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Abstract: Trees are bioindicators of global climate change and regional urbanization, but
available monitoring tools are ineffective for fine-scale observation of many species. Using six
accelerometers mounted on two urban ash trees (Fraxinus americana), we looked at high-
frequency tree vibrations, or change in periodicity of tree sway as a proxy for mass changes, to
infer seasonal patterns of flowering and foliage (phenophases). We compared accelerometer-
estimated phenophases to those derived from digital repeat photography using Green
Chromatic Coordinates (GCC) and visual observation of phenophases defined by the USA
National Phenology Network (NPN). We also drew comparisons between two commercial
accelerometers and assessed how placement height influenced the ability to extract seasonal
transition dates. Most notably, tree sway data showed a greenness signal in an urban
environment and produced a clear flowering time-series and peak flowering signal (PF), marking

the first observations of a flower phenophase using accelerometer data. Estimated start of
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spring (SOS) from accelerometers and time-lapse GCC were more similar than start of autumn
(SOA); accelerometers lagged behind the time-lapse camera dates by three and four days for
SOS and 13 and 14 days for SOA for each tree. Estimates for SOS and SOA from
accelerometers and time-lapse cameras aligned closely with different NPN phenophases. The
two commercial accelerometers produced similar season onset: a difference of 2.4 to 3.8 days
for SOS, 2.1 days for SOA, and 0.5 to 2.0 days for PF. Accelerometers placed at the main
crown branch point versus higher in the canopy showed a difference of 0.2 to 4.9 days for SOS
and -1.5 to 1.7 days for PF. Our results suggest accelerometers present a novel opportunity to
objectively monitor reproductive tree biology and fill gaps in phenology observations.
Furthermore, widely available accelerometers show promise for scaling up from individual trees
to the landscape level to aid forest management and assessing climate change impacts to tree

phenology.

Keywords:
plant phenology, accelerometers, digital repeat photography, Fraxinus americana, tree

sway, urban forests

1. Introduction

Changes in seasonal growth cycles of trees, or tree phenology, have consequences
across a broad range of sectors, from wildlife to hydrology to human health and well-being. For
wildlife, shifting tree phenology has strong links with herbivory (Kordsi et al. 2018), habitat
provisioning (Evans et al. 2016), migratory patterns (Tryjnowski et al. 2013), and community
level interactions (Primack et al. 2009; Walther et al. 2002). For humans, altered tree phenology

influences water movement and infiltration (Xiao and McPherson 2002), cooling capacity
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(Stanley et al. 2019) and other ecosystem services (Tzoulas et al. 2007). In particular, the timing
of flowering is important for numerous ecological and socio-economic reasons. For example,
floral timing influences activity of nectar-gathering insects (Gérard et al. 2020) and influences
vulnerability to damaging weather events (Hufkens et al. 2012). Flowering also impacts allergen
prevalence (Jochner et al. 2013;Traidl-Hoffmann et al. 2003), human psycho-emotional well-
being (Cameron et al. 2012; Burroughs 2002), tourism (Wang et al. 2017), aesthetics (Kareiva
et al. 2007), and agriculture (Duraiappah et al. 2005; Menzel 2002). Given that climate change
and densification of cities is likely to continue to impact the drivers of tree phenology such as air
temperatures, it is vital to have tree monitoring tools to understand the trends and intensity of
both foliar and floral shifts in trees.

While the scientific community has made great strides in studying the relationships
between climate and tree phenology through remote-sensing methods (Li et al. 2017;
Klosterman et al. 2014; Cleland et al. 2007) and in making connections across observation
platforms (Richardson et al. 2017; Schwartz and Hanes 2010; Fisher et al. 2005; Morisette et al.
2021), challenges remain (Park et al. 2021; Morisette et al. 2009). In some environments (e.g.,
urban forests), observation tools that may be suitable for continuous forest are not effective
given the diversity of tree species and the matrix of trees, other vegetation, and the built
environment that may be found within a single satellite pixel. For example, imagery is available
through no-cost government-operated data portals with temporal resolution on the order of days
(e.g., MODIS), but the spatial resolution of these sources may not be sufficient for some settings
and applications. Sensors on privately-managed satellites have the ability to capture high spatial
resolution, on the order of 30 cm (Fang et al. 2020), with customized temporal coverage
(DigitalGlobe Inc, 2016). However, there are significant cost barriers associated with
purchasing imagery to observe multiple phenological events. Drone-based sensors also offer
high spatial resolution phenological data (Klosterman et al. 2018), but obtaining permissions to

fly above populated areas poses a hurdle to high-resolution temporal monitoring.
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Given that species-level studies of tree phenology are constrained by the need for high
spatial and temporal coverage (Yang et al. 2020; Badeck et al. 2004), species-specific
phenological studies typically still rely on traditional labor-intensive visual observations in the
field (Gray and Ewers 2021; Elmendorf et al. 2016; Wohlfahrt et al. 2019; ller et al. 2013; Inouye
2008) or historical diaries (Fitchett and Raik 2021; Zheng et al. 2013). Visual observations are
critical for gathering information about flowering phenophases as exemplified in the national
launch of plant monitoring at National Ecological Observation Network sites (EImendorf et al.
2016). When a single species dominates an area, a combination of remote- and ground-
observation methods has been successful to understand tree phenology at the landscape level
(Elmore et al. 2016); however, pixels with mixed-land use were not successful (Elmore et al.
2016) and in some cases comparison of these observation methods have shown opposite
trends (Fu et al. 2014).

