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Abstract 18 

CONTEXT: The larger scale perspective of Integrated Assessment (IA) and smaller scale 19 

perspective of Impacts, Adaptation, and Vulnerability (IAV) need to be bridged to design long-20 

term solutions to agricultural problems that threaten agricultural production, rural economic 21 

viability, and global food supplies. FEWCalc (Food-Energy-Water Calculator) is a new freeware, 22 

agent-based model with the novel ability to project farm incomes based on crop selection, 23 

irrigation practices, groundwater availability, renewable energy investment, and historical and 24 

projected environmental conditions. FEWCalc is used to analyze the interrelated food, energy, 25 

water, and climate systems of Finney County, Kansas to evaluate consequences of choices 26 

currently available to farmers and resource managers. 27 

OBJECTIVE: This article aims to evaluate local farmer choices of crops and renewable energy 28 

investment in the face of water resource limitations and global climate change. Metrics of the 29 

analysis include agricultural and renewable-energy production, farm income, and water 30 
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availability and quality. The intended audience includes farmers, resource managers, and scientists 31 

focusing on food, energy, and water systems. 32 

METHODS: Data derived from publicly available sources are used to support user-specified 33 

FEWCalc input values. DSSAT (Decision Support System for Agrotechnology Transfer) with 34 

added arid-region dynamics is used to obtain simulated crop production and irrigation water 35 

demand for FEWCalc. Here, FEWCalc is used to simulate agricultural and energy production and 36 

farm income based on continuation of recent ranges of crop prices, farm expenses, and crop 37 

insurance; continuation of recent renewable-energy economics and government incentives; one of 38 

four climate scenarios, including General Circulation Model projections for Representative 39 

Concentration Pathway 8.5; and groundwater-supported irrigation and its limitations. 40 

RESULTS AND CONCLUSIONS: A 50-year (2018-2067) climate and groundwater availability 41 

projection process indicates possible trends of future crop yield, water utility, and farm income. 42 

The simulation during more wet years produces high crop production and slower depletion of 43 

groundwater, as expected. However, surprisingly, the simulations suggest that only the Drier 44 

Future scenario is commercially profitable, and this is because of reduced expenses for dryland 45 

farming. Although simulated income losses due to low crop production are ameliorated by the 46 

energy sector income and crop insurance, the simulation under climate change still produces the 47 

worst annual total income.  48 

SIGNIFICANCE: FEWCalc addresses scientific, communication, and educational gaps between 49 

global- and local-scale FEW research communities and local stakeholders, affected by food, 50 

energy, water systems and their interactions by relating near-term choices to near- and long-term 51 

consequences. This analysis is needed to craft a more advantageous future. 52 
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Highlights 58 

● Crop production and water use results from the DSSAT model with arid regions package 59 

● ABM adds renewable-energy, water quantity and quality, climate change, and farm 60 

economics 61 

● FEWCalc enables users to relate current choices to near- to long-term implications 62 

● Intuitive GUI makes FEWCalc accessible to non-technical stakeholders 63 

1. Introduction 64 

Small towns and rural (STAR) agricultural communities produce much of the food for an 65 

increasingly urban world. Yet they face serious problems such as declining populations, increasing 66 

challenges resulting from disadvantageous changes in farm economic conditions, and exacerbating 67 

climatic conditions. Many STAR communities in the USA have been diversifying their economies 68 

over the past 50 years in efforts to sustain their viability (Bureau of Economic Analysis, 2020). 69 

Increasingly, they are taking advantage of their wide open, low density areas to diversify into 70 

renewable energy production. Yet the expertise needed to consider such alternatives is largely 71 

unavailable to many stakeholders. 72 
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FEWCalc (Food-Energy-Water Calculator) makes expertise accessible to local 73 

stakeholders whose decisions will lead their communities into more viable futures by enabling 74 

clearer understanding of tradeoffs and possibilities. This introduction briefly reviews other 75 

attempts to create similar models and the systems included in FEWCalc, including climate change, 76 

water resource degradation and depletion, renewable energy opportunities, and public policy 77 

priorities. It then briefly outlines how FEWCalc fits into two broad approaches to research on food, 78 

energy, and water system decision-support capabilities. 79 

The linkage of the FEW system has been studied and conducted mostly at the academic 80 

level using different approaches and aspects (Endo et al., 2017). For example, some FEW studies 81 

previously focused on land use optimization (Nie et al., 2019), nutrient flow (Yao et al., 2018), 82 

environmental security for livelihood (Biggs et al., 2015), food-energy tradeoff (Cuberos Balda & 83 

Kawajiri, 2020), and water-energy-food production and consumption (Guijun et al., 2017) using 84 

distinct analytical tools such as MATLAB Simulink, crop models, and agent-based models. Most 85 

previous works have not connected all three FEW components together with other variable factors 86 

(e.g., climate projection and economics). Some of the more developed efforts at simulating all or 87 

part of food-energy-water systems are CLEWS (Climate, Land, Energy, Water and Soil) (IAEA, 88 

2009; Villamayor-Tomas, 2015; Welsch, 2014), WEAP (Water and Energy Assessment Program) 89 

(Stockholm Environmental Institute, 2020), and ITEEM (Li, 2021). FEWCalc represents a broader 90 

set of options than these alternatives and is open-source freeware, readily available on GitHub to 91 

serve as a foundation for future development. 92 

Climate change is apparent through surface rising temperatures and historically extreme 93 

weather conditions that are becoming more frequent (Campbell, 2020; Lesk et al., 2016). Climate-94 

change driven increases in water and food insecurity pose emerging and long-term challenges. 95 

Increasing temperatures are already increasing crop water requirements and shifting precipitation 96 

patterns and may directly affect global food supply quantity and quality going forward (Dore, 97 

2005; Li et al., 2019; Wheeler & von Braun, 2013; Zhang et al., 2019). Moreover, shifting 98 

regulations and restrictions on carbon emissions may alter the menu of available adaptation 99 

options. FEWCalc enables users to evaluate the impact on agricultural production of climate 100 

change by choosing future General Circulation Model (GCM) projections and other future climate 101 

scenarios. 102 
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Water scarcity is an immediate and enduring challenge in many regions, which can in part 103 

be addressed with groundwater reserves. Irrigated areas currently produce 30-40% of the world’s 104 

food, and 70% of global water withdrawals are for agriculture (FAO, 2014; Kovda, 1977; WWAP, 105 

2012). Farmers and policy makers in some regions are recognizing the need to collaborate to 106 

extend the usable lifetime of their local water resources by reducing irrigation rates (Hardin, 1968; 107 

Kansas Department of Agriculture, 2021; California Water Boards, 2021). Groundwater is 108 

important: for example, in China’s dry northern region, groundwater accounts for as much as 70% 109 

of irrigation in some locations (Calow et al., 2009). In India, it accounts for 70-80% of the value 110 

of irrigated production and supports 90 million rural households (World Bank, 1998; Zaveri et al., 111 

2016). Groundwater from the Central Valley aquifer of California and the High Plains aquifer 112 

(HPA) supply as much as 16% and 30% of irrigation water in the entire USA (Dieter et al., 2018; 113 

