

1
2 **Atmospheric lifetimes and global warming potentials of**
3 **atmospherically persistent N(C_xF_{2x+1})₃, x = 2-4, perfluoroamines**
4
5
6

7 Fran ois Bernard,^{1,2,#} Dimitrios K. Papanastasiou,^{1,2} Robert W. Portmann,¹
8 Vassileios C. Papadimitriou,^{1,2,3,§} and James B. Burkholder^{1,*}
9
10

11 ¹ Earth System Research Laboratory, Chemical Sciences Division, National Oceanic and
12 Atmospheric Administration, Boulder, Colorado, USA.

13 ² Cooperative Institute for Research in Environmental Sciences, University of Colorado,
14 Boulder, Colorado, USA.

15 ³ Laboratory of Photochemistry and Chemical Kinetics, Department of Chemistry, University of
16 Crete, Vassilika Vouton, 71003, Heraklion, Crete, Greece
17
18

19 * Corresponding author.

20 E-mail address: (James.B.Burkholder@noaa.gov) (J.B. Burkholder)
21
22

23
24 [#] Current address: Laboratoire de Physique et Chimie de l'Environnement et de l'Espace
25 (LPC2E), Centre National de la Recherche Scientifique (CNRS), Universit  d'Orl ans,
26 Observatoire des Sciences de l'Univers en r gion Centre (OSUC), Orl ans, France

27 [§] Permanent Address: Laboratory of Photochemistry and Chemical Kinetics, Department of
28 Chemistry, University of Crete, Vassilika Vouton, 71003, Heraklion, Crete, Greece.
29
30

31 **Abstract**

32 Laboratory studies of the gas-phase O(¹D) reaction and UV photolysis for N(C_xF_{2x+1})₃,
33 x=2–4) and an evaluation of their atmospheric lifetimes and global warming potentials (GWPs)
34 is reported. The O(¹D) + PFA reactive rate coefficient was measured to be (10⁻¹² cm³molecule⁻
35 ¹s⁻¹) 1.10±0.10, 1.36±0.10, and 1.69±0.11 and the UV photodissociation yield, $\sigma(\lambda) \times \Phi(\lambda)$, at
36 193 nm was measured to be (10⁻²³ cm²molecule⁻¹) 1.37, <1, <15 for N(C₂F₅)₃, N(C₃F₇)₃, and
37 N(C₄F₉)₃, respectively. Including estimated Lyman- α photolysis leads to total global
38 atmospheric lifetimes of >3,000 years. GWPs on the 100-year time-horizon are estimated to be
39 9900, 8700, and 7800 for N(C₂F₅)₃, N(C₃F₇)₃, and N(C₄F₉)₃, respectively.

40

41

42 **Keywords:** Perfluoroamine, UV absorption spectrum, O(¹D) kinetics, atmospheric model,
43 atmospheric lifetime

44

45 **1. Introduction**

46 $N(C_xF_{2x+1})_3$, perfluoroalkylamines (PFAs), are thermally and chemically stable semi-
47 volatile compounds used in the electronics industry and heat transfer applications. Their
48 industrial use may lead to their direct release into the atmosphere. There is currently very
49 limited data for the atmospheric sources, distribution, and abundance of PFAs. Tropospheric
50 measurements of $N(C_4F_9)_3$ have been reported for urban Toronto, Canada with a mixing ratio of
51 ~0.18 ppt [1]. The NILU-Norwegian Institute for Air Research reported a 0.55 ppq abundance
52 of $N(C_4F_9)_3$ in air samples at the Zeppelin station, Ny-Ålesund, Svalbard, Norway (79°N, 12°E)
53 [2]. The detection of other PFAs in the atmosphere has not been reported to date. Previous
54 laboratory studies, including work from this laboratory, have shown that PFAs are potent
55 greenhouse gases due to their strong infrared absorption in the atmospheric window region
56 [1,3,4]. PFAs are expected to be atmospherically persistent compounds and, therefore, have
57 exceptionally large global warming potentials (GWP_s) and, thus, their environmental and
58 climate impacts need to be evaluated [5].

59 A comprehensive evaluation of the environmental impact of PFAs necessitates
60 fundamental laboratory studies of their chemical and photochemical properties. To date, there
61 are no laboratory measurements of the atmospheric removal processes for PFAs available in the
62 literature. In general, quantifying the atmospheric loss processes for an atmospherically
63 persistent compound is challenging due to their low reactivity with atmospheric oxidants, e.g.
64 OH, Cl, NO₃, and O₃, and their weak absorption in the ultra-violet region of the spectrum. In
65 their work, Hong et al.[1] assumed the global lifetime for $N(C_4F_9)_3$ to be 500 years, based on
66 similar kinetic and photochemical parameters to that of NF₃ [6].

67 In this study, the UV photodissociation and O¹D reaction rate coefficient, the most
68 likely stratospheric loss processes, for $N(C_2F_5)_3$, $N(C_3F_7)_3$, and $N(C_4F_9)_3$ were measured and the
69 OH reaction rate coefficient estimated. The experimental results from this study were used to
70 evaluate their partial and total global atmospheric lifetimes and global warming potential (GWP)
71 using 2-D atmospheric model calculations and the radiative efficiencies determined in a previous
72 study from this laboratory [3].