Digital repeat photography, also called time-lapse camera imagery, that estimates
greenness (Klosterman et al. 2014) can be an effective tool for studying multiple tree species
(Sonnentag et al. 2012), linking to satellite data (Yingying et al. 2018), and reducing human-
based errors (Seyednasrollah et al. 2019). However, extending the geographic coverage of
these phenology cameras can be expensive (in terms of camera-associated equipment) and
logistically challenging. For example, ideal camera positioning is above the canopy pointing
northward to avoid shadows in the field of view (Sunoj et al. 2016). Erecting towers is often not
practical in the urban environment and repeat-photography in such settings raises privacy
concerns. There may be opportunities to leverage existing imagery platforms such as camera
infrastructure in cities (i.e., traffic monitoring cameras) or public posts on social media platforms
to extract vegetation indices, though significant spatial and temporal resolution obstacles remain
(Vaz et al. 2019; Morris et al. 2013). Despite the advances, sensor-based phenological studies
(whether using near-surface or remotely-sensed data) are limited in their ability to capture some

phenophases, such as the start and progression of flowering (Sunoj et al. 2016).
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Scalable, non-invasive, inexpensive methods are needed for long-term vegetation
monitoring, particularly in an urban environment. Novel methodology has emerged to infer
seasonal tree patterns derived from accelerometer sensors. Accelerometers can detect patterns
of vibrations of an object after a force sets the object in motion. A multi-axis accelerometer
mounted to the surface of a tree trunk can detect the pattern of natural vibrations that the tree
experiences due to wind or other forces (Jackson et al. 2021; Selker et al. 2011). The frequency
of vibrations, or number of sway cycles per second, is inversely related to the tree’s mass (van
Emmerick et al. 2017; Moore and Maguire 2004; Baker 1997). Phenological changes in a tree
may change its mass distribution or stiffness, altering the cycle period (and inversely, the
frequency) (Bunce et al. 2019; Gougherty et al. 2018). Accelerometer data can be analyzed to
extract the period length over time. The periods with the largest amplitude, called the dominant
periods, can be assembled into a time-series and modeled to extract the onset of seasonal
transitions (Gougherty et al. 2018).

Accelerometers show the potential to fill a niche in sensor-based approaches to
monitoring tree phenology. Mass changes in plants have been used to answer questions of
plant biomechanics by applying theory and tools on vibrations from the engineering field (de
Langre 2019). Accelerometer-derived mass changes have been used to estimate tree
properties such as drought stress (Ciruzzi and Loheide 2019; Sano et al. 2015), wind stress
(Lohou et al. 2003), rain interception (van Emmerick et al. 2017; Selker et al. 2011), snow
loading (Raleigh et al., 2021), buckling of branches (Timishenko and Gere, 2009), fruit ripening
(Hou et al. 2018), and changes in foliage (Gougherty et al. 2018).

Many questions remain regarding which tree growth events can be tracked with
accelerometers and which environments are conducive to detecting tree sway signals. For
example, mass changes associated with tree flower emergence have not been studied with
accelerometers. Additionally, studies looking at tree sway have targeted trees within continuous

forests (Gougherty et al. 2018; van Emmerick et al. 2017). Despite indications that trees at the
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forest edge or in the open can be successfully monitored with accelerometers (Gougherty et al.
2018), it is unknown whether there is sufficient wind forcing to study trees in an urban landscape
that has large structures that can shelter trees from wind. Given that canopy architecture varies
among deciduous tree species, phenology signals and placement height may be species-
specific. While wind more readily generates motion on secondary branches of the upper
canopy, sway signal has been detected from sensor placements as low as 1 meter from the
ground on the main trunk of some deciduous trees (Gougherty et al. 2018).

The purpose of this study was to test the ability to derive vegetation indices such as
foliage and flowering from accelerometers on trees in an urban setting. Our primary objective
was to build a growth curve from urban trees lining an urban sidewalk and address how
flowering and foliage dates derived from accelerometers compare to digital repeat photographs
and visual observations. Because connections between digital camera imagery and field
observations have been established and past studies have linked field observations to
accelerometer-derived vegetation indices, we hypothesized that both imagery and visual
observations would be comparable to the accelerometer estimates. On the other hand, because
accelerometers log variation in tree motion related to changing biomass while digital cameras
and humans collect visual data at intervals, accelerometers may provide complementary
information about tree activity by detecting different phenological stages or providing information
that is temporally offset from imagery or field observations.

Our secondary objective was to evaluate two practical aspects of accelerometer use. We
investigated how unit type and placement height influenced the ability to extract dates of
seasonal transitions in trees. To date, only one study has used accelerometers for estimating
tree phenology using custom-made devices for use on trees (Gougherty et al. 2018). We build
on their work and compare the custom sensor with an inexpensive and widely available
accelerometer marketed for a variety of motion detection applications. Given that

accelerometers should have similar functionality, we expected that different types of
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accelerometers should detect a similar phenological growing season signal. For the question of
height, we expected that placement on the main trunk at the tree crown should be sufficiently
high for wind to induce a detectable signal. The purpose of these unit and height comparisons
was to provide guidance on how to scale up the use of accelerometer monitoring in a feasible
and cost-effective manner. To test this, we placed accelerometers at two different heights on

two trees in an urban setting.

2. Material and Methods

2.1. Study species and location

We used two 30-year-old pollen-bearing white ash (Fraxinus americana) trees in
Boulder, Colorado to study tree sway and phenology. White ash are wind-pollinated, dioecious
(separate trees are pollen or fruit bearing), deciduous broadleaf trees with a natural range
extending from the eastern United States forests to the Midwest plains. White ash trees provide
significant shade (Poland and Mccullough 2006) and are planted in Colorado and other states
by the thousands to millions along streets and in greenspace (City of Boulder Forestry 2021;
Denver Parks and Recreation 2018; Nowak et al. 2010). In Colorado, white ash trees are
planted along residential areas and are a valuable part of urban tree canopies. White and green
ash (Fraxinus pennsylvanica) trees together make up over 15% of urban forests in Colorado
(Colorado Dept of Agriculture 2021).There were no visible signs of pest infestation or damaged
wood on our focal trees during the study period.

The study site was situated at the University of Colorado Boulder East Campus
(40.011132, -105.242205; 1655 meters; Figs. 1a,b). The climate is temperate with an average
high temperature of 26.9 °C in July, and average low temperature of -7.8 °C in February

(NOAA). During 2018, average daily wind speeds ranged from 0 to 4.5 meters/second spanning
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all cardinal directions (Skywatch Weather Archive 2018). Peak gusts were observed between
15.6 to 33.5 meters/second, predominantly from the west (Skywatch Weather Archive 2018).
The focal ash trees were part of a row of eight white ash trees planted in 1991 in a turfgrass
plain two meters west of a sidewalk (Fig. 1c). These focal trees were eight meters apart, did not
have overlapping canopies, and were referred to as Tree1 and Tree2 (Fig. 1c). There was a
second row of white ash trees on the east side of the sidewalk. To the north, there was a mixed
conifer-deciduous wetland. A fenced meteorological station (550 square meters) was seven
meters to the southwest of the trees and a three-story university building was approximately 50
meters southwest of the trees. Within the meteorological station, a north-facing time-lapse
camera was mounted on a post four meters above the ground. The camera was 24 meters from
Tree1 with canopies of both focal trees in the field of view. The diameters at breast height were

28 cm and 25 cm and heights were 7.8 and 7.4 meters for Tree1 and Tree2, respectively.

