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Abstract: Trees are bioindicators of global climate change and regional urbanization, but 15 

available monitoring tools are ineffective for fine-scale observation of many species. Using six 16 

accelerometers mounted on two urban ash trees (Fraxinus americana), we looked at high-17 

frequency tree vibrations, or change in periodicity of tree sway as a proxy for mass changes, to 18 

infer seasonal patterns of flowering and foliage (phenophases). We compared accelerometer-19 

estimated phenophases to those derived from digital repeat photography using Green 20 

Chromatic Coordinates (GCC) and visual observation of phenophases defined by the USA 21 

National Phenology Network (NPN). We also drew comparisons between two commercial 22 

accelerometers and assessed how placement height influenced the ability to extract seasonal 23 

transition dates. Most notably, tree sway data showed a greenness signal in an urban 24 

environment and produced a clear flowering time-series and peak flowering signal (PF), marking 25 

the first observations of a flower phenophase using accelerometer data. Estimated start of 26 
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spring (SOS) from accelerometers and time-lapse GCC were more similar than start of autumn 27 

(SOA); accelerometers lagged behind the time-lapse camera dates by three and four days for 28 

SOS and 13 and 14 days for SOA for each tree. Estimates for SOS and SOA from 29 

accelerometers and time-lapse cameras aligned closely with different NPN phenophases. The 30 

two commercial accelerometers produced similar season onset: a difference of 2.4 to 3.8 days 31 

for SOS, 2.1 days for SOA, and 0.5 to 2.0 days for PF. Accelerometers placed at the main 32 

crown branch point versus higher in the canopy showed a difference of 0.2 to 4.9 days for SOS 33 

and -1.5 to 1.7 days for PF. Our results suggest accelerometers present a novel opportunity to 34 

objectively monitor reproductive tree biology and fill gaps in phenology observations. 35 

Furthermore, widely available accelerometers show promise for scaling up from individual trees 36 

to the landscape level to aid forest management and assessing climate change impacts to tree 37 

phenology.  38 
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 43 

1. Introduction  44 

 45 

Changes in seasonal growth cycles of trees, or tree phenology, have consequences 46 

across a broad range of sectors, from wildlife to hydrology to human health and well-being. For 47 

wildlife, shifting tree phenology has strong links with herbivory (Korösi et al. 2018), habitat 48 

provisioning (Evans et al. 2016), migratory patterns (Tryjnowski et al. 2013), and community 49 

level interactions (Primack et al. 2009; Walther et al. 2002). For humans, altered tree phenology 50 

influences water movement and infiltration (Xiao and McPherson 2002), cooling capacity 51 
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(Stanley et al. 2019) and other ecosystem services (Tzoulas et al. 2007). In particular, the timing 52 

of flowering is important for numerous ecological and socio-economic reasons. For example, 53 

floral timing influences activity of nectar-gathering insects (Gérard et al. 2020) and influences 54 

vulnerability to damaging weather events (Hufkens et al. 2012). Flowering also impacts allergen 55 

prevalence (Jochner et al. 2013;Traidl-Hoffmann et al. 2003), human psycho-emotional well-56 

being (Cameron et al. 2012; Burroughs 2002), tourism (Wang et al. 2017), aesthetics (Kareiva 57 

et al. 2007), and agriculture (Duraiappah et al. 2005; Menzel 2002). Given that climate change 58 

and densification of cities is likely to continue to impact the drivers of tree phenology such as air 59 

temperatures, it is vital to have tree monitoring tools to understand the trends and intensity of 60 

both foliar and floral shifts in trees.  61 

While the scientific community has made great strides in studying the relationships 62 

between climate and tree phenology through remote-sensing methods (Li et al. 2017; 63 

Klosterman et al. 2014; Cleland et al. 2007) and in making connections across observation 64 

platforms (Richardson et al. 2017; Schwartz and Hanes 2010; Fisher et al. 2005; Morisette et al. 65 

2021), challenges remain (Park et al. 2021; Morisette et al. 2009). In some environments (e.g., 66 

urban forests), observation tools that may be suitable for continuous forest are not effective 67 

given the diversity of tree species and the matrix of trees, other vegetation, and the built 68 

environment that may be found within a single satellite pixel. For example, imagery is available 69 

through no-cost government-operated data portals with temporal resolution on the order of days 70 

(e.g., MODIS), but the spatial resolution of these sources may not be sufficient for some settings 71 

and applications. Sensors on privately-managed satellites have the ability to capture high spatial 72 

resolution, on the order of 30 cm (Fang et al. 2020), with customized temporal coverage 73 

(DigitalGlobe Inc, 2016).  However, there are significant cost barriers associated with 74 

purchasing imagery to observe multiple phenological events. Drone-based sensors also offer 75 

high spatial resolution phenological data (Klosterman et al. 2018), but obtaining permissions to 76 

fly above populated areas poses a hurdle to high-resolution temporal monitoring.   77 
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Given that species-level studies of tree phenology are constrained by the need for high 78 

spatial and temporal coverage (Yang et al. 2020; Badeck et al. 2004), species-specific 79 

phenological studies typically still rely on traditional labor-intensive visual observations in the 80 

field (Gray and Ewers 2021; Elmendorf et al. 2016; Wohlfahrt et al. 2019; Iler et al. 2013; Inouye 81 

2008) or historical diaries (Fitchett and Raik 2021; Zheng et al. 2013). Visual observations are 82 

critical for gathering information about flowering phenophases as exemplified in the national 83 

launch of plant monitoring at National Ecological Observation Network sites (Elmendorf et al. 84 

2016). When a single species dominates an area, a combination of remote- and ground-85 

observation methods has been successful to understand tree phenology at the landscape level  86 

(Elmore et al. 2016); however, pixels with mixed-land use were not successful (Elmore et al. 87 

2016) and in some cases comparison of these observation methods have shown opposite 88 

trends (Fu et al. 2014).   89 

Digital repeat photography, also called time-lapse camera imagery, that estimates 90 

greenness (Klosterman et al. 2014) can be an effective tool for studying multiple tree species 91 

(Sonnentag et al. 2012), linking to satellite data (Yingying et al. 2018), and reducing human-92 

based errors (Seyednasrollah et al. 2019). However, extending the geographic coverage of 93 

these phenology cameras can be expensive (in terms of camera-associated equipment) and 94 

logistically challenging. For example, ideal camera positioning is above the canopy pointing 95 

northward to avoid shadows in the field of view (Sunoj et al. 2016). Erecting towers is often not 96 

practical in the urban environment and repeat-photography in such settings raises privacy 97 

concerns. There may be opportunities to leverage existing imagery platforms such as camera 98 

infrastructure in cities (i.e., traffic monitoring cameras) or public posts on social media platforms 99 

to extract vegetation indices, though significant spatial and temporal resolution obstacles remain 100 

(Vaz et al. 2019; Morris et al. 2013). Despite the advances, sensor-based phenological studies 101 

