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ABSTRACT

The needs to ground construction safety-related decisions under uncertainty on knowledge extracted from
objective, empirical data are pressing. Although construction research has considered Machine Learning
(ML) for more than two decades, it had yet to be applied to safety concerns. We applied two state-of-the-
art ML models, Random Forest (RF) and Stochastic Gradient Tree Boosting (SGTB), to a data set of
carefully featured attributes and categorical safety outcomes, extracted from a large pool of textual
construction injury reports via a highly accurate Natural Language Processing (NLP) tool developed by
past research. The models can predict injury type, energy type, and body part with high skill
(0.236<RPSS<0.436), outperforming the parametric models found in the literature by a factor. The high
predictive skill reached suggests that injuries do not occur at random, and that therefore construction
safety should be studied empirically and quantitatively rather than strictly being approached through the
analysis of subjective data, expert opinion, and with a regulatory and managerial perspective. This opens
the gate to a new research field, where construction safety is considered an empirically grounded
quantitative science. Finally, the absence of predictive skill for the output variable injury severity suggests
that unlike other safety outcomes, injury severity is mainly random, or that extra layers of predictive
information should be used in making predictions, like the energy level in the environment. In the context
of construction safety analysis, this study makes important strides in that the results provide reliable
probabilistic forecasts of likely outcomes should an accident occur, and show great potential for
integration with building information modeling and work packaging due to the binary and physical nature
of the input variables. Such data-driven predictions had been absent from the field since its inception.

1. INTRODUCTION AND MOTIVATION

Construction is one of the largest industries in the United States, but is also one of the deadliest (Bureau
of Labor Statistics 2013). Between 1992 and 2010, an average of 730 lives have been claimed each year
(CPWR 2013). Despite the numerous efforts that have been motivated by this alarmingly poor
performance, injury statistics have not significantly improved in the past decade (BLS 2013). This might
be explained by the fact that the construction industry has reached saturation with respect to traditional
approaches to safety and that innovations are needed (Esmaeili and Hallowell 2011a). Risk analysis has
emerged as a promising alternative to managerial and regulation-based approaches. However,
construction safety risk analyses are currently limited because existing techniques overlook the complex
and dynamic nature of construction sites and are not based on empirical data.

To jointly address these limitations, Esmaeili and Hallowell (2012, 2011b) laid the groundwork of a new
conceptual framework, offering a systematic and comprehensive way to extract safety critical structured
information from unstructured injury reports. Unlike traditional safety risk analysis techniques, this
attribute-based approach renders construction injuries as the resulting outcome of the joint presence of a
worker and the interplay among a finite set of universal descriptors of the work environment that are
observable before an injury occurs. These binary attributes, also called injury precursors, make physical
sense and are related to construction means and methods, human behavior, and environmental conditions.
For instance, in the following excerpt of an injury report: “employee was welding and grinding inside
tank and experienced discomfort to left eye”, four fundamental attributes can be identified: (1) welding,
(2) grinding, (3) tank, and (4) confined workspace.
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The attribute-based framework derives its strength from its ability to capture and encode the information
of every possible construction situation in a finite, standardized format, regardless of trade, project type,
or industry sector. Therefore, as illustrated in Figure 1, extracting attributes and various safety outcomes
from injury reports (i.e., objective empirical data) enables the constitution of a structured, consistent
multivariate data set ideally suited for data mining, predictive modeling, and, thus, for knowledge
discovery. Such new knowledge can enhance understanding of the underlying mechanisms that shape
construction safety risk and create injuries. More precisely, this study seeks to demonstrate that the
workflow illustrated in Figure 1 is viable and can be used to produce empirically-driven models with high
predictive skill. A fundamental postulate made here is that construction safety is not a strictly managerial
outcome, but rather features a non-random component that can be studied by means of observation, like
any other natural phenomenon. If this assumption holds, adopting the attribute-based framework would
succeed in transforming construction safety research from opinion-based and qualitative to objective,
empirically grounded quantitative science.
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Figure 1. The derivation of predictive models from injury reports is enabled by the attribute-based
framework

The effectiveness of the attribute-based framework depends on a number of methodological parameters
including: (1) the way attributes are created and defined, (2) the quality and quantity of the injury reports
available, (3) the technique with which attributes are extracted from the reports, and (4) the methods used
for data mining and predictive modeling. As will be discussed in the background section, all previous
work in this emerging research area (e.g., Esmaeili et al. 2015a, Esmaeili et al. 2015b, Prades 2014,
Desvignes 2014, Esmaeili and Hallowell 2012, 2011b) is subject to limitations with respect to one or
more of the aforementioned parameters.

