997. Size-selective mortality in the juvenile stage of teleost fishes: A review. Bull.

1082 Mar. Sci. 60:1129–1157.

1083
1084 Stabeno, P.J, Bell, S.W. 2019. Extreme conditions in the Bering Sea (2017–2018): Record-
1085 breaking low sea- ice extent. *Geophys. Res. Lett.* 46(15):8952–8959.
1086
1087 Stabeno, P.J., Bond, N.A., Kachel, N.B., Salo, S.A., Schumacher, J.D. 2001. On the temporal
1088 variability of the physical environment over the southeastern Bering Sea. *Fish. Oceanogr.* 10:
1089 81–98.
1090
1091 Stabeno, P.J., Danielson, S.L., Kachel, D.G., Kachel, N.B., Mordy, C.W. 2016. Currents and
1092 transport on the Eastern Bering Sea shelf: An integration of over 20 years of data. *Deep-Sea Res.*
1093 II: Topical Stud. *Oceanogr.* 134:13–29, doi.org/10.1016/j.dsr2.2016.05.010.
1094
1095 Stabeno, P., Kachel, N., Ladd, C., Woodgate, R. 2018. Flow Patterns in the Eastern Chukchi Sea:
1096 2010–2015. *J. Geophys. Res.:Oceans* 123(2):1177–1195.
1097
1098 Stabeno, P., Moore, S., Napp, J., Sigler, M., Zerbini, A. 2012. Comparison of warm and cold
1099 years on the southeastern Bering Sea shelf. *Deep-Sea Res. II: Topical Stud. Oceanogr.* 65–70:
1100 31–45.
1101
1102 Stark, J.W. 2007. Geographic and seasonal variations in maturation and growth of female Pacific
1103 cod (*Gadus macrocephalus*) in the Gulf of Alaska and Bering Sea. *Fish. Bull., U.S.* 105:396–
1104 407.
1105
1106 Stauffer, G. (compiler). 2004. NOAA protocols for groundfish bottom trawl surveys of the
1107 nation's fishery resources. NOAA Tech. Memo. NMFS-F/SPO-65, 205 p.
1108
1109 Stevenson, D.E., Lauth, R.R. 2019. Bottom trawl surveys in the northern Bering Sea indicate
1110 recent shifts in the distribution of marine species. *Polar Biol.* 42:407–421,
1111 doi.org/10.1007/s00300-018-2431-1.
1112

1113 Thompson, G. 2018. Assessment of the Pacific cod stock in the eastern Bering Sea. Stock
1114 assessment and fishery evaluation report for the groundfish resources of the Bering Sea/Aleutian
1115 Islands regions. In Stock assessment and fishery evaluation report for the groundfish resources of
1116 the Bering Sea/Aleutian Islands regions, North Pacific Fishery Management Council,
1117 Anchorage, Alaska.

1118

1119 Thomson, J.A. 1963. On the demersal quality of the fertilized eggs of Pacific cod, *Gadus*
1120 *macrocephalus* Tilesius. J. Fish. Res. Board Canada 20:1087–1088.

1121

1122 Wildes, S., Whittle, J., Nguyen, H., Marsh, M., Karpan, K., Damelio, K., Dimond, A., Cieciel,
1123 K., Robertis, A., Levine, R., Larson, W., Guyon, J. 2022. Walleye pollock breach the Bering
1124 Strait: a change of cods in the Arctic. Deep-Sea Res. II: Topical Stud. Oceanogr. (this issue).

1125

1126 Woodgate, R.A. 2018. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and
1127 insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring
1128 data. Prog. Oceanogr. 160:124–154.

1129

1130 Woodgate, R.A., Peralta-Ferriz, C. 2021. Warming and Freshening of the Pacific Inflow to the
1131 Arctic from 1990–2019 implying dramatic shoaling in Pacific Winter Water ventilation of the
1132 Arctic water column. Geophys. Res. Lett., doi.org/10.1029/2021GL092528.

1133

1134 Woodgate, R.A., Stafford, K.M., Prahl, F.G. 2015. A synthesis of year-round interdisciplinary
1135 mooring measurements in the Bering Strait (1990–2014) and the RUSALCA years (2004–2011).
1136 Oceanogr. 28(3):46–67, doi.org/10.5670/oceanog.2015.57.

1137

1138 Woodgate, R.A., Weingartner, T., Lindsay, R. 2010. The 2007 Bering Strait oceanic heat flux
1139 and anomalous Arctic sea-ice retreat, Geophys. Res. Lett. 37: L01602,
1140 doi.org/10.1029/2009GL041621.

1141

1142 Wyllie-Echeverria, T., Wooster, W.S. 1998. Year-to-year variations in Bering Sea ice cover and
1143 some consequences for fish distributions. Fish. Oceanogr. 7:159–170.

1144 Zakharov E.A., Kruchinin O.N., Mizurkin M.A., Safronov V.A. 2013. Geometric parameters of
1145 the bottom trawl 27.1/24.4, and its possible errors in assessment of number of marine organisms.
1146 Izv. TINRO. 174:284–292.

Table 1. Summary of trawling effort and number and presumed life stage of Pacific cod caught during each survey used in this study.

Year	Months	Trawl type	Mouth opening	Max. mesh (mm)	Min. mesh (mm)	No. stations	Chukchi Sea Region	Raw number (presumed age)
2010	Sep.	Large-mesh benthic	16.2 m horiz.	80	10	38	Western	0
2012	Aug. - Sep.	Large-mesh benthic	17.0 m horiz.	100	31	71	Eastern	4 (age-1)
2012	Aug. - Sep.	Small-mesh benthic	2.1 m horiz.	7	4	40	Eastern	0
2017	Aug. - Sep.	Surface	18 m horiz. X 24 m vert.	1620	12	17	Eastern	64 (age-0)
2017	Aug. - Sep.	Midwater	7.5 m horz. X 7.9 m vert.	64	30	33	Eastern	152 (age-0)
2017	Aug. - Sep.	Small-mesh benthic	2.1 m horiz.	7	4	60	Eastern	43 (age-0)
2018	Aug. - Sep.	Large-mesh benthic	16.2 m horiz.	80	10	54	Western	52 (age-1), 8 (adult)
2019	Aug. - Sep.	Surface	18 m horiz. X 24 m vert.	1620	12	10	Eastern	2 (age-0)
2019	Aug. - Sep.	Midwater	7.5 m horz. X 7.9 m vert.	64	30	42	Eastern	52 (age-0), 1 (adult)
2019	Aug. - Sep.	Small-mesh benthic	2.1 m horiz.	7	4	49	Eastern	7 (age-0)
2019	August	Large-mesh benthic	16.2 m horiz.	80	10	79	Western	51 (age-1), 4 (adult)

Table 2. Prey-specific relative index of importance (PSIRI) for prey taxa by trawl type for Pacific cod small juveniles collected in the eastern Chukchi Sea in 2017. Only prey items with PSIRI greater than 3 are listed.

