

1
2 DR. DANIEL F. DOAK (Orcid ID : 0000-0001-8980-3392)
3 DR. ALLISON MARIE LOUTHAN (Orcid ID : 0000-0002-2735-6539)
4 DR. NATHALIE I. CHARDON (Orcid ID : 0000-0001-9120-4778)
5 DR. ROBERT K. SHRIVER (Orcid ID : 0000-0002-4590-4834)
6
7
8 Article type : Article
9
10

11 **Journal:** Ecological Monographs
12 **Manuscript type:** Article
13
14 **Running Head:** Comparing demographic modeling methods
15
16 **Title:** A critical comparison of integral projection and matrix projection models for
17 demographic analysis
18
19 **List of Authors:**
20 **Daniel F Doak***, Environmental Studies Program, University of Colorado, Boulder.
21 **Ellen Waddle**, Environmental Studies Program and Department of Ecology and Evolutionary
22 Biology, University of Colorado, Boulder
23 **Ryan E. Langendorf**, Cooperative Institute for Research in Environmental Sciences and
24 Environmental Studies Program, University of Colorado, Boulder
25 **Allison M. Louthan**, Division of Biology, Kansas State University, Manhattan KS and Biology
26 Department, Duke University, Durham NC
This is the author manuscript accepted for publication and has undergone full peer review but has
not been through the copyediting, typesetting, pagination and proofreading process, which may
lead to differences between this version and the [Version of Record](#). Please cite this article as [doi:
10.1002/ECM.1447](https://doi.org/10.1002/ECM.1447)

27 **Nathalie Isabelle Chardon**, WSL Institute for Snow and Avalanche Research SLF,
28 Flüelastrasse 11, Davos Dorf, Switzerland
29 **Reilly R. Dibner**, Department of Zoology and Physiology, University of Wyoming, Laramie,
30 Wyoming;
31 **Douglas A. Keinath**, Wyoming Ecological Services Field Office, United States Fish and
32 Wildlife Service, 5353 Yellowstone Road, Suite 308A, Cheyenne, Wyoming 82009; Department
33 of Zoology and Physiology, University of Wyoming, Laramie, Wyoming
34 **Elizabeth Lombardi**, Department of Ecology and Evolutionary Biology, Cornell University,
35 Ithaca, NY
36 **Christopher Steenbock**, Department of Ecology and Evolutionary Biology, University of
37 Colorado, Boulder
38 **Robert K. Shriver**, Department of Natural Resources and Environmental Science, University of
39 Nevada, Reno
40 **Cristina Linares**, Department of Evolutionary Biology, Ecology and Environmental Sciences,
41 Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Av. Diagonal 643,
42 08028 Barcelona, Spain
43 **Maria Begoña Garcia**, Pyrenean Institute of Ecology (CSIC). Avda. Montañana 1005
44 50059 Zaragoza (Spain) 50059 Zaragoza (Spain) Department of Evolutionary Biology, Ecology
45 **W. Chris Funk**, Department of Biology, Graduate Degree Program in Ecology, Colorado State
46 University, Fort Collins, CO
47 **Sarah W. Fitzpatrick**, W.K. Kellogg Biological Station, Michigan State University, Hickory
48 Corners, MI
49 **William F. Morris**, Department of Biology, Duke University, Durham, NC
50 **Megan L. Peterson**, Plant Biology Department, University of Georgia, Athens, GA
51
52 *Corresponding author: daniel.doak@colorado.edu
53
54 **ABSTRACT**

55 Structured demographic models are among the most common and useful tools in
56 population biology. However, the introduction of integral projection models (IPMs) has caused a
57 profound shift in the way many demographic models are conceptualized. Some researchers have

58 argued that IPMs, by explicitly representing demographic processes as continuous functions of
59 state variables such as size, are more statistically efficient, biologically realistic, and accurate
60 than classic matrix projection models, calling into question the usefulness of the many studies
61 based on matrix models. Here, we evaluate how IPMs and matrix models differ, as well as the
62 extent to which these differences matter for estimation of key model outputs, including
63 population growth rates, sensitivity patterns, and life spans. First, we detail the steps in
64 constructing and using each type of model. Second, we present a review of published
65 demographic models, concentrating on size-based studies, that shows significant overlap in the
66 way IPMs and matrix models are constructed and analyzed. Third, to assess the impact of
67 various modeling decisions on demographic predictions, we ran a series of simulations based on
68 size-based demographic data sets for five biologically diverse species. We found little evidence
69 that discrete vital rate estimation is less accurate than continuous functions across a wide range
70 of sample sizes or size classes (equivalently bin numbers or mesh points). Most model outputs
71 quickly converged with modest class numbers (≥ 10), regardless of most other modeling
72 decisions. Another surprising result was that the most commonly used method to discretize
73 growth rates for IPM analyses can introduce substantial error into model outputs. Finally, we
74 show that empirical sample sizes generally matter more than modeling approach for the accuracy
75 of demographic outputs. Based on these results, we provide specific recommendations to those
76 constructing and evaluating structured population models. Both our literature review and
77 simulations question the treatment of IPMs as a clearly distinct modeling approach or one that is
78 inherently more accurate than classic matrix models. Importantly, this suggests that matrix
79 models, representing the vast majority of past demographic analyses available for comparative
80 and conservation work, continue to be useful and important sources of demographic information.
81

82 **Key Words:** Integral projection model, IPM, matrix projection model, demography, structured
83 population, lambda, elasticity, life span

84 85 INTRODUCTION

86 Demographic models have yielded profound insights in many areas of ecology and
87 evolution, including life history theory, population dynamics, resource management, and
88 conservation biology. Studies using demographic approaches include some of the most

89 influential papers in ecology (e.g., Cole 1954, Gillespie 1977, Shaffer 1981, Lande 1982, Pulliam
90 1988). Primary reasons for this influence are the ability of demographic models to link short term
91 individual performance to both lifetime fitness and population growth. In addition, these models
92 facilitate broad comparisons that can highlight trade-offs and limitations that structure diverse
93 life history patterns (Stearns 1992). Standardized metrics from demographic models have spurred
94 the development of general classification frameworks, such as the fast-slow continuum or the
95 survival-growth-fecundity triangle (Silvertown et al. 1993, Franco and Silvertown 1996, Sæther
96 and Bakke 2000, Gamelon et al. 2014, Salguero-Gómez et al. 2016b). Demographic modeling
97 has also transformed approaches to conservation by allowing more quantitative assessments of
98 population risk and potential management strategies (Schemske et al. 1994, Carroll et al. 1996,
99 Biek et al. 2002, Morris and Doak 2002, Jongejans et al. 2008, Doak et al. 2015). Some of the
100 most influential management plans for threatened, invasive, or economically important species
101 have used demographic models to target specific life-history stages (Crouse et al. 1987, McEvoy
102 and Coombs 1999) or to quantify the risk of extinction (Shaffer 1983, Lande 1988). Thus,
103 demographic models are a cornerstone of both population biology and conservation management
104 (Shea 1998, Caswell 2001, Morris and Doak 2002).

105 While demographic analyses need not involve distinctions between different types of
106 individuals, the majority of such studies, even of annual species, fall within the realm of
107 “structured” population models. These models are structured in the sense that individuals are
108 classified by one or more “state variables,” traits that are used to distinguish between individuals
109 that are believed to have different demographic fates. State variables typically include age or
110 size, but can also include many other predictors of fate, including life history stage, sex,
111 microhabitat, or even symbiotic relationships or pathogen load (e.g., Palmer et al. 2010, Wilber
112 et al. 2017).

113 While the underlying approach of demographic modeling has remained largely the same
114 since the work of Leslie (1945) and Lefkovitch (1965), over the last two decades there has been a
115 slow revolution in how many demographic models are conceptualized, symbolically presented,
116 fit, and, to a lesser extent, interpreted. This is particularly true when species are described by one
117 or more continuously varying state variables, many of which are descriptors of individual size. In
118 these cases, integral projection models (IPMs), which describe populations according to a
119 continuous state variable (Easterling et al. 2000), have begun to replace classic matrix models

120 that begin by explicitly dividing populations into discrete categories corresponding to ranges of
121 state variable values (Caswell 2001). The acknowledgement and understanding that discretizing
122 continuous measures of size or other descriptors of state is a simplifying assumption of
123 convenience goes back to the first uses of size-based demography in ecology (Vandermeer 1978,
124 Moloney 1986), but the IPM literature has revived discussion of this simplification and
125 suggested it is of paramount importance. The development and widespread adoption of IPMs has
126 been motivated in part by arguments that a continuous approach is more biologically realistic and
127 statistically efficient, particularly when applied to limited data sets (Easterling et al. 2000, Ellner
128 and Rees 2006, Zuidema et al. 2010, Ozgul et al. 2012). Correspondingly, matrix models have
129 been increasingly criticized as artificial, statistically inefficient, and prone to bias (Ramula et al.
130 2009, Salguero-Gómez and Plotkin 2010, Picard and Liang 2014).

131 In the last few years, several reviews have emphasized the superiority of IPMs (Merow et
132 al. 2014, Rees et al. 2014); these claims have not, however, been critically or thoroughly
133 evaluated. Previous tests of the relative accuracy of IPMs have been limited to comparisons that
134 have ignored the multiple aspects of model estimation and development that can be used to
135 formulate demographic models, and have also compared IPMs only with matrix models built
136 with extremely few classes (Ramula et al. 2009). Further, most claims for the superior
137 representation of the biology of species, due to the avoidance of artificial stage classes, ignore
138 that in their actual implementation virtually all IPMs are analyzed as moderate- to high-
139 dimension matrix models (Ellner and Rees 2006, Merow et al. 2014a). This means that their
140 structure differs more quantitatively than qualitatively from traditional matrix models. Finally,
141 there are potentially important biological simplifications inherent in the IPM approach that have
142 not been carefully examined in the ecological literature, in particular the limitations imposed by
143 representing vital rates as fairly simple continuous functions of the state variable.

144 An important consequence of the discussion surrounding the accuracy of IPMs and
145 classic matrix models is that past studies using older methods could be perceived as
146 providing little to no useful demographic information. Traditionally fit matrix models represent
147 the vast majority of demographic data available for comparative studies (e.g., those in the
148 COMPADRE and COMADRE databases; Salguero-Gómez et al. 2015, Salguero-Gómez et al.
149 2016a) or with which to assess the viability and management of species of conservation concern.
150 Indeed, even as the accuracy of matrix models has been questioned, many synthetic reviews that

151 reanalyze matrix models have recently appeared in the literature (Katz 2016, Csergo et al. 2017,
152 Yokomizo et al. 2017). Thus, it is important to more carefully evaluate whether and when matrix
153 models accurately capture population dynamics, and under what circumstances IPMs may do so
154 with less bias and more precision. Finally, some of us (Doak, Morris, Garcia *pers. obs.*) have
155 seen an increasing tendency of reviewers and editors to dichotomize these two approaches,
156 considering matrix models as out of fashion and failing to recognize the considerable grey zone
157 between the two model types as well as some of the subtler advantages and disadvantages of
158 each.

159 Our goals in this paper are to i) explain the ways that matrix models and IPMs do and do
160 not differ in their implementation, ii) articulate the potential pitfalls and advantages of each
161 approach, and iii) use simulations based on real data sets to critically assess which model fitting
162 decisions do and do not matter for common demographic outputs. To accomplish these ends, we
163 start with an outline of the main steps in fitting matrix models and IPMs, highlighting the
164 similarities and differences between these two approaches. Second, we review the demographic
165 literature to document how population biologists fit these different models in practice, with the
166 goal of evaluating how distinct they really are. Third, we present results from an extensive set of
167 simulations based on five real demographic data sets. We use these simulations to compare the
168 relative accuracy of matrix models and IPMs across a range of sample sizes, model-fitting
169 strategies, and matrix dimensions that reflect the diverse approaches used by biologists. We
170 conclude with a discussion of the merits and potential limitations of different demographic
171 modeling strategies and recommendations for future demographic work.

172

173 TWO APPROACHES TO FITTING DEMOGRAPHIC MODELS

174 Both matrix models and IPMs seek to represent demographic heterogeneity within a
175 population due to variation in individual state variables, such as age or size, that influence
176 performance. Matrix models have traditionally been approached with the assumption that
177 individuals can reasonably be divided into classes (also called categories, stages, or bins; we use
178 “classes” in the subsequent text). These classes are based on subdivisions of the state variable,
179 even when there is clear understanding that the underlying state variable is continuous
180 (Hartshorn 1975, Vandermeer 1978, Moloney 1986). In contrast, IPMs explicitly seek to treat
181 state variables as continuous.

182 In this section, we describe the four steps in formulating either kind of model: i)
183 characterizing individual states, ii) estimating fates, iii) assembling these estimates of fates into a
184 full demographic model, and iv) generating outputs from these models to assess individual
185 fitness or population behavior. In Figure 1, we diagram these basic model-fitting procedures for
186 “classic” matrix models and IPMs, illustrating the steps they share and those that differ between
187 these approaches. We also use this diagram and discussion to highlight differences in the
188 terminology used in both modeling strategies, as well as the similarities that can be disguised by
189 these notational differences. Following sections on the four steps in demographic analysis, we
190 discuss in more detail some of the features that most separate IPM and matrix models, and also
191 some of the less obvious issues with using either approach.

192 ***Characterizing individual states***

193 Both methods require the same basic demographic data: individual-level survival,
194 growth, and reproduction rates, recruitment data, and one or more state variables that capture
195 heterogeneity in these rates; these are called demographic or vital rates (Caswell 2001, Morris
196 and Doak 2002, Franco and Silvertown 2004; note that some authors use vital rates to refer only
197 to survival and reproduction). State variables may be chosen *a priori* based on feasibility or
198 natural history, or selected from multiple variables by comparing regressions of vital rates on
199 alternative state variables to find the ones with the highest predictive power (Morris and Doak
200 2002). In a matrix model, a state variable is either already discrete (e.g., age classes for a sharply
201 seasonally-breeding species or the discrete life-history stages of many arthropods) or is divided
202 into discrete categories of a continuous state variable (e.g., size classes). In the latter case, there
203 are several algorithms for choosing the number and boundaries of classes (Vandermeer 1978,
204 Moloney 1986), although in practice the structure of most matrix models has been decided based
205 on natural history and data exploration (e.g., looking for sharp changes in vital rates; Caswell
206 2001, Ramula et al. 2020). In an IPM, the primary state variable is regarded as continuous,
207 although additional discrete state variables such as age, sex, seedling state, dormancy state,
208 breeding status, or others can also be included (Ellner and Rees 2006, Rees et al. 2006, Williams
209 2009, Jacquemyn et al. 2010). We note that age is commonly treated both as continuous and
210 discrete in demographic models. This depends on data availability and whether reproduction
211 occurs during well-defined time periods, generating discrete cohorts (i.e., birth-pulse), or
212 offspring are produced more continuously throughout the year. However, state variables that

213 reflect some aspect of size are most often used in IPMs (Figure 5) and can give rise to the largest
214 differences in IPM and matrix model treatments, so we concentrate on these throughout the rest
215 of the paper.

216 ***Characterizing individual fates***

217 Both matrix models and IPMs use state variables to capture variation in vital rates – the
218 fates of individuals, based on their state. While there are many ways to make such estimates, all
219 fall into two general approaches. The first is used in the construction of many matrix models,
220 where a separate estimate of each vital rate is required for each discrete class. These estimates
221 come from separately analyzing the subset of data falling within that class to calculate, for
222 example, mean survival or mean reproductive output. In other words, the vital rate for a given
223 class is estimated independently of the rates for other classes. This includes approaches that take
224 the observed transition frequencies for a given class as well as methods that fit statistical models
225 that treat class as a categorical variable (e.g., some mark-recapture analyses). The central
226 problem facing parameterization under this strategy is that more, narrower classes reduce the
227 amount of data available for estimating each vital rate, whereas fewer, broader classes pool
228 together individuals that may have very different fates. This trade-off has long been recognized
229 (Vandermeer 1978, Moloney 1986, Ramula and Lehtilä 2005), and can mean that multiple
230 iterations are needed to find a model structure that balances sampling and estimation error.

231 The second approach to estimating fates is used in the construction of some matrix
232 models based on continuous state variables, as well as all IPMs. In this approach, demographers
233 use continuous regression models of vital rates, fit to the entire data set, to estimate stage-
234 dependent vital rate functions. Researchers generally use established functional forms for each
235 vital rate: generalized linear models with binomial errors are often used for vital rates that
236 inherently represent probabilities (i.e. survival, dormancy, or flowering) while those with
237 Poisson or negative binomial errors have frequently been used for offspring numbers; general
238 linear models have typically been used for growth rates. In some cases, splines or generalized
239 additive models have been used to represent more complex relationships between vital rates and
240 state variables (Dahlgren et al. 2011). Functions may be chosen *a priori*, or model selection
241 methods, such as AIC, may be used to select from among several candidate models (e.g., linear
242 vs. quadratic functions of state). One key difference between this strategy and the direct use of
243 discretized data for vital rate estimation is the elegant way that size changes are treated

244 (Easterling et al. 2000). First, a model is chosen to characterize the mean size at the end of a time
245 interval, given a starting size. Next, the squared residuals from this relationship are predicted in a
246 second model and then used to predict the variance in ending sizes (although both the mean and
247 variance can be fit simultaneously as well; Ellner and Rees 2006, Ellner et al. 2016).

248 *Assembling a projection model*

249 When building matrix models, the matrix elements are constructed from the best vital rate
250 values for each class, either using the discrete vital rate estimates or an estimate for each size
251 class taken from a continuous vital rate function (Batista et al. 1998, Morris and Doak 2002,
252 Gross et al. 2005). This is straightforward if the vital rate estimates are made discretely for each
253 class. If continuous functions have been estimated, different rules can be used to estimate the
254 average value of a vital rate that is applied to a size class. Most commonly, the vital rate estimate
255 corresponding to the midpoint size in the class is used, but other approaches, such as the vital
256 rate of the mean or median size of individuals falling within a class, can also be employed
257 (Morris and Doak 2002). In either case, the growth, survival, and reproductive rates estimated for
258 each class are combined to form the elements of the matrix, a_{ij} , which represent the average
259 number of individuals in class i at time $t+1$ that result from an individual of class j at time t .

260 In IPMs, most vital rates are estimated by fitting continuous functions of one or more
261 state variables. When building an IPM, these fitted functions are then combined into density
262 kernels. These are usually a survival/growth kernel that describes the distribution of an
263 individual's state in the next time step, given survival and growth, and a reproduction kernel that
264 describes the number and state distribution of an individual's offspring. These kernels are then
265 combined into an overall kernel that projects the number and distribution of individuals' states
266 across a time step. In this kernel, k_{ij} is identical in interpretation to the matrix element a_{ij} , except
267 that the i and j states are assumed to apply to size classes for the matrix model and to point
268 values of the state variable for IPMs. Proponents of IPMs emphasize that this regression-based
269 approach avoids artificial binning together of individuals with differing states and, by including
270 all individuals in the model fitting step, allows more efficient use of scarce data (Easterling et al.
271 2000, Ellner and Rees 2006, Ramula et al. 2009, Zuidema et al. 2010, Merow et al. 2014b).

272 Beyond these common ways of building either type of model, several other complexities
273 and complications can arise. Most commonly, additional state variables (e.g., sex, age class,
274 widow status; Miller and Inouye 2011, Bakker et al. 2018) or other covariates (e.g., climate,

275 soil chemistry; Dahlgren and Ehrlén 2009, Doak and Morris 2010, Hunter et al. 2010, Diez et al.
276 2014, Merow et al. 2014b) may have important effects on individual fates and can be included in
277 either discrete or continuous approaches to vital rate estimation (e.g., through additional or
278 combined classes, or by inclusion in continuous vital rate functions). In addition, both matrix
279 models and IPMs can be either deterministic or stochastic, including the influence of
280 demographic and environmental stochasticity on vital rates to estimate effects on fitness, growth
281 rates, or extinction risk. There are also increasingly sophisticated methods to incorporate model
282 and parameter uncertainty into the predictions of these models, which is an especially important
283 topic when models are being used to address applied questions (Bakker et al. 2009, Elderd and
284 Miller 2016). Finally, it is worth noting that there are many other subtle and not-so-subtle
285 decisions that must be made when formulating either a matrix model or an IPM (detailed in
286 Caswell 2001, Morris and Doak 2002, and Ellner et al. 2016), and numerous mistakes are
287 commonly made in model construction. For example, a recent review by Kendall et al. (2019)
288 found that a substantial fraction of matrix models constructed for animals contained at least one
289 common error in model structure. Among the most common of these mistakes are failing to
290 include survival in reproductive rates, introducing incorrect delays into the life history, and
291 incorrectly calculating transition rates from stages with known duration (Kendall et al 2019).

292 *Analysis of Demographic Models*

293 Once constructed, matrix models are used to compute multiple biologically important
294 outputs. Most commonly, these include one of several measures of population growth rate,
295 including asymptotic or transient measures of deterministic or stochastic population growth
296 (Caswell 2001). Additional outputs include the stable stage distribution, damping ratio, life span
297 measures, and the sensitivity and elasticity of population growth or of other outputs (e.g., stable
298 stage distributions; Caswell 2001, Morris and Doak 2002, Haridas and Tuljapurkar 2005) to
299 either matrix elements or vital rates. If models are built with continuous vital rate functions,
300 sensitivities can also be estimated for responses to changes in parameters of vital rate functions
301 (e.g., the intercept or slope of reproduction as a function of size) rather than to discrete class-
302 specific values (Griffith 2017). Caswell (2001) provides a thorough review of the many outputs
303 of matrix models, and multiple computing packages facilitate these analyses (e.g., popbio in R;
304 Stubben and Milligan 2007).

305 How does one get comparable predictions from an IPM, which is not a matrix, but a
306 density kernel? IPMs are actually analyzed in the same way as matrix models, using discretized
307 matrices, although IPM nomenclature often obscures this fact. In practice, numerical integration
308 methods are used to approximate an IPM kernel as a transition matrix, most often based on
309 discrete “mesh points,” which are starting and ending values of the state variable. This analysis
310 method divides the state variable into many classes, centered on the mesh points, within a
311 biologically plausible range and then uses the values of each of the different vital rate functions
312 at each mesh point to estimate the transition rate from each class to each other class. The result is
313 a moderately-sized to large matrix with many narrow, discrete classes and transition rates
314 estimated from the vital rate functions underlying the IPM kernel. It would be possible to analyze
315 IPMs without discretization, but it would be a far more formidable analytical challenge for
316 arbitrarily defined kernels (Ellner et al. 2016), while the methods of linear algebra make the
317 analysis of the approximating matrix straightforward.