(whether using near-surface or remotely-sensed data) are limited in their ability to capture some 102 

phenophases, such as the start and progression of flowering (Sunoj et al. 2016).  103 
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Scalable, non-invasive, inexpensive methods are needed for long-term vegetation 104 

monitoring, particularly in an urban environment. Novel methodology has emerged to infer 105 

seasonal tree patterns derived from accelerometer sensors. Accelerometers can detect patterns 106 

of vibrations of an object after a force sets the object in motion. A multi-axis accelerometer 107 

mounted to the surface of a tree trunk can detect the pattern of natural vibrations that the tree 108 

experiences due to wind or other forces (Jackson et al. 2021; Selker et al. 2011). The frequency 109 

of vibrations, or number of sway cycles per second, is inversely related to the tree’s mass (van 110 

Emmerick et al. 2017; Moore and Maguire 2004; Baker 1997). Phenological changes in a tree 111 

may change its mass distribution or stiffness, altering the cycle period (and inversely, the 112 

frequency) (Bunce et al. 2019; Gougherty et al. 2018). Accelerometer data can be analyzed to 113 

extract the period length over time. The periods with the largest amplitude, called the dominant 114 

periods, can be assembled into a time-series and modeled to extract the onset of seasonal 115 

transitions (Gougherty et al. 2018). 116 

Accelerometers show the potential to fill a niche in sensor-based approaches to 117 

monitoring tree phenology. Mass changes in plants have been used to answer questions of 118 

plant biomechanics by applying theory and tools on vibrations from the engineering field (de 119 

Langre 2019). Accelerometer-derived mass changes have been used to estimate tree 120 

properties such as drought stress (Ciruzzi and Loheide 2019; Sano et al. 2015), wind stress 121 

(Lohou et al. 2003), rain interception (van Emmerick et al. 2017; Selker et al. 2011), snow 122 

loading (Raleigh et al., 2021), buckling of branches (Timishenko and Gere, 2009), fruit ripening 123 

(Hou et al. 2018), and changes in foliage (Gougherty et al. 2018). 124 

Many questions remain regarding which tree growth events can be tracked with 125 

accelerometers and which environments are conducive to detecting tree sway signals. For 126 

example, mass changes associated with tree flower emergence have not been studied with 127 

accelerometers. Additionally, studies looking at tree sway have targeted trees within continuous 128 

forests (Gougherty et al. 2018; van Emmerick et al. 2017). Despite indications that trees at the 129 
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forest edge or in the open can be successfully monitored with accelerometers (Gougherty et al. 130 

2018), it is unknown whether there is sufficient wind forcing to study trees in an urban landscape 131 

that has large structures that can shelter trees from wind. Given that canopy architecture varies 132 

among deciduous tree species, phenology signals and placement height may be species-133 

specific. While wind more readily generates motion on secondary branches of the upper 134 

canopy, sway signal has been detected from sensor placements as low as 1 meter from the 135 

ground on the main trunk of some deciduous trees (Gougherty et al. 2018). 136 

The purpose of this study was to test the ability to derive vegetation indices such as 137 

foliage and flowering from accelerometers on trees in an urban setting. Our primary objective 138 

was to build a growth curve from urban trees lining an urban sidewalk and address how 139 

flowering and foliage dates derived from accelerometers compare to digital repeat photographs 140 

and visual observations. Because connections between digital camera imagery and field 141 

observations have been established and past studies have linked field observations to 142 

accelerometer-derived vegetation indices, we hypothesized that both imagery and visual 143 

observations would be comparable to the accelerometer estimates. On the other hand, because 144 

accelerometers log variation in tree motion related to changing biomass while digital cameras 145 

and humans collect visual data at intervals, accelerometers may provide complementary 146 

information about tree activity by detecting different phenological stages or providing information 147 

that is temporally offset from imagery or field observations.    148 

Our secondary objective was to evaluate two practical aspects of accelerometer use. We 149 

investigated how unit type and placement height influenced the ability to extract dates of 150 

seasonal transitions in trees. To date, only one study has used accelerometers for estimating 151 

tree phenology using custom-made devices for use on trees (Gougherty et al. 2018). We build 152 

on their work and compare the custom sensor with an inexpensive and widely available 153 

accelerometer marketed for a variety of motion detection applications. Given that 154 

accelerometers should have similar functionality, we expected that different types of 155 
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accelerometers should detect a similar phenological growing season signal. For the question of 156 

height, we expected that placement on the main trunk at the tree crown should be sufficiently 157 

high for wind to induce a detectable signal. The purpose of these unit and height comparisons 158 

was to provide guidance on how to scale up the use of accelerometer monitoring in a feasible 159 

and cost-effective manner. To test this, we placed accelerometers at two different heights on 160 

two trees in an urban setting.  161 

 162 

2. Material and Methods 163 

 164 

2.1. Study species and location 165 

 166 

We used two 30-year-old pollen-bearing white ash (Fraxinus americana) trees in 167 

Boulder, Colorado to study tree sway and phenology. White ash are wind-pollinated, dioecious 168 

(separate trees are pollen or fruit bearing), deciduous broadleaf trees with a natural range 169 

extending from the eastern United States forests to the Midwest plains. White ash trees provide 170 

significant shade (Poland and Mccullough 2006) and are planted in Colorado and other states 171 

by the thousands to millions along streets and in greenspace (City of Boulder Forestry 2021; 172 

Denver Parks and Recreation 2018; Nowak et al. 2010). In Colorado, white ash trees are 173 

planted along residential areas and are a valuable part of urban tree canopies. White and green 174 

ash (Fraxinus pennsylvanica) trees together make up over 15% of urban forests in Colorado 175 

(Colorado Dept of Agriculture 2021).There were no visible signs of pest infestation or damaged 176 

wood on our focal trees during the study period.  177 

The study site was situated at the University of Colorado Boulder East Campus 178 

(40.011132, -105.242205; 1655 meters; Figs. 1a,b). The climate is temperate with an average 179 

high temperature of 26.9 ºC  in July, and average low temperature of -7.8 ºC in February 180 

(NOAA). During 2018, average daily wind speeds ranged from 0 to 4.5 meters/second spanning 181 



8 

all cardinal directions (Skywatch Weather Archive 2018). Peak gusts were observed between 182 

15.6 to 33.5 meters/second, predominantly from the west (Skywatch Weather Archive 2018). 183 

The focal ash trees were part of a row of eight white ash trees planted in 1991 in a turfgrass 184 

plain two meters west of a sidewalk (Fig. 1c). These focal trees were eight meters apart, did not 185 

have overlapping canopies, and were referred to as Tree1 and Tree2 (Fig. 1c). There was a 186 

second row of white ash trees on the east side of the sidewalk. To the north, there was a mixed 187 

conifer-deciduous wetland. A fenced meteorological station (550 square meters) was seven 188 

meters to the southwest of the trees and a three-story university building was approximately 50 189 

meters southwest of the trees. Within the meteorological station, a north-facing time-lapse 190 

camera was mounted on a post four meters above the ground. The camera was 24 meters from 191 

Tree1 with canopies of both focal trees in the field of view. The diameters at breast height were 192 

