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Abstract 9 

This study evaluates the efficacy of machine learning (ML) methods to predict the compressive strength 10 

of field-placed concrete. We employ both field- and laboratory-obtained data to train and test ML models 11 

of increasing complexity to determine the best-performing model specific to field-placed concrete. The 12 

ability of ML models trained on laboratory data to predict the compressive strength of field-placed 13 

concrete is evaluated and compared to those models trained exclusively on field-acquired data. Results 14 

substantiate that the random forest ML model trained on field-acquired data exhibits the best performance 15 

for predicting the compressive strength of field-placed concrete; the RMSE, MAE, and R2 values 16 

were 730 psi, 530 psi, and .51, respectively. We also show that hybridization of field- and laboratory-17 

acquired data for training ML models is a promising method for reducing common over-prediction issues 18 

encountered by laboratory-trained models that are used in isolation to predict the compressive strength of 19 

field-placed concrete. 20 
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1. Introduction 24 

The 28-day compressive strength of concrete is a critical design parameter for reinforced concrete 25 

structures [1]. Empirical prescriptive- and performance-based mixture design methodologies remain the 26 

conventional means to obtain concrete mixture design proportions that meet minimum 28-day 27 

compressive strength requirements. However, numerical approaches for predicting the 28-day 28 

compressive strength of concrete are emerging in the literature. Accurate numerical estimation of the 28-29 

day compressive strength of concrete is desirable because more precise prediction (1) provides assurance 30 

of concrete quality, (2) reduces the number of concrete batches that are needed to be tested to meet 31 

strength targets, and (3) enables a reduction in factors of safety. Recent computational studies have 32 

demonstrated the ability of advanced statistical modeling techniques to numerically predict concrete 33 

compressive strength for laboratory-mixed concrete, termed laboratory concrete herein [2]–[13]. 34 

© 2019 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0950061819320719
Manuscript_b48c81588fa8282b64a6bd0e31a886b1

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0950061819320719
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0950061819320719


 

 2

However, prediction of the 28-day compressive strength of concrete placed in the field on an actual 35 

construction site, termed field concrete herein, remains a challenge for the concrete industry due to 36 

variable environmental conditions and other uncertainties encountered during mixture proportioning, 37 

transport, placing, curing, and finishing.  38 

1.1 Prediction challenges for field concrete mixtures 39 

Estimating the 28-day compressive strength of concrete is a multifaceted problem. Complex physical and 40 

chemical interactions occur between concrete constituents, which, in turn, affect compressive strength. 41 

Therefore, nonlinear mathematical models are advantageous for accurately capturing all phenomena. As 42 

an example, consider the following physically intuitive correlations: compressive strength decreases 43 

(nonlinearly) as the water-to-cement ratio (w/c) increases [14], [15]; increasing air content for improved 44 

workability and freeze-thaw resistance also reduces compressive strength [16]. Other correlations have 45 

not been as intuitively deduced to-date. For example, it is well known that the proportion of coarse-to-fine 46 

aggregate affects compressive strength, but the relationship has not been precisely determined due to 47 

confounding factors, such as particle size distribution, aggregate angularity, and water demand. Coarse 48 

aggregate, for example, may vary in nominal size, grading, chemical composition, shape, surface texture, 49 

and absorptivity [17]; these properties can impact the strength of the interfacial bonds between the 50 

aggregate and mortar, which, in turn, affect the compressive strength of concrete. Furthermore, the 51 

addition of supplementary cementitious materials (SCMs), like fly ash, slag, and silica fume, also 52 

introduce new, complex, and nonlinear relationships to compressive strength because of complex factors, 53 

such as fineness, chemical variability, and pozzolanic reactivity [18], [19]. Additionally, the fineness and 54 

mineral composition of fly ash and slag can be highly variable, depending on the original industrial 55 

source and additional processing steps [20].   56 

     The conditions of the job site at which field concrete is mixed and placed are also highly variable and 57 

lead to high variability in field compressive strength compared to laboratory concrete. For instance, it is 58 

commonplace for the environmental conditions at construction sites to be loosely controlled. Here, 59 

temperature, humidity, and inclement weather can all affect concrete curing and the final compressive 60 

strength [21], [22]. Such variabilities do not exist in laboratory concrete mixing, which suggests that 61 

accurate prediction of the compressive strength of field concrete is a more challenging problem compared 62 

to compressive strength prediction of laboratory concrete. 63 

1.2 Machine learning methods for compressive strength prediction 64 
Because of the physical limitations described above, there is growing interest in predicting concrete 65 

compressive strength using machine learning (ML) models for both field and laboratory concrete 66 

mixtures [23], [24]. ML models predict compressive strength (i.e., the target variable) from the types and 67 

quantities of the mixture ingredients (i.e., the input variables). Using pairs of data of the form [input 68 
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variables, target variable], a model is trained from a collected dataset and learns the relationship between 69 

the target and input variables without constraint on prior intuitive understanding. The vast majority of this 70 

type of research has been performed on laboratory concrete, which, as discussed, suggests limitations on 71 

the actual usefulness of these models for predicting the compressive strength of field concrete, given the 72 

myriad of convoluting factors.  73 

     Prior research in ML methods for compressive strength prediction has been limited to testing ML 74 

methods using laboratory data to determine best-possible prediction models for concrete compressive 75 

strength. A particularly popular ML algorithm is artificial neural networks (ANNs). The first study of 76 

ANNs by Yeh et al. [25] employed ANNs on a dataset of over 1000 laboratory concrete mixture designs. 77 

Since then, other researchers have reported ANN studies with coefficients of determination (R2) of up to 78 

0.999 [2]–[8], [10], [26]–[28]. However, a significant number of ANN studies employ less than 100 79 

experimental data points, which may not sufficiently sample the predictor variable space. While ANNs 80 

are a flexible and powerful ML method, it suffers from the need to train a large number of parameters. 81 

For small datasets (as is common for field concrete), ANNs can quickly overfit the data, which leads to 82 

strong training set performance but poor generalization performance on new datasets. Other ML methods 83 

that appear in the literature include support vector machines (SVM) [25], [26] and decision tree-based 84 

models [13], [29]. Studies that employ these methods are less common than ANN studies, due to the 85 

historical alignment of compressive strength prediction and ML methods. 86 

      Some narrower-scope prediction studies that used ML have focused on modeling concrete mixtures 87 

that contain particular mixture ingredients, such as fly ash [28], blast-furnace slag [30], recycled 88 

aggregate [31], silica fume [32], and metakaolin [33]. This body of research generates models that are 89 

useful for predicting compressive strength when specific constituents are included. However, this 90 

approach narrowly tailors the model to the particular dataset and, thus, is less useful when either mixture 91 

ingredients or external conditions (possibly unmeasured) may change.  92 

     A recent study by Young et al. considered field concrete data and compared the predictive 93 

performance of four ML models for predicting both field and laboratory concrete [23]. This study found 94 

that variance can be significantly better explained in the laboratory concrete dataset, which is compatible 95 

with the idea that laboratory concrete has fewer uncontrolled variables. The study determined that the 96 

four ML methods investigated exhibited equivalent predictive performance for field concrete – a 97 

somewhat unintuitive result, given that the four methods employed do not share common assumptions 98 

about the underlying data. In addition, it is also of note that the laboratory and field datasets contained 99 

different mixture ingredients (i.e., input variables). For example, the laboratory concrete dataset included 100 

blast-furnace slag, while the field concrete dataset did not, making an apples-to-apples comparison 101 

difficult between models for both laboratory and field concrete. 102 
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1.3. Innovative contribution/knowledge gaps 103 

Despite a large body of research in this area of study, the challenge of training a ML model for accurate 104 

prediction of concrete compressive strength remains relevant. More specifically, two significant gaps 105 

exist in the literature. First, prior studies are not well-grounded in best-practice methods of the ML 106 

community. The standard procedure in ML is to generate a pipeline of methods that increase in 107 

complexity [34]. The reason for this is two-fold: (1) while powerful, ML methods often search a large 108 

model space and may miss simple solutions recognized by the researcher and (2) the failure of simpler 109 

models is typically caused by a failure in model assumptions that reveals previously hidden details about 110 

the data interactions and non-linear behavior observed in the system. These failures can thus be used to 111 

inform the appropriate choice of ML tools for further development. Second, consensus on the best model 112 

architectures for predicting the compressive strength of field concrete has not yet been reached. 113 