318 Both modeling approaches result in large to very large numbers of certain outputs, such
319 as sensitivity and elasticity values to size specific vital rates or matrix elements. To deal with
320 these sometimes daunting numbers of values and to provide more succinct and biologically
321 informative results, for both types of models practitioners frequently condense results into mean
322 or summed values for fewer categories (e.g., Zuidema et al. 2010, Silvertown et al 1993).

323 *Comparing the two approaches*

324 The IPM literature has emphasized two shortcomings of matrix models: 1) the statistical
325 inefficiency of separately estimating vital rates for each class, and 2) the use of a small number
326 of classes to represent inherently continuous state variation, a situation that can lead to
327 mischaracterization of the true values of individual fates. IPMs solve these problems by using all
328 individuals to estimate continuous vital rate functions and then by using many classes of small
329 width in the final analysis phase. However, there are reasons to question whether matrix models
330 and IPMs are truly as different as they are usually portrayed. First, as noted above, demographers
331 have used continuous vital rate functions to characterize patterns in vital rates and to
332 parameterize matrix models, even well before IPMs were developed (e.g., Siler 1977, Eberhardt
333 1985, Barlow and Boveng 1991, Batista et al. 1998, Bernal 1998, Zuidema 2000, Morris and
334 Doak 2002, Matsuda and Nichimori 2003, Gross et al. 2005, Rogers-Bennett and Rogers 2006,
335 Chien et al. 2008). Second, in practice IPMs are analyzed by discretizing the underlying kernel to

parameterize a matrix model, although that matrix is usually moderately to very large (typically many dozens to hundreds of classes). Thus, rather than describing matrix models and IPMs as completely distinct methods, it is more accurate to view structured population models as varying along at least two axes: the method of parameter estimation (categorical vs. continuous functions, blue boxes in Figure 1) and the dimensionality of the resulting matrix (number of classes or mesh points, green boxes in Figure 1). Whether these two frameworks are distinct or not, the problems that have been identified with discrete parameterization and with modeling continuous state variables with few classes can potentially have serious effects on model predictions. In the rest of this section, we briefly review important considerations arising from these two aspects of model-fitting, as well as several other potential issues.

Class number. IPM practitioners seek to reduce the effects of discretization by using many narrow classes (Merow et al. 2014a). However, many classes make for larger matrices and reduce computational efficiency, especially when there are multiple state variables (Ellner et al. 2016). There is also little information about the number of classes necessary to approximate a continuous demographic process for real life histories. Several iterations may be required to determine the number and range of classes needed to yield stable estimates (Ellner and Rees 2006, Zuidema et al. 2010) and avoid eviction (the removal of individuals from the range of model sizes due to estimates of growth or shrinkage outside this range; Williams et al. 2012). The fact that most matrix models have far fewer classes than the large matrices used by IPMs has been viewed as a key advantage of IPMs (Ramula et al. 2009, Zuidema et al. 2010, Merow et al. 2014a). However, in the few studies of which we are aware that test for class number effects in IPMs, increasing classes beyond 10 to 20 has little effect on model results (e.g., Jacquemyn et al. 2010, Shriver et al. 2012, Dibner et al. 2019).

One factor that is likely to influence the number of classes needed for accurate or stable predictions is the way that continuous vital rate functions are discretized. The most common approach in IPMs is to use the “midpoint rule” to evaluate the vital rate functions across mesh points, each representing the midpoint of a class of the state variable, to obtain point estimates of the survival and fecundity rates that contribute to the k_{ij} values in the discretized kernel. There are two important variations on this method that directly relate to the number of mesh points (or, analogously, classes) necessary for a reasonable approximation. First, it has been suggested that it may be more accurate to characterize the vital rates of a class by using either the median or

367 mean state value (Morris and Doak 2002) of the individuals in a dataset falling within a class,
368 rather than the midpoint. A similar approach is to estimate an empirical density function for
369 individual states to estimate mean or median values, which can provide estimates even for
370 classes in which no individuals were censused (Gross et al. 2005).

371 A second issue is the way that the transition probabilities between state values (e.g.,
372 growth and shrinkage probabilities for a size-based model) are discretized (Figure 2). The most
373 commonly-used approach in the IPM literature (Ellner and Rees 2006, Metcalf et al. 2013,
374 Merow et al. 2014a, Elderd and Miller 2016) approximates the probability density function
375 (PDF) describing state at the next time step, conditional on starting state, by evaluating the
376 probability density at each mesh point and then multiplying this value by the class width (Figure
377 2B). A more accurate method, but one that is not featured in most descriptions of IPMs or in the
378 software to run these models (e.g., IPMpack; Metcalf et al. 2013) is to use the cumulative density
379 function (CDF) to integrate the probability density across the entire class (Figure 2C). Although
380 these two methods will converge with infinitely many classes (Fig. 2D), the first may require
381 many more classes to produce stable estimates, particularly if the variance in size is small
382 relative to the width of the classes for at least some starting sizes (Fig. 2E; Ellner et al. 2016).
383 Although the second method has been used, including by the authors (e.g., Louthan et al. 2018,
384 Montero-Serra et al. 2018), in both matrix and IPM models, the method of discretizing individual
385 changes in state (e.g., growth) is virtually never reported in the methods of published studies
386 (pers. obs.). We thus have no quantitative estimate of the relative frequency of these two
387 approaches, despite their potential to influence the accuracy of model predictions. We also note
388 that there is a third option to discretize size transition data, the “bin-to-bin” method (sect. 6.8;
389 Ellner et al. 2016), which uses the integral over both the starting and ending sizes included in a
390 transition to estimate total transition probability.

391 *Vital rate estimation.* We next consider other aspects of using continuous vital rate
392 (CVR) functions vs. discrete vital rate (DVR) estimates that may be less obvious, but are
393 important in generating accurate models. The statistical advantages of fitting continuous
394 functions are clear: using all individuals to fit a single function is more efficient than separately
395 estimating vital rates based on a subset of individuals within each of many classes. In particular,
396 it has been argued that this approach is more accurate than using discretely estimated rates in
397 matrix models, given small datasets (Ramula et al. 2009). Discrete estimation also means that

398 outliers or other quirks in the finite data used may have undue influence on the model structure
399 and predictions (e.g., estimating zero or perfect survival for some classes).

400 On the other hand, there is also a potential cost of continuous vital rate function
401 estimation that has received less attention. The functions used to explain vital rate variation are
402 often quite simple, usually linear or perhaps quadratic functions of a single state variable (Merow
403 et al. 2014), and thus can easily oversimplify or misrepresent how vital rates vary as a function
404 of the state variable. In contrast, matrix models that separately estimate vital rates within each
405 category make no such distributional assumptions (Shimatani et al. 2007). For example, a matrix
406 model can estimate sharp discontinuities in survival probabilities between size classes or survival
407 rates that asymptote well below 1, whereas IPMs usually model survival as a smooth logistic
408 function of size with an asymptote of 1 (see Yau et al. 2014). Simple transformations of size
409 variables, such as logging, may solve some, but not all, of these issues. For these reasons, some
410 have advocated using non-parametric methods (Ellner et al. 2016, section 10.1.5) or fitting more
411 complex functions, such as splines. However, these approaches can also be influenced by outliers
412 and/or low sample sizes at extreme state variable values (Shimatani et al. 2007, Dahlgren et al.
413 2011, Rees et al. 2014). A related issue when using either approach is how best to account for
414 estimation uncertainty and thus isolate process variance in vital rates.

415 Another issue with vital rate estimation is the ubiquitous assumption in IPMs of normally
416 distributed growth rates on the scale of the state variable (Peterson et al. 2019). This assumption
417 means that growth is modeled as symmetric around an average size transition, whereas for many
418 species the distribution of growth is skewed. For example, high shrinkage may be more likely
419 than high growth due to die-back, breakage, or starvation (reviewed in Peterson et al. 2019); the
420 opposite pattern may occur in woody species measured using diameter at breast height
421 (Needham et al. 2018). More generally, the use of growth models with infinite tails, like normal
422 distributions, will predict some chance of growth and shrinkage to sizes well outside the range of
423 reality, resulting in the problem of eviction (Williams et al. 2012) as well as unrealistic changes
424 in state even within the bounds of otherwise realistic sizes.

425 There are multiple statistical methods to account for any of the complexities just
426 discussed, but very few empirical demographic studies employ these. In addition, it is important
427 to note that the goal of model development is *not* to represent every nuance of reality, but instead
428 to get the important aspects right enough to yield useful representations of the patterns and

429 dynamics of interest. But, as this perspective emphasizes, neither matrix model nor IPM
430 approaches are *a priori* more compelling than the other. Both make some simplifications and
431 smooth over some patterns in the data, though they do so in different ways. It is not clear
432 whether and under what circumstances continuous functions will produce more accurate vital
433 rate estimates compared to separately estimating vital rates within discrete classes, nor is it clear
434 when and why the use of many narrow classes will fundamentally change model predictions.
435 With this in mind, we next turn to how the two modeling approaches have actually been used in
436 recent demographic studies.

437

438 **HOW ARE IPMS AND MATRIX MODELS USED IN PRACTICE?**

439 As we argue above, IPMs and matrix models are not sharply distinct. Here we document
440 the range of methods used to fit these models in the literature, including different parameter
441 estimation approaches and matrix dimensions. We conducted a literature search on October 23,
442 2018 of studies included on Web of Science using the search terms “demograph*” and “matrix”
443 and either “ecology” or “conservation” for the period 2002-2018. We believe that these search
444 terms capture the vast majority of matrix models used for ecological or life history analyses. We
445 also included Web of Science results that had cited any of the papers originally developing the
446 IPM approach, including Easterling et al. (2000), Ellner and Rees (2006), and Rees and Ellner
447 (2009); because terminology, and hence keywords, are less uniform for IPMs, we felt that using
448 citations of these founding articles would capture studies that would otherwise be missed. The
449 starting year for our review is somewhat arbitrary, but was chosen to include virtually the entire
450 period during which IPMs have been conducted. We only included papers that fit new models to
451 demographic data, excluding strictly theoretical papers or review papers that relied on previously
452 published models. For each paper, we determined the state variable (age, size, stage, or other
453 [including size x age models]), method of parameter estimation (categorical, continuous, or a
454 combination), the type of model as it was identified by the authors (matrix vs. IPM, stochastic vs.
455 deterministic), and the dimension of the resulting matrix (number of classes, bins, or mesh points
456 used to construct the matrix or discretized IPM kernels). For papers with multiple species, we
457 identified these criteria for each species separately. Ambiguous papers were reviewed by at least
458 two people. We identified 794 publications and 1271 demographic models across a range of
459 taxonomic groups (Table 1) that fit all of our criteria. Most of the demographic studies in our

460 database examined plants and other autotrophs (N=698), followed by vertebrates (N=486) and
461 invertebrates (N=87). The full results of this literature review are available in Data S1: Literature
462 Review.

463 Matrix models represent the majority (~79%) of demographic models published between
464 2002–2018 (Table 1). Over this period, 57% of all studies were deterministic matrix models,
465 followed by stochastic matrix models at 22%. 21% of demographic models were identified by
466 the authors as IPMs (16% deterministic IPMs, 5% stochastic IPMs). Although IPMs are a
467 smaller fraction of published demographic models, this proportion has increased over time
468 (Figure 3A; logistic regression of proportion of models: year coefficient = 0.31, $Z = 12.81$, $P <$
469 0.001). This increase can be attributed to the publication of several reviews of the method (Ellner
470 and Rees 2006, Rees and Ellner 2009, Merow et al. 2014a, Rees et al. 2014) as well as the
471 development of IPMpack, an R package for constructing IPMs (Metcalf et al. 2013, R Core
472 Development Team 2015).

473 Almost all IPMs are built for size-based models. 67% are only structured by size and an
474 additional 29% use size in conjunction with one or more other state variables (e.g., birth date,
475 age, growth rate, dormancy, developmental stage, etc.). 26% of IPMs use age as a state variable,
476 while only 2% use something other than age or size as the primary state variable (e.g., infection
477 load; Wilber et al. 2017). In contrast to IPMs, matrix models are commonly used for stage and
478 age-based analyses as well as size-based models; 20% use a size-based state variable, 28% use
479 age, and 52% use a measure of stage (Appendix S1: Figure S1A,B). In addition, the great
480 majority of published IPMs have been for perennial plant studies, while a wider range of taxa
481 and life histories have been the subjects of matrix models (Appendix S1: Figure S1C,D). Given
482 these differences, in the rest of our review we concentrate on comparisons between matrix
483 models and IPMs that are based on size. The time trends of just these studies is similar to those
484 of all demographic models (Figure 3).

485 In general, size-based IPMs used higher dimension matrices in their final analyses than
486 matrix models (Figure 4; linear model of class number: $t = 10.65$, $P < 0.001$). However, IPM
487 papers reported using an astonishingly wide range of classes, from 39 to 2400, to discretize their
488 projection kernel (mean = 242.5, median = 200, SD = 308.3, N = 83) whereas size-based matrix
489 models varied from 2–67 classes (mean = 7.3, median = 5.5, SD = 6.7, N = 194). However, only
490 43% of IPM studies reported the number of classes or mesh points used for the discretization of

491 the kernel. This may reflect the philosophical view that IPMs should be conceptualized as
492 continuous, despite their ultimate discretization, or may simply be viewed as an unimportant
493 detail by those publishing results of these models. Regardless, we could not determine the
494 number of classes for over half of published IPMs, although we note that the R package
495 IPMpack uses 50 classes as the default setting (Metcalf et al. 2013) and 10.3% of IPMs reviewed
496 that did not report the number of classes used IPMpack. We were further unable to determine the
497 method used to discretize the IPM kernel for over a third (36%) of published IPMs. Of those that
498 reported the discretization method, 96% used the midpoint rule and only 4% used an alternative
499 integration method (e.g., Simpson's Rule, Gauss-Legendre quadrature; Ureta et al. 2012, White
500 et al. 2016, Molowny-Horas et al. 2017). Given that the lack of discretization is frequently
501 discussed as an advantage of IPMs, but that models are in fact analyzed with discretization, we
502 urge that discretization information should be included in the description of any IPM analysis,
503 since this is a key analysis step for these models.

504 Population biologists followed a variety of workflow paths from data to final matrix
505 analysis (Figure 5). Most demographic models used information on individuals' stages to
506 estimate vital rates categorically and construct deterministic matrix models (Figure 5). However,
507 7% of all matrix models, and 25% that used size as their state variable, estimated at least one
508 vital rate using a continuous function of state. Interestingly, the proportion of matrix models
509 using continuous vital rate estimation appears to have peaked and then declined over time (Fig.
510 3B; logistic regression of proportion of models: year coefficient = 141.89, $z = 3.69$, $P < 0.001$,
511 year² coefficient = -0.035, $z = -3.69$, $P < 0.001$). This could reflect an increased awareness of
512 continuous approaches to vital rate estimation following examples in Morris and Doak (2002)
513 and the initial development of IPM methods (Easterling et al. 2000, Ellner and Rees 2006), with
514 a later decline as IPMs were increasingly adopted to model data sets suitable for continuous vital
515 rate estimation. When comparing size-based matrix models, we found that models tended to use
516 more classes when at least one vital rate was estimated using a continuous function (mean =
517 11.0, median = 7, range = 3-67, $N = 48$) relative to models with discrete vital rate estimation
518 (mean = 6.1, median = 5, range = 2-27, $N = 146$; linear model of class number: $t = 4.65$, $P <$
519 0.001). However, we found no relationship between class number and minimum sample size for
520 discrete size-based matrix models ($r = 0.17$, $P = 0.16$, $N = 67$; Appendix S1: Figure S2). Of all
521 demographic models using continuous vital rate estimation, 22% were matrix models. Thus, any

522 advantages of continuous vital rate estimation have not been limited to IPMs in the demographic
523 literature.

524

525 **ASSESSING THE CONSEQUENCES OF DIFFERENT MODEL-MAKING DECISIONS**

526 Two key characteristics of structured population models, the number of classes into
527 which the state variable is divided and the method of parameter estimation (continuous vital rate
528 functions (CVRs) vs discrete vital rate estimates (DVRs)), are often assumed to covary between
529 “pure” matrix vs. “pure” IPM approaches. But as we show in our literature review, they are not
530 necessarily logically connected and many published models combine relatively small class
531 numbers with CVR functions.

532 There are also three other decisions that require careful thought when turning data into a
533 structured demographic model, but are rarely discussed. First is the exact way that class
534 boundaries are delineated. For most IPMs, class boundaries are set at regular intervals, while for
535 matrix models, there are often decisions made regarding sample size issues and where size
536 breaks make the most biological sense. A second decision is how best to characterize the average
537 vital rate value for a given class or, using IPM terminology, how to define the mesh points used
538 to evaluate the CVRs to create a discretized matrix. Mesh points are most often chosen as the
539 midpoint of a class, but alternative approaches could use the mean, median, or even distribution
540 of state values observed in each class. The third consideration, if using continuous functions, is
541 how the transition probabilities between states conditioned on survival (e.g., growth) are
542 discretized. This is distinct from the discretization of other vital rates, such as survival or
543 fecundity, because an individual will have a distribution of possible states at the next time step
544 (vs. a point estimate of survival probability or offspring number), and it is this continuous
545 probability density that must be discretized (Fig. 2A). One approach is to use the point estimate
546 of the probability density evaluated at each mesh point, multiplied by the class width (Figure
547 2C). Alternatively, the probability density can be integrated across the entire range of states
548 within each class, by taking the difference between cumulative distribution function (CDF)
549 values at the upper- and lower-class boundaries (Figure 2A, B). Other approaches, including the
550 Ellner et al. (2016) “bin-to-bin” method or direct parameterization of discretized growth
551 probabilities (Shriver et al. 2019) can also be used, but none of these alternatives have been

552 commonly employed to date. All of these decisions have the potential to interact with the number
553 of classes and methods of estimating vital rates to shape model outputs.

554 To test how these different aspects of demographic modeling influence model predictions
555 we used large demographic data sets from five diverse organisms – a long-lived subtidal
556 Mediterranean gorgonian coral (*Paramuricea clavata*, Plexauridae), a long-lived rupicolous
557 plant (*Borderea chouardii*, Dioscoreaceae), a moderately long-lived arctic/alpine geophytic plant
558 (*Polygonum viviparum*, Polygonaceae), a short-lived epiphytic lichen (*Vulpicida pinastri*,
559 Parmeliaceae), and a short-lived fish, the Trinidadian guppy (*Poecilia reticulata*, Poeciliidae).
560 While these species do not span the entire range of life histories seen in plants, animals, and
561 fungi, they do represent a broad array of key life history patterns. In all these data sets organism
562 size is used to structure the populations, but the species differ in multiple aspects of their ecology
563 and capture a range of size distributions (Figure 6).

564 In our analyses we varied five aspects of model construction. Most fundamentally, we
565 varied the method used to estimate vital rates (blue boxes, Figure 1) and the class number of the
566 resulting matrix (green boxes, Figure 1). Previous comparisons of matrix dimension and
567 parameterization methods have only included matrix models with a few classes (4–6) and
568 discrete parameter estimation, and compared them to IPMs using continuous functions
569 discretized into large matrices (100 classes; Ramula et al. 2009). In contrast, we varied parameter
570 estimation method independently from class number to ask how each affects model accuracy. In
571 addition, we tested the effects of the three other modeling decisions just mentioned: (i) use of
572 midpoint or estimated median individual sizes for CVR estimation of average vital rates per
573 class; (ii) even or sample size-adjusted class boundaries; and (iii) the ways in which discretized
574 growth probabilities were estimated from CVR models (Figure 2). While other issues also
575 influence model structure and results (see Section 2, above), here we concentrate on this short
576 list of issues that will influence virtually all models.

577 We tested the effects of these decisions on three common demographic outputs: estimates
578 of individual fitness or population growth (λ), estimated individual longevity (age at
579 which 1% of individuals starting in the smallest class are still alive), and damping ratio (the ratio
580 of the magnitudes of the dominant and subdominant eigenvalues), a measure of the strength and
581 duration of transient dynamics for populations not at a stable stage distribution (Caswell 2001).
582 While multiple other measures of longevity and also of the strength and length of transient

583 dynamics exist, these measures have been widely used in the ecological literature. We also
584 present a more limited comparison of how sensitivities and elasticities vary as a result of
585 different modeling approaches. Finally, we test how data quantity interact with these alternative
586 modeling decisions, in particular asking if some modeling approaches are more robust when data
587 are scarce.

588 ***Study species and data sets***

589 We compiled data used in published studies for each of our study species, supplemented
590 with some unpublished information needed to employ flexible and automated model fitting
591 routines; all data were collected by the authors. While all of the original studies of our species
592 included effects of temporal and/or spatial variation in demography, in our simulations we used
593 all transition data at once to construct single deterministic models. This simplification allowed us
594 to use large numbers of observations to construct single models, as well as to rarify our data sets
595 over a wide range of sample sizes to check the effects of data quantity on the relative merits of
596 different modeling strategies.

597 We briefly outline the most relevant information about each species' life history and
598 details about the data and modeling protocols used here:

599 *Polygonum viviparum*, the alpine bistort (hereafter, bistort), is an arctic/alpine perennial
600 plant for which demographic data were collected annually from 2001–2011 at four populations
601 on Niwot Ridge in Colorado, USA (Doak and Morris 2010), for a total of 11,882 plant-
602 transitions of data. Size, reproduction, and survival data were recorded for all plants (see
603 methods in Doak and Morris, 2010). Size is measured as the square root of estimated leaf area in
604 mm²; on an untransformed scale, sizes in the main data set (not including recruit sizes) range
605 from 4.39 to 3600, after truncating 5 large values that created a long sparse tail that created
606 problems for some of our analyses (similar truncation was done for all data sets besides
607 *Borderea*). Reproduction is exclusively via asexual bulbils that are produced on inflorescences,
608 and our measure of reproduction is the size-dependent product of the probability of producing
609 one or more inflorescences and the estimated number of bulbils produced if reproducing (derived
610 from a continuous measurement of the length of the inflorescence bearing bulbils). We pooled
611 data across all years and sites to yield one estimate of the number of new recruits (bulblings)
612 seen a year later per bulbil produced (0.00676). Bulbling sizes were also pooled and used to
613 characterize the size distribution of bulblings as normally distributed with a single mean (4.00)

614 and SD (0.886) for CVR models, and were directly used to get frequencies of sizes for DVR
615 models.

