

1 **Relating Agriculture, Energy, and Water Decisions to Farm Incomes and 2 Climate Projections using Two Freeware Programs, FEWCalc and DSSAT**

3 Jirapat Phetheet^{a*}, Mary C. Hill^{b*}, Robert W. Barron^c, Benjamin J. Gray^d, Hongyu Wu^e, Vincent
4 Amanor-Boadu^f, Wade Heger^g, Isaya Kisekka^h, Bill Golden^f, Matthew W. Rossiⁱ

5 ^a Department of Groundwater Resources, Chatuchak, Bangkok, 10900, Thailand

6 ^b Department of Geology, University of Kansas, Lawrence, KS, 66045, USA

7 ^c Department of Industrial Engineering and Engineering Management,
8 Western New England University, Springfield, MA, 01115, USA

9 ^d United States Forest Service, Ramona, CA, 92065, USA

10 ^e Mike Wiegers Department of Electrical and Computer Engineering, Kansas State University,
11 Manhattan, KS, 66506, USA

12 ^f Department of Agricultural Economics, Kansas State University, Manhattan, KS, 66506, USA

13 ^g Environmental Studies Program, University of Kansas, Lawrence, KS, 66045, USA

14 ^h Department of Air, Land, and Water, University of California, Davis, CA, 95616, USA

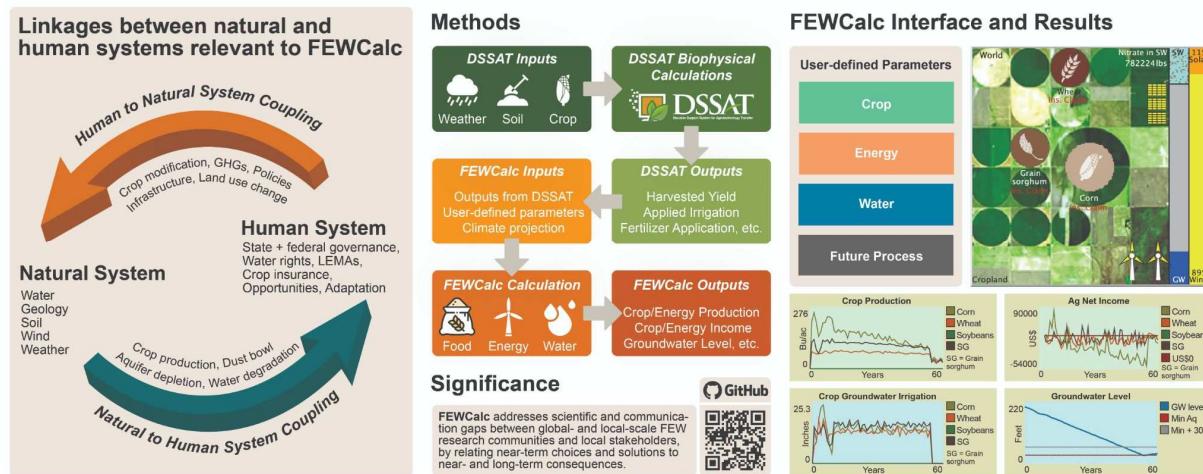
15 ⁱ Earth Lab, Cooperative Institute for Research in Environmental Sciences,
16 University of Colorado, Boulder, CO, 80303, USA

17 *Corresponding Author: Jirapat Phetheet jirapat.p@dgr.mail.go.th, or Mary C. Hill mchill@ku.edu

18 **Abstract**

19 CONTEXT: The larger scale perspective of Integrated Assessment (IA) and smaller scale
20 perspective of Impacts, Adaptation, and Vulnerability (IAV) need to be bridged to design long-
21 term solutions to agricultural problems that threaten agricultural production, rural economic
22 viability, and global food supplies. FEWCalc (Food-Energy-Water Calculator) is a new freeware,
23 agent-based model with the novel ability to project farm incomes based on crop selection,
24 irrigation practices, groundwater availability, renewable energy investment, and historical and
25 projected environmental conditions. FEWCalc is used to analyze the interrelated food, energy,
26 water, and climate systems of Finney County, Kansas to evaluate consequences of choices
27 currently available to farmers and resource managers.

28 OBJECTIVE: This article aims to evaluate local farmer choices of crops and renewable energy
29 investment in the face of water resource limitations and global climate change. Metrics of the
30 analysis include agricultural and renewable-energy production, farm income, and water


31 availability and quality. The intended audience includes farmers, resource managers, and scientists
32 focusing on food, energy, and water systems.

33 METHODS: Data derived from publicly available sources are used to support user-specified
34 FEWCalc input values. DSSAT (Decision Support System for Agrotechnology Transfer) with
35 added arid-region dynamics is used to obtain simulated crop production and irrigation water
36 demand for FEWCalc. Here, FEWCalc is used to simulate agricultural and energy production and
37 farm income based on continuation of recent ranges of crop prices, farm expenses, and crop
38 insurance; continuation of recent renewable-energy economics and government incentives; one of
39 four climate scenarios, including General Circulation Model projections for Representative
40 Concentration Pathway 8.5; and groundwater-supported irrigation and its limitations.

41 RESULTS AND CONCLUSIONS: A 50-year (2018-2067) climate and groundwater availability
42 projection process indicates possible trends of future crop yield, water utility, and farm income.
43 The simulation during more wet years produces high crop production and slower depletion of
44 groundwater, as expected. However, surprisingly, the simulations suggest that only the Drier
45 Future scenario is commercially profitable, and this is because of reduced expenses for dryland
46 farming. Although simulated income losses due to low crop production are ameliorated by the
47 energy sector income and crop insurance, the simulation under climate change still produces the
48 worst annual total income.

49 SIGNIFICANCE: FEWCalc addresses scientific, communication, and educational gaps between
50 global- and local-scale FEW research communities and local stakeholders, affected by food,
51 energy, water systems and their interactions by relating near-term choices to near- and long-term
52 consequences. This analysis is needed to craft a more advantageous future.

53 Graphical Abstract

54

55 Keywords

56 Food, energy, and water; Climate scenarios; Freeware; Renewable energy; Integrated Assessment
57 (IA); Impacts, Adaptation, and Vulnerability (IAV)

58 Highlights

59 • Crop production and water use results from the DSSAT model with arid regions package
60 • ABM adds renewable-energy, water quantity and quality, climate change, and farm
61 economics
62 • FEWCalc enables users to relate current choices to near- to long-term implications
63 • Intuitive GUI makes FEWCalc accessible to non-technical stakeholders

64 1. Introduction

65 Small towns and rural (STAR) agricultural communities produce much of the food for an
66 increasingly urban world. Yet they face serious problems such as declining populations, increasing
67 challenges resulting from disadvantageous changes in farm economic conditions, and exacerbating
68 climatic conditions. Many STAR communities in the USA have been diversifying their economies
69 over the past 50 years in efforts to sustain their viability (Bureau of Economic Analysis, 2020).
70 Increasingly, they are taking advantage of their wide open, low density areas to diversify into
71 renewable energy production. Yet the expertise needed to consider such alternatives is largely
72 unavailable to many stakeholders.

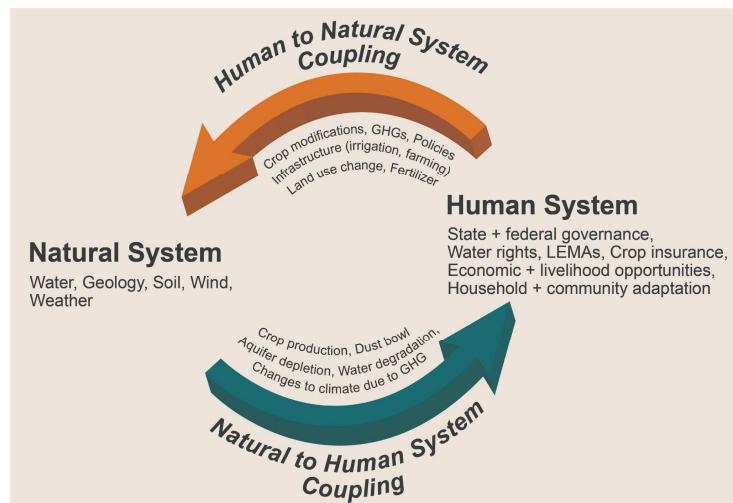
73 FEWCalc (Food-Energy-Water Calculator) makes expertise accessible to local
74 stakeholders whose decisions will lead their communities into more viable futures by enabling
75 clearer understanding of tradeoffs and possibilities. This introduction briefly reviews other
76 attempts to create similar models and the systems included in FEWCalc, including climate change,
77 water resource degradation and depletion, renewable energy opportunities, and public policy
78 priorities. It then briefly outlines how FEWCalc fits into two broad approaches to research on food,
79 energy, and water system decision-support capabilities.

80 The linkage of the FEW system has been studied and conducted mostly at the academic
81 level using different approaches and aspects (Endo et al., 2017). For example, some FEW studies
82 previously focused on land use optimization (Nie et al., 2019), nutrient flow (Yao et al., 2018),
83 environmental security for livelihood (Biggs et al., 2015), food-energy tradeoff (Cuberos Balda &
84 Kawajiri, 2020), and water-energy-food production and consumption (Guijun et al., 2017) using
85 distinct analytical tools such as MATLAB Simulink, crop models, and agent-based models. Most
86 previous works have not connected all three FEW components together with other variable factors
87 (e.g., climate projection and economics). Some of the more developed efforts at simulating all or
88 part of food-energy-water systems are CLEWS (Climate, Land, Energy, Water and Soil) (IAEA,
89 2009; Villamayor-Tomas, 2015; Welsch, 2014), WEAP (Water and Energy Assessment Program)
90 (Stockholm Environmental Institute, 2020), and ITEEM (Li, 2021). FEWCalc represents a broader
91 set of options than these alternatives and is open-source freeware, readily available on GitHub to
92 serve as a foundation for future development.

93 Climate change is apparent through surface rising temperatures and historically extreme
94 weather conditions that are becoming more frequent (Campbell, 2020; Lesk et al., 2016). Climate-
95 change driven increases in water and food insecurity pose emerging and long-term challenges.
96 Increasing temperatures are already increasing crop water requirements and shifting precipitation
97 patterns and may directly affect global food supply quantity and quality going forward (Dore,
98 2005; Li et al., 2019; Wheeler & von Braun, 2013; Zhang et al., 2019). Moreover, shifting
99 regulations and restrictions on carbon emissions may alter the menu of available adaptation
100 options. FEWCalc enables users to evaluate the impact on agricultural production of climate
101 change by choosing future General Circulation Model (GCM) projections and other future climate
102 scenarios.

103 Water scarcity is an immediate and enduring challenge in many regions, which can in part
104 be addressed with groundwater reserves. Irrigated areas currently produce 30-40% of the world's
105 food, and 70% of global water withdrawals are for agriculture (FAO, 2014; Kovda, 1977; WWAP,
106 2012). Farmers and policy makers in some regions are recognizing the need to collaborate to
107 extend the usable lifetime of their local water resources by reducing irrigation rates (Hardin, 1968;
108 Kansas Department of Agriculture, 2021; California Water Boards, 2021). Groundwater is
109 important: for example, in China's dry northern region, groundwater accounts for as much as 70%
110 of irrigation in some locations (Calow et al., 2009). In India, it accounts for 70-80% of the value
111 of irrigated production and supports 90 million rural households (World Bank, 1998; Zaveri et al.,
112 2016). Groundwater from the Central Valley aquifer of California and the High Plains aquifer
113 (HPA) supply as much as 16% and 30% of irrigation water in the entire USA (Dieter et al., 2018;
114 Maupin, 2018; Maupin & Barber, 2005). FEWCalc includes irrigation derived from groundwater
115 and the generally hidden and delayed effect of declining groundwater on agricultural production.

116 Producing wind and solar energy could contribute to the diversification and viability of
117 STAR communities' economy in three principal ways. (1) Renewable energy exported to existing
118 load centers has been profitable for farmers participating in land-lease programs with power
119 producers (Weise, 2020). (2) FEWCalc is designed to investigate how the direct investment by
120 rural landowners in renewable energy production changes their economic situation (Epley, 2016;
121 Hill et al., 2017; Phetheet et al., 2019). Although in the area used to demonstrate FEWCalc wind
122 turbines tend to be more profitable than solar panels (Fu et al., 2017), both technologies are
123 included in FEWCalc to generalize its utility. (3) More affordable local renewable energy could
124 be used to attract and retain businesses to create and grow jobs (Hill et al., 2019). FEWCalc
125 addresses option 2 and provides a foundation for option 3.