     To this end, this study aims to address the aforementioned knowledge gaps and is particularly focused 114 

on approaches for accurate prediction of the compressive strength of field concrete. First, we employ the 115 

standard ML procedure of testing models of increasing complexity in order to determine the best-116 

performing model for field concrete. This procedure enables us to build on past research by discussing 117 

why certain ML methods are particularly well-suited for the concrete compressive strength prediction 118 

problem. The field concrete dataset in this study contains 1681 concrete mixtures and was collected by 119 

the Colorado Department of Transportation (CDOT). The laboratory concrete dataset in this study was 120 

obtained from the University of California, Irvine Machine Learning Repository, which contains data for 121 

more than 1000 mixtures [35].  122 

     Following the analysis of the field concrete models trained on the field concrete dataset, we evaluate 123 

the ability of ML models learned on laboratory concrete data to predict the compressive strength of field 124 

concrete mixtures. For this analysis, we perform the same ML procedures for the laboratory data and 125 

select the best-performing model. This model is then used to predict the compressive strength of field 126 

concrete mixtures, and the relative model performance is analyzed. It was hypothesized that the 127 

laboratory ML model performance would be unsatisfactory for predicting field compressive strength 128 

compared to that of models trained exclusively on field concrete data. Finally, this work includes an 129 

analysis of laboratory data-trained models that are supplemented with varying percentages of field data in 130 

order to determine if such hybridized datasets can improve performance the predictive capabilities of 131 

laboratory concrete models.  132 

2. Machine Learning (ML) Methods 133 

As discussed in the introduction, this paper builds a pipeline of ML methods with increasing complexity, 134 

such that the underlying structure in the training data can be stepwise analyzed. First, in Section 2.1, we 135 

describe the ML methods used in the pipeline. We introduce linear methods (i.e., linear regression, 136 
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polynomial regression), transformed linear methods (i.e., kernelized support vector regression, kernelized 137 

Gaussian process regression), and non-linear methods (i.e., regression trees, boosted trees, random 138 

forest). In general, simple models are introduced first, and subsequent models increase in complexity. The 139 

simplest methods (e.g., linear regression) tend to require the most assumptions about the underlying data 140 

structure, and the most complex methods (e.g., boosted trees) require few assumptions about the 141 

underlying structure of the data. Second in Section 2.2, we analyze the utility of predictive models trained 142 

on laboratory concrete data for predicting field concrete strength. Third, in Section 2.3, we introduce the 143 

performance measures used to evaluate the effectiveness of each model: the coefficient of determination 144 

(R2), root mean squared error (RMSE), and mean absolute error (MAE). Last, in Section 2.4, overfitting is 145 

discussed, which occurs when a model not only captures the desired qualities in the data, but also begins 146 

to exactly model the training data itself. An overfitted model is undesirable because it lowers the 147 

predictive performance on “unseen” testing data. In other words, overfitted models do not generalize well 148 

to real-world cases. In this analysis, we describe and utilize nested cross-validation as a means reduce 149 

overfitting. Reserved testing data is used for final determination of the best-performing model.   150 

2.1 ML Methods 151 

All models were created in the R Project for Statistical Computing [36]; in addition, Table 1 lists the ML 152 

methods employed in this study, as well as the specific package and function used for model training. For 153 

each ML method, we discuss parameter tuning and the intuitive meaning of the parameters. 154 

Table 1. ML models and corresponding R packages used in this study. 155 

Model Type R Package R Function 
Linear Methods 

Linear regression stats lm 
Polynomial regression stats lm 

Transformed Linear Methods 
Kernelized support vector 
regression 

kernlab ksvm 

Kernelized Gaussian process kernlab gausspr 
Non-Linear Methods 

Regression trees rpart rpart 
Random forest randomForest randomForest 
Boosted trees gbm gbm 

 156 

2.1.1 Linear Regression 157 

The simplest model to apply and analyze is linear regression. In addition to providing useful 158 

understanding of the data, linear regression also serves as a good baseline from which other techniques 159 

can be evaluated. Linear regression is a model that describes the output (target) variable as a linear 160 

combination of the predictor variables [37]. This linear combination is a hyperplane in N-dimensional 161 

space, where N is the number of coefficients in the model. The model solution is the hyperplane that 162 
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minimizes the squared error between the observed output and the predicted output. Mathematically, the 163 

solution is described as:  164 

�� = ���,      Eq. 1 165 

where x is the input vector, β is the N-dimensional vector of coefficients (parameters) for the linear 166 

model, and �� is the predicted output variable from the model. The underlying assumption in linear 167 

regression is that the relationship between the predictor variables and the output variable is linear. 168 

Moreover, the model assumes that predictor variables are independent from one another, and the resulting 169 

residuals, the difference between the predicted and observed output variables, are both homoscedastic 170 

(i.e., have constant variance) and normally distributed. When these assumptions are violated, it indicates 171 

that a linear model is not appropriate. When such violations occur, it is reasonable to use transformations 172 

on the input data to try to reduce or eliminate the violation in assumptions. Failure of such methods to 173 

improve the resulting model error and reduce violation of the assumptions means that the dataset requires 174 

more complex non-linear models.  175 

2.1.2 Multivariate Polynomial Regression 176 

Multivariate polynomial regression (called polynomial regression in this study) uses nth degree 177 

polynomials of the input variables to predict the output variable. Polynomial regression is a generalization 178 

of Eq. 1; however, each x term may be: (1) an original predictor variable (e.g., ��), (2) a pure higher-order 179 

term of one predictor variable (e.g., ��	), or (3) an interaction term between two or more predictor 180 

variables (e.g., ���

) 181 

     A generalized example of an expanded second-order polynomial solution with two predictor variables 182 

(for simplicity) is described by:  183 

�� = �� + ���� + �
�
 + �����
 + �

�

 + ��
���
    Eq. 2 184 

The transformation of the predictor variables allows for modeling of higher-order relationships and 185 

modeling interactions between the input variables; Eq. 2, for example, shows a parabolic relationship. 186 

When the original predictor variables are transformed, they are called “features.” This term, also 187 

commonly applied to all input variables of the models, denotes the fact that the inputs have been 188 

transformed from their original space. In this analysis, polynomials up to third-order are employed, where 189 

third order is chosen due to limits in computational power. Since polynomial regression is a form of linear 190 

regression, the same assumptions are required—more specifically, independence of the input features, 191 

homoscedasticity of the residuals, and normality of the residuals. Note, however, these assumptions apply 192 

to the transformed features and not the original data space. 193 

2.1.3 Kernalized Regression Methods 194 
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Kernalized regression methods utilize two mathematical concepts applied in tandem – a transformation of 195 

the predictor variables and the pairing of the new predictors with a regression method. These pairings can 196 

then be analyzed in order to determine which (if any) kernel and regression assumptions fit the data well.  197 

     Kernels are a set of transformations that can be used to map the original predictor variable space to a 198 

high-dimensional feature space [34]. Here, this mapping is more complex than the polynomial mappings 199 

in the previous section, and all mappings are the result of extensive previous research effort [38]. Each 200 

kernel has its own set of tuning parameters that must be optimized. This paper compares four kernel 201 

transformations, including: linear kernel, radial basis function (RBF) kernel, sigmoid kernel, and 202 

polynomial kernels (up to order 4). The model order of the polynomial kernels is only limited by the 203 

available computational power. 204 

     Kernel transformations have the form: 205 

���, �′� = 〈����, �����〉      Eq. 3 206 

where k is the kernel function, x and x’ are N-dimensional input vectors (N is the number of predictor 207 

variables), and � is a mapping from m dimensions to an m-dimensional space. Note that 〈����, �����〉 208 

denotes the inner product between the two mappings and can be thought of as a measure of similarity 209 

between the two transformed vectors. The kernel tuning parameters are optimized in tandem with the 210 

optimization of a regression model. This optimization is discussed below. Table 2 provides the kernel 211 

transformation equations and kernel tuning parameters used in this study.  212 

Table 2. Kernel Transformation equations and tuning parameters 213 

Name Kernel Transformation Tuning Parameters 

Linear ���, �′� = 〈�, �′〉 n/a 
Radial Basis Function ���, �′� = exp ��γ‖� ��′‖
� γ 
Polynomial ���, �′� = �γ〈�, �′〉 + ��  γ, r, and d 

 214 

The transformed variables (features) can be utilized with any regression method. The concept here is that 215 

parameters for both the kernel transformations and the regression methods are tuned simultaneously such 216 

that the cross-validated model error is minimized. When there are multiple tuning parameters, a grid 217 

search technique is employed in order to find near-optimal parameter values. In this paper, two kernalized 218 

regression methods are tested:  support vector regression and Gaussian process regression. 219 