Maupin, 2018; Maupin & Barber, 2005). FEWCalc includes irrigation derived from groundwater 114 

and the generally hidden and delayed effect of declining groundwater on agricultural production. 115 

Producing wind and solar energy could contribute to the diversification and viability of 116 

STAR communities’ economy in three principal ways. (1) Renewable energy exported to existing 117 

load centers has been profitable for farmers participating in land-lease programs with power 118 

producers (Weise, 2020). (2) FEWCalc is designed to investigate how the direct investment by 119 

rural landowners in renewable energy production changes their economic situation (Epley, 2016; 120 

Hill et al., 2017; Phetheet et al., 2019). Although in the area used to demonstrate FEWCalc wind 121 

turbines tend to be more profitable than solar panels (Fu et al., 2017), both technologies are 122 

included in FEWCalc to generalize its utility. (3) More affordable local renewable energy could 123 

be used to attract and retain businesses to create and grow jobs (Hill et al., 2019). FEWCalc 124 

addresses option 2 and provides a foundation for option 3. 125 

Effective policies supporting current and evolving local, regional, national initiatives in the 126 

food, energy, and water nexus are imperative to ensure the sustainable viability of STAR 127 

communities. These will be influenced by institutional, economic and socio-cultural attitudes, and 128 

subjective perceptions (Cash et al., 2006). Farm income, as a major income in STAR communities, 129 

can be affected by these policies. To this end, FEWCalc simulates the effects of crop insurance 130 

and selected renewable energy incentive programs on farm incomes. 131 
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As a tool focused on how decision-makers perceive the viability of their communities or 132 

businesses, FEWCalc bridges the gap between two dominant research themes — Integrated 133 

Assessment (IA), and Impacts, Adaptation, and Vulnerability (IAV) (Table 1). The themes have 134 

been converging as the value of integrated, multi-scale approaches to climate research has become 135 

apparent (Absar & Preston, 2015; de Bremond et al., 2014; Huber et al., 2014; Kraucunas et al., 136 

2015; Rosenzweig et al., 2014). The standardized, multi-scale Shared Socioeconomic Pathways 137 

(SSPs) scenario framework (O’Neill et al., 2014) relates economic and technological choices to 138 

carbon emissions, and is thus closely related to Representative Concentration Pathways (RCPs) 139 

levels used in FEWCalc. FEWCalc supports carbon emission mitigation through developing 140 

greater local familiarity with renewable energy production and greater research-level familiarity 141 

with the challenges of local stakeholders. Fig. 1 shows how the major components of the FEW 142 

system form a natural and human system of concern to IA and IAV, showing how they can be 143 

thought of as a collection of heterogeneous and autonomous individuals interacting cooperatively 144 

and competitively with one another and the environment (Bert et al., 2015; Hu et al., 2018). 145 

Table 1. Summary IA and IAV approaches to technology and policy analysis. 146 

 Description IA (Integrated Assessment) IAV (Impacts, Adaptation, and Vulnerability) 

Typical topic Climate policy impacts1 Climate change effects and responses2 

Geographic Scale Regional (U.S. State) – Global Local (town, farm, ecosystem) 

Temporal Scale Long-term up to ~100 years Few years or less 

Scenario (assumptions about the 
future) and Policy (adaptations) 
Development 

Global scale, cross-cutting, 
generalized, little inclusion of 
stakeholder values. 

Narrower focus, more detailed, often has explicit 
representations of stakeholder values. 

Interdisciplinary Focus Broad Narrow 

 

Perspective 

General impacts and adaptation 
possibilities. 

Projection/qualitative results.  

Specific impacts and adaptation measures.  

Prediction and quantitative results. 

1Weyant, (2017). 2Absar & Preston, (2015) and van Ruijven et al., (2014). 147 
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 148 

Fig. 1. The linkages between natural and human systems relevant to FEWCalc (modified from K. 149 

Rogers, East Carolina University, written communication, 2017; NSF [National Science 150 

Foundation], 2018). LEMA (Local Enhanced Management Area) is a governance structure used 151 

in the state of Kansas, USA, to limit water use from a depleted aquifer. 152 

Unresolved scale and human connection issues still limit the utility and relevance of IA 153 

and IAV models (Ericksen, 2008; Ericksen et al., 2009; Vervoort et al., 2014). For example, 154 

national policies could be rendered ineffective for want of local-level adaptation and mitigation 155 

options, and local-level efforts could be stymied by national policy or global market conditions. 156 

Climate, weather, hydrology, politics, energy, and economics are all important and interact across 157 

multiple societal scales, including jurisdictional, institutional, and managerial ones (Cash et al., 158 

2006; Allan et al., 2015; Endo et al., 2017), so that FEWCalc exists within the context of national- 159 

and global-scale dynamics (Ericksen et al., 2009). Proper support and coordinated action are 160 

required for successful outcomes such as those achieved by Sustainable Groundwater Management 161 

Act (SGMA) in California and the LEMAs in Kansas. The FEWCalc model can be thought of as 162 

addressing three key needs identified by Vervoort et al. (2014): (1) engage diverse stakeholders 163 

across multiple levels; (2) move beyond analysis of single interventions towards system-wide 164 

measures that act across multiple spatial, temporal, and geographic scales; and (3) develop long-165 

term capacity for collaborative decision making. 166 

FEWCalc is an agent-based model (ABM) constructed using NetLogo (Hu et al., 2018; 167 

Tisue & Wilensky, 2004; Wilensky, 1999), designed to integrate complex real-world systems and 168 
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evaluate future policy decisions (Anderson & Dragićević, 2018; Guijun et al., 2017). ABMs have 169 

been used in business (Forrester, 1971; Morecroft, 2015), urban problems (Sterman, 2000), and 170 

environmental evaluations (Meadows, 2008) and recently for the FEW nexus (Al-Saidi & Elagib, 171 

2017; Memarzadeh et al., 2019; Schulterbrandt Gragg et al., 2018). Most of this recent research 172 

has been conceptual or focused on regional applications. Focus on individual stakeholders is rare 173 

(Ravar et al., 2020; Shannak et al., 2018) and mostly limited to urban systems (Bieber et al., 2018; 174 

Guijun et al., 2017). FEWCalc is novel and contributes to the emerging ABM literature using the 175 

NetLogo platform. 176 

The purpose of this study is to develop a scientific tool able to represent a real-world 177 

complex system composed of agriculture, energy production, and water use under complicated 178 

climate and economic conditions, and use it to reveal unexpected interactions within this system 179 

of systems that are important to stakeholders. The rest of this article, along with online appendices 180 

A-D, describes the methods and data using in FEWCalc and its utility in a scientific investigation 181 

of the roles played by water scarcity and climate change in the productivity and economics future 182 

of a typical STAR community 183 

2. Methods 184 

In this section, the FEWCalc workflow is briefly introduced, and FEWCalc components 185 

and related equations are described using a Finney County, Kansas test case to provide motivation 186 

and examples. The Decision Support System for Agrotechnology Transfer (DSSAT) model (Araya 187 

et al., 2019; Jones et al., 2003; Jones et al., 2017a, 2017b; Sharda et al., 2019) was chosen for the 188 

agrosystems simulations based on its capabilities, availability, and feasibility. Selected DSSAT 189 

and FEWCalc inputs, outputs, and equations are listed here; more detail is provided in appendices 190 