28 cm and 25 cm and heights were 7.8 and 7.4 meters for Tree1 and Tree2, respectively.  193 

 194 

Figure 1. a) Map highlighting study location in Boulder, CO. b) Aerial image showing urban 195 

landscape of Boulder, CO (Google Earth 2021). c) Aerial image shows location of focal ash 196 

trees and the time-lapse camera (Google Earth 2021). 197 

 198 

2.2. Tree motion: theory, measurements and data processing 199 

 200 
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2.2.1. Accelerometer-derived tree sway theory 201 

 202 

Tree phenology was inferred using tree sway frequency and periods derived from multi-203 

axis accelerometers. The frequency of vibrations, or sway cycles, is inversely related to the 204 

tree’s mass and the period of a sway cycle is proportional to the mass (Moore and Maguire 205 

2004). Equation (1) shows this relationship conceptually,  206 

 f0    ∝  ��/��  ⟺  DP ∝  ���/�         (1) 207 

where f0 is the dominant resonant frequency (Hz), k is a measure of stiffness, m is mass, b is a 208 

measure of damping, or the decrease in the amplitude of oscillation as energy is lost from the 209 

system, and DP  is the dominant period in seconds (Moore and Maguire 2004).  210 

In this paper we focused on accelerometer data displayed as the dominant period (DP), 211 

or the time in seconds for the tree to complete one cycle of sway. Over the course of a growing 212 

season, a deciduous tree’s aboveground mass increases with leaf emergence and decreases 213 

with leaf drop. A temporary increase in mass is detected as a corresponding temporary increase 214 

in tree sway period (see Equation 1). Estimating the actual tree mass is not needed since we 215 

are using the dominant resonance period as a proxy measure for the relative percent change of 216 

mass, which should change with spring and autumn phenology or other events that alter a tree’s 217 

mass (Gougherty et al. 2018; Baker 1997). Similarly, although sufficient wind is necessary to set 218 

the tree in motion (van Emmerick et al. 2017), estimating wind speeds is not necessary to 219 

determine the dominant period. When wind is below the threshold for initiating tree motion, the 220 

accelerometer is recording “noise” and tree sway period cannot be identified in these cases.  221 

It is important to recognize that the tree sway period is linked to mass changes on both 222 

the inside and outside of the tree. In our study, we are interested in multi-day or week trends of 223 

seasonal growth and the associated biomass changes related to foliage gain or loss and 224 

vascular transport. The tree’s mass may also change with episodic events such as precipitation 225 



10 

or structural damage. In the case of precipitation, rainfall interception on foliage or branches 226 

may increase the mass and lengthen the dominant period during the rain event for minutes to 227 

days (van Emmerik et al. 2017). Mass loading from snowfall might show more pronounced 228 

fluctuations in dominant periods depending on the snow water content and time to melt (Raleigh 229 

et al., 2021). These episodic mass loading events are likely captured in our data but are not 230 

expected to contribute to the overall seasonal signal.  231 

While we expect tree mass to be the strongest determinant of tree sway periods, several 232 

other tree properties such as stiffness, wood density, and canopy architecture also have an 233 

effect (Moore and Maguire 2004). The growth and hardening of xylem changes trunk diameter 234 

and the stiffness of a tree over its lifetime (Bunce et al. 2019); however, stiffness is not expected 235 

to have significant influence within an annual phenology signal (De Langre 2019). Seasonally, 236 

the hydraulic conductance of water up the stem changes, affecting the stiffness (Ciruzzi and 237 

Loheide 2019; van Emmerick et al. 2017). As water and sap move through the tree tissue the 238 

trunk vibrations may be affected due to changes in the trunk stiffness and therefore confounded 239 

with the mass; however, the seasonal change in stiffness is considered of secondary 240 

importance to the seasonal change in mass when observing across the growing season 241 

(Gougherty et al. 2018; van Emmerick et al. 2017). The canopy architecture and branching 242 

structure of deciduous trees can also affect the stiffness and damping of tree movement 243 

(Schindler et al. 2013). The natural or pruned structure could explain differences in dominant 244 

period when comparing among trees; therefore, we selected two white ash trees that have 245 

similar canopy architecture and branching patterns and were not pruned over the study period. 246 

Stiffness was not measured (i.e., with a bending test) as these trees were the same species and 247 

close enough in size and age to assume similar stiffness.  248 
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 249 

Figure 2. Diagrams of accelerometer position and height for ORE and GCDC accelerometers on 250 

a) Tree1 and b) Tree2. Panel c) shows regions of interest for Green Chromatic Coordinate 251 

analysis of time-lapse imagery on Tree1 (1.1 - 1.3) and Tree2 (2.1 - 2.3). 252 

 253 

2.2.2. Device positioning and power 254 

 255 

A total of six accelerometer units of three types were tested between 2018-2020 (n=4 256 

model X16-1D, Gulf Coast Data Concepts [GCDC], Waveland, MS; n=1 model AL100, Oregon 257 

Research Electronics [ORE], Tangent, OR; n=1 model AL100-solar, ORE) (Fig.2). Only data 258 

from 2018 are presented since that dataset was the most complete. Accelerometers were 259 

installed March 23rd, 2018. An ORE (AL 100 on Tree1, AL100-solar on Tree2) and a GCDC unit 260 

were placed at the start of crown branching from the main trunks of each tree at a height of 2.1 261 
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meters above the ground (Figs. 2a,b) with the x-axis oriented vertically to the tree trunk. These 262 

GCDC units will be referred to as the lower at-crown GCDC units. Separate GCDC units were 263 

also placed on a vertical secondary branch above the crown branching at 3.7 and 2.8 meters 264 

above the ground, also with the x-axes oriented vertically, representing the upper above-crown 265 

units of Tree1 (Fig. 2a) and Tree2 (Fig. 2b), respectively.  266 

The ORE and GCDC units logged acceleration on two perpendicular, lateral planes 267 

(north-south or east-west for the y- and z-axes) and one vertical direction (x-axis) that is a 268 

measure of the acceleration of gravity. ORE units were positioned on the eastward side of the 269 

tree with the y-axis oriented north-south and the z-axis oriented east-west (ORE Manual page 270 

10, 2020). The GCDC units were positioned on the northward side of the tree with the y-axis 271 

oriented east-west and the z-axis oriented north-south (GCDC Manual page 7, 2022). Because 272 

we positioned the at-crown units on perpendicular sides of the tree, the y- and z- axes of the 273 

GCDC and ORE were oppositely aligned. The x-axis on the plane parallel to the tree trunk was 274 

excluded from analysis and served to confirm the accelerometer is functioning as expected. 275 

 We prepared GCDC and the ORE units for long term deployment and checked and 276 

replaced batteries every three to four months.  We used polyvinyl bags and electrical tape to 277 

form a weatherproof barrier around the GCDC accelerometers. ORE hardware was already 278 

waterproofed. The GCDC units were manufactured to operate on a single AA battery cell. 279 

Preliminary testing showed the AA battery powered a GCDC unit logged continuously at 12 Hz 280 

for an average of 25.6 days.  Therefore, in an attempt to improve longevity we engineered the 281 