     Support vector regression (SVR) is a version of support vector machines (SVM) used for regression 220 

purposes (rather than classification) [39]. The regression model generated by SVR depends on only a 221 

subset of the dataset, and these data points are deemed support vectors. When an SVR model is trained, 222 

support vectors are the points from the dataset that produce error values (!) larger than a prescribed 223 
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threshold value. SVR model training generates values for βm (the coefficients for the transformed support 224 

vectors) and β0 (the intercept). This occurs via minimization of Eq. 4 using gradient descent:  225 

min: &��', ��� = ∑ )��* � ��� + +



,*-� ∑ �'
    Eq. 4 226 

Here, V(r) is the prescribed error measure, y is the observed target variable, and . is a regularization 227 

parameter that serves as a degree of importance given to large error values. When . increases, large errors 228 

are more greatly penalized in the model; this parameter can be tuned using cross-validation. In this study 229 

the SVR is paired with the aforementioned kernel transformations in order to examine the utility of 230 

transformations of the predictor variables. 231 

     The second regression method that is employed with the kernel-transformed data is Gaussian process 232 

regression (GP). GP can be thought of as the Bayesian interpretation of linear regression. Rather than 233 

assuming that the relationship between the predictor variables and the target variable has the prescribed 234 

linear functional form (e.g. �� = ���), GP simply assumes that the data can be represented as a sample 235 

from a multivariate Gaussian distribution and that the mean of this distribution is zero. This approach is 236 

“less parametric” in the sense that the model is more loosely defined. Using GP, the predictions of the 237 

target variable are made using the conditional probability, /��∗|2�. In short: given the data, how likely is 238 

a certain prediction for �∗? Here, note the subtle difference between �� and �∗. �� represents a predicted 239 

target variable from a model, and �∗ represents a distribution of possible outputs from the model. In the 240 

case of GP, �� is the expected value of �∗,  3[�∗] = 3[�∗|2]. 241 

     Given the assumed Gaussian distribution, the matrix of all predictor variables in the dataset (6), the 242 

output vector (y) and the new matrix of data inputs, the goal is to make a prediction on the new set of data 243 

points (�∗). The derived conditional distribution has the form,   244 

                                         �∗|2 ~ 8�9∗9:�2,  9∗∗ � 9∗9:�9∗��,     Eq. 5 245 

where 9, 9∗, and 9∗∗ are the covariance matrices resulting from ���, ���, ���∗, ���, and ���∗, �∗��, 246 

respectively. The prediction, ��, is the expected value of this distribution, which can be reduced to the 247 

equation below. 248 

�� = 9∗9:�2       Eq. 6 249 

Since GP employs only the assumption of a Gaussian distribution and the covariance matrices for model 250 

formulation, no tuning parameters are necessary for this regression method beyond those required for the 251 

choice of kernel. The performance of GP allows us to assess the veracity of the Gaussian distribution 252 

assumption for the data under multiple different transformations of the predictor variables. If none of the 253 

above regression methods can adequately model the output variable, models with no linearity assumptions 254 

(e.g. regression trees, artificial neural networks) are reasonable model options consider.  255 
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2.1.4 Regression Trees  256 

The goal of a regression tree is to generate partitions in the predictor variables such that the target variable 257 

can be predicted based on the partitions among the input variables. Figure 1a provides a simple 258 

illustration of regression tree “nodes” (i.e., partition rules) and “leaves” (i.e., terminal nodes that lead to 259 

one output value). For instance, in the example provided in Figure 1a, there are two predictor variables (x1 260 

and x2). The “root node” (the uppermost blue ellipse) is a rule that partitions the data along x1. For this 261 

node, if x1 is greater than 7.5, then the predicted output (in red) is 0.8. However, if the value of x1 is less 262 

than 7.5, then one must proceed to the next node in the tree. This process continues until a predicted 263 

output variable is reached. For the same example regression tree, Figure 1b demonstrates that a regression 264 

tree partitions the predictor variables into rectangular spaces; the and the predicted output is the same 265 

value throughout each of these rectangular cells.  266 

 267 

Figure 1: (a) Diagram of an example regression tree model with two predictor variables, x1 and x2. (b) 268 

This diagram shows the same decision tree using the two predictor variables as axes. It helps visualized 269 

the rectangularity of the target variable predictions when simple regression trees are employed. Within 270 

each rectangle the predicted target variable would be the same.   271 

     Training a regression tree is performed by selecting partitions in succession using a criterion of 272 

variance reduction in the target variable [40]. Since each successive partition is always chosen such that 273 

the variance of the target variable is reduced, regression trees are prone to overfitting the data. To prevent 274 

overfitting, a variety of regularization techniques can be employed. This study minimizes the cost 275 
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complexity function, which places a penalty for each additional node that is selected for the model. As 276 

shown below, the cost complexity function ;<�=� has two terms that influence its value:  277 

;<�=� = ;�=� + > ∗ ?�=�,      Eq. 7 278 

where ;�=� is the training error, ?�=� is the number of leaves in the regression tree, and > is the 279 

regularization parameter that is determined via cross-validation [41]. In Section 2.3 the cross-validation 280 

procedure used in this study is thoroughly discussed.  281 

     Regression trees have the advantage that they do not assume linearity in the data, and, therefore, no 282 

complex data transformations are needed. Overall, this approach is simpler than linear methods, but it 283 

requires careful consideration so as not to overfit the data. Regression trees also implicitly select 284 

variables, which means that a trained regression tree will show variables that have more importance for 285 

predicting the target variable in earlier nodes in the tree. Lastly, regression trees are interpretable and can 286 

provide some insight on the dataset being analyzed. 287 

     A disadvantage of simple regression trees is that they suffer from model instability; in other words, 288 

small changes to the dataset might create a completely different set of partitions, and, consequently does 289 

not lead to the best-performing model. For this reason, more complicated tree-based methods are often 290 

considered that are more stable. Random forest and boosted trees are examples of more complex tree-291 

based methods that aim to reduce this instability and are discussed in the subsequent sections. 292 

2.1.5 Random Forest 293 

Random forest is a method that builds an ensemble of regression trees in order to reduce the instability of 294 

individual trees. Random forest utilizes two strategies for improving the instability issue. First, it employs 295 

the concept of “bootstrap aggregation” (sampling with replacement) in order to generate many similar 296 

datasets that were sampled from the same original dataset. These datasets each lead to an individual tree 297 

within the ensemble. Second, it incorporates randomness during tree-learning in order to reduce the 298 

correlation between each tree within the ensemble. For instance, when generating new nodes (for 299 

individual trees within the random forest), only a subset of the original predictor variables is selected as 300 

the set of candidate variables on which to partition the data. The variable value that minimizes variance in 301 

the output from these randomly selected predictors is the variable selected for that node. This process is 302 

repeated for all nodes in a regression tree and then for all regression trees in the random forest. For a 303 

random forest model, the tuning parameters are: the number of randomly selected predictors (k), the 304 

number of individual trees that are trained (n), and the tree depth (d) [42]. 305 

     The advantage of the random forest method is that it significantly reduces the instability of simple 306 

regression trees. Furthermore, this method has been shown to minimize correlation between trees 307 

compared to other tree-ensemble methods (e.g. “bagging trees” that use only bootstrap aggregation and 308 
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not random variable selection) [40]. One disadvantage of random forests is their reduction in 309 

interpretability compared to simple regression trees; random forests cannot be easily visualized and 310 

individual trees are often not good predictive models on their own. However, variable importance plots 311 

can reveal the relative importance of predictor variables.  312 

2.1.6 Boosted Trees 313 

Like random forest, boosted trees are an ensemble method for dealing with the instability and poor 314 

predictive performance of simple regression trees. Generally, the concept of “boosting” is an ensemble 315 

strategy that can be used to improve weak learning algorithms (e.g. regression trees) [43], [44]. Boosting 316 

can be applied to any weak learning algorithm but is commonly utilized for regression trees. The main 317 

concept of boosting is to build a model using the weak learning algorithm. Then another model is learned 318 

on the residuals from the first model. This step of model-building on the previous model’s residuals is 319 

repeated for a set number of iterations. Therefore, a boosted tree is simply a model where the weak 320 

learning algorithm used in each iteration is a regression tree.  321 

     Unlike random forest in which all trees are of the same importance, boosted trees are hierarchical, 322 

meaning that each tree layer is constructed recursively. The tuning parameters for boosted trees are: the 323 

number of trees, the interaction depth (maximum number of nodes per tree), the minimum number of 324 

observations per node (a stopping criteria used to prevent trees that have only one observation at each 325 

leaf), and the shrinkage rate (the rate at which the impact of each additional tree is reduced). 326 