Trawl Type	Prey Taxa	Prey Group	PSIRI
Small-mesh benthic	Polychaeta	Annelid worm	13.57
Small-mesh benthic	Eurytemora herdmani	Calanoid copepods, <2.5 mm Total length	13.55
Small-mesh benthic	Nematoda parasite	Unidentified	10.55
Small-mesh benthic	Euphausiidae juv/adult	Euphausiids, j+a	10.00
Small-mesh benthic	Decapoda	Decapoda	8.83
Small-mesh benthic	Cistenides spp.	Annelid worm	5.59
Small-mesh benthic	Margarites spp.	Gastropod	4.41
Small-mesh benthic	Argis spp.	Carideans	3.21
Small-mesh benthic	Paguridae juv/adult	Anomuran crab	3.06
Midwater	Calanoida (<2.5 mm)	Calanoid copepods, <2.5 mm Total length	17.68
Midwater	Actinopterygii	Fish	17.48
Midwater	Caridea	Carideans	17.01
Midwater	Gadiformes	Fish	12.89
Midwater	Cirripedia cypris	Barnacle	8.72
Midwater	Centropages abdominalis	Calanoid copepods, >2.5 mm Total length	8.09
Midwater	Brachyura megalopa	Brachyuran crab	6.80
Midwater	Paguridae zoea	Anomuran crab	6.04
Surface	Centropages abdominalis	Calanoid copepods, >2.5 mm Total length	31.41
Surface	Calanoida (<2.5 mm)	Calanoid copepods, <2.5 mm Total length	31.28
Surface	Decapoda	Decapoda	13.45
Surface	Crustacea	Crustacean	8.33
Surface	Pseudocalanus spp.	Calanoid copepods, <2.5 mm Total length	7.34
Surface	Brachyura megalopa	Brachyuran crab	5.73

Table 3. Comparison of Catch per Unit Effort (CPUE) in this and other studies from Alaskan waters using a similar 3-meter beam trawl based on the design of Gunderson and Ellis (1986). Where noted, the trawls were based on the modified design of Abookire and Rose (2005).

Large Marine Ecosystem	Area	Year	Trawl Design	Mean Pacific cod km^{-2}	Reference
Chukchi Sea	20 - 29 m depth range	2017	Abookire and Rose (2005)	6,200	This study
Chukchi Sea	30 - 39 m depth range	2017	Abookire and Rose (2005)	2,800	This study
Chukchi Sea	20 - 29 m depth range	2019	Abookire and Rose (2005)	0	This study
Chukchi Sea	30 - 39 m depth range	2019	Abookire and Rose (2005)	1,800	This study
Bering Sea	Alaska Peninsula < 50 m depth	2012	Abookire and Rose (2005)	2,200	Hurst et al. 2015
Gulf of Alaska	Kachemak Bay	1994	Gunderson and Ellis (1986)	100	Abookire et al. 2001
Gulf of Alaska	Kachemak Bay	1995	Gunderson and Ellis (1986)	48,700	Abookire et al. 2001
Gulf of Alaska	Kachemak Bay	1996	Gunderson and Ellis (1986)	0	Abookire et al. 2001
Gulf of Alaska	Kachemak Bay	1997	Gunderson and Ellis (1986)	50,300	Abookire et al. 2001
Gulf of Alaska	Kachemak Bay	1998	Gunderson and Ellis (1986)	200	Abookire et al. 2001
Gulf of Alaska	Kachemak Bay	1999	Gunderson and Ellis (1986)	600	Abookire et al. 2001

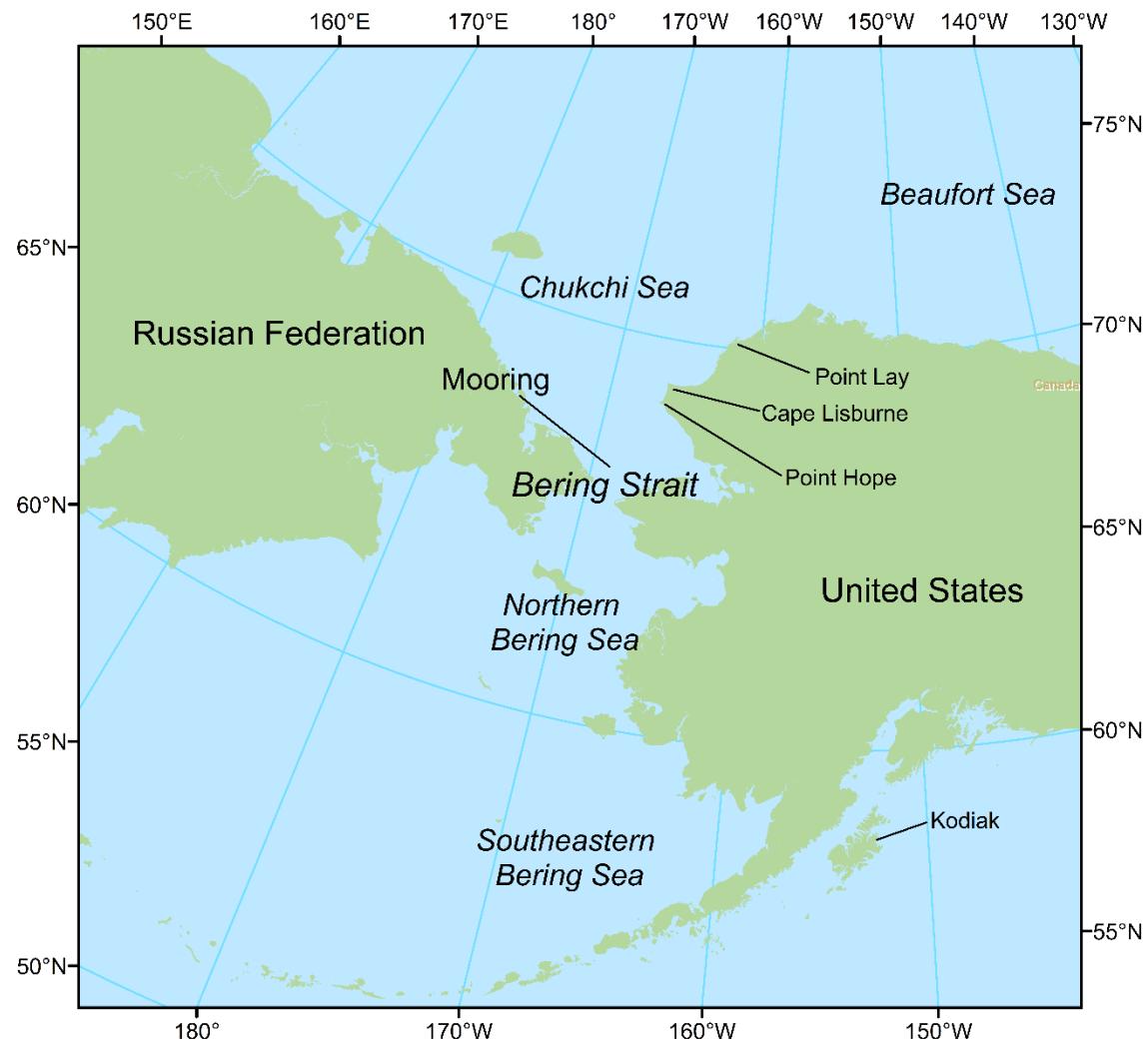


Figure 1. Map of the study area in the Chukchi and northern Bering Seas and the surrounding area.