A, B, and C. Default values for user-controlled FEWCalc variables are provided in Table D.1. As 191 

programmed, all costs are in US dollars.  192 

2.1 Workflow and Case Study from the High Plains Aquifer, USA 193 

The workflow of FEWCalc with inputs from DSSAT is shown in Fig. A.1, including 194 

components representing agriculture, energy, and water. Climate data and crop choices are entered 195 

using the weather data DSSAT input or WeatherMan (Pickering et al., 1994). DSSAT is then 196 

executed to provide input needed for FEWCalc via files in a comma-separated values format (CSV 197 
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files). The final results are presented in graphs as shown in Fig. A.1. Selected graphs are presented 198 

in the Results section of this article. The time discretization of DSSAT is one day. FEWCalc time 199 

is incremented annually and simulation length is defined by the user, with simulations of 60 to 90 200 

years being common. 201 

FEWCalc is developed and tested using data from Finney County, Kansas, USA (Fig. 2). 202 

The High Plains aquifer (HPA) consists of the Ogallala aquifer and its overlying aquifer units. The 203 

area’s water problems are typical of arid agricultural regions around the world: Large-scale 204 

irrigation over many decades has depleted groundwater resources and produced now dry irrigation 205 

wells (Buchanan et al., 2015). The region’s potential to develop renewable energy, its declining 206 

water resources, and its rich, 70-year-long time series of historical data makes it an ideal candidate 207 

for exploring opportunities to sustain farmers’ economic well-being under alternative agricultural 208 

and energy production choices using FEWCalc. 209 

 210 

Fig. 2. (a) Average annual wind speed map for the Continental USA (modified from NREL, 2011). 211 

Finney County has very high average wind speeds (shown here) and moderate solar energy 212 

supplies (not shown). (b) High Plains aquifer water-level changes (modified from McGuire, 2014). 213 

DSSAT is tested by comparing calculated values for crop production and irrigation to 214 

observed field data (see Appendix A) obtained from the United States Department of Agriculture’s 215 

(USDA) National Agricultural Statistics Service (NASS), Kansas State University’s Department 216 

of Agronomy, and the Kansas Department of Agriculture (KDA). FEWCalc is tested through 217 

comparisons with values obtained through the literature and expert elicitation.  218 
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2.2 Weather, Climate, and Projections 219 

Daily weather data for air temperature, precipitation, and solar radiation are used as input 220 

to DSSAT (Tsuji et al., 1994) and acquired as described in Appendix A. 221 

A 10-year period from 2008 to 2017 is used as the historical base period for this work. This 222 

10-year period is presented in the context of data since 1950 in Fig. 3, in which wet and dry periods 223 

are identified using the Palmer Drought Severity Index (PDSI) (Palmer, 1965). The base period 224 

was chosen because a generally complete set of weather and agricultural data is available, and 225 

because wet, moderate, and dry years are included in that period of time (see Fig. 3). This 226 

variability is used to create future climate scenarios. 227 

The four 60-year long scenarios used to demonstrate FEWCalc are listed in Table 2. All 228 

scenarios have the same 10-year (2008 to 2017) temperature, precipitation, solar radiation, and 229 

agricultural price conditions, and differ for the following 50 years. Scenario 1, Repeat Historical 230 

tests the time progression in FEWCalc, and allows users to focus on the impact of groundwater 231 

declines and energy production. Scenarios 2 and 3 are dominated by wetter or drier years to create 232 

wetter and drier “futures”. The weather data are chosen from the 10-year base set of years. So, for 233 

example, if those 10 years are numbered 1, 2, …, 10, years 8, 9, and 10 are wet (Fig. 3). Going 234 

forward, 7 of each 10 years will be selected from the three wet years. The other 3 of each 10 years 235 

are chosen from the 4 moderate base years (years 1, 2, 3, and 7). The random sequence of moderate 236 

to wet years results in increased crop production with no significant loss of yield. Scenario 4 is 237 

based on 20 General Circulation Model projections out to 2098 (Fig. A.5), though only the values 238 

through 2067 are used in the FEWCalc demonstration provided in this work. Projected crop prices 239 

are described in Section 2.3.2. 240 

 241 
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Fig. 3. Annual average PDSI, monthly cumulative precipitation deviation, and quarterly 242 

temperature deviation data from January 1950 to September 2019. Monthly and quarterly base 243 

values are listed in Table A.13. The 2008-2017 base period used in this work is highlighted. The 244 

axes for precipitation and temperature deviation are scaled so that conditions producing drought 245 

(high temperature and low precipitation) produce downward pointing bars of temperature 246 

deviation and downward sloping trend of cumulative precipitation deviation. 247 

Table 2. Simulation scenarios used to represent climate conditions in DSSAT for the 50-year 248 

projection period (2018-2067) that follows the 2008-2017 historical base period in the FEWCalc 249 

simulations. 250 

Name DSSAT Temporal Progression of T, P, and S1 

Scenario 1. Repeat Historical Repeat conditions from 2008 to 2017 for all 50 years of the projection period. 

Scenarios 2 & 3. Wetter/Drier 

Future 

Use more wet or dry years from 2008 to 2017, respectively to create a correlated 

random 50-year projection. The Wetter Future is similar to this area in the 1990s; 

the Drier Future is similar to this area in the 1950s. 

Scenario 4. GCM-simulated 

RCP8.5 T, P, and S Changes2 

Apply GCM-simulated climate for the 50-year projection period 

1T, temperature, in degrees Celsius; P, precipitation, in inches per year; S, solar radiation, in watts per square meter. 251 
2GCM, General Circulation Model. 252 

Scenario 4 uses DSSAT results in which runs use projected air temperature, precipitation, 253 

and solar radiation from 20 downscaled GCMs to represent years 2008 to 2067 (Taylor et al., 2009, 254 

2012). Results from the 20 DSSAT runs are averaged and used in FEWCalc. RCP 4.5 and 8.5 255 

results are available in FEWCalc — see Appendix B for a discussion of RCP. FEWCalc results 256 

using the RCP 4.5 and 8.5 scenarios are compared in Phetheet et al. (2021). Results from the more 257 

severe RCP 8.5 are presented in this article. 258 

2.3 Calculations for Agriculture  259 

FEWCalc starts with the assumption that the decision maker is already in business as a 260 

farmer and, for the demonstration provided here, produces crops in the Garden City area of Finney 261 

County, Kansas. FEWCalc envisions a farmer considering investments in renewable energy as a 262 

diversification strategy to improve farm incomes, which have been extremely variable in the last 263 

decade. The environmental conditions and resources are as described in Sections 2.2 and 2.5. 264 

Therefore, FEWCalc’s focus is on farm operations and renewable-energy investment decisions. 265 

Methods for simulating crop production, crop net income, and crop insurance are presented below. 266 
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To communicate results to stakeholders, this article presents both English and metric units. DSSAT 267 

uses metric units. In this section, metric units or appropriate conversion factors are listed to 268 

facilitate cross-referencing to DSSAT results. 269 

2.3.1 Crop Production 270 

The crops commonly produced in Kansas are corn, winter wheat, soybeans, and grain 271 

sorghum, all of which FEWCalc incorporates into the simulations (Table A.2). Fig. A.3 shows 272 