GCDC units to receive power from four D-cell batteries oriented in parallel. The ORE AL100 unit 282 

was manufactured to operate on two C-cell batteries. The ORE AL100-solar unit on Tree2 was 283 

engineered by the manufacturer to use solar power and stored in a rechargeable C-cell battery. 284 

 285 

2.2.3. Device programming 286 

 287 



13 

ORE accelerometers logged the XYZ axes continuously at a sample rate of 10 Hz, 288 

resulting in 864,000 samples per day collected in one comma-separated values (csv) file per 24 289 

hours. At the start of study, it was not clear that we could have changed the ORE sensor to 290 

sample at 12 Hz to align with the GCDC sensors. Although we later discovered this was 291 

possible, we do not believe the difference in sample rate of this magnitude significantly affected 292 

results since accelerometers, GCDC in particular, can fluctuate by about 1 Hz from a set 293 

frequency (Evans et al. 2014). GCDC accelerometers logged the XYZ spatial axes dimensions 294 

continuously at a sample rate of 12 Hz, resulting in 1,036,800 samples per day collected in 295 

seven to eight csv files per day. The GCDC configuration options ranged from 12 to 800 Hz, and 296 

so 12 Hz was selected to most closely align with the ORE sensors.  297 

 298 

2.2.4. Data processing and statistical analysis 299 

 300 

Raw acceleration data from the two lateral axes were converted to phenological 301 

estimates. The data processing followed three steps defined by Gougherty et al. 2018: 1) 302 

identify DPs, 2) remove outliers, and 3) fit a phenology model to estimate the onset dates of 303 

spring, autumn and the growing season length.  304 

In step one, the spectral density, which shows the strength of variation as a function of 305 

frequency, was estimated using an autoregressive model to minimize Akaike Information 306 

Criterion. For each sensor’s y and z-axis, separate periodograms were generated from the 307 

spectral density with the ‘ar’ and ‘spec.ar’ functions in the stats package of R (R Core Team, 308 

2019). Peaks in the periodograms were found with the ‘findpeaks’ function in the pracma 309 

package (Borchers, 2019). The dominant and second-most-dominant periods were calculated 310 

as 1/frequency of the peaks with the highest and second highest spectral density, respectively. 311 

Each dominant period (DP) was assigned a weight based on the difference between the 312 

spectral density of the most and second-most dominant period identified in the periodogram for 313 
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a given day of year. The DPs and associated weights of both axes were combined into one 314 

dataset; meaning for each 24-hour period, a DP and the associated weight from the y- and z-315 

axes were represented in an interleaved time-series. In step two, outliers less than 0.9 seconds 316 

and greater than 3.0 seconds were manually removed from the ORE and GCDC datasets. The 317 

limits were selected based on visual inspection, and also on typical sway periods documented 318 

for trees of similar size. We note that the typical range of sway period will depend on tree 319 

species, height, age, and other variables (Jackson et al. 2021), and the values used here are 320 

specific to the study trees. The remaining outliers were removed using a locally weighted 321 

regression (LOESS curve; Cleveland and Devlin 1988) that removed data points with residuals 322 

greater than the threshold of 1.5 times the interquartile range. In step three, a dual-logistic curve 323 

was used to model the full growing season (Elmore et al. 2012; Eq. 2). 324 

DP = m1 + (m2 – m7 ∙ 
)  ∙ (1 (1⁄ + �
����

�� ) − 1 (1⁄ + �
����

�� ))    (2) 325 

In Eq. (2), DP represents the dominant period, t is the day of year, m1 is the DP during 326 

dormancy, m2 is the difference in DP during dormancy versus active growth, m3 and m4 327 

influence the shape of the logistic curve in the green-up, m5 and m6 influence the shape of the 328 

logistic curve during senescence, and m7 changes the slope of the curve during the summer. 329 

The m3 parameter indicates the spring inflection point, or the date at which the DP during the 330 

early season is changing the fastest, which we used to represent the start of spring (SOS). The 331 

m5 parameter indicates the autumn inflection point, or the date at which the DP during the end 332 

of the season is changing the fastest, which we used to represent the start of autumn (SOA). In 333 

instances where there were missing data for SOA due to battery failure, SOS could still be 334 

accurately modeled by temporarily using estimated data to fill the autumn gap. The length of 335 

season (LOS) is the difference in number of days between SOS and SOA. 336 

The peak flowering (PF) date was determined by identifying the date at which the 337 

dominant period (DP) was highest (i.e., the maximum DP value) before SOS. Days were 338 
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averaged to find the PF if multiple max DPs were found. Unit and height comparisons of the 339 

mean DP values per day were performed using Student’s t-tests and Pearson’s correlation tests 340 

across Julian days 82 to 270 during 2018, which had complete data across all six 341 

accelerometers.  342 

 343 

2.3. Time-lapse photography analysis 344 

 345 

We used RGB brightness values from digital camera imagery to calculate green 346 

chromatic coordinates (GCC) from Red-Green-Blue (RGB) digital numbers (GCC = Green/[Red 347 

+ Green + Blue]). A north-facing, 20-megapixel Cuddeback trail camera (model ELCA 1224, 348 

Cuddeback Digital, De Pere, WI) photographed the two study trees beginning March 27, 2018. 349 

The camera was set to record images at 30-minute intervals during the daytime as suggested 350 

by Sonnentag et al. (2012), resulting in 19-30 images per day. Single photo dimensions were 351 

2576 x 1496 megapixels. Images were analyzed using the Phenopix V 2.0 package in R 352 

according to the phenopix vignette (Filippa et al. 2020). Three region-of-interest (ROI) polygons 353 

were each drawn in the canopy of Tree1 and Tree2 (Fig. 2c). Vegetation indices were 354 

calculated using a pixel-based analysis where raw color digital numbers were extracted from 355 

pixels. The GCCs were averaged over a 3-day moving window in the ROI according to 356 

Sonnentag et al. (2012). The same dual-logistic curve used in the accelerometer DP analysis 357 

was fit to the data according to Eq. 2 (Elmore et al. 2012). As with the accelerometer analysis, 358 

we applied the “derivatives” method (Klosterman et al. 2014), which uses the inflection points on 359 

the dual-logistic model curve to define SOS and SOA.  360 

 361 

2.4. Visual observations 362 

 363 
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Tree1 and Tree2 were visited approximately one to two times per month between March 364 

and December 2018 to record visual observations of phenophases set forth by the National 365 

Phenological Network (NPN) in the Phenophase Handbook by Haggerty and Mazer (2008, S3). 366 

The phenophases surveyed for in the field were pollen release, full pollen release, emerging 367 

leaves, unfolded leaves, ≥ 75% of full leaf size, 50% of leaves colored, all leaves colored, ≥ 368 

