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The on-going transition to coupled data assimilation (DA) systems encounters
substantial technical difficulties associated with the need to merge together different
elements of atmospheric and ocean DA systems that typically have had independent
development paths for decades. In this study we consider the incorporation of strong
coupling in the observation space via successive corrections that involve the application
of only uncoupled solvers to a sequence of innovation vectors. The coupled increment
is then obtained by projecting a coupled innovation vector on the grid using coupled
ensemble correlations. Proposed approach is motivated by the classic block Jacobi
matrix iteration applied to the coupled system using the uncoupled solvers as a
preconditioner. The method is tested via numerical experiments with the CERA

ensemble in a simplified setting.
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1. Introduction

As numerical weather prediction centers move towards the
implementation of strongly coupled ocean-atmosphere models to
form the dynamical cores of their forecasting systems (Rabier
(2005); Bauer et al (2015)), there is growing interest in
transitioning the associated data assimilation (DA) schemes into
compatible strongly coupled regimes (Smith et al (2015), Penny
et al (2017), Zhang et al (2020)), which utilizes the coupled
error covariances for updating the state of the coupled system.
This transition is hindered both by theoretical challenges, e.g.,
consistent estimation of background error covariances between
the two fluids (Frolov et al (2016); Smith et al (2017) Smith
et al (2018)), as well as by practical challenges associated with
the integration of two separate DA systems into a single entity.
Currently, several strategies for incorporating strongly coupled
DA approaches into operational forecasting are being explored.
Laloyaux et al (2016) proposed iterative updates of the coupled
atmosphere-ocean increment in order to synchronize the flow of
information between two otherwise uncoupled DA systems. In
this approach, a sequence of background model trajectories is
produced by coupled model runs, but increments for every iterate
are computed separately for ocean and atmosphere components,
using the existing uncoupled DA systems. The approach bypasses
the above mentioned technical difficulty of transferring the DA
system into the strongly coupled regime at the expense of
performing multiple coupled model runs. In a series of idealized
numerical experiments, Laloyaux et al (2018) have shown that
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the coupled increments obtained after several iterations of the
outer loop provide better approximation of the fully coupled first
guess trajectory as compared to the case when only one iteration
was performed which produced a weakly balanced first guess
trajectory (Smith et al (2015); Lea et al (2015)). As a result,
this approach has the potential of reducing initialization shocks in
coupled forecasts through better accounting of ocean-atmosphere
interactions within the assimilation window.

Another way to approximate the fully-coupled DA system
within the hybrid ensemble-variational approach is to specify
the coupled error cross-covariances using the localized sample
covariances. This approach requires, among other things, careful
localization of the ensemble covariances at the ocean-atmosphere
interface, since limitations in ensemble size can introduce
significant sampling noise in estimating the cross-correlations
between the fluids whose dynamics is characterized by different
spatio-temporal scales. Implementation of this “direct” approach
within an operational forecasting framework presents a large
number of other technical challenges as well (Frolov et al (2016);
Sluka et al (2016); Wada et al (2017)).

In particular, Frolov et al (2016) proposed to reduce the above
strongly coupled ocean-atmosphere system to the block-wise
solution of two smaller systems of equations with the approximate
sizes of the atmospheric and oceanic innovation vectors. Although
these problems can be solved in parallel and much faster than the
strongly coupled one, a variety of technical difficulties associated
with merging the atmospheric and oceanic solvers within the
respective boundary layers remain in place.
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In this paper we show that these difficulties can be bypassed
by approaching the strongly coupled solution through a process
of iterative correction of the uncoupled solution utilizing (already
existing) uncoupled solvers. In the following sections, we provide
a brief account of the method of Frolov et al (2016), then
describe our proposed iterative approach, provide results of the
numerical testing, and finally discuss some perspectives and
potential enhancements.

2. The strongly coupled DA problem

Correct specification of the coupled background error covariance
B is clearly important for the dual DA formalism as is evident
from the fact that the analysis equation projects the coupled
system increments, 6X, onto the range of B:

5x =BH"(HBH' + R)"!6y. (1)

Here H is the (linearized) observation operator represented by
an [ x N matrix, with N and [ being the dimension of the coupled
state vector and the total number of observations in both fluids
respectively, R is an [ x [ observation error covariance matrix,
and dY is the innovation vector, containing concatenated vectors
of innovations in the in the atmosphere dy, € R™ and the ocean
dy, € R™ with | =n + m. In the following, we will focus on
approximating a coupled solution 5/9 = (HBHT + R)~ 18y in the
observational space. After computing 53\/, it is projected to the
model grid to produce the coupled increment X.