     Boosted trees are similar to random forest in their advantages and disadvantages. Boosted trees tend to 327 

have high predictive performance on highly nonlinear datasets and can be successful on problems where 328 

there is unequal importance of predictor variables [34]. One disadvantage of boosted trees is that this 329 

method has low interpretability; it is difficult to gain much intuition of the patterns that the model has 330 

learned or to determine why a boosted tree model is successful (or not) at predicting the target variable. 331 

This means that a strong ML pipeline must be used to train boosted trees to ensure that the approach has 332 

not overfit the data.  333 

 334 

2.2 Testing of Laboratory and Hybrid Models for Field Concrete Strength Prediction  335 

2.2.1 Laboratory Models 336 

As was discussed in the introduction, many studies in the literature have developed ML models for 337 

predicting concrete compressive strength using laboratory concrete datasets. While these laboratory 338 

models report high predictive performance [2], [4]–[8], [10], [26], [27], it has not yet been tested whether 339 

they are useful for predicting the compressive strength of field concrete. A significant novelty of this 340 

study is that laboratory models are tested to determine if they are, in fact, useful for predicting 341 

compressive strength when presented with other datasets – namely, field concrete data.  342 
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     One issue preventing the direct testing of laboratory ML models from the literature is the use of 343 

concrete age as a predictor variable. In other studies, age is a convenient predictor variable because it can 344 

explain a high percentage of variance in compressive strength data. In other words, removing age as a 345 

predictor and using only the final compressive strength as the output causes the compressive strength 346 

problem to be significantly more difficult (i.e., model performance measures tend to be poorer). In this 347 

analysis, the desired model output is the final compressive strength (approximated by the 28-day strength) 348 

of a concrete mixture as a function of only the quantities of the mixture ingredients. Due to this difference 349 

between the prediction problem described herein and that of the literature, laboratory models for 350 

predicting the 28-day compressive strength using laboratory concrete data have been trained specifically 351 

for this study. Model utility is examined via the process described below and illustrated in Figure 2.  352 

     First, the aforementioned suite of ML models (i.e., linear regression, polynomial regression, kernel 353 

regression, tree-based models) is trained and tested using the laboratory data described in Section 3. The 354 

model with the best testing performance is selected. Then, the predictor variables from the field data are 355 

used as inputs and the performance measures and diagnostic plots for this new data shall be reported and 356 

analyzed. 357 

 358 

Figure 2. Process for testing the predictive capability of laboratory models using field concrete data. The 359 

dotted outline indicates the laboratory model that is selected based on its performance measures.  360 

2.2.2 Models Trained on Hybrid Data 361 

It was hypothesized that the previously-described laboratory model will not satisfactorily predict the 362 

compressive strength of real concrete mixtures. Thus, an analysis of models trained on hybrid data (i.e., a 363 

dataset that is composed of both field laboratory data) is conducted to determine whether they can 364 

improve predictive performance compared to “pure” laboratory models.  365 

     Models trained on hybrid data are potentially valuable because there is an inherent tradeoff between 366 

the use of laboratory and field models for predicting real concrete compressive strength. On one hand, 367 

laboratory data is the cheapest and most accessible data to acquire. It is also the best method for exploring 368 
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new and exotic concrete mixtures that are uncommon in industry. However, laboratory compressive 369 

strength data has the disadvantage that it does not reflect the full set environmental variables experienced 370 

by field concrete. Accordingly, it is expected that ML models trained on hybrid data may have the 371 

potential to improve the predictive performance of laboratory models. 372 

     In this novel hybrid approach, a percentage, α, of the hybrid dataset is composed of the field data, and 373 

the rest is composed of the laboratory dataset. This procedure is used to determine if small amounts of 374 

field data can improve model performance. In order to determine the effect of variable amounts of field 375 

data, different α values are utilized (10%, 20%, 30%, 40%, and 50%). The model building process occurs, 376 

as follows, for each value of α: 377 

For each α: 378 

1. Sort the field dataset in the order of lowest compressive strength to highest compressive strength 379 

and partition this sorted dataset into quintiles. 380 

2. In order to ensure the field data portion of the hybrid data is well-sampled, randomly sample (in 381 

equal number) the appropriate number for points from the quintiles of the sorted field dataset. 382 

Randomly sample from the field dataset the appropriate number of points. 383 

3. Use this hybrid data to train a cross-validated ML model. (The selection of ML model is 384 

determined by the best performing laboratory model.) 385 

4. Use the remaining, unsampled field data to determine the average testing performance of the 386 

hybrid model. The performance measures described in the following section are reported.   387 

5. Repeat steps 1-4 five times to find average performance measures for each α. 388 

2.3 Performance Measures  389 

When training statistical, data-driven models, it is necessary to have a method to quantify the model 390 

performance so that hyperparameter tuning can be iterated to select the best possible model. There are 391 

several established metrics for determining predictive performance, each with advantages and 392 

disadvantages, which will be discussed below. Common quantitative performance measures common to 393 

regression modeling (rather than classification modeling) include the coefficient of determination (R2), 394 

root mean square error (RMSE), and mean absolute error (MAE) [45], [46]. These metrics, coupled with 395 

model diagnostic plots and visualization of predicted versus observed output values, provide a 396 

comprehensive picture of a model’s performance.   397 

     R2 is a measure of the proportion of the variance in the data that is explained by the model. 398 

Accordingly, R2 is the ratio shown in Eq. 8, where �* is the observed value from the data, ��* is the 399 

predicted value from the model, and �@ is the average output from the data.  400 

;
 = ∑ �A�B:A@�CB
∑ �AB:A@�CB       Eq. 8 401 
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The value of R2 ranges from zero to one, with higher values indicating a better ability to explain the 402 

variance in the data with the model. However, R2 is a measure of correlation, not accuracy, and should be 403 

used with other performance measures because it is dependent on the variance of the output variable.  404 

     The root mean square error (RMSE) indicates how concentrated the data is around the model fit. The 405 

RMSE is measured on the same scale as the output variable, and is always positive due to the squared 406 

residuals in its calculation. Using the RMSE accentuates the effect of outliers in the error metric. This 407 

means that if median error of the model (usually captured by the mean absolute error) is low, the RMSE 408 

of the model can still be large due to the inability to model some outliers in the data. Given observed 409 

values, �*, predicted values, ��*, and D observed values RMSE is calculated as: 410 

;EF3 =  G∑ �A�B:AB�CHBIJ
K      Eq. 9 411 

The mean absolute error (MAE) is a measure of prediction accuracy of a model that uses the absolute 412 

value of the errors rather than a squared value. The use of the absolute value reduces the influence of very 413 

large errors on the measure of performance. Thus, MAE is a measure of the median error of the model 414 

and is complimentary to the use of R2 and RMSE. 415 

EL3 =  ∑ |AMN :AB|HBIJ
K      Eq. 10 416 

Like RMSE, MAE is measured on the same scale as the output variable, and a lower value indicates a 417 

better model fit. In addition, MAE values for a model are typically smaller than the RMSE value for the 418 

same model. In this paper we chose to use both RMSE and MAE in order to report both the median and 419 

mean error of each model.  420 

2.4 Cross-validation     421 

A critical issue to consider when training and comparing statistical and machine learning models is the 422 

prevention of overfitting. Overfitting is a problem for ML models that have a high capacity to learn non-423 

linear relationships and are trained on datasets that do not contain a sufficiently large variance of the data 424 

(i.e., on datasets that are not rigorously sampled). When using iterative training methods such as grid 425 

search, a model is particularly prone to overfitting if the same data is used for the training and validation 426 

datasets. In this case, the resulting performance measures would indicate that the model has good 427 

predictive performance, but when these models are tested on new data, poor performance is observed. 428 

     To prevent overfitting, ML learning methods and pipelines can employ several strategies. The strategy 429 

employed herein, is called nested cross-validation (nested CV), which splits the data into “training”, 430 

“validation”, and “testing” datasets. In the “inner CV loop”, the performance measures are approximately 431 

optimized by fitting a model to each of several training datasets. Subsequently, the performance measures 432 

are directly optimized by selecting hyperparameters with each validation dataset. In the “outer CV loop”, 433 
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the testing error is estimated by averaging test set scores for several dataset splits. In order to prevent data 434 

leakage, it is critical that the trained models have never been exposed to the testing data. 435 