Kansas crop production, planted acres, crop prices, and, to represent expenses, gasoline prices in 273 

the USA from 1866 to 2019. The increase in productivity per acre is apparent by comparing Figs. 274 

4a and 4b. Although soybeans are generally not produced in Finney County due to unfavorable 275 

soil and heat conditions, they are retained in the software because it is a common crop throughout 276 

the USA Midwest, and hence allow for other locations to use FEWCalc without major changes. 277 

DSSAT simulations are conducted using a one-day time step. Results are accumulated to 278 

produce annual results for FEWCalc. Datasets are prepared using DSSAT built-in software 279 

programs XBuild and SBuild (Fig. A.1). XBuild allows users to specify management options such 280 

as cultivars, planting date, and plant population. SBuild assembles physical and chemical soil data. 281 

The soil database available in DSSAT was developed by the International Soil Reference and 282 

Information Centre for the project “World Inventory of Soil Emission Potentials (WISE)”. The 283 

WISE database is one of the most comprehensive soil databases, with samples well distributed 284 

globally (Gijsman et al., 2007).  285 

In this work, the DSSAT Seasonal Analysis is used and simulations represent individual 286 

growing seasons. In this mode, by default, DSSAT starts each spring with soil water content at 287 

field capacity (SDUL). However, for this area, drier conditions are likely. As such, for this study, 288 

DSSAT is started each year with soil water content equal to (SDUL + SLLL)/2, where SLLL is 289 

the water content at the wilting point. The simulations are started one week before planting to 290 

allow the precipitation record to affect soil moisture at planting. 291 

The long periods of interest in this work were simulated using the DSSAT Biophysical 292 

Analysis part of the Seasonal Analysis option. Outputs such as harvest yield, applied irrigation, 293 

and applied fertilizer are calculated based on parameters defined in Table A.2; the values were 294 

chosen based on the cited references. 295 
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2.3.2 Crop Income After Variable Costs 296 

Revenue from crop production is the product of crop output and price per acre, and acres 297 

planted. Because farmers often produce more than one crop per year, production costs may be 298 

shared across more than one crop. Therefore, net farm income from crop production is the 299 

difference between gross revenue from crop production less total variable costs. Future crop yield, 300 

crop prices, and input costs are all uncertain (Figs. 4a and 4c). While production variability may 301 

be attributed to weather and other production vicissitudes, price variability is driven by global 302 

market conditions and trade and other policies (USDA, 2020). No attempt to project this process 303 

is made in FEWCalc since no individual farmer or group of farmers influence prices. However, 304 

the Midwest USA is a large enough producer of global corn and sorghum to affect global prices 305 

(USDA, 2020). This means higher supplies during good weather years often depress prices and 306 

vice versa. Although western Kansas is a major wheat production area in the USA, it is not large 307 

enough to influence global prices. These conditions define how prices are treated in FEWCalc. 308 

The FEWCalc base period (2008-2017), has three wet, three dry, and four average years, 309 

and is used to create projected climate conditions as described in Section 2.2. For corn and grain 310 

sorghum, the following procedure is used. In Scenario 1, the base period prices along with the 311 

climate data (temperature and precipitation) are repeated in sequence five times to create the 50-312 

year projections. For Scenarios 2 and 3, the base period is used to define 10 sets of annual climate 313 

and crop-price data and selections are made from this 10-member set (with replacement) to create 314 

wetter and drier futures. For Scenario 4, prices are assigned based on precipitation: Less than 17 315 

inches of precipitation is considered a dry year and price is selected randomly from one of the 316 

three dry years; 20 inches or more is treated as a wet year and price is selected randomly from one 317 

of the three wet years. 318 

For wheat, local conditions do not dominate world crop prices, so prices do not remain 319 

associated with the local climate data. The 10 annual prices from 2008-2017 are assigned to each 320 

year for the period 2018-2067 randomly and independently of the climate data. 321 

Total annual crop income after variable expenses is computed as:  322 

IncomeC_t = ∑ i [(pi_t × qi_t) - wi_t] i = 1, 2, …, N (1) 323 
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Where IncomeC_t is crop income after variable expenses earned for each year t in US dollars per 324 

acre, and i identifies an acre; pi_t is the market price per bushel, qi_t is the yield (bushels/acre from 325 

DSSAT) and wi_t is the variable production costs per acre for the crop planted on acre i. The items 326 

making up the variable production costs are irrigation, fertilizer, herbicide, pesticide, labor, rent, 327 

and crop insurance; details are listed in Tables A.5 to A.8. As noted in Table A.7, six of the 328 

included costs are not strictly variable costs. They are included to reflect what is thought to be a 329 

fair representation of operating costs for irrigated and unirrigated farming. 330 

2.3.3 Crop Insurance 331 

Agricultural farm income support takes many forms which may or may not improve 332 

financial stability (Mishra & Cooper, 2017). FEWCalc includes the option of insurance for crop 333 

yield. General characteristics of crop-yield insurance are described by Edwards (2011) and RMA 334 

(2020). Crop-yield insurance is purchased to protect against potential losses of crop yield from 335 

natural disasters, and especially droughts. In practice, insurance companies will increase premiums 336 

if indemnities are high, so over the long term, farm incomes will not be increased by crop 337 

insurance. However, the insurance does mitigate income declines in exceptionally bad years. In 338 

FEWCalc, the crop prices and premiums from the 2008-2017 base period are maintained, and years 339 

and values of indemnities are noted. How crop insurance is represented in FEWCalc is described 340 

in Appendix C, Eqs C.1 to C.4. 341 

2.4 Calculations for Renewable Energy 342 

Renewable energy calculations for wind turbines and solar panels are calculated in 343 

FEWCalc. Users control the number and installed capacity of wind turbines and solar panels, and 344 

their degradation rates, lifespan, capital costs, and tax credits. 345 

The version of FEWCalc presented here considers farmer-owned energy production 346 

facilities that serve both local electric loads and electricity sale to the grid. These are not 347 

represented explicitly, the FEWCalc input is simply the resulting average value obtained from the 348 

electricity produced. Section 2.4.1 describes this process. 349 
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2.4.1 Energy Net Income 350 

Energy net income for year t, IncomeE_t, is the sum of total net income from wind 351 

production (Eq. C.11) and total net income from solar production (Eq. C.21): 352 

IncomeE_t = IncomeW_t + IncomeS_t = Energy_valuet × (Mw_t + Ms_t) (2) 353 

Calculating IncomeW_t and IncomeS_t (income from wind and solar energy for year t) 354 

requires Energy_valuet, the monetary value of all megawatt-hours (MWh) of electricity produced, 355 

and used in Eqs. C.13 and C.23. the Mw_t + Ms_t term is the power output in MWh from wind and 356 

solar for year t. Users can control the average value obtained for that electricity. Usually, this value 357 

should be greater than the wholesale price of electricity, which in Kansas and surrounding states 358 

is presently (2020) US$20 to US$40/MWh. Higher values would be expected because some of the 359 

electricity is worth retail because it allows the generator to avoid retail purchase of energy to, for 360 

example, run electric water pumps, or qualify for net-metering. In the Kansas region, retail is 361 

presently US$100 to US$130/MWh. In addition, with some restrictions, farmers can enter into 362 