As mentioned earlier, part of the technical problems faced
by operational centers in their transition to a fully coupled
assimilation mode is related to modifying the action of the coupled
observation space error covariance matrix P = HBH' + R on
the innovation vector as well as to the related tuning of the
preconditioned observation space system solver. The action of the
observation system solver will be denoted as multiplication by
P!, To alleviate the computational burden of solving the entire
system of equations

Poy = oy ®)

required for computing the increment in (1), Frolov et al (2016)
proposed to represent of the system matrix P by two parts
P4, and Py, shown by the dotted squares in Fig. 1. These
matrices contain ocean-atmosphere covariances only within the
thin active boundary layers of both fluids and operate on the
vectors 6Y 4., 6y, containing concatenations of the innovations
in the atmosphere and oceanic boundary layer and vice versa.
After solving (in parallel) the two systems of equations

Paod¥ao = Yao 3)
Poud¥You = Yoas 4

the resulting solution vectors @ 4, and g)\loa are projected
to the coupled model grid to obtain an approximation to the
coupled increment. This approach is based on the assumption
that on the time scale of the assimilation window (1-3 days)
P is well approximated by a “nearly block-diagonal matrix”
because the ocean and atmosphere errors appear to be correlated
only within thin boundary layers (shown in Figure 1 by darker
gray/black colors), while error cross-correlations between the
upper atmosphere and the deep ocean (white areas in Figure 1)
can be neglected. Judging by the results of testing by Frolov
et al (2016), this assumption appears to be valid in general
within a high degree of accuracy (1-2%). However, in some
cases exhibiting strong ocean-atmosphere interaction, such as
deep ocean convection or hurricane formation and development,
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Figure 1. Partition of the system matrix. Capital letters in the subscripts
denote the entire covariance matrices/vectors in the atmosphere (A) or
ocean (O), while lower case letters denote the parts of the respective
matrices/vectors corresponding to the atmospheric (a) and oceanic (o)
boundary layers, where their coupling occurs. Matrix elements within the
blocks denoted by C are assumed to be the largest in the black areas and
close to zero in the white areas.

approximation accuracy could be low even on the time scale
of the assimilation window, as the effective coupling may
occupy boundary layers comparable with the total depths of the
interacting fluids.

An apparent disadvantage of the method is the technical work
caused by the necessity to modify existing uncoupled solvers that
are required to solve equations (3—4). In the following, we show
that these technical issues can be avoided by reducing the solution
of the coupled problem (2) to a sequence of uncoupled problems.

3. Expansion of the strongly coupled DA problem using
uncoupled solvers

As illustrated in Figure 1, the coupled system matrix P can be
decomposed into the sum of two 2 x 2 block matrices:

p—|Pa °}+{° C}:Puncwcc, )

0 Po c' o

where P, and Py are respectively the n x n and m x m error
covariances in the atmosphere and in the ocean, while C is the
n X m ocean-atmosphere error cross-covariance matrix. The first
term in the right-hand side of (5) is associated with the uncoupled
system and will be denoted as Puc. For the sake of clarity, we
assume that H and R are conformably block diagonal themselves
so that the second term, which we denote as Pec, will involve only
ocean-atmosphere cross-covariances. Extension of the method to
the general non-block-diagonal H and R case is given in Appendix
B. Equation (2) may be rearranged into

gy = (_Pu;c1 PCC)@ + aunc (6)

where dyne = Pna 0y is the solution that would be obtained in the
absence of coupling, i.e., with P, = 0. Note that Puﬁcl represents
the action of the uncoupled solvers. The form of (6) suggests a
fixed point recursion:
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gykJrl = (—Pu;c1 Pcc)gyk + aunc,

that will, given an initial vector @0, determine a sequence
of vectors, 5?0, 3}71, 3;2 Indeed, this is one formulation of the
“block Jacobi method” (see, e.g., Axelsson (1994); Saad (2003)),
a classical matrix iteration that, when convergent, will produce

. —~k .

iterates 0y that converge to the solution of (2) as k — oco. There
are algorithmic advantages in reformulating this recursion as an
incremental update:

for k =0,1,2,...(untl converged) 0
—~k+1  —~k with dy =0
(5y = (5y + Sk 0 a y d7 (7)
S = , an
rk+1 _ —PCC Sk unc
k1l _ p—1pkt1 ¥ = oy
R e

Practical implementation of (7) requires access to the uncoupled
solvers associated with Puﬁcl (these are readily available in
existing systems) and the capacity for computing the action
of P, on a concatenated ocean-atmosphere innovation vector.
This latter step should not be expensive because it represents
multiplication by a sparse matrix C whose non-zero elements
are localized in the vicinity of the interface between the
interacting fluids (black rectangles in Fig. 1). Only three vector
arrays are required: {6Ayk, r*.s*}, where S)\lk is the approximate
solution to (2); r* is the residual vector associated with
@k (mathematically equivalent to rk = oy — P@k). This is a
computationally accessible indicator of how well @k serves as
a solution to (2) and as such may be examined to determine when
the iteration (7) should be stopped.