     When performing CV, the selection of the sizes of the training, validation, and testing sets is critical 436 

because this choice affects the bias/variance tradeoff for a given statistical model. To strike a balance 437 

between bias and variance error, this paper uses five folds (i.e., partitions) for both the inner and outer CV 438 

loops which can generate a favorable bias/variance tradeoff according to the literature [34]. This choice 439 

results in 25 validation scores and 5 testing performance measure scores for each model.   440 

3. Datasets 441 

In this study, two datasets – field and laboratory concrete compressive strength data - are used. The field 442 

dataset is from the Colorado Department of Transportation (CDOT); it has 1681 mixture designs and 443 

corresponding compressive strength values. The mixture constituent variables in this dataset include 444 

masses of cement, fly ash, water, water-reducing admixtures (WRA), coarse aggregate, fine aggregate, 445 

and percent air entrainment. The laboratory dataset was obtained from the Machine Learning Repository 446 

at the University of California, Irvine [35]. This dataset contains over 1000 mixture designs and 447 

corresponding compressive strength values. However, it originally contained some mixtures that included 448 

blast-furnace slag (a mixture ingredient not included in the field dataset) as well as some mixtures in 449 

which the compressive strength was measured earlier than 28 days of curing. In order to reconcile these 450 

differences, only mixtures that do not include blast furnace slag and that measure compressive strength 451 

after 28 days are included in this analysis. This decision reduced the number of usable mixtures to 311. 452 

One last discrepancy is that the laboratory dataset does not report air entrainment values. It is not clear 453 

which of the following is true: a constant amount of air was entrained, no air was entrained, or variable 454 

amounts of air were entrained but not reported. Notably, this discrepancy does not prevent model training 455 

for either dataset. However, when the best laboratory predictive model is used to predict field 456 

compressive strength, the air entrainment predictor cannot be utilized.  457 

 458 

     Table 1 provides a statistical summary of the two datasets. The laboratory dataset has been converted 459 

to US customary units for ease of comparison. Note also that both datasets have used the Absolute 460 

Volume Method for proportioning concrete mixtures, which generates weights of ingredients on a cubic 461 

yard basis; this means that ingredient quantities are comparable between datasets.  462 

 463 
Table 1. Statistical summary of laboratory- and field-acquired datasets. 464 

Dataset Statistic Cement Fly Ash Coarse Aggregate Sand Water Air WRA Strength  

 Units lbs/yd3 lbs/yd3 lbs/yd3 lbs/yd3 lbs/yd3 Vol. % oz/yd3 psi 

Lab Mean 501 113 1678 1332 307 - 149 5357 
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 Median 487 161 1689 1330 314 - 154 5362 

 Min 227 0 1350 1001 236 - 0 1239 

 Max 910.2 337 1896 1593 384 - 761 11602 

Field Mean 540 106 1697 1256 265 6.6 28 5938 

 Median 528 120 1725 1250 265 5.8 24 5820 

 Min 395 0 430 445 142 0 0 3400 

 Max 900 250 2240 2250 392 9.6 305 13040 

 465 

4. Results and Discussion 466 

In this analysis, we evaluate the predictive performance of the aforementioned ML models. The values for 467 

RMSE, MAE, and R2 for all models are reported in Figure 3. Low values for RMSE and MAE, and high 468 

values for R2 indicate better model performance, respectively. For simplicity of discussion, RMSE is used 469 

as the primary metric of performance. In addition, both the testing and validation performance is reported, 470 

which facilitates the discussion on overfitting in the models. These performance measures are plotted as 471 

boxplots to illustrate the range and variance of the error. The set of errors for each model is determined 472 

using a nested five-fold cross-validation, with five testing values and twenty-five training values for each 473 

model. Each model’s performance from a methodological standpoint is discussed in the sections to 474 

follow. The methodological and architectural reasons for each model’s performance are also examined.  475 
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 476 

Figure 3. Boxplots of the three cross-validated performance measures – (a) RMSE, (b) R2, and (c) MAE 477 

for all ML models. Both the training and testing performance measures are reported. The abbreviations 478 

are as follows: linear regression (Linear), polynomial regression (Poly), support vector regression (SVR), 479 

Gaussian process regression (GP), regression tree (RT), boosted tree (BT), random forest (RF). Kernels 480 

are referred to as follows: second-order polynomial (Poly 2), third-order polynomial (Poly 3), fourth-481 

order polynomial (Poly 4), radial basis function (RBF). 482 
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4.1 Linear Regression 483 

Linear regression is the first model tested in this analysis. This model assumes that the predictors are 484 

independent and the residuals are homoscedastic and normally distributed. The performance of linear 485 

regression is used as a baseline for comparing model performance and for determining what other models 486 

may be more appropriate for the data. For the linear regression model, Bayesian information criterion 487 

(BIC) – a parsimonious model selection criterion – is employed to select important predictor variables. Of 488 

the seven mixture ingredients, BIC selects five of these as predictor variables (cement, fly ash, water, air, 489 

and WRA); this model has a mean testing RMSE, MAE, and R2 of 803 psi, 582 psi, and 0.40, 490 

respectively. Of note is the relatively low value of R2, which indicates that a linear model is only able to 491 

capture 40% of the variance in the data.  492 

     There are two possible reasons for the poor performance of this model. One reason is that there are 493 

strong predictor variables that were not measured in the dataset. Consequently, the model does not have 494 

all necessary information and is unable to perform well. A second possible reason is that the data does not 495 

fit the linear assumption of the model, that is, the assumption that the predictors are linearly to produce an 496 

output. These possibilities are further evaluated below in diagnostic plots.  497 

     Four diagnostic plots are shown in Figure 4. Figure 4a shows a plot of the residuals versus the 498 

predicted outputs; significant deviation of the smoothed red line indicates non-constant error variances 499 

and outliers. For this model, the smoothed average of the error variances indicates nearly constant error 500 

variance. The quantile-quantile (Q-Q) plot (Figure 4b) diagnoses the normality of the residuals. Normal 501 

residuals (in the statistical sense) lie along the dotted line; however, this figure indicates that there is some 502 

deviation from normality of the residuals among higher residual values. Figure 4c is a scale-location plot, 503 

which illustrates whether the homoscedasticity assumption is violated. For this plot, the residuals are 504 

standardized (to have a mean of zero and a variance of one) and the absolute value is taken. This plot 505 

shows that there is a slight increase in error variance with increasing compressive strength, which is 506 

indicative of minor heteroscedasticity. Lastly, Figure 4d shows the standardized residuals against their 507 

leverage, which is helpful for indicating if particular points more strongly influence the regression. In this 508 

case, a few outlier points more highly influence the regression. However, the figure also plots contours of 509 

the Cook’s distance measure, which measures the effect of deleting a given observation. Cook’s distance 510 

is increased by both leverage and large residuals. Since no points have a Cook’s distance greater than 0.5, 511 

there is no great concern about large residuals also having too great of leverage over the fit. 512 

     One conclusion from the model diagnostics is that there are only minor assumption violations (non-513 

normality of residuals and heteroscedasticity). Despite this result, the linear model retains poor predictive 514 

performance, which indicates that there are unmeasured variables needed for predicting compressive 515 
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strength. Nevertheless, it is reasonable to investigate the use of other types of models to determine if 516 

improved performance can be achieved. 517 

 518 

Figure 4. Model diagnostic plots: (a) Residuals versus predicted plot to check for non-constant error 519 

variance for both positive and negative residuals, (b) Quantile-quantile plot to check normality of 520 

residuals, (c) Scale-location plot to inspect homoscedasticity, and (d) Residuals versus leverage plot to 521 

determine if any outliers severely impact the regression equation. The blue lines represent the smoothed 522 

average for each model dignostic. 523 

4.1.1 Polynomial Regression 524 

Polynomial regression introduces higher order terms and interaction terms between variables, which can 525 

sometimes improve model performance because they approximate unobserved phenomena. Here, the 526 

polynomial regression has potential because the linear regression analysis indicates a lack of the 527 

necessary predictors for improving model performance. In this analysis, polynomial regression is 528 

employed for second order and third order terms to determine if there is a physical basis for higher order 529 

variables or interaction terms.  530 

     One key aspect of polynomial regression is that the method acts like a feature selection method. In 531 

other words, a set of polynomial features is created, and then the features with the largest reduction in 532 