73 **2. Experimental Details and Methods**

74 In this study, experiments were performed to: (1) evaluate the UV absorption spectrum
75 and 193 nm photodissociation of $N(C_2F_5)_3$, $N(C_3F_7)_3$, and $N(C_4F_9)_3$, (2) measure the room

76 temperature reactive rate coefficients for the O(¹D) + N(C₂F₅)₃, N(C₃F₇)₃, and N(C₄F₉)₃
77 reactions, and (3) estimate rate coefficients for the OH + N(C₂F₅)₃, N(C₃F₇)₃, and N(C₄F₉)₃
78 reactions. The experimental setups and methods used for these measurements and estimates are
79 described separately below.

80 **2.1 UV Absorption Spectrum and Photodissociation**

81 The gas-phase UV absorption spectra of N(C₂F₅)₃, N(C₃F₇)₃, and N(C₄F₉)₃ were
82 measured between 195 and 350 nm using a 0.5 m spectrograph equipped with a CCD detector.
83 Absorption spectra were measured using a 95 cm Pyrex absorption cell with quartz windows and
84 a 30 W D₂ lamp light source. Perfluoroamine spectra were measured under static and gas flow
85 conditions. The PFA samples were added to the absorption cell from either the head space of the
86 liquid sample or from a dilute gas mixture that was prepared off-line. The PFA concentration in
87 the absorption cell was determined from the measured absorption cell pressure and the ideal gas
88 law. An absorption contribution to the measured spectra from minor PFA sample impurities,
89 however, limited the quantitative determination of PFA absorption spectra.

90 The photodissociation yields of the PFAs, $\sigma(\lambda) \times \Phi(\lambda)$, where $\sigma(\lambda)$ is the PFA
91 absorption cross section at wavelength λ and Φ is the photolysis quantum yield for loss of the
92 PFA at that wavelength, were measured at 294 K using an actinometry method. The
93 photodissociation yield of the PFAs was measured at 193 nm using pulsed laser photolysis (ArF
94 excimer laser) of static PFA/N₂O/N₂ gas mixtures:

96 The PFA photolysis loss rate was measured relative to the photolytic loss of N₂O:

98 In the presence of a large excess of N₂, the O(¹D) produced in reaction 2 was rapidly quenched to
99 its ground state:

101 This relative approach to determine the photodissociation of the PFAs has the advantage that UV
102 absorption by sample impurities, which were a major interference in the UV absorption spectrum
103 measurement, do not interfere with this measurement. Therefore, this approach provides an
104 unequivocal measurement of PFA loss due to UV photolysis at 193 nm.

105 The photolysis beam passed through the quartz windows of the ~500 cm³ reactor
106 perpendicular to a set of multi-pass White optics, 125 cm path length, coupled to a Fourier
107 transform infrared spectrometer. A retro reflector outside the exit window enabled a return of

108 the photolysis beam through the reactor. The overlap of the photolysis beam with the volume of
 109 the reactor was relatively small, ~2.4% of the total volume. The reactor was filled with the PFA
 110 and N₂O and pressurized to ~600 Torr with N₂ bath gas. Infrared spectra were recorded in 200–
 111 1500 co-adds at a spectral resolution of 1 cm^{−1}. The PFA and N₂O concentrations and their
 112 change in concentration with photolysis were measured by infrared absorption during photolysis.
 113 The initial PFA concentration was between 1.2 × 10¹⁵ and 3.8 × 10¹⁵ molecule cm^{−3} and the
 114 initial N₂O concentration was ~9 × 10¹⁶ molecule cm^{−3}.

115 The concentration of PFA remaining after *n* laser pulses is given by:

$$116 \quad [PFA]_n = [PFA]_0 \times (1 - \sigma_{PFA}(193 \text{ nm}) \times \Phi_{PFA}(193 \text{ nm}) \times F)^n \quad (4)$$

117 where [PFA]₀ is the initial PFA concentration, [PFA]_{*n*} is the PFA concentration after *n* pulses
 118 and F is the photolysis laser fluence. The photolysis laser was operated at 20–30 Hz at a fluence
 119 of ~20 mJ cm^{−2} pulse^{−1} as measured with a power meter mounted after the reactor. A similar
 120 equation can be written for the N₂O loss. The photochemical conversion of PFA per laser pulse
 121 was small and equation (4) is approximated by:

$$122 \quad \ln\left(\frac{[PFA]_0}{[PFA]_n}\right) = n_{PFA} \times \sigma_{PFA}(193 \text{ nm}) \times \Phi_{PFA}(193 \text{ nm}) \times F \quad (5)$$

123 The PFA photolysis yield was calculated using the relationship:

$$124 \quad \sigma_{PFA}(193 \text{ nm}) \times \Phi_{PFA}(193 \text{ nm}) = \sigma_{N_2O}(193 \text{ nm}) \times \Phi_{N_2O}(193 \text{ nm}) \times \frac{n_{N_2O} \ln([PFA]_0 / [PFA]_n)}{n_{PFA} \ln([N_2O]_0 / [N_2O]_n)} \quad (6)$$

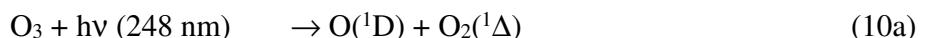
125 where the N₂O quantum yield at 193 nm is unity and its absorption cross section at 193 nm is
 126 8.95 × 10^{−20} cm² molecule^{−1} [7].