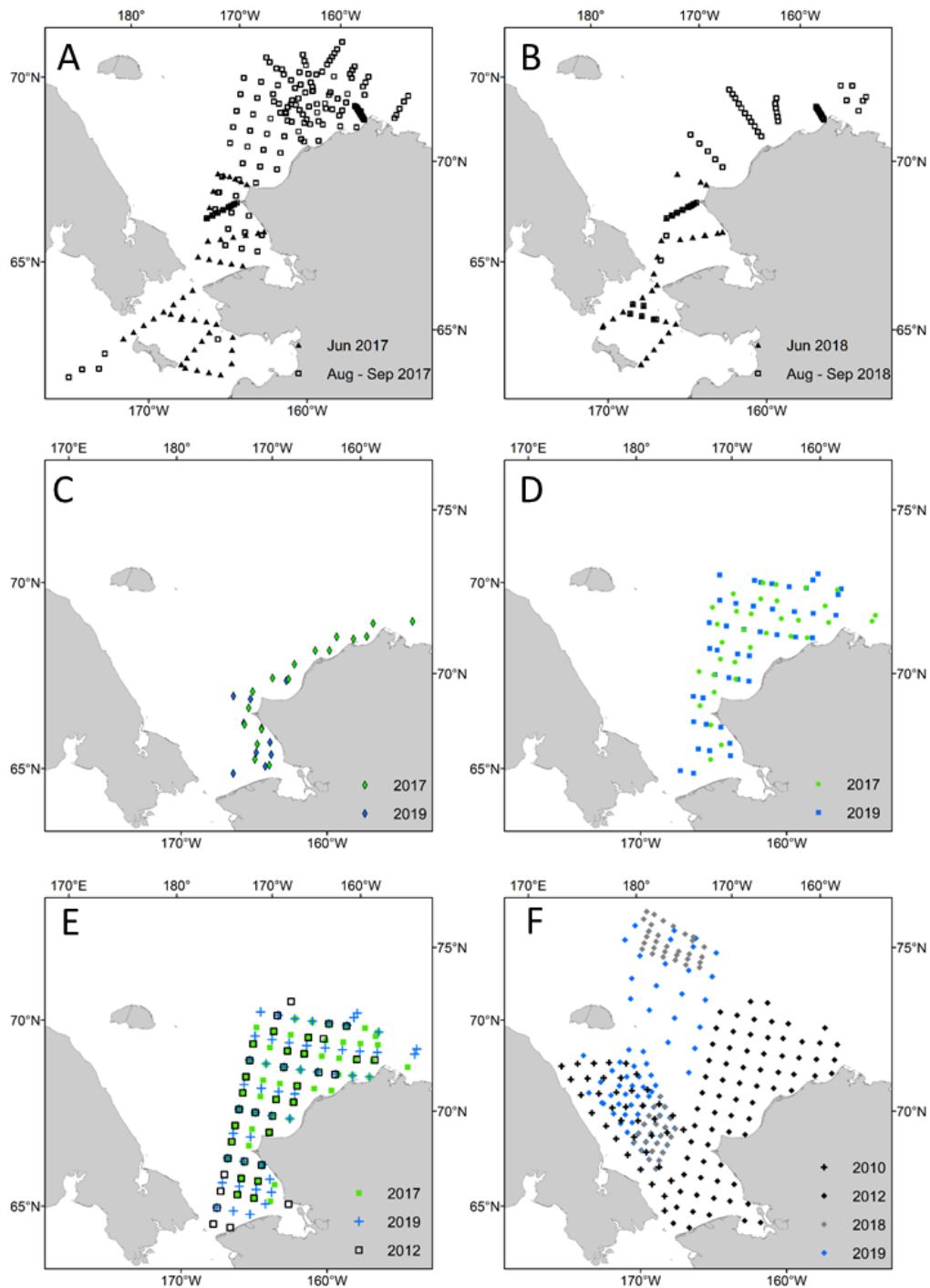


Figure 2. Maps of sampling effort by gear type and year for A) larval nets in 2017, B) larval nets in 2018, C) surface trawl, D) midwater trawl, E) small-mesh benthic trawl, and F) large-mesh benthic trawls.

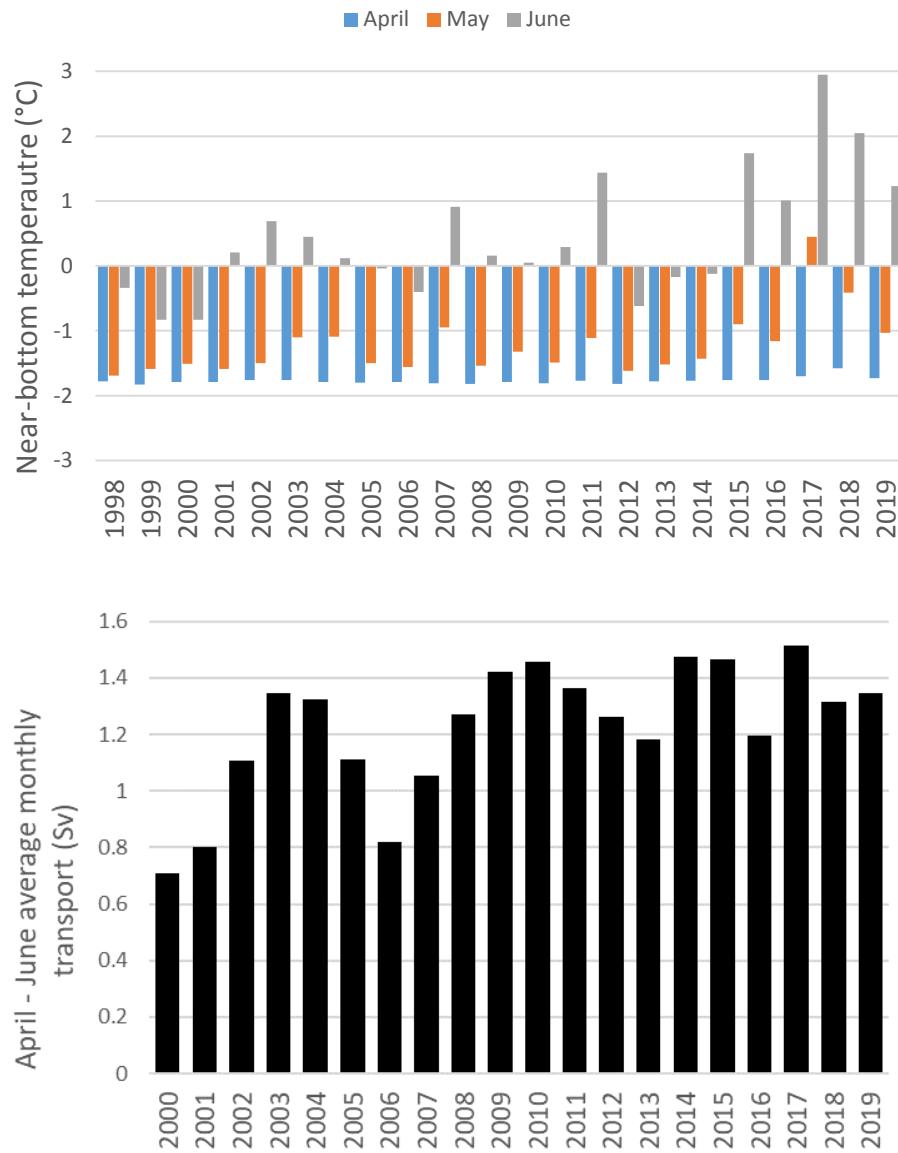


Figure 3. Environmental measurements from the A3 mooring north of the Bering Strait. Monthly-averaged near bottom temperatures in April – June from 1998 through 2019 (Top panel) and mean of average monthly northward transport from April – June in 2000 – 2019 (Bottom panel).