Figure 1. a) Map highlighting study location in Boulder, CO. b) Aerial image showing urban
landscape of Boulder, CO (Google Earth 2021). c¢) Aerial image shows location of focal ash

trees and the time-lapse camera (Google Earth 2021).

2.2. Tree motion: theory, measurements and data processing
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2.2.1. Accelerometer-derived tree sway theory

Tree phenology was inferred using tree sway frequency and periods derived from multi-
axis accelerometers. The frequency of vibrations, or sway cycles, is inversely related to the
tree’s mass and the period of a sway cycle is proportional to the mass (Moore and Maguire

2004). Equation (1) shows this relationship conceptually,

fo o« Jk/mb < DP« \/mb/k (1)
where fpis the dominant resonant frequency (Hz), k is a measure of stiffness, mis mass, bis a
measure of damping, or the decrease in the amplitude of oscillation as energy is lost from the
system, and DP is the dominant period in seconds (Moore and Maguire 2004).

In this paper we focused on accelerometer data displayed as the dominant period (DP),
or the time in seconds for the tree to complete one cycle of sway. Over the course of a growing
season, a deciduous tree’s aboveground mass increases with leaf emergence and decreases
with leaf drop. A temporary increase in mass is detected as a corresponding temporary increase
in tree sway period (see Equation 1). Estimating the actual tree mass is not needed since we
are using the dominant resonance period as a proxy measure for the relative percent change of
mass, which should change with spring and autumn phenology or other events that alter a tree’s
mass (Gougherty et al. 2018; Baker 1997). Similarly, although sufficient wind is necessary to set
the tree in motion (van Emmerick et al. 2017), estimating wind speeds is not necessary to
determine the dominant period. When wind is below the threshold for initiating tree motion, the
accelerometer is recording “noise” and tree sway period cannot be identified in these cases.

It is important to recognize that the tree sway period is linked to mass changes on both
the inside and outside of the tree. In our study, we are interested in multi-day or week trends of
seasonal growth and the associated biomass changes related to foliage gain or loss and

vascular transport. The tree’s mass may also change with episodic events such as precipitation
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or structural damage. In the case of precipitation, rainfall interception on foliage or branches
may increase the mass and lengthen the dominant period during the rain event for minutes to
days (van Emmerik et al. 2017). Mass loading from snowfall might show more pronounced
fluctuations in dominant periods depending on the snow water content and time to melt (Raleigh
et al., 2021). These episodic mass loading events are likely captured in our data but are not
expected to contribute to the overall seasonal signal.

While we expect tree mass to be the strongest determinant of tree sway periods, several
other tree properties such as stiffness, wood density, and canopy architecture also have an
effect (Moore and Maguire 2004). The growth and hardening of xylem changes trunk diameter
and the stiffness of a tree over its lifetime (Bunce et al. 2019); however, stiffness is not expected
to have significant influence within an annual phenology signal (De Langre 2019). Seasonally,
the hydraulic conductance of water up the stem changes, affecting the stiffness (Ciruzzi and
Loheide 2019; van Emmerick et al. 2017). As water and sap move through the tree tissue the
trunk vibrations may be affected due to changes in the trunk stiffness and therefore confounded
with the mass; however, the seasonal change in stiffness is considered of secondary
importance to the seasonal change in mass when observing across the growing season
(Gougherty et al. 2018; van Emmerick et al. 2017). The canopy architecture and branching
structure of deciduous trees can also affect the stiffness and damping of tree movement
(Schindler et al. 2013). The natural or pruned structure could explain differences in dominant
period when comparing among trees; therefore, we selected two white ash trees that have
similar canopy architecture and branching patterns and were not pruned over the study period.
Stiffness was not measured (i.e., with a bending test) as these trees were the same species and

close enough in size and age to assume similar stiffness.

10
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a) Treel b) Tree2

Figure 2. Diagrams of accelerometer position and height for ORE and GCDC accelerometers on
a) Tree1 and b) Tree2. Panel c) shows regions of interest for Green Chromatic Coordinate

analysis of time-lapse imagery on Treel (1.1 - 1.3) and Tree2 (2.1 - 2.3).

2.2.2. Device positioning and power

A total of six accelerometer units of three types were tested between 2018-2020 (n=4
model X16-1D, Gulf Coast Data Concepts [GCDC], Waveland, MS; n=1 model AL100, Oregon
Research Electronics [ORE], Tangent, OR; n=1 model AL100-solar, ORE) (Fig.2). Only data
from 2018 are presented since that dataset was the most complete. Accelerometers were
installed March 23rd, 2018. An ORE (AL 100 on Tree1, AL100-solar on Tree2) and a GCDC unit

were placed at the start of crown branching from the main trunks of each tree at a height of 2.1

11
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meters above the ground (Figs. 2a,b) with the x-axis oriented vertically to the tree trunk. These
GCDC units will be referred to as the lower at-crown GCDC units. Separate GCDC units were
also placed on a vertical secondary branch above the crown branching at 3.7 and 2.8 meters
above the ground, also with the x-axes oriented vertically, representing the upper above-crown
units of Tree1 (Fig. 2a) and Tree2 (Fig. 2b), respectively.

The ORE and GCDC units logged acceleration on two perpendicular, lateral planes
(north-south or east-west for the y- and z-axes) and one vertical direction (x-axis) that is a
measure of the acceleration of gravity. ORE units were positioned on the eastward side of the
tree with the y-axis oriented north-south and the z-axis oriented east-west (ORE Manual page
10, 2020). The GCDC units were positioned on the northward side of the tree with the y-axis
oriented east-west and the z-axis oriented north-south (GCDC Manual page 7, 2022). Because
we positioned the at-crown units on perpendicular sides of the tree, the y- and z- axes of the
GCDC and ORE were oppositely aligned. The x-axis on the plane parallel to the tree trunk was
excluded from analysis and served to confirm the accelerometer is functioning as expected.