50% of leaves fallen, and all leaves fallen. In addition to field observations, time-lapse imagery 369 

was visually reviewed to make approximate estimates of phenophases that were not directly 370 

observed in the field.  371 

 372 

2.5. Phenological method comparison 373 

 374 

For accelerometer and time-lapse comparison, SOS, SOA dates and LOS number of 375 

days were compared between accelerometer values averaged across sensors on a tree and 376 

time-lapse camera values averaged across ROIs on a tree. To determine the difference in days, 377 

the mean SOS and SOA dates and LOS days for accelerometers was subtracted from the 378 

corresponding time-lapse camera values. To compare visual observations with accelerometer 379 

and time-lapse cameras, dates of visual observation of NPN phenophases averaged across 380 

Tree1 and Tree2 were compared to the SOS and SOA values averaged with across all 381 

accelerometer sensors (on both trees) and across all time-lapse camera imagery ROIs (on both 382 

trees). To determine the difference in days, the mean accelerometer and time-lapse camera 383 

SOS and SOA dates and LOS days were subtracted from the corresponding mean visual 384 

observation dates and days.  385 

 386 

3. Results 387 

 388 
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3.1 Urban tree growing seasons 389 

 390 

All six accelerometers mounted on the two focal ash trees detected growing season 391 

signals in an urban setting, including a progression of flowering. We obtained a precise estimate 392 

of PF and were able to model SOS and SOA from the sensors with complete or near-complete 393 

data (Fig. 3). Two of the four GCDC sensors had unexpected battery failure in the autumn 394 

resulting in the inability to model SOA and LOS for the upper sensor of Tree1 (Fig. 3a) and 395 

lower sensor of Tree2 (Fig. 3f). Accelerometer PF, SOS, and SOA had low variation within and 396 

between trees, on the order of fewer than three days (Table 1).  397 
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Figure 3. Time-series of accelerometer dominant period (DP) of y- and z- axes during the 2018 399 

growing season for Tree1 (a-c) and Tree2 (d-f). Rectangles on the tree diagram represent 400 

accelerometer locations: GCDC (blue) and ORE (gray). DP output is displayed for GCDC-upper 401 

in a) and d), ORE in b) and e) and GCDC-lower in c) and f). Vertical lines show the flowering 402 

peak (FP; dashed-dotted), model-predicted start of spring (SOS; dashed) and model-predicted 403 

start of autumn (SOA; solid). 404 

 405 

3.2 Time-lapse, visual observations, and accelerometer method comparison  406 

 407 

Compared to time-lapse GCC, accelerometers showed delayed SOS, delayed SOA, and 408 

longer LOS. For LOS, the accelerometer DP was on average 10 days longer than camera-409 

derived measures for Tree1 and 9 days longer for Tree2 (Table 1). For SOS, accelerometers 410 

showed more within-tree variation in average dates compared to time-lapse cameras (Table 1, 411 

Fig. 4). Accelerometer DP SOS lagged on average 4 and 3 days behind time-lapse GCC for 412 

Tree1 and Tree2, respectively. For SOA, accelerometers showed similar within-tree variation in 413 

average dates compared to time-lapse cameras for both trees (Table 1). The accelerometer DP 414 

SOA lagged behind the time-lapse GCC 13 and 14 days for Trees 1 and 2, respectively.    415 
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 416 

Figure 4. Growing season for 2018 as calculated from green chromatic coordinate (GCC) 417 

analysis of image regions of interest (ROIs) (Fig. 2) from time-lapse camera imagery for Tree1 418 

(a-c) and Tree2 (d-f). ROIs 1.1, 1.2, 1.3 capture the canopy of Tree1, and ROIs 2.1, 2.2, 2.3 419 

capture the canopy on Tree2. Vertical lines show model-predicted start of spring (SOS; dashed) 420 

and model-predicted start of autumn (SOA; solid) based on the GCC. 421 

 422 

 423 

Table 1. Average vegetation indices (PF, SOS, SOA, LOS) and standard deviations in 424 

parentheses. Accelerometer DP values from the ORE, at-crown GCDC, and above-crown 425 

GCDC sensors and GCC values from the time-lapse camera ROIs have been averaged for 426 

each tree. 427 

 428 
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Metric Tree Mean PF (day 
of year) 

Mean SOS 
(day of year) 

Mean SOA 
(day of year) 

Mean LOS 
(number of 

days) 

Accelerometer DP 1 115.2 (+/- 1.0)  138.0 (+/- 
1.4) 

 292.1 (+/-1.5)  154.9 (+/-3.2) 

Time-lapse GCC 1 NA 134.0 (+/-1.0) 279.3 (+/-0.8) 145.0 (+/-1.0) 

Difference DP-
GCC 

1 NA  4.0 days 12.8 days 9.9 days 

Accelerometer DP 2 114.7 (+/- 1.1)  134.2 (+/- 
2.6) 

291.0 (+/-0.7) 154.8 (+/-1.5) 

Time-lapse GCC 2 NA 131.0 (+/-0) 277.3 (+/-0.6) 146.0 (+/-0) 

Difference DP-
GCC 

2 NA  3.2 days 13.7 days 8.8 days 

 429 

We estimated which visual observations of phenophases (S3) best align with 430 

accelerometer DP and time-lapse GCC-derived SOS and SOA dates (Table 2). The NPN 431 

phenophase for deciduous trees that most closely aligned with model-derived metrics of SOS 432 

was ≥ 75 % of full leaf size (or ≥ 75% of full canopy) for accelerometers and unfolding leaves for 433 

time-lapse imagery (Fig. S4.2). For SOA, the NPN phenophase that most closely aligned to 434 

model-derived metrics of SOA was all leaves colored for accelerometers and ≥ 50% of leaves 435 

colored for time-lapse imagery (Fig. S4.3).  436 

 437 

Table 2. Comparison of visually observed phenophases to accelerometer- and time-lapse 438 

camera-derived vegetation indices with standard deviations (in parentheses) for Tree1 and 439 

Tree2 combined 440 

Index NPN 
Phenophase for 
deciduous trees 

Visual 
observation 
(day of year) 

Accelerometer 
mean difference 

from visual 

Time-lapse mean 
difference from 

visual observation 
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observation 
(number of days)  

(number of days) 

PF Pollen release 113 2.0 (+/- 1.0)* NA 

SOS Unfolding leaves 128  8.0 (+/- 2.7)  4.7 (+/- 1.9)* 

SOS ≥ 75% of full leaf 

size (or ≥ 75% of 

full canopy) 

139 -3.1 (+/- 2.7)* -6.3 (+/- 1.9) 

SOA ≥ 50% of leaves 

colored 

280.5 10.8 (+/- 1.3) -2.2 (+/- 1.2)* 

SOA All leaves 
colored 

286.5  4.8(+/- 1.3)* -8.2 (+/- 1.2) 

*Indicates which NPN phenophase was closest to accelerometer or time-lapse- derived SOS or 441 

SOA  442 

 443 

3.3 Accelerometer-derived flowering peaks 444 

 445 

Accelerometer data showed a small peak in DP (around day 115) before the SOS date 446 