126 Effective policies supporting current and evolving local, regional, national initiatives in the
127 food, energy, and water nexus are imperative to ensure the sustainable viability of STAR
128 communities. These will be influenced by institutional, economic and socio-cultural attitudes, and
129 subjective perceptions (Cash et al., 2006). Farm income, as a major income in STAR communities,
130 can be affected by these policies. To this end, FEWCalc simulates the effects of crop insurance
131 and selected renewable energy incentive programs on farm incomes.

132 As a tool focused on how decision-makers perceive the viability of their communities or
 133 businesses, FEWCalc bridges the gap between two dominant research themes — Integrated
 134 Assessment (IA), and Impacts, Adaptation, and Vulnerability (IAV) (Table 1). The themes have
 135 been converging as the value of integrated, multi-scale approaches to climate research has become
 136 apparent (Absar & Preston, 2015; de Bremond et al., 2014; Huber et al., 2014; Kraucunas et al.,
 137 2015; Rosenzweig et al., 2014). The standardized, multi-scale Shared Socioeconomic Pathways
 138 (SSPs) scenario framework (O'Neill et al., 2014) relates economic and technological choices to
 139 carbon emissions, and is thus closely related to Representative Concentration Pathways (RCPs)
 140 levels used in FEWCalc. FEWCalc supports carbon emission mitigation through developing
 141 greater local familiarity with renewable energy production and greater research-level familiarity
 142 with the challenges of local stakeholders. Fig. 1 shows how the major components of the FEW
 143 system form a natural and human system of concern to IA and IAV, showing how they can be
 144 thought of as a collection of heterogeneous and autonomous individuals interacting cooperatively
 145 and competitively with one another and the environment (Bert et al., 2015; Hu et al., 2018).

146 **Table 1.** Summary IA and IAV approaches to technology and policy analysis.

Description	IA (Integrated Assessment)	IAV (Impacts, Adaptation, and Vulnerability)
Typical topic	Climate policy impacts¹	Climate change effects and responses²
Geographic Scale	Regional (U.S. State) – Global	Local (town, farm, ecosystem)
Temporal Scale	Long-term up to ~100 years	Few years or less
Scenario (assumptions about the future) and Policy (adaptations) Development	Global scale, cross-cutting, generalized, little inclusion of stakeholder values.	Narrower focus, more detailed, often has explicit representations of stakeholder values.
Interdisciplinary Focus	Broad	Narrow
Perspective	General impacts and adaptation possibilities. Projection/qualitative results.	Specific impacts and adaptation measures. Prediction and quantitative results.

147 ¹Weyant, (2017). ²Absar & Preston, (2015) and van Ruijven et al., (2014).

148

149 **Fig. 1.** The linkages between natural and human systems relevant to FEWCalc (modified from K.
 150 Rogers, East Carolina University, written communication, 2017; NSF [National Science
 151 Foundation], 2018). LEMA (Local Enhanced Management Area) is a governance structure used
 152 in the state of Kansas, USA, to limit water use from a depleted aquifer.

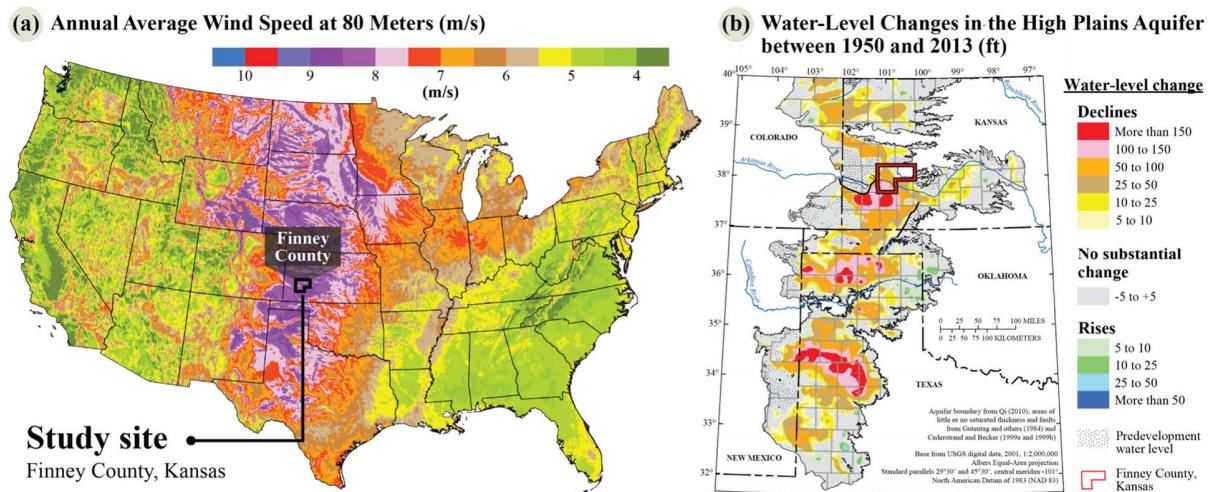
153 Unresolved scale and human connection issues still limit the utility and relevance of IA
 154 and IAV models (Ericksen, 2008; Ericksen et al., 2009; Vervoort et al., 2014). For example,
 155 national policies could be rendered ineffective for want of local-level adaptation and mitigation
 156 options, and local-level efforts could be stymied by national policy or global market conditions.
 157 Climate, weather, hydrology, politics, energy, and economics are all important and interact across
 158 multiple societal scales, including jurisdictional, institutional, and managerial ones (Cash et al.,
 159 2006; Allan et al., 2015; Endo et al., 2017), so that FEWCalc exists within the context of national-
 160 and global-scale dynamics (Ericksen et al., 2009). Proper support and coordinated action are
 161 required for successful outcomes such as those achieved by Sustainable Groundwater Management
 162 Act (SGMA) in California and the LEMAs in Kansas. The FEWCalc model can be thought of as
 163 addressing three key needs identified by Vervoort et al. (2014): (1) engage diverse stakeholders
 164 across multiple levels; (2) move beyond analysis of single interventions towards system-wide
 165 measures that act across multiple spatial, temporal, and geographic scales; and (3) develop long-
 166 term capacity for collaborative decision making.

167 FEWCalc is an agent-based model (ABM) constructed using NetLogo (Hu et al., 2018;
 168 Tisue & Wilensky, 2004; Wilensky, 1999), designed to integrate complex real-world systems and

169 evaluate future policy decisions (Anderson & Dragićević, 2018; Guijun et al., 2017). ABMs have
170 been used in business (Forrester, 1971; Morecroft, 2015), urban problems (Sterman, 2000), and
171 environmental evaluations (Meadows, 2008) and recently for the FEW nexus (Al-Saidi & Elagib,
172 2017; Memarzadeh et al., 2019; Schulterbrandt Gragg et al., 2018). Most of this recent research
173 has been conceptual or focused on regional applications. Focus on individual stakeholders is rare
174 (Ravar et al., 2020; Shannak et al., 2018) and mostly limited to urban systems (Bieber et al., 2018;
175 Guijun et al., 2017). FEWCalc is novel and contributes to the emerging ABM literature using the
176 NetLogo platform.

177 The purpose of this study is to develop a scientific tool able to represent a real-world
178 complex system composed of agriculture, energy production, and water use under complicated
179 climate and economic conditions, and use it to reveal unexpected interactions within this system
180 of systems that are important to stakeholders. The rest of this article, along with online appendices
181 A-D, describes the methods and data using in FEWCalc and its utility in a scientific investigation
182 of the roles played by water scarcity and climate change in the productivity and economics future
183 of a typical STAR community

184 **2. Methods**


185 In this section, the FEWCalc workflow is briefly introduced, and FEWCalc components
186 and related equations are described using a Finney County, Kansas test case to provide motivation
187 and examples. The Decision Support System for Agrotechnology Transfer (DSSAT) model (Araya
188 et al., 2019; Jones et al., 2003; Jones et al., 2017a, 2017b; Sharda et al., 2019) was chosen for the
189 agrosystems simulations based on its capabilities, availability, and feasibility. Selected DSSAT
190 and FEWCalc inputs, outputs, and equations are listed here; more detail is provided in appendices
191 A, B, and C. Default values for user-controlled FEWCalc variables are provided in Table D.1. As
192 programmed, all costs are in US dollars.

193 **2.1 Workflow and Case Study from the High Plains Aquifer, USA**

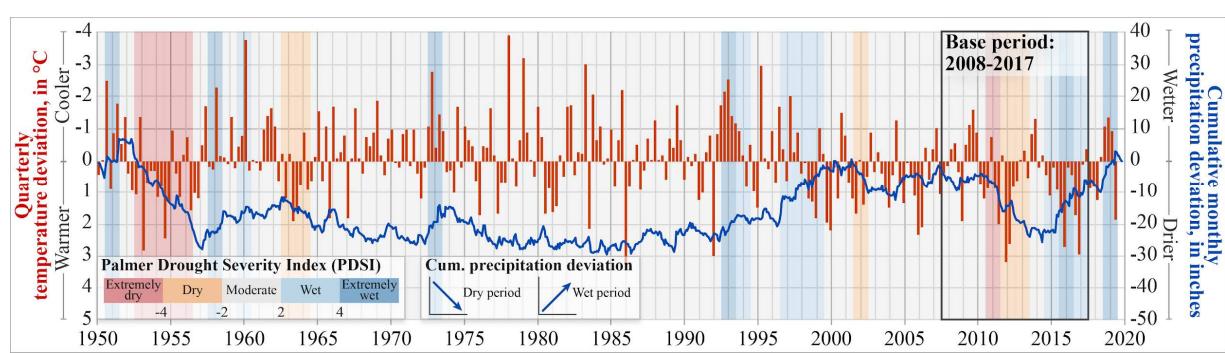
194 The workflow of FEWCalc with inputs from DSSAT is shown in Fig. A.1, including
195 components representing agriculture, energy, and water. Climate data and crop choices are entered
196 using the weather data DSSAT input or WeatherMan (Pickering et al., 1994). DSSAT is then
197 executed to provide input needed for FEWCalc via files in a comma-separated values format (CSV

198 files). The final results are presented in graphs as shown in Fig. A.1. Selected graphs are presented
 199 in the Results section of this article. The time discretization of DSSAT is one day. FEWCalc time
 200 is incremented annually and simulation length is defined by the user, with simulations of 60 to 90
 201 years being common.

202 FEWCalc is developed and tested using data from Finney County, Kansas, USA (Fig. 2).
 203 The High Plains aquifer (HPA) consists of the Ogallala aquifer and its overlying aquifer units. The
 204 area's water problems are typical of arid agricultural regions around the world: Large-scale
 205 irrigation over many decades has depleted groundwater resources and produced now dry irrigation
 206 wells (Buchanan et al., 2015). The region's potential to develop renewable energy, its declining
 207 water resources, and its rich, 70-year-long time series of historical data makes it an ideal candidate
 208 for exploring opportunities to sustain farmers' economic well-being under alternative agricultural
 209 and energy production choices using FEWCalc.

210 **Fig. 2.** (a) Average annual wind speed map for the Continental USA (modified from NREL, 2011).
 211 Finney County has very high average wind speeds (shown here) and moderate solar energy
 212 supplies (not shown). (b) High Plains aquifer water-level changes (modified from McGuire, 2014).

214 DSSAT is tested by comparing calculated values for crop production and irrigation to
 215 observed field data (see Appendix A) obtained from the United States Department of Agriculture's
 216 (USDA) National Agricultural Statistics Service (NASS), Kansas State University's Department
 217 of Agronomy, and the Kansas Department of Agriculture (KDA). FEWCalc is tested through
 218 comparisons with values obtained through the literature and expert elicitation.


219 **2.2 Weather, Climate, and Projections**

220 Daily weather data for air temperature, precipitation, and solar radiation are used as input
 221 to DSSAT (Tsuji et al., 1994) and acquired as described in Appendix A.

222 A 10-year period from 2008 to 2017 is used as the historical base period for this work. This
 223 10-year period is presented in the context of data since 1950 in Fig. 3, in which wet and dry periods
 224 are identified using the Palmer Drought Severity Index (PDSI) (Palmer, 1965). The base period
 225 was chosen because a generally complete set of weather and agricultural data is available, and
 226 because wet, moderate, and dry years are included in that period of time (see Fig. 3). This
 227 variability is used to create future climate scenarios.

