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54 ABSTRACT

55 Structured demographic models are among the most common and useful tools in 

56 population biology. However, the introduction of integral projection models (IPMs) has caused a 

57 profound shift in the way many demographic models are conceptualized. Some researchers have 
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58 argued that IPMs, by explicitly representing demographic processes as continuous functions of 

59 state variables such as size, are more statistically efficient, biologically realistic, and accurate 

60 than classic matrix projection models, calling into question the usefulness of the many studies 

61 based on matrix models. Here, we evaluate how IPMs and matrix models differ, as well as the 

62 extent to which these differences matter for estimation of key model outputs, including 

63 population growth rates, sensitivity patterns, and life spans. First, we detail the steps in 

64 constructing and using each type of model. Second, we present a review of published 

65 demographic models, concentrating on size-based studies, that shows significant overlap in the 

66 way IPMs and matrix models are constructed and analyzed. Third, to assess the impact of 

67 various modeling decisions on demographic predictions, we ran a series of simulations based on 

68 size-based demographic data sets for five biologically diverse species. We found little evidence 

69 that discrete vital rate estimation is less accurate than continuous functions across a wide range 

70 of sample sizes or size classes (equivalently bin numbers or mesh points). Most model outputs 

71 quickly converged with modest class numbers (> 10), regardless of most other modeling 

72 decisions. Another surprising result was that the most commonly used method to discretize 

73 growth rates for IPM analyses can introduce substantial error into model outputs. Finally, we 

74 show that empirical sample sizes generally matter more than modeling approach for the accuracy 

75 of demographic outputs. Based on these results, we provide specific recommendations to those 

76 constructing and evaluating structured population models. Both our literature review and 

77 simulations question the treatment of IPMs as a clearly distinct modeling approach or one that is 

78 inherently more accurate than classic matrix models. Importantly, this suggests that matrix 

79 models, representing the vast majority of past demographic analyses available for comparative 

80 and conservation work, continue to be useful and important sources of demographic information. 

81

82 Key Words:  Integral projection model, IPM, matrix projection model, demography, structured 

83 population, lambda, elasticity, life span

84

85 INTRODUCTION  

86 Demographic models have yielded profound insights in many areas of ecology and 

87 evolution, including life history theory, population dynamics, resource management, and 

88 conservation biology. Studies using demographic approaches include some of the most 
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89 influential papers in ecology (e.g., Cole 1954, Gillespie 1977, Shaffer 1981, Lande 1982, Pulliam 

90 1988). Primary reasons for this influence are the ability of demographic models to link short term 

91 individual performance to both lifetime fitness and population growth. In addition, these models 

92 facilitate broad comparisons that can highlight trade-offs and limitations that structure diverse 

93 life history patterns (Stearns 1992). Standardized metrics from demographic models have spurred 

94 the development of general classification frameworks, such as the fast-slow continuum or the 

95 survival-growth-fecundity triangle (Silvertown et al. 1993, Franco and Silvertown 1996, Sæther 

96 and Bakke 2000, Gamelon et al. 2014, Salguero-Gómez et al. 2016b). Demographic modeling 

97 has also transformed approaches to conservation by allowing more quantitative assessments of 

98 population risk and potential management strategies (Schemske et al. 1994, Carroll et al. 1996, 

99 Biek et al. 2002, Morris and Doak 2002, Jongejans et al. 2008, Doak et al. 2015).  Some of the 

100 most influential management plans for threatened, invasive, or economically important species 

101 have used demographic models to target specific life-history stages (Crouse et al. 1987, McEvoy 

102 and Coombs 1999) or to quantify the risk of extinction (Shaffer 1983, Lande 1988). Thus, 

103 demographic models are a cornerstone of both population biology and conservation management 

104 (Shea 1998, Caswell 2001, Morris and Doak 2002). 

105 While demographic analyses need not involve distinctions between different types of 

106 individuals, the majority of such studies, even of annual species, fall within the realm of 

107 “structured” population models. These models are structured in the sense that individuals are 

108 classified by one or more “state variables,” traits that are used to distinguish between individuals 

109 that are believed to have different demographic fates. State variables typically include age or 

110 size, but can also include many other predictors of fate, including life history stage, sex, 

111 microhabitat, or even symbiotic relationships or pathogen load (e.g., Palmer et al. 2010, Wilber 

112 et al. 2017). 

113 While the underlying approach of demographic modeling has remained largely the same 

114 since the work of Leslie (1945) and Lefkovitch (1965), over the last two decades there has been a 

115 slow revolution in how many demographic models are conceptualized, symbolically presented, 

116 fit, and, to a lesser extent, interpreted. This is particularly true when species are described by one 

117 or more continuously varying state variables, many of which are descriptors of individual size. In 

118 these cases, integral projection models (IPMs), which describe populations according to a 

119 continuous state variable (Easterling et al. 2000), have begun to replace classic matrix models 
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120 that begin by explicitly dividing populations into discrete categories corresponding to ranges of 

121 state variable values (Caswell 2001). The acknowledgement and understanding that discretizing 

122 continuous measures of size or other descriptors of state is a simplifying assumption of 

123 convenience goes back to the first uses of size-based demography in ecology (Vandermeer 1978, 

124 Moloney 1986), but the IPM literature has revived discussion of this simplification and 

125 suggested it is of paramount importance. The development and widespread adoption of IPMs has 

126 been motivated in part by arguments that a continuous approach is more biologically realistic and 

127 statistically efficient, particularly when applied to limited data sets (Easterling et al. 2000, Ellner 

128 and Rees 2006, Zuidema et al. 2010, Ozgul et al. 2012). Correspondingly, matrix models have 

129 been increasingly criticized as artificial, statistically inefficient, and prone to bias (Ramula et al. 

130 2009, Salguero-Gómez and Plotkin 2010, Picard and Liang 2014). 

131 In the last few years, several reviews have emphasized the superiority of IPMs (Merow et 

132 al. 2014, Rees et al. 2014); these claims have not, however, been critically or thoroughly 

133 evaluated. Previous tests of the relative accuracy of IPMs have been limited to comparisons that 

134 have ignored the multiple aspects of model estimation and development that can be used to 

135 formulate demographic models, and have also compared IPMs only with matrix models built 

136 with extremely few classes (Ramula et al. 2009). Further, most claims for the superior 

137 representation of the biology of species, due to the avoidance of artificial stage classes, ignore 

138 that in their actual implementation virtually all IPMs are analyzed as moderate- to high-

139 dimension matrix models (Ellner and Rees 2006, Merow et al. 2014a). This means that their 

140 structure differs more quantitatively than qualitatively from traditional matrix models. Finally, 

141 there are potentially important biological simplifications inherent in the IPM approach that have 

142 not been carefully examined in the ecological literature, in particular the limitations imposed by 

143 representing vital rates as fairly simple continuous functions of the state variable. 

144 An important consequence of the discussion surrounding the accuracy of IPMs and 

145 classic matrix models is that past studies using older methods could be perceived as 

146 providing little to no useful demographic information. Traditionally fit matrix models represent 

147 the vast majority of demographic data available for comparative studies (e.g., those in the 

148 COMPADRE and COMADRE databases; Salguero-Gómez et al. 2015, Salguero-Gómez et al. 

149 2016a) or with which to assess the viability and management of species of conservation concern. 

150 Indeed, even as the accuracy of matrix models has been questioned, many synthetic reviews that 
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151 reanalyze matrix models have recently appeared in the literature (Katz 2016, Csergo et al. 2017, 

152 Yokomizo et al. 2017). Thus, it is important to more carefully evaluate whether and when matrix 

153 models accurately capture population dynamics, and under what circumstances IPMs may do so 

154 with less bias and more precision. Finally, some of us (Doak, Morris, Garcia pers. obs.) have 

155 seen an increasing tendency of reviewers and editors to dichotomize these two approaches, 

156 considering matrix models as out of fashion and failing to recognize the considerable grey zone 

157 between the two model types as well as some of the subtler advantages and disadvantages of 

158 each. 

159 Our goals in this paper are to i) explain the ways that matrix models and IPMs do and do 

160 not differ in their implementation, ii) articulate the potential pitfalls and advantages of each 

161 approach, and iii) use simulations based on real data sets to critically assess which model fitting 

162 decisions do and do not matter for common demographic outputs. To accomplish these ends, we 

163 start with an outline of the main steps in fitting matrix models and IPMs, highlighting the 

164 similarities and differences between these two approaches. Second, we review the demographic 

165 literature to document how population biologists fit these different models in practice, with the 

166 goal of evaluating how distinct they really are. Third, we present results from an extensive set of 

167 simulations based on five real demographic data sets. We use these simulations to compare the 

168 relative accuracy of matrix models and IPMs across a range of sample sizes, model-fitting 

169 strategies, and matrix dimensions that reflect the diverse approaches used by biologists. We 

170 conclude with a discussion of the merits and potential limitations of different demographic 

171 modeling strategies and recommendations for future demographic work. 

172

173 TWO APPROACHES TO FITTING DEMOGRAPHIC MODELS

174 Both matrix models and IPMs seek to represent demographic heterogeneity within a 

175 population due to variation in individual state variables, such as age or size, that influence 

176 performance. Matrix models have traditionally been approached with the assumption that 

177 individuals can reasonably be divided into classes (also called categories, stages, or bins; we use 

178 “classes” in the subsequent text). These classes are based on subdivisions of the state variable, 

179 even when there is clear understanding that the underlying state variable is continuous 

180 (Hartshorn 1975, Vandermeer 1978, Moloney 1986). In contrast, IPMs explicitly seek to treat 

181 state variables as continuous. 
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182 In this section, we describe the four steps in formulating either kind of model: i) 

183 characterizing individual states, ii) estimating fates, iii) assembling these estimates of fates into a 

184 full demographic model, and iv) generating outputs from these models to assess individual 

185 fitness or population behavior. In Figure 1, we diagram these basic model-fitting procedures for 

186 “classic” matrix models and IPMs, illustrating the steps they share and those that differ between 

187 these approaches. We also use this diagram and discussion to highlight differences in the 

188 terminology used in both modeling strategies, as well as the similarities that can be disguised by 

189 these notational differences. Following sections on the four steps in demographic analysis, we 

190 discuss in more detail some of the features that most separate IPM and matrix models, and also 

191 some of the less obvious issues with using either approach. 

192 Characterizing individual states 

193 Both methods require the same basic demographic data: individual-level survival, 

194 growth, and reproduction rates, recruitment data, and one or more state variables that capture 

195 heterogeneity in these rates; these are called demographic or vital rates (Caswell 2001, Morris 

196 and Doak 2002, Franco and Silvertown 2004; note that some authors use vital rates to refer only 

197 to survival and reproduction). State variables may be chosen a priori based on feasibility or 

198 natural history, or selected from multiple variables by comparing regressions of vital rates on 

199 alternative state variables to find the ones with the highest predictive power (Morris and Doak 

200 2002). In a matrix model, a state variable is either already discrete (e.g., age classes for a sharply 

201 seasonally-breeding species or the discrete life-history stages of many arthropods) or is divided 

202 into discrete categories of a continuous state variable (e.g., size classes). In the latter case, there 

203 are several algorithms for choosing the number and boundaries of classes (Vandermeer 1978, 

204 Moloney 1986), although in practice the structure of most matrix models has been decided based 

205 on natural history and data exploration (e.g., looking for sharp changes in vital rates; Caswell 

206 2001, Ramula et al. 2020). In an IPM, the primary state variable is regarded as continuous, 

207 although additional discrete state variables such as age, sex, seedling state, dormancy state, 

208 breeding status, or others can also be included (Ellner and Rees 2006, Rees et al. 2006, Williams 

209 2009, Jacquemyn et al. 2010). We note that age is commonly treated both as continuous and 

210 discrete in demographic models. This depends on data availability and whether reproduction 

211 occurs during well-defined time periods, generating discrete cohorts (i.e., birth-pulse), or 

212 offspring are produced more continuously throughout the year. However, state variables that 
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213 reflect some aspect of size are most often used in IPMs (Figure 5) and can give rise to the largest 

214 differences in IPM and matrix model treatments, so we concentrate on these throughout the rest 

215 of the paper. 