616 *Paramuricea clavata*, the Mediterranean red gorgonian (henceforth, gorgonian), is a
617 slow-growing, long-lived arborescent octocoral that typically occurs from 15 to 60 m depth.
618 Demographic data for individual colonies (the unit of demographic analysis) were collected
619 annually at three Mediterranean sites for 2-4 years each from 1999–2004 (Linares et al. 2007,
620 Linares and Doak 2010), for a total of 4,877 colony-transitions of data. Size is quantified as
621 colony height; sizes in the main data set range from 0.2 to 74.9 cm. Size-dependent reproduction
622 was estimated as the production of oocytes per colony, estimated from the relationship between
623 gonad number and size derived from data in Coma et al. (1995; Table 5) and the estimated
624 average oocyte number resulting from a gonad (2.77774×10^{-6}). We estimated a common first
625 year survival of new recruits across all years and sites as 0.667, the mean of colony survival in
626 the smallest size class from Linares et al. (2007). Surviving recruits were assumed to have a
627 uniform size distribution ranging between 0.3 to 3.0 mm height.

628 *Vulpicida pinastri* (henceforth, *Vulpicida*), is a relatively short-lived epiphytic lichen that
629 grows on several species of trees and shrubs. Data on individual thalli were collected annually
630 from 2004-2009 in Kennicott Valley in Alaska, USA on individuals growing on *Alnus* stems in a
631 mixed spruce-alder forest, for a total of 1621 individual transitions of data. Size and survival data
632 were collected in each thallus, with the square root of thallus area in cm^2 used as the measure of
633 size (see Shriver et al. 2012 for methods); on an untransformed scale sizes in the data set range
634 from 0.15 to 47.61. Reproduction was estimated as proportional to the circumference of a thallus,
635 which bears the majority of asexual propagules. The number of recruits per mm of circumference
636 necessary to achieve a stable population was estimated as 0.047 in the original study of this
637 species (Shriver et al. 2012), and we used this estimate as a fixed value in our models. New thalli
638 sizes were estimated to have a uniform distribution ranging between 0.124 and 0.50, which
639 reflect the range of smallest thallus sizes encountered in the field.

640 *Borderea chouardii* (henceforth *Borderea*) is a rare, extremely long-lived rupicolous
641 plant that naturally inhabits a single population in Spain, where it grows in shaded crevices of
642 north-facing limestone walls and overhangs. Data were collected on individual plants from 1995
643 to 2002 at two sites in the Spanish Pyrenees, for a total of 2,682 plant-transitions of data. Size is
644 measured as the length of the largest leaf in mm; sizes in the main data set range from 2 to 10.8.

645 Reproduction is quantified as the number of seeds produced per female plant. While the species
646 is dioecious, we use the mean seeds per plant of a given size, averaged across the sexes, as our
647 measure of reproduction (see Garcia 2003 for more details of sampling and life history).
648 Reproduction was quantified as the size-dependent product of the probability of producing one
649 or more inflorescences and the estimated number of seeds produced if reproducing. For CVR
650 models, observed seedling sizes were used to estimate a mean (4.66) and SD (0.46) and sizes
651 were assumed to be normally distributed, while the set of observed sizes were directly used to
652 get frequencies of sizes for DVR models.

653 *Poecilia reticulata* (henceforth, guppy) is a short-lived freshwater fish native to streams
654 and rivers in Trinidad. We used capture-mark-recapture data from monthly sampling of a site on
655 the Caigual River that spanned January 2009 to June 2011, for a total of 4880 unique individuals
656 over the entire study. At each sampling interval, a comprehensive capture of all fish within the
657 stream reach was attempted, with size (wet mass in g) and sex recorded for all individuals. Sizes
658 in the data set range from 0.042 to 0.904. While recapture rates are extremely high (Fitzpatrick et
659 al. 2016), they are not perfect. To produce a simplified data set for our analyses, we therefore
660 considered a fish dead at the first census it was not captured, if it was not captured for at least
661 one subsequent sampling period (thus, we did not include data from the final two sampling
662 intervals). We also linearly interpolated size for fish that were not sampled in a month, but were
663 sampled in the months bracketing the missing capture. We built a model for females only.
664 Reproduction was quantified as the size-dependent product of the probability of producing any
665 offspring times the number of daughters produced if there was reproduction. Offspring number
666 was estimated from genetic data and is the estimated number of female offspring produced that
667 survived until the second census following birth (newborns were not large enough to reliably
668 catch until approximately 1-2 months of age; Fitzpatrick et al 2020). New offspring sizes were
669 pooled and used to characterize an empirical distribution function for use in CVR models, and
670 were directly used to get frequencies of sizes for DVR models. The survival rate of fish in each
671 of their first two months was estimated as the mean survival estimated for newly observed fish,
672 based on a logistic regression of monthly survival vs size fit to all fish. We do not include in our
673 analyses data on the genetic origin or hybrid status of the fish (see Fitzpatrick et al. 2016 and
674 Fitzpatrick et al. 2020 for more details of the study). As the dataset only allowed estimates of
675 reproduction from months 5-14 of the study, we used demographic data only from these months,

676 for a total of nine individual transitions of data and 2366 individual monthly transitions. In
677 keeping with the data collection and also the limited life span of the species, and unlike the
678 annual time steps used in the models for all other focal species, all data analysis and modeling
679 for guppies was done using a monthly time step.

680 **Methods**

681 We fit demographic models to the data from each species using combinations of the
682 following alternative approaches:

683 **A. Discrete vital rate estimation for each class vs. continuous functions for vital**
684 **rate estimation.** When estimating continuous vital rate functions (CVRs), we fit
685 separate size-dependent models for survival, mean growth, variance in growth,
686 and the reproductive rates, described above for each species (see also Appendix
687 S1: Table S1). For each vital rate, we fit 2–3 models with alternative size-
688 dependent functions and used AICc to choose the best model. Specifically, we fit
689 models with linear vs quadratic size effects for all vital rates, and for mean growth
690 we also fit a power function, to potentially better capture different shapes of non-
691 quadratic, but non-linear shifts in growth with size. These functions are all
692 commonly used in analyses employing CVRs.

693 **B. Number of classes for model construction.** For discrete vital rate estimation, the
694 number of classes directly influences the parameter estimation, while for
695 continuous vital rate functions it only influences the final construction of the
696 matrix for analysis. We made models with class numbers that ranged from 3 to
697 100 classes for most analyses, using 3, 4, 5, 6, 8, 10, 15, 25, 35...100 classes. With
698 discrete vital rate estimation, at the upper end of this range we rapidly reached
699 class numbers that resulted in low samples for at least one class; we did not make
700 models if the smallest class-specific sample size was < 3. While this is a very
701 lenient standard (we do not advocate making models based on such low sample
702 sizes per class), we used a low threshold in order to make DVR models with the
703 largest possible range of class numbers given the data we had. In our rarefaction
704 tests, described below, we also directly tested the effects of having very low class-
705 specific samples on DVR model outputs. Statistics on per class sample sizes for
706 each species are given in Appendix S1: Figures S13–17.

707 C. **Proportional vs. even size class delineation.** We employed two approaches to
708 defining boundaries of size classes, which characterize two extreme approaches
709 seen in demographic studies. With even class divisions, all classes were the same
710 width on the scale of the size metric (see above for definition of the size scale
711 used for each species). For proportional class divisions, we used the *classes*
712 function in R package binr (Sergei 2015) to create class divisions that had as
713 nearly equal numbers of starting individuals as possible. This approach has the
714 general effect of creating many narrow classes of smaller or mid-sized individuals
715 and fewer wide classes for the larger and in some cases also small individuals,
716 depending on the size distribution of the data (see Figure 6). While in many
717 matrix models class boundaries are, and should be, made with more attention to
718 biological breakpoints, to automate the process of choosing class boundaries we
719 used only these two approaches.

720 D. **Discretizing CVRs.** For most vital rates, a single point estimate is required for
721 each size class (e.g., survival probability, number of offspring/parent). We used
722 one of two approaches to estimate the representative vital rate value for each size
723 class when using the CVR approach. First, and most simply, we used the midpoint
724 size within a class (the mean of the two bounding values for the class). This
725 method is by far the most common one used when making large matrices to
726 numerically integrate IPM models, and is also used in many matrix models
727 employing CVRs. However, two of us have argued that it is more representative
728 to use a size that reflects the average individual within a class, not the midpoint of
729 the class boundaries (Morris and Doak 2002). This estimation can be
730 accomplished in several ways. Most simply, an estimate can come by taking a
731 simple median or mean starting value of all individuals within a class, or, when
732 data are scarce in some size ranges, by fitting an empirical density function to all
733 individuals in the population and then using this function to create a weighted
734 median size for each class—we used this latter approach in our simulations. We
735 refer to these two approaches as midpoint- or median-based CVRs, respectively.

736 E. **Discretizing continuous growth distributions.** Lastly, we compared two
737 approaches to discretizing continuous distributions that summarize changes in

size when using the CVR approach (Figure 2), using both simulated and real data sets. First, we took the common approach employed in the IPM literature of using the point estimates of the probability density for the midpoints of all of the size classes, multiplied by the class width, to approximate the probability density function (PDF) of size at the next time step conditioned on current size. We call this the “mesh point method.” Second, we used the cumulative density function (CDF) for growth to get the probability of reaching each size class at the next time step conditioned on starting size. We call this the “CDF difference method.” While other approaches have been proposed, in particular the Ellner et al. (2016) “bin-to-bin” approach, we only tested these two most commonly used approaches here. For either, there is a concern that some substantial fraction of the total probability of growth will fall outside the upper and lower limits for size defined in the model (the eviction problem; Williams et al. 2012). There are multiple ways to correct the estimated growth probabilities so that, for any starting size (or size class), they sum to one (Williams et al. 2012). We do so by renormalizing the growth probabilities for a given starting size by the difference of the CDFs for the minimum and maximum sizes used in the model (as in Williams et al. 2012). While this correctly standardizes total growth rates for the CDF difference method, it is a more error-prone exercise for the mesh point method, as we discuss in Results.

Appendix S1: Table S1 lists the vital rates fit for each species, including non-size-dependent vital rates used in all models. Appendix S1: Figures S3-7 show the best-supported vital rate functions for each species. As these figures show, the species span a range of patterns in growth, survival and reproduction. In particular, *Borderea* (Appendix S1: Fig. S4) and guppies (Appendix S1: Fig. S7) show a pattern of declining mean and variance in growth at larger sizes, while the other species show declining mean but increasing or relatively stable variance as size increases.

For each model constructed from each data set, we estimated λ , damping ratio, and longevity. We also explored the effects of class number and discrete vs. continuous vital rate estimation on elasticity values, contrasting DVR models with 20 evenly-spaced size classes with CVR models built with 80 classes and using median-based and CDF difference methods. 20

769 class models are at the upper range possible to use for simple even class definitions for all our
770 data sets, while use of 80 classes is well within the range used by most IPM models (Figure 4).

771 Finally, we tested the effect of sample size on model results by rarifying each data set in
772 two different ways. First, we randomly sampled each dataset, with replacement, 200 times for the
773 full sample size, retaining $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, down to $\frac{1}{32}$ th of the data, depending on species. We then
774 replicated the model-fitting process for 20 class DVR and CVR models, employing median-
775 based and CDF difference methods for discretization. For these models, we use a slight variant
776 on even class boundaries. To perform analyses on rarified data sets using even size classes for
777 DVR estimation, we had to use a stratified bootstrap approach, so that we retained some
778 individuals across sizes. This stratification regime also reflects the empirical sampling decisions
779 that many demographers make, with efforts to include individuals at the top and bottom of the
780 size distribution in the sample followed for data collection. To stratify the sampling, and also to
781 define class boundaries for the DVR, we used the top and bottom 5% of all individuals by
782 starting size to define the smallest and largest classes. We then divided the remaining individuals
783 into 18 even size class divisions. Bootstrapped samples were generated by resampling with
784 replacement separately for each size class. Resampled data sets ranged from a sample equal to
785 the original (see Appendix S1: Figures S13-17 for per class sample sizes statistics), down to
786 between $\frac{1}{8}$ th and $\frac{1}{32}$ th of the original sample size, reflecting quite small minimum sample sizes
787 of individuals in a given class: bistorts, 6; gorgonians, 5; *Borderea* and guppies, 3; *Vulpicida*, 2.
788 As supplementary tests, we also: 1) fit 80 class CVR models to each data set to see if higher class
789 numbers changed the results, and 2) ran similar rarefactions, but using non-stratified bootstraps
790 and fitting proportional class boundary models using 20 classes for DVRs and 80 classes for
791 CVRs.

792 In addition to the rarefaction simulations just described, we also used a rarefaction
793 approach to test whether DVR models that are fit with high class numbers – and hence low
794 sample sizes per class – perform worse than CVR models fit to the same resampled data. For
795 these analyses, we used the same 20 class stratified bootstrap described in the last paragraph to
796 generate 200 samples. For each species, we used one resampled data set size, between $\frac{1}{4}$ th and
797 $\frac{1}{16}$ th of the original sample size; these sample sizes allowed us to fit a range of class numbers
798 for each species but also resulted in small minimum sample sizes per class. We then fit models
799 using from 5 up to 50 size classes, defining the upper and lower classes using the 1/class number

800 and 1 – 1/class number quantiles and evenly divided class boundaries in between. We also fit
801 CVR models to the same data and class boundaries, and employing median-based and CDF
802 difference methods for discretization. We fit models to any data set that had at least 1 individual
803 in each class, and also recorded the fraction of failed data sets for each size class number. We
804 show results for class numbers for which < 30% of samples failed for DVR models. We then
805 predicted lambda, damping ratio, and life span estimates for each model.

806 All analyses were conducted using R version 3.5.2 (R Core Team 2018). Example R
807 scripts and data files showing the routines used in our analyses are included in Data S2.

808 **Results**

809 *Use of mesh points vs CDF differences to characterize growth rates.* To restrict the range
810 of modeling decisions considered in subsequent analyses, we began by addressing the last
811 modeling decision listed above (*Discretizing continuous size distributions*), asking if using mesh
812 points or CDF differences had substantial effects on growth rate estimation and hence on model
813 results. It is clear that the mesh point approach will be inaccurate at smaller class numbers (Fig.
814 2E), as it is essentially a crude numerical integration, but how accurate it is with larger class
815 numbers under realistic assumptions is less clear. We therefore started by running a simplified
816 simulation, not tied to any of our real data sets, to illustrate how well the mesh point method
817 works to characterize growth when starting from a single size, and when the resulting sizes are
818 far from size boundaries (so “eviction” is not a problem). As noted in Ellner et al. (2016; sections
819 2.7.4 and 6.8), the mesh point approach performs worst when there is low variance, in which
820 case they suggest increasing the variance (if model predictions are unaffected), using sparse
821 matrix methods with many mesh points, or alternative integration approaches such as Gauss-
822 Legendre quadrature. To mimic this low-variance scenario, we simulated a realistically low SD
823 of 0.5 with a mean size that varied from 49-51 (e.g., Figure 7A with mean = 50). We used from
824 10 to 100 mesh points spanning a range of sizes between 0 and 100 to discretize the resulting
825 probability density function (PDF).

826 The most fundamental problem in approximating growth probabilities is if they do not
827 sum to one, as all surviving individuals should have a size at the next time step; values greater
828 than one implicitly boost survival when used in a full demographic model, while summed growth
829 rates below one implicitly reduce survival. In our simulations, models with from 20 to 100
830 classes estimate growth probabilities that sum to between 3.0×10^{-5} and 1.76; while there is a

831 general trend to more accuracy with higher class number, both under-and over estimates still
832 occur as class number increases (Figure 7B). The summed growth probability is also highly
833 sensitive to small differences in the mean of the growth distribution relative to the mesh points,
834 with significant over- and under-estimation of total growth probability until high class numbers
835 are reached (near to 100). This is because the probability of growth into a given class is
836 estimated using exact PDF values at mesh points, so that the exact placement of mesh points
837 relative to the peak of the PDF creates erratic mis-estimation, particularly when there are few
838 mesh points relative to the growth variance. In contrast, the CDF difference approach always
839 estimates the summed growth probability as one.

840 The problems with the mesh point approach can also affect the construction and results of
841 full population models. To test the effects of mesh point mis-estimation on growth rate estimates
842 across starting sizes, we built CVR models for each of our five focal species, using each of the
843 two methods and both moderately high (50) and high (100) class numbers. For both methods, we
844 normalized the estimated growth rates for a starting size based on the difference in the CDF
845 between the minimum and maximum sizes used in the model. This test is the one proposed by
846 Williams et al. (2012) to detect eviction. While it is the correct estimate of “true” eviction (i.e.,
847 growth outside the range of sizes in the model), and corrects all the transition probabilities for
848 the CDF difference method so that they sum to one, for the mesh point models it is not a perfect
849 test or correction, since the summed growth probabilities can deviate substantially from one,
850 even in the absence of any meaningful eviction.

851 Use of mesh point methods leads to substantial over- or under-estimation of summed
852 growth rates for some small or large classes for four of our five species, and does so even with
853 models built with 50 or 100 classes (Figure 8). Mis-estimation tends to occur where variance in
854 growth is low (Appendix S1: Figures S3-7), and can occur for size classes that include abundant
855 individuals (e.g., large *Borderea* and small gorgonians). We also tested for the effects of eviction
856 correction in changing the estimated mean and variance in growth for different sizes. Not
857 surprisingly, eviction correction can substantially shift both mean and variance estimates
858 (Appendix S1: Figures S8-S12); while this is expected, it does suggest that alternative models for
859 growth rates that minimize the eviction problem need to be developed and more widely
860 employed (e.g., Peterson et al. 2019).

861 To test the effects of mesh point mis-estimation of growth rates on lambda estimates, we
862 took the same approach just described, but building entire demographic models for a range of
863 class numbers for each focal species. The models used mean class values for estimation and even
864 size class boundaries. For all of our focal species, use of mesh points results in greater deviations
865 in lambda estimates and slower convergence on stable lambda values as class number increases
866 than do models built using CDF differences to estimate growth probabilities (Figure 9).

867 In sum, the mesh point method can be highly inaccurate, and much of this inaccuracy will
868 also be undetected by the usual test employed for growth rate eviction. Given that the CDF
869 difference method is highly robust and extremely fast (only taking an additional 1.8 seconds than
870 the mesh point approach in a test with 10,000 classes on a standard laptop), it is not clear that
871 there is any reason to continue to use the mesh point approach to estimate growth, especially as it
872 can generate artifacts and extreme class number dependence in the absence of any benefit. While
873 the problems with the mesh point approach can be easily solved by using increasing class
874 numbers, this number can reach ridiculous levels (e.g., > 4,000; Zuidema et al. 2010, Needham et
875 al. 2018) and require careful analysis to detect. In the simulations below, we always use the CDF
876 difference approach in our CVR models.

877 *Effects of modeling decisions on population growth estimates.* All four of the remaining
878 modeling decisions that we explored can also have substantial influence on estimated lambda
879 values. However, the strength and patterns of these effects are not necessarily what are usually
880 assumed by most population biologists. While we have no independent measure of the “right”
881 answer for these real data sets, most models based on the same data set converge on almost
882 exactly the same lambda (λ) estimates with moderate (for discrete parameter estimation) or high
883 (for continuous vital rate functions) class numbers, and we assume that these values are
884 reasonable approximations of reality.

885 Class number and vital rate estimation method (DVR vs. CVR) show significant
886 interactions in their effects on λ , but do not indicate any clear advantage for the use of CVRs
887 (Figure 10). Models using DVRs, corresponding to classic matrix models, converge on the same
888 lambda values as do models using CVRs, corresponding to IPM models, especially when using
889 even class boundaries. λ values also show convergence to a very narrow range of values (± 0.01)
890 by ~10–20 classes, depending on the species. While these are higher class numbers than are
891 typical in many matrix models, they are far below those generally used in IPMs (Figure 4).

892 Neither estimation method gives consistently better results with small class numbers. DVRs
893 always mis-estimated λ when used with very few classes, but the use of CVRs resulted in over or
894 under-estimation, often of greater magnitude, depending on the species and other aspects of
895 model construction. This suggests that the number of classes has a greater impact on model
896 performance than the method of parameter estimation, but that the extremely large matrices used
897 in most IPMs are unnecessary to achieve model accuracy.

898 In general, bistorts, *Borderea*, and guppies showed fastest convergence on the same
899 lambda values with increasing classes than did the other two species, and the first two species
900 also showed better correspondence between the predictions of median-based CVR and DVR
901 models. Unfortunately, there is not a simple difference in the life histories or size distributions of
902 the species that appears to correspond to these different results (see Figure 6, Appendix S1:
903 Figures S3-7 for size distributions and vital rates of the species).

904 Other components of model building also influenced λ estimates. First, defining class
905 boundaries using even divisions generally yielded more consistent results across class numbers,
906 regardless of other modeling decisions. This was most obvious for bistort, *Borderea* and
907 *Vulpicida*, for which even class models show convergence to the same lambda values at lower
908 class numbers than do models with proportional classes, which continued to show divergence out
909 to 100 classes. Second, use of estimated median sizes with CVR models to characterize average
910 vital rates often yielded more accurate λ estimates, particularly at lower class numbers, than did
911 use of midpoint sizes. This was especially striking for *Vulpicida*, for which use of midpoint sizes
912 substantially altered λ estimates even with 80–100 classes with proportional class sizes, with no
913 sign of convergence with the other estimates. The somewhat poorer performance of models with
914 either proportional classes or midpoints appears to be due to the same underlying cause:
915 mischaracterizing average performance either by grouping together very different individuals
916 and/or by a poorer approach to characterizing the average state of individuals within a class.

917 One striking aspect of these results is that the outputs of CVR-based models are more
918 dependent on other decisions about model structure and estimation than seems to be the case for
919 discretely estimated vital rate models (Figure 10). This result contrasts with the common
920 assumption that use of CVRs will lead to more stable, and hence reliable, results. This finding
921 also suggests that, if models are made with moderate numbers of classes, discretely estimated

922 matrix analyses are likely to provide estimates of growth rates that are just as robust as those
923 arising from IPMs.

924 *Simulation results: Damping ratios, lifespans, and sensitivity analysis.* Predictions of
925 lifespans and damping ratios mirrored those for population growth rates, although with greater
926 effects of several modeling decisions (Figures 11 and 12). First, models made with even class
927 widths show weaker effects of other modeling decisions in their eventual convergence than
928 models made with proportional class widths. Second, CVR models that used median sizes to
929 characterize performance often yielded more stable values than did those that used the midpoint
930 of a class. This was most evident for life span estimates, for which midpoint models gave highly
931 divergent estimates for *Vulpicida* and, with proportional classes, *Borderea* as well. Third, using
932 discrete vital rate estimation yielded the same results as did CVR models, and generally
933 converged upon stable values more quickly with increasing class number. Overall, these results
934 bolster the conclusion that discretely-estimated matrix models are no less representative of
935 demographic patterns than are IPMs fit with CVRs and evaluated at midpoints, with IPMs of
936 high (>80) classes and matrix models of quite moderate size (~10-20 classes) giving essentially
937 identical results.