228 The four 60-year long scenarios used to demonstrate FEWCalc are listed in Table 2. All
 229 scenarios have the same 10-year (2008 to 2017) temperature, precipitation, solar radiation, and
 230 agricultural price conditions, and differ for the following 50 years. **Scenario 1**, Repeat Historical
 231 tests the time progression in FEWCalc, and allows users to focus on the impact of groundwater
 232 declines and energy production. **Scenarios 2 and 3** are dominated by wetter or drier years to create
 233 wetter and drier “futures”. The weather data are chosen from the 10-year base set of years. So, for
 234 example, if those 10 years are numbered 1, 2, ..., 10, years 8, 9, and 10 are wet (Fig. 3). Going
 235 forward, 7 of each 10 years will be selected from the three wet years. The other 3 of each 10 years
 236 are chosen from the 4 moderate base years (years 1, 2, 3, and 7). The random sequence of moderate
 237 to wet years results in increased crop production with no significant loss of yield. **Scenario 4** is
 238 based on 20 General Circulation Model projections out to 2098 (Fig. A.5), though only the values
 239 through 2067 are used in the FEWCalc demonstration provided in this work. Projected crop prices
 240 are described in Section 2.3.2.

241

242 **Fig. 3.** Annual average PDSI, monthly cumulative precipitation deviation, and quarterly
243 temperature deviation data from January 1950 to September 2019. Monthly and quarterly base
244 values are listed in Table A.13. The 2008-2017 base period used in this work is highlighted. The
245 axes for precipitation and temperature deviation are scaled so that conditions producing drought
246 (high temperature and low precipitation) produce downward pointing bars of temperature
247 deviation and downward sloping trend of cumulative precipitation deviation.

248 **Table 2.** Simulation scenarios used to represent climate conditions in DSSAT for the 50-year
249 projection period (2018-2067) that follows the 2008-2017 historical base period in the FEWCalc
250 simulations.

Name	DSSAT Temporal Progression of T, P, and S ¹
Scenario 1. Repeat Historical	Repeat conditions from 2008 to 2017 for all 50 years of the projection period.
Scenarios 2 & 3. Wetter/Drier Future	Use more wet or dry years from 2008 to 2017, respectively to create a correlated random 50-year projection. The Wetter Future is similar to this area in the 1990s; the Drier Future is similar to this area in the 1950s.
Scenario 4. GCM-simulated RCP8.5 T, P, and S Changes²	Apply GCM-simulated climate for the 50-year projection period

251 ¹T, temperature, in degrees Celsius; P, precipitation, in inches per year; S, solar radiation, in watts per square meter.

252 ²GCM, General Circulation Model.

253 Scenario 4 uses DSSAT results in which runs use projected air temperature, precipitation,
254 and solar radiation from 20 downscaled GCMs to represent years 2008 to 2067 (Taylor et al., 2009,
255 2012). Results from the 20 DSSAT runs are averaged and used in FEWCalc. RCP 4.5 and 8.5
256 results are available in FEWCalc — see Appendix B for a discussion of RCP. FEWCalc results
257 using the RCP 4.5 and 8.5 scenarios are compared in Phetheet et al. (2021). Results from the more
258 severe RCP 8.5 are presented in this article.

259 **2.3 Calculations for Agriculture**

260 FEWCalc starts with the assumption that the decision maker is already in business as a
261 farmer and, for the demonstration provided here, produces crops in the Garden City area of Finney
262 County, Kansas. FEWCalc envisions a farmer considering investments in renewable energy as a
263 diversification strategy to improve farm incomes, which have been extremely variable in the last
264 decade. The environmental conditions and resources are as described in Sections 2.2 and 2.5.
265 Therefore, FEWCalc's focus is on farm operations and renewable-energy investment decisions.
266 Methods for simulating crop production, crop net income, and crop insurance are presented below.

267 To communicate results to stakeholders, this article presents both English and metric units. DSSAT
268 uses metric units. In this section, metric units or appropriate conversion factors are listed to
269 facilitate cross-referencing to DSSAT results.

270 **2.3.1 Crop Production**

271 The crops commonly produced in Kansas are corn, winter wheat, soybeans, and grain
272 sorghum, all of which FEWCalc incorporates into the simulations (Table A.2). Fig. A.3 shows
273 Kansas crop production, planted acres, crop prices, and, to represent expenses, gasoline prices in
274 the USA from 1866 to 2019. The increase in productivity per acre is apparent by comparing Figs.
275 4a and 4b. Although soybeans are generally not produced in Finney County due to unfavorable
276 soil and heat conditions, they are retained in the software because it is a common crop throughout
277 the USA Midwest, and hence allow for other locations to use FEWCalc without major changes.

278 DSSAT simulations are conducted using a one-day time step. Results are accumulated to
279 produce annual results for FEWCalc. Datasets are prepared using DSSAT built-in software
280 programs XBuild and SBuild (Fig. A.1). XBuild allows users to specify management options such
281 as cultivars, planting date, and plant population. SBuild assembles physical and chemical soil data.
282 The soil database available in DSSAT was developed by the International Soil Reference and
283 Information Centre for the project “World Inventory of Soil Emission Potentials (WISE)”. The
284 WISE database is one of the most comprehensive soil databases, with samples well distributed
285 globally (Gijsman et al., 2007).

286 In this work, the DSSAT Seasonal Analysis is used and simulations represent individual
287 growing seasons. In this mode, by default, DSSAT starts each spring with soil water content at
288 field capacity (SDUL). However, for this area, drier conditions are likely. As such, for this study,
289 DSSAT is started each year with soil water content equal to $(SDUL + SLLL)/2$, where SLLL is
290 the water content at the wilting point. The simulations are started one week before planting to
291 allow the precipitation record to affect soil moisture at planting.

292 The long periods of interest in this work were simulated using the DSSAT Biophysical
293 Analysis part of the Seasonal Analysis option. Outputs such as harvest yield, applied irrigation,
294 and applied fertilizer are calculated based on parameters defined in Table A.2; the values were
295 chosen based on the cited references.

296 **2.3.2 Crop Income After Variable Costs**

297 Revenue from crop production is the product of crop output and price per acre, and acres
298 planted. Because farmers often produce more than one crop per year, production costs may be
299 shared across more than one crop. Therefore, net farm income from crop production is the
300 difference between gross revenue from crop production less total variable costs. Future crop yield,
301 crop prices, and input costs are all uncertain (Figs. 4a and 4c). While production variability may
302 be attributed to weather and other production vicissitudes, price variability is driven by global
303 market conditions and trade and other policies (USDA, 2020). No attempt to project this process
304 is made in FEWCalc since no individual farmer or group of farmers influence prices. However,
305 the Midwest USA is a large enough producer of global corn and sorghum to affect global prices
306 (USDA, 2020). This means higher supplies during good weather years often depress prices and
307 vice versa. Although western Kansas is a major wheat production area in the USA, it is not large
308 enough to influence global prices. These conditions define how prices are treated in FEWCalc.

309 The FEWCalc base period (2008-2017), has three wet, three dry, and four average years,
310 and is used to create projected climate conditions as described in Section 2.2. For corn and grain
311 sorghum, the following procedure is used. In Scenario 1, the base period prices along with the
312 climate data (temperature and precipitation) are repeated in sequence five times to create the 50-
313 year projections. For Scenarios 2 and 3, the base period is used to define 10 sets of annual climate
314 and crop-price data and selections are made from this 10-member set (with replacement) to create
315 wetter and drier futures. For Scenario 4, prices are assigned based on precipitation: Less than 17
316 inches of precipitation is considered a dry year and price is selected randomly from one of the
317 three dry years; 20 inches or more is treated as a wet year and price is selected randomly from one
318 of the three wet years.

319 For wheat, local conditions do not dominate world crop prices, so prices do not remain
320 associated with the local climate data. The 10 annual prices from 2008-2017 are assigned to each
321 year for the period 2018-2067 randomly and independently of the climate data.

322 Total annual crop income after variable expenses is computed as:

$$Income_{C_t} = \sum_i [(p_{i_t} \times q_{i_t}) - w_{i_t}] \quad i = 1, 2, \dots, N \quad (1)$$

324 Where $Income_{C_t}$ is crop income after variable expenses earned for each year t in US dollars per
325 acre, and i identifies an acre; p_{i_t} is the market price per bushel, q_{i_t} is the yield (bushels/acre from
326 DSSAT) and w_{i_t} is the variable production costs per acre for the crop planted on acre i. The items
327 making up the variable production costs are irrigation, fertilizer, herbicide, pesticide, labor, rent,
328 and crop insurance; details are listed in Tables A.5 to A.8. As noted in Table A.7, six of the
329 included costs are not strictly variable costs. They are included to reflect what is thought to be a
330 fair representation of operating costs for irrigated and unirrigated farming.

331 **2.3.3 Crop Insurance**

332 Agricultural farm income support takes many forms which may or may not improve
333 financial stability (Mishra & Cooper, 2017). FEWCalc includes the option of insurance for crop
334 yield. General characteristics of crop-yield insurance are described by Edwards (2011) and RMA
335 (2020). Crop-yield insurance is purchased to protect against potential losses of crop yield from
336 natural disasters, and especially droughts. In practice, insurance companies will increase premiums
337 if indemnities are high, so over the long term, farm incomes will not be increased by crop
338 insurance. However, the insurance does mitigate income declines in exceptionally bad years. In
339 FEWCalc, the crop prices and premiums from the 2008-2017 base period are maintained, and years
340 and values of indemnities are noted. How crop insurance is represented in FEWCalc is described
341 in Appendix C, Eqs C.1 to C.4.

342 **2.4 Calculations for Renewable Energy**

343 Renewable energy calculations for wind turbines and solar panels are calculated in
344 FEWCalc. Users control the number and installed capacity of wind turbines and solar panels, and
345 their degradation rates, lifespan, capital costs, and tax credits.

346 The version of FEWCalc presented here considers farmer-owned energy production
347 facilities that serve both local electric loads and electricity sale to the grid. These are not
348 represented explicitly, the FEWCalc input is simply the resulting average value obtained from the
349 electricity produced. Section 2.4.1 describes this process.

350 **2.4.1 Energy Net Income**

351 Energy net income for year t , $Income_{E_t}$, is the sum of total net income from wind
352 production (Eq. C.11) and total net income from solar production (Eq. C.21):

$$353 \quad Income_{E_t} = Income_{W_t} + Income_{S_t} = Energy_value_t \times (M_{w_t} + M_{s_t}) \quad (2)$$

354 Calculating $Income_{W_t}$ and $Income_{S_t}$ (income from wind and solar energy for year t)
355 requires $Energy_value_t$, the monetary value of all megawatt-hours (MWh) of electricity produced,
356 and used in Eqs. C.13 and C.23. the $M_{w_t} + M_{s_t}$ term is the power output in MWh from wind and
357 solar for year t . Users can control the average value obtained for that electricity. Usually, this value
358 should be greater than the wholesale price of electricity, which in Kansas and surrounding states
359 is presently (2020) US\$20 to US\$40/MWh. Higher values would be expected because some of the
360 electricity is worth retail because it allows the generator to avoid retail purchase of energy to, for
361 example, run electric water pumps, or qualify for net-metering. In the Kansas region, retail is
362 presently US\$100 to US\$130/MWh. In addition, with some restrictions, farmers can enter into
363 Power Purchase Agreements (PPAs) to sell electricity at prices that tend to be between wholesale
364 and retail prices. While electricity prices tend to be less volatile than crop prices, they are still
365 difficult to predict. FEWCalc uses a default $Energy_value_t$ of US\$38/MWh.

366 The effects of equipment depreciation on net income are simulated using a CSV file that is
367 read by FEWCalc and defines the percent of installed cost to be depreciated, the depreciation taken
368 each year, and the tax rate of 20% to be applied (see Appendix A). This deduction may require a
369 third-party financial partner. This tax savings can be used to increase farmer income or reduce the
370 loan to cover the renewable energy costs.

371 In Eqs. C.5 and C.15, installed costs for energy production are financed over a period
372 defined by the user as a fraction of the life of the equipment (N_{yearsW} or N_{yearsS}) and an interest
373 rate (APR) that is also defined by the user.

374 **2.4.2 An Overview of Energy Production and Regulatory Environment**

375 The regulatory environment of renewable energy, including wind and solar, are complex
376 and evolving. Here, we provide a few comments to establish some context for the range of solar
377 and wind energy resources that FEWCalc supports.