216 Characterizing individual fates

217 Both matrix models and IPMs use state variables to capture variation in vital rates – the 

218 fates of individuals, based on their state. While there are many ways to make such estimates, all 

219 fall into two general approaches. The first is used in the construction of many matrix models, 

220 where a separate estimate of each vital rate is required for each discrete class. These estimates 

221 come from separately analyzing the subset of data falling within that class to calculate, for 

222 example, mean survival or mean reproductive output. In other words, the vital rate for a given 

223 class is estimated independently of the rates for other classes. This includes approaches that take 

224 the observed transition frequencies for a given class as well as methods that fit statistical models 

225 that treat class as a categorical variable (e.g., some mark-recapture analyses). The central 

226 problem facing parameterization under this strategy is that more, narrower classes reduce the 

227 amount of data available for estimating each vital rate, whereas fewer, broader classes pool 

228 together individuals that may have very different fates. This trade-off has long been recognized 

229 (Vandermeer 1978, Moloney 1986, Ramula and Lehtilä 2005), and can mean that multiple 

230 iterations are needed to find a model structure that balances sampling and estimation error. 

231 The second approach to estimating fates is used in the construction of some matrix 

232 models based on continuous state variables, as well as all IPMs. In this approach, demographers 

233 use continuous regression models of vital rates, fit to the entire data set, to estimate stage-

234 dependent vital rate functions. Researchers generally use established functional forms for each 

235 vital rate: generalized linear models with binomial errors are often used for vital rates that 

236 inherently represent probabilities (i.e. survival, dormancy, or flowering) while those with 

237 Poisson or negative binomial errors have frequently been used for offspring numbers; general 

238 linear models have typically been used for growth rates . In some cases, splines or generalized 

239 additive models have been used to represent more complex relationships between vital rates and 

240 state variables (Dahlgren et al. 2011). Functions may be chosen a priori, or model selection 

241 methods, such as AIC, may be used to select from among several candidate models (e.g., linear 

242 vs. quadratic functions of state). One key difference between this strategy and the direct use of 

243 discretized data for vital rate estimation is the elegant way that size changes are treated 
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244 (Easterling et al. 2000). First, a model is chosen to characterize the mean size at the end of a time 

245 interval, given a starting size. Next, the squared residuals from this relationship are predicted in a 

246 second model and then used to predict the variance in ending sizes (although both the mean and 

247 variance can be fit simultaneously as well; Ellner and Rees 2006, Ellner et al. 2016).

248 Assembling a projection model

249 When building matrix models, the matrix elements are constructed from the best vital rate 

250 values for each class, either using the discrete vital rate estimates or an estimate for each size 

251 class taken from a continuous vital rate function (Batista et al. 1998, Morris and Doak 2002, 

252 Gross et al. 2005). This is straightforward if the vital rate estimates are made discretely for each 

253 class. If continuous functions have been estimated, different rules can be used to estimate the 

254 average value of a vital rate that is applied to a size class. Most commonly, the vital rate estimate 

255 corresponding to the midpoint size in the class is used, but other approaches, such as the vital 

256 rate of the mean or median size of individuals falling within a class, can also be employed 

257 (Morris and Doak 2002). In either case, the growth, survival, and reproductive rates estimated for 

258 each class are combined to form the elements of the matrix, aij, which represent the average 

259 number of individuals in class i at time t+1 that result from an individual of class j at time t.  

260 In IPMs, most vital rates are estimated by fitting continuous functions of one or more 

261 state variables. When building an IPM, these fitted functions are then combined into density 

262 kernels. These are usually a survival/growth kernel that describes the distribution of an 

263 individual’s state in the next time step, given survival and growth, and a reproduction kernel that 

264 describes the number and state distribution of an individual’s offspring. These kernels are then 

265 combined into an overall kernel that projects the number and distribution of individuals’ states 

266 across a time step. In this kernel, kij is identical in interpretation to the matrix element aij, except 

267 that the i and j states are assumed to apply to size classes for the matrix model and to point 

268 values of the state variable for IPMs. Proponents of IPMs emphasize that this regression-based 

269 approach avoids artificial binning together of individuals with differing states and, by including 

270 all individuals in the model fitting step, allows more efficient use of scarce data (Easterling et al. 

271 2000, Ellner and Rees 2006, Ramula et al. 2009, Zuidema et al. 2010, Merow et al. 2014b). 

272 Beyond these common ways of building either type of model, several other complexities 

273 and complications can arise. Most commonly, additional state variables (e.g., sex, age class, 

274 widowing status; Miller and Inouye 2011, Bakker et al. 2018) or other covariates (e.g., climate, 
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275 soil chemistry; Dahlgren and Ehrlén 2009, Doak and Morris 2010, Hunter et al. 2010, Diez et al. 

276 2014, Merow et al. 2014b) may have important effects on individual fates and can be included in 

277 either discrete or continuous approaches to vital rate estimation (e.g., through additional or 

278 combined classes, or by inclusion in continuous vital rate functions). In addition, both matrix 

279 models and IPMs can be either deterministic or stochastic, including the influence of 

280 demographic and environmental stochasticity on vital rates to estimate effects on fitness, growth 

281 rates, or extinction risk. There are also increasingly sophisticated methods to incorporate model 

282 and parameter uncertainty into the predictions of these models, which is an especially important 

283 topic when models are being used to address applied questions (Bakker et al. 2009, Elderd and 

284 Miller 2016). Finally, it is worth noting that there are many other subtle and not-so-subtle 

285 decisions that must be made when formulating either a matrix model or an IPM (detailed in 

286 Caswell 2001, Morris and Doak 2002, and Ellner et al. 2016), and numerous mistakes are 

287 commonly made in model construction. For example, a recent review by Kendall et al. (2019) 

288 found that a substantial fraction of matrix models constructed for animals contained at least one 

289 common error in model structure. Among the most common of these mistakes are failing to 

290 include survival in reproductive rates, introducing incorrect delays into the life history, and 

291 incorrectly calculating transition rates from stages with known duration (Kendall et al 2019). 

292 Analysis of Demographic Models

293 Once constructed, matrix models are used to compute multiple biologically important 

294 outputs. Most commonly, these include one of several measures of population growth rate, 

295 including asymptotic or transient measures of deterministic or stochastic population growth 

296 (Caswell 2001). Additional outputs include the stable stage distribution, damping ratio, life span 

297 measures, and the sensitivity and elasticity of population growth or of other outputs (e.g., stable 

298 stage distributions; Caswell 2001, Morris and Doak 2002, Haridas and Tuljapurkar 2005) to 

299 either matrix elements or vital rates. If models are built with continuous vital rate functions, 

300 sensitivities can also be estimated for responses to changes in parameters of vital rate functions 

301 (e.g., the intercept or slope of reproduction as a function of size) rather than to discrete class-

302 specific values (Griffith 2017). Caswell (2001) provides a thorough review of the many outputs 

303 of matrix models, and multiple computing packages facilitate these analyses (e.g., popbio in R; 

304 Stubben and Milligan 2007). 
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305 How does one get comparable predictions from an IPM, which is not a matrix, but a 

306 density kernel? IPMs are actually analyzed in the same way as matrix models, using discretized 

307 matrices, although IPM nomenclature often obscures this fact. In practice, numerical integration 

308 methods are used to approximate an IPM kernel as a transition matrix, most often based on 

309 discrete “mesh points,” which are starting and ending values of the state variable. This analysis 

310 method divides the state variable into many classes, centered on the mesh points, within a 

311 biologically plausible range and then uses the values of each of the different vital rate functions 

312 at each mesh point to estimate the transition rate from each class to each other class. The result is 

313 a moderately-sized to large matrix with many narrow, discrete classes and transition rates 

314 estimated from the vital rate functions underlying the IPM kernel. It would be possible to analyze 

315 IPMs without discretization, but it would be a far more formidable analytical challenge for 

316 arbitrarily defined kernels (Ellner et al. 2016), while the methods of linear algebra make the 

317 analysis of the approximating matrix straightforward. 

318 Both modeling approaches result in large to very large numbers of certain outputs, such 

319 as sensitivity and elasticity values to size specific vital rates or matrix elements. To deal with 

320 these sometimes daunting numbers of values and to provide more succinct and biologically 

321 informative results, for both types of models practitioners frequently condense results into mean 

322 or summed values for fewer categories (e.g., Zuidema et al. 2010, Silvertown et al 1993).

323 Comparing the two approaches

324 The IPM literature has emphasized two shortcomings of matrix models: 1) the statistical 

325 inefficiency of separately estimating vital rates for each class, and 2) the use of a small number 

326 of classes to represent inherently continuous state variation, a situation that can lead to 

327 mischaracterization of the true values of individual fates. IPMs solve these problems by using all 

328 individuals to estimate continuous vital rate functions and then by using many classes of small 

329 width in the final analysis phase. However, there are reasons to question whether matrix models 

330 and IPMs are truly as different as they are usually portrayed. First, as noted above, demographers 

331 have used continuous vital rate functions to characterize patterns in vital rates and to 

332 parameterize matrix models, even well before IPMs were developed (e.g., Siler 1977, Eberhardt 

333 1985, Barlow and Boveng 1991,Batista et al. 1998, Bernal 1998, Zuidema 2000, Morris and 

334 Doak 2002, Matsuda and Nichimori 2003, Gross et al. 2005, Rogers-Bennett and Rogers 2006, 

335 Chien et al. 2008). Second, in practice IPMs are analyzed by discretizing the underlying kernel to 
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336 parameterize a matrix model, although that matrix is usually moderately to very large (typically 

337 many dozens to hundreds of classes). Thus, rather than describing matrix models and IPMs as 

338 completely distinct methods, it is more accurate to view structured population models as varying 

339 along at least two axes: the method of parameter estimation (categorical vs. continuous 

340 functions, blue boxes in Figure 1) and the dimensionality of the resulting matrix (number of 

341 classes or mesh points, green boxes in Figure 1). Whether these two frameworks are distinct or 

342 not, the problems that have been identified with discrete parameterization and with modeling 

343 continuous state variables with few classes can potentially have serious effects on model 

344 predictions. In the rest of this section, we briefly review important considerations arising from 

345 these two aspects of model-fitting, as well as several other potential issues. 

346 Class number. IPM practitioners seek to reduce the effects of discretization by using 

347 many narrow classes (Merow et al. 2014a). However, many classes make for larger matrices and 

348 reduce computational efficiency, especially when there are multiple state variables (Ellner et al. 

349 2016). There is also little information about the number of classes necessary to approximate a 

350 continuous demographic process for real life histories. Several iterations may be required to 

351 determine the number and range of classes needed to yield stable estimates (Ellner and Rees 

352 2006, Zuidema et al. 2010) and avoid eviction (the removal of individuals from the range of 

353 model sizes due to esimates of growth or shrinkage outside this range; Williams et al. 2012). The 

354 fact that most matrix models have far fewer classes than the large matrices used by IPMs has 

355 been viewed as a key advantage of IPMs (Ramula et al. 2009, Zuidema et al. 2010, Merow et al. 

356 2014a). However, in the few studies of which we are aware that test for class number effects in 

357 IPMs, increasing classes beyond 10 to 20 has little effect on model results (e.g., Jacquemyn et al. 

358 2010, Shriver et al. 2012, Dibner et al. 2019). 