127 2.2 O(¹D) Reactive Rate Coefficient

128 Rate coefficients for the O(¹D) + PFA reaction were measured at room temperature (294
 129 K) using a relative rate technique. The experimental setup and methods have been used
 130 previously in this laboratory and only a brief description is given below [8,9].

131 The relative rate approach used in this work measures the rate coefficient for the reactive
 132 channel for the O(¹D) reaction, i.e., PFA loss, reaction 7a:

135 Rate coefficients were measured with O(¹D) + CHF₃ as the reference reaction:



138 where the recommended total rate coefficient for reaction 8 is $(9.60 \pm 0.48) \times 10^{-12} \text{ cm}^3$
139 molecule $^{-1} \text{ s}^{-1}$, i.e., for the loss of O(^1D) [7]. The reactive rate coefficient, k_{8a} , is $2.4 \times 10^{-12} \text{ cm}^3$
140 molecule $^{-1} \text{ s}^{-1}$ [7]. Assuming that the PFA and CHF₃ are removed solely by reaction with O(^1D),
141 the PFA and CHF₃ rate coefficients are related by the expression:

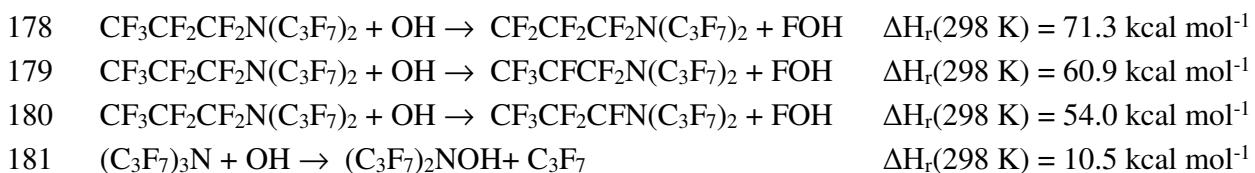
$$142 \quad \ln \left(\frac{[\text{PFA}]_0}{[\text{PFA}]_t} \right) = \frac{k_{\text{PFA}}}{k_{\text{CHF}_3}} \left[\ln \left(\frac{[\text{CHF}_3]_0}{[\text{CHF}_3]_t} \right) \right] \quad (9)$$

143 where [PFA]₀, [CHF₃]₀, [PFA]_t and [CHF₃]_t are the concentrations of the PFA and CHF₃
144 compound at times t₀ and t, respectively.

145 The experimental apparatus consisted of a 100 cm long (5 cm i.d.) Pyrex photoreactor.
146 O(^1D) radicals were produced by 248 nm pulsed laser photolysis (KrF excimer laser, 10 or 50
147 Hz) of O₃ along the length of the photoreactor:

150 where the O(^1D) yield is 0.9 [7]. The initial PFA concentration was in the range $(3.0\text{--}4.1) \times 10^{14}$
151 molecule cm $^{-3}$, while the CHF₃ initial concentration was $\sim 4.5 \times 10^{14}$ molecule cm $^{-3}$. The
152 photolysis laser fluence was in the range 1.4–1.7 mJ cm $^{-2}$ pulse $^{-1}$.

153 The PFA and CHF₃ loss was monitored by infrared absorption. The photoreactor was
154 coupled to a multi-pass absorption cell (KBr windows, 485 cm path length) of a Fourier
155 transform infrared (FTIR) spectrometer equipped with a liquid nitrogen cooled HgCdTe (MCT)
156 semiconductor detector. The gas mixture was circulated between the photoreactor and the multi-
157 pass absorption cell by a 12 L min $^{-1}$ Teflon diaphragm pump. Infrared spectra were recorded in
158 100 co-adds between 500 and 4000 cm $^{-1}$ at 1 cm $^{-1}$ resolution.


159 Kinetic measurements were performed by first adding the PFA and CHF₃ to the system
160 and then adding He bath gas to increase the total pressure to ~ 300 Torr. After the gas mixture
161 was thoroughly mixed, as determined by infrared absorption, a t = 0 infrared spectrum was
162 recorded. O₃, in a He bath gas, was then added slowly to the photoreactor with the photolysis
163 laser and gas circulation on. Infrared spectra were recorded until the change in the PFA and
164 CHF₃ concentration ceased to decrease significantly, primarily due to the buildup of O₂ in the
165 system.

166 2.3 Computational Methods

167 The reaction of perfluoroamines with OH radicals is expected to make a negligible
168 contribution to their atmospheric loss. Here, we used theoretical methods to estimate upper-

169 limits for the reaction rate coefficients, at 298 K, for the reaction of OH radicals with $\text{N}(\text{C}_3\text{F}_7)_3$.
170 The other amines are expected to have a similar reactivity. Optimized structures, normal mode
171 vibrational frequencies, and thermochemical parameters for $\text{N}(\text{C}_3\text{F}_7)_3$, OH, and reaction products
172 were calculated using the Gaussian 09 program suite [10]. The DFT functional B97-1 with the
173 6-311 ++ G(2df,2p) basis set, with ultrafine grid numerical integration, was used for all
174 calculations.