378 Regulation of solar production can depend on capacity, and policy is not well established.
379 Commercial size installed solar capacity is about 1 MW in Kansas (KCC, 2019); capacities under
380 3MW are commonly classified as small (Green Coast, 2019). States with less total solar capacity
381 tend to have smaller installations: in the three lowest ranked states (including Kansas) solar
382 installations for agricultural use average around 0.0004 MW (Xiarchos & Vick, 2011). In 2019,
383 Kansas had 47 MW of installed solar (SEIA, 2020a). In contrast, neighboring Missouri, with less
384 solar potential but more solar-friendly policies, had 258 MW of installed solar capacity (SEIA,
385 2020b).

386 FEWCalc supports the installation of up to 2.4 MW of solar installed capacity, which
387 would require 8,000 solar panels with a combined area of 16.6 acres (6.7 hectares) (Ong et al.,
388 2013). In southwest Kansas, where an average peak sun hour (*PSH*) is 5.6 hours per day, Eq. C.21
389 suggests that these solar panels would produce about 4,906 MWh of electricity per year. Eq. C.11
390 indicates that it would require about 0.7 2-MW wind towers and 0.9 acres of land (0.4 hectares) to
391 produce the same output per year (Denholm et al., 2009). The net revenue gained by this land use
392 would need to be compared with crop revenues as part of deciding whether to make the renewable
393 energy investment. FEWCalc provides the results needed for the user to produce such a
394 comparison.

395 **2.4.3 Financial Assumptions — Energy Equipment Tax Incentives and Depreciation**

396 Tax incentives and equipment depreciation can produce large tax deductions that exceed
397 what some owners can deduct from their taxes. It can thus be advantageous to contract with a third-
398 party financial partner, called a Tax Equity Investor, who can claim the credit and return much of
399 the value to the owner, depending on the agreement made; typical cost is 6-7% (M. Gilhouse, 400
written communication, 2020). In FEWCalc, use of the tax incentives (ITC or PTC; see Eqs. C.13,
401 C.15 and C.23) and depreciation often imply that such third-party arrangements are involved. The
402 transaction fee is not included, and the entire value of any tax credit and deduction is applied to
403 the owner as income in the year it is incurred. It could be accumulated to defray the cost of updating
404 equipment, but FEWCalc does not provide for this.

405 The applicability of ITC and PTC has changed over time and differs with installed capacity
406 and whether wind or solar equipment is installed. FEWCalc includes an adjustable range of
407 options.

408 **2.5 Calculations for Water**

409 The only water use represented in FEWCalc is irrigation to support the farm production
410 simulated using DSSAT. The current version of FEWCalc satisfies all water demands using
411 groundwater, and it is assumed that dryland farming is the default production method when
412 groundwater levels are too low. Simulation of crop production and irrigation demand in the arid
413 region considered in this work required modification of the distributed version of DSSAT, and this
414 modification is described below. This is followed by a description of how DSSAT results are used
415 in DSSAT to simulate impacts on groundwater levels and surface-water quality.

416 **2.5.1 DSSAT Irrigation Calculation for Arid Regions**

417 Irrigation requirements and frequency of application vary as a function of crop type, crop
418 management, soil properties, and weather conditions (Salazar et al., 2012). In DSSAT, the default
419 irrigation calculations provided too much water and restrictions were needed to match measured
420 water-use data. This was addressed by using the fixed amount automatic mode in DSSAT, as
421 described by I. Kisekka (University of California, Davis, written communication, 2019) and as
422 used by Sharda et al. (2019). The approach is described in Appendix C.

423 **2.5.2 Calculating Groundwater Levels Based on Water Use**

424 In FEWCalc, it is assumed that all irrigation water comes from groundwater. The simplest
425 way to relate the irrigation use per crop area produced from DSSAT to groundwater level change
426 is to divide by specific yield. However, this neglects spatial changes in specific yield, groundwater
427 recharge, and other hydrologic processes, and was found to produce unrealistically fast dewatering
428 of the aquifer. When available, historical data can provide an alternative. Butler et al. (2016) and
429 Whittemore et al. (2016) show that in parts of Kansas, groundwater declines are linearly related to
430 total groundwater pumpage and discuss the circumstances under which this would occur.

431 For FEWCalc, a two-step process was developed using two linear regressions and reported
432 Finney County data from B. Wilson (Kansas Geological Survey, written communication, 2019).
433 The process is described in Appendix A using Fig. A.5.

434 **2.5.3 Nitrogen Concentrations in Surface Water**

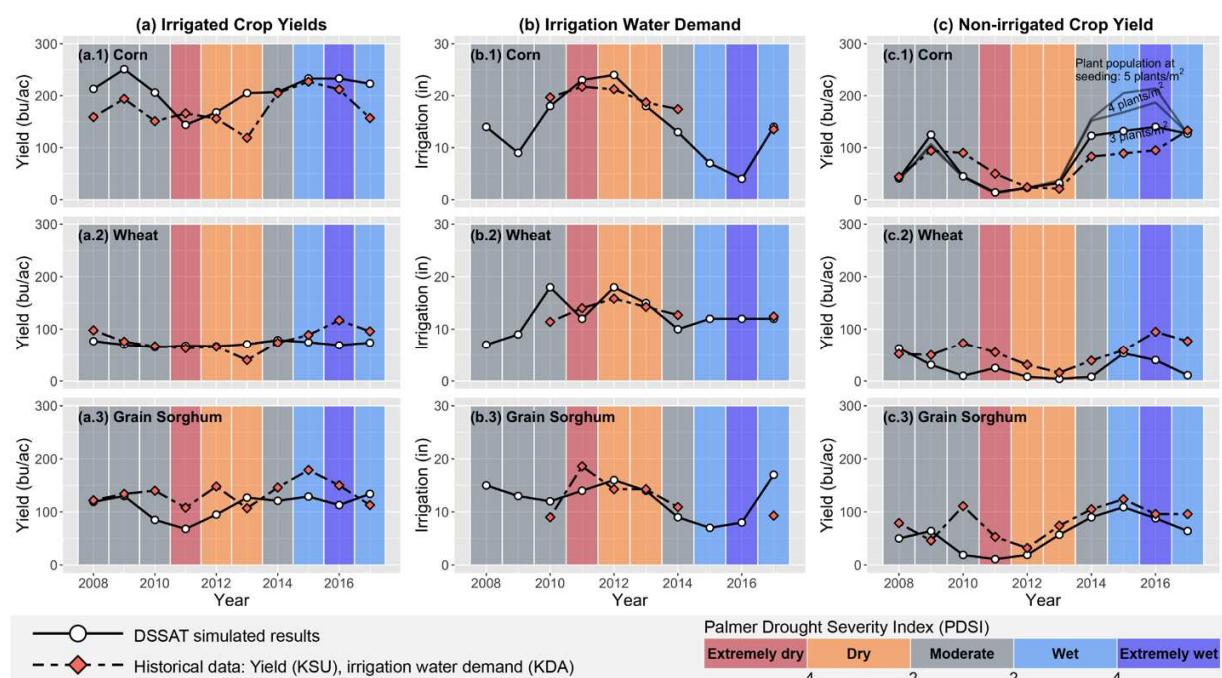
435 When nitrogen is applied to fields, a percentage of it remains in the soil until it is moved
436 into surface-water bodies by large storms (USGS, 1999). In the study area, about 10% of the
437 applied nitrogen is thought to be retained for silt loam soil and typical soil temperatures during
438 fertilizer application (Kansas Mesonet, 2017; Sawyer, 2011). Individual storm data are not
439 available, so nitrogen is moved to surface water in wet and extremely wet years as defined using
440 PDSI. For Scenario 4, PDSI data are not available, and nitrogen is moved when annual rainfall
441 exceeds or equals 20 inches. The equations used are presented in Appendix C.

442 **2.6 FEWCalc Interface**

443 FEWCalc's NetLogo interface (Fig. D.5) is divided into three main areas. From left to
444 right, the areas include (1) sliders, input boxes, and dropdown menus that allow users to vary
445 model parameters and control the simulation (see Fig. D.6). All inputs are at default values (Table
446 D.1) except ITC_S is set to 30%. (2) In the center, a NetLogo World area shows circular cultivated
447 areas, solar panel and wind turbine installations, and groundwater (GW) quantity and surface-
448 water (SW) quality impacts, and a fraction of energy produced from solar and wind (see Fig. D.8).
449 (3) Eight output plots on the right show FEWCalc results evolving over time.

450 In years that production conditions trigger an insurance claim, the text "Ins. Claim"
451 appears next to the related crop in the World. The indemnity is shown in the lower right graph.
452 The rust-colored dots are used to represent nitrogen accumulation on fields and its concentrations
453 in surface water (see Section 2.5.3). Each particle represents 10,000 lb (4,500 kg) of nitrogen.
454 Groundwater levels vary as irrigation is applied each year as described in Section 2.5.

455 **3. Results**


456 For the results presented here, the input values are those shown in Fig. D.5, except that the
457 future process is modified for Scenarios 2 through 4. The solar panels occupy about 5.2 acres (2.1
458 hectares), and a similar area is occupied by the wind turbines (Denholm et al., 2009).

459 Results comparing the DSSAT simulation with historical results are presented in Section
 460 3.1. The four subsequent sections show results from the four climate scenarios listed in Table 2
 461 and support an analysis of climate impacts on crop income in the context of potential farm energy
 462 capacity development. Finally, Section 3.6 focuses on financial results from all simulations.

463 **3.1 Comparison with Historical Data**

464 Crop production and irrigation water use simulated by DSSAT for 2008 to 2017 are
 465 compared to historical data in Fig. 4. As in Fig. 3, colors based on PDSI are used to identify dry
 466 and wet years. Fig. 4 suggests crop yields and water use are reasonably well represented using
 467 DSSAT, though in some years the differences are substantial (for example, non-irrigated grain
 468 sorghum yield in 2010).

469 For non-irrigated corn, the simulated yield was unrealistically large during some wet years,
 470 and it was suspected that the plant population per acre was too high. Fig. 4c (top figure) shows the
 471 effects of accounting for the plant population at seeding for corn under dryland farming. In this
 472 work, a plant population of 13,000 plants/acre (3 plants/m²) was used.

473
 474 **Fig. 4.** Comparison of the DSSAT results (solid lines) and historical data (dashed lines) between
 475 2008 and 2017 for corn, wheat, and grain sorghum. (a) Irrigated crop yields, (b) Irrigation water

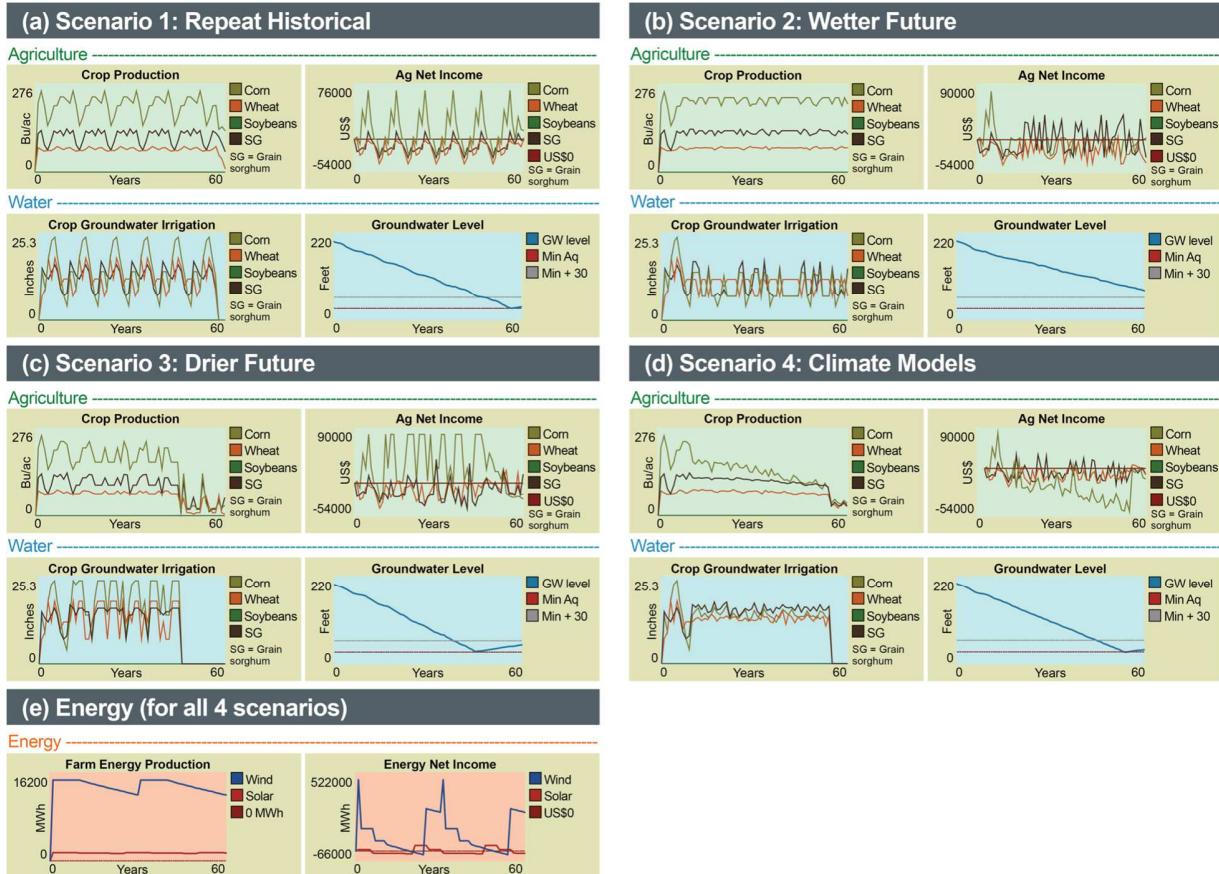
476 demand, (c) Non-irrigated crop yields. (Crop yield data from the Department of Agronomy,
477 Kansas State University, irrigation data from KDA, and simulated results are in Tables A.4, A.11,
478 B.1 and B.2). Conversion: 1 bu/ac corn or grain sorghum = 62.77 kg/ha, 1 bu/ac wheat = 67.25
479 kg/ha, and 1 in = 2.54 cm. Moisture adjustments have been applied (see Table A.10).