359 One factor that is likely to influence the number of classes needed for accurate or stable 

360 predictions is the way that continuous vital rate functions are discretized. The most common 

361 approach in IPMs is to use the “midpoint rule” to evaluate the vital rate functions across mesh 

362 points, each representing the midpoint of a class of the state variable, to obtain point estimates of 

363 the survival and fecundity rates that contribute to the kij values in the discretized kernel. There 

364 are two important variations on this method that directly relate to the number of mesh points (or, 

365 analogously, classes) necessary for a reasonable approximation. First, it has been suggested that 

366 it may be more accurate to characterize the vital rates of a class by using either the median or 
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367 mean state value (Morris and Doak 2002) of the individuals in a dataset falling within a class, 

368 rather than the midpoint. A similar approach is to estimate an empirical density function for 

369 individual states to estimate mean or median values, which can provide estimates even for 

370 classes in which no individuals were censused (Gross et al. 2005). 

371 A second issue is the way that the transition probabilities between state values (e.g., 

372 growth and shrinkage probabilities for a size-based model) are discretized (Figure 2). The most 

373 commonly-used approach in the IPM literature (Ellner and Rees 2006, Metcalf et al. 2013, 

374 Merow et al. 2014a, Elderd and Miller 2016) approximates the probability density function 

375 (PDF) describing state at the next time step, conditional on starting state, by evaluating the 

376 probability density at each mesh point and then multiplying this value by the class width (Figure 

377 2B). A more accurate method, but one that is not featured in most descriptions of IPMs or in the 

378 software to run these models (e.g., IPMpack; Metcalf et al. 2013) is to use the cumulative density 

379 function (CDF) to integrate the probability density across the entire class (Figure 2C). Although 

380 these two methods will converge with infinitely many classes (Fig. 2D), the first may require 

381 many more classes to produce stable estimates, particularly if the variance in size is small 

382 relative to the width of the classes for at least some starting sizes (Fig. 2E; Ellner et al. 2016). 

383 Although the second method has been used, including by the authors (e.g., Louthan et al. 2018, 

384 Montero-Serra et al. 2018), in both matrix and IPM models, the method of discretizing individual 

385 changes in state (e.g., growth) is virtually never reported in the methods of published studies 

386 (pers. obs.). We thus have no quantitative estimate of the relative frequency of these two 

387 approaches, despite their potential to influence the accuracy of model predictions. We also note 

388 that there is a third option to discretize size transition data, the “bin-to-bin” method (sect. 6.8; 

389 Ellner et al. 2016), which uses the integral over both the starting and ending sizes included in a 

390 transition to estimate total transition probability. 

391 Vital rate estimation. We next consider other aspects of using continuous vital rate 

392 (CVR) functions vs. discrete vital rate (DVR) estimates that may be less obvious, but are 

393 important in generating accurate models. The statistical advantages of fitting continuous 

394 functions are clear: using all individuals to fit a single function is more efficient than separately 

395 estimating vital rates based on a subset of individuals within each of many classes. In particular, 

396 it has been argued that this approach is more accurate than using discretely estimated rates in 

397 matrix models, given small datasets (Ramula et al. 2009). Discrete estimation also means that 
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398 outliers or other quirks in the finite data used may have undue influence on the model structure 

399 and predictions (e.g., estimating zero or perfect survival for some classes). 

400 On the other hand, there is also a potential cost of continuous vital rate function 

401 estimation that has received less attention. The functions used to explain vital rate variation are 

402 often quite simple, usually linear or perhaps quadratic functions of a single state variable (Merow 

403 et al. 2014), and thus can easily oversimplify or misrepresent how vital rates vary as a function 

404 of the state variable. In contrast, matrix models that separately estimate vital rates within each 

405 category make no such distributional assumptions (Shimatani et al. 2007). For example, a matrix 

406 model can estimate sharp discontinuities in survival probabilities between size classes or survival 

407 rates that asymptote well below 1, whereas IPMs usually model survival as a smooth logistic 

408 function of size with an asymptote of 1 (see Yau et al. 2014). Simple transformations of size 

409 variables, such as logging, may solve some, but not all, of these issues. For these reasons, some 

410 have advocated using non-parametric methods (Ellner et al. 2016, section 10.1.5) or fitting more 

411 complex functions, such as splines. However, these approaches can also be influenced by outliers 

412 and/or low sample sizes at extreme state variable values (Shimatani et al. 2007, Dahlgren et al. 

413 2011, Rees et al. 2014). A related issue when using either approach is how best to account for 

414 estimation uncertainty and thus isolate process variance in vital rates. 

415 Another issue with vital rate estimation is the ubiquitous assumption in IPMs of normally 

416 distributed growth rates on the scale of the state variable (Peterson et al. 2019). This assumption 

417 means that growth is modeled as symmetric around an average size transition, whereas for many 

418 species the distribution of growth is skewed. For example, high shrinkage may be more likely 

419 than high growth due to die-back, breakage, or starvation (reviewed in Peterson et al. 2019); the 

420 opposite pattern may occur in woody species measured using diameter at breast height 

421 (Needham et al. 2018). More generally, the use of growth models with infinite tails, like normal 

422 distributions, will predict some chance of growth and shrinkage to sizes well outside the range of 

423 reality, resulting in the problem of eviction (Williams et al. 2012) as well as unrealistic changes 

424 in state even within the bounds of otherwise realistic sizes. 

425 There are multiple statistical methods to account for any of the complexities just 

426 discussed, but very few empirical demographic studies employ these. In addition, it is important 

427 to note that the goal of model development is not to represent every nuance of reality, but instead 

428 to get the important aspects right enough to yield useful representations of the patterns and 
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429 dynamics of interest. But, as this perspective emphasizes, neither matrix model nor IPM 

430 approaches are a priori more compelling than the other. Both make some simplifications and 

431 smooth over some patterns in the data, though they do so in different ways. It is not clear 

432 whether and under what circumstances continuous functions will produce more accurate vital 

433 rate estimates compared to separately estimating vital rates within discrete classes, nor is it clear 

434 when and why the use of many narrow classes will fundamentally change model predictions. 

435 With this in mind, we next turn to how the two modeling approaches have actually been used in 

436 recent demographic studies. 

437

438 HOW ARE IPMS AND MATRIX MODELS USED IN PRACTICE?

439 As we argue above, IPMs and matrix models are not sharply distinct. Here we document 

440 the range of methods used to fit these models in the literature, including different parameter 

441 estimation approaches and matrix dimensions. We conducted a literature search on October 23, 

442 2018 of studies included on Web of Science using the search terms “demograph*” and “matrix” 

443 and either “ecology” or “conservation” for the period 2002-2018. We believe that these search 

444 terms capture the vast majority of matrix models used for ecological or life history analyses. We 

445 also included Web of Science results that had cited any of the papers originally developing the 

446 IPM approach, including Easterling et al. (2000), Ellner and Rees (2006), and Rees and Ellner 

447 (2009); because terminology, and hence keywords, are less uniform for IPMs, we felt that using 

448 citations of these founding articles would capture studies that would otherwise be missed. The 

449 starting year for our review is somewhat arbitrary, but was chosen to include virtually the entire 

450 period during which IPMs have been conducted. We only included papers that fit new models to 

451 demographic data, excluding strictly theoretical papers or review papers that relied on previously 

452 published models. For each paper, we determined the state variable (age, size, stage, or other 

453 [including size x age models]), method of parameter estimation (categorical, continuous, or a 

454 combination), the type of model as it was identified by the authors (matrix vs. IPM, stochastic vs. 

455 deterministic), and the dimension of the resulting matrix (number of classes, bins, or mesh points 

456 used to construct the matrix or discretized IPM kernels). For papers with multiple species, we 

457 identified these criteria for each species separately. Ambiguous papers were reviewed by at least 

458 two people. We identified 794 publications and 1271 demographic models across a range of 

459 taxonomic groups (Table 1) that fit all of our criteria. Most of the demographic studies in our 
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460 database examined plants and other autotrophs (N=698), followed by vertebrates (N=486) and 

461 invertebrates (N=87). The full results of this literature review are available in Data S1: Literature 

462 Review.

463 Matrix models represent the majority (~79%) of demographic models published between 

464 2002–2018 (Table 1). Over this period, 57% of all studies were deterministic matrix models, 

465 followed by stochastic matrix models at 22%. 21% of demographic models were identified by 

466 the authors as IPMs (16% deterministic IPMs, 5% stochastic IPMs). Although IPMs are a 

467 smaller fraction of published demographic models, this proportion has increased over time 

468 (Figure 3A; logistic regression of proportion of models: year coefficient = 0.31, Z = 12.81, P < 

469 0.001). This increase can be attributed to the publication of several reviews of the method (Ellner 

470 and Rees 2006, Rees and Ellner 2009, Merow et al. 2014a, Rees et al. 2014) as well as the 

471 development of IPMpack, an R package for constructing IPMs (Metcalf et al. 2013, R Core 

472 Development Team 2015). 

473 Almost all IPMs are built for size-based models. 67% are only structured by size and an 

474 additional 29% use size in conjunction with one or more other state variables (e.g., birth date, 

475 age, growth rate, dormancy, developmental stage, etc.). 26% of IPMs use age as a state variable, 

476 while only 2% use something other than age or size as the primary state variable (e.g., infection 

477 load; Wilber et al. 2017). In contrast to IPMs, matrix models are commonly used for stage and 

478 age-based analyses as well as size-based models; 20% use a size-based state variable, 28% use 

479 age, and 52% use a measure of stage (Appendix S1: Figure S1A,B). In addition, the great 

480 majority of published IPMs have been for perennial plant studies, while a wider range of taxa 

481 and life histories have been the subjects of matrix models (Appendix S1: Figure S1C,D). Given 

482 these differences, in the rest of our review we concentrate on comparisons between matrix 

483 models and IPMs that are based on size. The time trends of just these studies is similar to those 

484 of all demographic models (Figure 3). 

485  In general, size-based IPMs used higher dimension matrices in their final analyses than 

486 matrix models (Figure 4; linear model of class number: t = 10.65, P < 0.001). However, IPM 

487 papers reported using an astonishingly wide range of classes, from 39 to 2400, to discretize their 

488 projection kernel (mean = 242.5, median = 200, SD = 308.3, N = 83) whereas size-based matrix 

489 models varied from 2–67 classes (mean = 7.3, median = 5.5, SD = 6.7, N = 194). However, only 

490 43% of IPM studies reported the number of classes or mesh points used for the discretization of 
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491 the kernel. This may reflect the philosophical view that IPMs should be conceptualized as 

492 continuous, despite their ultimate discretization, or may simply be viewed as an unimportant 

493 detail by those publishing results of these models. Regardless, we could not determine the 

494 number of classes for over half of published IPMs, although we note that the R package 

495 IPMpack uses 50 classes as the default setting (Metcalf et al. 2013) and 10.3% of IPMs reviewed 

496 that did not report the number of classes used IPMpack. We were further unable to determine the 

497 method used to discretize the IPM kernel for over a third (36%) of published IPMs. Of those that 

498 reported the discretization method, 96% used the midpoint rule and only 4% used an alternative 

499 integration method (e.g., Simpson's Rule, Gauss-Legendre quadrature; Ureta et al. 2012, White 

500 et al. 2016, Molowny-Horas et al. 2017). Given that the lack of discretization is frequently 

501 discussed as an advantage of IPMs, but that models are in fact analyzed with discretization, we 

502 urge that discretization information should be included in the description of any IPM analysis, 

503 since this is a key analysis step for these models. 

504 Population biologists followed a variety of workflow paths from data to final matrix 

505 analysis (Figure 5). Most demographic models used information on individuals’ stages to 

506 estimate vital rates categorically and construct deterministic matrix models (Figure 5). However, 

507 7% of all matrix models, and 25% that used size as their state variable, estimated at least one 

508 vital rate using a continuous function of state. Interestingly, the proportion of matrix models 

509 using continuous vital rate estimation appears to have peaked and then declined over time (Fig. 