175 Reaction channels were explored where either OH abstracts an F atom to form FOH^+ radical,
176 or where the OH radical adds to the amine to form a hydroxylamine and a C_3F_7 radical
177 (i.e., C-N bond cleavage):

182 Each of these reactions are endothermic and we have followed the approach adopted by the
183 IUPAC and NASA kinetic data evaluation panels to estimate a rate coefficient assuming a pre-
184 exponential factor, A , $1 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ in this case, and a lower-limit activation
185 energy equal to that of the reaction endothermicity. The F-atom abstraction channels have
186 extremely low 298 K rate coefficients, $<2.5 \times 10^{-51} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The hydroxylamine
187 formation channel is calculated to have a rate coefficient of $<2.2 \times 10^{-19} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.
188 Channel 11d is, however, expected to have a significant activation barrier to reaction, which was
189 not evaluated in this work, due to steric hinderance towards product formation. The barrier
190 would make the reaction rate coefficient considerably less.

191 **2.4 Materials**

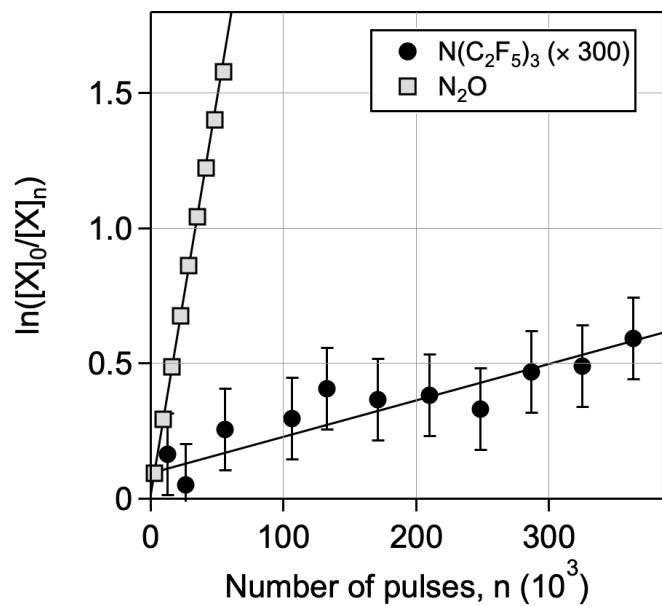
192 $\text{N}(\text{C}_2\text{F}_5)_3$ (perfluorotriethylamine, CAS# 359-70-6, 97%), $\text{N}(\text{C}_3\text{F}_7)_3$
193 (perfluorotripropylamine, CAS# 338-83-0, ~94.5%), and $\text{N}(\text{C}_4\text{F}_9)_3$ (perfluorotributylamine,
194 CAS# 311-89-7, 99.5%) were obtained commercially with the stated purity given in parenthesis.
195 The perfluoroamines are liquids at room temperature and were degassed in several freeze (77 K)-
196 pump-thaw cycles and stored under vacuum in Pyrex reservoirs. He (UHP, 99.999%), N_2 (UHP,
197 99.999%), and N_2O (>99.99%) were used as supplied. Ozone was produced by flowing O_2
198 through a silent discharge and collected on silica gel in a trap at 195 K. Ozone was introduced
199 into the $\text{O}(\text{^1D})$ reaction cell by passing a small flow of He through the trap.

200 For the O(¹D) reaction and photodissociation studies, PFA were introduced in the
201 reactors using dilute PFA gas mixtures prepared manometrically in He and N₂ bath gas.
202 Mixtures were prepared in 12 L Pyrex bulbs with the following mixing ratios: 0.01447% in He
203 for (C₂F₅)₃N, 0.0167% in He and 0.01925% in N₂ for (C₃F₇)₃N and 0.01233% in He and
204 0.01403% in N₂ for (C₄F₉)₃N. Pressures were measured using calibrated capacitance
205 manometers. Uncertainties given throughout the paper are 2 σ unless noted otherwise.

206 **3. Results and Discussion**

207 **3.1 UV absorption spectrum and photodissociation**

208 UV absorption spectra of the PFA samples (taken from the liquid sample head space)
209 were measured over the 200–350 nm wavelength range. Absorption was observed between 200
210 and 300 nm for N(C₂F₅)₃ and between 200 and 250 nm for N(C₃F₇)₃ and N(C₄F₉)₃. The
211 measured absorption spectra were, however, irreproducible, due to changing impurity
212 contributions, while the effective cross sections were small, with values of less than 10⁻²⁰ cm²
213 molecule⁻¹ at 200 nm. The weak PFA UV absorption makes the measurements highly
214 susceptible to interference by minor sample impurities that absorb strongly in the UV. Vacuum
215 distillation of the liquid PFA samples did not yield consistent UV spectra. Examples of the
216 measured spectra are given in the Supporting Information (**Figure S1**). However, in all cases, it
217 was clear that absorption at wavelengths greater than 290 nm was not detectable, i.e., the
218 corresponding effective PFA absorption cross section was <10⁻²² cm² molecule⁻¹ in this
219 wavelength region. Although we were unable to measure quantitative PFA UV absorption
220 spectra, the measurements demonstrate weak absorption in the short (195–210 nm) and long
221 (>290 nm) wavelength actinic regions.