We prepared GCDC and the ORE units for long term deployment and checked and
replaced batteries every three to four months. We used polyvinyl bags and electrical tape to
form a weatherproof barrier around the GCDC accelerometers. ORE hardware was already
waterproofed. The GCDC units were manufactured to operate on a single AA battery cell.
Preliminary testing showed the AA battery powered a GCDC unit logged continuously at 12 Hz
for an average of 25.6 days. Therefore, in an attempt to improve longevity we engineered the
GCDC units to receive power from four D-cell batteries oriented in parallel. The ORE AL100 unit
was manufactured to operate on two C-cell batteries. The ORE AL100-solar unit on Tree2 was

engineered by the manufacturer to use solar power and stored in a rechargeable C-cell battery.

2.2.3. Device programming

12
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ORE accelerometers logged the XYZ axes continuously at a sample rate of 10 Hz,
resulting in 864,000 samples per day collected in one comma-separated values (csv) file per 24
hours. At the start of study, it was not clear that we could have changed the ORE sensor to
sample at 12 Hz to align with the GCDC sensors. Although we later discovered this was
possible, we do not believe the difference in sample rate of this magnitude significantly affected
results since accelerometers, GCDC in particular, can fluctuate by about 1 Hz from a set
frequency (Evans et al. 2014). GCDC accelerometers logged the XYZ spatial axes dimensions
continuously at a sample rate of 12 Hz, resulting in 1,036,800 samples per day collected in
seven to eight csv files per day. The GCDC configuration options ranged from 12 to 800 Hz, and

so 12 Hz was selected to most closely align with the ORE sensors.

2.2.4. Data processing and statistical analysis

Raw acceleration data from the two lateral axes were converted to phenological
estimates. The data processing followed three steps defined by Gougherty et al. 2018: 1)
identify DPs, 2) remove outliers, and 3) fit a phenology model to estimate the onset dates of
spring, autumn and the growing season length.

In step one, the spectral density, which shows the strength of variation as a function of
frequency, was estimated using an autoregressive model to minimize Akaike Information
Criterion. For each sensor’s y and z-axis, separate periodograms were generated from the
spectral density with the ‘ar’ and ‘spec.ar’ functions in the stats package of R (R Core Team,
2019). Peaks in the periodograms were found with the findpeaks’ function in the pracma
package (Borchers, 2019). The dominant and second-most-dominant periods were calculated
as 1/frequency of the peaks with the highest and second highest spectral density, respectively.
Each dominant period (DP) was assigned a weight based on the difference between the

spectral density of the most and second-most dominant period identified in the periodogram for
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a given day of year. The DPs and associated weights of both axes were combined into one
dataset; meaning for each 24-hour period, a DP and the associated weight from the y- and z-
axes were represented in an interleaved time-series. In step two, outliers less than 0.9 seconds
and greater than 3.0 seconds were manually removed from the ORE and GCDC datasets. The
limits were selected based on visual inspection, and also on typical sway periods documented
for trees of similar size. We note that the typical range of sway period will depend on tree
species, height, age, and other variables (Jackson et al. 2021), and the values used here are
specific to the study trees. The remaining outliers were removed using a locally weighted
regression (LOESS curve; Cleveland and Devlin 1988) that removed data points with residuals
greater than the threshold of 1.5 times the interquartile range. In step three, a dual-logistic curve

was used to model the full growing season (Elmore et al. 2012; Eq. 2).

mz—t mg—t

DP=mi+(mz—mz-t) -(1/(1+em )—1/(1+e ™)) (2)
In Eq. (2), DP represents the dominant period, tis the day of year, my is the DP during
dormancy, m:is the difference in DP during dormancy versus active growth, ms and mx
influence the shape of the logistic curve in the green-up, ms and ms influence the shape of the
logistic curve during senescence, and m> changes the slope of the curve during the summer.
The ms parameter indicates the spring inflection point, or the date at which the DP during the
early season is changing the fastest, which we used to represent the start of spring (SOS). The
ms parameter indicates the autumn inflection point, or the date at which the DP during the end
of the season is changing the fastest, which we used to represent the start of autumn (SOA). In
instances where there were missing data for SOA due to battery failure, SOS could still be
accurately modeled by temporarily using estimated data to fill the autumn gap. The length of
season (LOS) is the difference in number of days between SOS and SOA.

The peak flowering (PF) date was determined by identifying the date at which the

dominant period (DP) was highest (i.e., the maximum DP value) before SOS. Days were
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averaged to find the PF if multiple max DPs were found. Unit and height comparisons of the
mean DP values per day were performed using Student’s t-tests and Pearson’s correlation tests
across Julian days 82 to 270 during 2018, which had complete data across all six

accelerometers.

2.3. Time-lapse photography analysis

We used RGB brightness values from digital camera imagery to calculate green
chromatic coordinates (GCC) from Red-Green-Blue (RGB) digital numbers (GCC = Green/[Red
+ Green + Blue]). A north-facing, 20-megapixel Cuddeback trail camera (model ELCA 1224,
Cuddeback Digital, De Pere, WI) photographed the two study trees beginning March 27, 2018.
The camera was set to record images at 30-minute intervals during the daytime as suggested
by Sonnentag et al. (2012), resulting in 19-30 images per day. Single photo dimensions were
2576 x 1496 megapixels. Images were analyzed using the Phenopix V 2.0 package in R
according to the phenopix vignette (Filippa et al. 2020). Three region-of-interest (ROI) polygons
were each drawn in the canopy of Tree1 and Tree2 (Fig. 2¢). Vegetation indices were
calculated using a pixel-based analysis where raw color digital numbers were extracted from
pixels. The GCCs were averaged over a 3-day moving window in the ROI according to
Sonnentag et al. (2012). The same dual-logistic curve used in the accelerometer DP analysis
was fit to the data according to Eq. 2 (Elmore et al. 2012). As with the accelerometer analysis,
we applied the “derivatives” method (Klosterman et al. 2014), which uses the inflection points on

the dual-logistic model curve to define SOS and SOA.

2.4. Visual observations
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Treel1 and Tree2 were visited approximately one to two times per month between March
and December 2018 to record visual observations of phenophases set forth by the National
Phenological Network (NPN) in the Phenophase Handbook by Haggerty and Mazer (2008, S3).

The phenophases surveyed for in the field were pollen release, full pollen release, emerging

leaves, unfolded leaves, > 75% of full leaf size, 50% of leaves colored, all leaves colored, >

50% of leaves fallen, and all leaves fallen. In addition to field observations, time-lapse imagery
was visually reviewed to make approximate estimates of phenophases that were not directly

observed in the field.