510 3B; logistic regression of proportion of models: year coefficient = 141.89, z = 3.69, P< 0.001, 

511 year2 coefficient = -0.035, z = -3.69, P< 0.001). This could reflect an increased awareness of 

512 continuous approaches to vital rate estimation following examples in Morris and Doak (2002) 

513 and the initial development of IPM methods (Easterling et al. 2000, Ellner and Rees 2006), with 

514 a later decline as IPMs were increasingly adopted to model data sets suitable for continuous vital 

515 rate estimation. When comparing size-based matrix models, we found that models tended to use 

516 more classes when at least one vital rate was estimated using a continuous function (mean = 

517 11.0, median = 7, range = 3-67, N = 48) relative to models with discrete vital rate estimation 

518 (mean = 6.1, median = 5, range = 2-27, N = 146; linear model of class number: t = 4.65, P < 

519 0.001). However, we found no relationship between class number and minimum sample size for 

520 discrete size-based matrix models (r = 0.17, P = 0.16, N = 67; Appendix S1: Figure S2). Of all 

521 demographic models using continuous vital rate estimation, 22% were matrix models. Thus, any 
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522 advantages of continuous vital rate estimation have not been limited to IPMs in the demographic 

523 literature.

524

525 ASSESSING THE CONSEQUENCES OF DIFFERENT MODEL-MAKING DECISIONS

526 Two key characteristics of structured population models, the number of classes into 

527 which the state variable is divided and the method of parameter estimation (continuous vital rate 

528 functions (CVRs) vs discrete vital rate estimates (DVRs)), are often assumed to covary between 

529 “pure” matrix vs. “pure” IPM approaches. But as we show in our literature review, they are not 

530 necessarily logically connected and many published models combine relatively small class 

531 numbers with CVR functions. 

532 There are also three other decisions that require careful thought when turning data into a 

533 structured demographic model, but are rarely discussed. First is the exact way that class 

534 boundaries are delineated. For most IPMs, class boundaries are set at regular intervals, while for 

535 matrix models, there are often decisions made regarding sample size issues and where size 

536 breaks make the most biological sense. A second decision is how best to characterize the average 

537 vital rate value for a given class or, using IPM terminology, how to define the mesh points used 

538 to evaluate the CVRs to create a discretized matrix. Mesh points are most often chosen as the 

539 midpoint of a class, but alternative approaches could use the mean, median, or even distribution 

540 of state values observed in each class. The third consideration, if using continuous functions, is 

541 how the transition probabilities between states conditioned on survival (e.g., growth) are 

542 discretized. This is distinct from the discretization of other vital rates, such as survival or 

543 fecundity, because an individual will have a distribution of possible states at the next time step 

544 (vs. a point estimate of survival probability or offspring number), and it is this continuous 

545 probability density that must be discretized (Fig. 2A). One approach is to use the point estimate 

546 of the probability density evaluated at each mesh point, multiplied by the class width (Figure 

547 2C). Alternatively, the probability density can be integrated across the entire range of states 

548 within each class, by taking the difference between cumulative distribution function (CDF) 

549 values at the upper- and lower-class boundaries (Figure 2A, B). Other approaches, including the 

550 Ellner et al. (2016) “bin-to-bin” method or direct parameterization of discretized growth 

551 probabilities (Shriver et al. 2019) can also be used, but none of these alternatives have been 
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552 commonly employed to date. All of these decisions have the potential to interact with the number 

553 of classes and methods of estimating vital rates to shape model outputs. 

554 To test how these different aspects of demographic modeling influence model predictions 

555 we used large demographic data sets from five diverse organisms – a long-lived subtidal 

556 Mediterranean gorgonian coral (Paramuricea clavata, Plexauridae), a long-lived rupicolous 

557 plant (Borderea chouardii, Dioscoreaceae), a moderately long-lived arctic/alpine geophytic plant 

558 (Polygonum viviparum, Polygonaceae),  a short-lived epiphytic lichen (Vulpicida pinastri, 

559 Parmeliaceae), and a short-lived fish, the Trinidadian guppy (Poecilia reticulata, Poeciliidae . 

560 While these species do not span the entire range of life histories seen in plants, animals, and 

561 fungi, they do represent a broad array of key life history patterns. In all these data sets organism 

562 size is used to structure the populations, but the species differ in multiple aspects of their ecology 

563 and capture a range of size distributions (Figure 6). 

564 In our analyses we varied five aspects of model construction. Most fundamentally, we 

565 varied the method used to estimate vital rates (blue boxes, Figure 1) and the class number of the 

566 resulting matrix (green boxes, Figure 1). Previous comparisons of matrix dimension and 

567 parameterization methods have only included matrix models with a few classes (4–6) and 

568 discrete parameter estimation, and compared them to IPMs using continuous functions 

569 discretized into large matrices (100 classes; Ramula et al. 2009). In contrast, we varied parameter 

570 estimation method independently from class number to ask how each affects model accuracy. In 

571 addition, we tested the effects of the three other modeling decisions just mentioned: (i) use of 

572 midpoint or estimated median individual sizes for CVR estimation of average vital rates per 

573 class; (ii) even or sample size-adjusted class boundaries; and (iii) the ways in which discretized 

574 growth probabilities were estimated from CVR models (Figure 2). While other issues also 

575 influence model structure and results (see Section 2, above), here we concentrate on this short 

576 list of issues that will influence virtually all models. 

577 We tested the effects of these decisions on three common demographic outputs: estimates 

578 of individual fitness or population growth (lambda, λ), estimated individual longevity (age at 

579 which 1% of individuals starting in the smallest class are still alive), and damping ratio (the ratio 

580 of the magnitudes of the dominant and subdominant eigenvalues), a measure of the strength and 

581 duration of transient dynamics for populations not at a stable stage distribution (Caswell 2001). 

582 While multiple other measures of longevity and also of the strength and length of transient 
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583 dynamics exist, these measures have been widely used in the ecological literature. We also 

584 present a more limited comparison of how sensitivities and elasticities vary as a result of 

585 different modeling approaches. Finally, we test how data quantity interact with these alternative 

586 modeling decisions, in particular asking if some modeling approaches are more robust when data 

587 are scarce.

588 Study species and data sets

589 We compiled data used in published studies for each of our study species, supplemented 

590 with some unpublished information needed to employ flexible and automated model fitting 

591 routines; all data were collected by the authors. While all of the original studies of our species 

592 included effects of temporal and/or spatial variation in demography, in our simulations we used 

593 all transition data at once to construct single deterministic models. This simplification allowed us 

594 to use large numbers of observations to construct single models, as well as to rarify our data sets 

595 over a wide range of sample sizes to check the effects of data quantity on the relative merits of 

596 different modeling strategies. 

597 We briefly outline the most relevant information about each species’ life history and 

598 details about the data and modeling protocols used here: 

599 Polygonum viviparum, the alpine bistort (hereafter, bistort), is an arctic/alpine perennial 

600 plant for which demographic data were collected annually from 2001–2011 at four populations 

601 on Niwot Ridge in Colorado, USA (Doak and Morris 2010), for a total of 11,882 plant-

602 transitions of data. Size, reproduction, and survival data were recorded for all plants (see 

603 methods in Doak and Morris, 2010). Size is measured as the square root of estimated leaf area in 

604 mm2; on an untransformed scale, sizes in the main data set (not including recruit sizes) range 

605 from 4.39 to 3600, after truncating 5 large values that created a long sparse tail that created 

606 problems for some of our analyses (similar truncation was done for all data sets besides 

607 Borderea). Reproduction is exclusively via asexual bulbils that are produced on inflorescences, 

608 and our measure of reproduction is the size-dependent product of the probability of producing 

609 one or more inflorescences and the estimated number of bulbils produced if reproducing (derived 

610 from a contunuous measurement of the length of the inforescence bearing bulbils). We pooled 

611 data across all years and sites to yield one estimate of the number of new recruits (bulblings) 

612 seen a year later per bulbil produced (0.00676). Bulbling sizes were also pooled and used to 

613 characterize the size distribution of bulblings as normally distributed with a single mean (4.00) 
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614 and SD (0.886) for CVR models, and were directly used to get frequencies of sizes for DVR 

615 models. 

616 Paramuricea clavata, the Mediterranean red gorgonian (henceforth, gorgonian), is a 

617 slow-growing, long-lived arborescent octocoral that typically occurs from 15 to 60 m depth. 

618 Demographic data for individual colonies (the unit of demographic analysis) were collected 

619 annually at three Mediterranean sites for 2-4 years each from 1999–2004 (Linares et al. 2007, 

620 Linares and Doak 2010), for a total of 4,877 colony-transitions of data. Size is quantified as 

621 colony height; sizes in the main data set range from 0.2 to 74.9 cm. Size-dependent reproduction 

622 was estimated as the production of oocytes per colony, estimated from the relationship between 

623 gonad number and size derived from data in Coma et al. (1995; Table 5) and the estimated 

624 average oocyte number resulting from a gonad (2.77774x10-6). We estimated a common first 

625 year survival of new recruits across all years and sites as 0.667, the mean of colony survival in 

626 the smallest size class from Linares et al. (2007). Surviving recruits were assumed to have a 

627 uniform size distribution ranging between 0.3 to 3.0 mm height. 

628 Vulpicida pinastri (henceforth, Vulpicida), is a relatively short-lived epiphytic lichen that 

629 grows on several species of trees and shrubs. Data on individual thalli were collected annually 

630 from 2004-2009 in Kennicott Valley in Alaska, USA on individuals growing on Alnus stems in a 

631 mixed spruce-alder forest, for a total of 1621 individual transitions of data. Size and survival data 

632 were collected in each thallus, with the square root of thallus area in cm2 used as the measure of 

633 size (see Shriver et al. 2012 for methods); on an untransformed scale sizes in the data set range 

634 from 0.15 to 47.61. Reproduction was estimated as proportional to the circumference of a thallus, 

635 which bears the majority of asexual propagules. The number of recruits per mm of circumference 

636 necessary to achieve a stable population was estimated as 0.047 in the original study of this 

637 species (Shriver et al. 2012), and we used this estimate as a fixed value in our models. New thalli 

638 sizes were estimated to have a uniform distribution ranging between 0.124 and 0.50, which 

639 reflect the range of smallest thallus sizes encountered in the field. 

640 Borderea chouardii (henceforth Borderea) is a rare, extremely long-lived rupicolous 

641 plant that naturally inhabits a single population in Spain, where it grows in shaded crevices of 

642 north-facing limestone walls and overhangs. Data were collected on individual plants from 1995 

643 to 2002 at two sites in the Spanish Pyrenees, for a total of 2,682 plant-transitions of data. Size is 

644 measured as the length of the largest leaf in mm; sizes in the main data set range from 2 to 10.8. 
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645 Reproduction is quantified as the number of seeds produced per female plant. While the species 

646 is dioecious, we use the mean seeds per plant of a given size, averaged across the sexes, as our 

647 measure of reproduction (see Garcia 2003 for more details of sampling and life history). 

648 Reproduction was quantified as the size-dependent product of the probability of producing one 

649 or more inflorescences and the estimated number of seeds produced if reproducing. For CVR 

650 models, observed seedling sizes were used to estimate a mean (4.66) and SD (0.46) and sizes 

651 were assumed to be normally distributed, while the set of observed sizes were directly used to 

652 get frequencies of sizes for DVR models.

653 Poecilia reticulata (henceforth, guppy) is a short-lived freshwater fish native to streams 

654 and rivers in Trinidad. We used capture-mark-recapture data from monthly sampling of a site on 

655 the Caigual River that spanned January 2009 to June 2011, for a total of 4880 unique individuals 

656 over the entire study. At each sampling interval, a comprehensive capture of all fish within the 

657 stream reach was attempted, with size (wet mass in g) and sex recorded for all individuals. Sizes 

658 in the data set range from 0.042 to 0.904. While recapture rates are extremely high (Fitzpatrick et 

659 al. 2016), they are not perfect. To produce a simplified data set for our analyses, we therefore 

660 considered a fish dead at the first census it was not captured, if it was not captured for at least 

661 one subsequent sampling period (thus, we did not include data from the final two sampling 

662 intervals). We also linearly interpolated size for fish that were not sampled in a month, but were 

663 sampled in the months bracketing the missing capture. We built a model for females only. 