480 **3.2 Scenario 1: Repeat 10 historical years to create the 60-year simulation**

481 Six ten-year long base periods of precipitation, temperature, and crop prices are repeated
482 consecutively to create the 60-year FEWCalc simulation. The repetition allows analysis for a
483 repeated known historical period; the duplication of results every 10 years indicates that FEWCalc
484 progresses through time correctly. The only change is when groundwater is depleted toward the
485 end of the simulation when dryland farming begins.

486 Energy solutions are the same for all scenarios and are presented with the Scenario 1
487 results. Income for wind is high in the first year of operation when tax policy allows 50% of capital
488 costs to be depreciated, though the loan payments continue. Solar income becomes positive after
489 the loan is paid.

490 **3.3 Scenario 2: Wetter Future**

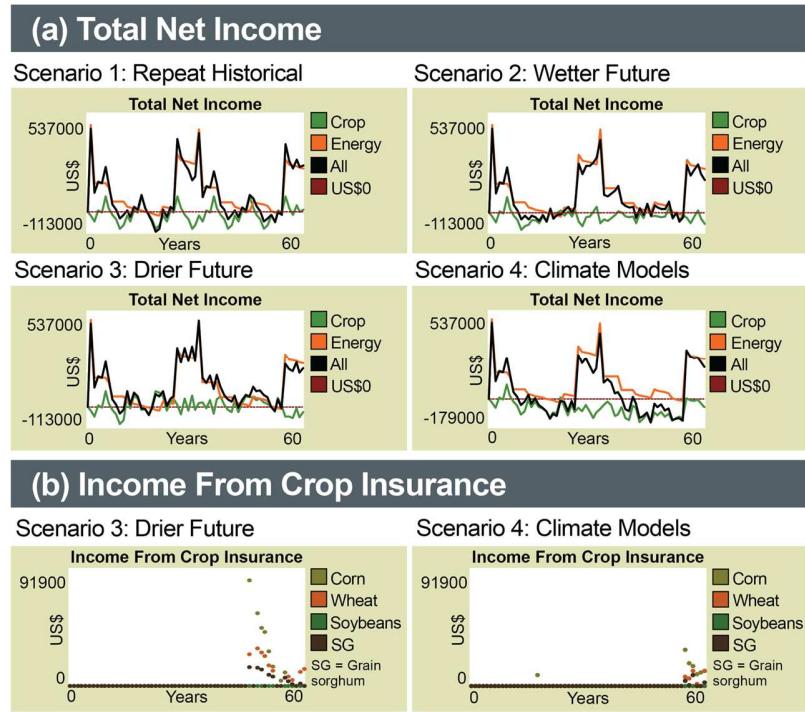

491 For the wetter future, FEWCalc randomly chooses a greater percentage (70% instead of
492 the original 30%) of wet years.

493 **3.4 Scenario 3: Drier Future**

494 For the drier future, FEWCalc randomly chooses a higher percentage of dry years (70%
495 instead of the original 30%). As compared to the wet scenario (Fig. 5b), Fig. 5c shows that crop
496 production simulated for a dry climate scenario drops in many simulation years.

497 **3.5 Scenario 4: RCP 8.5 Temperature, Precipitation, and Solar Radiation Changes to Create
498 the 50-Year Future.**

499 In Fig. 5d, the first 10 years of crop production reflect historical (2008-2017) climate
500 variability, while years 11 to 60 (2018 to 2067) show GCM results that tend to be smoother because
501 results from 20 GCMs are averaged (Figs. B.1 and B.3).



502

503 **Fig. 5.** FEWCALC annual results showing agricultural crop production and net income, energy
 504 production and net income, and crop groundwater irrigation and groundwater level for all four
 505 climate scenarios. Dashed lines in the charts represent significant values for reference.
 506 Abbreviation: bu = bushel, ac = acre, SG = grain sorghum, US\$ = US dollar, MWh = megawatt-
 507 hour, GW level = groundwater level, Min Aq = minimum available aquifer thickness, and Min +
 508 30 = a level of 30 feet above minimum thickness. Conversion: 1 bu/ac corn or grain sorghum =
 509 62.77 kg/ha, 1 bu/ac wheat = 67.25 kg/ha, 1 in = 2.54 cm, and 1 ft = 0.3 m.

510 **3.6 Total Net Income and Crop Insurance for All Four Scenarios**

511 Total farm net annual income is shown in Fig. 6a; income from crop insurance (the
 512 indemnity) is shown in Fig. 6b. Selected metrics for the four runs are shown in Table 3. Time
 513 series shown for the four scenarios in Fig. 5 are discussed in Section 4 of this article.

515 **Fig. 6.** (a) Total net income and (b) income from crop insurance. The yield-based crop insurance
 516 tends are indemnified mostly when farming converts from irrigated to non-irrigated (e.g., year 58
 517 in Scenario 3). Plots for Scenarios 1 and 2 are not shown because annual crop insurance
 518 indemnifications were less than \$31,000 for Scenario 1 and not indemnified for Scenario 2

519 **Table 3.** Metrics from the four scenarios for 60 years of FEWCalc simulation (2008-2067). All
 520 monetary amounts are in US dollars.

	Scenario 1 (Repeat Historical)			Scenario 2 (Wetter Future)			Scenario 3 (Drier Future)			Scenario 4 (GCMs, RCP 8.5)		
	C ¹	W ²	SG ³	C ¹	W ²	SG ³	C ¹	W ²	SG ³	C ¹	W ²	SG ³
Average annual crop yield, bushels/acre ⁴												
with irrigation	207	71	111	223	75	123	190	71	106	149 (39.8)	72 (4.7)	109 (12.1)
without irrigation	133	35	87	-	-	-	40	23	39	41 (6.3)	31 (5.2)	33 (5.9)
Insurance claims, number of years	3	2	1	0	0	0	8	10	9	7	5	4
Dryland farming starts, year	2065			-			2053			2062		
Dryland farming length, years	3			0			15			6		
Average annual net income, US dollars												
from agriculture	-US\$14,197			-US\$20,194			US\$6,818			-US\$61,321 (46,734)		
from energy	US\$109,324			US\$109,324			US\$109,324			US\$109,324 (122,970)		
total	US\$95,127			US\$89,130			US\$116,142			US\$48,003 (146,563)		
Net Present Value (NPV) ⁵												
from agriculture	-US\$0.4M			-US\$0.5M			US\$0.1M			-US\$1.3M		
from energy	US\$2.9M			US\$2.9M			US\$2.9M			US\$2.9M		
total	US\$2.5M			US\$2.4M			US\$3.1M			US\$1.6M		

521 ¹Corn, ²Wheat, and ³Grain sorghum. ⁴For scenario 4, the standard deviation of the 20 GCM results are presented in parentheses. ⁵Discount rate is
 522 3.25% (prime rate as of June 2020); FEWCalc agriculture and energy finances are combined; for energy, capital costs are explicitly included for
 523 energy and depreciated over 10 years assuming a tax rate of 20%, for agriculture, capital costs are applied as listed in Table A.7.

524 Scenario 1, for which 2008-2017 weather continues into the future, results in a depleted
 525 aquifer and dryland farming. The wetter scenario 2 results in irrigation water lasting more than 60
 526 years. The drier scenario 3 results in irrigation lasting only 45 years. The RCP 8.5 scenario 4 shows
 527 marked potential for decreased crop production: With elevated greenhouse gases and temperature
 528 conditions crop incomes are reduced. Renewable energy development is important to continued
 529 viability and, hopefully, would allow new approaches and technologies to buffer the impacts of
 530 climate change.

531 4. Discussion

532 FEWCalc is designed to produce the same net income for all scenarios in the base period.
 533 Income differences determined by scenario conditions and parameters begin after the base period
 534 (Fig. 6a).

535 In Scenario 1, simulated crop yields for corn and sorghum decline during dry periods (Fig.
536 4). However, wheat yield remains stable for most simulation years. Wheat and grain sorghum are
537 rarely profitable, and corn is the most profitable crop under the Repeat Historical scenario (Fig.
538 5a). Repeated historical irrigation water use results in continuous groundwater level decline. This
539 continues well known current trends and in the simulation dryland farming in this area starts in
540 2065 or, year 58 of the simulation. Crop yields decline after switching from irrigated to dryland
541 cultivation. However, average non-irrigated crop net incomes are higher than irrigated net incomes
542 because dryland farming expenses for all three crops are low enough to make up for lost crop sales.
543 For corn and grain sorghum, the tendency of prices to increase globally when the local yields
544 decline (see Section 2.3.2) could prove even more advantageous than indicated.

545 For Scenario 2, the 50 years following the base simulation, Fig. 5b shows that crop
546 production improves and groundwater levels drop more slowly, though they continue to drop.
547 Dryland farming is not reached, and FEWCalc maintains irrigation operations for the entire 60-
548 year simulation. However, the downward trend makes it clear that a time will come when dryland
549 farming will be necessary in some years, even with this wetter future simulation.

550 In Scenario 3, the Drier Future, irrigated corn performed better than other crops, whereas
551 wheat production is low and remains stable during irrigated periods. Corn net income is high
552 because of high crop prices during dry years. The increased irrigation required in drier years
553 accelerates the decline in groundwater levels, and FEWCalc resorts to dryland DSSAT simulations
554 in year 46 (2053), which is 12 and \geq 14 years ahead of Scenarios 1 and 2, respectively.

555 Table 3 shows that dry scenario 3 yields an annual average agricultural sector profit of
556 US\$6,818, which is the only commercially successful scenario for agriculture from the
557 simulations. Potential crop price increases caused by reduced production in a drier future are not
558 simulated, and could affect farm profitability and food availability. Because wind energy
559 production is successful in western Kansas, total net income is mostly supported by the energy
560 sector. All scenarios, in turn, have projected positive net incomes and post positive net present
561 value (NPV) using a discount rate of 3.25% for the total farm investment (Table 3). For Scenario
562 3, farm income with energy sector profit is US\$116,142, with an NPV of US\$3.1M. Scenario 4, in

563 contrast, produces the worst average annual total revenue of US\$48,003, with an NPV of
564 US\$1.6M.

565 In Scenario 4, what is thought to be the most likely future scenario results in wheat and
566 grain sorghum are rarely profitable. Irrigated corn's net income is projected to decrease over time
567 and is considerably worse after simulation year 22 (2029). Dryland farming first occurs in year 55
568 (2062), causing large crop production decline. These results show a large increase in net income
569 for all three crops after shifting to dryland farming as costs decline more than income. The reduced
570 yield would be problematic for the global food system.

571 The time series in Fig. 5 show the variability in income. For example, in Scenarios 1 and
572 4, Figs 5a and 5d show that corn, wheat, and grain sorghum lose less money with dryland farming
573 than during the irrigation period because of decreased farm expenses and support from crop
574 insurance. For Scenario 2, grain sorghum is the most profitable crop, but it loses money in some
575 simulation years.