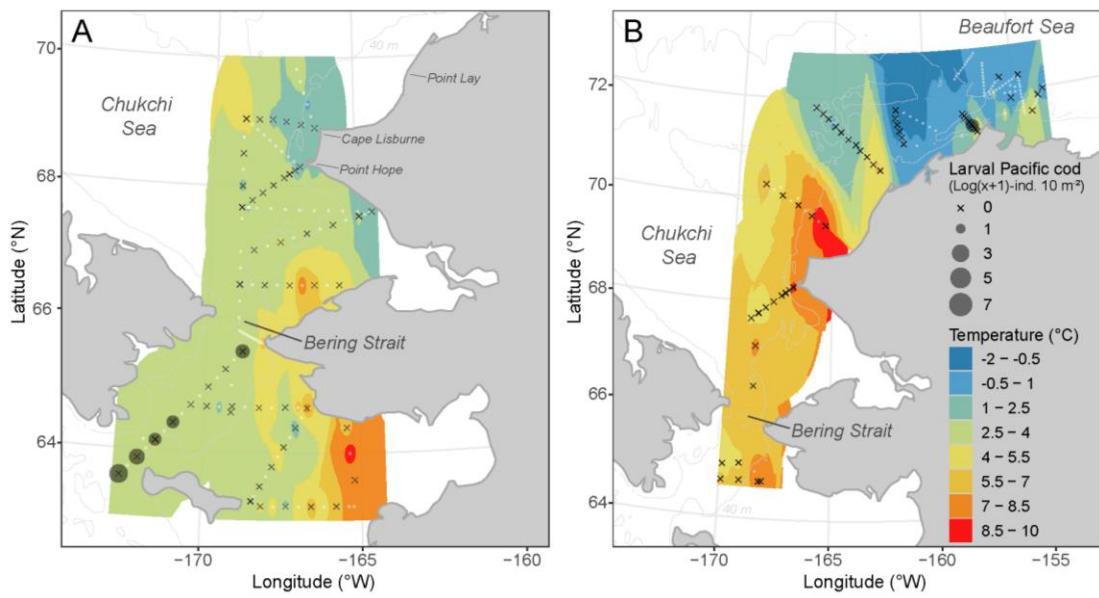


Figure 4. Maps of larval Pacific cod CPUE and interpolated mean water column temperatures in A) June 2017 and B) August 2018. CPUE is in units of $\log[x+1]$, where x is the number of individuals per 10 m^{-2} , and shown with black circles. Black x's indicate zero catch and white circles indicate CTD station locations.

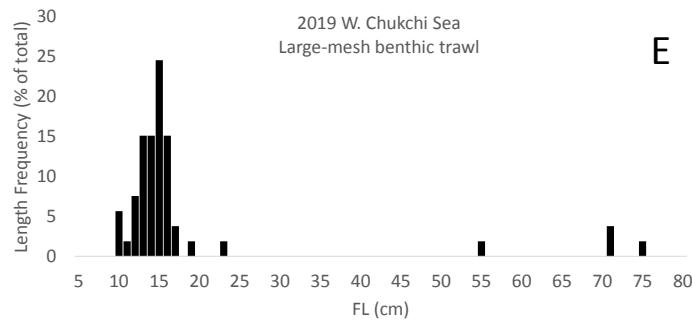
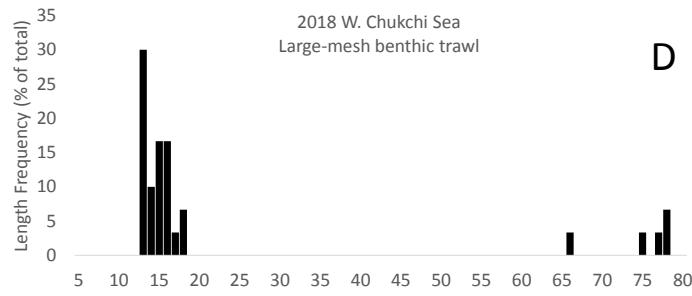
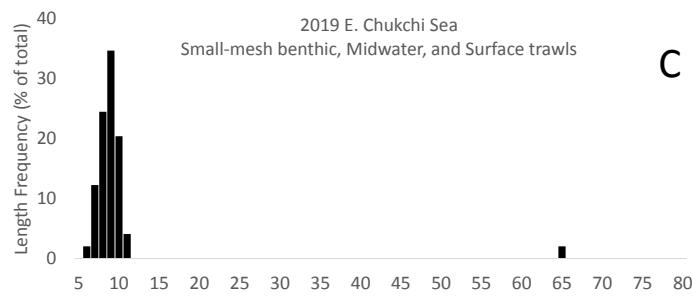
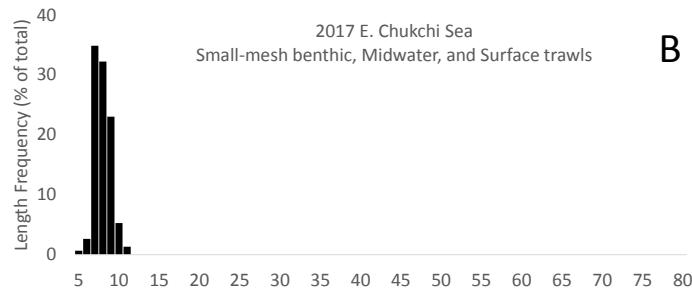
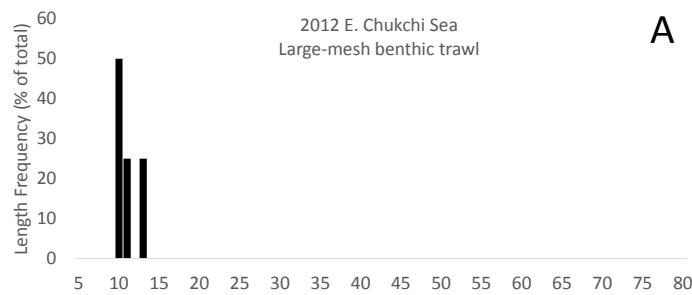






Figure 5. Length frequency distributions for Pacific cod caught in the Chukchi Sea in: A) 2012 in a large-mesh trawl in the eastern Chukchi Sea, B) 2017 in three trawls (small-mesh benthic trawl, midwater trawl, and surface trawl) in the eastern Chukchi Sea, C) 2019 in three trawls (small-mesh benthic, midwater, and surface) in the eastern Chukchi Sea, D) 2018 in a large-mesh benthic trawl in the western Chukchi Sea, and E) 2019 in a large-mesh-benthic trawl in the western Chukchi Sea.