Building on three recent studies (Prades 2014, Desvignes 2014, Tixier et al 2016) that respectively
addressed the limitations pertaining to the first three of the aforementioned criteria, here we tackle the
limitations related to the fourth: predictive modeling. More specifically, two state-of-the-art machine
learning (ML) algorithms, Random Forest (RF) and Stochastic Gradient Tree Boosting (SGTB), were
used to predict safety outcomes from fundamental construction attributes. As will be shown, the models
built outperform that of past research, in terms of predictive skill, variety of outcomes predicted, and
actionable feedback that can be used to direct efforts towards targeted preventive actions and corrective
measures.
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2. BACKGROUND AND POINT OF DEPARTURE

This section provides the inspiration for our work, a brief description of past research in the domain of
attribute-based safety analysis and in the application of machine learning in the construction industry, and
the expected contributions.

2.1. Why does prediction of safety outcome matter?

Many industries, including construction, struggle with decision-making under uncertainty. Making the
wrong decisions can have dramatic consequences, especially since lives are at stake. In healthcare, for
example, Seera and Lim (2014) observed that lack of experience, information overload, and unawareness
of the most recent advancements in medical research were the leading causes of misdiagnosis by
physicians. In the exact same way, even an experienced construction worker or safety manager has
limited personal history with accidents. They may have witnessed, in their entire professional life,
hundreds of near misses and first aid injuries, dozens of medical cases and lost work time injuries, and,
perhaps, a few permanent disablement injuries and fatalities. Because of this limited experience with
incidents, they may misdiagnose the risk of a given construction situation. It is well known that poor
hazard recognition skill is a proximal cause of risk misperception and injury in construction (Albert et al.
2014, Carter and Smith 2006). People working upstream of the construction phase, like designers, face an
even greater risk of failing to recognize hazards and misestimating risk (Albert et al. 2014, Almén and
Larsson 2012).

Furthermore, without even considering the limited experience problem, human judgment and intuition
will always be subject to important biases and fallacies (e.g., Tversky and Kahneman 1981). Also,
humans have very limited capability of inducing knowledge from large numbers of observations
(Skibniewski et al. 1997). This is due to the fact that human short-term memory is only capable of
handling at most seven items evaluated for seven attributes at the same time (Miller 1956).

On the other hand, ML can induce general rules from very large amounts of cases belonging to highly
dimensional spaces, and is therefore a way to ground safety-related decisions under uncertainty on
empirical knowledge. This could lead to improved decision-making and save lives. Indeed, other
industries have begun to realize great benefits by transitioning from subjective to objective decision
making thanks to statistical learning. For instance, Seera ad Lim (2014) trained ML models on large
numbers of health records to automatically diagnose new patients, providing physicians with an
opportunity to reconsider initial decisions and improve diagnosis accuracy.

2.2. Limitations of previous work on attribute-based construction safety

Although Esmaeili and Hallowell (2012, 2011b) made important strides by introducing and using the
attribute-based framework for the first time, some serious limitations remained. In particular, some of the
attributes identified via manual content analysis were not in full accordance with the framework as they
were outcomes (e.g., structure collapse, falling from roof). By nature, an injury precursor should be
observable before an injury occurs. Some other attributes were overlapping (e.g., working underground,
working in a confined space), or loosely defined (e.g., not considering safety during site layout). Finally,
the content analysis had rather low consistency (76% of inter-coder agreement), and only 300 reports all
related to high severity struck-by injuries were analyzed, so only part of the picture was captured.