Power Purchase Agreements (PPAs) to sell electricity at prices that tend to be between wholesale 363 

and retail prices. While electricity prices tend to be less volatile than crop prices, they are still 364 

difficult to predict. FEWCalc uses a default Energy_valuet of US$38/MWh. 365 

The effects of equipment depreciation on net income are simulated using a CSV file that is 366 

read by FEWCalc and defines the percent of installed cost to be depreciated, the depreciation taken 367 

each year, and the tax rate of 20% to be applied (see Appendix A). This deduction may require a 368 

third-party financial partner. This tax savings can be used to increase farmer income or reduce the 369 

loan to cover the renewable energy costs. 370 

In Eqs. C.5 and C.15, installed costs for energy production are financed over a period 371 

defined by the user as a fraction of the life of the equipment (NyearsW or NyearsS) and an interest 372 

rate (APR) that is also defined by the user. 373 

2.4.2 An Overview of Energy Production and Regulatory Environment 374 

The regulatory environment of renewable energy, including wind and solar, are complex 375 

and evolving. Here, we provide a few comments to establish some context for the range of solar 376 

and wind energy resources that FEWCalc supports. 377 
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Regulation of solar production can depend on capacity, and policy is not well established. 378 

Commercial size installed solar capacity is about 1 MW in Kansas (KCC, 2019); capacities under 379 

3MW are commonly classified as small (Green Coast, 2019). States with less total solar capacity 380 

tend to have smaller installations: in the three lowest ranked states (including Kansas) solar 381 

installations for agricultural use average around 0.0004 MW (Xiarchos & Vick, 2011). In 2019, 382 

Kansas had 47 MW of installed solar (SEIA, 2020a). In contrast, neighboring Missouri, with less 383 

solar potential but more solar-friendly policies, had 258 MW of installed solar capacity (SEIA, 384 

2020b). 385 

FEWCalc supports the installation of up to 2.4 MW of solar installed capacity, which 386 

would require 8,000 solar panels with a combined area of 16.6 acres (6.7 hectares) (Ong et al., 387 

2013). In southwest Kansas, where an average peak sun hour (PSH) is 5.6 hours per day, Eq. C.21 388 

suggests that these solar panels would produce about 4,906 MWh of electricity per year. Eq. C.11 389 

indicates that it would require about 0.7 2-MW wind towers and 0.9 acres of land (0.4 hectares) to 390 

produce the same output per year (Denholm et al., 2009). The net revenue gained by this land use 391 

would need to be compared with crop revenues as part of deciding whether to make the renewable 392 

energy investment. FEWCalc provides the results needed for the user to produce such a 393 

comparison. 394 

2.4.3 Financial Assumptions — Energy Equipment Tax Incentives and Depreciation 395 

Tax incentives and equipment depreciation can produce large tax deductions that exceed 396 

what some owners can deduct from their taxes. It can thus be advantageous to contract with a third-397 

party financial partner, called a Tax Equity Investor, who can claim the credit and return much of 398 

the value to the owner, depending on the agreement made; typical cost is 6-7% (M. Gilhousen, 399 

written communication, 2020). In FEWCalc, use of the tax incentives (ITC or PTC; see Eqs. C.13, 400 

C.15 and C.23) and depreciation often imply that such third-party arrangements are involved. The 401 

transaction fee is not included, and the entire value of any tax credit and deduction is applied to 402 

the owner as income in the year it is incurred. It could be accumulated to defray the cost of updating 403 

equipment, but FEWCalc does not provide for this. 404 
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The applicability of ITC and PTC has changed over time and differs with installed capacity 405 

and whether wind or solar equipment is installed. FEWCalc includes an adjustable range of 406 

options. 407 

2.5 Calculations for Water 408 

The only water use represented in FEWCalc is irrigation to support the farm production 409 

simulated using DSSAT. The current version of FEWCalc satisfies all water demands using 410 

groundwater, and it is assumed that dryland farming is the default production method when 411 

groundwater levels are too low. Simulation of crop production and irrigation demand in the arid 412 

region considered in this work required modification of the distributed version of DSSAT, and this 413 

modification is described below. This is followed by a description of how DSSAT results are used 414 

in DSSAT to simulate impacts on groundwater levels and surface-water quality.  415 

2.5.1 DSSAT Irrigation Calculation for Arid Regions 416 

Irrigation requirements and frequency of application vary as a function of crop type, crop 417 

management, soil properties, and weather conditions (Salazar et al., 2012). In DSSAT, the default 418 

irrigation calculations provided too much water and restrictions were needed to match measured 419 

water-use data. This was addressed by using the fixed amount automatic mode in DSSAT, as 420 

described by I. Kisekka (University of California, Davis, written communication, 2019) and as 421 

used by Sharda et al. (2019). The approach is described in Appendix C. 422 

2.5.2 Calculating Groundwater Levels Based on Water Use 423 

In FEWCalc, it is assumed that all irrigation water comes from groundwater. The simplest 424 

way to relate the irrigation use per crop area produced from DSSAT to groundwater level change 425 

is to divide by specific yield. However, this neglects spatial changes in specific yield, groundwater 426 

recharge, and other hydrologic processes, and was found to produce unrealistically fast dewatering 427 

of the aquifer. When available, historical data can provide an alternative. Butler et al. (2016) and 428 

Whittemore et al. (2016) show that in parts of Kansas, groundwater declines are linearly related to 429 

total groundwater pumpage and discuss the circumstances under which this would occur. 430 



18 

For FEWCalc, a two-step process was developed using two linear regressions and reported 431 

Finney County data from B. Wilson (Kansas Geological Survey, written communication, 2019). 432 

The process is described in Appendix A using Fig. A.5. 433 

2.5.3 Nitrogen Concentrations in Surface Water 434 

When nitrogen is applied to fields, a percentage of it remains in the soil until it is moved 435 

into surface-water bodies by large storms (USGS, 1999). In the study area, about 10% of the 436 

applied nitrogen is thought to be retained for silt loam soil and typical soil temperatures during 437 

fertilizer application (Kansas Mesonet, 2017; Sawyer, 2011). Individual storm data are not 438 

available, so nitrogen is moved to surface water in wet and extremely wet years as defined using 439 

PDSI. For Scenario 4, PDSI data are not available, and nitrogen is moved when annual rainfall 440 

exceeds or equals 20 inches. The equations used are presented in Appendix C. 441 

2.6 FEWCalc Interface 442 

FEWCalc’s NetLogo interface (Fig. D.5) is divided into three main areas. From left to 443 

right, the areas include (1) sliders, input boxes, and dropdown menus that allow users to vary 444 

model parameters and control the simulation (see Fig. D.6). All inputs are at default values (Table 445 

D.1) except ITCS is set to 30%. (2) In the center, a NetLogo World area shows circular cultivated 446 

areas, solar panel and wind turbine installations, and groundwater (GW) quantity and surface-447 

water (SW) quality impacts, and a fraction of energy produced from solar and wind (see Fig. D.8). 448 