(Fig. 3) that corresponded with the time at which flowers were visually observed in the field as 447 

fully emerged but not yet releasing pollen (day 113, Fig. S4.1c). Manual review of time-lapse 448 

camera imagery and meteorological datasets showed no sustained precipitation events over 449 

that time-period. Thus, we are confident that the peak in DP before SOS was a flowering peak 450 

that started about one month before the main spring green flush, and this was found in the data 451 

of all six sensors. Based on visual observations, flower buds were dormant on day 82 and 452 

began to swell on day 86. On day 113 inflorescences were fully emerged from floral bud casing 453 

with individual flowers still closed. Photos of the tree buds on these dates are supplied in S4. On 454 

days 115 and 114, accelerometers recorded maximum DP for Tree1 and Tree2 (Table 1). The 455 



23 

National Phenological Network phenophases that most aligned with this time was open flowers 456 

and pollen release.  457 

 458 

3.4 Unit and sensor height comparison 459 

 460 

The ORE sensor predicted later dates for PF, SOA and LOS, and both later and earlier 461 

SOS dates depending on the tree. The estimates for PF, SOS, SOA, LOS collectively varied 462 

from 0.5 to 4.5 days between the ORE and GCDC sensors (See Table S1 for each metric). The 463 

mean DP across the 2018 growing season for GCDC versus ORE units were significantly 464 

correlated in both axes for both trees (Fig. S1). The 2018 mean DP values for GCDC were 465 

significantly higher compared to ORE on one lateral plane for both trees (Table S1).  For Tree1, 466 

the GCDC z-axis 2018 mean DP was 0.2 seconds longer compared to the ORE model y-axis 467 

(t(107.5) =2.5, p = 0.01). For Tree2, the GCDC z-axis 2018 mean DP was 0.2 seconds longer 468 

compared to the ORE model y-axis (t(210.7) = 2.3, p = 0.01). The 2018 mean DP was not 469 

significantly different between GCDC y-axes and ORE z-axes. The C-cell battery powered ORE 470 

sensor consistently maintained power for 90-120 days between battery checks. The four 471 

continuously logging GCDC units with D-cell batteries remained powered for an average of 88.5 472 

days during year 1, 28.3 days during year 2, and 15.3 days during year 3. The ORE AL100-473 

solar unit held power for an average of 114 days between our checks from March-November 474 

2018. With decreasing daylight, it appeared that the solar power supply was not strong enough 475 

to power the unit in the winter and we ceased field testing after 2018.  476 

The upper above-crown GCDC sensors predicted similar PF dates and SOS dates 477 

compared to the lower, at-crown GCDC sensors. The upper position GCDC sensors were 1.5 478 

days earlier and 1.7 days later for PF for Tree1 and Tree2, respectively, and 0.2 and 4.9 days 479 

later for SOS for Tree1 and Tree2, respectively, compared to the lower position (Table S2). 480 

SOA and LOS values could not be compared between sensor heights due to missing data. The 481 



24 

mean 2018 DP for GCDC upper and lower position units were significantly correlated in both 482 

axes for both trees (Fig. S2). The mean 2018 DP values on the y-axes of the lower, at-crown 483 

sensor on Tree1 were 0.2 seconds shorter compared to the upper, above-crown sensor 484 

(t(224.8)= -3.7, p <0.001); however, the z-axes showed no difference (Table S2). For Tree2 485 

there was no significant difference in mean 2018 DP between the upper and lower GCDC 486 

sensors for either axis.  487 

 488 

4. Discussion 489 

 490 

Our study demonstrates growing season transitions can be detected in individual trees 491 

within an urbanized landscape using trunk-mounted accelerometers. Before SOS and complete 492 

spring green-up, our accelerometers detected mass changes associated with flower emergence 493 

on the white ash trees. To our knowledge, this is the first observation of tree flowering from DP 494 

analysis of acceleration data. This sensor-based approach to monitoring individual trees has 495 

promise in capturing vegetation changes that are not typically extracted from imagery-based 496 

analyses. Our study provides a launchpad for future studies using accelerometers to incorporate 497 

floral observation into hypotheses, include floral phenophases in growing-season models, and 498 

create an automated processing platform so accelerometers can serve as inexpensive “Fitbits” 499 

(individual activity trackers) for trees. If we consider the accelerometer-derived phenology 500 

outcomes observed across the growing season (Figs 3 and 4), the change in accelerometer DP 501 

resembles an NDVI growing season curve typical of a deciduous tree (e.g. Motohka et al. 2010). 502 

Although, beginning in mid-summer there is a more prolonged and gradual decrease in sway 503 

period than the typical late-summer decline of NDVI, suggesting accelerometers may provide 504 

more detailed insight into water loss during dry periods or autumn foliage changes. While we 505 

only included two trees in this study, the consistency between multiple sensors on the trees 506 

provides evidence for a strong pattern despite the sample size. 507 
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Contrary to suggestions by Gougherty et al. (2018), the current study provides evidence 508 

that trees do not need to be located on the city edge or open, exurban areas to obtain a wind-509 

induced phenological signal. Many urban trees are adjacent to buildings and houses, linearly 510 

planted along sidewalks, medians, and property edges to provide shade or delimit boundaries. 511 

Outside of parks or natural spaces, there is infrequently a distinct forest edge within the urban 512 

matrix. Our data suggest, however, that wind-blocking buildings and adjacent trees do not 513 

hinder ability to obtain a phenological signal from urban trees. More research is needed to 514 

determine if there are thresholds or optimums in building distance, composition, and density that 515 

may affect the amount of wind necessary to induce tree motion measurable with 516 

accelerometers. 517 

 518 

4.1. Method comparison 519 

 520 

The discrepancy between accelerometers, time-lapse cameras, and visual observations 521 

are not surprising since the tools measure different tree attributes (i.e., motion/mass, greenness, 522 

and categorical assessment, respectively); nonetheless, our results suggest that 523 

accelerometers may offer a robust method for consistent detection of SOS and SOA. It was 524 

surprising that the accelerometer-based estimate of SOS did not align to visually observed leaf 525 

unfolding as was found with past SOS dates of Balsam poplar (Gougherty et al. 2018), 526 

suggesting that accelerometer comparison to NPN visual phenophases for deciduous trees may 527 

depend on the species. SOA also was earlier by nearly two weeks for time-lapse camera-528 

derived dates compared to accelerometers for both trees (Table 1). Past research shows that 529 

there are more challenges associated with measuring SOA than SOS when using time-lapse 530 

GCC, since loss of chlorophyll is more gradual in autumn than the gain in spring and because 531 

leaf coloring and leaf drop phenophases may overlap (Elmore et al. 2016; Klosterman et al. 532 

2014; Elmore et al. 2012; Ganguly et al. 2010). While past study comparisons between 533 
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accelerometer SOA and leaf drop were not correlated (Gougherty et al. 2018), our study 534 

suggests the accelerometer SOA values may be more related to senescence (Table 2). While 535 

SOS and SOA estimates were fairly consistent between accelerometer units on a given tree, 536 

conducting visual observations using a more detailed set of phenophases with increased 537 

observation intervals may serve to capture greater precision in linking phenophases from the 538 

globally-used BBCH scale (Finn et al. 2007) or those described in the National Phenological 539 