Esmaeili et al. (2015a) took the research a step further by using commercial software to automatically
extract attributes from a larger amount of reports (1,450). However, the low accuracy of the procedure
(21% disagreement between manual and automated coding on average) was a significant limitation, as it
compromised the reliability of the data set obtained. In addition, the usefulness of the models built was
restricted by the fact that only high severity struck-by injuries were taken into account. It should also be
noted that only 22 attributes were considered.
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Finally, Esmaeili et al. (2015b) used the data set obtained by Esmaeili et al. (2015a) to predict a binary
severity outcome (fatality/no fatality) via a logistic regression model taking principal component scores as
input variables. On the full training data set, the best model obtained a Rank Probability Skill Score
(RPSS) of 0.116, which indicates modest skill (Goddard et al. 2003). In addition, this score was an overly
optimistic estimate of the true predictive skill, as the model was tested on the very same observations that
were used for training. To ensure unbiased estimation of a model’s true ability to extrapolate, testing
should always be conducted against unseen observations, using a separate test set when there is enough
data, or cross-validation else (Hastie et al. 2009, pp. 222-223). Another limitation of Esmaeili et al.
(2015b) is the use of logistic regression, a parametric, linear and global model which is by definition
unable to capture the nonlinear and local relationships that may exist among predictors and targets
(Towler et al. 2010, Rajagopalan et al. 2005). Also, because these relationships are unknown, parametric
models are not best suited for skillful prediction.

To address the abovementioned limitations, we first used a broadened and more robust list of 80 attributes
engineered and validated by a team of 8 researchers (Prades 2014, Desvignes 2014) and slightly modified
by Tixier et al. (2016). This list is provided in Table 2. Second, we used a rather large database of 5,298
injury reports that featured all types of injuries and was representative of the true distribution of injury
severity. Third, a large and reliable data set of attributes and outcomes was automatically extracted from
the database of injury reports by a highly accurate (96% in F1 score) natural language processing (NLP)
program developed by Tixier et al. (2016), ensuring high data quality. Finally, we used RF and SGTB,
two cutting edge statistical learning algorithms, to predict safety outcomes from attributes with high skill.
Since RF and SGTB both use decision trees as their base models, these two techniques can capture both
nonlinear and linear; local and global relationships between input and output variables.

2.3. Previous used of machine learning in construction

Construction research has considered ML for more than two decades. Moselhi et al. (1991) first discussed
the potential applications of neural networks in construction engineering and management and developed
a prototype providing optimum markup estimates from attributes describing bid situations, such as the
number of competitors or the contractor's estimated cost. Later, Skibniewski et al. (1997) applied the
AQ15 algorithm on a collection of 31 training examples to automatically learn the mapping between
constructability (poor, good, excellent) and 7 predictors, such as the reinforcement ratio of the beam and
the number of walls attached to it. Soibelman and Kim (2002) applied decision trees and neural networks
to a construction management database to identify the causes of delays.

More recently, Lam et al. (2009) found that support vector machines could produce accurate forecasts of
contractor prequalification using input variables such as financial strength, current workload, quality
management, and environment, health and safety considerations. Also, Cheng et al. (2011, 2010) used a
support vector machine optimized via a fast messy genetic algorithm to estimate building cost and loss
risk from ten input variables, such as change orders and number of rainy days, and to estimate the loss
risk associated with a given project given project duration, number of floors, construction season, and
geological conditions. Finally, Yang et al. (2010) developed an algorithm to automatically track workers
in digital videos; Tsanas and Xifara (2012) used RF to predict heating and cooling loads of residential
buildings from wall area, glazing area, overall height, and other input variables; and Son et al. (2012)
used a support vector machine model to detect concrete structural components in color images from
actual construction sites.

Although not exhaustive, this short review of the literature shows that ML has a quite long history of
being used in construction research for a variety of applications. However, to the best of our knowledge,
this is only the second time that supervised learning algorithms are used to predict construction safety-
related outcomes from empirical data (after Esmaeili et al. 2015b).
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2.4. Goal of this study

The goal of the present research effort is to apply Random Forest (RF) and Stochastic Gradient Tree
Boosting (SGTB), two widely used and highly successful Machine Learning (ML) algorithms, to attribute
and outcome data extracted from a large body of injury reports. Note that we could have included other
supervised classifiers in our comparison, like Support Vector Machines or Neural Networks, but we were
mainly interested in testing whether fundamental construction attributes could make good features at all,
not about extensively testing all major classification algorithms. The predictive models obtained can be
used to augment the experience of construction professionals with lessons learned from empirical data
representing millions of worker-hours, far exceeding the exposure of even the largest and most
experienced group of experts. This extensive amount of empirical knowledge can be used with profit to
improve safety management in the design, work packaging, and execution phases of a construction
project.