(3) Eight output plots on the right show FEWCalc results evolving over time. 449 

 In years that production conditions trigger an insurance claim, the text “Ins. Claim” 450 

appears next to the related crop in the World. The indemnity is shown in the lower right graph. 451 

The rust-colored dots are used to represent nitrogen accumulation on fields and its concentrations 452 

in surface water (see Section 2.5.3). Each particle represents 10,000 lb (4,500 kg) of nitrogen. 453 

Groundwater levels vary as irrigation is applied each year as described in Section 2.5.  454 

3. Results 455 

For the results presented here, the input values are those shown in Fig. D.5, except that the 456 

future process is modified for Scenarios 2 through 4. The solar panels occupy about 5.2 acres (2.1 457 

hectares), and a similar area is occupied by the wind turbines (Denholm et al., 2009). 458 



19 

Results comparing the DSSAT simulation with historical results are presented in Section 459 

3.1. The four subsequent sections show results from the four climate scenarios listed in Table 2 460 

and support an analysis of climate impacts on crop income in the context of potential farm energy 461 

capacity development. Finally, Section 3.6 focuses on financial results from all simulations. 462 

3.1 Comparison with Historical Data 463 

Crop production and irrigation water use simulated by DSSAT for 2008 to 2017 are 464 

compared to historical data in Fig. 4. As in Fig. 3, colors based on PDSI are used to identify dry 465 

and wet years. Fig. 4 suggests crop yields and water use are reasonably well represented using 466 

DSSAT, though in some years the differences are substantial (for example, non-irrigated grain 467 

sorghum yield in 2010).  468 

For non-irrigated corn, the simulated yield was unrealistically large during some wet years, 469 

and it was suspected that the plant population per acre was too high. Fig. 4c (top figure) shows the 470 

effects of accounting for the plant population at seeding for corn under dryland farming. In this 471 

work, a plant population of 13,000 plants/acre (3 plants/m2) was used.  472 

 473 

Fig. 4. Comparison of the DSSAT results (solid lines) and historical data (dashed lines) between 474 

2008 and 2017 for corn, wheat, and grain sorghum. (a) Irrigated crop yields, (b) Irrigation water 475 
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demand, (c) Non-irrigated crop yields. (Crop yield data from the Department of Agronomy, 476 

Kansas State University, irrigation data from KDA, and simulated results are in Tables A.4, A.11, 477 

B.1 and B.2). Conversion: 1 bu/ac corn or grain sorghum = 62.77 kg/ha, 1 bu/ac wheat = 67.25 478 

kg/ha, and 1 in = 2.54 cm. Moisture adjustments have been applied (see Table A.10). 479 

3.2 Scenario 1: Repeat 10 historical years to create the 60-year simulation 480 

Six ten-year long base periods of precipitation, temperature, and crop prices are repeated 481 

consecutively to create the 60-year FEWCalc simulation. The repetition allows analysis for a 482 

repeated known historical period; the duplication of results every 10 years indicates that FEWCalc 483 

progresses through time correctly. The only change is when groundwater is depleted toward the 484 

end of the simulation when dryland farming begins. 485 

Energy solutions are the same for all scenarios and are presented with the Scenario 1 486 

results. Income for wind is high in the first year of operation when tax policy allows 50% of capital 487 

costs to be depreciated, though the loan payments continue. Solar income becomes positive after 488 

the loan is paid. 489 

3.3 Scenario 2: Wetter Future 490 

For the wetter future, FEWCalc randomly chooses a greater percentage (70% instead of 491 

the original 30%) of wet years.  492 

3.4 Scenario 3: Drier Future 493 

For the drier future, FEWCalc randomly chooses a higher percentage of dry years (70% 494 

instead of the original 30%). As compared to the wet scenario (Fig. 5b), Fig. 5c shows that crop 495 

production simulated for a dry climate scenario drops in many simulation years.  496 

3.5 Scenario 4: RCP 8.5 Temperature, Precipitation, and Solar Radiation Changes to Create 497 

the 50-Year Future. 498 

In Fig. 5d, the first 10 years of crop production reflect historical (2008-2017) climate 499 

variability, while years 11 to 60 (2018 to 2067) show GCM results that tend to be smoother because 500 

results from 20 GCMs are averaged (Figs. B.1 and B.3).  501 
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 502 

Fig. 5. FEWCalc annual results showing agricultural crop production and net income, energy 503 

production and net income, and crop groundwater irrigation and groundwater level for all four 504 

climate scenarios. Dashed lines in the charts represent significant values for reference. 505 

Abbreviation: bu = bushel, ac = acre, SG = grain sorghum, US$ = US dollar, MWh = megawatt-506 

hour, GW level = groundwater level, Min Aq = minimum available aquifer thickness, and Min + 507 

30 = a level of 30 feet above minimum thickness. Conversion: 1 bu/ac corn or grain sorghum = 508 

62.77 kg/ha, 1 bu/ac wheat = 67.25 kg/ha, 1 in = 2.54 cm, and 1 ft = 0.3 m. 509 

3.6 Total Net Income and Crop Insurance for All Four Scenarios 510 

Total farm net annual income is shown in Fig. 6a; income from crop insurance (the 511 

indemnity) is shown in Fig. 6b. Selected metrics for the four runs are shown in Table 3. Time 512 

series shown for the four scenarios in Fig. 5 are discussed in Section 4 of this article. 513 
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 514 

Fig. 6. (a) Total net income and (b) income from crop insurance. The yield-based crop insurance 515 

tends are indemnified mostly when farming converts from irrigated to non-irrigated (e.g., year 58 516 

in Scenario 3). Plots for Scenarios 1 and 2 are not shown because annual crop insurance 517 

indemnifications were less than $31,000 for Scenario 1 and not indemnified for Scenario 2 518 
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Table 3. Metrics from the four scenarios for 60 years of FEWCalc simulation (2008-2067). All 519 

monetary amounts are in US dollars. 520 

 Scenario 1  

(Repeat Historical) 

Scenario 2  

(Wetter Future) 

Scenario 3  

(Drier Future) 

4Scenario 4  

(GCMs, RCP 8.5) 

 C1 W2 SG3 C1 W2 SG3 C1 W2 SG3 C1 W2 SG3 

Average annual crop yield, bushels/acre4 

   with irrigation 207 71 111 223 75 123 190 71 106 
149 

(39.8) 
72 

(4.7) 
109 

(12.1) 

   without irrigation 133 35 87 - - - 40 23 39 
41 

(6.3) 
31 

(5.2) 
33 

(5.9) 

Insurance claims,  
number of years 

3 2 1 0 0 0 8 10 9 7 5 4 

Dryland farming starts, year 2065 - 2053 2062 

Dryland farming length, years 3 0 15 6 

Average annual net income, US dollars 

   from agriculture -US$14,197 -US$20,194 US$6,818 
-US$61,321 

(46,734) 

   from energy US$109,324 US$109,324 US$109,324 
US$109,324 

(122,970) 

   total  US$95,127 US$89,130 US$116,142 
US$48,003 
(146,563) 