2.5. Phenological method comparison

For accelerometer and time-lapse comparison, SOS, SOA dates and LOS number of
days were compared between accelerometer values averaged across sensors on a tree and
time-lapse camera values averaged across ROls on a tree. To determine the difference in days,
the mean SOS and SOA dates and LOS days for accelerometers was subtracted from the
corresponding time-lapse camera values. To compare visual observations with accelerometer
and time-lapse cameras, dates of visual observation of NPN phenophases averaged across
Tree1 and Tree2 were compared to the SOS and SOA values averaged with across alll
accelerometer sensors (on both trees) and across all time-lapse camera imagery ROIls (on both
trees). To determine the difference in days, the mean accelerometer and time-lapse camera
SOS and SOA dates and LOS days were subtracted from the corresponding mean visual

observation dates and days.

3. Results
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3.1 Urban tree growing seasons

All six accelerometers mounted on the two focal ash trees detected growing season
signals in an urban setting, including a progression of flowering. We obtained a precise estimate
of PF and were able to model SOS and SOA from the sensors with complete or near-complete
data (Fig. 3). Two of the four GCDC sensors had unexpected battery failure in the autumn
resulting in the inability to model SOA and LOS for the upper sensor of Tree1 (Fig. 3a) and
lower sensor of Tree2 (Fig. 3f). Accelerometer PF, SOS, and SOA had low variation within and

between trees, on the order of fewer than three days (Table 1).
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Figure 3. Time-series of accelerometer dominant period (DP) of y- and z- axes during the 2018
growing season for Tree1 (a-c) and Tree2 (d-f). Rectangles on the tree diagram represent
accelerometer locations: GCDC (blue) and ORE (gray). DP output is displayed for GCDC-upper
in a) and d), ORE in b) and e€) and GCDC-lower in ¢) and f). Vertical lines show the flowering
peak (FP; dashed-dotted), model-predicted start of spring (SOS; dashed) and model-predicted

start of autumn (SOA; solid).

3.2 Time-lapse, visual observations, and accelerometer method comparison

Compared to time-lapse GCC, accelerometers showed delayed SOS, delayed SOA, and
longer LOS. For LOS, the accelerometer DP was on average 10 days longer than camera-
derived measures for Tree1 and 9 days longer for Tree2 (Table 1). For SOS, accelerometers
showed more within-tree variation in average dates compared to time-lapse cameras (Table 1,
Fig. 4). Accelerometer DP SOS lagged on average 4 and 3 days behind time-lapse GCC for
Treel1 and Tree2, respectively. For SOA, accelerometers showed similar within-tree variation in
average dates compared to time-lapse cameras for both trees (Table 1). The accelerometer DP

SOA lagged behind the time-lapse GCC 13 and 14 days for Trees 1 and 2, respectively.
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Figure 4. Growing season for 2018 as calculated from green chromatic coordinate (GCC)
analysis of image regions of interest (ROIs) (Fig. 2) from time-lapse camera imagery for Tree1
(a-c) and Tree2 (d-f). ROIs 1.1, 1.2, 1.3 capture the canopy of Tree1, and ROIs 2.1, 2.2, 2.3
capture the canopy on Tree2. Vertical lines show model-predicted start of spring (SOS; dashed)

and model-predicted start of autumn (SOA; solid) based on the GCC.

Table 1. Average vegetation indices (PF, SOS, SOA, LOS) and standard deviations in
parentheses. Accelerometer DP values from the ORE, at-crown GCDC, and above-crown
GCDC sensors and GCC values from the time-lapse camera ROIs have been averaged for

each tree.
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Metric Tree Mean PF (day Mean SOS Mean SOA Mean LOS
of year) (day of year) (day of year) (number of
days)
Accelerometer DP 1 115.2 (+/- 1.0) 138.0 (+/- 292.1 (+/-1.5) 154.9 (+/-3.2)

1.4)

Time-lapse GCC 1 NA 134.0 (+/-1.0) 279.3 (+/-0.8)  145.0 (+/-1.0)
Difference DP- 1 NA 4.0 days 12.8 days 9.9 days
GCC
Accelerometer DP 2 114.7 (+/-1.1) 13;.2)(#- 291.0 (+/-0.7) 154.8 (+/-1.5)
Time-lapse GCC 2 NA 131.0 (+/-0)  277.3 (+/-0.6) 146.0 (+/-0)
Difference DP- 2 NA 3.2 days 13.7 days 8.8 days

GCC

We estimated which visual observations of phenophases (S3) best align with

accelerometer DP and time-lapse GCC-derived SOS and SOA dates (Table 2). The NPN

phenophase for deciduous trees that most closely aligned with model-derived metrics of SOS

was > 75 % of full leaf size (or > 75% of full canopy) for accelerometers and unfolding leaves for

time-lapse imagery (Fig. S4.2). For SOA, the NPN phenophase that most closely aligned to

model-derived metrics of SOA was all leaves colored for accelerometers and > 50% of leaves

colored for time-lapse imagery (Fig. S4.3).

Table 2. Comparison of visually observed phenophases to accelerometer- and time-lapse

camera-derived vegetation indices with standard deviations (in parentheses) for Tree1 and

Tree2 combined

Index NPN

Phenophase for
deciduous trees

Visual

observation
(day of year)

Accelerometer
mean difference
from visual

Time-lapse mean
difference from

visual observation
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observation (number of days)
(number of days)

PF Pollen release 113 2.0 (+/-1.0) NA
SOS Unfolding leaves 128 8.0 (+/-2.7) 4.7 (+/- 1.9)*
SOS 5 759 of full leaf 139 -3.1 (+/- 2.7)* -6.3 (+/- 1.9)

size (or > 75% of
full canopy)
SOA > 50% of leaves 280.5 10.8 (+/- 1.3) 2.2 (+/-1.2)*
colored
SOA All leaves 286.5 4.8(+/- 1.3)* -8.2 (+/- 1.2)
colored

*Indicates which NPN phenophase was closest to accelerometer or time-lapse- derived SOS or

SOA

3.3 Accelerometer-derived flowering peaks

Accelerometer data showed a small peak in DP (around day 115) before the SOS date
(Fig. 3) that corresponded with the time at which flowers were visually observed in the field as
fully emerged but not yet releasing pollen (day 113, Fig. S4.1¢). Manual review of time-lapse
camera imagery and meteorological datasets showed no sustained precipitation events over
that time-period. Thus, we are confident that the peak in DP before SOS was a flowering peak
that started about one month before the main spring green flush, and this was found in the data
of all six sensors. Based on visual observations, flower buds were dormant on day 82 and
began to swell on day 86. On day 113 inflorescences were fully emerged from floral bud casing
with individual flowers still closed. Photos of the tree buds on these dates are supplied in S4. On

days 115 and 114, accelerometers recorded maximum DP for Tree1 and Tree2 (Table 1). The
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National Phenological Network phenophases that most aligned with this time was open flowers

and pollen release.