In practice, the models developed assign a probability of occurrence to each level of each safety outcome
from a simple description of the work environment in terms of attributes. An example is given in Figure 2
for the safety outcome body part injured. Such probabilistic forecasts provide some insight as to which
preventive and/or corrective actions to take, allowing for better-informed, safer proactive decision-
making. Providing a risk estimate (green, orange, red) for a given combination of observed attributes such
as in Prades (2014) is useful, but predicting the most likely categories of various safety outcomes is a
complementary and equally valuable strategy.

ATTRIBUTES PRESENT PROBABILISTIC FORECAST
M attribute, (X,) The body parts most likely to be affected are:
. Random Forest
M attribute; (X;) Tree Boosting Head
BIM D attribute, (X3) Neck Preventive
Work packaging » » » and corrective
Observation of the jobsite . . Trunk actions

Y =f(&y...Xp)  Upper extremities

Lower extremities
M attribute,_; (Xp_1)
[] attribute, (X,)

Figure 2. Practical use of the predictive models built in this study

2.5. Characteristics of the data set

We had access to a raw database of 5,298 injury reports gathered from more than 470 contractors
involved in industrial, energy, infrastructure, and mining work throughout the world and representing
millions of worker-hours. More details about these data can be found in Prades (2014), Desvignes (2014),
and Tixier et al. (2016). These reports were automatically scanned for the attributes shown in Table 1 and
the safety outcomes listed in Table 2 by Tixier et al.”’s (2016) NLP system.

As summarized in Table 2, the safety outcomes predicted in this study were the (1) type of energy
involved in the accident, (2) injury type, (3) body part affected, and (4) injury severity. The outcome
energy type was taken into account based on the theory that any injury can be associated with the release
of some form of energy (Fleming 2009, Haddon 1973). For injury type, body part, and injury severity, the
classification scheme is consistent with that of the Bureau of Labor Statistics (BLS 2010) and the
Occupational Safety and Health Administration (OSHA) (BLS 2010, Hallowell 2008).
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Table 1. Eighty context-free validated injury precursors from Tixier et al. (2016)

UPSTREAM* n Rebar 155  Screw 37
Cable tray 48 Scaffold 300  Slag 75
Cable 75 Soffit 12 Spark 9
Chipping 34 Spool 52 Slippery surface 142
Concrete liquid 58 Stairs 137 Small particle 401
Concrete 165  Steel sections 759  Adverse low temperatures 123
Conduit 56 Stripping 114 Unpowered tool 611
Confined workspace 129  Tank 85 Unstable support/surface 8
Congested workspace 13 Unpowered transporter 53 Wind 109
Crane 69 Valve 79 Wrench 110
Door 85 Welding 200  Lifting/pulling/manual handling 553
Dunnage 29 Wire 131 Light vehicle 133
Electricity 3 Working at height 268 Exiting/transitioning 132
Formwork 143 Working below elevated workspace/material 50 Sharp edge 47
Grinding 133 Drill 97 Splinter/sliver 41
Grout 18 TRANSITIONAL Repetitive motion 66
Guardrail/handrail 91 Bolt 186 Working overhead 14
Heat source 111 Cleaning 119 DOWNSTREAM

Heavy material/tool 79 Forklift 39 Improper body position 88
Heavy vehicle 143 ~ Hammer 149 Improper procedure/inattention 57
Job trailer 24 Hand size pieces 172 Improper security of materials 87
Lumber 252 Hazardous substance 156  Improper security of tools 28
Machinery 189  Hose 95 No/improper PPE 23
Manlift 66 Insect 105  Object on the floor 174
Stud 31 Ladder 163 Poor housekeeping 2
Object at height 86 Mud 35 Poor visibility 12
Piping 388  Nail 94 Uneven surface 59
Pontoon 15 Powered tool 239

* Upstream precursors can be anticipated as soon as during the design phase; transitional precursors are generally not identifiable by designers
but can be detected before construction begins based on knowledge of construction means and methods; and downstream precursors are mostly
related to human behavior and can only be observed during the construction phase. Note that the original list of attributes is due to Desvignes
(2014), but minor modifications were made by Tixier et al. (2016).