938 We also examined the dependence of sensitivity analyses of lambda to matrix elements
939 on modeling approach, contrasting the results of a DVR-based model of 20 even size classes and
940 a CVR model of 80 even classes, evaluated at midpoints. The contrasting models for each
941 species showed very similar results (Figure 13). The elasticity values of matrix elements were
942 strongly correlated ($r = 0.95-0.97$) with no evidence of systematic bias and there was a similarly
943 close correspondence in sensitivity values ($r = 0.94-0.99$; Appendix S1: Figure S18).

944 *Simulation results: sample size effects.* One assumed advantage of CVRs that has often
945 been advanced in the demographic literature is that they perform better when data are sparse
946 (Easterling et al. 2000, Ellner and Rees 2006, Ramula et al. 2009, Zuidema et al. 2010, Merow et
947 al. 2014), so we compared model outputs for 20 class CVR models (fit with median values) vs.
948 20-class DVR models, each fit to 200 bootstrapped data sets across a range of sample sizes
949 (Figure 14). Regardless of the modeling approach used, the variance in lambda estimates
950 increased with smaller samples. However, to our surprise, there was little consistent advantage of
951 the CVR approach with increasingly rarified data. Even when using sample sizes in the low
952 hundreds, both discrete and continuous approaches to parameter estimation yielded similarly

variable predictions. This finding does not support the generality that continuous functions will better estimate vital rates and hence produce better model outputs with small sample sizes. This result likely reflects in part the model-selection process inherent to fitting continuous vital rate functions. With smaller sample sizes, different sets of data can yield support for alternative forms of the vital rate functions, such as linear vs. quadratic functions, thereby altering model predictions. In addition, outliers can exert effects on entire vital rate functions when using the CVR approach, again creating variance in predictions that appear to be equivalent in their effects to the randomness generated in the estimates coming from the DVR approach. While this result might change with even smaller sample sizes, our simulation results based on 300–400 individual transitions already show so much variation that the effects of the sampling variance in the data overwhelm any advantage of one modeling approach over the other. We ran the same comparisons using 80 class CVR models (Appendix S1: Figure S19) and also used non-stratified bootstrapped data sets with proportional class boundaries (Appendix S1: Figure S20); in both cases, we find qualitatively similar results to those seen in the main simulations. In the future, it would be illuminating to estimate the relative contributions of different processes, such as model selection, outliers, and size distributions, to the precision of both DVR and CVR model predictions and how these vary with sample size for each approach.

We also conducted a different test of sample size effects, focused on the effects of low sample sizes per class for DVR models. Here we are looking at the possibility that with higher class numbers, DVR models will be increasing unreliable, since they will have at least some classes with vital rates estimated from extremely small samples (down to $n=1$ in our simulations). Using relatively low total sample sizes (see Methods) we fit models with a range of class numbers and found surprisingly little evidence for an advantage of CVR over DVR models or of a disadvantage of DVR models with higher class numbers (Figure 15 and Appendix S1: Figures S21–25), even when multiple classes have extremely low sample sizes (e.g., $N < 6$; Appendix S1: Figures S21–25). At the lowest sample sizes, for guppies and gorgonians we do see that DVR models generated a bimodal distribution of lambdas, but the second, erroneous peak in estimates results from models that have one or more classes where individuals are immortal and cannot leave, resulting in $\lambda = 1$. While erroneous, this is a pathology that is easy to recognize and rectify when building a model for a particular species. The surprising lack of advantage for CVR models also occurs for damping ratio and life span estimates (Appendix S1:

984 Figures S21-25), and does so even though we created models in which minimum sample sizes
985 per class spanned extremely low numbers.

986 *Simulation results: One more lesson.* One lesson that we learned from constructing the
987 models used in our simulations may not be apparent to many demographers, but can have large
988 effects on model performance and especially the effects of varying class number: how the size
989 distribution of new recruits is treated. For most species, including those in our focal data sets,
990 there is a wide enough range of new recruit sizes, at least after their first year of life as a seedling
991 or equivalent new recruit class, that they can grow into a meaningful range of sizes. While in
992 IPM models, the size distribution of new recruits is typically quantified (92% of IPMs in our
993 literature review; Data S1: Literature Review), in matrix models new recruits are often deposited
994 into the smallest size class and then can proceed through the other size classes of a model. In the
995 course of making our simulations, we realized that making this simple assumption guarantees an
996 artificial dependency of model predictions on class number, because use of fewer, wider size
997 classes essentially increases the size of new recruits, while narrower classes essentially shrink
998 them. This problem is avoidable if, instead, new recruits are explicitly modeled as having
999 probabilities of growing to a range of sizes. When testing effects of class number on model
1000 outputs, attention to this potential artifact is important.

1001

1002 DISCUSSION

1003 IPMs and traditional matrix models are often discussed as wholly distinct modeling
1004 approaches, with IPMs representing a substantial improvement in demographic modeling by
1005 dealing more realistically with the continuous ranges of state variables and vital rates seen for
1006 many organisms. While an argument can be made that conceptually the two methods really are
1007 distinct, both our literature review and demographic analyses, based on data for five diverse
1008 organisms, challenge the view that they are entirely distinct in practice or that one is clearly
1009 superior. Instead, we find broad overlap in the way IPMs and matrix models are fit and
1010 interpreted. A quarter of size-based matrix models estimated at least one vital rate as a
1011 continuous function of size, and although these models used substantially fewer classes on
1012 average than IPMs, the range of class numbers was very wide and overlapping across the two
1013 approaches. Further, our simulations showed no substantive differences in outputs of models
1014 using discrete vs. continuous approaches to estimating vital rates. Rather, both approaches

1015 performed similarly well when sample sizes and class numbers were sufficient and similarly
1016 poorly when data were limiting or too few classes were used to capture an organism's life
1017 history. Further, we found little advantage to using more than 10-20 classes even for extremely
1018 slow-growing and long-lived organisms, suggesting that continuous demographic processes can
1019 be well approximated by matrices of moderate dimension. This range of size classes is at the
1020 high end for most size-based matrix models in the literature, but it is far lower than that used to
1021 analyze virtually all IPMs. Although these two aspects of demographic modeling - matrix
1022 dimension and discrete vs. continuous vital rate estimation - have received the most attention in
1023 the literature, our simulations also highlight the equal or greater importance of other modeling
1024 decisions, such as how classes are defined and continuous vital rate functions are discretized, as
1025 well as the quality and quantity of the underlying demographic data. Together, these results
1026 suggest that some model building decisions have been over-emphasized whereas data collection
1027 methods and sample size effects have been under-emphasized in discussions of improving
1028 demographic models and their predictions.

1029 One of the principal critiques of traditional matrix models is that they use too few classes
1030 to accurately represent what are inherently continuous demographic processes, and this idea has
1031 been bolstered by analyses of IPMs that show that class numbers into the hundreds are often
1032 necessary to stabilize model outputs. Our simulations lend partial support to this idea, by
1033 showing that demographic models with too few classes do indeed produce biased outputs.
1034 Interestingly, however, our models were able to accurately capture the demography of long-lived
1035 species with sizes spanning up to 2.6 orders of magnitude with 10-20 classes – much less than
1036 what is typically used by IPMs. These results suggest that traditional matrix models for size-
1037 based life-histories may indeed require more classes than are typically used, although many
1038 models are built for species with smaller size ranges, more stage-based life histories, or shorter
1039 life spans than most of our focal species. For such species, there are likely to be smaller
1040 differences between the fates of most individuals and also less steep changes in vital rates across
1041 the sizes of most individuals. In such cases, fewer classes may well be sufficient, as we see with
1042 our guppy example. In addition, studies focused on particular species often make careful,
1043 biologically-based decisions about class boundaries which seem likely to yield better results than
1044 our more standardized but mindless class divisions (but see Ramula et al. 2020). Our results also
1045 suggest that the perceived need for extremely high class numbers with IPMs may be driven by

1046 the inefficiency of the midpoint method for estimating growth, or some other pathology in the
1047 way the models are being constructed, rather than a more fundamental need for high class
1048 number to capture biological patterns.

1049 The other aspect of model fitting that has been emphasized in discussions of demographic
1050 modeling has been whether vital rates are estimated discretely for each class or by using the data
1051 across all classes to fit continuous vital rate functions (CVRs). The main arguments for CVRs are
1052 that they are more biologically realistic than discrete classes, are more accurate when data are
1053 limiting, can allow easier incorporation and testing of demographic drivers, and can utilize
1054 sophisticated statistical methods, such as mixed models or Bayesian approaches (Ramula et al.
1055 2009, Merow et al. 2014b, Ehrlén et al. 2016, Elderd and Miller 2016). In our simulations, we
1056 found no evidence for the first two arguments. There was no improvement when using CVRs for
1057 a range of model outputs, including population growth, lifespan, damping ratio, or sensitivity and
1058 elasticity patterns. In fact, we observed a general tendency in our simulations for CVR-based
1059 model outputs to be more sensitive to other modeling decisions, such as whether classes are
1060 equally spaced or proportional to sample sizes. We also saw no evidence that CVRs increase the
1061 precision or accuracy of estimates as sample sizes decrease. This is in contrast to results found
1062 by Ramula et al. (2009), which compared 100-class IPMs with 4-6 class matrix models. This
1063 discrepancy may have been driven by the difference in class number rather than the method of
1064 vital rate estimation. By separating these two components in our simulations, we find a large
1065 effect of class number but little consistent effect of estimation method. Ramula et al. (2009) also
1066 found a weak correlation between matrix dimension and sample size for 63 plant matrix models,
1067 suggesting that matrix models with low sample sizes could also suffer from few classes.
1068 However, we found no relationship between matrix dimension and sample size for size-based
1069 matrix models in our literature review (Appendix S1: Fig. S2).

1070 Our results lead us to conclude that neither the continuous nor discrete approaches to
1071 estimating vital rates is inherently better. Instead, the choice of approach should depend on the
1072 particular life history and analysis goals of a given study. Discrete vital rate estimation (DVR) is
1073 arguably the most flexible approach if life history patterns are complex, because it is agnostic
1074 about many aspects of vital rate patterns. For example, multiple state variables can be easily
1075 combined into complex states representing combinations of size, age, or stage variables. DVR
1076 can also easily accommodate sharp transitions or non-linearities in vital rates, cases where

survival asymptotes at values less than 1, and cases that violate distributional assumptions about state variables (e.g., normally distributed growth). Further, the explanatory power of different model structures can be tested statistically to infer the number and placement of class divisions, and there is some evidence that this approach outperforms model structures informed by expert opinion alone (Ramula et al. 2020). Alternatively, there are clear advantages of the statistical framework of CVRs. By modeling vital rates in a regression-based framework, CVRs can easily incorporate the effects of covariates such as climate, can incorporate or correct for site or year effects as random variables, and can account for individual effects using random effects to account for repeated measures. CVRs can also provide a clear conceptual framework for hypothesis testing and model selection, and also allow investigation of sensitivities with respect to underlying functional forms or model parameters. However, it is worth noting that various methods, including multi-state mark recapture models, can also allow model selection to be applied to DVR estimation. Thus, CVR and DVR-based models may each be most appropriate for different datasets and analysis goals.

One surprising result to emerge from this work is the importance of other aspects of model fitting that have received far less attention in the demographic literature. For example, traditional matrix models often define classes based in part on sample sizes, but our results suggest that dividing classes evenly – on the transformed or untransformed scale for which size best relates to vital rates, depending on species -- generally gives more accurate results. We also identified several ways to improve methods for discretizing continuous vital rate functions. First, we show that the mesh point method can badly misestimate growth probabilities when using CVR functions, but that this is solved by using the CDF difference method. Second, our results suggest that vital rates are better characterized by using the median rather than the midpoint of a class, as long as the distribution of sampled individuals represents the size distribution in the population. We expect that this distinction is behind the slower convergence of the *Vulpicida* models with increasing class numbers. This is the only data set we used where sampling was not roughly comprehensive, but stratified over sizes, making the distribution of sampled individuals a poor characterization of the population-wide size distribution.

Finally, the most overwhelming effect on model accuracy in our simulations was the sample size of the underlying demographic data, which is an indicator of the sampling precision of vital rates and their relationships with the state variable used. We found low precision in

model outputs with sample sizes less than several hundred regardless of modeling approach, and, in these cases, CVRs did not solve the problems caused by low sample sizes. The lowest sample sizes we used (305–405) were typical of many published demographic studies, and considerably larger than used in some studies (Appendix S1: Figures S2, S26). However, our simulations pooled all demographic data to estimate a single transition matrix. This means that spatial and temporal variation in individual fates will be at least somewhat larger in our samples than would be expected in samples of a single population over a single transition, potentially inflating the variance in lambda estimates we see with small samples. Furthermore, in cases where data are collected across multiple time periods or locations and sample sizes are limiting, CVRs may enable a researcher to improve accuracy by fitting vital rate functions that borrow strength by including all the data while appropriately modeling its structure. Statistical models can also be used to estimate DVRs while accounting for random effects of site or time period (Altwegg et al. 2007, Morris et al. 2011, Ramula et al. 2020), and a mixed strategy of fitting CVRs with class-specific random effects could also be useful in some cases.

There are several other important aspects of demographic model construction that we do not consider here, but that have recently been explored and shown to be of real importance. Perhaps most critically, we do not address how the choice of state variable can influence model results. As Louthan and Doak (2018) show, measured state variables that are not closely correlated with an individual's "true state" can yield misleading model results due to errors in characterizing state. For example, perennial plant size is often characterized by measuring leaf or stem size, whereas demographic rates may in fact be driven more by below-ground energy stores. A second concern that we do not address is the distributional assumptions that are often made when modeling size transitions with CVRs. Most IPMs assume that growth is normally distributed, but this can bias model outputs if growth is asymmetric such as when growth or shrinkage is more likely (Peterson et al. 2019). In general, choices regarding the form of vital rate functions are likely to be just as important for inference as the issues investigated here. Several authors have repeatedly emphasized that IPM practitioners should carefully evaluate the goodness of model fits for vital rate functions and their influence on IPM outputs (Easterling et al. 2000, Rees et al. 2014, Ellner et al. 2016), and we echo those recommendations here.

Taken together, our results suggest that IPMs and matrix models are overly dichotomized in the literature. We suggest that this distinction is neither useful nor representative of the range

of modeling decisions that underlie every structured demographic model. Many models use some combination of continuous and discrete vital rate estimation (e.g., when some individuals are described by continuous state variables and others [juveniles, seeds, etc.] by stage). Although the methods used to build these matrices will often be very similar, the language and notation used to describe models are often completely different based on whether authors decide to refer to a model as an IPM or matrix model. In our experience, the terminology and integral notation used to describe IPMs can be intimidating to many new students and to non-specialist consumers of demographic analyses, such as conservation managers, when in fact the vital rate models and discretization methods would be familiar if described differently. In addition, much of the language used to present IPMs obscures the fact that the continuous vital rate functions are discretized into projection matrices prior to analysis, making the actual model outputs or their correspondence to matrix models difficult to understand. As we note above, many IPM studies in our literature review do not report the discretization methods used at all.

We suggest that it is more informative to refer to both projection matrix models and IPMs as Structured Population Models more generally, in part to emphasize the need to break these labels down into the important details of vital rate estimation, the number of size classes, and the methods used to discretize CVRs. In particular, we emphasize that statements suggesting that IPMs avoid discretization, are more biologically realistic, or perform better at small sample sizes, are not supported by our findings.

1158

1159 **SPECIFIC RECOMMENDATIONS**

1160 Below, we highlight several of the most important recommendations for constructing
1161 demographic models that have emerged from this work.

- 1162 1. When using an inherently continuous state variable, test the sensitivity of results to class
1163 number (particularly when using few classes).
- 1164 2. When using continuous vital rate functions (CVRs), report methods for discretization by
1165 including class number and integration method.
- 1166 3. When using CVRs to model size transitions, use the CDF difference method or explicitly
1167 show that the use of the standard mesh point method is accurate.
- 1168 4. Especially when using smaller class numbers, use population size distributions to base
1169 vital rate estimates on representative (mean or median) sizes.

1170 5. Both small sample sizes (indicative of low precision in vital rate estimates) or very few
1171 classes can result in biased or imprecise model outputs, and this should be carefully
1172 considered when interpreting or using published models (e.g., meta-analysis,
1173 COMPADRE or COMADRE databases), especially as many matrix models have been
1174 built with fewer classes than what we would recommend. A caveat to this conclusion is
1175 that for short-lived species or species with a limited range of sizes, fewer classes may be
1176 sufficient.

1177

1178 **SUMMARY**

1179 In summary, we do not find support for several common generalities and assumptions
1180 about demographic modeling methods, and we also expose some new considerations for the
1181 construction of accurate structured population models. However, our results are generally
1182 positive: widely repeated but untested assumptions about the dependence of demographic results
1183 on modeling approaches were largely unsupported, meaning that we have a far wider range of
1184 useful demographic studies to learn from than would otherwise be the case. Looking forward,
1185 this result also implies that the structure and parameterization of demographic models should
1186 always be guided by careful consideration of the species and data being modeled and that, if this
1187 is done, different approaches will generally reach the same ecological conclusions. With
1188 sufficient sample sizes and enough classes to accurately represent the key life-history variation
1189 of a given species, a range of model-fitting approaches will converge on the same answer.
1190 Structured demographic models, one of the backbone methods of population biology, are
1191 comprised of a robust set of methods that can be usefully added to, but do not require
1192 fundamental re-tooling.

1193

1194 **ACKNOWLEDGMENTS**

1195 Bruce Kendall provided many suggestions and critiques that greatly improved this work and its
1196 presentation. We also thank the many volunteers, colleagues, and assistants who helped gather
1197 the extensive data sets that we use in our simulation studies. Support for this work was provided
1198 by NSF awards 1146489, 1242558, 1242355, 1353781, 1340024, 1753980, and 1753954,
1199 1144807, 0841423, and 1144083. Support also came from: USDA NIFA Postdoctoral
1200 Fellowship (award no. 2019-67012-29726/project accession no. 1019364) for RKS; the Swiss

1201 Polar Institute of Food and Agriculture for NIC; the ICREA under the ICREA Academia
1202 Programme for CL; and SERDP contract RC-2512 and USDA National Institute of Food and
1203 Agriculture, Hatch project 1016746 for AML.

1204

SUPPORTING INFORMATION

1205 Additional supporting information may be found online at: [link to be added in production]

1206

DATA AVAILABILITY

1207

1208 Example R scripts and data files showing the routines used in our analyses are included in Data
1209 S2.

1210

LITERATURE CITED

1211

1212

1213 Altwegg, R., M. Schaub, and A. Roulin. 2007. Age-specific fitness components and their
1214 temporal variation in the barn owl. *The American Naturalist* 169:47-61.

1215 Bakker, V. J., and D. F. Doak. 2009. Population viability management: ecological standards to
1216 guide adaptive management for rare species. *Frontiers in Ecology and the Environment*
1217 7:158-165.

1218 Bakker, V. J., D. Doak, G. W. Roemer, D. K. Garcelon, T. J. Coonan, S. A. Morrison, C. Lynch,
1219 K. Ralls, and R. Shaw. 2009. Incorporating ecological drivers and uncertainty into a
1220 demographic population viability analysis for the island fox. *Ecological Monographs* 79:77-
1221 108.

1222 Bakker, V., M. Finkelstein, D. F. Doak, L. Young, E. VanderWerf, J. Arata, P. Sievert, C.
1223 Vanderlip. 2018. The albatross of assessing and managing risk for long-lived pelagic yet
1224 terrestrial breeding species. *Biological Conservation* 217:83-95.

1225 Barlow, J. and P. Boveng. 1991. Modeling age-specific mortality for marine mammal
1226 populations. *Publications, Agencies and Staff of the U.S. Department of Commerce*. 148.

1227 Batista, W. B., W. J. Platt, and R. E. Machhiavelli. 1998. Demography of a shade-tolerant tree
1228 (*Fagus grandifolia*) in a hurricane-disturbed forest. *Ecology* 79:38-53.

1229 Bernal, R. 1998. Demography of the vegetable ivory palm *Phytelephas seemannii* in Colombia,
1230 and the impact of seed harvesting. *Journal of Applied Ecology* 35:64-74.

1231 Biek, R., W. C. Funk, B. A. Maxell, and L. S. Mills. 2002. What is missing in amphibian decline
1232 research: insights from ecological sensitivity analysis. *Conservation Biology* 16:728-734.

1233 Carroll, R., C. Augspurger, A. Dobson, J. Franklin, G. Orians, W. Reid, R. Tracy, D. Wilcove,
1234 and J. Wilson. 1996. Strengthening the use of science in achieving the goals of the
1235 Endangered Species Act: an assessment by the Ecological Society of America. *Ecological
1236 Applications* 6:1-11.

1237 Caswell, H. 2001. Matrix population models: construction, analysis, and interpretation. Sinauer
1238 Associates, Sunderland, Massachusetts.

1239 Chien, P. D., P. A. Zuidema, and N. H. Nghia. 2008. Conservation prospects for threatened
1240 Vietnamese tree species: results from a demographic study. *Population Ecology* 50:227-237.

1241 Cole, L. C. 1954. The population consequences of life history phenomena. *The Quarterly Review
1242 of Biology* 29:103-137.

1243 Coma, R., M. Zabala, and J. M. Gili. 1995. Sexual reproductive effort in the Mediterranean
1244 gorgonian *Paramuricea clavata*. *Marine Ecology Progress Series* 117:173-183.

1245 Crouse, D. T., L. B. Crowder, and H. Caswell. 1987. A stage-based population model for
1246 Loggerhead sea turtles and implications for conservation. *Ecology* 68:1412-1423.

1247 Csergo, A. M., R. Salguero-Gomez, O. Broennimann, S. R. Coutts, A. Guisan, A. L. Angert, E.
1248 Welk, I. Stott, B. J. Enquist, B. McGill, J. C. Svenning, C. Viole, and Y. M. Buckley. 2017.
1249 Less favourable climates constrain demographic strategies in plants. *Ecology Letters* 20:969-
1250 980.

1251 Dahlgren, J. P., and J. Ehrlén. 2009. Linking environmental variation to population dynamics of
1252 a forest herb. *Journal of Ecology* 97:666-674.