Plant Profiles (National Phenology Network 2008) to accelerometer model parameters.  540 

The alignment of the accelerometer-derived and image-based SOA and SOS estimates 541 

with different NPN phenophase observations suggests that these tools may provide 542 

complementary information that could constitute a more complete, high-resolution picture of tree 543 

phenology. The seasonal onset dates derived from accelerometers could be leveraged as a tool 544 

to fill niches not captured in near-surface and satellite-based phenological observation. First, the 545 

accelerometers detected flowering phenophases that were not captured by the time-lapse photo 546 

analysis. Second, compared with time-lapse GCC, we found accelerometer DP aligned with 547 

different observer-based phenophases of SOS and SOA. This outcome suggests 548 

accelerometers may better serve to complement rather than validate time-lapse imagery. If the 549 

accelerometer lag in seasonal onset dates compared to time-lapse cameras proves to be 550 

widespread and consistent within ash trees or for other tree species, paired accelerometer and 551 

time-lapse camera data would be valuable to generate a more comprehensive picture of tree 552 

phenology. This dual-instrument approach may be particularly useful for measuring autumn 553 

phenophases involving both color and mass changes (e.g., senescence and leaf drop and 554 

potential overlap) and temporal information about flowering phenophases that are not captured 555 

by imagery.  556 

 557 

4.2. Floral phenology  558 

 559 
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Extracting the dates from mass changes associated with flowering such as start, peak, 560 

end and length of flowering would be important contributions to instrument-based phenology 561 

monitoring. Our data shows flowering time can be clearly observed for ash (Fraxinus) tree 562 

species that produce wind-pollinated flowers before spring leaf flush (Fig. 3) and supports use of 563 

accelerometers for date extraction from other species that flower before full foliage. We 564 

considered other explanations for this peak due to external loading factors such as prolonged 565 

snow interception followed by unloading or any other precipitation events. Precipitation events 566 

could increase the DP due to added water mass on the tree, but this is not a plausible 567 

explanation because the timescale of such spring-time events (hours to days) is considerably 568 

shorter than the duration observed for the DP rise and fall (approximately 30 days).  569 

There are many challenges associated with using imagery to determine flowering 570 

phenophases for species. First date of flowering in corn fields has recently been detected using 571 

multispectral reflectance data from satellites (MODIS and Sentinel-2; Nguyen et al. 2018); 572 

however, extension of this method to mixed-species areas is limited by spatial resolution. For 573 

digital repeat photography, there is some limited evidence of detection of flowers on individual 574 

trees. RGB brightness and saturation levels may have different ratios when comparing 575 

individual trees with flowers to individuals without flowers (Sturm et al. 2018). Kim et. al (2020) 576 

employed machine learning techniques to identify presence or absence of flowering events in 577 

trees with concentrated white blossoms using high-resolution digital cameras; however, the 578 

authors suggest that the imagery collections from phenological networks focused on leaf 579 

phenology (e.g., National PhenoCam Network) likely do not have sufficient pixel resolution for 580 

assessing the complex reflectance patterns of flowers. Phenology camera analyses can count 581 

the number of flowers at peak bloom on individual trees in digital images (Crimmins and 582 

Crimmins 2008; Adamsen et al. 2000); however, they have not accurately detected the timing of 583 

flowering phenophases (Sunoj et. al, 2016). While accelerometers also track on an individual 584 

tree basis, they offer the advantage of using mass changes to learn about floral development 585 
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over time (and potentially relative quantity) regardless of flower colors, blossom size, pixel 586 

resolution, and obstructions from neighboring foliage or light, which can hinder widespread use 587 

of imagery for study of flowers.  588 

A simple, inexpensive sensor-based approach to track flowering could revolutionize 589 

efficiency in the urban forestry and agricultural sectors. Estimated flowering dates delivered to 590 

land managers and orchardists in real-time from accelerometers could contribute to enhanced 591 

understanding of crop development, frost or floral damage, as well as generating harvest 592 

predictions or maintenance schedules in response to weather conditions that vary annually. 593 

Microclimates can have a strong effect on plants even within the same orchard (Verdugo-594 

Vásquez 2016) or city block (Ziter et al. 2019; Chen et al. 2018; Bonan 2000). Predicting tree 595 

flowering time could improve the efficacy of arboreal operations such as timing when to apply 596 

nutrients or administer disease interventions (Pusey and Curry 2007). Using accelerometers to 597 

create a phenology network in the agricultural and urban forestry sectors could improve 598 

efficiency of tree maintenance with potential to enhance crop yield or tree survival. Thus, 599 

accelerometers show great potential as an objective and automated method to detect flowering 600 

phenophases that are not typically captured with other instrument-based measurements. 601 

 602 

4.3. Unit type and placement characteristics 603 

 604 

Our results provide evidence that data from multiple types of accelerometers within or 605 

across tree studies may be suitable for direct comparisons of phenological dates when placed at 606 

the same trunk height. The three-day variation of PF, SOS, and SOA estimates for unit types 607 

(Table S1) may be similar to variation found among typical monitoring field visits spanning days 608 

to weeks in frequency (Richardson et al. 2018; Elmore et al. 2016). For only the y-axes, the 609 

ORE models showed lower DP values for estimated foliage transitions (Fig. S1) suggesting 610 

there may be more detailed information gained from analyzing both lateral axes. Weather 611 
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proofing, long-term battery power, and simple and consistent data transfer were the 612 

accelerometer properties that were most important to longevity and ease of use in our study. 613 

We found that simple polyvinyl plastic bags and electrical tape, as we used with the GCDC 614 

units, were sufficient waterproofing for at least three years of field use. Despite adding the four 615 

D-cell batteries, the biggest obstacle in using the GCDC sensors was decreasing battery run 616 

times, which was especially prevalent beyond one year of use in a variety of weather conditions. 617 

Other power mechanisms such as line power or rechargeable batteries with solar panels may 618 

be more successful for multi-year study (Raleigh et al., 2021). Data transfer with an extended 619 

universal serial bus (USB) was also slow with GCDC, about 2 hours to download approximately 620 

3 gigabytes of data for 3-4 months of sampling using USB connection. The microSD card, as 621 

used with the ORE design, was much faster at transferring the daily csv file to a laptop in the 622 

field. GCDC software allows a maximum of 999 csv files to be saved before data needs to be 623 

downloaded and removed off the microSD card, which could be a hurdle for multi-year data 624 

collection without clearing memory. While the more expensive ORE units offer greater ease of 625 

use out of the box than GCDC, the similarity of phenological dates extracted between these 626 

units suggests that there are opportunities to test other low-cost units that optimize properties 627 

such as longevity and ease of use. 628 

Accelerometer placement height did not show tradeoffs associated with signal detection 629 

and ease of access in an urban environment. Sensors placed higher in the tree have a stronger 630 

likelihood of detecting signals due to more movement from wind (van Emmerick et al. 2017). 631 