Table 2. Safety outcomes predicted

ENERGY SOURCE INJURY TYPE BODY PART INJURY SEVERITY
Biological Caught in or compressed Head Pain

Chemical Exposure to harmful substance ~ Neck First aid

Electricity Fall on same level Trunk Medical case

Gravity Fall to lower level Upper extremities Lost work time
Mechanical Overexertion Lower extremities ~ Permanent disablement
Motion Struck by or against Fatality

Pressure Transportation accident

Radiation

Thermal

It should be noted that Prades (2014) and Desvignes (2014) ensured the validity and relevance of the
attributes created via content analysis by adhering to a strict coding scheme, implementing an iterative
process with team-based calibration meetings, and using peer reviews and random checks by external
reviewers with a stringent 95% agreement threshold. Such great care was taken because this procedure,
called feature engineering, is of paramount importance to ML success (Domingos 2012). Tixier et al.
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(2016) also tuned their NLP tool by adopting an iterative process involving at each step careful reviews
by 7 researchers of 140 randomly selected reports scanned by the system. At each round, lessons learned
from examining the errors made by the tool were used to improve skill. A harsh 95% threshold in
accuracy was exceeded after 4 iterations (96%). In particular, the NLP system attained precision and
recall rates of 95% and 97% for attributes, and error rates of 5.7% for both energy type and injury code.
The NLP tool was designed to return “not detectable” when multiple body parts are detected in a given
report, or when the information is missing. However, on the 93.75% of reports it could label, the tool
proved 100% accurate (Tixier et al. 2016).

900 reports out of the 5,298 available were not associated with any attribute, and were therefore removed.
An inspection of these reports showed that they were very short and did not contain any attribute-related
information. The attributes poor housekeeping and electricity were discarded due to their absolute rarity
(2 and 3 observations only), as well as the energy type electricity (3), and the injury types transportation
accident (4) and fall to lower level (18). This made for a final data set of r = 4,398 observations, p = 78
attributes, and k = 4 safety outcomes (using the notation from Figure 1). The number of times each
attribute appeared in this data set are shown in Table 2. The safety outcome body part affected could not
be inferred for 831 reports, so for this particular target, only 3,556 observations were available for
training. Also, because it requires mental projection, Tixier et al.’s (2016) NLP tool cannot extract the
safety outcome injury severity, so for this prediction task, the 1,829 reports manually analyzed by Prades
(2014) and Desvignes (2014) had to be used. Finally, the levels permanent disablement and fatality were
removed (respectively one and no observation), and pain (159 observations) was combined with first aid
(1,362) since the difference between these two severity levels appeared to be very tenuous. The counts of
each category of the safety outcomes in the final data sets are presented in Table 3.

Table 3. Number of observations for each level of the four safety outcomes predicted

Energy source n Injury type n Body part n Severity n
Biological 108 Caught in or compressed 334 Head 899 Pain/First aid 1,521
Chemical 197 Exposure to harmful substance 496 Neck 61 Medical case 206
Gravity 1,030 Fall on same level 570 Trunk 354 Lost work time 101
Mechanical 74 Overexertion 594 Upper extremities 1532 TOTAL 1,828
Motion 2,780  Struck by or against 2,401 Lower extremities 710

Pressure 47 TOTAL 4,395 TOTAL 3556

Thermal 151

TOTAL 4,387

As one can see from Table 3, four multi-class prediction tasks were to be tackled in this study (i.e., there
were four categorical safety outcomes to predict). Using the notation from Figure 1, the four output
variables were Y; = energy source (7 levels), Y, = injury type (5 levels), Y3 = body part (5 levels),
and Y, = injury severity (3 levels). For each safety outcome (i.e., each Y}), the goal was to determine
the best f such that Y = fi(Xy, ..., Xp), where (Xy, ..., X}) are the fundamental construction attributes
presented in Table 2. The methods used and procedure followed to accomplish these tasks are presented
next.