Assuming that P is positive definite, the iteration described
in (7) is convergent to the solution of (2). Convergence is
a consequence of the spectral radius (magnitude of dominant
eigenvalue) for the iteration matrix M = —Pjd Psc being strictly
smaller than 1 (see e.g., Axelsson (1994)). The definition of s”,in
(7) implies that ¥ = M*dync and so, @k = Z?:o M d.nc, which
is the kth partial sum of the expansion

3y = Wdye. ®)
j=0

It is useful to note that on time scales of 1-3 days (which would
be typical for the settings considered) the coupled solution differs
from the uncoupled solution only within relatively thin boundary
layers (Figure 1), and so few iterations are needed to achieve a
solution accuracy within the uncertainty in specification of the
system solver P! In terms of the expansion matrix this means
that

Z Mkaunc < |aunc|7 9
k=1

i.e. the zeroth term (uncoupled solution) of the infinite expansion
for oy given by eq. (8) dominates over other terms which
provide relatively small corrections to dunc. As a consequence,
the accuracy of iterative approximations of dy depends on the
magnitude of the projection of dunc on the slower converging
eigenmodes of M with relatively large eigenvalues. These modes
correspond to strong ocean-atmosphere coupling and are thus
mostly responsible for larger corrections to dync in the respective
regions. If the uncoupled solution has a small projection on these
modes (i.e. if strong coupling events simultaneously occur over
small portion of the domain), the coupled solution would be
reasonably well approximated by just a few iterations of (7),
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as appears to be the case in the experiments of Frolov et al
(2016) performed in the Mediterranean basin. We assume that this
property of the strongly coupled solution is likely to be valid in a
global setting as well.

As mentioned earlier, in particular places (such as in the
regions of deep convection near Greenland, or within hurricanes),
convergence will be slower. On the other hand, it is in these
regions the data are especially sparse and sometimes absent for
purely technical reasons. So regions of strong ocean-atmosphere
coupling account for only a minor part of the global data sets
subject to operational assimilation, and, therefore will not break
the general rule (9). The relationship (9) also indicates that the
mean eigenvalue of M when averaged over the entire spectrum
tends to be much smaller than 1, resulting in fast convergence of
the Jacobi iterations. Results of the numerical experiments with an
interface solver shown in Fig. 7 of Frolov et al (2016), as well as
numerical experiments in Section 4 and analytic estimates in the
Appendix A appear to support this notion.

There exists a large variety of strategies in literature to
accelerate convergence, the most standard and popular being
preconditioned conjugate gradient (PCG) iteration, using some
variation on the block Jacobi step presented in (7) as a
preconditioning step (“block diagonal preconditioning”). While
PCG provides optimal acceleration in a certain sense, the
resources required for a single step may increase substantially
over what (7) requires because of the need to accumulate inner
products between cycles (which principally adds overhead via
required data motion). There are simpler alternatives to PCG that
build on the same framework we have described above and involve
no additional data motion, solver utilization, or intrusive recoding
beyond what (7) requires. A major drawback for all of these
alternatives, though, is that they require some type of a priori
spectral information on M or on P. We mention a few in passing
and refer interested readers to Saad (2003) or Axelsson (2010)
for a survey of related ideas.

In particular, polynomial acceleration provides a simple way
of accelerating the iteration given in (7), while the variant known
as the “Chebyshev semi-iterative method” (Golub et al. (1961))
can halve (or better) the number of iterations that (7) requires,
without causing any significant change to the computation or
communication costs per cycle. Other block iterative methods
such as the Gauss-Seidel method and their relaxed versions such
as Successive Overrelaxation (SOR) have similar advantages and
similar drawbacks (Axelsson (1994)). Assessment of their utility
mostly depends on the particular features of the DA systems
subject to transition to the coupled regime.