664 Reproduction was quantified as the size-dependent product of the probability of producing any 

665 offspring times the number of daughters produced if there was reproduction. Offspring number 

666 was estimated from genetic data and is the estimated number of female offspring produced that 

667 survived until the second census following birth (newborns were not large enough to reliably 

668 catch until approximately 1-2 months of age; Fitzpatrick et al 2020). New offspring sizes were 

669 pooled and used to characterize an emprical distribution function for use in CVR models, and 

670 were directly used to get frequencies of sizes for DVR models. The survival rate of fish in each 

671 of their first two months was estimated as the mean survival estimated for newly observed fish, 

672 based on a logistic regression of monthly survival vs size fit to all fish. We do not include in our 

673 analyses data on the genetic origin or hybrid status of the fish (see Fitzpatrick et al. 2016 and 

674 Fitzpatrick et al. 2020 for more details of the study). As the dataset only allowed estimates of 

675 reproduction from months 5-14 of the study, we used demographic data only from these months, 
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676 for a total of nine individual transitions of data and 2366 individual monthly transitions. In 

677 keeping with the data collection and also the limited life span of the species, and unlike the 

678 annual time steps used in the models for all other focal species, all data analysis and modeling 

679 for guppies was done using a monthly time step. 

680 Methods

681 We fit demographic models to the data from each species using combinations of the 

682 following alternative approaches: 

683 A. Discrete vital rate estimation for each class vs. continuous functions for vital 

684 rate estimation. When estimating continuous vital rate functions (CVRs), we fit 

685 separate size-dependent models for survival, mean growth, variance in growth, 

686 and the reproductive rates, described above for each species (see also Appendix 

687 S1: Table S1). For each vital rate, we fit 2–3 models with alternative size-

688 dependent functions and used AICc to choose the best model. Specifically, we fit 

689 models with linear vs quadratic size effects for all vital rates, and for mean growth 

690 we also fit a power function, to potentially better capture different shapes of non-

691 quadratic, but non-linear shifts in growth with size. These functions are all 

692 commonly used in analyses employing CVRs. 

693 B. Number of classes for model construction. For discrete vital rate estimation, the 

694 number of classes directly influences the parameter estimation, while for 

695 continuous vital rate functions it only influences the final construction of the 

696 matrix for analysis. We made models with class numbers that ranged from 3 to 

697 100 classes for most analyses, using 3, 4, 5, 6, 8, 10, 15, 25, 35...100 classes. With 

698 discrete vital rate estimation, at the upper end of this range we rapidly reached 

699 class numbers that resulted in low samples for at least one class; we did not make 

700 models if the smallest class-specific sample size was < 3. While this is a very 

701 lenient standard (we do not advocate making models based on such low sample 

702 sizes per class), we used a low threshold in order to make DVR models with the 

703 largest possible range of class numbers given the data we had. In our rarefaction 

704 tests, described below, we also directly tested the effects of having very low class-

705 specific samples on DVR model outputs. Statistics on per class sample sizes for 

706 each species are given in Appendix S1: Figures S13-17.
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707 C. Proportional vs. even size class delineation. We employed two approaches to 

708 defining boundaries of size classes, which characterize two extreme approaches 

709 seen in demographic studies. With even class divisions, all classes were the same 

710 width on the scale of the size metric (see above for definition of the size scale 

711 used for each species). For proportional class divisions, we used the classes 

712 function in R package binr (Sergei 2015) to create class divisions that had as 

713 nearly equal numbers of starting individuals as possible. This approach has the 

714 general effect of creating many narrow classes of smaller or mid-sized individuals 

715 and fewer wide classes for the larger and in some cases also small individuals, 

716 depending on the size distribution of the data (see Figure 6). While in many 

717 matrix models class boundaries are, and should be, made with more attention to 

718 biological breakpoints, to automate the process of choosing class boundaries we 

719 used only these two approaches. 

720 D. Discretizing CVRs. For most vital rates, a single point estimate is required for 

721 each size class (e.g., survival probability, number of offspring/parent). We used 

722 one of two approaches to estimate the representative vital rate value for each size 

723 class when using the CVR approach. First, and most simply, we used the midpoint 

724 size within a class (the mean of the two bounding values for the class). This 

725 method is by far the most common one used when making large matrices to 

726 numerically integrate IPM models, and is also used in many matrix models 

727 employing CVRs. However, two of us have argued that it is more representative 

728 to use a size that reflects the average individual within a class, not the midpoint of 

729 the class boundaries (Morris and Doak 2002). This estimation can be 

730 accomplished in several ways. Most simply, an estimate can come by taking a 

731 simple median or mean starting value of all individuals within a class, or, when 

732 data are scarce in some size ranges, by fitting an empirical density function to all 

733 individuals in the population and then using this function to create a weighted 

734 median size for each class—we used this latter approach in our simulations. We 

735 refer to these two approaches as midpoint- or median-based CVRs, respectively. 

736 E. Discretizing continuous growth distributions. Lastly, we compared two 

737 approaches to discretizing continuous distributions that summarize changes in 
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738 size when using the CVR approach (Figure 2), using both simulated and real data 

739 sets. First, we took the common approach employed in the IPM literature of using 

740 the point estimates of the probability density for the midpoints of all of the size 

741 classes, multiplied by the class width, to approximate the probability density 

742 function (PDF) of size at the next time step conditioned on current size. We call 

743 this the “mesh point method.” Second, we used the cumulative density function 

744 (CDF) for growth to get the probability of reaching each size class at the next 

745 time step conditioned on starting size. We call this the “CDF difference method.”  

746 While other approaches have been proposed, in particular the Ellner et al. (2016) 

747 “bin-to-bin” approach, we only tested these two most commonly used approaches 

748 here. For either, there is a concern that some substantial fraction of the total 

749 probability of growth will fall outside the upper and lower limits for size defined 

750 in the model (the eviction problem; Williams et al. 2012). There are multiple 

751 ways to correct the estimated growth probabilities so that, for any starting size (or 

752 size class), they sum to one (Williams et al. 2012). We do so by renormalizing the 

753 growth probabilities for a given starting size by the difference of the CDFs for the 

754 minimum and maximum sizes used in the model (as in Williams et al. 2012). 

755 While this correctly standardizes total growth rates for the CDF difference 

756 method, it is a more error-prone exercise for the mesh point method, as we discuss 

757 in Results.

758 Appendix S1: Table S1 lists the vital rates fit for each species, including non-size-

759 dependent vital rates used in all models. Appendix S1: Figures S3-7 show the best-supported 

760 vital rate functions for each species. As these figures show, the species span a range of patterns 

761 in growth, survival and reproduction. In particular, Borderea (Appendix S1: Fig. S4) and guppies 

762 (Appendix S1: Fig. S7) show a pattern of declining mean and variance in growth at larger sizes, 

763 while the other species show declining mean but increasing or relatively stable variance as size 

764 increases. 

765 For each model constructed from each data set, we estimated λ, damping ratio, and 

766 longevity. We also explored the effects of class number and discrete vs. continuous vital rate 

767 estimation on elasticity values, contrasting DVR models with 20 evenly-spaced size classes with 

768 CVR models built with 80 classes and using median-based and CDF difference methods. 20 
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769 class models are at the upper range possible to use for simple even class definitions for all our 

770 data sets, while use of 80 classes is well within the range used by most IPM models (Figure 4).

771 Finally, we tested the effect of sample size on model results by rarifying each data set in 

772 two different ways. First, we randomly sampled each dataset, with replacement, 200 times for the 

773 full sample size, retaining ½, ¼, 1/8, down to 1/32th of the data, depending on species. We then 

774 replicated the model-fitting process for 20 class DVR and CVR models, employing median-

775 based and CDF difference methods for discretization. For these models, we use a slight variant 

776 on even class boundaries. To perform analyses on rarified data sets using even size classes for 

777 DVR estimation, we had to use a stratified bootstrap approach, so that we retained some 

778 individuals across sizes. This stratification regime also reflects the empirical sampling decisions 

779 that many demographers make, with efforts to include individuals at the top and bottom of the 

780 size distribution in the sample followed for data collection. To stratify the sampling, and also to 

781 define class boundaries for the DVR, we used the top and bottom 5% of all individuals by 

782 starting size to define the smallest and largest classes. We then divided the remaining individuals 

783 into 18 even size class divisions. Bootstrapped samples were generated by resampling with 

784 replacement separately for each size class. Resampled data sets ranged from a sample equal to 

785 the original (see Appendix S1: Figures S13-17 for per class sample sizes statistics), down to 

786 between 1/8th and 1/32th of the original sample size, reflecting quite small minimum sample sizes 

787 of individuals in a given class: bistorts, 6; gorgonians, 5; Borderea and guppies, 3; Vulpicida, 2. 

788 As supplementary tests, we also: 1) fit 80 class CVR models to each data set to see if higher class 

789 numbers changed the results, and 2) ran similar rarefactions, but using non-stratified bootstraps 

790 and fitting proportional class boundary models using 20 classes for DVRs and 80 classes for 

791 CVRs.

792 In addition to the rarefaction simulations just described, we also used a rarefaction 

793 approach to test whether DVR models that are fit with high class numbers – and hence low 

794 sample sizes per class – perform worse than CVR models fit to the same resampled data. For 

795 these analyses, we used the same 20 class stratified bootstrap described in the last paragraph to 

796 generate 200 samples. For each species, we used one resampled data set size, between 1/4th and 

797 1/16th of the original sample size; these sample sizes allowed us to fit a range of class numbers 

798 for each species but also resulted in small minimum sample sizes per class.  We then fit models 

799 using from 5 up to 50 size classes, defining the upper and lower classes using the 1/class number 
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800 and 1 – 1/class number quantiles and evenly divided class boundaries in between. We also fit 

801 CVR models to the same data and class boundaries, and employing median-based and CDF 

802 difference methods for discretization. We fit models to any data set that had at least 1 individual 

803 in each class, and also recorded the fraction of failed data sets for each size class number. We 

804 show results for class numbers for which < 30% of samples failed for DVR models. We then 

805 predicted lambda, damping ratio, and life span estimates for each model. 

806 All analyses were conducting using R version 3.5.2 (R Core Team 2018). Example R 

807 scripts and data files showing the routines used in our analyses are included in Data S2.

808 Results

809 Use of mesh points vs CDF differences to characterize growth rates. To restrict the range 

810 of modeling decisions considered in subsequent analyses, we began by addressing the last 

811 modeling decision listed above (Discretizing continuous size distributions), asking if using mesh 

812 points or CDF differences had substantial effects on growth rate estimation and hence on model 

813 results. It is clear that the mesh point approach will be inaccurate at smaller class numbers (Fig. 

814 2E), as it is essentially a crude numerical integration, but how accurate it is with larger class 

815 numbers under realistic assumptions is less clear. We therefore started by running a simplified 

816 simulation, not tied to any of our real data sets, to illustrate how well the mesh point method 

817 works to characterize growth when starting from a single size, and when the resulting sizes are 

818 far from size boundaries (so “eviction” is not a problem). As noted in Ellner et al. (2016; sections 

819 2.7.4 and 6.8), the mesh point approach performs worst when there is low variance, in which 

820 case they suggest increasing the variance (if model predictions are unaffected), using sparse 

821 matrix methods with many mesh points, or alternative integration approaches such as Gauss-

822 Legendre quadrature. To mimic this low-variance scenario, we simulated a realistically low SD 

823 of 0.5 with a mean size that varied from 49-51 (e.g., Figure 7A with mean = 50). We used from 

824 10 to 100 mesh points spanning a range of sizes between 0 and 100 to discretize the resulting 

825 probability density function (PDF). 