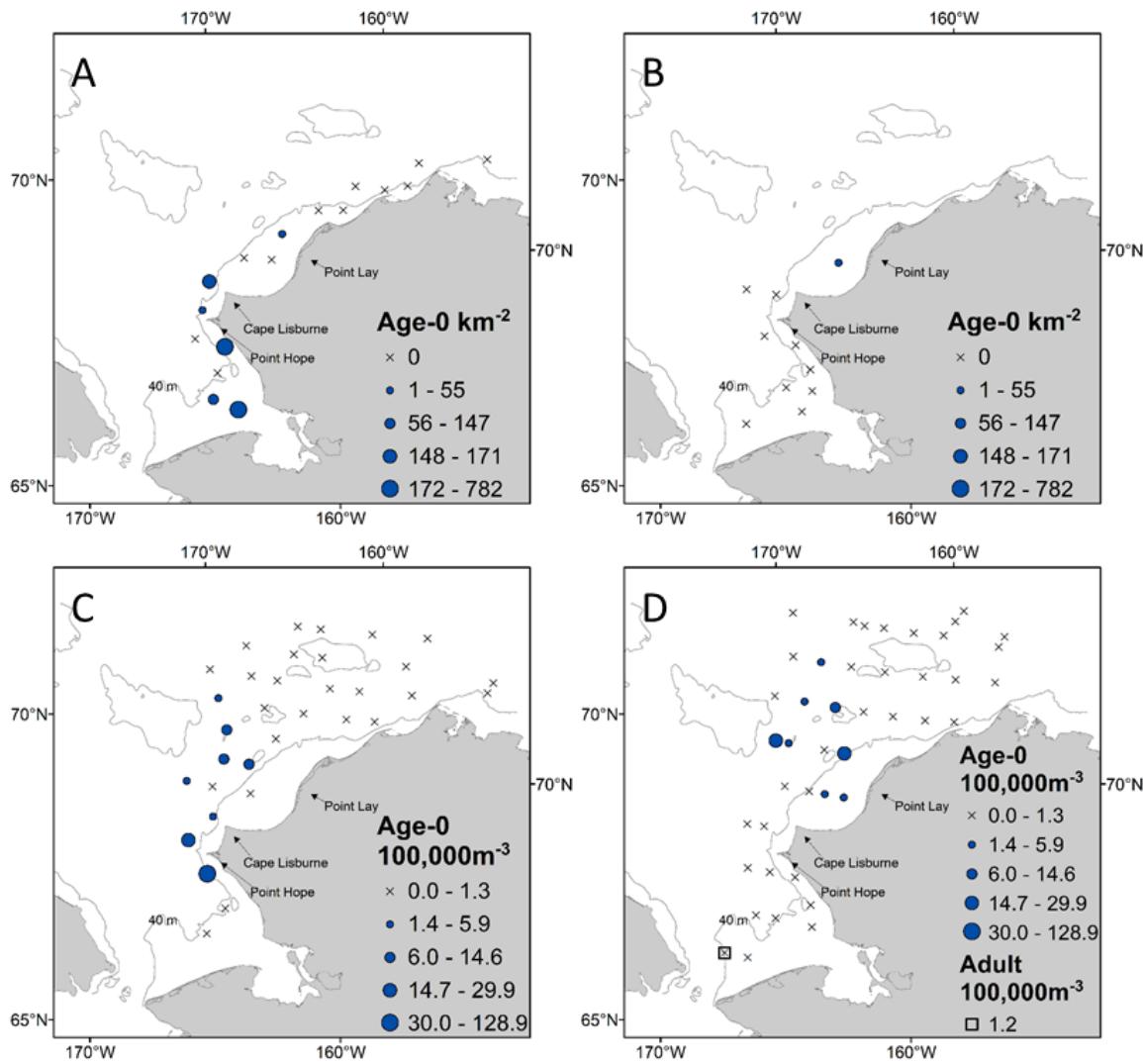


Figure 6. Distribution and catch per unit effort of age-0 Pacific cod caught in: A) the surface trawl in 2017; B) the surface trawl in 2019; C) the midwater trawl in 2017; D) the midwater trawl in 2019.