3. APPLICATION OF MACHINE LEARNING

We used the r = 4,398 by p = 78 structured data set of attributes and outcomes shown in Figure 1 (p =
78 since poor housekeeping and electricity were removed as previously explained). The features, or input
variables, were the fundamental construction attributes (X3, ..., X7g) listed in Table 2, such as welding,
uneven surface, or adverse low temperatures, and the targets, or output variables, were the four
categorical safety outcomes (Y3, ..., Y,), listed in Table 3: energy type, injury type, body part, and injury
severity. Each injury report, also referred to as an observation or training example in what follows,
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associated a specific combination of attributes to a specific combination of safety outcomes. Based on
such training data, ML algorithms could infer rules mapping combinations of attributes to levels of safety
outcomes, and use these rules later on to predict the most likely outcomes for brand new observations.

ML was preferred over parametric modeling because the latter is not optimal when little knowledge is
available about the phenomenon studied. Indeed, parametric modeling imposes a model a priori to the
data, either arbitrarily or based on some knowledge about the underlying process. Therefore, if the model
selected is a poor representation of the phenomenon studied in the first place, it may be nothing more than
“the right answer to the wrong question” (Breiman 2001a). On the other hand, ML algorithms do not
assume that the data have been generated by any parametric model prescribed by the user. Rather, the
assumption is that independent and dependent variables are related in a totally complex and unknown
manner. Both linear and nonlinear relationships can be captured, as well as complex high-order
interactions among variables, without imposing any formal model and its inherent suite of limitations.

More specifically, we used Random Forest (RF) and Stochastic Gradient Tree Boosting (SGTB) as our
machine learning (ML) algorithms. These two techniques were used as they currently stand among the
most popular and successful supervised machine learning (ML) methods available. The rationale for using
two different algorithms stemmed from (1) the exploratory nature of this research, (2) the absence of
general rule saying that SGTB is always better than RF and vice versa (performance really depends on the
data and on the problem at hand), and (3) the interest in comparing predictive skill. As already remarked,
we could have included other ML models in our comparison like Support Vector Machines or Neural
Networks, but we were mainly interested in testing the extent to which fundamental construction
attributes would carry predictive skill, independently of the classification algorithm. After briefly
introducing RF and SGTB, we present and justify the methodological choices made to address class
imbalance and parameter optimization, and discuss the application of the procedures in practice.

3.1. Random Forest (RF)

The RF algorithm Breiman (2001b) grows many decision trees built via CART (Breiman et al. 1984) and
aggregates their output (majority vote here, in the case of classification). Using binary splits, decision
trees recursively partition the predictor space by identifying the regions that have the most homogeneous
responses to predictors (Elith et al. 2008). Then, a constant is locally fit to each final region (or leaf): for a
categorical outcome variable, it is the most probable category. As opposed to global models such as
logistic regression, where the same equation holds over the entire data space, trees are local models,
enabling them to adapt to and truly represent the multiple domain-specific facets of the relationships
between input and output variables. RF inherits many of the advantages of trees, such as the ability to
capture complex nonlinear high-order interactions among predictors, to handle highly dimensional data
sets with large numbers of observations, and the robustness to outliers and to the inclusion of irrelevant
predictors (Sutton 2005, Timofeev 2004). Furthermore, by growing each tree on randomly selected
observations (with replacement) from the original data set, and by only trying a random subset of the
input variables at each split, RF achieves much greater predictive accuracy than a single tree.

RF was selected because it stands among the most accurate general-purpose classifiers to date (Biau
2012), and has shown to be effective in a variety of other fields. To cite only a few examples, the RF
algorithm has been used with success to predict patient risk for various diseases (Lebedev et al. 2014,
Khalilia et al. 2011), identify central genes (Diaz-Uriarte and de Andrés 2005), develop automated stock
trading strategies (Booth et al. 2014), forecast air traffic delays (Rebollo and Balakrishnan 2014), analyze
the risk of mortgage prepayment (Liang and Lin 2014), determine the likelihood that a customer will
cease doing business with a company (Xie et al. 2009), predict horse race outcomes (Lessmann et al.
2010), and to evaluate the likelihood of being elected to the baseball hall of fame (Freiman 2010).
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The tuning parameters of RF are the number ntree of trees in the forest, and the number mtry of
predictors randomly considered as candidates at each split. The “randomForest” package (Liaw and
Wiener 2002) of the R programming language (R Core Team 2015) was used in this study to build all the
RF models.