826 The most fundamental problem in approximating growth probabilities is if they do not 

827 sum to one, as all surviving individuals should have a size at the next time step; values greater 

828 than one implicitly boost survival when used in a full demographic model, while summed growth 

829 rates below one implicitly reduce survival. In our simulations, models with from 20 to 100 

830 classes estimate growth probabilities that sum to between 3.0x10-5 and 1.76; while there is a 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

831 general trend to more accuracy with higher class number, both under-and over estimates still 

832 occur as class number increases (Figure 7B). The summed growth probability is also highly 

833 sensitive to small differences in the mean of the growth distribution relative to the mesh points, 

834 with significant over- and under-estimation of total growth probability until high class numbers 

835 are reached (near to 100). This is because the probability of growth into a given class is 

836 estimated using exact PDF values at mesh points, so that the exact placement of mesh points 

837 relative to the peak of the PDF creates erratic mis-estimation, particularly when there are few 

838 mesh points relative to the growth variance. In contrast, the CDF difference approach always 

839 estimates the summed growth probability as one.  

840 The problems with the mesh point approach can also affect the construction and results of 

841 full population models. To test the effects of mesh point mis-estimation on growth rate estimates 

842 across starting sizes, we built CVR models for each of our five focal species, using each of the 

843 two methods and both moderately high (50) and high (100) class numbers. For both methods, we 

844 normalized the estimated growth rates for a starting size based on the difference in the CDF 

845 between the minimum and maximum sizes used in the model. This test is the one proposed by 

846 Williams et al. (2012) to detect eviction. While it is the correct estimate of “true” eviction (i.e., 

847 growth outside the range of sizes in the model), and corrects all the transition probabilities for 

848 the CDF difference method so that they sum to one, for the mesh point models it is not a perfect 

849 test or correction, since the summed growth probabilities can deviate substantially from one, 

850 even in the absence of any meaningful eviction. 

851 Use of mesh point methods leads to substantial over- or under-estimation of summed 

852 growth rates for some small or large classes for four of our five species, and does so even with 

853 models built with 50 or 100 classes (Figure 8). Mis-estimation tends to occur where variance in 

854 growth is low (Appendix S1: Figures S3-7), and can occur for size classes that include abundant 

855 individuals (e.g., large Borderea and small gorgonians). We also tested for the effects of eviction 

856 correction in changing the estimated mean and variance in growth for different sizes. Not 

857 surprisingly, eviction correction can substantially shift both mean and variance estimates 

858 (Appendix S1: Figures S8-S12); while this is expected, it does suggest that alternative models for 

859 growth rates that minimize the eviction problem need to be developed and more widely 

860 employed (e.g., Peterson et al. 2019). 
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861 To test the effects of mesh point mis-estimation of growth rates on lambda estimates, we 

862 took the same approach just described, but building entire demographic models for a range of 

863 class numbers for each focal species. The models used mean class values for estimation and even 

864 size class boundaries. For all of our focal species, use of mesh points results in greater deviations 

865 in lambda estimates and slower convergence on stable lambda values as class number increases 

866 than do models built using CDF differences to estimate growth probabilities (Figure 9). 

867 In sum, the mesh point method can be highly inaccurate, and much of this inaccuracy will 

868 also be undetected by the usual test employed for growth rate eviction. Given that the CDF 

869 difference method is highly robust and extremely fast (only taking an additional 1.8 seconds than 

870 the mesh point approach in a test with 10,000 classes on a standard laptop), it is not clear that 

871 there is any reason to continue to use the mesh point approach to estimate growth, especially as it 

872 can generate artifacts and extreme class number dependence in the absence of any benefit. While 

873 the problems with the mesh point approach can be easily solved by using increasing class 

874 numbers, this number can reach ridiculous levels (e.g., > 4,000; Zuidema et al. 2010, Needham et 

875 al. 2018) and require careful analysis to detect. In the simulations below, we always use the CDF 

876 difference approach in our CVR models. 

877  Effects of modeling decisions on population growth estimates. All four of the remaining 

878 modeling decisions that we explored can also have substantial influence on estimated lambda 

879 values. However, the strength and patterns of these effects are not necessarily what are usually 

880 assumed by most population biologists. While we have no independent measure of the “right” 

881 answer for these real data sets, most models based on the same data set converge on almost 

882 exactly the same lambda (λ) estimates with moderate (for discrete parameter estimation) or high 

883 (for continuous vital rate functions) class numbers, and we assume that these values are 

884 reasonable approximations of reality. 

885 Class number and vital rate estimation method (DVR vs. CVR) show significant 

886 interactions in their effects on λ, but do not indicate any clear advantage for the use of CVRs 

887 (Figure 10). Models using DVRs, corresponding to classic matrix models, converge on the same 

888 lambda values as do models using CVRs, corresponding to IPM models, especially when using 

889 even class boundaries. λ values also show convergence to a very narrow range of values (± 0.01) 

890 by ~10–20 classes, depending on the species. While these are higher class numbers than are 

891 typical in many matrix models, they are far below those generally used in IPMs (Figure 4). 
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892 Neither estimation method gives consistently better results with small class numbers. DVRs 

893 always mis-estimated λ when used with very few classes, but the use of CVRs resulted in over or 

894 under-estimation, often of greater magnitude, depending on the species and other aspects of 

895 model construction. This suggests that the number of classes has a greater impact on model 

896 performance than the method of parameter estimation, but that the extremely large matrices used 

897 in most IPMs are unnecessary to achieve model accuracy.

898 In general, bistorts, Borderea, and guppies showed fastest convergence on the same 

899 lambda values with increasing classes than did the other two species, and the first two species 

900 also showed better correspondence between the predictions of median-based CVR and DVR 

901 models. Unfortunately, there is not a simple difference in the life histories or size distributions of 

902 the species that appears to correspond to these different results (see Figure 6, Appendix S1: 

903 Figures S3-7 for size distributions and vital rates of the species).

904 Other components of model building also influenced λ estimates. First, defining class 

905 boundaries using even divisions generally yielded more consistent results across class numbers, 

906 regardless of other modeling decisions. This was most obvious for bistort, Borderea and 

907 Vulpicida, for which even class models show convergence to the same lambda values at lower 

908 class numbers than do models with proportional classes, which continued to show divergence out 

909 to 100 classes. Second, use of estimated median sizes with CVR models to characterize average 

910 vital rates often yielded more accurate λ estimates, particularly at lower class numbers, than did 

911 use of midpoint sizes. This was especially striking for Vulpicida, for which use of midpoint sizes 

912 substantially altered λ estimates even with 80–100 classes with proportional class sizes, with no 

913 sign of convergence with the other estimates. The somewhat poorer performance of models with 

914 either proportional classes or midpoints appears to be due to the same underlying cause: 

915 mischaracterizing average performance either by grouping together very different individuals 

916 and/or by a poorer approach to characterizing the average state of individuals within a class. 

917 One striking aspect of these results is that the outputs of CVR-based models are more 

918 dependent on other decisions about model structure and estimation than seems to be the case for 

919 discretely estimated vital rate models (Figure 10). This result contrasts with the common 

920 assumption that use of CVRs will lead to more stable, and hence reliable, results. This finding 

921 also suggests that, if models are made with moderate numbers of classes, discretely estimated 
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922 matrix analyses are likely to provide estimates of growth rates that are just as robust as those 

923 arising from IPMs.

924 Simulation results: Damping ratios, lifespans, and sensitivity analysis. Predictions of 

925 lifespans and damping ratios mirrored those for population growth rates, although with greater 

926 effects of several modeling decisions (Figures 11 and 12). First, models made with even class 

927 widths show weaker effects of other modeling decisions in their eventual convergence than 

928 models made with proportional class widths. Second, CVR models that used median sizes to 

929 characterize performance often yielded more stable values than did those that used the midpoint 

930 of a class. This was most evident for life span estimates, for which midpoint models gave highly 

931 divergent estimates for Vulpicida and, with proportional classes, Borderea as well. Third, using 

932 discrete vital rate estimation yielded the same results as did CVR models, and generally 

933 converged upon stable values more quickly with increasing class number. Overall, these results 

934 bolster the conclusion that discretely-estimated matrix models are no less representative of 

935 demographic patterns than are IPMs fit with CVRs and evaluated at midpoints, with IPMs of 

936 high (>80) classes and matrix models of quite moderate size (~10-20 classes) giving essentially 

937 identical results.

938 We also examined the dependence of sensitivity analyses of lambda to matrix elements 

939 on modeling approach, contrasting the results of a DVR-based model of 20 even size classes and 

940 a CVR model of 80 even classes, evaluated at midpoints. The contrasting models for each 

941 species showed very similar results (Figure 13). The elasticity values of matrix elements were 

942 strongly correlated (r = 0.95-0.97) with no evidence of systematic bias and there was a similarly 

943 close correspondence in sensitivity values (r = 0.94-0.99; Appendix S1: Figure S18).

944 Simulation results: sample size effects. One assumed advantage of CVRs that has often 

945 been advanced in the demographic literature is that they perform better when data are sparse 

946 (Easterling et al. 2000, Ellner and Rees 2006, Ramula et al. 2009, Zuidema et al. 2010, Merow et 

947 al. 2014), so we compared model outputs for 20 class CVR models (fit with median values) vs. 

948 20-class DVR models, each fit to 200 bootstrapped data sets across a range of sample sizes 

949 (Figure 14). Regardless of the modeling approach used, the variance in lambda estimates 

950 increased with smaller samples. However, to our surprise, there was little consistent advantage of 

951 the CVR approach with increasingly rarified data. Even when using sample sizes in the low 

952 hundreds, both discrete and continuous approaches to parameter estimation yielded similarly 
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953 variable predictions. This finding does not support the generality that continuous functions will 

954 better estimate vital rates and hence produce better model outputs with small sample sizes. This 

955 result likely reflects in part the model-selection process inherent to fitting continuous vital rate 

956 functions. With smaller sample sizes, different sets of data can yield support for alternative forms 

957 of the vital rate functions, such as linear vs. quadratic functions, thereby altering model 

958 predictions. In addition, outliers can exert effects on entire vital rate functions when using the 

959 CVR approach, again creating variance in predictions that appear to be equivalent in their effects 

960 to the randomness generated in the estimates coming from the DVR approach. While this result 

961 might change with even smaller sample sizes, our simulation results based on 300–400 

962 individual transitions already show so much variation that the effects of the sampling variance in 

963 the data overwhelm any advantage of one modeling approach over the other. We ran the same 

964 comparisons using 80 class CVR models (Appendix S1: Figure S19) and also used non-stratified 

965 bootstrapped data sets with proportional class boundaries (Appendix S1: Figure S20); in both 

966 cases, we find qualitatively similar results to those seen in the main simulations. In the future, it 

967 would be illuminating to estimate the relative contributions of different processes, such as model 

968 selection, outliers, and size distributions, to the precision of both DVR and CVR model 

969 predictions and how these vary with sample size for each approach.  

970 We also conducted a different test of sample size effects, focused on the effects of low 

971 sample sizes per class for DVR models. Here we are looking at the possibility that with higher 

972 class numbers, DVR models will be increasing unreliable, since they will have at least some 

973 classes with vital rates estimated from extremely small samples (down to n=1 in our 

974 simulations). Using relatively low total sample sizes (see Methods) we fit models with a range of 

975 class numbers and found surprisingly little evidence for an advantage of CVR over DVR models 

976 or of a disadvantage of DVR models with higher class numbers (Figure 15 and Appendix S1: 

977 Figures S21-25), even when multiple classes have extremely low sample sizes (e.g., N< 6; 

978 Appendix S1: Figures S21-25). At the lowest sample sizes, for guppies and gorgonians we do see 

979 that DVR models generated a bimodal distribution of lambdas, but the second, erroneous peak in 

980 estimates results from models that have one or more classes where individuals are immortal and 

981 cannot leave, resulting in lambda =1. While erroneous, this is a pathology that is easy to 

982 recognize and rectify when building a model for a particular species. The surprising lack of 

983 advantage for CVR models also occurs for damping ratio and life span estimates (Appendix S1: 
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984 Figures S21-25), and does so even though we created models in which minimum sample sizes 

985 per class spanned extremely low numbers. 