However, the upper secondary branches can have a different signal from the main trunk that 632 

may not represent the whole tree (Spatz and Theckes 2013). The sensors we placed above-633 

crown (3.7 and 2.8 from ground) versus at-crown (2.1 meters above ground) resulted in 0.2 634 

days difference in SOS for Tree-1 y-axis; no differences were found for Tree1 z-axis and for 635 

both axes of Tree2. Our DP analysis supports the idea that at-crown sensor placement is 636 

sufficient for detecting PF, SOS and SOA within the urban matrix; the lower device placement 637 
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on the main trunk had sufficient tree sway for vegetation date detection and reduced likelihood 638 

of picking up secondary sway signals that might not represent the whole tree as Gougherty et 639 

al. (2018) found with placement at 1 meter from the ground. For many shade-bearing street 640 

trees, such as white ash, placing a unit at the base of the crown offers reasonable access with 641 

use of a small stepladder, avoiding the need for tree climbing equipment.  642 

 643 

4.4. Future research 644 

 645 

Developing an understanding of what structural landscape elements can hinder or help 646 

accelerometer use on trees is essential to unlocking population-level studies.  Our study 647 

demonstrates that accelerometer-derived tree phenology is possible within the urban matrix, 648 

and merits continued study of the urban landscape with larger sample sizes. A useful next step 649 

would be to see if there are dead zones without sufficient wind to force tree sway. We 650 

recommend investigating whether dead zones may be predictable based on above-ground 651 

landscape elements, topography, urban morphology and wind flow properties (Cionco and 652 

Ellefsen 1998; Ottosen et al. 2019). Because street median and sidewalk trees are often the 653 

same age, they offer an opportunity to systematically test different landscape variables such as 654 

distances to buildings, building density, or different species of trees. Species-specific life cycle 655 

data is valuable for management challenges such as controlling invasions (Maan et al. 2020) 656 

and green infrastructure testing such as stormwater retention properties (Houdeschel et al. 657 

2015). Continued development of accelerometer-based study of tree species within and across 658 

cities may aid in assessing range shifts for urban planting guides.  659 

Future work could also target development of phenological models for early flowering 660 

species and explore how other reproductive strategies may be modeled from tree sway data. 661 

Integration of two dual-logistic curves into a single model for trees that flower before the spring 662 

green-up may be appropriate for such species. In the case of wind-pollinated tree species, the 663 
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release of pollen may allow for a defined progression of mass changes as modeled by the DP 664 

produced by the ash trees in our study. It is still unknown how accelerometer-derived phenology 665 

curves may represent flower and leaf emergence in trees that have simultaneous leaf and 666 

flower development. Due to genetic variation in tree flowering time within the lifecycle of a 667 

species, models may need to be specific to species or functional types (i.e., early- or late-668 

flowering trees) to enable monitoring of tree communities. Exploration of accelerometer-derived 669 

tree sway on species that are insect-pollinated would also contribute to a more comprehensive 670 

understanding of how flowers and pollen release may be modeled.  671 

Continued testing of other accelerometer units that minimize the tradeoffs between 672 

performance and cost will be of value to scaling up the number of trees in a study. Testing of 673 

other low-cost accelerometers that have weatherproof designs and improved power systems will 674 

be of value for larger, population-level studies. Furthermore, accelerometers with wi-fi enabled 675 

transmitting systems would advance the capacity for accelerometers to be more automated, 676 

similar to studies of people’s mobility patterns in cities using data streams from common devices 677 

(Kontokosta and Johnson 2017). For instance, single-board computers (e.g. Raspberry pi) or 678 

microcontroller technology (e.g. Arduino) could be used to transmit high-resolution 679 

accelerometer data to online servers (Okigbo et al. 2020). This real-time connection could save 680 

considerable time for land managers and researchers and enable more responsive 681 

management. Additional time savings for phenological monitoring of multiple trees might be 682 

further achieved with video monitoring methods, which have been developed to track tree 683 

motion in time (Barbacci et al. 2014).  684 

These results have also led to interesting questions about how accelerometers can be 685 

used for observing processes influencing mass change beyond seasonality of deciduous trees. 686 

The seasonal changes of coniferous trees may be modeled differently from those of deciduous 687 

trees (Jackson et al. 2021) and there may be greater potential to capture high temporal 688 

resolution information about reproductive phenophases without overlap of the mass changes 689 
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associated with foliage. There are many opportunities to explore how tree age, size, 690 

architecture, and management may impact the mass and tree sway relationships for 691 

phenophases across time. Accelerometers could be useful in identifying disease, locating 692 

structural damage, and making field site visits more efficient. For example, Emerald Ash Borer 693 

infestations kill branches by slowly severing the vascular tissue (Poland and Mccullough 2006). 694 

As branches die, the tree’s mass may reach a threshold of change that is detectable by an 695 

accelerometer. In the case of a storm, tree biomass could be rapidly reduced following wind or 696 

snow damage. If a forester could monitor a pest-infested tree or be notified of structural damage 697 

produced by a storm, they may find more efficiency in managing the health of trees and 698 

associated ecosystem services. Deriving quantitative changes in biomass (e.g., due to pest 699 

damage, or leaf on/off) from changes in tree sway requires additional data and methodological 700 

refinements not explored here, such as the stiffness and damping properties of the tree 701 

(Equation 1). Additionally, such quantification requires identification of an appropriate functional 702 

relationship between sway and biomass, which might be modeled differently (e.g., cantilever 703 

versus pendulum approximations) depending on canopy architecture and for broadleaf versus 704 

coniferous trees (Jackson et al., 2021). 705 

 706 

5. Conclusions 707 

 708 

Using accelerometers to determine tree phenology is an emerging frontier in sensor-709 

based ecological research. Our study demonstrates that high-resolution seasonal transitions 710 

can be extracted from trunk-mounted accelerometers in an urban environment. Whether in a 711 

city or a continuous forest, accelerometers have potential to fill a niche in sensor-based 712 

approaches to measuring foliar and reproductive phenology. Furthermore, accelerometers may 713 

complement established near-surface remote sensing methods such as digital repeat 714 

photography (e.g., PhenoCams) and traditional visual human observations for a more objective 715 
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and detailed understanding of tree biology. The low-cost, non-invasive nature of accelerometer-716 

tracked mass changes around flowering time could revolutionize larger-scale study of tree 717 

phenology in the urban forestry and agricultural sectors and help identify bioindicators of climate 718 

and land use change. 719 

Future work could target understanding landscape controls on signal thresholds, building 720 

phenological models for tree flowering time, and testing types of widely available 721 

accelerometers that are likely to be successful for practical use in tree phenology studies. 722 

Continued development of automated data flows from accelerometers to on-the-go apps for 723 

mobile devices opens avenues for efficient use of a rich set of information on tree seasonality, 724 

disease, insect infestation, and structural damage. Tree health is vital to many ecological 725 

processes and ecosystem services. Accelerometers offer an opportunity for enhanced 726 

understanding of how trees across biomes are responding to climate change, regional 727 

urbanization, and other localized environmental influences.  728 
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