1253 Dahlgren, J. P., M. B. Garcia, and J. Ehrlén. 2011. Nonlinear relationships between vital rates
1254 and state variables in demographic models. *Ecology* 92:1181-1187.

1255 Dibner, R. R., M. L. Peterson, A. Louthan, and D. Doak. 2019. Multiple mechanisms confer
1256 stability to isolated populations of a rare endemic plant. *Ecological Monographs* 89:e01360.

1257 Diez, J. M., I. Giladi, R. Warren, and H. R. Pulliam. 2014. Probabilistic and spatially variable
1258 niches inferred from demography. *Journal of Ecology* 102:544-554.

1259 Doak, D. F., and W. F. Morris. 2010. Demographic compensation and tipping points in climate-
1260 induced range shifts. *Nature* 467:959-962.

1261 Doak, D. F., G. K. Himes Boor, V. J. Bakker, W. F. Morris, A. Louthan, S. A. Morrison, A.
1262 Stanley, and L. B. Crowder. 2015. Recommendations for improving recovery criteria under
1263 the US Endangered Species Act. *Bioscience* 65:189-199.

1264 Easterling, M. R., S. P. Ellner, and P. M. Dixon. 2000. Size-specific sensitivity: applying a new
1265 structured population model. *Ecology* 81:694-708.

1266 Eberhardt, L.L. 1985. Assessing the Dynamics of Wild Populations. *The Journal of Wildlife
1267 Management* 49:997-1012

1268 Ehrlén, J., W. F. Morris, T. von Euler, and J. P. Dahlgren. 2016. Advancing environmentally
1269 explicit structured population models of plants. *Journal of Ecology* 104:292-305.

1270 Elderd, B., and T. E. Miller. 2016. Quantifying demographic uncertainty: Bayesian methods for
1271 integral projection models. *Ecological Monographs* 86:125-144.

1272 Ellner, S. P., and M. Rees. 2006. Integral projection models for species with complex
1273 demography. *American Naturalist* 167:410-428.

1274 Ellner, S. P., D. Z. Childs, and M. Rees. 2016. Data-driven modelling of structured populations:
1275 A practical guide to the integral projection model. Springer International Publishing,
1276 Switzerland.

1277 Fitzpatrick S.W., G. S. Bradburd, C. T. Kremer, P. E. Salerno, L. M. Angeloni, and W. C. Funk.
1278 2020. Genomic and fitness consequences of genetic rescue in wild populations. *Current
1279 Biology* 30:517-522.

1280 Fitzpatrick S.W., J. C. Gerberich, L. M. Angeloni, L. L. Bailey, E. D. Broder, J. Torres-Dowdall,
1281 C. A. Handelsman, A. López-Sepulcre , D. N. Reznick, C. K. Ghalambor, and W. C. Funk .
1282 2016. Gene flow from an adaptively divergent source causes rescue through genetic and
1283 demographic factors in two wild populations of Trinidadian guppies. *Evolutionary
1284 Applications* 9:879-891

1285 Franco, M. and J. Silvertown. 2004. A comparative demography of plants based upon elasticities
1286 of vital rates. *Ecology* 85:531-538.

1287 Franco, M., and J. Silvertown. 1996. Life history variation in plants: an exploration of the fast-
1288 slow continuum hypothesis. *Philosophical Transactions of the Royal Society of London. B*
1289 351:1341-1348.

1290 Gamelon, M., O. Gimenez, E. Baubet, T. Coulson, S. Tuljapurkar, and J. M. Gaillard. 2014.
1291 Influence of life-history tactics on transient dynamics: a comparative analysis across
1292 mammalian populations. *American Naturalist* 184:673-683.

1293 Garcia, M. B. 2003. Demographic viability of a relict population of the critically endangered
1294 plant *Borderea chouardii*. *Conservation Biology* 17:1672–1680.

1295 Gillespie, J. H. 1977. Natural selection for variances in offspring numbers: a new evolutionary
1296 principle. *American Naturalist* 111:1010-1014.

1297 Griffith, A. B. 2017. Perturbation approaches for integral projection models. *Oikos* 126:1675-
1298 1686.

1299 Gross, K., W. F. Morris, M. S. Wolosin, and D. F. Doak. 2005. Modeling vital rates improves
1300 estimation of population projection matrices. *Population Ecology* 48:79-89.

1301 Haridas, C. V. and S. Tuljapurkar. 2005. Elasticities in variable environments: properties and
1302 implications. *The American Naturalist* 166:481-495

1303 Hartshorn, G. S. 1975. A matrix model of tree population dynamics, p. 41-51. In F. B. Golley
1304 and E. Medina, eds. *Tropical ecological systems: trends in terrestrial and aquatic research*.
1305 Springer-Verlag, New York.

1306 Hunter, C. M., H. Caswell, M. C. Runge, E. V. Regehr, S. C. Amstrup, and I. Stirling. 2010.
1307 Climate change threatens polar bear populations: a stochastic demography analysis. *Ecology*
1308 91:2883-2897.

1309 Jacquemyn, H., R. Brys, and E. Jongejans. 2010. Size-dependent flowering and costs of
1310 reproduction affect population dynamics in a tuberous perennial woodland orchid. *Journal of
1311 Ecology* 98:1204-1215.

1312 Jongejans, E., O. Skarpaas, and K. Shea. 2008. Dispersal, demography and spatial population
1313 models for conservation and control management. *Perspectives in Plant Ecology, Evolution,
1314 and Systematics* 9:153-170.

1315 Katz, D. S. 2016. The effects of invertebrate herbivores on plant population growth: a meta-
1316 regression analysis. *Oecologia* 182:43-53.

1317 Kendall, B. E., M. Fujiwara, J. Diaz-Lopez, S. Schneider, J. Voigt, and S. Wiesner. 2019.
1318 Persistent problems in the construction of matrix population models. *Ecological Modelling*
1319 406:33-43.

1320 Lande, R. 1982. A quantitative genetic theory of life history evolution. *Ecology* 63:607-615.

1321 Lande, R. 1988. Demographic models of the northern spotted owl (*Strix occidentalis caurina*).
1322 *Oecologia* 75:601-607.

1323 Lefkovitch, L. P. 1965. The study of population growth in organisms grouped by stages.
1324 *Biometrics* 21:1-18.

1325 Leslie, P. H. 1945. On the use of matrices in certain population mathematics. *Biometrika* 33:183-
1326 212.

1327 Linares, C., and D. F. Doak. 2010. Forecasting the combined effects of disparate disturbances on
1328 the persistence of long-lived gorgonians: a case study of *Paramuricea clavata*. *Marine
1329 Ecology Progress Series* 402:59-68.

1330 Linares, C., D. Doak, R. Coma, D. Díaz, and M. Zabala. 2007. Life history and viability of a
1331 long-lived marine invertebrate: the octocoral *Paramuricea clavata*. *Ecology* 88:918-928.

1332 Louthan, A. M., R. M. Pringle, J. R. Goheen, T. M. Palmer, W. F. Morris, and D. F. Doak. 2018.
1333 Aridity weakens population-level effects of multiple species interactions on *Hibiscus meyeri*.
1334 *Proceedings of the National Academy of Sciences* 115:543-548.

1335 Louthan, A., and D. Doak. 2018. Measurement error of state variables creates substantial bias in
1336 results of demographic population models. *Ecology* 99:2308-2317.

1337 Matsuda, H., and K. Nichimori. 2003. A size-structured model for a stock-recovery program for
1338 an exploited endemic fisheries resource. *Fisheries Research* 60:223-236.

1339 McEvoy, P. B., and E. M. Coombs. 1999. Biological control of plant invaders: regional patterns,
1340 field experiments, and structured population models. *Ecological Applications* 9:387-401.

1341 Merow, C., A. M. Latimer, A. M. Wilson, S. M. McMahon, A. G. Rebelo, and J. A. Silander.
1342 2014b. On using integral projection models to generate demographically driven predictions
1343 of species' distributions: development and validation using sparse data. *Ecography* 37:1167-
1344 1183.

1345 Merow, C., J. P. Dahlgren, C. J. E. Metcalf, D. Z. Childs, M. E. K. Evans, E. Jongejans, S.
1346 Record, M. Rees, R. Salguero-Gómez, S. M. McMahon, and S. Ramula. 2014a. Advancing
1347 population ecology with integral projection models: a practical guide. *Methods in Ecology
1348 and Evolution* 5:99-110.

1349 Metcalf, C. J. E., S. M. McMahon, R. Salguero-Gómez, E. Jongejans, and M. Rees. 2013.
1350 IPMpack: an R package for integral projection models. *Methods in Ecology and Evolution*
1351 4:195-200.

1352 Miller, T.E.X., and B. D. Inouye. 2011. Confronting two-sex demographic models with data.
1353 Ecology 92:2141–2151

1354 Moloney, K. A. 1986. A generalized algorithm for determining category size. Oecologia 69:176-
1355 180.

1356 Molowny-Horas, R., M. L. Suarez, and F. Lloret. 2017. Changes in the natural dynamics of
1357 *Nothofagus dombeyi* forests: population modeling with increasing drought frequencies.
1358 Ecosphere 8:1-17.

1359 Montero-Serra, I., J. Garrabou, D. F. Doak, L. Figuerola, B. Hereu, J.-B. Ledoux, and C. Linares.
1360 2018. Accounting for life-history strategies and timescales in marine restoration.
1361 Conservation Letters 11:e12341.

1362 Morris, W. F., and D. F. Doak. 2002. Quantitative conservation biology. Sinauer, Sunderland,
1363 Massachusetts, USA.

1364 Morris, W. F., J. Altmann, D. K. Brockman, M. Cords, L. M. Fedigan, A. E. Pusey, T. S.
1365 Stoinski, A. M. Bronikowski, S. C. Alberts, and K. B. Strier. 2011. Low demographic
1366 variability in wild primate populations: fitness impacts of variation, covariation, and serial
1367 correlation in vital rates. American Naturalist 177:E14-28.

1368 Needham, J., C. Merow, C. H. Chang-Yang, H. Caswell, and S. M. McMahon. 2018. Inferring
1369 forest fate from demographic data: from vital rates to population dynamic models.
1370 Proceedings of the Royal Society of London B 285: 20172050.

1371 Ozgul, A., T. Coulson, A. Reynolds, T. C. Cameron, and T. G. Benton. 2012. Population
1372 responses to perturbations: the importance of trait-based analysis illustrated through a
1373 microcosm experiment. American Naturalist 179:582-594.

1374 Palmer, T. M., D. Doak, M. L. Stanton, J. L. Bronstein, E. T. Kiers, T. P. Young, J. R. Goheen,
1375 and R. M. Pringle. 2010. Synergy of multiple partners, including freeloaders, increases host
1376 fitness in a multispecies mutualism. Proceedings of the National Academy of Sciences
1377 107:17234-17239.

1378 Peterson, M. L., W. Morris, C. Linares, and D. Doak. 2019. Improving structured population
1379 models with more realistic representations of non-normal growth. Methods in Ecology and
1380 Evolution 10:1431-1444.

1381 Picard, N., and J. Liang. 2014. Matrix models for size-structured populations: unrealistic fast
1382 growth or simply diffusion? PLOS One 9:e98254.

1383 Pulliam, H. R. 1988. Sources, sinks, and population regulation. *American Naturalist* 132:652-
1384 661.

1385 R Core Development Team. 2015. R: A language and environment for statistical computing. R
1386 Foundation for Statistical Computing, Vienna, Austria.

1387 Ramula, S., and K. Lehtilä. 2005. Matrix dimensionality in demographic analyses of plants:
1388 when to use smaller matrices? *Oikos* 111:563-573.

1389 Ramula, S., M. Rees, and Y. M. Buckley. 2009. Integral projection models perform better for
1390 small demographic data sets than matrix population models: a case study of two perennial
1391 herbs. *Journal of Applied Ecology* 46:1048-1053.

1392 Ramula, S., N. Z. Kerr and E. E. Crone. 2020. Using statistics to design and estimate vital rates
1393 in matrix population models for a perennial herb. *Population Ecology* 62:53-63.

1394 Rees, M., and S. P. Ellner. 2009. Integral projection models for populations in temporally
1395 varying environments. *Ecological Monographs* 79:575-594.

1396 Rees, M., D. Z. Childs, and S. P. Ellner. 2014. Building integral projection models: a user's
1397 guide. *Journal of Animal Ecology* 83:528-545.

1398 Rees, M., D. Z. Childs, J. C. Metcalf, K. E. Rose, A. W. Sheppard, and P. J. Grubb. 2006. Seed
1399 dormancy and delayed flowering in monocarpic plants: selective interactions in a stochastic
1400 environment. *American Naturalist* 168:E53-E71.

1401 Rogers-Bennett, L., and D. W. Rogers. 2006. A semi-empirical growth estimation method for
1402 matrix models of endangered species. *Ecological Modelling* 195:237-246.

1403 Sæther, B.-E., and Ø. Bakke. 2000. Avian life history variation and contribution of demographic
1404 traits to the population growth rate. *Ecology* 81:642-653.

1405 Salguero-Gómez, R. and J. B. Plotkin. 2010. Matrix dimensions bias demographic inferences:
1406 implications for comparative plant demography. *American Naturalist* 176:710-722.

1407 Salguero-Gómez, R., O. R. Jones, C. R. Archer, C. Bein, H. de Buhr, C. Farack, F. Gottschalk,
1408 A. Hartmann, A. Henning, G. Hoppe, G. Romer, T. Ruoff, V. Sommer, J. Wille, J. Voigt, S.
1409 Zeh, D. Vieregg, Y. M. Buckley, J. Che-Castaldo, D. Hodgson, A. Scheuerlein, H. Caswell,
1410 and J. W. Vaupel. 2016a. COMADRE: a global data base of animal demography. *Journal of*
1411 *Animal Ecology* 85:371-384.

1412 Salguero-Gómez, R., O. R. Jones, C. R. Archer, Y. M. Buckley, J. Che-Castaldo, H. Caswell, D.
1413 Hodgson, A. Scheuerlein, D. A. Conde, E. Brinks, H. de Buhr, C. Farack, F. Gottschalk, A.

1414 Hartmann, A. Henning, G. Hoppe, G. Römer, J. Runge, T. Ruoff, J. Wille, S. Zeh, R.
1415 Davison, D. Vieregg, A. Baudisch, R. Altwegg, F. Colchero, M. Dong, H. de Kroon, J.-D.
1416 Lebreton, C. J. E. Metcalf, M. M. Neel, I. M. Parker, T. Takada, T. Valverde, L. A. Vélez-
1417 Espino, G. M. Wardle, M. Franco, and J. W. Vaupel. 2015. The COMPADRE Plant Matrix
1418 Database: an open online repository for plant demography. *Journal of Ecology* 103:202-218.
1419 Salguero-Gómez, R., O. R. Jones, E. Jongejans, S. P. Blomberg, D. Hodgson, C. Mbeau-Ache, P.
1420 A. Zuidema, H. De Kroon, and Y. M. Buckley. 2016b. Fast-slow continuum and
1421 reproductive strategies structure plant life-history variation worldwide. *Proceedings of the
1422 National Academy of Sciences* 113:230-235.
1423 Schemske, D. W., B. C. Husband, M. H. Ruckelshaus, C. Goodwillie, I. M. Parker, and J. G.
1424 Bishop. 1994. Evaluating approaches to the conservation of rare and endangered plants.
1425 *Ecology* 75:584-606.
1426 Sergei, I. 2015. binr: Cut Numeric Values into Evenly Distributed Groups. R package version
1427 1.1. <https://CRAN.R-project.org/package=binr>
1428 Shaffer, M. L. 1981. Minimum population sizes for species conservation. *Bioscience* 31:131-
1429 134.
1430 Shaffer, M. L. 1983. Determining minimum viable population sizes for the grizzly bear. *Bears:
1431 their biology and management* 5:133-139.
1432 Shea, K. 1998. Management of populations in conservation, harvesting and control. *Trends in
1433 Ecology and Evolution* 13:371-375.
1434 Shimatani, I. K., Y. Kubota, K. Araki, S.-I. Aikawa, and T. Manabe. 2007. Matrix models using
1435 fine size classes and their application to the population dynamics of tree species: Bayesian
1436 non-parametric estimation. *Plant Species Biology* 22:175-190.
1437 Shriver, R. K., C. Andrews, R. Arkle, D. Barnard, M. Duniway, M. J. Germino, D. S. Pilliod, D.
1438 Pyke, J. Welty, and J. Bradford. 2019. Transient population dynamics impede restoration and
1439 may promote ecosystem transformation after disturbance. *Ecology Letters* 22:1357-1366
1440 Shriver, R. K., K. Cutler, and D. F. Doak. 2012. Comparative demography of an epiphytic
1441 lichen: support for general life history patterns and solutions to common problems in
1442 demographic parameter estimation. *Oecologia* 170:137-146.
1443 Siler, W. 1977. A Competing-Risk Model for Animal Mortality. *Ecology* 60:750-757

1444 Silvertown, J., M. Franco, I. Pisanty, and A. Mendoza. 1993. Comparative plant demography:
1445 relative importance of life-cycle components to the finite rate of increase in woody and
1446 herbaceous perennials. *Journal of Ecology* 81:465-476.

1447 Stearns, S. C. 1992. *The evolution of life histories*. Oxford University Press, Oxford.

1448 Stubben, C. J., and B. G. Milligan. 2007. Estimating and analyzing demographic models using
1449 the popbio package in R. *Journal of Statistical Software* 22:11.

1450 Ureta, C., C. Martorell, J. Hortal, and J. Fornoni. 2012. Assessing extinction risks under the
1451 combined effects of climate change and human disturbance through the analysis of life-
1452 history plasticity. *Perspectives in Plant Ecology, Evolution, and Systematics* 14:393-401.

1453 Vandermeer, J. 1978. Choosing category size in a stage projection matrix. *Oecologia* 32:79-84.

1454 White, J. W., K. J. Nickols, D. Malone, M. H. Carr, R. M. Starr, F. Cordoleani, M. L. Baskett, A.
1455 Hastings, and L. W. Botsford. 2016. Fitting state-space integral projection models to size-
1456 structured time series data to estimate unknown parameters. *Ecological Applications*
1457 26:2677-2694.

1458 Wilber, M. Q., R. A. Knapp, M. Toothman, and C. J. Briggs. 2017. Resistance, tolerance and
1459 environmental transmission dynamics determine host extinction risk in a load-dependent
1460 amphibian disease. *Ecology Letters* 20:1169-1181.

1461 Williams, J. L. 2009. Flowering life-history strategies differ between the native and introduced
1462 ranges of a monocarpic perennial. *American Naturalist* 174:660-672.

1463 Williams, J. L., T. E. Miller, and S. P. Ellner. 2012. Avoiding unintentional eviction from
1464 integral projection models. *Ecology* 93:2008-2014.

1465 Yau, A. J., H. S. Lenihan, and B. E. Kendall. 2014. Fishery management priorities vary with
1466 self-recruitment in sedentary marine populations. *Ecological Applications* 24:1490-1504.

1467 Yokomizo, H., T. Takada, K. Fukaya, and J. G. Lambrinos. 2017. The influence of time since
1468 introduction on the population growth of introduced species and the consequences for
1469 management. *Population Ecology* 59:89-97.

1470 Zuidema, P. A. 2000. Demography of exploited tree species in the Bolivian Amazon. Utrecht
1471 University, Utrecht.

1472 Zuidema, P. A., E. Jongejans, P. D. Chien, H. J. During, and F. Schieving. 2010. Integral
1473 Projection Models for trees: a new parameterization method and a validation of model
1474 output. *Journal of Ecology* 98:345-355.

1475 **TABLES**

1476 Table 1: Summary of studies included in the literature review.

	Number models	Number species	Deterministic		Stochastic	
			prop. Matrix	prop. IPM	prop. Matrix	prop. IPM
Annual forbs	24	24	0.75	0.0	0.25	0
Perennial forbs	314	236	0.46	0.18	0.27	0.08
Woody plants	255	222	0.45	0.28	0.19	.08
Algae, lichen, & mosses	13	12	0.31	0	0.69	0
Other non-woody plants*	92	64	0.39	0.40	0.12	0.09
Total autotrophs	698	558	0.46	0.24	0.22	0.08
Amphibians	20	19	0.55	0.15	0.30	0.0
Reptiles	29	24	0.69	0.03	0.24	0.03
Fishes	63	45	0.62	0.22	0.13	0.03
Birds	134	108	0.68	<0.01	0.31	<0.01
Mammals	240	175	0.78	0.03	0.18	0.01
Total vertebrates	486	371	0.71	0.06	0.22	0.01
Invertebrates	87	72	0.69	0.10	0.15	0.06
Total	1271	1001	0.57	0.16	0.22	0.05

1477 * Including ferns, graminoids, and Cactaceae

1478 **FIGURE LEGENDS**

1479 Figure 1: Diagram of the key steps and considerations in fitting either a matrix model or Integral
 1480 Projection Model (IPM). Both approaches begin and end with the same steps (yellow boxes) but
 1481 may differ in their methods of parameter estimation (blue boxes) and resulting matrix
 1482 dimensions (green boxes).

1483

1484 Figure 2. Comparison of methods used to calculate probabilities of growing from a given starting
1485 size into a given size bin (x). A) The probability density of size at t+1 can be discretized into
1486 classes (defined by black lines) with midpoint sizes (circles). B) The probability of growing into
1487 a particular class is most often approximated by the midpoint method, by evaluating the
1488 probability density at the midpoint and multiplying by the class width (h). C) Alternatively, the
1489 probability of growing into a class is given exactly by the difference in the cumulative
1490 probability function (CDF) values at the bin edges. The approximation in B is accurate with
1491 many narrow bins relative to the variance in growth (D), but can be poor if classes are wide
1492 relative to the variance in growth (E). The actual growth probabilities based on differences in the
1493 cumulative density function or CDF (red dots) sum to 1, whereas the approximated growth
1494 probabilities based on point estimates from the PDF (blue dots) may be less than or greater than
1495 1.

1496

1497 Figure 3: Changes in published demographic models over time. Circles are the proportion of A)
1498 models that are described as IPMs vs. matrix models, and B) matrix models that use continuous
1499 vital rate (CVR) estimation published between 2002 and 2018, with fitted relationships over
1500 time. Proportions are shown for all models (open circles, dashed lines) or only size-based models
1501 (filled circles, solid lines). Circle size is proportional to the total number of models.

1502

1503 Figure 4. Histograms of the number of classes used in demographic models published between
1504 2002 and 2018. Histograms are shown for A) all models or B) models with size as the state
1505 variable, divided between matrix models (solid black lines) and Integral Projection Models
1506 (IPMs; dashed red lines). Histogram values are shown as points connected by a line.