986 Simulation results: One more lesson. One lesson that we learned from constructing the 

987 models used in our simulations may not be apparent to many demographers, but can have large 

988 effects on model performance and especially the effects of varying class number: how the size 

989 distribution of new recruits is treated. For most species, including those in our focal data sets, 

990 there is a wide enough range of new recruit sizes, at least after their first year of life as a seedling 

991 or equivalent new recruit class, that they can grow into a meaningful range of sizes. While in 

992 IPM models, the size distribution of new recruits is typically quantified (92% of IPMs in our 

993 literature review; Data S1: Literature Review), in matrix models new recruits are often deposited 

994 into the smallest size class and then can proceed through the other size classes of a model. In the 

995 course of making our simulations, we realized that making this simple assumption guarantees an 

996 artificial dependency of model predictions on class number, because use of fewer, wider size 

997 classes essentially increases the size of new recruits, while narrower classes essentially shrink 

998 them. This problem is avoidable if, instead, new recruits are explicitly modeled as having 

999 probabilities of growing to a range of sizes. When testing effects of class number on model 

1000 outputs, attention to this potential artifact is important. 

1001

1002 DISCUSSION

1003 IPMs and traditional matrix models are often discussed as wholly distinct modeling 

1004 approaches, with IPMs representing a substantial improvement in demographic modeling by 

1005 dealing more realistically with the continuous ranges of state variables and vital rates seen for 

1006 many organisms. While an argument can be made that conceptually the two methods really are 

1007 distinct, both our literature review and demographic analyses, based on data for five diverse 

1008 organisms, challenge the view that they are entirely distinct in practice or that one is clearly 

1009 superior. Instead, we find broad overlap in the way IPMs and matrix models are fit and 

1010 interpreted. A quarter of size-based matrix models estimated at least one vital rate as a 

1011 continuous function of size, and although these models used substantially fewer classes on 

1012 average than IPMs, the range of class numbers was very wide and overlapping across the two 

1013 approaches. Further, our simulations showed no substantive differences in outputs of models 

1014 using discrete vs. continuous approaches to estimating vital rates. Rather, both approaches 
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1015 performed similarly well when sample sizes and class numbers were sufficient and similarly 

1016 poorly when data were limiting or too few classes were used to capture an organism’s life 

1017 history. Further, we found little advantage to using more than 10-20 classes even for extremely 

1018 slow-growing and long-lived organisms, suggesting that continuous demographic processes can 

1019 be well approximated by matrices of moderate dimension. This range of size classes is at the 

1020 high end for most size-based matrix models in the literature, but it is far lower than that used to 

1021 analyze virtually all IPMs. Although these two aspects of demographic modeling - matrix 

1022 dimension and discrete vs. continuous vital rate estimation - have received the most attention in 

1023 the literature, our simulations also highlight the equal or greater importance of other modeling 

1024 decisions, such as how classes are defined and continuous vital rate functions are discretized, as 

1025 well as the quality and quantity of the underlying demographic data. Together, these results 

1026 suggest that some model building decisions have been over-emphasized whereas data collection 

1027 methods and sample size effects have been under-emphasized in discussions of improving 

1028 demographic models and their predictions. 

1029 One of the principal critiques of traditional matrix models is that they use too few classes 

1030 to accurately represent what are inherently continuous demographic processes, and this idea has 

1031 been bolstered by analyses of IPMs that show that class numbers into the hundreds are often 

1032 necessary to stabilize model outputs. Our simulations lend partial support to this idea, by 

1033 showing that demographic models with too few classes do indeed produce biased outputs. 

1034 Interestingly, however, our models were able to accurately capture the demography of long-lived 

1035 species with sizes spanning up to 2.6 orders of magnitude with 10-20 classes – much less than 

1036 what is typically used by IPMs. These results suggest that traditional matrix models for size-

1037 based life-histories may indeed require more classes than are typically used, although many 

1038 models are built for species with smaller size ranges, more stage-based life histories, or shorter 

1039 life spans than most of our focal species. For such species, there are likely to be smaller 

1040 differences between the fates of most individuals and also less steep changes in vital rates across 

1041 the sizes of most individuals. In such cases, fewer classes may well be sufficient, as we see with 

1042 our guppy example. In addition, studies focused on particular species often make careful, 

1043 biologically-based decisions about class boundaries which seem likely to yield better results than 

1044 our more standardized but mindless class divisions (but see Ramula et al. 2020). Our results also 

1045 suggest that the perceived need for extremely high class numbers with IPMs may be driven by 
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1046 the inefficiency of the midpoint method for estimating growth, or some other pathology in the 

1047 way the models are being constructed, rather than a more fundamental need for high class 

1048 number to capture biological patterns. 

1049 The other aspect of model fitting that has been emphasized in discussions of demographic 

1050 modeling has been whether vital rates are estimated discretely for each class or by using the data 

1051 across all classes to fit continuous vital rate functions (CVRs). The main arguments for CVRs are 

1052 that they are more biologically realistic than discrete classes, are more accurate when data are 

1053 limiting, can allow easier incorporation and testing of demographic drivers, and can utilize 

1054 sophisticated statistical methods, such as mixed models or Bayesian approaches (Ramula et al. 

1055 2009, Merow et al. 2014b, Ehrlén et al. 2016, Elderd and Miller 2016). In our simulations, we 

1056 found no evidence for the first two arguments. There was no improvement when using CVRs for 

1057 a range of model outputs, including population growth, lifespan, damping ratio, or sensitivity and 

1058 elasticity patterns. In fact, we observed a general tendency in our simulations for CVR-based 

1059 model outputs to be more sensitive to other modeling decisions, such as whether classes are 

1060 equally spaced or proportional to sample sizes. We also saw no evidence that CVRs increase the 

1061 precision or accuracy of estimates as sample sizes decrease. This is in contrast to results found 

1062 by Ramula et al. (2009), which compared 100-class IPMs with 4-6 class matrix models. This 

1063 discrepancy may have been driven by the difference in class number rather than the method of 

1064 vital rate estimation. By separating these two components in our simulations, we find a large 

1065 effect of class number but little consistent effect of estimation method. Ramula et al. (2009) also 

1066 found a weak correlation between matrix dimension and sample size for 63 plant matrix models, 

1067 suggesting that matrix models with low sample sizes could also suffer from few classes. 

1068 However, we found no relationship between matrix dimension and sample size for size-based 

1069 matrix models in our literature review (Appendix S1: Fig. S2).   

1070 Our results lead us to conclude that neither the continuous nor discrete approaches to 

1071 estimating vital rates is inherently better. Instead, the choice of approach should depend on the 

1072 particular life history and analysis goals of a given study. Discrete vital rate estimation (DVR) is 

1073 arguably the most flexible approach if life history patterns are complex, because it is agnostic 

1074 about many aspects of vital rate patterns. For example, multiple state variables can be easily 

1075 combined into complex states representing combinations of size, age, or stage variables. DVR 

1076 can also easily accommodate sharp transitions or non-linearities in vital rates, cases where 
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1077 survival asymptotes at values less than 1, and cases that violate distributional assumptions about 

1078 state variables (e.g., normally distributed growth). Further, the explanatory power of different 

1079 model structures can be tested statistically to infer the number and placement of class divisions, 

1080 and there is some evidence that this approach outperforms model structures informed by expert 

1081 opinion alone (Ramula et al. 2020). Alternatively, there are clear advantages of the statistical 

1082 framework of CVRs. By modeling vital rates in a regression-based framework, CVRs can easily 

1083 incorporate the effects of covariates such as climate, can incorporate or correct for site or year 

1084 effects as random variables, and can account for individual effects using random effects to 

1085 account for repeated measures. CVRs can also provide a clear conceptual framework for 

1086 hypothesis testing and model selection, and also allow investigation of sensitivities with respect 

1087 to underlying functional forms or model parameters. However, it is worth noting that various 

1088 methods, including multi-state mark recapture models, can also allow model selection to be 

1089 applied to DVR estimation. Thus, CVR and DVR-based models may each be most appropriate 

1090 for different datasets and analysis goals. 

1091 One surprising result to emerge from this work is the importance of other aspects of 

1092 model fitting that have received far less attention in the demographic literature. For example, 

1093 traditional matrix models often define classes based in part on sample sizes, but our results 

1094 suggest that dividing classes evenly – on the transformed or untransformed scale for which size 

1095 best relates to vital rates, depending on species -- generally gives more accurate results. We also 

1096 identified several ways to improve methods for discretizing continuous vital rate functions. First, 

1097 we show that the mesh point method can badly misestimate growth probabilities when using 

1098 CVR functions, but that this is solved by using the CDF difference method. Second, our results 

1099 suggest that vital rates are better characterized by using the median rather than the midpoint of a 

1100 class, as long as the distribution of sampled individuals represents the size distribution in the 

1101 population. We expect that this distinction is behind the slower convergence of the Vulpicida 

1102 models with increasing class numbers. This is the only data set we used where sampling was not 

1103 roughly comprehensive, but stratified over sizes, making the distribution of sampled individuals 

1104 a poor characterization of the population-wide size distribution. 

1105 Finally, the most overwhelming effect on model accuracy in our simulations was the 

1106 sample size of the underlying demographic data, which is an indicator of the sampling precision 

1107 of vital rates and their relationships with the state variable used. We found low precision in 
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1108 model outputs with sample sizes less than several hundred regardless of modeling approach, and, 

1109 in these cases, CVRs did not solve the problems caused by low sample sizes. The lowest sample 

1110 sizes we used (305–405) were typical of many published demographic studies, and considerably 

1111 larger than used in some studies (Appendix S1: Figures S2, S26). However, our simulations 

1112 pooled all demographic data to estimate a single transition matrix. This means that spatial and 

1113 temporal variation in individual fates will be at least somewhat larger in our samples than would 

1114 be expected in samples of a single population over a single transition, potentially inflating the 

1115 variance in lambda estimates we see with small samples. Furthermore, in cases where data are 

1116 collected across multiple time periods or locations and sample sizes are limiting, CVRs may 

1117 enable a researcher to improve accuracy by fitting vital rate functions that borrow strength by 

1118 including all the data while appropriately modeling its structure. Statistical models can also be 

1119 used to estimate DVRs while accounting for random effects of site or time period (Altwegg et al. 

1120 2007, Morris et al. 2011, Ramula et al. 2020), and a mixed strategy of fitting CVRs with class-

1121 specific random effects could also be useful in some cases. 

1122 There are several other important aspects of demographic model construction that we do 

1123 not consider here, but that have recently been explored and shown to be of real importance. 

1124 Perhaps most critically, we do not address how the choice of state variable can influence model 

1125 results. As Louthan and Doak (2018) show, measured state variables that are not closely 

1126 correlated with an individual’s “true state” can yield misleading model results due to errors in 

1127 characterizing state. For example, perennial plant size is often characterized by measuring leaf or 

1128 stem size, whereas demographic rates may in fact be driven more by below-ground energy 

1129 stores. A second concern that we do not address is the distributional assumptions that are often 

1130 made when modeling size transitions with CVRs. Most IPMs assume that growth is normally 

1131 distributed, but this can bias model outputs if growth is asymmetric such as when growth or 

1132 shrinkage is more likely (Peterson et al. 2019). In general, choices regarding the form of vital 

1133 rate functions are likely to be just as important for inference as the issues investigated here. 

1134 Several authors have repeatedly emphasized that IPM practitioners should carefully evaluate the 

1135 goodness of model fits for vital rate functions and their influence on IPM outputs (Easterling et 

1136 al. 2000, Rees et al. 2014, Ellner et al. 2016), and we echo those recommendations here. 