576 In FEWCalc, insurance claims (Fig. 6b) start during any period of transition to dryland
577 farming when the current yield drops below the actual production history. There are other common
578 situations in which crop insurance is indemnified, such as hailstorms and floods, but these are not
579 represented in FEWCalc.

580 Figs. 8d, B.1, and B.3 results suggest that, overall, RCP 8.5 global climate change
581 predictions would need to be met with effective technology changes to address crop production
582 trends that slowly decline for the future period. It appears that annual variability would make this
583 trend difficult to discern until reductions are substantial, and history indicates that such obscured
584 consequences tend to make early remedies difficult to implement. While global analyses suggest
585 that delaying action exacerbates both the cost and feasibility of mitigation, how these tradeoffs
586 play out locally requires careful evaluation of how projected changes and uncertainty impact
587 individual FEW systems, a challenge that FEWCalc enables users to address directly for
588 agricultural systems.

589 For all scenarios, installed solar capacity is initially set at about 9% of the total renewable
590 energy. Higher capital costs and a shorter lifespan make the total cost of solar higher than wind.

591 The slow degradation of wind and solar capacity over time is evident in the energy production
592 graph. Solar power makes money some years because of the simulated tax credit, depreciation,
593 and loan pay off. Wind power production, on the other hand, is generally profitable, in part because
594 of a high wind capacity factor in the study area and the simulated 30-year capital lifespan that
595 makes it easy to cover installation costs.

596 Overall, the DSSAT results are expected to be adequate for the analysis of renewable
597 energy development and agricultural performance given potential future climate scenarios for
598 which FEWCalc was developed.

599 The scenarios do not include technological, crop management, crop price, or energy
600 production changes that would be expected to occur. Thus, these results reflect the climate- and
601 market-related pressures to which such changes would need to respond to maintain crop production
602 and farm incomes.

603 **5. Conclusions**

604 This work shows how FEWCalc can provide scientific, engineering, and economic
605 analyses required by stakeholders and policy makers using data from the semi-arid region around
606 Garden City, Kansas. Here we discuss the two points about FEWCalc and provide some final
607 comments.

608 **5.1 FEWCalc Utility for Individual, Community, and Policy Maker Decision Support**

609 The FEWCalc results for Finney County, Kansas, illustrate many of the general challenges
610 of farming. The main crops are subject to considerable price uncertainty, weather conditions can
611 be harsh and unpredictable, and selected resources have limited availability. As presented here,
612 FEWCalc is applicable directly to farmers in arid regions of the middle part of the USA interested
613 in alternative income sources. The design of FEWCalc has broad applicability for agricultural-
614 energy-water system decision support research and education. Applicability to other regions
615 requires local data, development of a DSSAT model, and adjustment of the FEWCalc input
616 variable values. Little or no programming would be required.

617 Distributed energy production requires considerable land and rural areas can provide
618 important opportunities, depending on local attitudes and local to national policies. FEWCalc

619 illustrates major input variables relevant to renewable energy development and how local
620 economic impact can be evaluated and projected.

621 Renewable wind energy development in this area was shown to potentially provide
622 economic opportunities profitable enough to balance farming difficulties and enable the
623 persistence of agricultural production in the region. In part, this is the consequence of the unusually
624 useful wind resources available in this area; other areas will have different advantages and
625 disadvantages that can be evaluated using the framework provided by FEWCalc.

626 FEWCalc results show that in this area, given current cost and electricity pricing, solar is
627 only profitable with tax incentives and depreciation. In Kansas, the capital costs of solar energy
628 (Fu et al., 2017) are challenging to recover given local solar radiance and electricity prices. As
629 noted previously, an advantage of solar is that it is plentiful on hot summer days when wind
630 velocities are low and electricity demand increases, largely due to increased use of air conditioning.
631 In some cases, this makes solar a very useful addition to a given system despite the challenges of
632 individual profitability. Solar is included in FEWCalc to provide this logistical advantage of solar
633 energy and because tax incentives and even a slight reduction in the price of solar panels could
634 make it a profitable alternative.

635 FEWCalc illustrates how complicated and interacting systems, as they face new
636 opportunities and challenges — in this case renewable energy, water scarcity, evolving technical
637 innovations, can be assembled into a reasonably realistic, interesting to manipulate, and
638 educational graphical interface. Agent-based modeling using the freeware NetLogo is relatively
639 simple yet flexible enough to perform calculations related to energy, water, nitrate in soils and
640 surface water, crop insurance, and so on, and integrate results from a separate program — in this
641 case DSSAT for agricultural production, water demand, and fertilizer application. The FEWCalc
642 calculations used for energy are expected to be widely applicable. The data-based approach taken
643 for water is expected to be adaptable to other locations with sufficient data; otherwise, this work
644 suggests that greater errors are likely if aquifer water-level response is calculated using estimates
645 of specific yield from pumping wells, a point also noted by Butler et al. (2016) and Whittemore et
646 al. (2016).

647 The crop production DSSAT model served well when combined with local agricultural
648 expertise and comparison to historical data. The need to use a new irrigation capability designed
649 for arid regions and the poor performance of soybeans in the region were only recognized and
650 explained after comparison to historical data and discussions with local agricultural experts. Lack
651 of these resources would have resulted in substantial errors.

652 Potential uses of the program not pursued in this work include identifying what thresholds
653 (e.g., crop price, crop production, expenses) and public policies (e.g., tax incentives) are needed
654 to produce profitable opportunities for landowners and agricultural communities. Also, adding
655 technology advances, crop and electricity price changes, and human decision-making
656 characteristics such as avoidance of risk, maximizing profit, and evolution of policies and
657 governmental institutions would improve the human interaction aspects of the simulation.

658 **5.2 FEWCalc Impact on IA and IAV Gaps**

659 The gaps between the IA and IAV communities that were summarized in Table 1 can be
660 broadly categorized as gaps in the geographic and temporal scale, scenario and policy
661 development, interdisciplinarity, and research perspective. FEWCalc addresses these gaps the
662 following ways:

- 663 1) FEWCalc's interface shows the clear connection between current decisions and long-
664 term, interdependent, and interdisciplinary consequences for both non-technical
665 stakeholders and disciplinary specialists. This presentation of information can facilitate
666 discussion across disciplinary boundaries and between scientists and non-technical
667 stakeholders.
- 668 2) Metrics such as crop production, farm income, groundwater-level change, and nutrient
669 loading of surface-water bodies, are broadly interesting to many stakeholder
670 communities across a range of geographic scales and/or topical foci. These metrics can
671 serve as a common point of reference for interdisciplinary discussions of their
672 underlying discipline-specific drivers such as climate change, agricultural practices,
673 and renewable energy policy. For example, Fig. 5, depicting the outcomes under
674 Scenarios 1 to 4, could serve as the basis for discussions among different stakeholder
675 communities and become an important focus of communication for topics as wide-

676 ranging as irrigation practices, climate change impacts and adaptation strategies,
677 renewable energy, and farm incomes.

678 3) Help stakeholders at all levels make better decisions, as follows.

679 a) Studies of how local stakeholders use FEWCalc can help researchers gain insight
680 into local values, which will give local stakeholders an implicit voice in scenario
681 development and by implication the national- and global-scale public policy
682 debates that are informed by integrated assessment, such as the Intergovernmental
683 Panel on Climate Change (IPCC) assessment reports and the Paris Agreement.

684 b) Inform local stakeholders, which could lead to better feedback and is the only way
685 to achieve more buy-in and support for adaptive measures such as agricultural and
686 energy tax credits and support of technological innovations in irrigation and wind
687 turbine design. Here again, FEWCalc's outputs (Fig. 5) show the connection
688 between global changes and local-stakeholder outcomes, while FEWCalc's
689 intuitive interface allows local stakeholders to explore how their options (e.g.,
690 choices about irrigation, crop planting, and energy investment) and outcomes (e.g.,
691 farm income) are affected by climate conditions, and local and national public
692 policy.

693 **5.3 Final Comments**

694 FEWCalc integrates information from the fields of agriculture, energy, water supply, water
695 quality, climate change, and economics. It uses this information to enable users to explore
696 consequences of interest to farming communities, including farm income, water supply, water
697 quality, and potential opportunities provided by renewable energy development. It also provides a
698 way for anyone interested in their food supply to understand the challenges and opportunities faced
699 by farmers and farming communities.

700 The version of FEWCalc discussed in this work is constructed of freely available and open-
701 source software that was chosen to facilitate future extensions of FEWCalc. In particular, the use
702 of agent-based modeling using NetLogo means that FEWCalc is well-positioned for expansion to
703 simulate technology advances, behavioral and policy considerations, and the interplay between
704 these important aspects of any natural-human system.

705 The input to DSSAT is region specific, but DSSAT is used globally and data from other
706 regions would likely provide similar performance as long as some historical data is available for
707 DSSAT model development.

708 Programs like FEWCalc are well suited to address gaps present between current Integrated
709 Assessment (IA) and Impacts, Adaptation, and Vulnerability (IAV) communities. Said another
710 way, programs like FEWCalc enable users to envision both near-term impacts and long-term
711 implications of choices made today. Thus, FEWCalc can be used by farmers considering the
712 futures of their farms and communities, laypeople interested in how farms work, and policymakers
713 as they consider potential consequences of regulatory and policy decisions.

714 **Acknowledgements**

715 With gratitude, we note that this work was funded by the University of Kansas, Department
716 of Geology startup [account 05192015] and the National Science Foundation [grant number
717 1856084] FEWtures project. Mr. Jirapat Phetheet was funded by the Royal Thai Government
718 Scholarship.

References

Absar, S. M., & Preston, B. L. (2015). Extending the Shared Socioeconomic Pathways for sub-national impacts, adaptation, and vulnerability studies. *Global Environmental Change*, 33, 83–96. <https://doi.org/10.1016/j.gloenvcha.2015.04.004>

Al-Saidi, M., & Elagib, N. A. (2017). Towards understanding the integrative approach of the water, energy and food nexus. *Science of The Total Environment*, 574, 1131–1139. <https://doi.org/10.1016/j.scitotenv.2016.09.046>

Allan, T., Keulertz, M., & Woertz, E. (2015). The water–food–energy nexus: An introduction to nexus concepts and some conceptual and operational problems. *International Journal of Water Resources Development*, 31(3), 301–311. <https://doi.org/10.1080/07900627.2015.1029118>

Anderson, T., & Dragićević, S. (2018). Deconstructing Geospatial Agent-Based Model: Sensitivity Analysis of Forest Insect Infestation Model. In L. Perez, E.-K. Kim, & R. Sengupta (Eds.), *Agent-Based Models and Complexity Science in the Age of Geospatial Big Data* (pp. 31–44). Springer International Publishing. https://doi.org/10.1007/978-3-319-65993-0_3

Araya, A., Gowda, P. H., Golden, B., Foster, A. J., Aguilar, J., Currie, R., Ciampitti, I. A., & Prasad, P. V. V. (2019). Economic value and water productivity of major irrigated crops in the Ogallala aquifer region. *Agricultural Water Management*, 214(September 2018), 55–63. <https://doi.org/10.1016/j.agwat.2018.11.015>

Bert, F., North, M., Rovere, S., Tatara, E., Macal, C., & Podestá, G. (2015). Simulating agricultural land rental markets by combining agent-based models with traditional economics concepts: The case of the Argentine Pampas. *Environmental Modelling & Software*, 71, 97–110. <https://doi.org/10.1016/j.envsoft.2015.05.005>

Bieber, N., Ker, J. H., Wang, X., Triantafyllidis, C., van Dam, K. H., Koppelaar, R. H. E. M., & Shah, N. (2018). Sustainable planning of the energy-water-food nexus using decision making tools. *Energy Policy*, 113, 584–607. <https://doi.org/10.1016/j.enpol.2017.11.037>

Biggs, E. M., Bruce, E., Boruff, B., Duncan, J. M. A., Horsley, J., Pauli, N., McNeill, K., Neef, A., Van Ogtrop, F., Curnow, J., Haworth, B., Duce, S., & Imanari, Y. (2015). Sustainable development and the water-energy-food nexus: A perspective on livelihoods. *Environmental Science and Policy*, 54, 389–397. <https://doi.org/10.1016/j.envsci.2015.08.002>

Buchanan, R. C., Wilson, B. B., Buddemeier, R. R., & Butler Jr, J. J. (2015). The High Plains Aquifer. *Kansas Geological Survey, Public Information Circular (PIC)*, 18, 1–6.