222 A summary of the experimental conditions and the PFA photolysis yield results are given
223 in **Table 1**. PFA photodissociation at 193 nm was found to be inefficient and, thus, required
224 fairly long exposure to the photolysis laser to achieve measurable PFA losses. A representative
225 set of photolysis data is shown in **Figure 1**. Experiments were performed with a total number of
226 photolysis pulses in the range (3.6–4.5) \times 10⁵, corresponding to ~5 hours total photolysis time.
227 The photochemical conversion rate of N₂O exceeded that of the PFA by at least two orders of
228 magnitude.

229

230 **Table 1.** Experimental conditions and results for the 193 nm photodissociation of $\text{N}(\text{C}_2\text{F}_5)_3$,
 231 $\text{N}(\text{C}_3\text{F}_7)_3$, and $\text{N}(\text{C}_4\text{F}_9)_3$ at 294 K

Perfluoroamine (PFA)	[PFA] (10^{15} molecule cm $^{-3}$)	[N_2O] (10^{15} molecule cm $^{-3}$)	$\sigma(\lambda) \times \Phi(\lambda)$ (cm 2 molecule $^{-1}$)
$\text{N}(\text{C}_2\text{F}_5)_3$	1.2	9.2	1.37×10^{-23}
$\text{N}(\text{C}_3\text{F}_7)_3$	3.8	9.1	$<1 \times 10^{-23}$
$\text{N}(\text{C}_4\text{F}_9)_3$	2.5	8.9	$<1.5 \times 10^{-22}$

232
233

234
235
236
237
238
239

Figure 1. Loss of $\text{N}(\text{C}_2\text{F}_5)_3$ (circles) and N_2O (squares) following 193 nm pulsed laser photolysis. The $\text{N}(\text{C}_2\text{F}_5)_3$ data has been multiplied by 300 for improved clarity. The lines are linear least-squares fits to the data. The error bars on the $\text{N}(\text{C}_2\text{F}_5)_3$ data points represent the precision of the infrared spectral analysis. The precision error bars for N_2O are smaller than the symbol size.

240
241
242
243
244
245
246
247

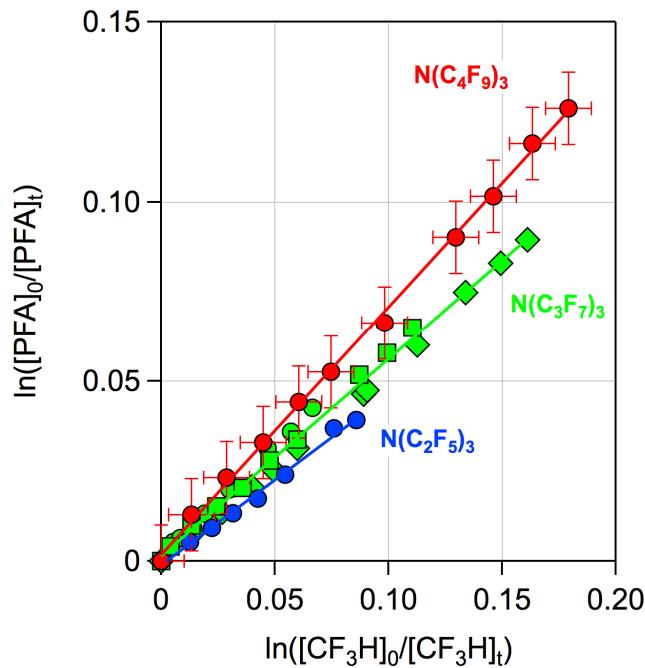
The background loss of PFA from the experimental apparatus measured in the absence of photolysis was an additional issue in the interpretation of the photolysis results. Background loss was measured before and after the photolysis experiments and the average value subtracted from the observed PFA loss rate. For $\text{N}(\text{C}_2\text{F}_5)_3$, the background loss was negligible, but significant for $\text{N}(\text{C}_3\text{F}_7)_3$ and $\text{N}(\text{C}_4\text{F}_9)_3$ over the long duration of the experiment. The first-order rate coefficient for the dark loss of $\text{N}(\text{C}_3\text{F}_7)_3$ were 2.02×10^{-7} and 1.82×10^{-7} s $^{-1}$, before and after respectively. The total decay rate of $\text{N}(\text{C}_3\text{F}_7)_3$ during 193 nm photolysis was 2.92×10^{-7} s $^{-1}$. For $\text{N}(\text{C}_4\text{F}_9)_3$,

248 dark loss rate coefficients were 1.40×10^{-6} and $4.56 \times 10^{-7} \text{ s}^{-1}$. The total decay rate of $\text{N}(\text{C}_4\text{F}_9)_3$
 249 during photolysis was $1.41 \times 10^{-6} \text{ s}^{-1}$. $\sigma(193 \text{ nm}, 294 \text{ K}) \times \phi(193 \text{ nm}, 294 \text{ K})$ were determined to
 250 be 1.37×10^{-23} , $<1 \times 10^{-23}$ and $<1.5 \times 10^{-22} \text{ cm}^2 \text{ molecule}^{-1}$ for $\text{N}(\text{C}_2\text{F}_5)_3$, $\text{N}(\text{C}_3\text{F}_7)_3$, and $\text{N}(\text{C}_4\text{F}_9)_3$,
 251 respectively.