RMSE are kept for the final model. This is the method by which interaction terms are discovered. During 533 

the experiments in this paper, the following terms were discovered and included in the model: 534 

�OPQR�� � �O;L� � �LS�� and �TRURDQ�
 � �VW� PXℎ�. The first feature is somewhat intuitive; it is 535 

expected that some interaction between water and WRA would be relevant. However, it is somewhat less 536 

intuitive that air content is also a part of this feature. The second feature is intuitive because it is expected 537 
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that fly ash and cement would interactively have an impact on concrete compressive strength.  538 

Promisingly, polynomials of order two and three decrease the training RMSE compared to the linear 539 

model by 2.0% and 2.8%, respectively. Given this trend, it’s likely that the RMSE of this model will 540 

decrease given unlimited computational power. 541 

     However, it is critical to also analyze the testing error. The testing error values for polynomial orders 542 

two and three are higher than the training error by 40.6% and 123.8%. This result suggests that the 543 

polynomial regression models are too flexible and overfit the data as the polynomial order grows. Thus 544 

this model type is not suitable for compressive strength prediction in concrete. 545 

4.2 Kernel Transformations and Regression 546 

A different approach to discovering interactions and modeling unobserved phenomena is to use non-linear 547 

transformations of the data. Some of these are commonly known as kernel transformations. This section 548 

will survey techniques in using kernel transformations.   549 

4.2.1 Support Vector Regression 550 

Solving the regression problem using kernel transformations, support vector regression is a popular 551 

technique that has shown good results in the literature. In this paper, an array of kernels was tested in 552 

cross-validation. These kernels include the RBF kernel, and polynomial kernels (2, 3, and 4). 553 

One of the major goals of adaptive regression techniques like SVR is to discover any underlying structure 554 

in the data. Of the tested kernels, the RBF kernel has the greatest reduction in RMSE compared to linear 555 

regression. Here, RBF SVR reduces the average RMSE by 2.9%. In contrast, the linear and polynomial 556 

kernels (orders 2, 3, and 4) reduce this error by -0.6%, -0.1%, 1.1%, and 0.2%, respectively.  557 

From this result, it is inferred that the RBF kernel generates the optimal hyperplane for linearly separable 558 

patterns among the tested kernels. The minimal improvement from polynomial kernels implies that the 559 

regression curve is not well-modeled by a polynomial.  560 

     The performance of SVR with RBF demonstrates that transformation of the predictor variables 561 

improves upon the linear regression baseline model. However, as will be demonstrated in section 3.3, 562 

further improvements in performance can be made with other models. One possible explanation for this 563 

behavior is that SVR can suffer from the curse of dimensionality in the sense that all terms in the 564 

transformed space are given equal weight, so the kernel cannot adapt itself to focus on the critical 565 

“subspaces” of the data [34]. Hastie et al. illustrates this concept via a prediction problem with four 566 

standard normal features (i.e., “real” features) with a polynomial decision boundary and six Gaussian 567 

random features (i.e., “noise” features) [34]. Although applying a polynomial kernel with SVR reduces 568 

the test error, the real features are drowned out by the noise features. In the example, kernelized SVR is 569 

unable to perform as well compared to when the real features are the only modeled features. We 570 

hypothesize that this behavior is also true in this case; the noise of irrelevant variables essentially 571 
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overpowers the predictive capability of SVR to capture the true underlying behavior of field compressive 572 

strength.  573 

4.2.2 Gaussian Process Regression 574 

As is displayed in Figure 3 the GP training and testing performance show that the RBF kernel also 575 

generates the highest performance for GP for the kernels utilized in this study. Compared to the linear 576 

regression baseline, the GP with RBF-transformed data decreases the average testing RMSE by 3.6%. 577 

Utilizing the linear and polynomial (orders 2, 3, and 4) transformations, the reduction in RMSE is -0.1%, 578 

1.0%, 2.5%, and 1.6% respectively. With these results, we can conclude that the same transformation 579 

(RBF) generates the hyperplane most suitable for use in both SVR and GP.  580 

     Moreover, this analysis shows that GP is preferred over SVR for this type of data due to its improved 581 

performance measures. We hypothesize that GP is a better-performing method (compared to SVR) due its 582 

further relaxation of the linearity assumption. Unlike GP, SVR retains the assumption that a 583 

transformation of the predictor space causes the data to be linearly separable. GP, on the other hand, 584 

makes predictions based on the maximum likelihood of an output given the data, normal parameter 585 

distributions, and penalty term that minimize the prediction error. The improved performance of GP over 586 

SVR indicates that model performance improves when no linearity assumption exists.   587 

4.3 Tree-based Models 588 

4.3.1 Simple Regression Trees 589 

Unlike the aforementioned techniques, tree-based methods assume that the predictor variables may be 590 

partitioned repeatedly and that each final partition generates a different output value. For the simplest 591 

tree-based method (regression trees), the average testing RMSE indicates an increase of 6.9% compared 592 

to linear regression. We hypothesize that this result is due to the instability of regression trees. In other 593 

words, the constructed nodes for a tree may change significantly if the input training sample is slightly 594 

changed. Figure 3 illustrates the decreased performance of this model for all three metrics: RMSE, 595 

MAPE, and R2. 596 

     Although the testing performance of the simple regression tree indicates it should not be used for 597 

prediction, the results of the model can be used to better understand the relative importance of certain 598 

variables for determining concrete compressive strength. In Figure 7, the nodes (e.g. Cement < 569 lbs.) 599 

and terminal node predictions (e.g. 4868 psi) are illustrated in the regression tree graph. Values of cement 600 

are the first and second nodes, as well as multiple nodes lower in the tree, which indicate the importance 601 

of cement quantity as a discriminating predictor variable for this tree. The next most important variable is 602 

the quantity of fly ash, which, like cement, has positive correlation with strength. All of the mixture 603 

ingredients appear in nodes in the tree, indicating that all are valuable for prediction. 604 
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 605 

Figure 5. This figure represents the best-performing simple regression tree graph for compressive 606 

strength prediction. Final predictions from each terminal node are in shown in ellipses.   607 

4.3.2 Boosted Trees 608 

Boosted methods are used to reduce the instability of single trees. In this paper, the ensemble tree model 609 

reduced the average testing RMSE by 13.2% compared to the simple regression tree and by 6.9% 610 

compared to linear regression. For this dataset, boosted trees are the second best method for prediction 611 

based on the three performance measures. Notably, the average training RMSE for boosted trees (749 psi) 612 

is slightly lower than that of the random forest model (751 psi). However, the random forest model has 613 

the lower testing RMSE by 5.4%. Despite the nested cross-validation routine, it appears that the boosted 614 

tree model is slightly overfitted due to the higher value of testing RMSE compared to the training RMSE. 615 

Recall from section 2.1.6, that this method iteratively builds regression trees on the residuals from each 616 

consecutive tree. We hypothesize that the model has learned noise in the residuals rather than signal in the 617 

data, which has lead to lower testing performance.  618 

4.3.3 Random Forest 619 

Like boosted trees, the random forest model reduces the instability of simple regression trees by utilizing 620 

an ensemble of trees that utilize bootstrap aggregation and random variable selection. Consequently, the 621 

model decreases the average testing RMSE by 9.4% compared to the linear model. It also improves upon 622 

the testing RMSE of the simple regression tree by 20.0%. Furthermore, the average testing error is 623 

slightly lower than the average validation error (730 psi versus 739 psi) indicating that it is unlikely that 624 
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the random forest model is overfitted. These testing and validation performance measures indicate that 625 

random forest is the best method for predicting compressive strength with this dataset. It has the lowest 626 

RMSE and MAE as well as the highest R^2 value (730 psi, 530 psi, and .51, respectively).  627 

     This result may be due to the ability of tree-based methods to learn inconsistent variable importance in 628 

the data. In other words, each tree, trained on a subset of the data might learn a slightly different set of 629 

variable importance weights. In aggregate, the random forest can then better predict the target variable. 630 

An example of inconsistent variable importance can be seen in Figure 5; for mixtures with cement 631 

quantities of less than 569 pounds, the next most important variable for determining strength is fly ash. In 632 

contrast, above 569 pounds, the next splitting criterion is an even higher quantity of cement. Not only do 633 

random forest models have the ability to learn inconsistent variable importance, they also reduce the 634 

instability of individual trees and reduce the potential for overfitting [47].  635 