Net Present Value (NPV)5     

   from agriculture -US$0.4M -US$0.5M US$0.1M -US$1.3M 

   from energy US$2.9M US$2.9M US$2.9M US$2.9M 

   total US$2.5M US$2.4M US$3.1M US$1.6M 
1Corn, 2Wheat, and 3Grain sorghum. 4For scenario 4, the standard deviation of the 20 GCM results are presented in parentheses. 5Discount rate is 521 
3.25% (prime rate as of June 2020); FEWCalc agriculture and energy finances are combined; for energy, capital costs are explicitly included for 522 
energy and depreciated over 10 years assuming a tax rate of 20%, for agriculture, capital costs are applied as listed in Table A.7.  523 

Scenario 1, for which 2008-2017 weather continues into the future, results in a depleted 524 

aquifer and dryland farming. The wetter scenario 2 results in irrigation water lasting more than 60 525 

years. The drier scenario 3 results in irrigation lasting only 45 years. The RCP 8.5 scenario 4 shows 526 

marked potential for decreased crop production: With elevated greenhouse gases and temperature 527 

conditions crop incomes are reduced. Renewable energy development is important to continued 528 

viability and, hopefully, would allow new approaches and technologies to buffer the impacts of 529 

climate change.  530 

4. Discussion 531 

FEWCalc is designed to produce the same net income for all scenarios in the base period. 532 

Income differences determined by scenario conditions and parameters begin after the base period 533 

(Fig. 6a). 534 
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In Scenario 1, simulated crop yields for corn and sorghum decline during dry periods (Fig. 535 

4). However, wheat yield remains stable for most simulation years. Wheat and grain sorghum are 536 

rarely profitable, and corn is the most profitable crop under the Repeat Historical scenario (Fig. 537 

5a). Repeated historical irrigation water use results in continuous groundwater level decline. This 538 

continues well known current trends and in the simulation dryland farming in this area starts in 539 

2065 or, year 58 of the simulation. Crop yields decline after switching from irrigated to dryland 540 

cultivation. However, average non-irrigated crop net incomes are higher than irrigated net incomes 541 

because dryland farming expenses for all three crops are low enough to make up for lost crop sales. 542 

For corn and grain sorghum, the tendency of prices to increase globally when the local yields 543 

decline (see Section 2.3.2) could prove even more advantageous than indicated. 544 

For Scenario 2, the 50 years following the base simulation, Fig. 5b shows that crop 545 

production improves and groundwater levels drop more slowly, though they continue to drop. 546 

Dryland farming is not reached, and FEWCalc maintains irrigation operations for the entire 60-547 

year simulation. However, the downward trend makes it clear that a time will come when dryland 548 

farming will be necessary in some years, even with this wetter future simulation. 549 

In Scenario 3, the Drier Future, irrigated corn performed better than other crops, whereas 550 

wheat production is low and remains stable during irrigated periods. Corn net income is high 551 

because of high crop prices during dry years. The increased irrigation required in drier years 552 

accelerates the decline in groundwater levels, and FEWCalc resorts to dryland DSSAT simulations 553 

in year 46 (2053), which is 12 and ≥ 14 years ahead of Scenarios 1 and 2, respectively. 554 

Table 3 shows that dry scenario 3 yields an annual average agricultural sector profit of 555 

US$6,818, which is the only commercially successful scenario for agriculture from the 556 

simulations. Potential crop price increases caused by reduced production in a drier future are not 557 

simulated, and could affect farm profitability and food availability. Because wind energy 558 

production is successful in western Kansas, total net income is mostly supported by the energy 559 

sector. All scenarios, in turn, have projected positive net incomes and post positive net present 560 

value (NPV) using a discount rate of 3.25% for the total farm investment (Table 3). For Scenario 561 

3, farm income with energy sector profit is US$116,142, with an NPV of US$3.1M. Scenario 4, in 562 
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contrast, produces the worst average annual total revenue of US$48,003, with an NPV of 563 

US$1.6M.  564 

In Scenario 4, what is thought to be the most likely future scenario results in wheat and 565 

grain sorghum are rarely profitable. Irrigated corn’s net income is projected to decrease over time 566 

and is considerably worse after simulation year 22 (2029). Dryland farming first occurs in year 55 567 

(2062), causing large crop production decline. These results show a large increase in net income 568 

for all three crops after shifting to dryland farming as costs decline more than income. The reduced 569 

yield would be problematic for the global food system. 570 

The time series in Fig. 5 show the variability in income. For example, in Scenarios 1 and 571 

4, Figs 5a and 5d show that corn, wheat, and grain sorghum lose less money with dryland farming 572 

than during the irrigation period because of decreased farm expenses and support from crop 573 

insurance. For Scenario 2, grain sorghum is the most profitable crop, but it loses money in some 574 

simulation years. 575 

In FEWCalc, insurance claims (Fig. 6b) start during any period of transition to dryland 576 

farming when the current yield drops below the actual production history. There are other common 577 

situations in which crop insurance is indemnified, such as hailstorms and floods, but these are not 578 

represented in FEWCalc. 579 

Figs. 8d, B.1, and B.3 results suggest that, overall, RCP 8.5 global climate change 580 

predictions would need to be met with effective technology changes to address crop production 581 

trends that slowly decline for the future period. It appears that annual variability would make this 582 

trend difficult to discern until reductions are substantial, and history indicates that such obscured 583 

consequences tend to make early remedies difficult to implement. While global analyses suggest 584 

that delaying action exacerbates both the cost and feasibility of mitigation, how these tradeoffs 585 

play out locally requires careful evaluation of how projected changes and uncertainty impact 586 

individual FEW systems, a challenge that FEWCalc enables users to address directly for 587 

agricultural systems. 588 

For all scenarios, installed solar capacity is initially set at about 9% of the total renewable 589 

energy. Higher capital costs and a shorter lifespan make the total cost of solar higher than wind. 590 
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The slow degradation of wind and solar capacity over time is evident in the energy production 591 

graph. Solar power makes money some years because of the simulated tax credit, depreciation, 592 

and loan pay off. Wind power production, on the other hand, is generally profitable, in part because 593 

of a high wind capacity factor in the study area and the simulated 30-year capital lifespan that 594 

makes it easy to cover installation costs. 595 

Overall, the DSSAT results are expected to be adequate for the analysis of renewable 596 

energy development and agricultural performance given potential future climate scenarios for 597 

which FEWCalc was developed. 598 

The scenarios do not include technological, crop management, crop price, or energy 599 

production changes that would be expected to occur. Thus, these results reflect the climate- and 600 

market-related pressures to which such changes would need to respond to maintain crop production 601 

and farm incomes.  602 

5. Conclusions 603 

This work shows how FEWCalc can provide scientific, engineering, and economic 604 

analyses required by stakeholders and policy makers using data from the semi-arid region around 605 

Garden City, Kansas. Here we discuss the two points about FEWCalc and provide some final 606 

comments. 607 

5.1 FEWCalc Utility for Individual, Community, and Policy Maker Decision Support 608 

The FEWCalc results for Finney County, Kansas, illustrate many of the general challenges 609 

of farming. The main crops are subject to considerable price uncertainty, weather conditions can 610 

be harsh and unpredictable, and selected resources have limited availability. As presented here, 611 