252 Although photolysis yields were only measured at 193 nm, the UV absorption spectrum
 253 measurements implies that photolysis yields at longer wavelengths would be lower for
 254 wavelength greater than 193 nm.

255 **3.2 O(¹D) Reactive Rate Coefficient**

256 **Table 2** provides a summary of the 294 K O(¹D) + PFA relative rate results obtained in
 257 this work. **Figure 2** shows the raw relative rate data for the $\text{N}(\text{C}_2\text{F}_5)_3$, $\text{N}(\text{C}_3\text{F}_7)_3$, and $\text{N}(\text{C}_4\text{F}_9)_3$
 258 reactions that includes multiple independent measurements for the $\text{N}(\text{C}_3\text{F}_7)_3$ reaction. The
 259 measured O(¹D) rate coefficients show a slight systematic increase in reactivity with increased
 260 carbon chain length in the PFA. Due to the low reactivity of the PFAs, the total loss of PFA
 261 achieved with this experimental approach was $<15\%$. It is worth noting that PFA loss in the
 262 absence of O(¹D) production was found to be negligible. The low conversion leads to greater
 263 measurement precision uncertainty when compared with typical OH and Cl-atom relative rate
 264 measurements that typically have precisions of a few percent. The fit precision uncertainties
 265 given in **Table 2** are $\sim 5\%$, or less. The independent experimental $\text{N}(\text{C}_3\text{F}_7)_3$ reaction
 266 measurement results agree to within $\sim 15\%$. The final rate coefficient for the $\text{N}(\text{C}_3\text{F}_7)_3$ reaction
 267 was obtained from the least-square analysis of all the data.


268

269 **Table 2.** Summary of experimental conditions and rate coefficients, $k(294 \text{ K})$, obtained in this
 270 work for the O(¹D) + $\text{N}(\text{C}_2\text{F}_5)_3$, $\text{N}(\text{C}_3\text{F}_7)_3$, and $\text{N}(\text{C}_4\text{F}_9)_3$ reactions using a relative rate technique

Perfluoroamine (PFAm)	[PFA] ($10^{14} \text{ molecule cm}^{-3}$)	[CHF ₃] ($10^{14} \text{ molecule cm}^{-3}$)	$k/k_{\text{Ref}}^{\text{a}}$	k ($10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$) ^a
$\text{N}(\text{C}_2\text{F}_5)_3$	3.6	4.6	0.455 ± 0.019	1.10 ± 0.10
$\text{N}(\text{C}_3\text{F}_7)_3$	4.0	4.4	0.587 ± 0.011	1.41 ± 0.10
	3.9	4.4	0.649 ± 0.018	1.56 ± 0.12
	4.1	4.4	0.545 ± 0.009	1.31 ± 0.09
			$0.563 \pm 0.012^{\text{b}}$	1.36 ± 0.10
$\text{N}(\text{C}_4\text{F}_9)_3$	3.0	4.4	0.703 ± 0.011	1.69 ± 0.11

271 ^a 2σ fit precision uncertainty

272 ^b Rate coefficient ratio was obtained from a fit of all $\text{N}(\text{C}_3\text{F}_7)_3$ data combined
273
274

275
276 **Figure 2.** Relative rate data for the $\text{O}(^1\text{D}) + \text{N}(\text{C}_2\text{F}_5)_3$, $\text{N}(\text{C}_3\text{F}_7)_3$, and $\text{N}(\text{C}_4\text{F}_9)_3$ reactions with
277 CHF_3 used as the reference compound. The different symbols for the $\text{N}(\text{C}_3\text{F}_7)_3$ reaction
278 represent independent experiments. The lines are weighted linear least-squares fits to the data (a
279 fit to the combined data for $\text{N}(\text{C}_3\text{F}_7)_3$). For clarity, the estimated measurement uncertainty is
280 only shown for the $\text{N}(\text{C}_4\text{F}_9)_3$ reaction. The obtained rate coefficient ratios and derived $\text{O}(^1\text{D})$ rate
281 coefficient results are given in **Table 2**.

282
283 The measured rate coefficient ratios were placed on an absolute basis using the $\text{O}(^1\text{D})$
284 rate coefficient of CHF_3 (channel 8a), $(2.4 \pm 0.12) \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ [7]. Overall, the
285 $\text{O}(^1\text{D})$ reactive rate coefficients are slow, but consistent with values reported for other highly
286 fluorinated compounds [7]. The estimated absolute uncertainty in the $\text{O}(^1\text{D})$ reactive rate
287 coefficients was determined from the precision and reproducibility of the experimental data and
288 the uncertainty in the CHF_3 reference compound rate coefficient and estimated to be 9% for
289 $\text{N}(\text{C}_2\text{F}_5)_3$ and 7% for $\text{N}(\text{C}_3\text{F}_7)_3$ and $\text{N}(\text{C}_4\text{F}_9)_3$.