4.4 Prediction of Field Compressive Strength with Laboratory and Hybrid Models 636 

4.4.1 Models Trained on Laboratory Data 637 

As was discussed in Section 2, many studies in the literature have developed ML models for predicting 638 

concrete compressive strength using laboratory datasets. While these laboratory models report high 639 

predictive performance, it is relevant to consider whether they are useful for predicting field concrete 640 

strength.  641 

     Consequently, in this study, a suite of ML models (i.e., linear regression, polynomial regression, 642 

kernel regression, tree-based models) is trained and tested using the laboratory data described in Section 643 

3. Among those tested, the highest-performing model for the laboratory dataset is the random forest 644 

model, in which the number of random variables selected at each node was 3, and the number of trees was 645 

550 trees; this model achieves a testing R2 value of 0.80. 646 

     Subsequent to the random forest model selection, the predictor variables from the field data have been 647 

used as inputs in the laboratory random forest model to determine how well the model can predict 648 

compressive strength of real concrete. The predicted output is plotted versus the observed field strength 649 

value in Figure 6. Points near the 1:1 line would indicate a high-performing model. This plot shows that 650 

despite its high performance using laboratory data, the laboratory model is not able to predict field 651 

strength to a high degree of accuracy; the RMSE for the field data is 1655 psi. Furthermore, this plot 652 

illustrates that, overall, the laboratory model tends to over-predict compressive strength. It is likely that 653 

this effect is due to the ideal curing conditions in the laboratory setting, which would tend to generate 654 

higher compressive strength values than if the same mixture was cured under highly variable 655 

environmental conditions.   656 
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 657 

Figure 6. Predicted versus observed plot for field compressive strength predictions using the random 658 

forest laboratory model, which illustrates the models tendency to overpredict strength. 659 

4.4.2 Models Trained on Hybrid Data 660 

As was described in Section 2.3.2, models employing hybrid training data are explored in order to 661 

determine if small amounts of field data can improve the performance of laboratory ML models for 662 

predicting compressive strength of field concrete. In this analysis, α values of 10%, 20%, 30%, 40%, and 663 

50% replacement percentages are selected via the quintile sampling method discussed in section 2.3.2. 664 

The remaining, unused field data is to determine the average testing performance of each hybrid model.  665 

     As was hypothesized, the inclusion of small percentages of field data significantly reduces the RMSE 666 

MAE and increases the R2 (compared to a pure laboratory model). As is shown in Figure 7, the most 667 

significant model improvements occur with the addition of the initial 10% of field data, which reduces the 668 

RMSE by 43.0%. However, continued performance improvements occur with the additional 669 

supplementation of field data driving the models. Furthermore, Figure 8 illustrates via predicted vs. 670 

observed scatter plots how the addition of field data improves predictive performance. A model 671 

comprised of 100% field data, which was analyzed in Section 4.3, is the standard with which the hybrid 672 

models are compared in terms of the extent to which predictive performance could be improved. This 673 

analysis illustrates that ML modeling of hybrid training data is a promising area of research that improves 674 

upon the downsides of field models and laboratory models being used in isolation.  675 

     Future research in this area may explore different ML methods (i.e., models other than random forest) 676 

or other hybridization strategies for utilizing hybrid training data. In addition, it may be of interest to 677 

focus this modeling procedure on concretes with exotic mixture ingredients, which inherently have been 678 

rarely employed in industry, and thus, have few data points with which to model compressive strength. 679 

 680 
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 681 

Figure 7. Graphs illustrating the continued improvement in (a) RMSE, (b) R2, and (c) MAE as additional 682 

field data is supplied to the model. 683 
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 684 

Figure 8. Scatter plots of predictive versus observed for ML models trained on hybrid data with the 685 

following percentages of field data: (a) 10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%. Points lying near the 686 

one-to-one line indicate better model performance.  687 

5. Conclusions 688 

The goal of this work was to specifically analyze the compressive strength behavior of field concrete as a 689 

function of mixture ingredient quantities. Furthermore, this work trained and tested a variety of ML 690 

models for predicting compressive strength of field concrete mixtures and determined which ML models 691 

are best suited for the data. By analyzing the performance measures and a variety of diagnostic plots, the 692 

reasons for differing performance for field concrete ML models have been elucidated. For instance, from 693 

the linear regression model diagnostics, it was found that there are only very minor violations of linearity 694 

assumptions; this result indicated it is likely that important predictor variables are missing from the data. 695 

Further manipulation of the predictor space via polynomial regression and kernel transformation indicated 696 

that a transformed predictor space can improve predictive capability (via a 4% reduction in testing 697 

RMSE). Moreover, it was found that nonlinear models, specifically random forest, generated the best 698 
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performance measures, which is attributed to its full rejection of linear assumptions and ability to learn 699 

inconsistent variable importance in the data.  700 

     It was also confirmed that, at the current time, the most accurate prediction of compressive strength of 701 

field concrete is achieved with models trained on field concrete data; however, ML models that employ 702 

hybrid training data show promise for significantly improving predictive performance of laboratory 703 

concrete models even when only small amounts of field concrete data are available. For instance, it was 704 

found that, when only 10% of the training data were from field concrete, the RMSE was reduced by 43%. 705 

Moving forward, this research could be extended to explore other ML models with the hybridized 706 

approach or applications when it is desirable to explore modeling of exotic concrete mixtures and 707 

ingredients.  708 

     Broadly, the results of this research support two main conclusions: (1) Prediction of field concrete 709 

strength requires the application of nonlinear ML models using field-specific data. In particular, advanced 710 

tree-based models, such as random forest, are the highest-performing, even when field data is relatively 711 

less abundant than laboratory data. (2) Although there is value in testing and statistical-model training for 712 

the strength prediction of laboratory concrete, these models should not be used for stand-alone prediction 713 

of field concrete strength, because they do not capture the many convoluting factors of field concrete 714 

placement and curing. However, ML models that employ hybrid training data can significantly improve 715 

the predictive performance compared to laboratory concrete ML models that are used in isolation.   716 

 717 

6. Acknowledgments 718 

This research was made possible by the Department of Civil, Environmental, and Architectural 719 

Engineering, the College of Engineering and Applied Sciences, and the Living Materials Laboratory at 720 

the University of Colorado Boulder, with support from the National Science Foundation (Award No. 721 

CMMI-1562557). This work represents the views of the authors and not necessarily those of the sponsors. 722 

 723 

References 724 
[1] ACI Committee 318, “Building code requirements for reinforced concrete,” American Concrete 725 

Institute, ACI 318, 2014. 726 

[2] M. Alshihri, A. Azmy, and M. El-Bisy, “Neural networks for predicting compressive strength of 727 

structural light weight concrete,” Constr. Build. Mater., vol. 23, no. 6, pp. 2214–2219, 2009. 728 

[3] A. Oztas, M. Pala, E. Ozbay, E. Kanca, N. Caglar, and M. A. Bhatti, “Predicting the compressive 729 

strength and slump of high strength concrete using neural network,” Constr. Build. Mater., vol. 20, 730 

no. 9, pp. 769–775, 2006. 731 



 

 28

[4] C. Bilim, C. D. Atiş, H. Tanyildizi, and O. Karahan, “Predicting the compressive strength of ground 732 

granulated blast furnace slag concrete using artificial neural network,” Adv. Eng. Softw., vol. 40, no. 733 

5, pp. 334–340, May 2009. 734 

[5] H.-G. Ni and J.-Z. Wang, “Prediction of compressive strength of concrete by neural networks,” 735 

Cem. Concr. Res., vol. 30, no. 8, pp. 1245–1250, Aug. 2000. 736 

[6] J. Zhang and Y. Zhao, “Prediction of Compressive Strength of Ultra-High Performance Concrete 737 

(UHPC) Containing Supplementary Cementitious Materials,” in 2017 International Conference on 738 

Smart Grid and Electrical Automation (ICSGEA), 2017, pp. 522–525. 739 

[7] S.-C. Lee, “Prediction of concrete strength using artificial neural networks,” Eng. Struct., vol. 25, 740 

no. 7, pp. 849–857, Jun. 2003. 741 

[8] S. Akkurt, S. Ozdemir, G. Tayfur, and B. Akyol, “The use of GA–ANNs in the modelling of 742 

compressive strength of cement mortar,” Cem. Concr. Res., vol. 33, no. 7, pp. 973–979, Jul. 2003. 743 

[9] I. B. Topcu, “Prediction of properties of waste AAC aggregate concrete using artificial neural 744 

network,” Comput. Mater. Sci., vol. 41, no. 1, pp. 117–125, 2007. 745 

[10] U. Atici, “Prediction of the strength of mineral admixture concrete using multivariable regression 746 

analysis and an artificial neural network,” Expert Syst. Appl., vol. 38, no. 8, pp. 9609–9618, Aug. 747 