4. Numerical test

To test the method, we conducted a series of Observation
System Simulation Experiments (OSSEs). In these experiemnts,
the ensemble of coupled ocean-atmosphere states was assumed
to represent the true statistics of ocean-atmosphere interaction,
which provided the true strongly coupled solution for a given
set of simulated obeservations. The true solution was then
approximated by the iterative solutions, the approximation errors
were averaged over the sets of simulated observations, and
represented as functions of the number of iterations.

4.1. Ensemble data

In the experiments, we used the ensemble of temperature profiles
extracted from the CERA-20C coupled ensemble reanalysis
described in Laloyaux et al (2018). The ensemble has n. = 25
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Figure 2. Correlation magnitude between SST and surface air temperature
for August 2005 (similar to Figure 3c in Laloyaux et al (2018)). Locations
of the three experimental sites are shown with red circles.

members generated by the ECMWF data assimilation using the
hybrid DA technique of Bonavita et al (2016).

Locations of the temperature profiles in space (Figure 2) and
time (August 31, 2005) represent three distinct coupling regimes
between the ocean and atmosphere and include:

1. The Tropical Pacific (hereinafter TP): cold tongue is
characterized by strong horizontal gradients of SST
associated with Rossby instabilities along the equatorial
upwelling front. Similar to other boundary currents (e.g.
Gulf Stream or the Antarctic Circumpolar current) the SST
perturbations are known to drive the variability and response
of the lower atmospheric winds, temperatures, cloud cover
and precipitation (Frenger et al (2013), Chelton et al (2004),
Frolov et al (2021)). These processes translate to strong
atmosphere-ocean correlations along the SST fronts.

2. Mid-latitude summer (NP): As the mixed layer depth
shallows in the mid-latitude summer, the surface ocean starts
to respond rapidly to perturbation in the wind stress (Feng et
al (2016), Laloyaux et al (2018), Frolov etal (2021)), which
causes increased correlations between the ocean surface and
the atmosphere.

3. Mid-latitude winter (SP): As the ocean mixed layer deepens
in mid-latitude winter, the surface ocean becomes less
responsive to atmospheric perturbations, which translates
to reduced correlations between the surface ocean and the
atmosphere (Feng et al (2016), Laloyaux et al (2018)).

The temperature profiles’ lengths were N = 127 — 133 points
in the vertical, including 91 fixed pressure levels in the atmosphere
and 36-42 levels in the ocean, depending of the total depth at a
given location. The distribution of levels in the ocean-atmosphere
column is given in Figure 3.

4.2.  Experiment setting

The OSSEs were done by randomly selecting 30 observations
locations in the vertical (see below for details), specifying an
ensemble of innovations with prescribed statistics, and assuming
that the CERA ensemble provides a realistic approximation
to the true background error covariance matrix B. The latter
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Figure 3. Background temperature rms error variances (°C) in the
atmosphere (upper panel) and in the ocean (lower panel) used in the
experiments. Model level locations are shown by dots on the SP profiles

was computed using the N x n. ensemble matrix X of CERA
temperature profiles by localizing the respective ensemble-based
estimate:

B=LoXXT"/(n.—1), (10)

where X' is the deviation of X from the ensemble mean, L is
the localization matrix and o stands for the Schur product. To
explore the impact of the localization scheme, we used two types
of localization matrices. The first one was taken from Laloyaux
et al (2018) who used the localization method of Menetrier et
al (2015a) (hereinafter denoted by L,;). The second type of
localization was based on the Gaspari-Cohn localization function
(Gaspari and Cohn (1999)), denoted by Lgc) with the half-
width of 10 grid points. Both types of localization kernels are
defined on the coupled ocean-atmosphere state vectors and use
variable localization scale, because of the inhomogeneous grid
spacing (Fig. 3). However, the Lj; scheme exhibits much more
variation of the localization weights, which at certain instances
were significant at separations exceeding 30 grid points.
The OSSEs were done using the following constraints:
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Figure 4. Radiance operators used in the experiments.

1. The data available in an air-water column were n = 22
observations in the atmosphere and m = 15 observations
in the ocean. In the atmosphere, there were 7 radiance
observations, whose weighting functions are shown in Fig.
4 and n' =15 in situ observations of the temperature
profile, whose locations were randomly distributed over the
91 vertical levels. In the ocean, an SST observation was
supplemented by 14 data points randomly distributed in the
vertical within the range between 5 and 2000 m.

2. The background error variances were derived from the
CERA ensemble and are shown in Fig. 3. It was assumed that
the respective observation errors had a Gaussian distribution
with zero mean and covariance R = 0.25 diag(B).