290 **4. Atmospheric Lifetimes and Global Warming Potentials**

291 The NOCAR 2-D model was used to estimate the PFA globally averaged partial and total
292 atmospheric lifetimes. The 2-D model details can be found elsewhere [11]. The total globally
293 averaged atmospheric lifetime was computed as a combination of the partial global lifetimes:

294
$$\frac{1}{\tau_{\text{Total}}} = \frac{1}{\tau_{\text{OH}}} + \frac{1}{\tau_{\text{O}(\text{1D})}} + \frac{1}{\tau_{\text{UV}}} + \frac{1}{\tau_{\text{Lyman-}\alpha}}$$

295 Loss of the perfluoroamines due to reaction with the OH radical was shown earlier to
296 most likely be negligible and, therefore, is not considered further. The O(¹D) + PFA reaction
297 represents an atmospheric loss processes that occurs primarily in the stratosphere. The 2-D
298 model calculated atmospheric lifetime with respect to O(¹D) reaction, using the reactive rate
299 coefficients measured in this work, was estimated to be >20,000 years for each of the PFAs
300 included in this study.

301 PFA photolysis was determined in this study at 193 nm. The majority of stratospheric
302 UV photolysis however is expected to occur in the wavelength region between 195 and 220 nm.
303 For an accurate determination of photolysis lifetimes, the absorption cross sections in this
304 wavelength region is needed. Our measured photolysis yield at 193 nm was used along with an
305 assumed decrease of a factor of 10 every 10 nm toward longer wavelengths for the UV
306 photolysis lifetime calculations. For comparison, the NF₃ UV absorption spectrum decreases at
307 about this rate for wavelengths greater than 200 nm [6]. UV photolysis in the 200–220 nm
308 wavelength region is, an inefficient atmospheric loss process leading to a calculated global
309 atmospheric lifetime of greater than 50,000 years. Note that model calculations of atmospheric
310 lifetimes this long have a high degree of uncertainty and should not be considered quantitative.

311 There are no PFA absorption cross section data at Lyman- α (121.567 nm) currently
312 available in the literature. On the basis of a comparison with other fluorinated compounds, PFAs
313 are expected to absorb strongly in the VUV with a Lyman- α cross section of $\sim 10^{-17}$ cm²
314 molecule⁻¹. The partial global lifetime for Lyman- α photolysis was estimated to be >4,500
315 years. A smaller Lyman- α absorption cross section would yield a longer lifetime. Although
316 Lyman- α photolysis represents a long atmospheric lifetime, it may represent a significant
317 atmospheric loss process for PFAs. A combination of the estimated lifetimes leads to PFA
318 atmospheric lifetimes of at least $\sim 3,000$ years as summarized in Table 3.

319
320 **Table 3.** Partial and total global atmospheric lifetime, radiative efficiency (RE), and global
321 warming potential (GWP) for N(C₂F₅)₃, N(C₃F₇)₃, and N(C₄F₉)₃^a

Perfluoroamine (PFAm)	τ_{UV}^b (Years)	$\tau_{O(^1D)}$ (Years)	$\tau_{Lyman-\alpha}^c$ (Years)	τ_{Total} (Years)	RE ^d (W m ⁻² ppb ⁻¹)	GWP ₁₀₀ ^e
N(C ₂ F ₅) ₃	$> 5 \times 10^5$	3×10^4	4500	3880	0.61	9900
N(C ₃ F ₇) ₃	$> 8 \times 10^5$	2.5×10^4	4500	3795	0.75	8700
N(C ₄ F ₉) ₃	$> 5 \times 10^4$	2.0×10^4	4500	3650	0.87	7800

^a Lifetimes were estimated based on 2-D atmospheric model calculations (see text); ^b Assuming $\sigma(\lambda)$ decreases of a factor of 10 every 10 nm for wavelengths greater than 193 nm; ^c Lifetime estimated assuming $\sigma(Lyman-\alpha) = 1 \times 10^{-17}$ cm² molecule⁻¹; ^d RE values taken from Bernard et al. [3]; ^e Rounded-off estimated GWP relative to CO₂ for the 100-year time horizon

In a recent study from this laboratory, the radiative efficiencies (REs) for perfluorotriethylamine (N(C₂F₅)₃), perfluorotripropylamine (N(C₃F₇)₃), and perfluorotributylamine (N(C₄F₉)₃) were determined [3]. Combining these values with the atmospheric lifetimes obtained in the present work leads to large global warming potentials on the 100-yr time horizon for the PFAs as given in Table 3. The GWP values of the PFAs included in this study are of comparable magnitude to those of other highly fluorinated persistent atmospheric traces gases such as NF₃, SF₆, and CF₄, which have GWP₁₀₀ values of 15750, 23500, and 6630, respectively [5].

7. Conclusions

In this study, laboratory experiments were conducted that define the global annually averaged partial and total atmospheric lifetimes of N(C₂F₅)₃, N(C₃F₇)₃, and N(C₄F₉)₃. The O(¹D) reaction and UV photolysis loss processes evaluated in this work were used in 2-D atmospheric model simulations to evaluate the global total atmospheric lifetimes. PFAs are primarily removed in the stratosphere and lower mesosphere such that their removal and lifetimes depend on the modeled transport and turnover times for these regions of the atmosphere. Although the lifetimes are clearly long and GWPs large, a multi-model analysis would be useful to better define the possible range in lifetimes and GWPs for the atmospherically persistent PFAs included in this study.”