3.2. Stochastic Gradient Tree Boosting (SGTB)

Like RF, Boosting is an ensemble approach that combines many base models and let them vote to
generate forecasts (Freund et al. 1999). Because it can turn an ensemble of weak classifiers (each only
slightly better than random guessing) into a strong classifier, Boosting was qualified as being one of the
most powerful advances in ML in the last 20 years (Hastie et al. 2009, p. 337). Like RF, Boosting is often
used with decision trees as base models, as it has proven extremely effective in that case (Hastie et al.
2009, p. 340). However, while RF grows large trees in parallel, Tree Boosting builds a sequence of very
small trees, such that each successive tree focuses on capturing the regions of the training set that were
missed by the preceding one.

SGTB (Friedman 2002, 2001) is an improvement of Tree Boosting where the gradient of some
differentiable loss function is used to identify the regions missed, and a random subsample of the training
set (instead of the full training set) is used to fit and add each new tree to the model. Some examples of
loss functions are the squared error (for regression), or multinomial deviance (used here, for
classification). In this study, SGTB models were created with the “gbm” R package (Ridgeway et al.
2015).

SGTB has five tuning parameters. The first is the number n. tree of trees in the sequence. A high number
of trees is needed to achieve good learning, but unlike with RF, too many trees can lead to overfitting on
noisy data sets (Opitz and Maclin 1999), so close monitoring of n.tree is indispensable. Overfitting
describes the instance when a too complex model encodes the peculiarities of the training data (i.e., the
noise) as rules rather than its general structure (i.e., the signal). It always deteriorates extrapolation. The
second parameter of Boosting is the size of the trees, which is controlled by interaction.depth. This
parameter is very important, as it defines the order of predictor-predictor interaction that can be captured.
For instance, specifying trees with two final nodes (one single split) allows only main effects to be
modeled. Trees with three final nodes (two splits) allow first-order (two-variable) interactions to be
captured, and so forth (Hastie et al. 2009, p. 362). The third parameter is the learning.rate, which is a
factor between 0 and 1 that shrinks the contribution of each new tree added in the series. By delaying the
point when overfitting is reached, low values of learning.rate (<0.1) allow more trees to be added to
the sequence, which dramatically improves performance (Friedman 2001). The fourth parameter is the
minimum number n.min of observations allowed per node. Larger values of n.min generate smaller
trees, which are less sensitive to noise. The proportion of training examples randomly drawn at each
round is the fifth and last tuning parameter, called the bag. fraction.

3.3. Class imbalance issue

Our data set featured some significantly underrepresented categories, which is a well-known issue in
areas like gene profiling, credit card default, or fraud detection (Tang et al. 2009, Jachee and Thon 2006,
Chawla et al. 2002). Learning from such data sets is a challenge for all ML algorithms, including RF and
SGTB (del Rio et al. 2014). Actually, the problem mainly lies in the absolute rarity of the minority class
training examples (He and Garcia 2009, Weiss 2004). For example, pressure, the minority class for the
safety outcome energy type, featured only 47 training examples. This is definitely not a lot of
observations in absolute terms, and represents an imbalance of 1 to 60 compared to the majority class,
motion (2,780 observations). Other categories, such as mechanical (74) or biological (108) were also
severely underrepresented. For the safety outcome body part, the minority class (neck) comprised only 61
observations, as compared to the 1,532 training cases of upper extremities (imbalance of 1:25).
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Often in such situations, the final ML models do well for the majority classes, but neglect the minorities
(Sun et al. 2007, Chawla 2005, Akbani et al. 2004). This was a critical issue in this study because
accurately predicting the rare categories was at least as important as predicting the majority ones.