FEWCalc is applicable directly to farmers in arid regions of the middle part of the USA interested 612 

in alternative income sources. The design of FEWCalc has broad applicability for agricultural-613 

energy-water system decision support research and education. Applicability to other regions 614 

requires local data, development of a DSSAT model, and adjustment of the FEWCalc input 615 

variable values. Little or no programming would be required. 616 

Distributed energy production requires considerable land and rural areas can provide 617 

important opportunities, depending on local attitudes and local to national policies. FEWCalc 618 
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illustrates major input variables relevant to renewable energy development and how local 619 

economic impact can be evaluated and projected. 620 

Renewable wind energy development in this area was shown to potentially provide 621 

economic opportunities profitable enough to balance farming difficulties and enable the 622 

persistence of agricultural production in the region. In part, this is the consequence of the unusually 623 

useful wind resources available in this area; other areas will have different advantages and 624 

disadvantages that can be evaluated using the framework provided by FEWCalc. 625 

FEWCalc results show that in this area, given current cost and electricity pricing, solar is 626 

only profitable with tax incentives and depreciation. In Kansas, the capital costs of solar energy 627 

(Fu et al., 2017) are challenging to recover given local solar radiance and electricity prices. As 628 

noted previously, an advantage of solar is that it is plentiful on hot summer days when wind 629 

velocities are low and electricity demand increases, largely due to increased use of air conditioning. 630 

In some cases, this makes solar a very useful addition to a given system despite the challenges of 631 

individual profitability. Solar is included in FEWCalc to provide this logistical advantage of solar 632 

energy and because tax incentives and even a slight reduction in the price of solar panels could 633 

make it a profitable alternative. 634 

FEWCalc illustrates how complicated and interacting systems, as they face new 635 

opportunities and challenges — in this case renewable energy, water scarcity, evolving technical 636 

innovations, can be assembled into a reasonably realistic, interesting to manipulate, and 637 

educational graphical interface. Agent-based modeling using the freeware NetLogo is relatively 638 

simple yet flexible enough to perform calculations related to energy, water, nitrate in soils and 639 

surface water, crop insurance, and so on, and integrate results from a separate program — in this 640 

case DSSAT for agricultural production, water demand, and fertilizer application. The FEWCalc 641 

calculations used for energy are expected to be widely applicable. The data-based approach taken 642 

for water is expected to be adaptable to other locations with sufficient data; otherwise, this work 643 

suggests that greater errors are likely if aquifer water-level response is calculated using estimates 644 

of specific yield from pumping wells, a point also noted by Butler et al. (2016) and Whittemore et 645 

al. (2016).  646 
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The crop production DSSAT model served well when combined with local agricultural 647 

expertise and comparison to historical data. The need to use a new irrigation capability designed 648 

for arid regions and the poor performance of soybeans in the region were only recognized and 649 

explained after comparison to historical data and discussions with local agricultural experts. Lack 650 

of these resources would have resulted in substantial errors. 651 

Potential uses of the program not pursued in this work include identifying what thresholds 652 

(e.g., crop price, crop production, expenses) and public policies (e.g., tax incentives) are needed 653 

to produce profitable opportunities for landowners and agricultural communities. Also, adding 654 

technology advances, crop and electricity price changes, and human decision-making 655 

characteristics such as avoidance of risk, maximizing profit, and evolution of policies and 656 

governmental institutions would improve the human interaction aspects of the simulation. 657 

5.2 FEWCalc Impact on IA and IAV Gaps 658 

The gaps between the IA and IAV communities that were summarized in Table 1 can be 659 

broadly categorized as gaps in the geographic and temporal scale, scenario and policy 660 

development, interdisciplinarity, and research perspective. FEWCalc addresses these gaps the 661 

following ways: 662 

1) FEWCalc’s interface shows the clear connection between current decisions and long-663 

term, interdependent, and interdisciplinary consequences for both non-technical 664 

stakeholders and disciplinary specialists. This presentation of information can facilitate 665 

discussion across disciplinary boundaries and between scientists and non-technical 666 

stakeholders. 667 

2) Metrics such as crop production, farm income, groundwater-level change, and nutrient 668 

loading of surface-water bodies, are broadly interesting to many stakeholder 669 

communities across a range of geographic scales and/or topical foci. These metrics can 670 

serve as a common point of reference for interdisciplinary discussions of their 671 

underlying discipline-specific drivers such as climate change, agricultural practices, 672 

and renewable energy policy. For example, Fig. 5, depicting the outcomes under 673 

Scenarios 1 to 4, could serve as the basis for discussions among different stakeholder 674 

communities and become an important focus of communication for topics as wide-675 
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ranging as irrigation practices, climate change impacts and adaptation strategies, 676 

renewable energy, and farm incomes. 677 

3) Help stakeholders at all levels make better decisions, as follows. 678 

a) Studies of how local stakeholders use FEWCalc can help researchers gain insight 679 

into local values, which will give local stakeholders an implicit voice in scenario 680 

development and by implication the national- and global-scale public policy 681 

debates that are informed by integrated assessment, such as the Intergovernmental 682 

Panel on Climate Change (IPCC) assessment reports and the Paris Agreement. 683 

b) Inform local stakeholders, which could lead to better feedback and is the only way 684 

to achieve more buy-in and support for adaptive measures such as agricultural and 685 

energy tax credits and support of technological innovations in irrigation and wind 686 

turbine design. Here again, FEWCalc’s outputs (Fig. 5) show the connection 687 

between global changes and local-stakeholder outcomes, while FEWCalc’s 688 

intuitive interface allows local stakeholders to explore how their options (e.g., 689 

choices about irrigation, crop planting, and energy investment) and outcomes (e.g., 690 

farm income) are affected by climate conditions, and local and national public 691 

policy.  692 

5.3 Final Comments 693 

FEWCalc integrates information from the fields of agriculture, energy, water supply, water 694 

quality, climate change, and economics. It uses this information to enable users to explore 695 

consequences of interest to farming communities, including farm income, water supply, water 696 

quality, and potential opportunities provided by renewable energy development. It also provides a 697 

way for anyone interested in their food supply to understand the challenges and opportunities faced 698 

by farmers and farming communities. 699 

The version of FEWCalc discussed in this work is constructed of freely available and open-700 

source software that was chosen to facilitate future extensions of FEWCalc. In particular, the use 701 

of agent-based modeling using NetLogo means that FEWCalc is well-positioned for expansion to 702 

simulate technology advances, behavioral and policy considerations, and the interplay between 703 

these important aspects of any natural-human system. 704 
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The input to DSSAT is region specific, but DSSAT is used globally and data from other 705 

regions would likely provide similar performance as long as some historical data is available for 706 

DSSAT model development.  707 

Programs like FEWCalc are well suited to address gaps present between current Integrated 708 

Assessment (IA) and Impacts, Adaptation, and Vulnerability (IAV) communities. Said another 709 

way, programs like FEWCalc enable users to envision both near-term impacts and long-term 710 

implications of choices made today. Thus, FEWCalc can be used by farmers considering the 711 

futures of their farms and communities, laypeople interested in how farms work, and policymakers 712 

as they consider potential consequences of regulatory and policy decisions.  713 
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