Bureau of Economic Analysis. (2020). *Employment by County, Metro, and Other Areas*. <https://www.bea.gov/data/employment/employment-county-metro-and-other-areas>

Butler, James J, Whittemore, D. O., Wilson, B. B., & Bohling, G. C. (2016). A new approach for assessing the future of aquifers supporting irrigated agriculture. *Geophysical Research Letters*, 43(5), 2004–2010. <https://doi.org/10.1002/2016GL067879>

California Water Boards. (2021). *Sustainable Groundwater Management Act*. https://www.waterboards.ca.gov/water_issues/programs/gmp/

Calow, R. C., Howarth, S. E., & Wang, J. (2009). Irrigation Development and Water Rights Reform in China. *International Journal of Water Resources Development*, 25(2), 227–248. <https://doi.org/10.1080/07900620902868653>

Campbell, M. (2020). Australia's Water Is Vanishing. In *Bloomberg Businessweek*. <https://www.bloomberg.com/features/2020-australia-drought-water-crisis>

Cash, D. W., Adger, W. N., Berkes, F., Garden, P., Lebel, L., Olsson, P., Pritchard, L., & Young, O. (2006). Scale and cross-scale dynamics: Governance and information in a multilevel world. *Ecology and Society*, 11(2), 8.

Cuberos Balda, M., & Kawajiri, K. (2020). The right crops in the right place for the food-energy nexus: Potential analysis on rice and wheat in Hokkaido using crop growth models. *Journal of Cleaner Production*, 263, 121373.
<https://doi.org/10.1016/j.jclepro.2020.121373>

de Bremond, A., Preston, B. L., & Rice, J. (2014). Improving the usability of integrated assessment for adaptation practice: Insights from the U.S. Southeast energy sector. *Environmental Science & Policy*, 42, 45–55. <https://doi.org/10.1016/j.envsci.2014.05.004>

Denholm, P., Hand, M., Jackson, M., & Ong, S. (2009). Land Use Requirements of Modern Wind Power Plants in the United States. In *NREL Technical Report* (p. 39). National Renewable Energy Laboratory. <https://doi.org/10.2172/964608>

Dieter, C. A., Maupin, M. A., Caldwell, R. R., Harris, M. A., Ivahnenko, T. I., Lovelace, J. K., Barber, N. L., & Linsey, K. S. (2018). Estimated use of water in the United States in 2015. In *U.S. Geological Survey Circular 1441* (pp. 1–65). U.S. Geological Survey.
<https://doi.org/10.3133/cir1441>

Dore, M. H. I. (2005). Climate change and changes in global precipitation patterns: What do we know? *Environment International*, 31(8), 1167–1181.
<https://doi.org/10.1016/j.envint.2005.03.004>

Edwards, W. (2011). Yield Protection Crop Insurance. In *Ag Decision Maker* (February; pp. 1–2). Iowa State University, University Extension.
<https://www.extension.iastate.edu/agdm/crops/html/a1-52.html>

Endo, A., Tsurita, I., Burnett, K., & Orencio, P. M. (2017). A review of the current state of research on the water, energy, and food nexus. *Journal of Hydrology: Regional Studies*, 11, 20–30. <https://doi.org/10.1016/j.ejrh.2015.11.010>

Endo, A., Tsurita, I., Burnett, K., & Orencio, P. M. (2017). A review of the current state of research on the water, energy, and food nexus. *Journal of Hydrology: Regional Studies*, 11, 20–30. <https://doi.org/10.1016/j.ejrh.2015.11.010>

Epley, C. (2016). *Turning to turbines: As commodity prices remain low, wind energy leases offer a welcome source of income for farmers*. https://www.omaha.com/money/turning-to-turbines-as-commodity-prices-remain-low-wind-energy/article_2814e2cf-83a3-547da09e-f039e935f399.htm

Ericksen, P. J. (2008). What Is the Vulnerability of a Food System to Global Environmental Change? *Ecology and Society*, 13(2), 18.

Ericksen, P. J., Ingram, J. S. I., & Liverman, D. M. (2009). Food security and global environmental change: Emerging challenges. *Environmental Science & Policy*, 12(4), 373–377. <https://doi.org/10.1016/j.envsci.2009.04.007>

FAO (Food and Agriculture Organizations). (2014). *Irrigation Areas, Irrigated Crops, Environment*. Food and Agriculture Organizations. <http://www.fao.org/nr/water/aquastat/didyouknow/print3.stm>

Forrester, J. W. (1971). Counterintuitive Behavior of Social Systems. *SIMULATION*, 16(2), 61–76. <https://doi.org/10.1177/003754977101600202>

Fu, R., Feldman, D., Margolis, R., Woodhouse, M., & Ardani, K. (2017). U.S. Solar Photovoltaic System Cost Benchmark: Q1 2017. In *Technical Report* (pp. 1–59). National Renewable Energy Laboratory. <https://www.nrel.gov/docs/fy17osti/68925.pdf>

Gijsman, A. J., Thornton, P. K., & Hoogenboom, G. (2007). Using the WISE database to parameterize soil inputs for crop simulation models. *Computers and Electronics in Agriculture*, 56(2), 85–100. <https://doi.org/10.1016/j.compag.2007.01.001>

Green Coast. (2019). *Solar Farm Land Requirements: How Much Land Do You Need?* <https://greencoast.org/solar-farm-land-requirements>

Guojun, L., Yongsheng, W., Daohan, H., & Hongtao, Y. (2017). A Multi-Agent Model for Urban Water-Energy-Food Sustainable Development Simulation. *Proceedings of the 2nd International Conference on Crowd Science and Engineering - ICCSE'17*, 105–110. <https://doi.org/10.1145/3126973.3126991>

Hardin, G. (1968). The Tragedy of the Commons. *Science*, 162(3859), 1243–1248. <https://doi.org/10.1126/science.162.3859.1243>

Hill, M. C., Barron, R. W., Amanor-Boadu, V., Pfromm, P., Wu, H., Bloodgood, J., & Gray, B. J. (2019). Intelligent Science for Involving Stakeholders in Making Agriculture Sustainable using Local Renewable Energy. *American Geophysical Union, Fall Meeting*. <https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/510475>

Hill, M. C., Pahwa, A., Rogers, D., Roundy, J. K., & Barron, R. W. . (2017). Developing Community-Focused Solutions using a Food-Energy-Water Calculator, with Initial Application to Western Kansas. *American Geophysical Union, Fall Meeting, December*. <https://agu.confex.com/agu/fm17/meetingapp.cgi/Paper/256139>

Hu, M.-C., Fan, C., Huang, T., Wang, C.-F., & Chen, Y.-H. (2018). Urban Metabolic Analysis of a Food-Water-Energy System for Sustainable Resources Management. *International Journal of Environmental Research and Public Health*, 16(1), 90. <https://doi.org/10.3390/ijerph16010090>

Huber, V., Schellnhuber, H. J., Arnell, N. W., Frieler, K., Friend, A. D., Gerten, D., Haddeland, I., Kabat, P., Lotze-Campen, H., Lucht, W., Parry, M., Piontek, F., Rosenzweig, C., Schewe, J., & Warszawski, L. (2014). Climate impact research: Beyond patchwork. *Earth System Dynamics*, 5(2), 399–408. <https://doi.org/10.5194/esd-5-399-2014>

IAEA (International Atomic Energy Agency). (2009). *Nuclear Technology Review 2009* (p. 141). International Atomic Energy Agency.

https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/028/43028601.pdf?r=1&r=1

Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., Godfray, H. C. J., Herrero, M., Howitt, R. E., Janssen, S., Keating, B. A., Munoz-Carpena, R., Porter, C. H., Rosenzweig, C., & Wheeler, T. R. (2017a). Brief history of agricultural systems modeling. *Agricultural Systems*, 155, 240–254.

<https://doi.org/10.1016/j.agrsy.2016.05.014>

Jones, J. W., Antle, J. M., Basso, B., Boote, K. J., Conant, R. T., Foster, I., Godfray, H. C. J., Herrero, M., Howitt, R. E., Janssen, S., Keating, B. A., Munoz-Carpena, R., Porter, C. H., Rosenzweig, C., & Wheeler, T. R. (2017b). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. *Agricultural Systems*, 155, 269–288. <https://doi.org/10.1016/j.agrsy.2016.09.021>

Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. *European Journal of Agronomy*, 18(3–4), 235–265.

[https://doi.org/10.1016/S1161-0301\(02\)00107-7](https://doi.org/10.1016/S1161-0301(02)00107-7)

Kansas Department of Agriculture. (2021). *Wichita County LEMA*.

<https://agriculture.ks.gov/divisions-programs/dwr/managing-kansas-water-resources/local-enhanced-management-areas/wichita-county-lema>

Kansas Mesonet. (2017). *2017: Kansas Mesonet Historical Data*. <http://mesonet.ks-state.edu/weather/historical>

KCC (Kansas Corporation Commission). (2019). *Electric Supply and Demand Annual Report 2019*. Kansas Corporation Commission. <https://kcc.ks.gov/images/PDFs/legislative-reports/2019-Electric-Supply–Demand-Report.pdf>

Kovda, V. A. (1977). Arid Land Irrigation and Soil Fertility: Problems of Salinity, Alkalinity, Compaction. In E. B. Worthington (Ed.), *Arid Land Irrigation in Developing Countries* (1st ed., pp. 211–235). Elsevier. <https://doi.org/10.1016/B978-0-08-021588-4.50034-8>

Kraucunas, I., Clarke, L., Dirks, J., Hathaway, J., Hejazi, M., Hibbard, K., Huang, M., Jin, C., Kintner-Meyer, M., van Dam, K. K., Leung, R., Li, H.-Y., Moss, R., Peterson, M., Rice, J., Scott, M., Thomson, A., Voisin, N., & West, T. (2015). Investigating the nexus of climate, energy, water, and land at decision-relevant scales: The Platform for Regional Integrated Modeling and Analysis (PRIMA). *Climatic Change*, 129(3–4), 573–588. <https://doi.org/10.1007/s10584-014-1064-9>

Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. *Nature*, 529(7584), 84–87. <https://doi.org/10.1038/nature16467>

Li, S., Cai, X., Emaminejad, S. A., Juneja, A., Niroula, S., Oh, S., Wallington, K., Cusick, R. D., Gramig, B. M., John, S., McIsaac, G. F., & Singh, V. (2021). Developing an integrated technology-environment-economics model to simulate food-energy-water systems in

Corn Belt watersheds. *Environmental Modelling & Software*, 143, 105083.
<https://doi.org/10.1016/j.envsoft.2021.105083>

Li, Z., Li, X., Wang, Y., & Quiring, S. M. (2019). Impact of climate change on precipitation patterns in Houston, Texas, USA. *Anthropocene*, 25, 100193.
<https://doi.org/10.1016/j.ancene.2019.100193>

Maupin, M. A. (2018). Summary of estimated water use in the United States in 2015. *US Geological Survey Fact Sheet 3035*, 2. <https://doi.org/10.3133/fs20183035>

Maupin, M. A., & Barber, N. L. (2005). Estimated withdrawals from principal aquifers in the United States, 2000. In *US Geological Survey Circular* (p. 46). U.S. Geological Survey.
<https://doi.org/10.3133/cir1279>

McGuire, V. L. (2014). Water-level changes and change in water in storage in the High Plains aquifer, predevelopment to 2013 and 2011–13. In *U.S. Geological Survey Scientific Investigations Report* (No. 5218; p. 14). U.S. Geological Survey.
<https://doi.org/10.3133/sir20145218>

McMahon, T. (2020). *Inflation Adjusted Gasoline Prices*.
<https://inflationdata.com/articles/inflation-adjusted-prices/inflation-adjusted-gasoline-prices>

Meadows, D. (2008). *Thinking in Systems: A Primer* (D. Wright, Ed.). Chelsea Green Publishing.