3.4 Unit and sensor height comparison

The ORE sensor predicted later dates for PF, SOA and LOS, and both later and earlier
SOS dates depending on the tree. The estimates for PF, SOS, SOA, LOS collectively varied
from 0.5 to 4.5 days between the ORE and GCDC sensors (See Table S1 for each metric). The
mean DP across the 2018 growing season for GCDC versus ORE units were significantly
correlated in both axes for both trees (Fig. S1). The 2018 mean DP values for GCDC were
significantly higher compared to ORE on one lateral plane for both trees (Table S1). For Treel,
the GCDC z-axis 2018 mean DP was 0.2 seconds longer compared to the ORE model y-axis
(t(107.5) =2.5, p = 0.01). For Tree2, the GCDC z-axis 2018 mean DP was 0.2 seconds longer
compared to the ORE model y-axis (1(210.7) = 2.3, p = 0.01). The 2018 mean DP was not
significantly different between GCDC y-axes and ORE z-axes. The C-cell battery powered ORE
sensor consistently maintained power for 90-120 days between battery checks. The four
continuously logging GCDC units with D-cell batteries remained powered for an average of 88.5
days during year 1, 28.3 days during year 2, and 15.3 days during year 3. The ORE AL100-
solar unit held power for an average of 114 days between our checks from March-November
2018. With decreasing daylight, it appeared that the solar power supply was not strong enough
to power the unit in the winter and we ceased field testing after 2018.

The upper above-crown GCDC sensors predicted similar PF dates and SOS dates
compared to the lower, at-crown GCDC sensors. The upper position GCDC sensors were 1.5
days earlier and 1.7 days later for PF for Tree1 and Tree2, respectively, and 0.2 and 4.9 days
later for SOS for Tree1 and Tree2, respectively, compared to the lower position (Table S2).

SOA and LOS values could not be compared between sensor heights due to missing data. The
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mean 2018 DP for GCDC upper and lower position units were significantly correlated in both
axes for both trees (Fig. S2). The mean 2018 DP values on the y-axes of the lower, at-crown
sensor on Tree1 were 0.2 seconds shorter compared to the upper, above-crown sensor
(t(224.8)= -3.7, p <0.001); however, the z-axes showed no difference (Table S2). For Tree2
there was no significant difference in mean 2018 DP between the upper and lower GCDC

sensors for either axis.

4. Discussion

Our study demonstrates growing season transitions can be detected in individual trees
within an urbanized landscape using trunk-mounted accelerometers. Before SOS and complete
spring green-up, our accelerometers detected mass changes associated with flower emergence
on the white ash trees. To our knowledge, this is the first observation of tree flowering from DP
analysis of acceleration data. This sensor-based approach to monitoring individual trees has
promise in capturing vegetation changes that are not typically extracted from imagery-based
analyses. Our study provides a launchpad for future studies using accelerometers to incorporate
floral observation into hypotheses, include floral phenophases in growing-season models, and
create an automated processing platform so accelerometers can serve as inexpensive “Fitbits”
(individual activity trackers) for trees. If we consider the accelerometer-derived phenology
outcomes observed across the growing season (Figs 3 and 4), the change in accelerometer DP
resembles an NDVI growing season curve typical of a deciduous tree (e.g. Motohka et al. 2010).
Although, beginning in mid-summer there is a more prolonged and gradual decrease in sway
period than the typical late-summer decline of NDVI, suggesting accelerometers may provide
more detailed insight into water loss during dry periods or autumn foliage changes. While we
only included two trees in this study, the consistency between multiple sensors on the trees

provides evidence for a strong pattern despite the sample size.
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Contrary to suggestions by Gougherty et al. (2018), the current study provides evidence
that trees do not need to be located on the city edge or open, exurban areas to obtain a wind-
induced phenological signal. Many urban trees are adjacent to buildings and houses, linearly
planted along sidewalks, medians, and property edges to provide shade or delimit boundaries.
Outside of parks or natural spaces, there is infrequently a distinct forest edge within the urban
matrix. Our data suggest, however, that wind-blocking buildings and adjacent trees do not
hinder ability to obtain a phenological signal from urban trees. More research is needed to
determine if there are thresholds or optimums in building distance, composition, and density that
may affect the amount of wind necessary to induce tree motion measurable with

accelerometers.

4.1. Method comparison

The discrepancy between accelerometers, time-lapse cameras, and visual observations
are not surprising since the tools measure different tree attributes (i.e., motion/mass, greenness,
and categorical assessment, respectively); nonetheless, our results suggest that
accelerometers may offer a robust method for consistent detection of SOS and SOA. It was
surprising that the accelerometer-based estimate of SOS did not align to visually observed leaf
unfolding as was found with past SOS dates of Balsam poplar (Gougherty et al. 2018),
suggesting that accelerometer comparison to NPN visual phenophases for deciduous trees may
depend on the species. SOA also was earlier by nearly two weeks for time-lapse camera-
derived dates compared to accelerometers for both trees (Table 1). Past research shows that
there are more challenges associated with measuring SOA than SOS when using time-lapse
GCC, since loss of chlorophyll is more gradual in autumn than the gain in spring and because
leaf coloring and leaf drop phenophases may overlap (Elmore et al. 2016; Klosterman et al.

2014; Elmore et al. 2012; Ganguly et al. 2010). While past study comparisons between
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accelerometer SOA and leaf drop were not correlated (Gougherty et al. 2018), our study
suggests the accelerometer SOA values may be more related to senescence (Table 2). While
SOS and SOA estimates were fairly consistent between accelerometer units on a given tree,
conducting visual observations using a more detailed set of phenophases with increased
observation intervals may serve to capture greater precision in linking phenophases from the
globally-used BBCH scale (Finn et al. 2007) or those described in the National Phenological
Plant Profiles (National Phenology Network 2008) to accelerometer model parameters.