1137 Taken together, our results suggest that IPMs and matrix models are overly dichotomized 

1138 in the literature. We suggest that this distinction is neither useful nor representative of the range 
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1139 of modeling decisions that underlie every structured demographic model. Many models use some 

1140 combination of continuous and discrete vital rate estimation (e.g., when some individuals are 

1141 described by continuous state variables and others [juveniles, seeds, etc.] by stage). Although the 

1142 methods used to build these matrices will often be very similar, the language and notation used 

1143 to describe models are often completely different based on whether authors decide to refer to a 

1144 model as an IPM or matrix model. In our experience, the terminology and integral notation used 

1145 to describe IPMs can be intimidating to many new students and to non-specialist consumers of 

1146 demographic analyses, such as conservation managers, when in fact the vital rate models and 

1147 discretization methods would be familiar if described differently. In addition, much of the 

1148 language used to present IPMs obscures the fact that the continuous vital rate functions are 

1149 discretized into projection matrices prior to analysis, making the actual model outputs or their 

1150 correspondence to matrix models difficult to understand. As we note above, many IPM studies in 

1151 our literature review do not report the discretization methods used at all. 

1152 We suggest that it is more informative to refer to both projection matrix models and IPMs 

1153 as Structured Population Models more generally, in part to emphasize the need to break these 

1154 labels down into the important details of vital rate estimation, the number of size classes, and the 

1155 methods used to discretize CVRs. In particular, we emphasize that statements suggesting that 

1156 IPMs avoid discretization, are more biologically realistic, or perform better at small sample sizes, 

1157 are not supported by our findings.   

1158

1159 SPECIFIC RECOMMENDATIONS

1160 Below, we highlight several of the most important recommendations for constructing 

1161 demographic models that have emerged from this work. 

1162 1. When using an inherently continuous state variable, test the sensitivity of results to class 

1163 number (particularly when using few classes). 

1164 2. When using continuous vital rate functions (CVRs), report methods for discretization by 

1165 including class number and integration method. 

1166 3. When using CVRs to model size transitions, use the CDF difference method or explicitly 

1167 show that the use of the standard mesh point method is accurate. 

1168 4. Especially when using smaller class numbers, use population size distributions to base 

1169 vital rate estimates on representative (mean or median) sizes.
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1170 5. Both small sample sizes (indicative of low precision in vital rate estimates) or very few 

1171 classes can result in biased or imprecise model outputs, and this should be carefully 

1172 considered when interpreting or using published models (e.g., meta-analysis, 

1173 COMPADRE or COMADRE databases), especially as many matrix models have been 

1174 built with fewer classes than what we would recommend. A caveat to this conclusion is 

1175 that for short-lived species or species with a limited range of sizes, fewer classes may be 

1176 sufficient. 

1177

1178 SUMMARY

1179 In summary, we do not find support for several common generalities and assumptions 

1180 about demographic modeling methods, and we also expose some new considerations for the 

1181 construction of accurate structured population models. However, our results are generally 

1182 positive: widely repeated but untested assumptions about the dependence of demographic results 

1183 on modeling approaches were largely unsupported, meaning that we have a far wider range of 

1184 useful demographic studies to learn from than would otherwise be the case. Looking forward, 

1185 this result also implies that the structure and parameterization of demographic models should 

1186 always be guided by careful consideration of the species and data being modeled and that, if this 

1187 is done, different approaches will generally reach the same ecological conclusions. With 

1188 sufficient sample sizes and enough classes to accurately represent the key life-history variation 

1189 of a given species, a range of model-fitting approaches will converge on the same answer. 

1190 Structured demographic models, one of the backbone methods of population biology, are 

1191 comprised of a robust set of methods that can be usefully added to, but do not require 

1192 fundamental re-tooling. 
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1475 TABLES

1476 Table 1: Summary of studies included in the literature review. 

Deterministic Stochastic

Number 

models

Number 

species

prop.  

Matrix

prop. 

IPM

prop. 

Matrix

prop. 

IPM

Annual forbs 24 24 0.75 0.0 0.25 0

Perennial forbs 314 236 0.46 0.18 0.27 0.08

Woody plants 255 222 0.45 0.28 0.19 .08

Algae, lichen, & mosses 13 12 0.31 0 0.69 0

Other non-woody plants* 92 64 0.39 0.40 0.12 0.09

Total autotrophs 698 558 0.46 0.24 0.22 0.08

Amphibians 20 19 0.55 0.15 0.30 0.0

Reptiles 29 24 0.69 0.03 0.24 0.03

Fishes 63 45 0.62 0.22 0.13 0.03

Birds 134 108 0.68 <0.01 0.31 <0.01

Mammals 240 175 0.78 0.03 0.18 0.01

Total vertebrates 486 371 0.71 0.06 0.22 0.01

Invertebrates 87 72 0.69 0.10 0.15 0.06

Total 1271 1001 0.57 0.16 0.22 0.05

1477 * Including ferns, graminoids, and Cactaceae

1478 FIGURE LEGENDS

1479 Figure 1: Diagram of the key steps and considerations in fitting either a matrix model or Integral 

1480 Projection Model (IPM). Both approaches begin and end with the same steps (yellow boxes) but 

1481 may differ in their methods of parameter estimation (blue boxes) and resulting matrix 

1482 dimensions (green boxes).
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1484 Figure 2. Comparison of methods used to calculate probabilities of growing from a given starting 

1485 size into a given size bin (x). A) The probability density of size at t+1 can be discretized into 

1486 classes (defined by black lines) with midpoint sizes (circles). B) The probability of growing into 

1487 a particular class is most often approximated by the midpoint method, by evaluating the 

1488 probability density at the midpoint and multiplying by the class width (h). C) Alternatively, the 

1489 probability of growing into a class is given exactly by the difference in the cumulative 

1490 probability function (CDF) values at the bin edges. The approximation in B is accurate with 

1491 many narrow bins relative to the variance in growth (D), but can be poor if classes are wide 

1492 relative to the variance in growth (E). The actual growth probabilities based on differences in the 

1493 cumulative density function or CDF (red dots) sum to 1, whereas the approximated growth 

1494 probabilities based on point estimates from the PDF (blue dots) may be less than or greater than 

1495 1.    

1496

1497 Figure 3: Changes in published demographic models over time. Circles are the proportion of A) 

1498 models that are described as IPMs vs. matrix models, and B) matrix models that use continuous 

1499 vital rate (CVR) estimation published between 2002 and 2018, with fitted relationships over 

1500 time. Proportions are shown for all models (open circles, dashed lines) or only size-based models 

1501 (filled circles, solid lines). Circle size is proportional to the total number of models. 

1502

1503 Figure 4. Histograms of the number of classes used in demographic models published between 

1504 2002 and 2018. Histograms are shown for A) all models or B) models with size as the state 

1505 variable, divided between matrix models (solid black lines) and Integral Projection Models 

1506 (IPMs; dashed red lines). Histogram values are shown as points connected by a line. 

1507

1508 Figure 5: The empirical work flow for demographic models published between 2002 and 2018. 

1509 Arrow and circle widths indicate the number of corresponding models. Note that all Integral 

1510 Projection Model (IPM) parameter estimation is classified as continuous. 

1511

1512 Figure 6. Size distributions of individuals included the example data sets used for demographic 

1513 simulations, shown on the scales used to construct the demographic models. Note that for all 

1514 species other than Borderea, before using the data in simulations we set a maximum size that 
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1515 eliminated long, very sparse tails of larger sizes, as these created problems for the automated 

1516 binning of data used in our simulations.

1517

1518 Figure 7. An illustration of the problems with standard mesh point growth estimation. A) A 

1519 distribution of ending size values, with mean 50 and SD 0.5, on a possible size range between 0 

1520 and 100 and with probabilities shown for classes of width 1. B) The summed probability of 

1521 growing to any size, as estimated by the standard mesh point method. Results are shown for bin 

1522 numbers between 10 and 100. Each line shows results for a different mean ending size between 

1523 49 and 51. Any reasonable way to estimate growth rates should yield a summed probability of 

1524 exactly one. Unless high mesh point numbers are used, the mesh point method yields values 

1525 much larger or smaller than one most of the time. With a narrower ending size distribution, far 

1526 higher bin numbers are needed to yield reasonable results. 

1527

1528 Figure 8. Even at high class numbers, the mesh point approach yields inaccurate growth rates for 

1529 some starting size classes. Results show the summed growth probabilities for each starting size 

1530 for models built with 50 (green) or 100 (blue) classes for each of our focal species. For four of 

1531 the five species, the mesh point method gives poor total growth estimates for some large or small 

1532 size classes, even with 100 classes. 

1533

1534 Figure 9.  Estimates of lambda derived from continuous vital rate (CVR) models built with either 

1535 the standard mesh point approach to estimate growth or using the cumulative distribution 

1536 function (CDF) difference approach, shown for each species. The mesh point approach yields 

1537 much worse estimates of lambda at low to moderate class numbers. 

1538

1539 Figure 10. Lambda values with varying class number and modeling approaches for each focal 

1540 species. Models are built using class divisions that evenly divide the size range and have a 

1541 constant width (left) or that proportionally divide the size range to include similar sample sizes 

1542 within each class (right). Within each panel, data are shown for models built with discrete vital 

1543 rate estimation (DVR) or with continuous vital rate function using either midpoint (CVR – 

1544 midpoint) or median (CVR – median) size estimates of class-specific vital rates. Note the 

1545 different range of class numbers on the x-axis for guppies.
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1546

1547 Figure 11. Life span estimates for four species, with varying class number and modeling 

1548 approaches. Models are built using class divisions that evenly divide the size range and have a 

1549 constant width (left) or that proportionally divide the size range to include similar sample sizes 

1550 within each class (right). Within each panel, data are shown for models built with discrete vital 

1551 rate estimation (DVR) or with continuous vital rate function using either midpoint (CVR – 

1552 midpoint) or median (CVR – median) size estimates of class-specific vital rates.

1553

1554 Figure 12. Damping ratios with varying class number and modeling decisions. Models are built 

1555 using class divisions that evenly divide the size range and have a constant width (left) or that 

1556 proportionally divide the size range to include similar sample sizes within each class (right). 

1557 Within each panel, data are shown for models built with discrete vital rate estimation (DVR) or 

1558 with continuous vital rate function using either midpoint (CVR – midpoint) or median (CVR – 

1559 median) size estimates of class-specific vital rates.

1560

1561 Figure 13. Close correspondence between elasticity values generated by a 20 class DVR and an 

1562 80 class continuous vital rate (CVR) model for each species. To condense values from the larger 

1563 model, we summed sets of elasticities in each column of the matrix that corresponded to a single, 

1564 broader category in the smaller model, and then took the average of these values across columns 

1565 corresponding to the categories in the smaller model. We only compare elasticities for non-zero 

1566 matrix elements. Pearson correlation coefficients are shown for each relationship, and lines give 

1567 the 1:1 slope. Appendix S1: Figure S18 shows a comparable figure for sensitivity values. 

1568

1569 Figure 14. Distribution of lambda estimates with declining sample sizes. For each of 200 random 

1570 draws of data with decreasing sample sizes, we fit a 20 bin continuous vital rate (CVR) based 

1571 model (gray) or a 20 bin DVR-based model (black). CVR models were fit using median bin 

1572 characterization and all models used even size classes (see Methods for more description of the 

1573 size class boundaries). The horizontal line running through each distribution shows the mean. 

1574 See Figure S19 for a comparison of the 20 class DVR models with 80 class CVR models. 
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1576 Figure 15. Distribution of lambda estimates with increasing size classes. For each of 200 random 

1577 draws of data with a single decreased sample size, we fit a 20 class continuous vital rate (CVR) 

1578 based model (gray) or a 20 class DVR-based model (black). CVR models were fit using median 

1579 class characterization and all models used even size classes. The horizontal line running through 

1580 each distribution shows the mean. See Figures S21-25  for comparable results for damping ratios 

1581 and life spans and for summaries of size-class specific sample sizes.
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