2011. 748 

[11] M. Rguig and M. El Aroussi, “High-Performance Concrete Compressive Strength Prediction Bsed 749 

Weighted Support Vector Machines,” Int. J. Eng. Res. Appl., vol. 7, no. 1, pp. 68–75, Jan. 2017. 750 

[12] B. G. Aiyer, D. Kim, N. Karingattikkal, P. Samui, and P. R. Rao, “Prediction of compressive 751 

stregnth of self-compacting concrete using least square support vector machine and relevance vector 752 

machine,” KSCE J. Civ. Eng., vol. 18, no. 6, pp. 1753–1758, 2014. 753 

[13] C. Deepa, K. Sathiya Kumari, and V. Pream Sudha, “Prediction of the compressive strength of high 754 

performance concrete mix using tree based modeling,” Int. J. Comput. Appl., vol. 6, no. 5, pp. 18–755 

24, 2010. 756 

[14] D. A. Abrams, “Water-Cement Ratio as a Basis of Concrete Quality,” J. Proc., vol. 23, no. 2, pp. 757 

452–457, Feb. 1927. 758 

[15] S. Popovics, “Analysis of Concrete Strength Versus Water-Cement Ratio Relationship,” Mater. J., 759 

vol. 87, no. 5, pp. 517–529, Sep. 1990. 760 

[16] M. S. Mamlouk and J. P. Zaniewski, Materials for Civil and Construction Engineers, 2nd ed. Upper 761 

Saddle River, NJ: Pearson Education, Inc., 2006. 762 

[17] R. Kozul, “Effects of Aggregate Type, Size, and Content on Concrete Strength and Fracture 763 

Energy,” University of Kansas Center for Research, Inc., Lawrence, KS, SM Report No. 43, 1997. 764 



 

 29

[18] A. Fernández-Jiménez and A. Palomo, “Characterisation of fly ashes. Potential reactivity as alkaline 765 

cements☆ ,” Fuel, vol. 82, no. 18, pp. 2259–2265, Dec. 2003. 766 

[19] A. A. Ramezanianpour and V. M. Malhotra, “Effect of curing on the compressive strength, 767 

resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica 768 

fume,” Cem. Concr. Compos., vol. 17, no. 2, pp. 125–133, Jan. 1995. 769 

[20] J. Fox, “Fly Ash Classification - Old and New Ideas,” presented at the 2017 World of Coal Ash 770 

Conference, Lexington, KY, 2017. 771 

[21] A. M. Zeyad, “Effect of curing methods in hot weather on the properties of high-strength 772 

concretes,” J. King Saud Univ. - Eng. Sci., May 2017. 773 

[22] O. Cebeci, “Strength of concrete in warm and dry environment,” Mater. Struct., pp. 270–272, 1987. 774 

[23] B. A. Young, A. Hall, L. Pilon, P. Gupta, and G. Sant, “Can the compressive strength of concrete be 775 

estimated from knowledge of the mixture proportions?: New insights from statistical analysis and 776 

machine learning methods,” Cem. Concr. Res., Sep. 2018. 777 

[24] M. A. DeRousseau, J. R. Kasprzyk, and W. V. Srubar, “Computational design optimization of 778 

concrete mixtures: A review,” Cem. Concr. Res., vol. 109, pp. 42–53, Jul. 2018. 779 

[25] I.-C. Yeh, “Optimization of Concrete Mix Proportioning Using Flattened Simplex-Centroid Mixture 780 

Design and Neural Networks,” Eng. Comput., vol. 25, no. 179, pp. 179–190, 2009. 781 

[26] M. Pala, E. Özbay, A. Öztaş, and M. I. Yuce, “Appraisal of long-term effects of fly ash and silica 782 

fume on compressive strength of concrete by neural networks,” Constr. Build. Mater., vol. 21, no. 2, 783 

pp. 384–394, Feb. 2007. 784 

[27] G. Trtnik, F. Kavčič, and G. Turk, “Prediction of concrete strength using ultrasonic pulse velocity 785 

and artificial neural networks,” Ultrasonics, vol. 49, no. 1, pp. 53–60, Jan. 2009. 786 

[28] İ. B. Topçu and M. Sarıdemir, “Prediction of compressive strength of concrete containing fly ash 787 

using artificial neural networks and fuzzy logic,” Comput. Mater. Sci., vol. 41, no. 3, pp. 305–311, 788 

Jan. 2008. 789 

[29] Y. Ayaz, A. F. Kocamaz, and M. B. Karakoc, “Modeling of compressive strength and UPV of high-790 

volume mineral-admixtured concrete using rule-based M5 rule and treemodel M5P classifiers,” 791 

Constr. Build. Mater., vol. 94, pp. 235–240, 2015. 792 

[30] C. Videla and C. Gaedicke, “Modeling Portland Blast-Furnace Slag Cement High-Performance 793 

Concrete,” Mater. J., vol. 101, no. 5, pp. 365–375, Sep. 2004. 794 

[31] F. Khademi, S. M. Jamal, N. Deshpande, and S. Londhe, “Predicting strength of recycled aggregate 795 

concrete using Artificial Neural Network, Adaptive Neuro-Fuzzy Inference System and Multiple 796 

Linear Regression,” Int. J. Sustain. Built Environ., vol. 5, no. 2, pp. 355–369, Dec. 2016. 797 



 

 30

[32] M. Sarıdemir, “Prediction of compressive strength of concretes containing metakaolin and silica 798 

fume by artificial neural networks,” Adv. Eng. Softw., vol. 40, no. 5, pp. 350–355, May 2009. 799 

[33] E. Güneyisi, M. Gesoğlu, Z. Algın, and K. Mermerdaş, “Optimization of concrete mixture with 800 

hybrid blends of metakaolin and fly ash using response surface method,” Compos. Part B Eng., vol. 801 

60, pp. 707–715, Apr. 2014. 802 

[34] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, 803 

Inference, and Prediction, Second Edition, 2nd ed. New York: Springer-Verlag, 2009. 804 

[35] “UCI Machine Learning Repository: Concrete Compressive Strength Data Set.” [Online]. 805 

Available: https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength. [Accessed: 19-806 

Dec-2017]. 807 

[36] “R: The R Project for Statistical Computing.” [Online]. Available: https://www.r-project.org/. 808 

[Accessed: 06-Nov-2018]. 809 

[37] G. A. F. Seber and A. J. Lee, Linear Regression Analysis. John Wiley & Sons, 2012. 810 

[38] T. Hofmann, B. Scholkopf, and A. Smola, “Kernel Methods in Machine Learning,” Ann. Stat. 811 

[39] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. N. Vapnik, “Support Vector Regression 812 

Machines,” Adv. Neural Inf. Process. Syst. 9, pp. 155–161. 813 

[40] C. Strobl, J. Malley, and G. Tutz, “An introduction to recursive partitioning: rationale, application, 814 

and characteristics of classification and regression trees, bagging, and random forests,” Psychol. 815 

Methods, vol. 14, no. 4, pp. 323–348, Dec. 2009. 816 

[41] L. Breiman, Classification and Regression Trees. Routledge, 2017. 817 

[42] P. Probst, M. Wright, and A.-L. Boulesteix, “Hyperparameters and Tuning Strategies for Random 818 

Forest,” ArXiv180403515 Cs Stat, Apr. 2018. 819 

[43] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical view of 820 

boosting (With discussion and a rejoinder by the authors),” Ann. Stat., vol. 28, no. 2, pp. 337–407, 821 

Apr. 2000. 822 

[44] J. H. Friedman, “Greedy function approximation: A gradient boosting machine.,” Ann. Stat., vol. 29, 823 

no. 5, pp. 1189–1232, 200110. 824 

[45] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? – 825 

Arguments against avoiding RMSE in the literature,” Geosci. Model Dev., vol. 7, no. 3, pp. 1247–826 

1250, Jun. 2014. 827 

[46] P. N. Chatur, A. R. Khobragade, and D. S. Asudani, “Effectiveness evaluation of regression models 828 

for predictive data-mining,” Int. J. Manag. IT Eng., vol. 3, no. 3, pp. 465–483, Oct. 2013. 829 

[47] L. Breiman, “Random Forests - Random Features,” University of California, Berkeley, CA, 830 

Technical Report 567, Sep. 1999. 831 