It was shown that PFAs are atmospherically persistent potent greenhouse gases (GHGs) with GWPs on the 100-year time horizon in the range 7800-9900 for N(C₂F₅)₃, N(C₃F₇)₃, and N(C₄F₉)₃. GWPs were calculated using the radiative efficiencies reported by Bernard et al. [3]

348 and atmospheric lifetimes from this work, see Table 3. The present results provide a
349 fundamental basis for guiding future policy decisions regarding the potential release of
350 perfluoroamines into the environment.

351 **Acknowledgments**

352 This work was supported in part by NOAA's Climate Program Office Atmospheric
353 Chemistry, Carbon Cycle, and Climate Program and NASA's Atmospheric Composition
354 Program.

355 **Author Contributions:**

356 FB, DP, VP, and JB, experimental measurements and data analysis; DP and VP,
357 theoretical calculations; RP, atmospheric modeling; FB and JB, manuscript writing
358

359 **References**

360

361 [1] A.C. Hong, C.J. Young, M.D. Hurley, T.J. Wallington, S.A. Mabury, Perfluorotributylamine: A novel long-
362 lived greenhouse gas, *Geophys. Res. Lett.* 40 (2013) 6010-6015.

363 [2] Norwegian Institute for Air Research, "Screening Programme 2017 – AMAP Assessment compounds", NILU
364 report 21/2018, 2018.

365 [3] F. Bernard, D.K. Papanastasiou, V.C. Papadimitriou, J.B. Burkholder, Infrared absorption spectra of
366 $N(C_xF_{2x+1})_3$, $x = 2-5$ perfluoroamines, *J. Quant. Spectrosc. & Rad. Transfer* 211 (2018) 166-171.

367 [4] P.J. Godin, A. Cabaj, S. Conway, A.C. Hong, K. Le Bris, S.A. Mabury, K. Strong, Temperature-dependent
368 absorption cross-sections of perfluorotributylamine, *J. Mol. Spectrosc.* 323 (2016) 53-58.

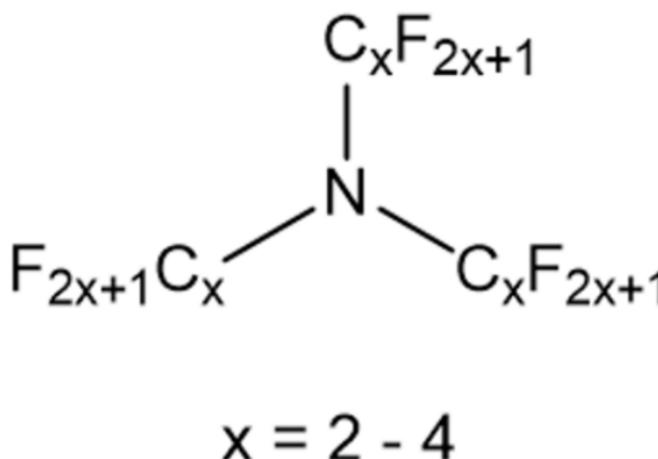
369 [5] WMO, (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone
370 Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018.

371 [6] V.C. Papadimitriou, M.R. McGillen, E.L. Fleming, C.H. Jackman, J.B. Burkholder, NF_3 : UV absorption
372 spectrum temperature dependence and the atmospheric and climate forcing implications, *Geophys. Res.*
373 *Lett.* 40 (2013) 440-445.

374 [7] J.B. Burkholder, S.P. Sander, J. Abbatt, J.R. Barker, R.E. Huie, C.E. Kolb, M.J. Kurylo, V.L. Orkin, D.M.
375 Wilmouth, P.H. Wine, "Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies,
376 Evaluation No. 18," JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, 2015
377 <http://jpldataeval.jpl.nasa.gov/>, (2015)

378 [8] M. Baasandorj, E.L. Fleming, C.H. Jackman, J.B. Burkholder, $O(^1D)$ kinetic study of key ozone depleting
379 substances and greenhouse gases, *J. Phys. Chem. A* 117 (2013) 2434-2445.

380 [9] M. Baasandorj, B.D. Hall, J.B. Burkholder, Rate coefficients for the reaction of $O(^1D)$ with the atmospherically
381 long-lived greenhouse gases NF_3 , SF_3CF_3 , CHF_3 , C_2F_6 , $c-C_3F_8$, $n-C_5F_{12}$, and $n-C_6F_{14}$, *Atmos. Chem. Phys.*
382 12 (2012) 11753-11764.


383 [10] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone,
384 G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B.
385 Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F.
386 Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao,
387 N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
388 Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. J. A. Montgomery, J.E. Peralta, F.
389 Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J.
390 Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M.
391 Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J.
392 Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2016)

393 [11] R.W. Portmann, S. Solomon, Indirect Radiative Forcing of the Ozone Layer During the 21st Century. ,
394 *Geophys. Res. Lett.* 34 (2007) L02813.

395

GAS-PHASE LOSS PROCESSES

Perfluoroamines (PFAs)

Mesosphere:

- Lyman- α photolysis

Stratosphere:

- UV photolysis
- O(^1D) reaction

Troposphere:

- OH reaction

Radiative efficiencies (RE)

Atmospheric lifetime (τ)

Global Warming Potential (GWP)

$$\text{GWP} = \frac{\text{RE} \times \tau \times \left[1 - e^{-\frac{T}{\tau}} \right]}{\text{Int RF}_{\text{CO}_2}(T)}$$

T: 100-year time horizon