1507

1508 Figure 5: The empirical work flow for demographic models published between 2002 and 2018.
1509 Arrow and circle widths indicate the number of corresponding models. Note that all Integral
1510 Projection Model (IPM) parameter estimation is classified as continuous.

1511

1512 Figure 6. Size distributions of individuals included the example data sets used for demographic
1513 simulations, shown on the scales used to construct the demographic models. Note that for all
1514 species other than *Borderea*, before using the data in simulations we set a maximum size that

1515 eliminated long, very sparse tails of larger sizes, as these created problems for the automated
1516 binning of data used in our simulations.

1517

1518 Figure 7. An illustration of the problems with standard mesh point growth estimation. A) A
1519 distribution of ending size values, with mean 50 and SD 0.5, on a possible size range between 0
1520 and 100 and with probabilities shown for classes of width 1. B) The summed probability of
1521 growing to any size, as estimated by the standard mesh point method. Results are shown for bin
1522 numbers between 10 and 100. Each line shows results for a different mean ending size between
1523 49 and 51. Any reasonable way to estimate growth rates should yield a summed probability of
1524 exactly one. Unless high mesh point numbers are used, the mesh point method yields values
1525 much larger or smaller than one most of the time. With a narrower ending size distribution, far
1526 higher bin numbers are needed to yield reasonable results.

1527

1528 Figure 8. Even at high class numbers, the mesh point approach yields inaccurate growth rates for
1529 some starting size classes. Results show the summed growth probabilities for each starting size
1530 for models built with 50 (green) or 100 (blue) classes for each of our focal species. For four of
1531 the five species, the mesh point method gives poor total growth estimates for some large or small
1532 size classes, even with 100 classes.

1533

1534 Figure 9. Estimates of lambda derived from continuous vital rate (CVR) models built with either
1535 the standard mesh point approach to estimate growth or using the cumulative distribution
1536 function (CDF) difference approach, shown for each species. The mesh point approach yields
1537 much worse estimates of lambda at low to moderate class numbers.

1538

1539 Figure 10. Lambda values with varying class number and modeling approaches for each focal
1540 species. Models are built using class divisions that evenly divide the size range and have a
1541 constant width (left) or that proportionally divide the size range to include similar sample sizes
1542 within each class (right). Within each panel, data are shown for models built with discrete vital
1543 rate estimation (DVR) or with continuous vital rate function using either midpoint (CVR –
1544 midpoint) or median (CVR – median) size estimates of class-specific vital rates. Note the
1545 different range of class numbers on the x-axis for guppies.

1546

1547 Figure 11. Life span estimates for four species, with varying class number and modeling
1548 approaches. Models are built using class divisions that evenly divide the size range and have a
1549 constant width (left) or that proportionally divide the size range to include similar sample sizes
1550 within each class (right). Within each panel, data are shown for models built with discrete vital
1551 rate estimation (DVR) or with continuous vital rate function using either midpoint (CVR –
1552 midpoint) or median (CVR – median) size estimates of class-specific vital rates.

1553

1554 Figure 12. Damping ratios with varying class number and modeling decisions. Models are built
1555 using class divisions that evenly divide the size range and have a constant width (left) or that
1556 proportionally divide the size range to include similar sample sizes within each class (right).
1557 Within each panel, data are shown for models built with discrete vital rate estimation (DVR) or
1558 with continuous vital rate function using either midpoint (CVR – midpoint) or median (CVR –
1559 median) size estimates of class-specific vital rates.

1560

1561 Figure 13. Close correspondence between elasticity values generated by a 20 class DVR and an
1562 80 class continuous vital rate (CVR) model for each species. To condense values from the larger
1563 model, we summed sets of elasticities in each column of the matrix that corresponded to a single,
1564 broader category in the smaller model, and then took the average of these values across columns
1565 corresponding to the categories in the smaller model. We only compare elasticities for non-zero
1566 matrix elements. Pearson correlation coefficients are shown for each relationship, and lines give
1567 the 1:1 slope. Appendix S1: Figure S18 shows a comparable figure for sensitivity values.

1568

1569 Figure 14. Distribution of lambda estimates with declining sample sizes. For each of 200 random
1570 draws of data with decreasing sample sizes, we fit a 20 bin continuous vital rate (CVR) based
1571 model (gray) or a 20 bin DVR-based model (black). CVR models were fit using median bin
1572 characterization and all models used even size classes (see Methods for more description of the
1573 size class boundaries). The horizontal line running through each distribution shows the mean.
1574 See Figure S19 for a comparison of the 20 class DVR models with 80 class CVR models.

1575

1576 Figure 15. Distribution of lambda estimates with increasing size classes. For each of 200 random
1577 draws of data with a single decreased sample size, we fit a 20 class continuous vital rate (CVR)
1578 based model (gray) or a 20 class DVR-based model (black). CVR models were fit using median
1579 class characterization and all models used even size classes. The horizontal line running through
1580 each distribution shows the mean. See Figures S21-25 for comparable results for damping ratios
1581 and life spans and for summaries of size-class specific sample sizes.

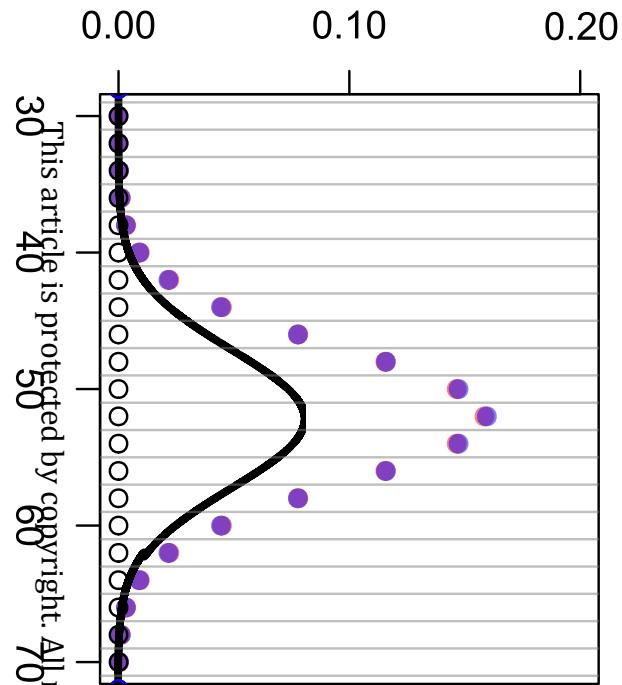
Author Manuscript

1. Demographic data

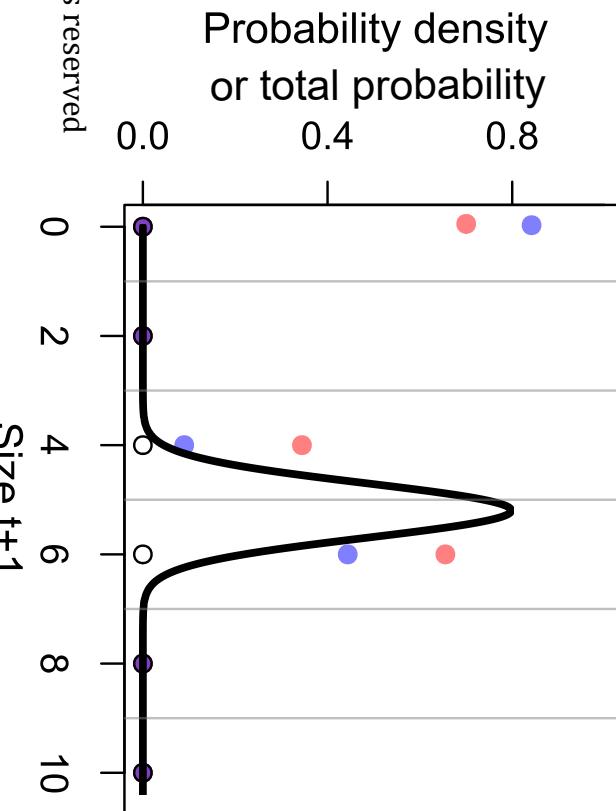
Vital rates (e.g., individual growth, survival, & reproduction)

One or more state variables (e.g., size, age, life history stage)

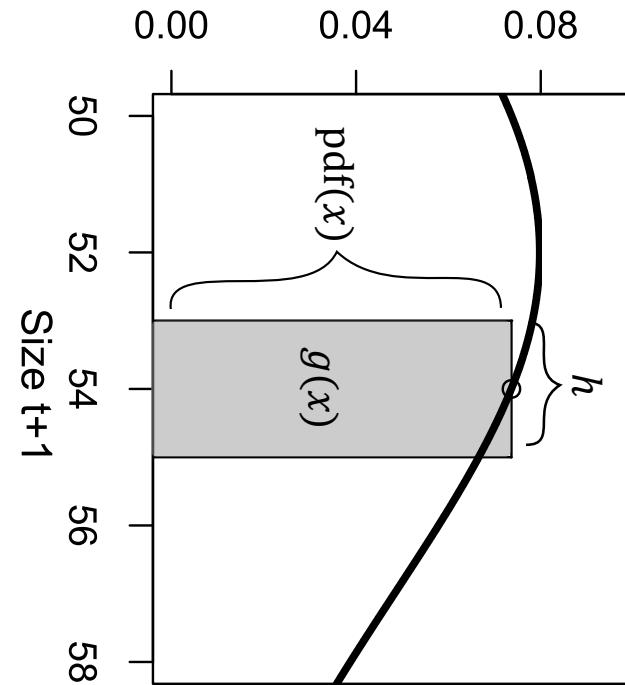
Probability density
or total probability



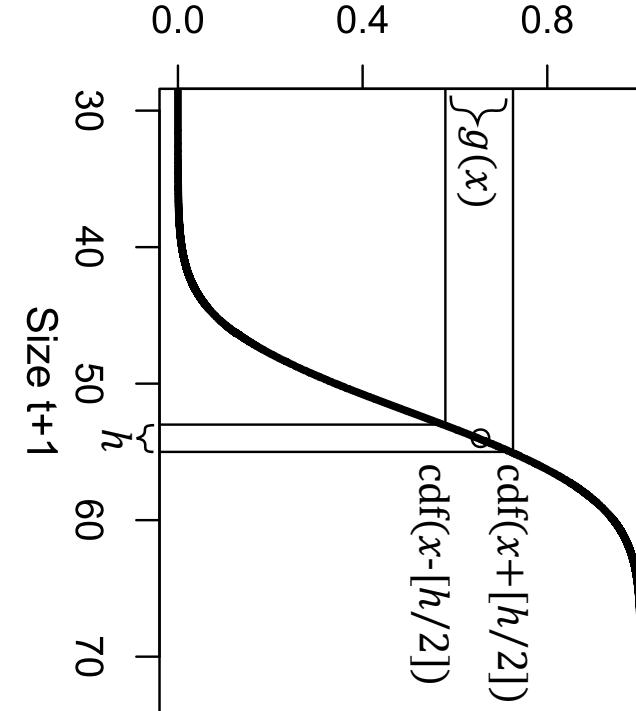
Probability density
or total probability



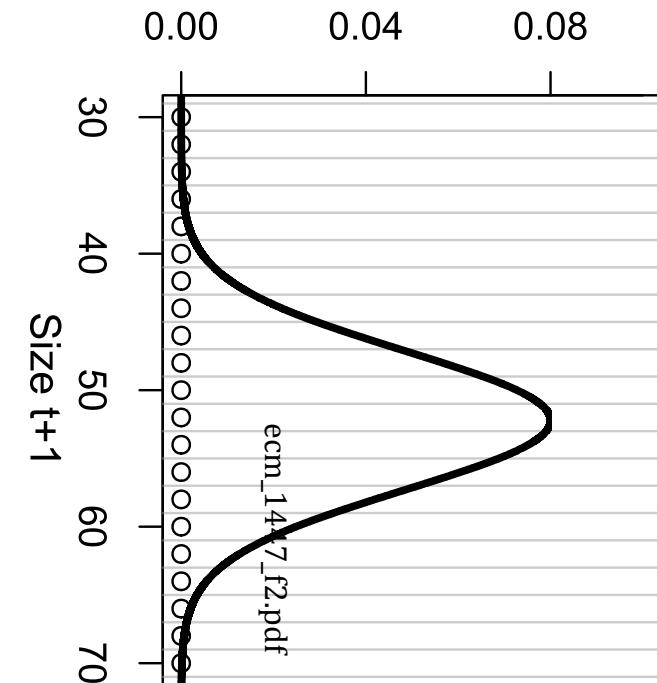
Probability density



Cumulative probability



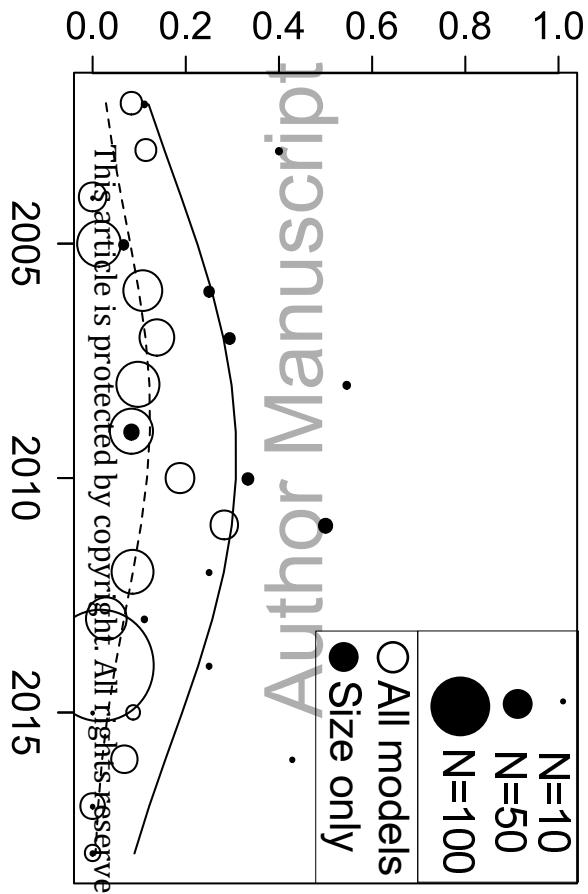
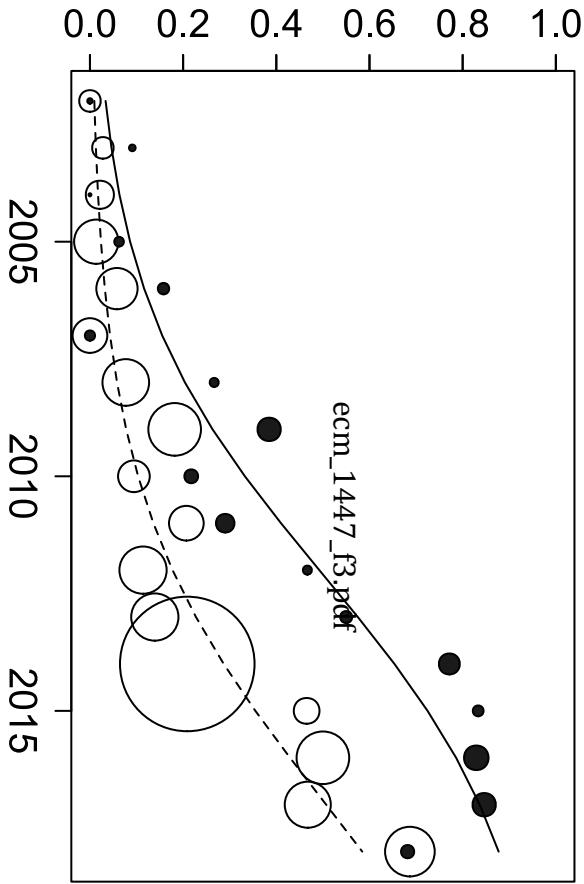
Probability density



a)

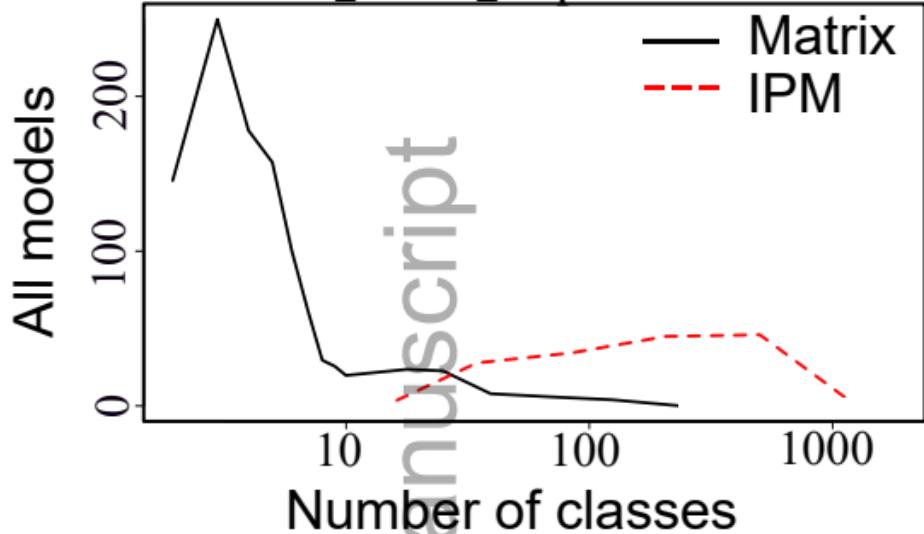
Proportion IPMs

b)

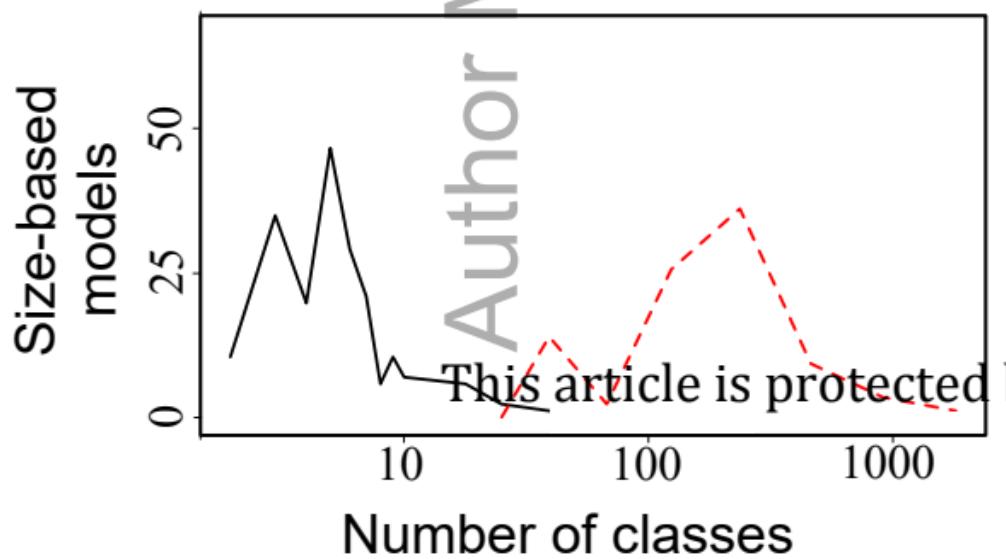
Proportion matrix
models with CVR

a)

ecm_1447_f4.pdf



b)



Data

Stage

Age

Size

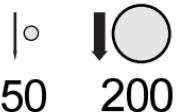
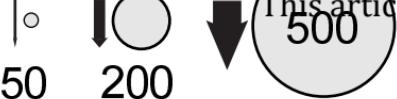
Other

Parameter estimation

Model type

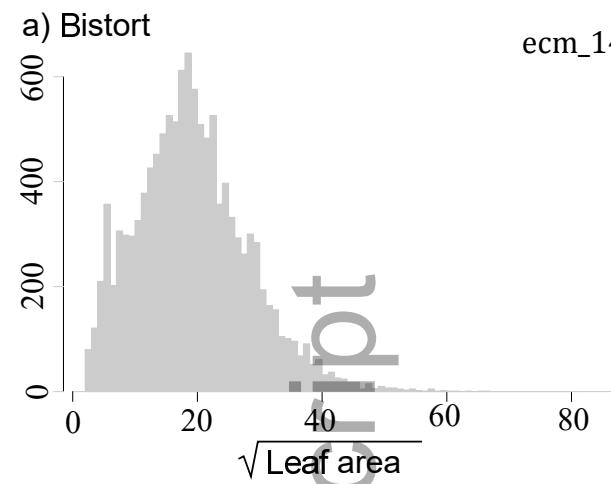
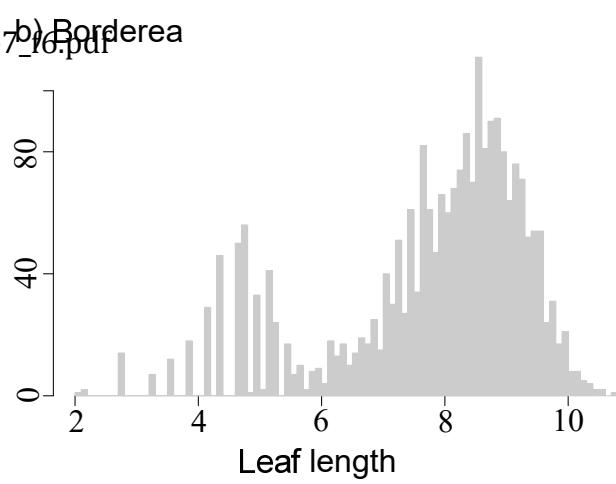
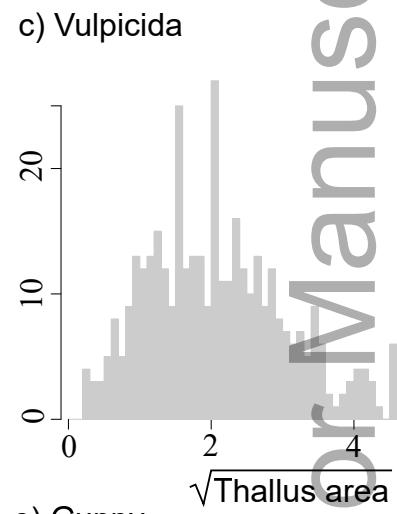
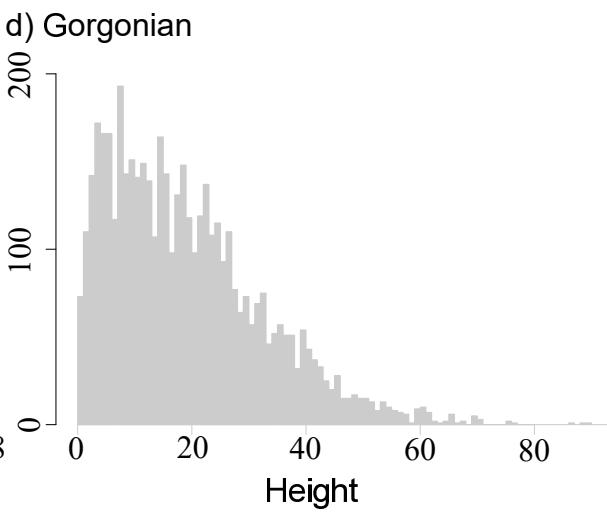
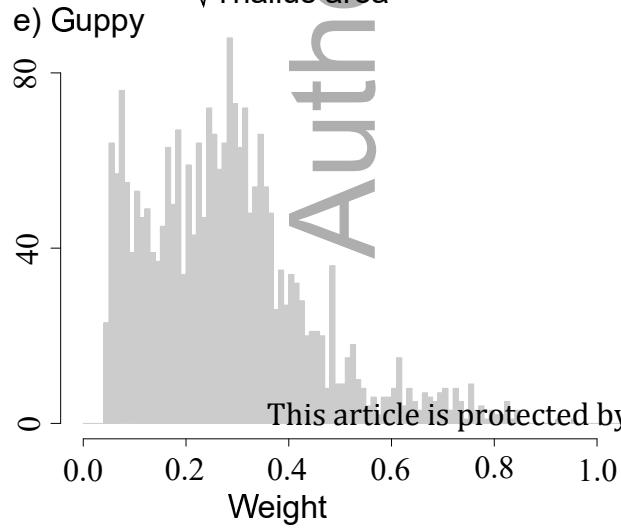
Analysis