3. The innovation vector was generated by setting Jy =

Vi HBHT+R1/, where v is a sample from the normal
distribution.

For each OSSE, we computed the true solution 6X; = BHTg)\lt,
and a set of K =5 iterative approximations to dX; using eq.
(7). As mentioned above, the difference between the experiments
within the ensemble was in random locations of n’ +m = 30 in
situ observations in the ocean and atmosphere, and in the random
realizations of the innovation vectors. The total number of OSSEs
for each of the three geographical locations was J = 100. The
accuracy of solutions 6X was quantified using the formula

1/2

sxE — sx,) TV L(6xk — sx
b | @G X0 VO 20X k1< <

e; =
XTIV~ lox,

J

where V = diag B.

4.3. Results

A series of 1200 experiments in the setting described above
was conducted using two types of localization with the fixed
(37) number of observations. Figures 5 and 6 show the
mean system matrices P averaged over 100 realizations of the
simulated observations in the Tropical Pacific. It is seen that the
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Figure 5. The system correlation matrix C = (diagP) ~!/2P(diagP) /2
averaged of the 100 simulations of the observational system with
Menetrier et al (2015a) localization scheme. Dashed lines delineate the
blocks for the atmospheric (upper left) and oceanic observations. Thin
solid line within the atmospheric block outlines (non-local) radiance
observations.

Figure 6. Same as in Figure 5, but for Gaspari-Cohn localization of the
background error covariance.

structure of the off-diagonal blocks of P is generally consistent
with the pattern exposed in Fig. 1: the matrix elements are
dominated by near-zeros, while noticeable correlations occur in
the vicinity of the ocean-atmosphere boundary layers. The largest
correlations in the off-diagonal block are relatively small in
magnitude ( 0.1 — 0.15). They are observed between the low-
peaking radiances/surface atmospheric temperatures and the SST/

Prepared using qjrms4.cls



Block iterative correction in strongly coupled data assimilation 6

uppermost ocean temperature. Small negative correlations are
also seen between the near-surface atmospheric temperatures and
oceanic temperatures below the pycnocline (in the depth range
50-140m). It is noteworthy that the structure of the off diagonal
blocks of P is much more pronounced in Figure 5 (with Lj,
localization): the ocean-atmosphere cross-correlations penetrate
deeper in the troposphere and are almost 2 times larger in
magnitude, reaching -0.1 at the altitudes of up to 900 HPa. We
attribute this phenomenon to much larger localization scales of
the L, kernel.

Figure 7 shows reduction of the approximation error of the
strongly coupled solution at the Tropical Pacific location. The
convergence rate quantified by the average error reduction factor 3
per iteration is 5.43 for the L5 case and 5.68 for the Gaspari-Cohn
localization. This is consistent with the relatively small norm of
the off-diagonal blocks of P (Fig. 5) and the resulting spectral
properties of the iteration matrix M. In the experiments, we also
computed the maximum eigenvalue o of M (i.e., the spectral
radius, p(M)), whose reciprocal provides a proxy to the mean
reduction factor of the residual per iterate.

The results of experiments for all the three locations shown in
Figure 2 are summarized in Table 1. The TP location exhibits the
largest values of the mean initial approximation error eq (delivered
by the uncoupled solutions), and p(M), while the slowest
convergence rate  was characterized by the approximately 5.5
times reduction of the approximation error per iterate (middle
columns in table 1). We assume that this performance is still
acceptable due to the relatively small error eg. It is also evident
that L, localization produces, in general, larger uncoupled errors
and somewhat slower convergence rates as compared to the
Gaspari-Cohn localization, which is naturally explained by the
larger localization scales in the L, solutions.

Convergence rate of the proposed iterative correction algorithm
largely depends on the projection of the innovation vector on
the eigenmodes of M whose eigenvalues are close to 1 in
magnitude. In the operational systems, the system matrices
are mostly positive-definite and well-conditioned, leading to
faster convergence. This property is maintained by removing
redundancy in the assimilated data sets (e.g., replacing strongly
correlated local observations by a single “super-observation”),
considering “nearly orthogonal” bundles of the observation
operators such as the one shown in Fig. 4, and careful
localization/preconditioning of the background error covariances.

Region NP TP Sp
localization | Ly; | Lo | Las | Lae | Ly | Lace
€0 .057 | .017 | .095 | .038 | .085 | .008
p(M) 18 | .064 | 187 | .153 | .130 | .074
convrate 3 | 8.41 | 2041 | 543 | 5.68 | 9.26 | 12.82

Table 1. Results of the OSSE experiments with two localization schemes
in three different locations shown in Figure 2. The ensemble mean values
over the 100 OSSEs are shown.