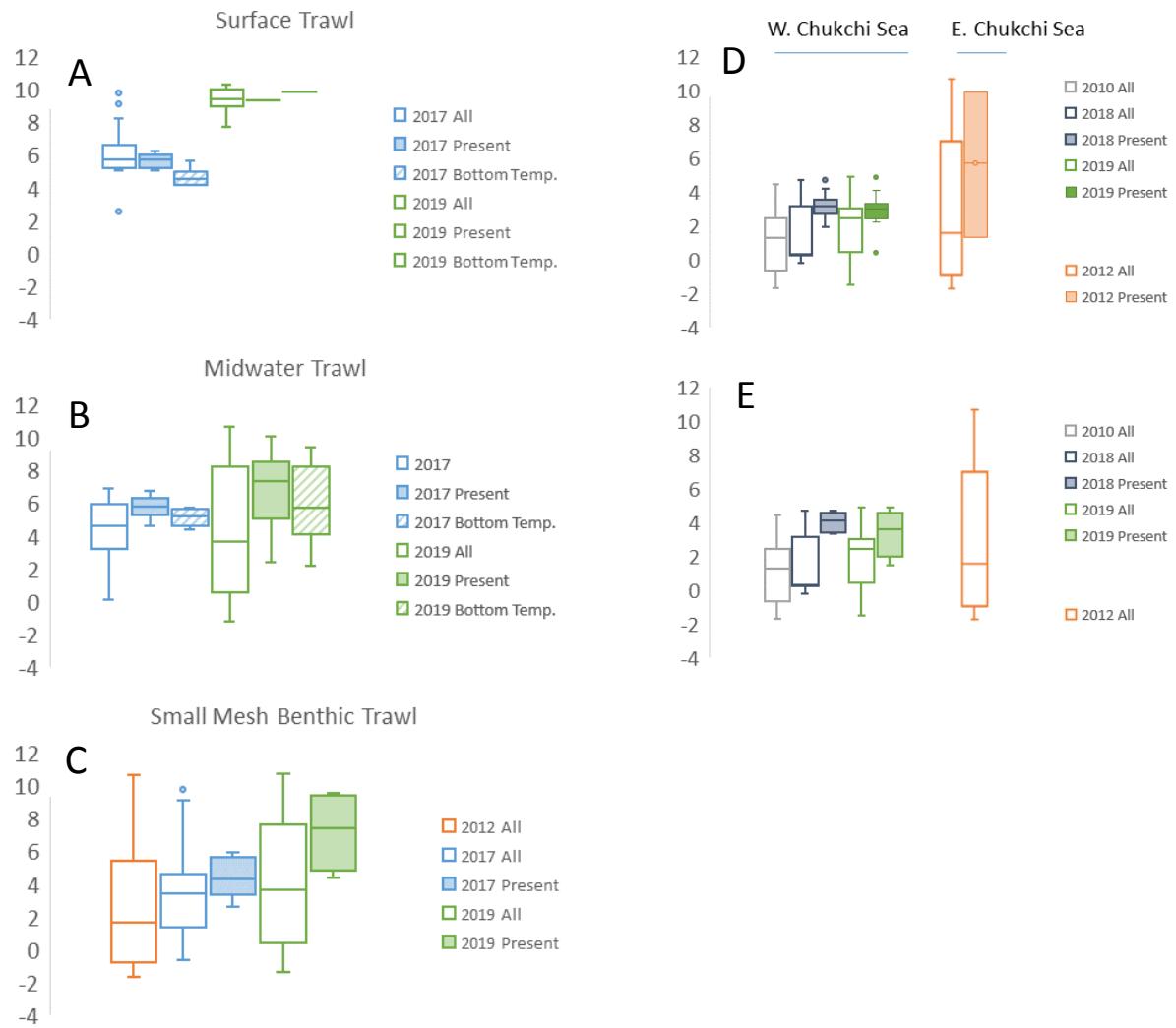


Figure 7. Boxplots of water temperatures at trawl stations in the Chukchi Sea by trawl type and year: A) surface trawl for age-0 Pacific cod sampling, B) midwater trawl for age-0 Pacific cod sampling, C) small-mesh benthic trawl for age-0 Pacific cod sampling, D) Large-mesh benthic trawl for age-1 Pacific cod sampling and E) Large-mesh benthic trawl for adult Pacific cod sampling. Open boxplots represent gear temperatures at all sampled stations. Filled boxplots represent gear temperatures at stations with Pacific cod presence. Striped boxplots represent bottom temperatures at stations where Pacific cod were present in pelagic (surface and midwater) trawls.

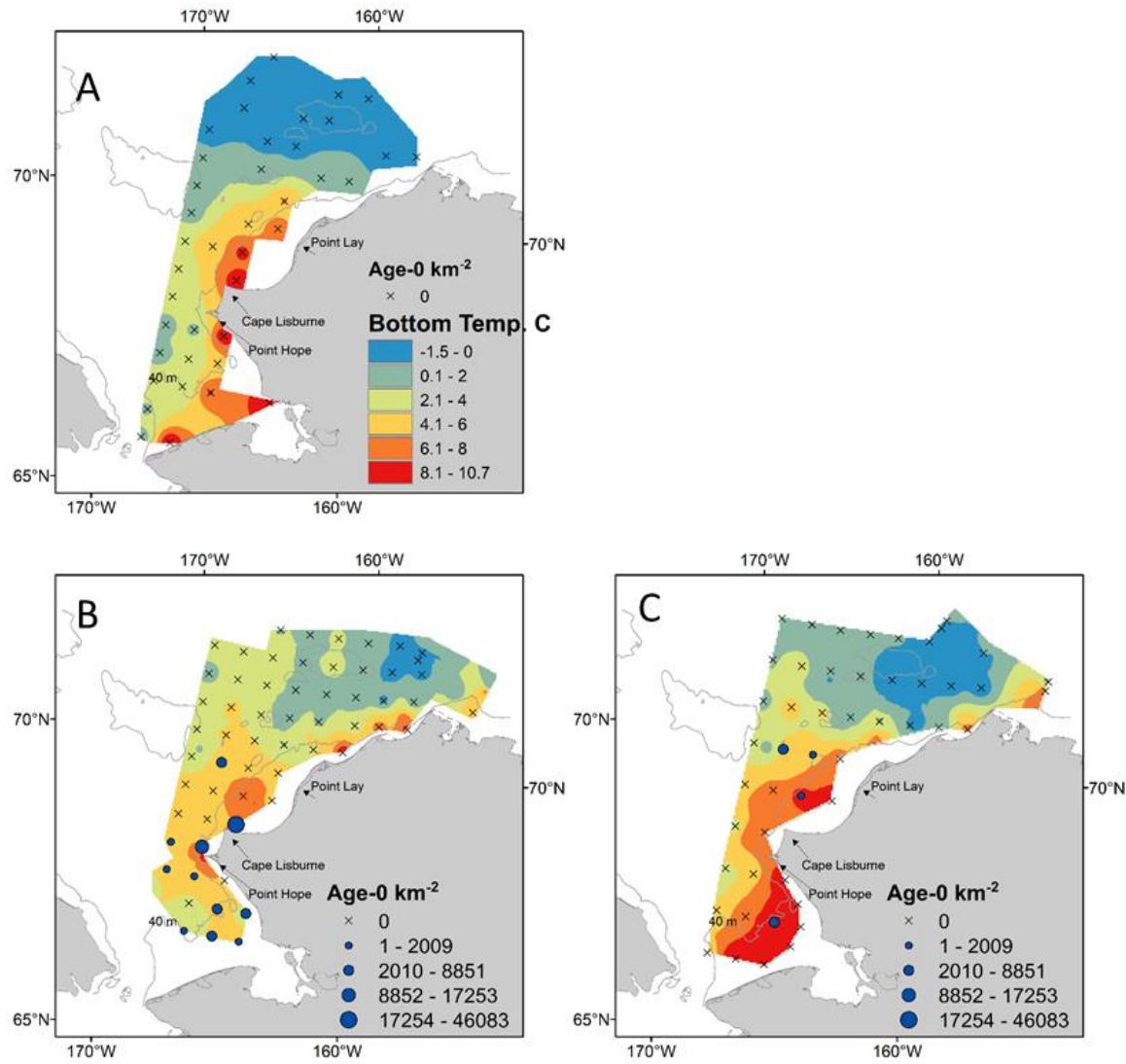


Figure 8. Maps of catch per unit effort of age-0 Pacific cod caught in the small-mesh benthic trawl and interpolated bottom temperatures for three survey years: A) 2012; B) 2017; and C) 2019. Note the colors representing interpolated bottom temperatures are the same for all three plots.