The alignment of the accelerometer-derived and image-based SOA and SOS estimates
with different NPN phenophase observations suggests that these tools may provide
complementary information that could constitute a more complete, high-resolution picture of tree
phenology. The seasonal onset dates derived from accelerometers could be leveraged as a tool
to fill niches not captured in near-surface and satellite-based phenological observation. First, the
accelerometers detected flowering phenophases that were not captured by the time-lapse photo
analysis. Second, compared with time-lapse GCC, we found accelerometer DP aligned with
different observer-based phenophases of SOS and SOA. This outcome suggests
accelerometers may better serve to complement rather than validate time-lapse imagery. If the
accelerometer lag in seasonal onset dates compared to time-lapse cameras proves to be
widespread and consistent within ash trees or for other tree species, paired accelerometer and
time-lapse camera data would be valuable to generate a more comprehensive picture of tree
phenology. This dual-instrument approach may be particularly useful for measuring autumn
phenophases involving both color and mass changes (e.g., senescence and leaf drop and
potential overlap) and temporal information about flowering phenophases that are not captured

by imagery.

4.2. Floral phenology
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Extracting the dates from mass changes associated with flowering such as start, peak,
end and length of flowering would be important contributions to instrument-based phenology
monitoring. Our data shows flowering time can be clearly observed for ash (Fraxinus) tree
species that produce wind-pollinated flowers before spring leaf flush (Fig. 3) and supports use of
accelerometers for date extraction from other species that flower before full foliage. We
considered other explanations for this peak due to external loading factors such as prolonged
snow interception followed by unloading or any other precipitation events. Precipitation events
could increase the DP due to added water mass on the tree, but this is not a plausible
explanation because the timescale of such spring-time events (hours to days) is considerably
shorter than the duration observed for the DP rise and fall (approximately 30 days).

There are many challenges associated with using imagery to determine flowering
phenophases for species. First date of flowering in corn fields has recently been detected using
multispectral reflectance data from satellites (MODIS and Sentinel-2; Nguyen et al. 2018);
however, extension of this method to mixed-species areas is limited by spatial resolution. For
digital repeat photography, there is some limited evidence of detection of flowers on individual
trees. RGB brightness and saturation levels may have different ratios when comparing
individual trees with flowers to individuals without flowers (Sturm et al. 2018). Kim et. al (2020)
employed machine learning techniques to identify presence or absence of flowering events in
trees with concentrated white blossoms using high-resolution digital cameras; however, the
authors suggest that the imagery collections from phenological networks focused on leaf
phenology (e.g., National PhenoCam Network) likely do not have sufficient pixel resolution for
assessing the complex reflectance patterns of flowers. Phenology camera analyses can count
the number of flowers at peak bloom on individual trees in digital images (Crimmins and
Crimmins 2008; Adamsen et al. 2000); however, they have not accurately detected the timing of
flowering phenophases (Sunoj et. al, 2016). While accelerometers also track on an individual

tree basis, they offer the advantage of using mass changes to learn about floral development
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over time (and potentially relative quantity) regardless of flower colors, blossom size, pixel
resolution, and obstructions from neighboring foliage or light, which can hinder widespread use
of imagery for study of flowers.

A simple, inexpensive sensor-based approach to track flowering could revolutionize
efficiency in the urban forestry and agricultural sectors. Estimated flowering dates delivered to
land managers and orchardists in real-time from accelerometers could contribute to enhanced
understanding of crop development, frost or floral damage, as well as generating harvest
predictions or maintenance schedules in response to weather conditions that vary annually.
Microclimates can have a strong effect on plants even within the same orchard (Verdugo-
Vasquez 2016) or city block (Ziter et al. 2019; Chen et al. 2018; Bonan 2000). Predicting tree
flowering time could improve the efficacy of arboreal operations such as timing when to apply
nutrients or administer disease interventions (Pusey and Curry 2007). Using accelerometers to
create a phenology network in the agricultural and urban forestry sectors could improve
efficiency of tree maintenance with potential to enhance crop yield or tree survival. Thus,
accelerometers show great potential as an objective and automated method to detect flowering

phenophases that are not typically captured with other instrument-based measurements.

4.3. Unit type and placement characteristics

Our results provide evidence that data from multiple types of accelerometers within or
across tree studies may be suitable for direct comparisons of phenological dates when placed at
the same trunk height. The three-day variation of PF, SOS, and SOA estimates for unit types
(Table S1) may be similar to variation found among typical monitoring field visits spanning days
to weeks in frequency (Richardson et al. 2018; EImore et al. 2016). For only the y-axes, the
ORE models showed lower DP values for estimated foliage transitions (Fig. S1) suggesting

there may be more detailed information gained from analyzing both lateral axes. Weather
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proofing, long-term battery power, and simple and consistent data transfer were the
accelerometer properties that were most important to longevity and ease of use in our study.
We found that simple polyvinyl plastic bags and electrical tape, as we used with the GCDC
units, were sufficient waterproofing for at least three years of field use. Despite adding the four
D-cell batteries, the biggest obstacle in using the GCDC sensors was decreasing battery run
times, which was especially prevalent beyond one year of use in a variety of weather conditions.
Other power mechanisms such as line power or rechargeable batteries with solar panels may
be more successful for multi-year study (Raleigh et al., 2021). Data transfer with an extended
universal serial bus (USB) was also slow with GCDC, about 2 hours to download approximately
3 gigabytes of data for 3-4 months of sampling using USB connection. The microSD card, as
used with the ORE design, was much faster at transferring the daily csv file to a laptop in the
field. GCDC software allows a maximum of 999 csv files to be saved before data needs to be
downloaded and removed off the microSD card, which could be a hurdle for multi-year data
collection without clearing memory. While the more expensive ORE units offer greater ease of
use out of the box than GCDC, the similarity of phenological dates extracted between these
units suggests that there are opportunities to test other low-cost units that optimize properties
such as longevity and ease of use.