To explore the possibility of violating the condition P >
0 by the system matrix, we conducted a series of additional
experiments at the point (TP) of the slowest convergence. In the
first series of experiments, we forced B to be positive semi-definite
by forcefully setting a few of its smallest eigenvalues to zero. This
procedure had no impact on the positive definite property of P
primarily because the columns of H were linearly independent,
while R was a diagonal matrix with a fairly small (less than
40) condition number. At the same time we did observe that the
convergence shown in Fig. 7 slowed down, but not substantially:
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approximation error, e

iteration, k

Figure 7. The approximation error of the strongly coupled solution as
a function of the iteration number (eq. 9) with Lj; localization in the
Tropical Pacific. The thick solid line is the average over the ensemble
of 100 OSSE experiments (shown by the dashed gray lines). Zeroth
iteration corresponds to the error of approximation of the coupled
solution by the uncoupled one (ep = 10%). Thick dashed line shows the
mean approximation error at the same location but with Gaspari-Cohn
localization of the background error covariance.

even when half of the smallest eigenvalues of B were set to
zero, the relative departure of B from its original form did not
exceed 1%, while the values of 8 with both localization schemes
experienced a decrease of only 1-5%. In the second series of
experiments, we decreased the ratio v = 0.25 of the observation-
to-background error variances described in Section 4.2 down to
0.01, while keeping B positive semi-definite. This reduction had
larger impact on the convergence rate, reducing g to 3.03 in the
worst-case scenario (L,; localization, v = 0.01 and half of the
smallest eigenvalues of B set to zero). However, even in this case
we assume that the value of 5 was still acceptable as it delivered
a triple reduction of the uncoupled error (from 18% to 6%) after a
single correction.

Convergence properties of the proposed correction scheme
could be further improved by upgrading the method along the
lines discussed in Section 3. The practical utility of such upgrades
largely depends on the particular features of the DA systems being
transitioned to the coupled regime.

5. Discussion

This study proposes an option for the development of operational
strongly coupled DA systems using the uncoupled DA systems
as a starting point. The approach employs already existing
uncoupled solvers to build consecutive approximations to the
strongly coupled solution. The only additional ingredient required
is the development of the linear operator P.; which couples the
inputs to the existing uncoupled solvers. Testing the approach
in a simplified setting with the CERA ensemble has shown that
the proposed method requires less than 3 iterations to obtain a
reasonable approximation to the strongly coupled solution.
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Similar to the approach of Frolov et al (2016), the proposed
formulation may require specification of the boundary layer
thickness (coupled localization scales) as an external parameter in
the code for applying Py to an observation vector. This parameter
controls the number of non-zero elements in Py and can, in
principle, be specified as a 2d field diagnostically computed from
the background solution. One may think of the adaptive strategies
in the specification of this field during the iterative process.

The proposed block matrix approach to the coupled
assimilation problem can be easily generalized for the arbitrary
number of coupled models in both dual and primal formulations
(Appendix B) provided that the respective covariance matrices
are positive definite. In real applications with the uncoupled
solver matrix sizes exceeding 10° x 10°, only a limited number
of iterations (usually less than a hundred) are performed to reduce
the magnitude of the residual to an acceptable level. Consequently,
the respective uncoupled solutions have non-zero projections on
the eigenvectors of Py, spanning the tail of its spectrum, thus
implicitly violating the positive-definite property of the covariance
matrices. Experiments in Section 4.3 indicate that this “implicit
semi-positive definiteness” of the block-diagonal matrices has a
minor effect on the convergence properties of the method. More
important is the magnitude of the projection of the uncoupled
solution on the eigenvectors of M whose eigenvalues are close to
1 in magnitude.

It is also remarkable that the number of non-zero eigenvalues
of M is directly proportional to the partition parameter « =
min(n/m,m/n) (see Appendix A). Thus, in the case when
observations in one of the coupled fluids are relatively sparse
(o — 0) the convergence rate of the coupled solution will be
defined by the relatively small number of eigenvalues. Note that
in the limiting case « = 0, increments in the unobserved fluid
will still be affected by observations in its counterpart through
the cross-correlations of the background error covariance matrix
B. In that respect, success of the coupled DA approach strongly
depends on the accurate definition of B from the ensemble run.
Given the limited ensemble size, the coupling efficiency largely
depends on the localization method applied to the cross-fluid
covariance derived from the ensemble, which requires further
research. In particular, Frolov et al (2016) show that in the
presence of poorly known error covariances, the interface solver
can be configured to produce a more accurate solution than an
exhaustive solver due to the ability to tune the atmosphere and
ocean localization separately. Other studies have produced similar
findings. In that respect, one could also think of combining the
adaptive localization technique of Meénetrier and Auligne (2015)
employed by Laloyaux et al (2018) with a more traditional static
coupled localization method used by Frolov et al (2016).