Sample size



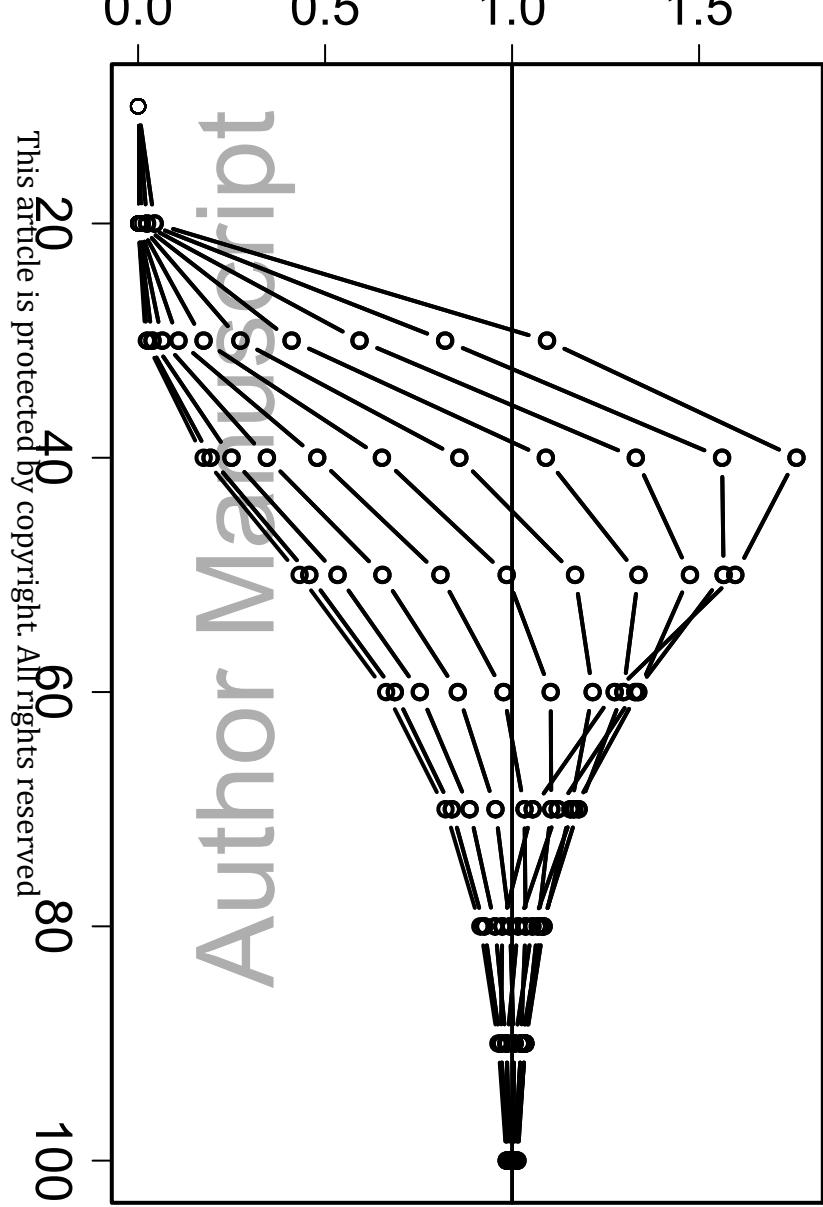
This article is protected by copyright. All rights reserved.

500



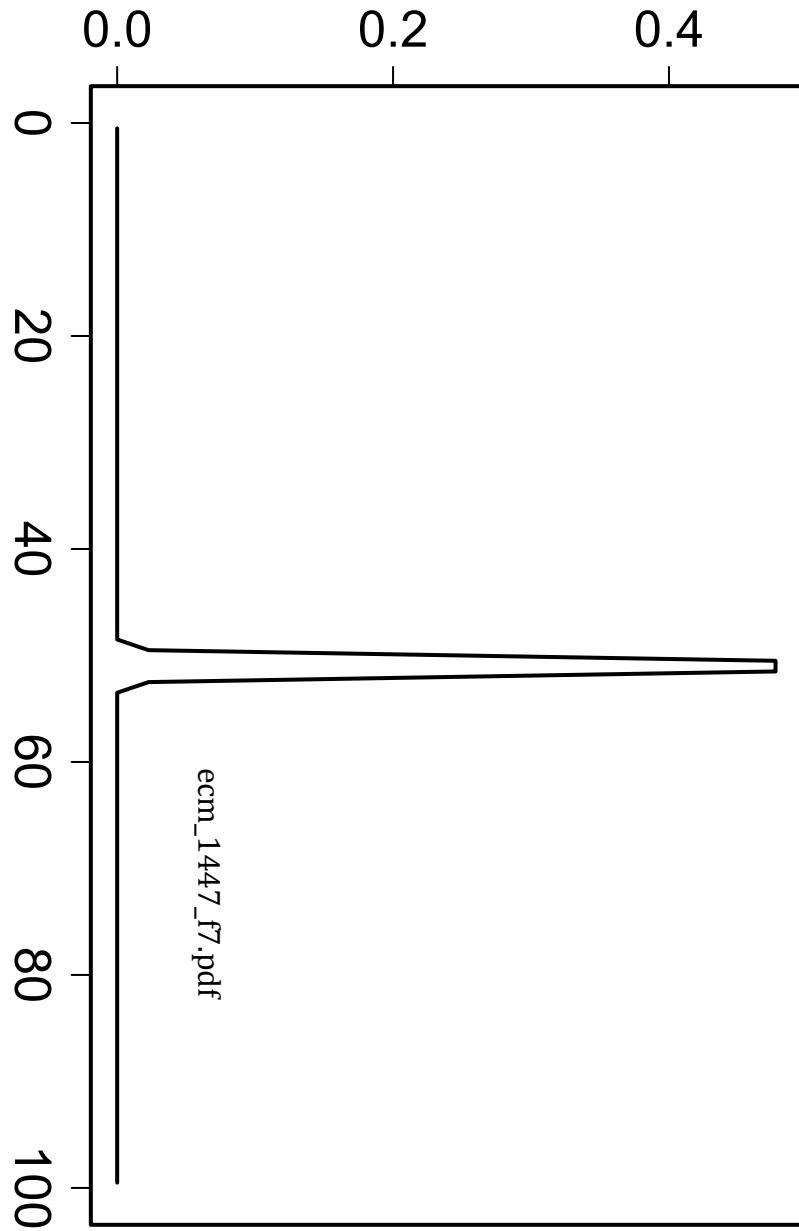
Summed growth probability

b)



Probability

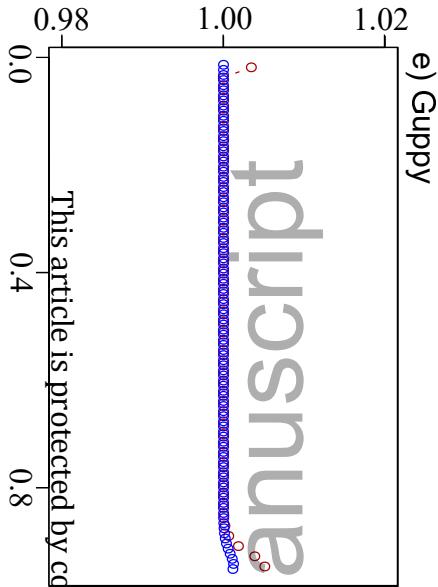
a)



Author Manuscript

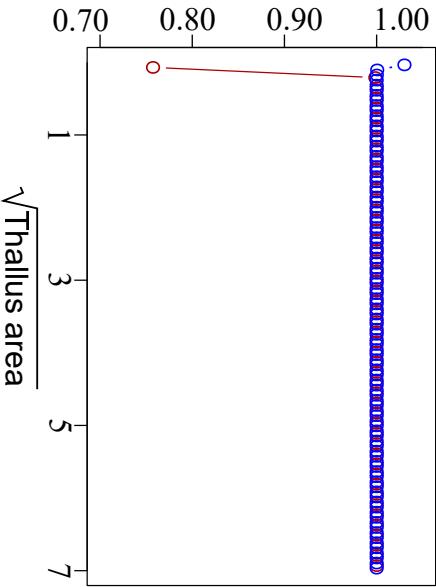
This article is protected by copyright. All rights reserved

Summed growth probabilities



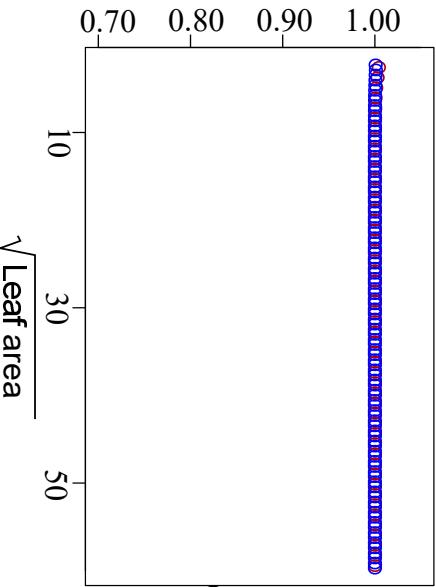
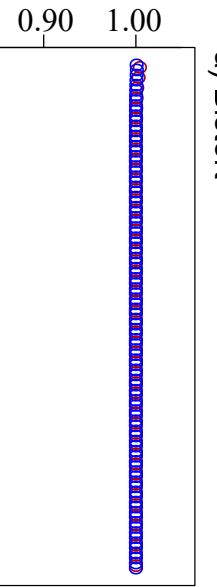
e) Guppy

Summed growth probabilities

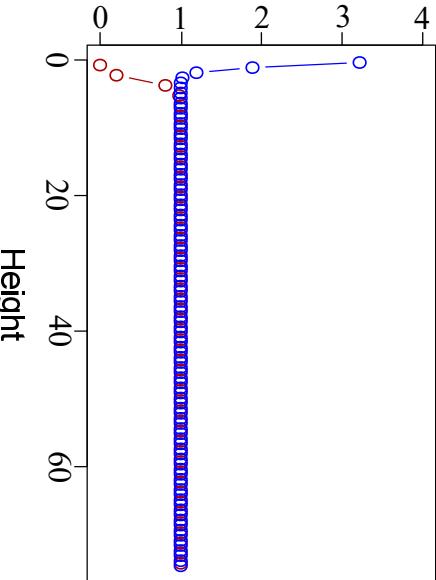


c) Vulpicida

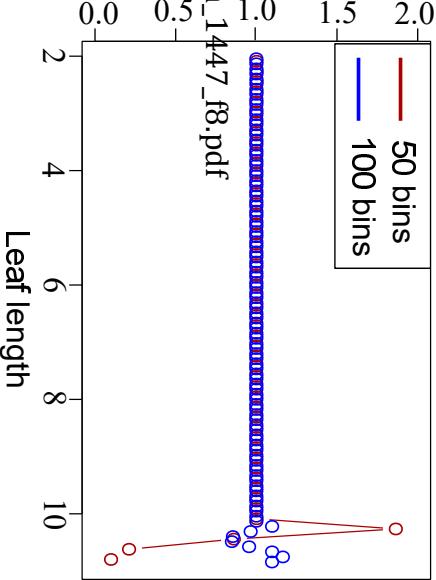
Summed growth probabilities



a) Bistort



d) Gorgonian

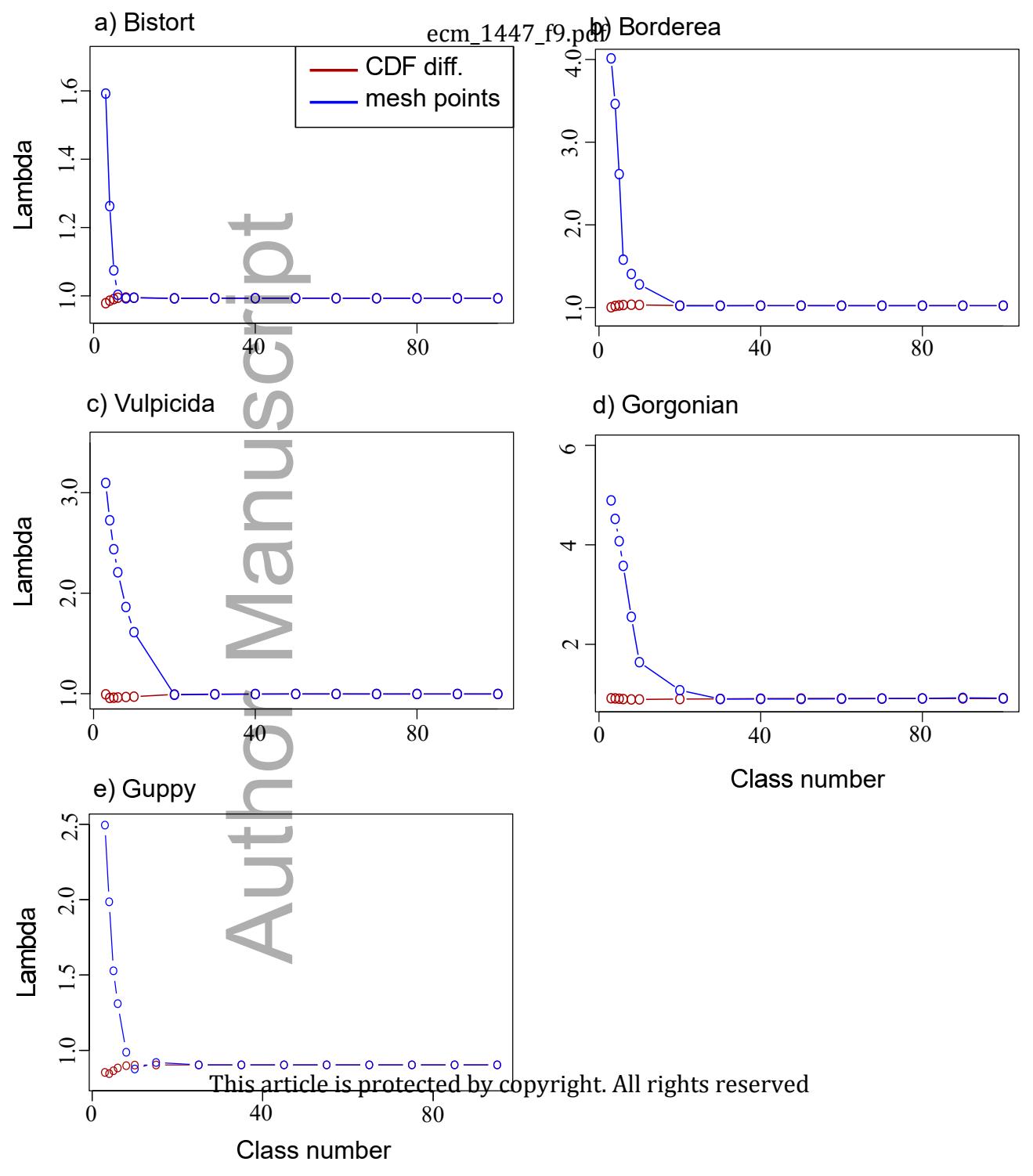


b) Borderea

ecm_1447_f8.pdf

Leaf length

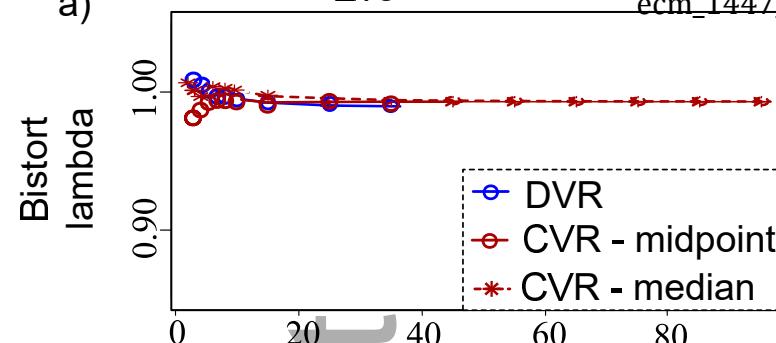
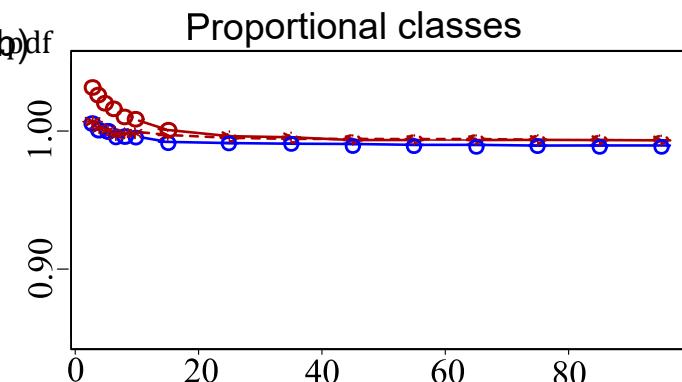
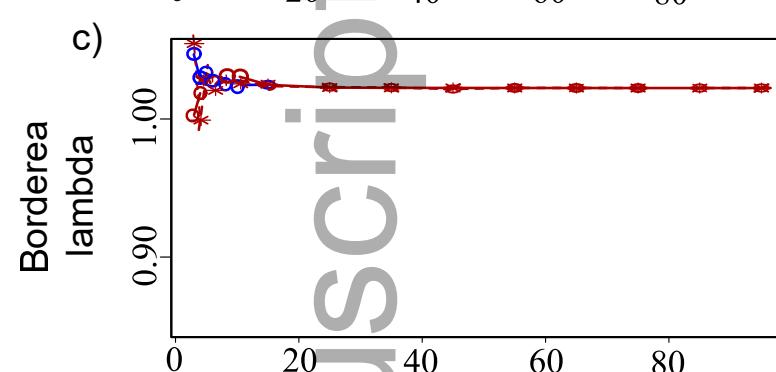
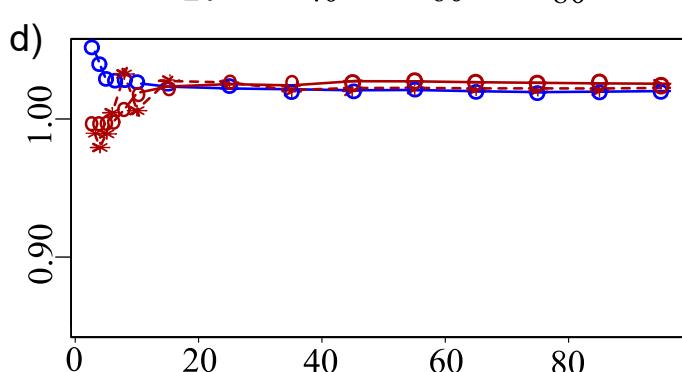
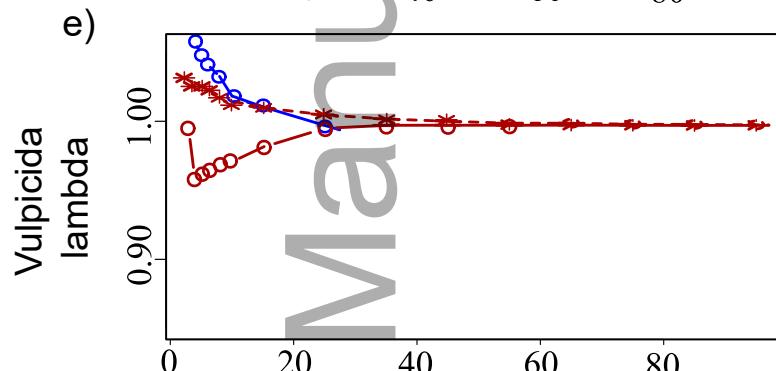
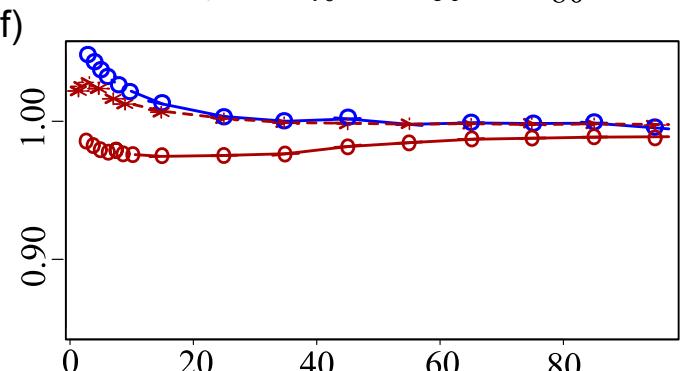
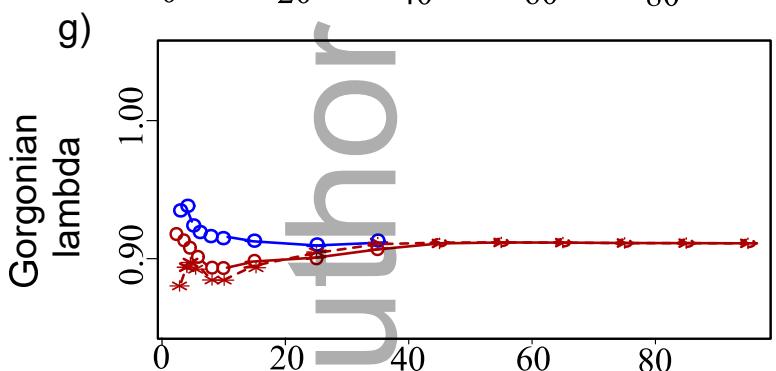
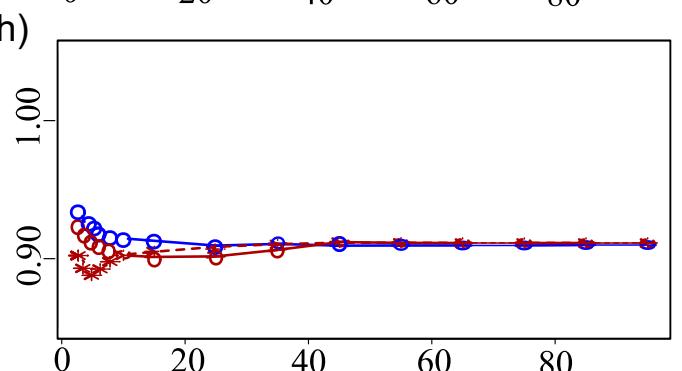
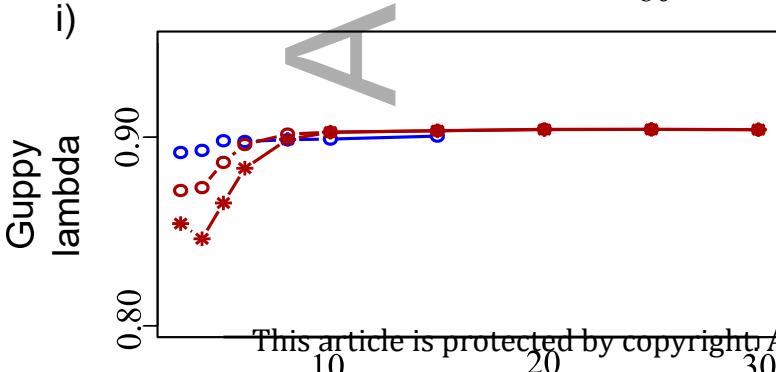
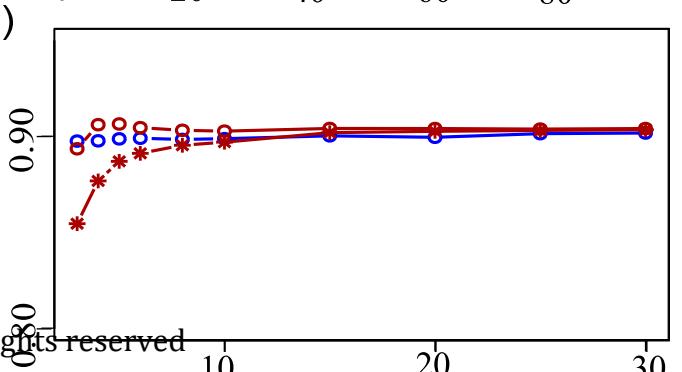
Height