Accelerometer placement height did not show tradeoffs associated with signal detection
and ease of access in an urban environment. Sensors placed higher in the tree have a stronger
likelihood of detecting signals due to more movement from wind (van Emmerick et al. 2017).
However, the upper secondary branches can have a different signal from the main trunk that
may not represent the whole tree (Spatz and Theckes 2013). The sensors we placed above-
crown (3.7 and 2.8 from ground) versus at-crown (2.1 meters above ground) resulted in 0.2
days difference in SOS for Tree-1 y-axis; no differences were found for Tree1 z-axis and for
both axes of Tree2. Our DP analysis supports the idea that at-crown sensor placement is

sufficient for detecting PF, SOS and SOA within the urban matrix; the lower device placement
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on the main trunk had sufficient tree sway for vegetation date detection and reduced likelihood
of picking up secondary sway signals that might not represent the whole tree as Gougherty et
al. (2018) found with placement at 1 meter from the ground. For many shade-bearing street

trees, such as white ash, placing a unit at the base of the crown offers reasonable access with

use of a small stepladder, avoiding the need for tree climbing equipment.

4.4. Future research

Developing an understanding of what structural landscape elements can hinder or help
accelerometer use on trees is essential to unlocking population-level studies. Our study
demonstrates that accelerometer-derived tree phenology is possible within the urban matrix,
and merits continued study of the urban landscape with larger sample sizes. A useful next step
would be to see if there are dead zones without sufficient wind to force tree sway. We
recommend investigating whether dead zones may be predictable based on above-ground
landscape elements, topography, urban morphology and wind flow properties (Cionco and
Ellefsen 1998; Ottosen et al. 2019). Because street median and sidewalk trees are often the
same age, they offer an opportunity to systematically test different landscape variables such as
distances to buildings, building density, or different species of trees. Species-specific life cycle
data is valuable for management challenges such as controlling invasions (Maan et al. 2020)
and green infrastructure testing such as stormwater retention properties (Houdeschel et al.
2015). Continued development of accelerometer-based study of tree species within and across
cities may aid in assessing range shifts for urban planting guides.

Future work could also target development of phenological models for early flowering
species and explore how other reproductive strategies may be modeled from tree sway data.
Integration of two dual-logistic curves into a single model for trees that flower before the spring

green-up may be appropriate for such species. In the case of wind-pollinated tree species, the
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release of pollen may allow for a defined progression of mass changes as modeled by the DP
produced by the ash trees in our study. It is still unknown how accelerometer-derived phenology
curves may represent flower and leaf emergence in trees that have simultaneous leaf and
flower development. Due to genetic variation in tree flowering time within the lifecycle of a
species, models may need to be specific to species or functional types (i.e., early- or late-
flowering trees) to enable monitoring of tree communities. Exploration of accelerometer-derived
tree sway on species that are insect-pollinated would also contribute to a more comprehensive
understanding of how flowers and pollen release may be modeled.

Continued testing of other accelerometer units that minimize the tradeoffs between
performance and cost will be of value to scaling up the number of trees in a study. Testing of
other low-cost accelerometers that have weatherproof designs and improved power systems will
be of value for larger, population-level studies. Furthermore, accelerometers with wi-fi enabled
transmitting systems would advance the capacity for accelerometers to be more automated,
similar to studies of people’s mobility patterns in cities using data streams from common devices
(Kontokosta and Johnson 2017). For instance, single-board computers (e.g. Raspberry pi) or
microcontroller technology (e.g. Arduino) could be used to transmit high-resolution
accelerometer data to online servers (Okigbo et al. 2020). This real-time connection could save
considerable time for land managers and researchers and enable more responsive
management. Additional time savings for phenological monitoring of multiple trees might be
further achieved with video monitoring methods, which have been developed to track tree
motion in time (Barbacci et al. 2014).

These results have also led to interesting questions about how accelerometers can be
used for observing processes influencing mass change beyond seasonality of deciduous trees.
The seasonal changes of coniferous trees may be modeled differently from those of deciduous
trees (Jackson et al. 2021) and there may be greater potential to capture high temporal

resolution information about reproductive phenophases without overlap of the mass changes
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associated with foliage. There are many opportunities to explore how tree age, size,
architecture, and management may impact the mass and tree sway relationships for
phenophases across time. Accelerometers could be useful in identifying disease, locating
structural damage, and making field site visits more efficient. For example, Emerald Ash Borer
infestations kill branches by slowly severing the vascular tissue (Poland and Mccullough 2006).
As branches die, the tree’s mass may reach a threshold of change that is detectable by an
accelerometer. In the case of a storm, tree biomass could be rapidly reduced following wind or
snow damage. If a forester could monitor a pest-infested tree or be notified of structural damage
produced by a storm, they may find more efficiency in managing the health of trees and
associated ecosystem services. Deriving quantitative changes in biomass (e.g., due to pest
damage, or leaf on/off) from changes in tree sway requires additional data and methodological
refinements not explored here, such as the stiffness and damping properties of the tree
(Equation 1). Additionally, such quantification requires identification of an appropriate functional
relationship between sway and biomass, which might be modeled differently (e.g., cantilever
versus pendulum approximations) depending on canopy architecture and for broadleaf versus

coniferous trees (Jackson et al., 2021).

5. Conclusions

Using accelerometers to determine tree phenology is an emerging frontier in sensor-
based ecological research. Our study demonstrates that high-resolution seasonal transitions
can be extracted from trunk-mounted accelerometers in an urban environment. Whether in a
city or a continuous forest, accelerometers have potential to fill a niche in sensor-based
approaches to measuring foliar and reproductive phenology. Furthermore, accelerometers may
complement established near-surface remote sensing methods such as digital repeat

photography (e.g., PhenoCams) and traditional visual human observations for a more objective
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716  and detailed understanding of tree biology. The low-cost, non-invasive nature of accelerometer-
717  tracked mass changes around flowering time could revolutionize larger-scale study of tree

718  phenology in the urban forestry and agricultural sectors and help identify bioindicators of climate
719  and land use change.

720 Future work could target understanding landscape controls on signal thresholds, building
721 phenological models for tree flowering time, and testing types of widely available

722  accelerometers that are likely to be successful for practical use in tree phenology studies.

723  Continued development of automated data flows from accelerometers to on-the-go apps for
724  mobile devices opens avenues for efficient use of a rich set of information on tree seasonality,
725  disease, insect infestation, and structural damage. Tree health is vital to many ecological

726  processes and ecosystem services. Accelerometers offer an opportunity for enhanced

727  understanding of how trees across biomes are responding to climate change, regional

728  urbanization, and other localized environmental influences.
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