Fine-tuning of the localization matrix is also important,
as it will bring more realism in the adaptive description of
spatially variable boundary layer thickness, which defines the
computational efficiency of the iterative uncoupled approach and
the approach of Frolov et al (2016)). As an example, Laloyaux
et al (2018) who utilized the scheme of Menetrier et al (2015a)
observed much deeper (up to 300 m) vertical localization scales
in the mid-latitude ocean as compared to the tropics. One may
expect that regions with thicker boundary layers may correspond
to larger eigenvalues of M while the respective eigenvectors will
have concentrated support in these regions. So in the extreme
cases, such as developing hurricanes, the global convergence of
the iterative solver will tend to be slower in these regions, because
the uncoupled innovations would have larger projections on the
respective eigenvectors.

© 2020 Royal Meteorological Society

Despite these problems, convergence of the solver in a global
setting could be much faster, primarily because strong ocean-
atmosphere interactions on the time scales of a few days occupy
just a small portion of the globe. More accurate forecasts of such
localized events could be performed using specialized regional
models with strongly coupled assimilation schemes without the
block matrix iterates and the boundary layer approximation. It
should be also noted, that numerical experiments of Frolov et al
(2016) with the system of intermediate complexity demonstrated
high accuracy of the boundary layer approximation, giving some
grounds to conduct more comprehensive tests with the proposed
iterative approach. These tests are currently underway with
the global coupled ensemble developed by the Naval Research
Laboratory.
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Appendix A: Estimating convergence rates with coupled
observations

Let y, and Yy, be the vectors of unbiased oceanic and
atmospheric innovations of dimension m and n, respectively.
Without loss of generality, suppose n > m and introduce ocean-
atmosphere coupling taking the form y, = Qy, + Y/, where y,,
is the “uncoupled” constituent of y, and Q is an arbitrary m x n
coupling matrix. Then the ocean-atmosphere observation space
error covariance matrix P is parameterized by the three matrices
P, = (Y y'"), Po = (y,y!), and Q in the following manner:

_[Pa P.Q"
P= |:QPa Pao ] ah
where Ps, = QP,Q" + P,,.
Splitting in (eq. 5) is now represented by
P. © Nell
P:Punc+Pcc:|:0a Pao:|+[0ga POQ :|, (12)

and yields the following representation of the expansion operator
-1
M= —P, ¢ P:

T
M:{ 0 -Q } (13)

~P,QP, 0

whose eigenvalues o are defined by the characteristic equation:
T

Q } 0

g Im,
(14)
where I, denotes a p x p identity matrix. (14) can be rewritten as:

aln

det(M — ol ) = (~1)" ™ det [P;Jopa

 det [QPLQT - *(QP.QT + P)]

=0.
det(QP,Q" + P,)

(=)™ s5)

As a consequence, M will have zero as an eigenvalue of
multiplicity at least n — m and in cases of sparse observations in
one of the fluids, say n > m, the number of modes contributing
to the correction of the innovation vector will be comparatively
small.
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The remaining 2m nonzero eigenvalues are the + square roots
of the eigenvalues o2 of the generalized eigenvalue problem:
QP.Q"x = 0*(QP.Q" + P,)x, (16)
From (16) it is evident that 02 < 1 because X"Pox>0 VX #0.
The eigenvalue problem (16) provides some insight to the
factors governing the rate of convergence of the series (8). Taking
into account that o2 < 1 in (16), the generalized eigenvalue
problem (16) may be rearranged to obtain

0,2

QP.Q"x = A P,X, 5
— 0

with A= - a7
The eigenvalues Amaz = A1 > A2 > ... of (17) are all real
and non-negative and relate to the (nonzero) eigenvalues of M

as o4 = £4/A;/(1+ Ag). Notice that any upper bound to the
largest eigenvalue of (17): p > Amaa induces a corresponding

upper bound on the spectral radius of M:

Amaz \/ ﬁ
M) = < — <1
P( ) \/1 + Amaz 1+ P

We can produce a simple a priori bound by employing spectral
matrix norms and eq. (17):

(18)