To address class imbalance for the RF models, we used stratified oversampling (del Rio et al. 2014, Chen
et al. 2004, Chawla 2002). By growing each tree of the forest on a random sample containing more
training examples from the minority classes than what would have been obtained by pure chance,
oversampling allowed the underrepresented concepts to become more important from the perspective of
the learning algorithm, while preserving all the information from the majority categories. This strategy
was implemented in R using the sampsize argument of the “randomForest” function (Liaw and Wiener
2002). For the SGTB models, oversampling was used ahead of model building so that the number of
cases from each class matched optimal proportions. This technique produced the same effect as stratified
oversampling, by rebalancing the probabilities of randomly drawing examples from each class.

One should note that improvement for the underrepresented categories is always attained at the expense
of a decrease in accuracy for the majority classes, regardless of the method used to address class
imbalance (Chen et al. 2004). Under the severe class imbalance we faced, attaining low error for all
categories was impossible. Rather, our goal was to rebalance the overall error between all categories to
improve accuracy for the minority classes without losing much accuracy for the majority categories. To
achieve best performance, resampling proportions were therefore integrated to the parameter tuning
protocols of RF and SGTB, following the recommendation from Sun et al. (2007). We describe these
procedures in what follows.

3.4. Parameter optimization

This section describes how the optimal parameter values of the models were found. As was previously
explained, one RF and one SGTB model were created for each of the four safety outcomes that were to be
predicted, that is, (1) energy type involved, (2) injury type, (3) body part affected, and (4) injury severity.
This gave four RF and four SGTB models. Parameter optimization is a fundamental step of statistical
learning that seeks to find the optimal level of model complexity, that is, the right tradeoff between
training and predictive performance (Bergstra and Bengio 2012). The overall strategy consists in
searching through the parameter space and recording predictive error in terms of an objective function
selected by the user. The combination of parameters minimizing the objective function gives the optimal
model. The choice of the objective function and of the searching scheme is often dictated by the
dimensionality of the parameter space, the computational resources available, and the nature of the ML
algorithm (Claesen and De Moor 2015). In what follows, we describe the approach we adopted to tackle
parameter optimization.

3.4.1. Parameter optimization for Random Forest (RF)

As already explained, the tuning parameters of RF are the total number of trees ntree, and the number
mtry of predictors randomly tested at each split. As was also already explained, class imbalance was
addressed using stratified oversampling. The first step of the optimization procedure involved finding the
best stratified bootstrap proportions (sampsize parameter). Then, mtry and ntree were optimized in
sequence, as shown in Figure 3.
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Figure 3. Overview of the parameter tuning and model evaluation procedure for RF

3.4.1.1. Step 1: Optimization of the sampsize parameter

Figure 3 shows the procedure followed to determine the best stratified oversampling proportions. Initially,
each category was assigned a weight inversely proportional to the number of observations it contained.
For instance, as summarized in Table 3, the safety outcome body part featured 5 levels: neck (61 training
examples available), head (899), trunk (354), upper extremities (1532), and lower extremities (710). The
initial weights for this safety outcome were therefore 1532/61 for neck, 1532/899 for head, 1532/354
for trunk, 1532 /1532 for upper extremities, and 1532/710 for lower extremities.

Randomly drawing with replacement from each class according to these weights generated samples of the
original training set where each class was equally represented. Continuing with the body part example,
1,532 observations were randomly sampled from each category, making for an initial balanced sample of
7,660 observations.

Finally, based on the “out-of-bag” (OOB, Breiman 1996) error estimate of the resulting RF model, the
classes associated with higher error rates were given more weight, and vice versa. As shown in Figure 4,
this manual trial and error process was repeated until the error was evenly distributed between all classes.
We used the OOB error rate estimate as a surrogate for predictive accuracy since it has been proven to be
unbiased and at least as accurate as cross-validation (Wolpert and Macready 1999, Breiman 1996).
Consequently, costly cross-validation procedures could be avoided at this time. Also, because testing
many different combinations of weights was usually required before reaching a satisfying between-class
error balance, the RF models were at this stage fitted with standard, affordable values of the mtry and
ntree parameters (respectively, 20 and 81). The final weights and sampsize values for each model (each
prediction task) are given in Table 4.
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