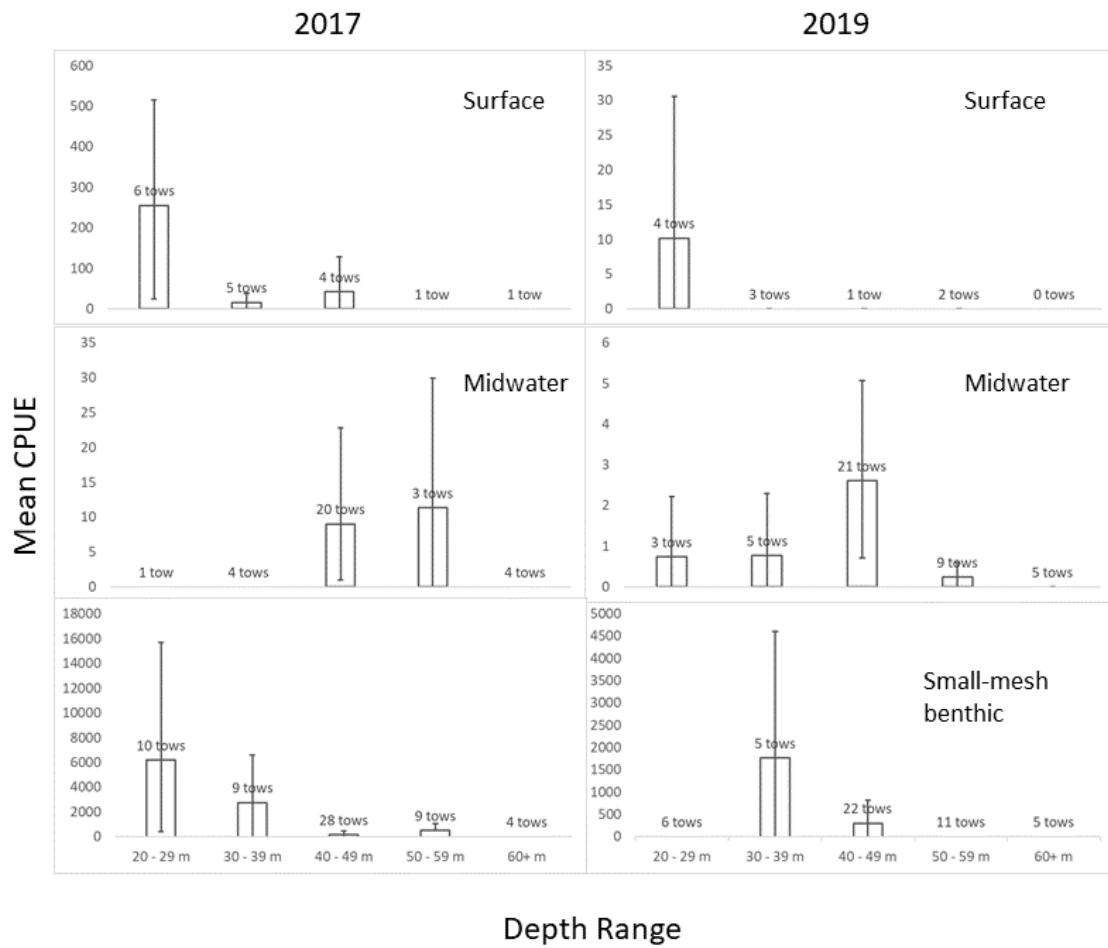


Figure 9. Mean catch per unit effort (CPUE) of age-0 fish by bottom depth range for each gear type in 2017 and 2019. CPUE units are number of fish per km^2 for the surface and small-mesh benthic trawls, and number of fish per $100,000 \text{ m}^3$ for the midwater trawl. Error bars represent 95% confidence intervals as determined by the 2.5 and 97.5 percentile values from 2000 bootstrap replicates.

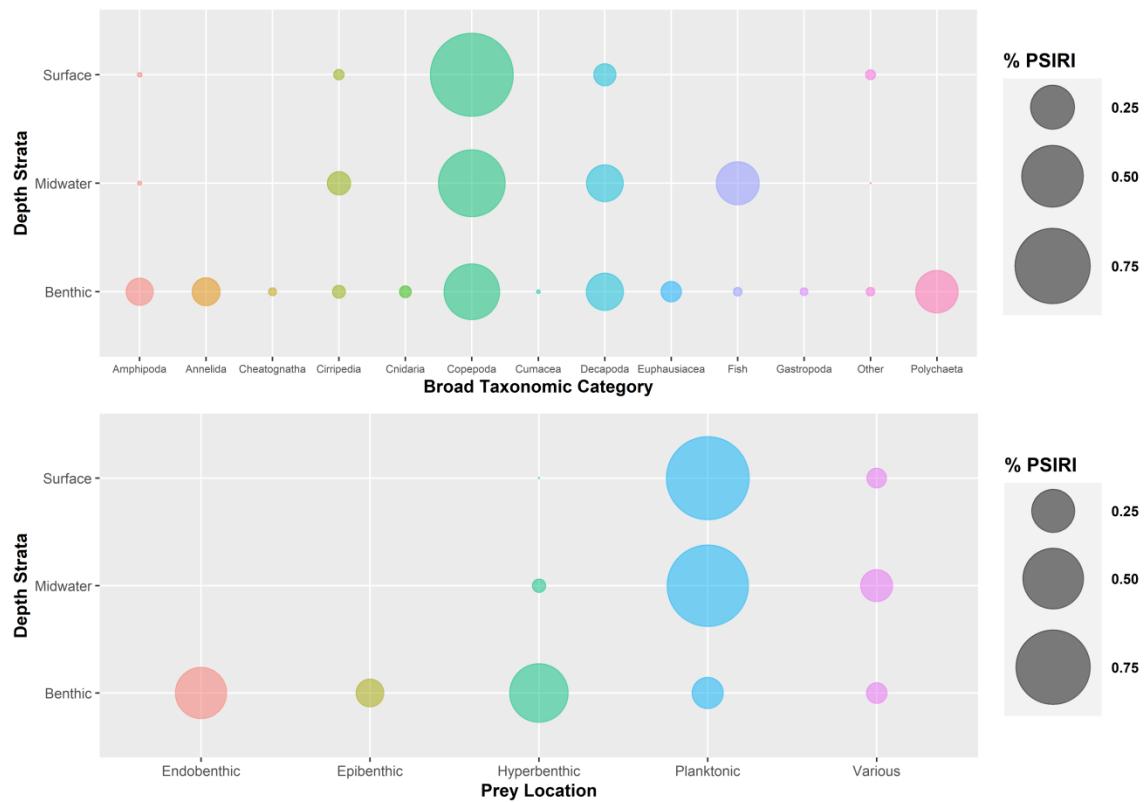


Figure 10. Prey specific relative index of importance (PSIRI) of prey items in the diet of small juvenile Pacific cod caught in 2017. Top panel depicts PSIRI by prey taxonomic groups, and bottom panel depicts PSIRI by prey general habitat classification.