Amas (P QP.Q") = |P;/2QP.QTP; /7
=P, *QPy?|? < cliQ|® = 7,

where C = [Py || |IPall = Amaz (Pa)/Amin(Po) is the “com-
posite condition number” of the covariance matrices in the ocean
and atmosphere, while ||Q||? is the square of the largest singular
value &mqz of the ocean-atmosphere coupling matrix Q. As a
consequence, we arrive at the following upper bound for the

spectral radius:
p(M) < % <1
1+ C&fran

This estimate guarantees that the proposed iteration will converge
with any ocean-atmosphere coupling matrix Q, and suggests a
rapid convergence rate can be anticipated if Q is “small”, say
if €2, < 0.6. These estimates are of more qualitative value,
however, and are likely to be extremely conservative. Much
more accurate a posteriori estimates of convergence rates can
be obtained directly from calculating the dominant eigenvalue of
(17). These are the estimates provided in the second line of Table
1.

(19)

Appendix B: Implementation in systems of operational
complexity

Consider a set of K uncoupled operational systems with DA
algorithms separately developed for each of them, and assume that
these algorithms are based on the best linear unbiased estimates
in either primal or dual formulation. This means that the unitless
increments §X;, to the systems’ states can be computed in parallel
using either

. ~T -~ ~T
6%, = (HeH, + D) 'Heoy,, k=1, K (20)
for the primal formulation(s) in the range of By, or
5%y = Hi(AHL )%y, k=1,...K 1)

© 2020 Royal Meteorological Society

for the dual formulation(s). Here Hj = R;1/2HkB,1€/2 is the
(unitless) observation operator, | denote identity matrices of
the respective sizes, while the systems’ increments JX; and
innovations ¢y, are related to their unitless counterparts via the
relationships

oxy = B}/%%,; oy, =R}/%5y,.

Transition to the coupled formulation implies (technically
simple) concatenation of the state vectors and innovations
and development of the codes for the (action of) coupled
error covariance matrices B = By + B;, R = Ry + R and the
observation operator H = H, + He, where the subscript u denotes
the uncoupled constituent (the block-diagonal part) of a matrix.

The proposed transition scheme relies on the availability of the
codes for the block-diagonal solvers in eqns. (20-21) and on the
observation that K (K — 1)/2 off-diagonal blocks in the coupling
matrices Be, R¢, and Hc in the operational systems are either zeros
(for the non-interacting subsystems) or sparse.

Since in most geophysical applications B, R and their diagonal
blocks (uncoupled constituents) are positive-definite and H 1 have
full row rank, the solution of the coupled DA system 6X could
be obtained recursively (eq. 7) by applying the uncoupled system
solvers to a sequence of the right-hand-side vectors. Using the
notation of (20-21), the iterative process (7) can be formulated
by replacing dync by Y and setting

I:’unc = Hu Hu + I
Pcc = (I:I:JI—FIC + H:Hu + H:HC)HTH (22)
for the primal DA formulation, and
Punc = Flu FluT +1
P = FIUFI;I— + HCHI + FICFI(-:I— (23)

in the case of the dual formulation. Since the codes for Py, and
its iterative inversion are already available, the only technical
problem is development of the code simulating the action of the
sparse matrix Py on a data space vector obtained by concatenating
the respective vectors of the system constituents.

Technically, the implementation of (22-23) can be done in many
ways and could be adjusted for a particular DA system. As an
option, instead of a separate development of the code for H. one
can gradually develop (approximations to) H and use the identity
H. = H — H, for computing the action of Py.

The proposed transition method should be viewed as an option
which supports modularity in building the coupled DA system
and enforces its parallelization capability. In particular, it does
not require tuning and preconditioning of the coupled solver
after adding a new DA component into the coupled system. In
the 4dVar setting, the proposed technique appears to be more
computationally intensive, as it requires additional adjoint model
runs forced by the uncoupled and coupled components of the
observation operator. These runs, however, can be executed in
parallel, similar to the run of the uncoupled solver constituents.
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On block iterative correction in strongly coupled data assimilation
M. Yaremchuk, C. Beattie, and S. Frolov

A method of recursive corrections is proposed for transitioning a set of uncoupled data
assimilation systems to the strongly coupled formulation. The method is based on
applying uncoupled solvers to sequence of coupled innovation vectors. Testing of the
method with the CERA ensemble has shown its fast convergence: The approximation
error of the strongly coupled solution drops 5-12 times per iteration depending on the
location of the uncoupled solution subject to correction. Error reduction in the equatorial
region of the Tropical Pacific is shown for two types of the localization kernels used to
regularize the background error covariance.
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