Memarzadeh, M., Moura, S., & Horvath, A. (2019). Optimizing dynamics of integrated food–energy–water systems under the risk of climate change. *Environmental Research Letters*, 14(7), 074010. <https://doi.org/10.1088/1748-9326/ab2104>

Mishra, A. K., & Cooper, J. C. (2017). Impact of farm programs on farm households in the US. *Journal of Policy Modeling*, 39(3), 387–409.
<https://doi.org/10.1016/j.jpolmod.2017.04.001>

Morecroft, J. D. W. (2015). *Strategic Modelling and Business Dynamics* (J. D. W. Morecroft, Ed.). John Wiley & Sons, Inc. <https://doi.org/10.1002/9781119176831>

NASS (National Agricultural Statistics Service). (2019). *Quick Stats*.
<https://quickstats.nass.usda.gov>

Nie, Y., Avraamidou, S., Xiao, X., Pistikopoulos, E. N., Li, J., Zeng, Y., Song, F., Yu, J., & Zhu, M. (2019). A Food-Energy-Water Nexus approach for land use optimization. *Science of The Total Environment*, 659, 7–19. <https://doi.org/10.1016/j.scitotenv.2018.12.242>

NREL (National Renewable Energy Laboratory). (2011). *U.S. Average Annual Wind Speed at 80 Meters*. <https://windexchange.energy.gov/maps-data/319>

NSF (National Science Foundation). (2018). *Dynamics of Coupled Natural and Human Systems*.
<https://www.nsf.gov/pubs/2018/nsf18503/nsf18503.htm>

O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., Mathur, R., & van Vuuren, D. P. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. *Climatic Change*, 122(3), 387–400.
<https://doi.org/10.1007/s10584-013-0905-2>

Ong, S., Campbell, C., Denholm, P., Margolis, R., & Heath, G. (2013). Land-Use Requirements for Solar Power Plants in the United States. In *NREL Technical Report* (p. 39). National Renewable Energy Laboratory. <https://doi.org/10.1016/j.rapm.2006.08.004>

Palmer, W. C. (1965). Meteorological Drought. *U.S. Weather Bureau, Res. Pap.*, 45.
<https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf>

Phetheet, J., Heger, W., & Hill, M. C. (2019). Evaluating Use of Water and Renewable Energy in Agricultural Areas: A Coupled Simulation of DSSAT and Agent-Based Modeling.

American Geophysical Union, Fall Meeting.

<https://agu.confex.com/agu/fm19/meetingapp.cgi/Paper/494391>

Phetheet, J., Hill, M. C., Barron, R. W., Rossi, M. W., Amanor-Boadu, V., Wu, H., & Kisekka, I.

(2021). Consequences of climate change on food-energy-water systems in arid regions without agricultural adaptation, analyzed using FEWCalc and DSSAT. *Resources, Conservation and Recycling*, 105309. <https://doi.org/10.1016/j.resconrec.2020.105309>

Pickering, N. B., Hansen, J. W., Jones, J. W., Wells, C. M., Chan, V. K., & Godwin, D. C.

(1994). WeatherMan: A Utility for Managing and Generating Daily Weather Data. *Agronomy Journal*, 86(2), 332–337.

<https://doi.org/10.2134/agronj1994.00021962008600020023x>

Ravar, Z., Zahraie, B., Sharifinejad, A., Gozini, H., & Jafari, S. (2020). System dynamics modeling for assessment of water–food–energy resources security and nexus in Gavkhuni basin in Iran. *Ecological Indicators*, 108, 105682.

<https://doi.org/10.1016/j.ecolind.2019.105682>

RMA (Risk Management Agency). (2020). *Actual Production History*.

<https://www.rma.usda.gov/en/Policy-and-Procedure/Insurance-Plans/Actual-Production-History>

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J.,

Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T. A. M.,

Schmid, E., Stehfest, E., Yang, H., & Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison.

Proceedings of the National Academy of Sciences, 111(9), 3268–3273.

<https://doi.org/10.1073/pnas.1222463110>

Salazar, M. R., Hook, J. E., Garcia y Garcia, A., Paz, J. O., Chaves, B., & Hoogenboom, G. (2012). Estimating irrigation water use for maize in the Southeastern USA: A modeling approach. *Agricultural Water Management*, 107, 104–111.

<https://doi.org/10.1016/j.agwat.2012.01.015>

Sawyer, J. (2011). Estimating Nitrogen Losses. *Integrated Crop Management News*.

<https://crops.extension.iastate.edu/cropnews/2011/06/estimating-nitrogen-losses>

Schloss, J. A., & Buddemeier, R. W. (2000). Estimated Usable Lifetime. An Atlas of the Kansas High Plains Aquifer. In *An Atlas of the Kansas High Plains Aquifer*.

<http://www.kgs.ku.edu/HighPlains/atlas/ateul.htm>

Schulterbrandt Gragg, R., Anandhi, A., Jiru, M., & Usher, K. M. (2018). A Conceptualization of the Urban Food-Energy-Water Nexus Sustainability Paradigm: Modeling From Theory to Practice. *Frontiers in Environmental Science*, 6.

<https://doi.org/10.3389/fenvs.2018.00133>

SEIA (Solar Energy Industries Association). (2020a). *Kansas State Solar Spotlight*. Solar Energy Industries Association. <https://www.seia.org/sites/default/files/2020-03/Kansas.pdf>

SEIA (Solar Energy Industries Association). (2020b). *Missouri State Solar Spotlight*. Solar Energy Industries Association. <https://www.seia.org/sites/default/files/2020-03/Missouri.pdf>

Shannak, S., Mabrey, D., & Vittorio, M. (2018). Moving from theory to practice in the water–energy–food nexus: An evaluation of existing models and frameworks. *Water-Energy Nexus*, 1(1), 17–25. <https://doi.org/10.1016/j.wen.2018.04.001>

Sharda, V., Gowda, P. H., Marek, G., Kisekka, I., Ray, C., & Adhikari, P. (2019). Simulating the Impacts of Irrigation Levels on Soybean Production in Texas High Plains to Manage Diminishing Groundwater Levels. *JAWRA Journal of the American Water Resources Association*, 55(1), 56–69. <https://doi.org/10.1111/1752-1688.12720>

Sterman, J. (2000). *Business Dynamics: Systems Thinking and Modeling for a Complex World* (J. Sterman, Ed.; 1st ed.). McGraw-Hill Education.

Stockholm Environment Institute. (2021, June 20). *WEAP: Water Evaluation and Planning system*. SEI. <https://www.sei.org/projects-and-tools/tools/weap/>

Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. *Bulletin of the American Meteorological Society*, 93(4), 485–498. <https://doi.org/10.1175/BAMS-D-11-00094.1>

Taylor, K. E., Stouffer, R. J., Meehl, G. A., Cox, P. M., Eyring, V., Flato, G., Gillett, N. P., Giorgetta, M., Govindasamy, B., Hazeleger, W., Hegerl, G., Jones, C., Jones, G. S., Kimoto, M., Kirtman, B. P., LeQuéré, C., Lobell, D. B., Lowe, J., MacCracken, M., ... Stott, P. A. (2009). *A Summary of the CMIP5 Experiment Design*. January 2011, 1–33.

Tisue, S., & Wilensky, U. (2004). NetLogo: Design and Implementation of a Multi-Agent Modeling Environment. In C. M. Macal, D. Sallach, & M. J. North (Eds.), *Proceedings of the Agent 2004 Conference on Social Dynamics: Interaction, Reflexivity and Emergence, Chicago, IL* (pp. 161–184). The University of Chicago.

<https://ccl.northwestern.edu/papers/agent2004.pdf>

https://digital.library.unt.edu/ark:/67531/metadc901709/m2/1/high_res_d/939907.pdf

Tsuji, G. Y., Uehara, G., & Balas, S. (1994). DSSAT version 3 (volume 3). In *International Benchmark Sites Network for Agrotechnology Transfer*. University of Hawaii, Honolulu, Hawaii. <http://dssat.info/wp-content/uploads/2011/10/DSSAT-vol3.pdf>

USDA (U.S. Department of Agriculture). (2020). *USDA Agricultural Projections to 2029* (p. 114). U.S. Department of Agriculture. <https://www.ers.usda.gov/webdocs/outlooks/95912/oce-2020-1.pdf>

USGS (U.S. Geological Survey). (1999). The Quality of Our Nation's Waters: Nutrients and Pesticides. In *U.S. Geological Survey Circular* (Vol. 1225, p. 82). U.S. Geological Survey. <https://pubs.usgs.gov/circ/circ1225>

van Ruijven, B. J., Levy, M. A., Agrawal, A., Biermann, F., Birkmann, J., Carter, T. R., Ebi, K. L., Garschagen, M., Jones, B., Jones, R., Kemp-Benedict, E., Kok, M., Kok, K., Lemos, M. C., Lucas, P. L., Orlove, B., Pachauri, S., Parris, T. M., Patwardhan, A., ... Schweizer, V. J. (2014). Enhancing the relevance of Shared Socioeconomic Pathways for climate change impacts, adaptation and vulnerability research. *Climatic Change*, 122(3), 481–494. <https://doi.org/10.1007/s10584-013-0931-0>

Vervoort, J. M., Thornton, P. K., Kristjanson, P., Förch, W., Ericksen, P. J., Kok, K., Ingram, J. S. I., Herrero, M., Palazzo, A., Helfgott, A. E. S., Wilkinson, A., Havlík, P., Mason-D'Croz, D., & Jost, C. (2014). Challenges to scenario-guided adaptive action on food security under climate change. *Global Environmental Change*, 28, 383–394. <https://doi.org/10.1016/j.gloenvcha.2014.03.001>

Villamayor-Tomas, S., Grundmann, P., Epstein, G., Evans, T., & Kimmich, C. (2015). The water-energy-food security nexus through the lenses of the value chain and the institutional analysis and development frameworks. *Water Alternatives*, 8(1), 735–755.

Weise, E. (2020). Wind energy gives American farmers a new crop to sell in tough times. In *Elizabeth Weise*. <https://www.usatoday.com/story/news/nation/2020/02/16/wind-energy-can-help-american-farmers-earn-money-avoid-bankruptcy/4695670002/>

Welsch, M., Hermann, S., Howells, M., Rogner, H. H., Young, C., Ramma, I., Bazilian, M., Fischer, G., Alstad, T., Gielen, D., Le Blanc, D., Röhrl, A., Steduto, P., & Müller, A. (2014). Adding value with CLEWS – Modelling the energy system and its interdependencies for Mauritius. *Applied Energy*, 113, 1434–1445.
<https://doi.org/10.1016/j.apenergy.2013.08.083>

Weyant, J. (2017). Some Contributions of Integrated Assessment Models of Global Climate Change. *Review of Environmental Economics and Policy*, 11(1), 115–137.
<https://doi.org/10.1093/reep/rew018>

Wheeler, T., & von Braun, J. (2013). Climate Change Impacts on Global Food Security. *Science*, 341(6145), 508–513. <https://doi.org/10.1126/science.1239402>

Whittemore, D. O., Butler Jr, J. J., Wilson, B. B., Butler, J. J., & Wilson, B. B. (2016). Assessing the major drivers of water-level declines: New insights into the future of heavily stressed aquifers. *Hydrological Sciences Journal*, 61(1), 134–145.
<https://doi.org/10.1080/02626667.2014.959958>

Wilensky, Uri. (1999). NetLogo (and NetLogo User Manual). In *Center for Connected Learning and Computer-Based Modeling, Northwestern University*.
<http://ccl.northwestern.edu/netlogo/>

World Bank. (1998). *India—Water resources management sector review: Groundwater regulation and management report* (p. 118). The World Bank.
<http://documents.worldbank.org/curated/en/372491468752788129>

WWAP (World Water Assessment Programme). (2012). The United Nations World Water Development Report 4: Managing Water under Uncertainty and Risk. In *UN Water Report* (p. 380). The United Nations Educational, Scientific and Cultural Organization. <https://unesdoc.unesco.org/ark:/48223/pf0000215644>

Xiarchos, I. M., & Vick, B. (2011). *Solar Energy Use in U.S. Agriculture Overview and Policy Issues* (pp. 1–86). U.S. Department of Agriculture.

https://www.usda.gov/oce/reports/energy/Web_SolarEnergy_combined.pdf

Yao, Y., Martinez-Hernandez, E., & Yang, A. (2018). Modelling nutrient flows in a simplified local food-energy-water system. *Resources, Conservation and Recycling*, 133(February), 343–353. <https://doi.org/10.1016/j.resconrec.2018.02.022>

Zaveri, E., Grogan, D. S., Fisher-Vanden, K., Frolking, S., Lammers, R. B., Wrenn, D. H., Prusevich, A., & Nicholas, R. E. (2016). Invisible water, visible impact: Groundwater use and Indian agriculture under climate change. *Environmental Research Letters*, 11(8), 84005. <https://doi.org/10.1088/1748-9326/11/8/084005>

Zhang, Y., Wang, Y., & Niu, H. (2019). Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. *Science of the Total Environment*, 656(19), 373–387.

<https://doi.org/10.1016/j.scitotenv.2018.11.362>