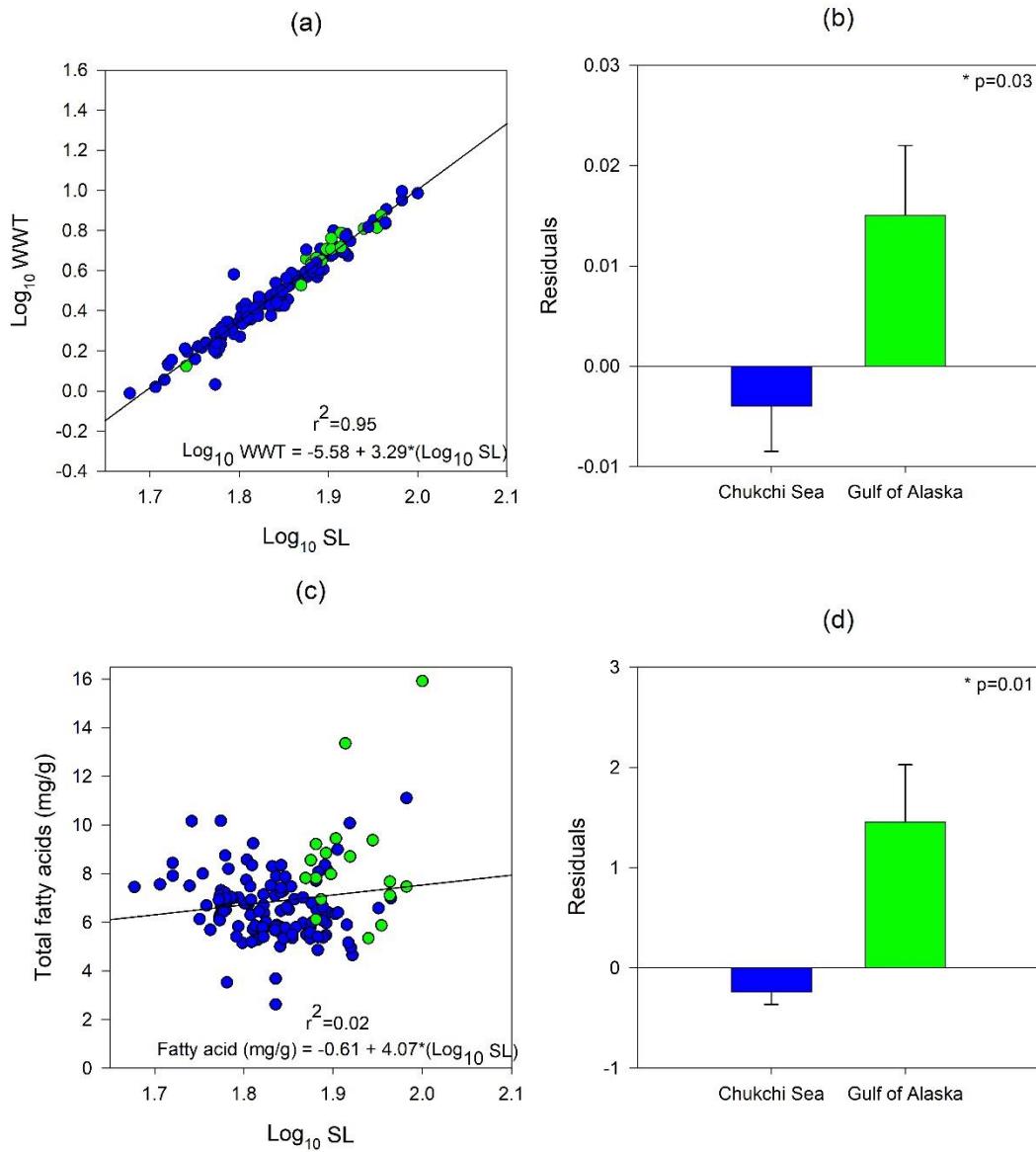


Fig 11. The effect of sampling region on the relationship between age-0 Pacific cod length (Log_{10} , SL, mm) and (a) wet weight ((Log_{10} , WWT, g) as well as (c) lipid density. Residuals from these relationships showed a significant effect of region of capture on condition based on length-weight residuals (b) and a significant effect of region on condition based on fatty acids concentrations (d).

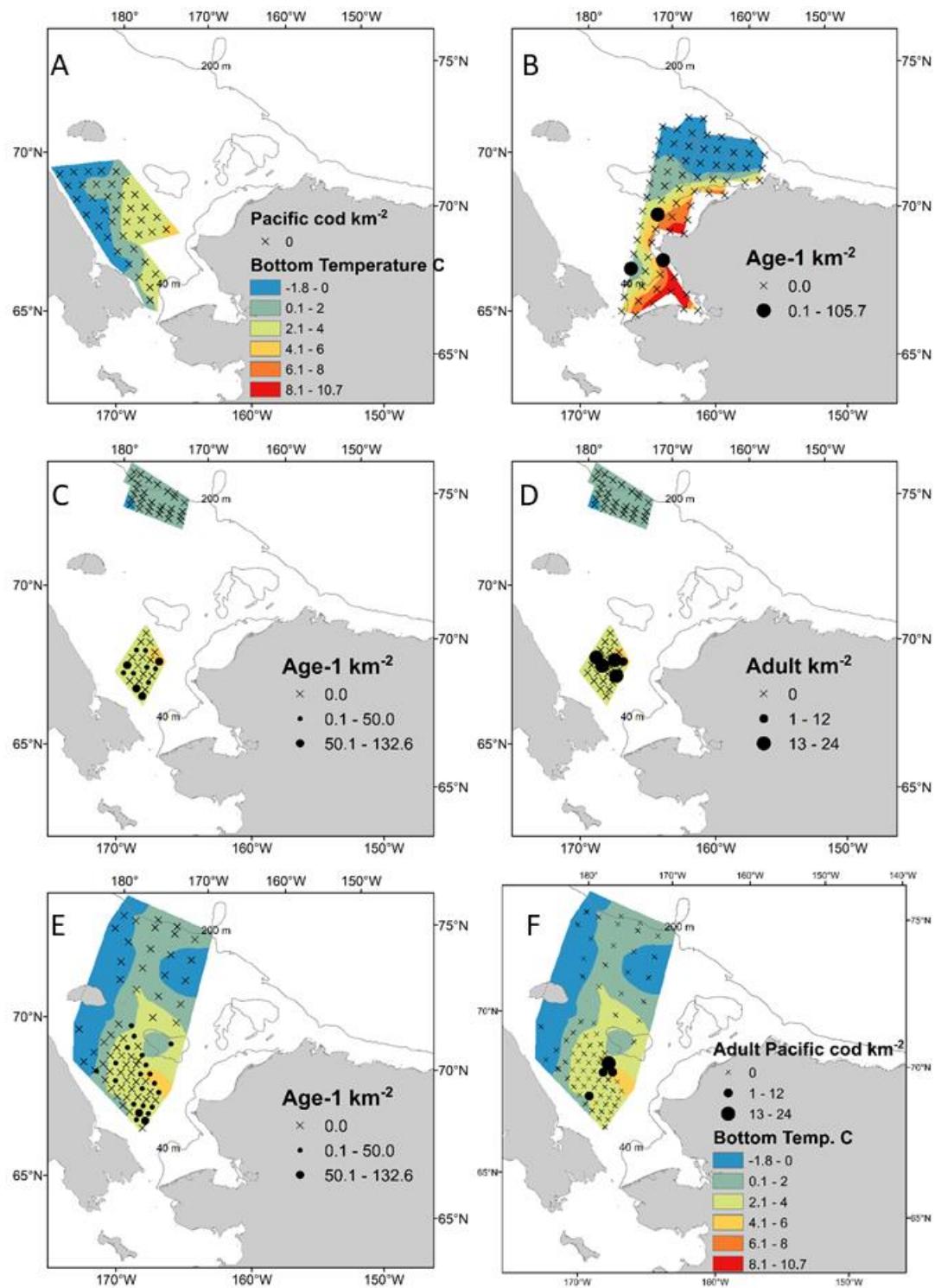


Figure 12. Distribution and catch per unit effort of juvenile (age-1) and adult Pacific cod in large-mesh benthic trawl in the Chukchi Sea: (A) Age-1s and adults in 2010; (B) Age-1s in 2012; (C) Age-1s in 2018; (D) Adults in 2018; (E) Age-1s in 2019; (F) Adults in 2019.