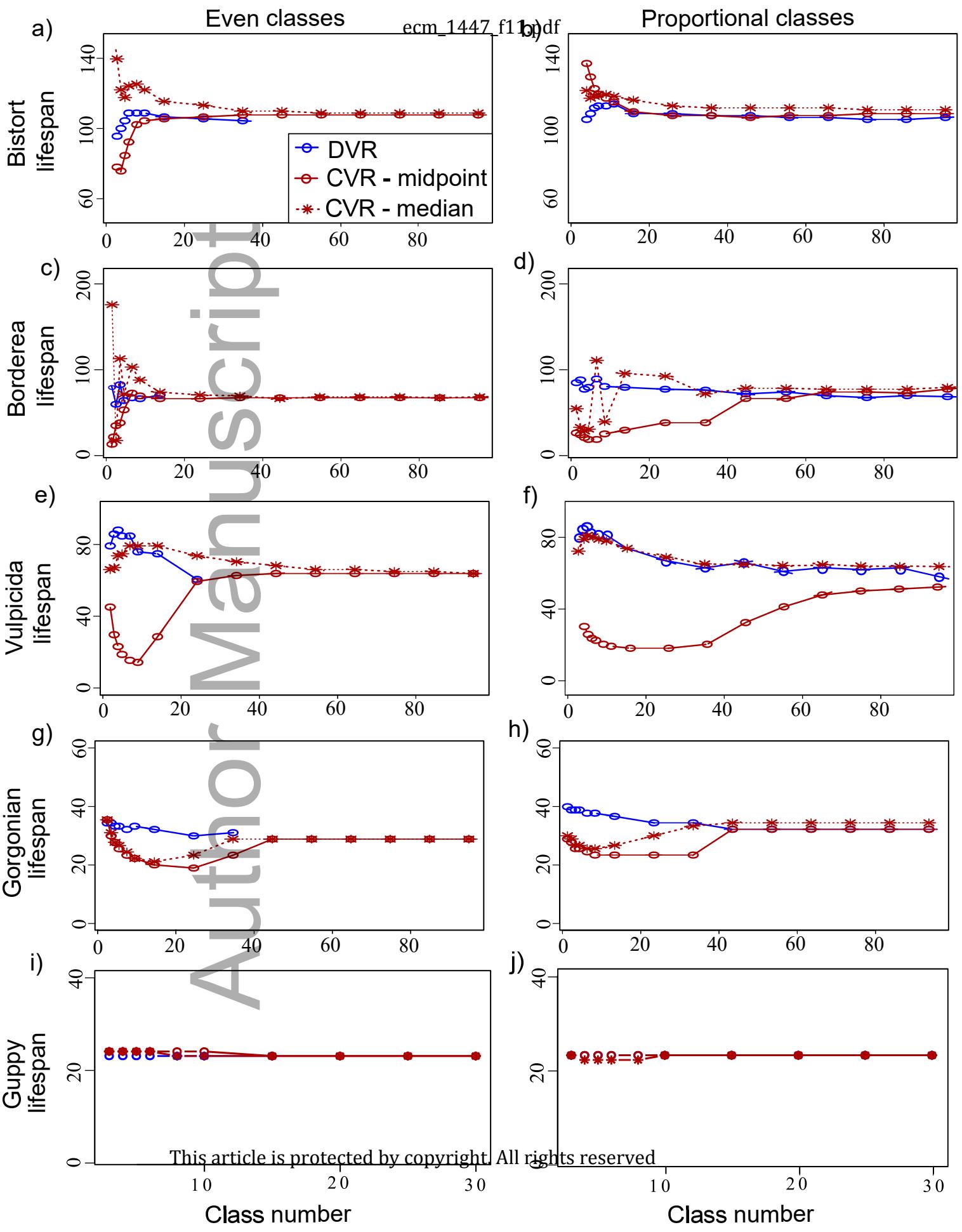


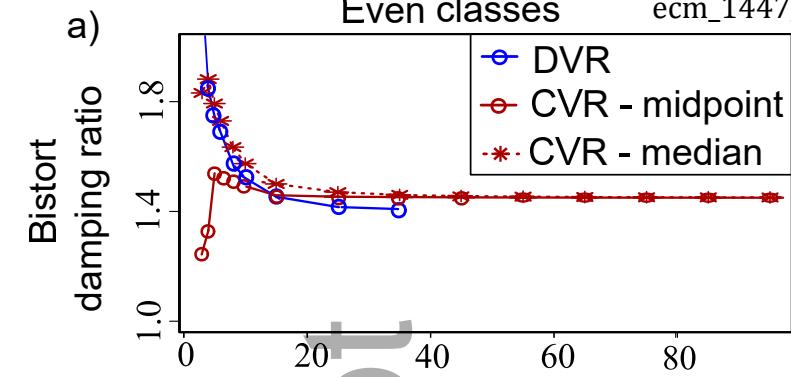
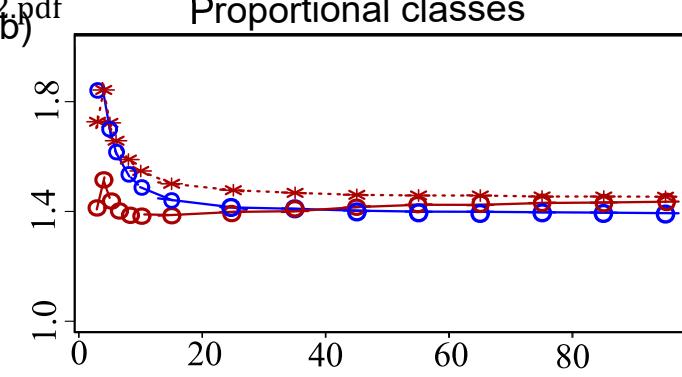
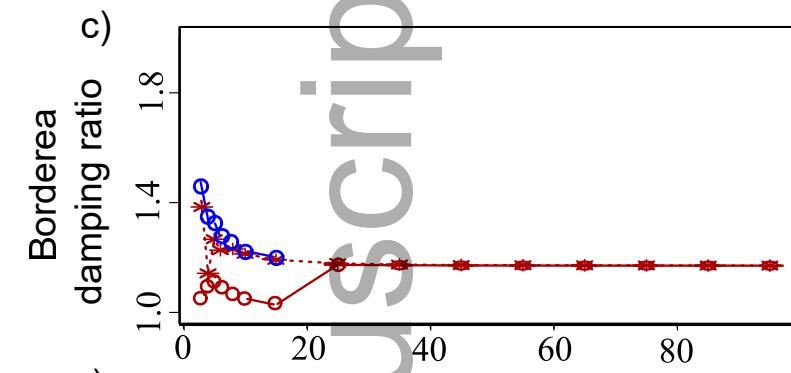
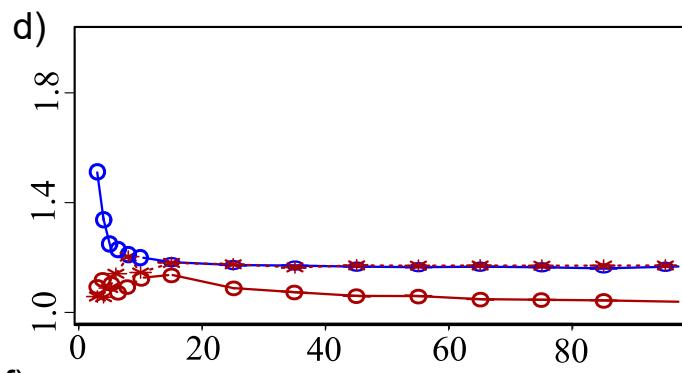
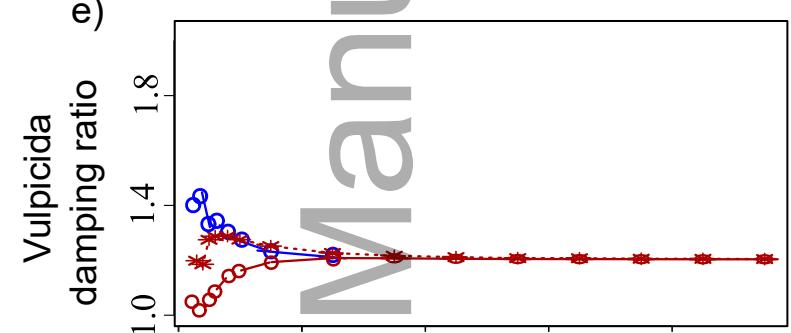
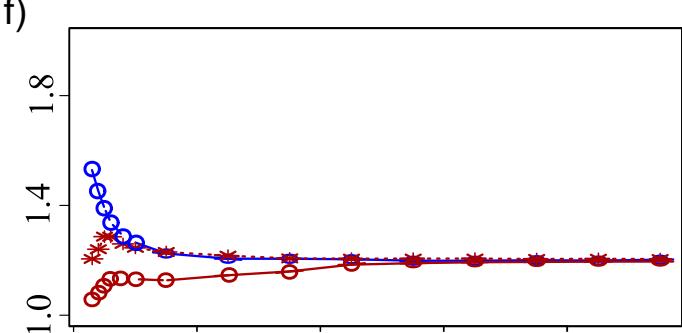
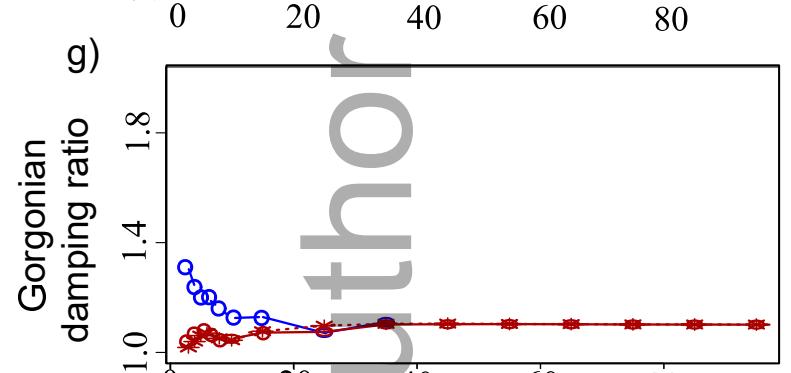
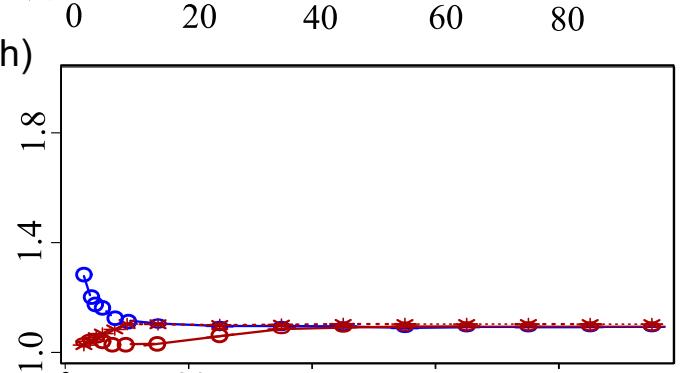
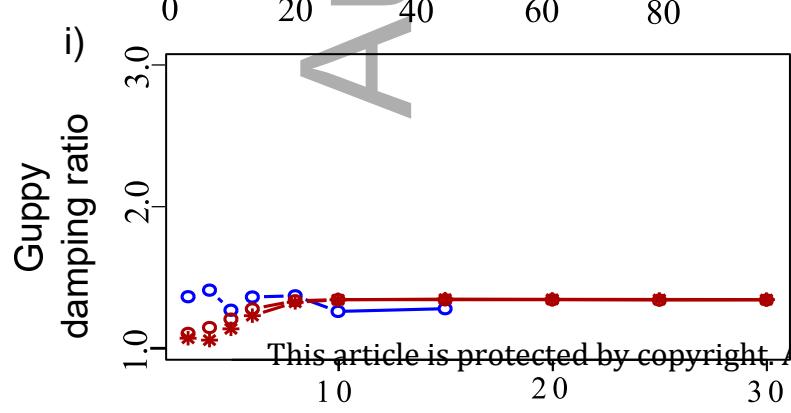
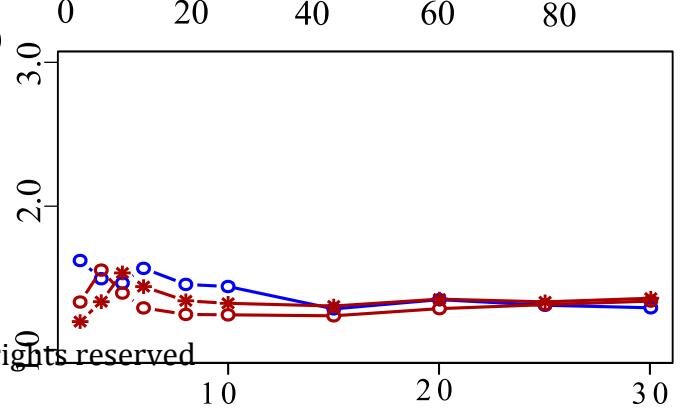
Even classes

ecm_1447_f10b.pdf

Proportional classes

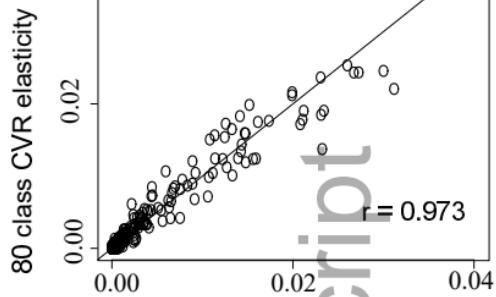




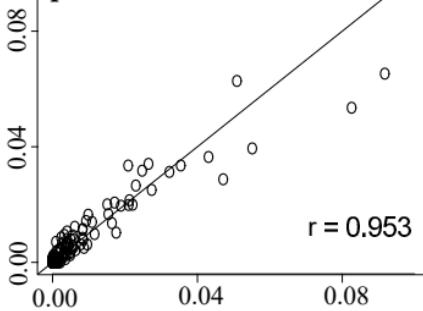


a) *Bistort*

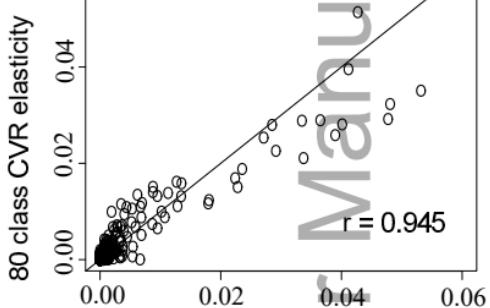
ecm_1447_f13.pdf



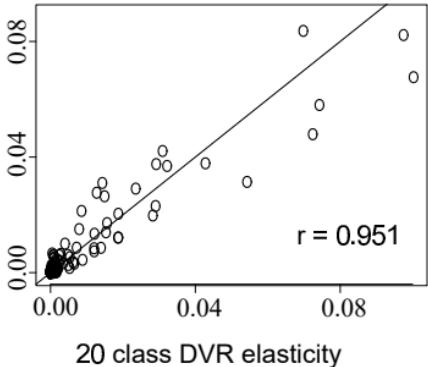
b) *Borderea*



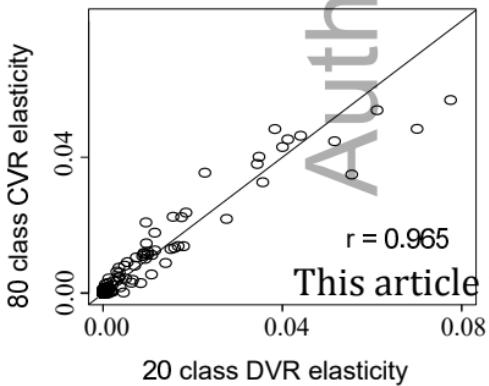
c) *Vulpicida*



d) *Gorgonian*



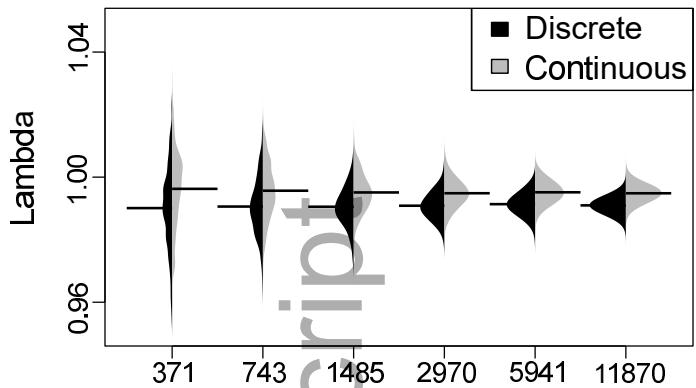
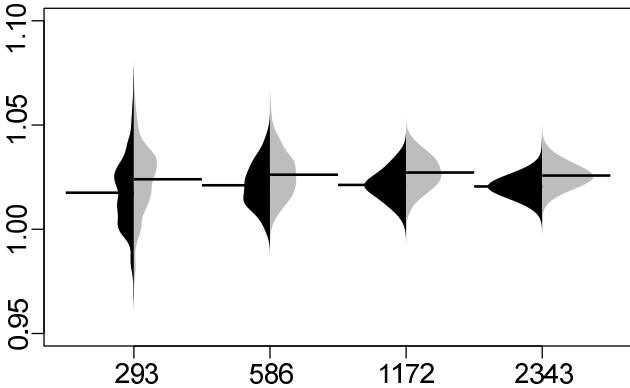
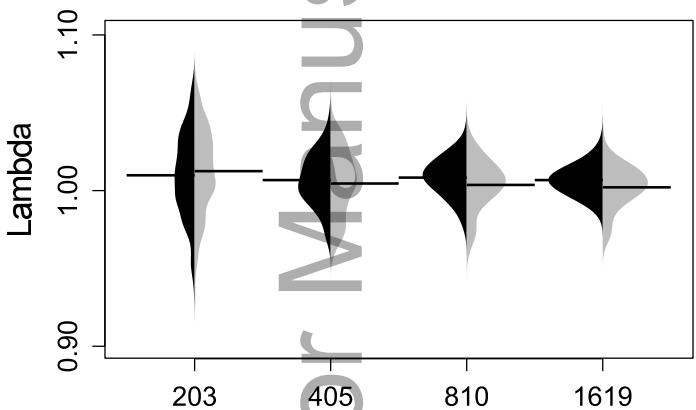
e) *Guppy*



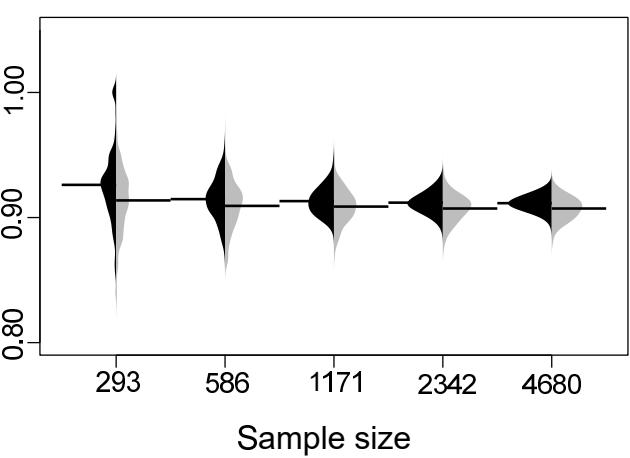
This article is protected by copyright. All rights reserved.

a) Bistort

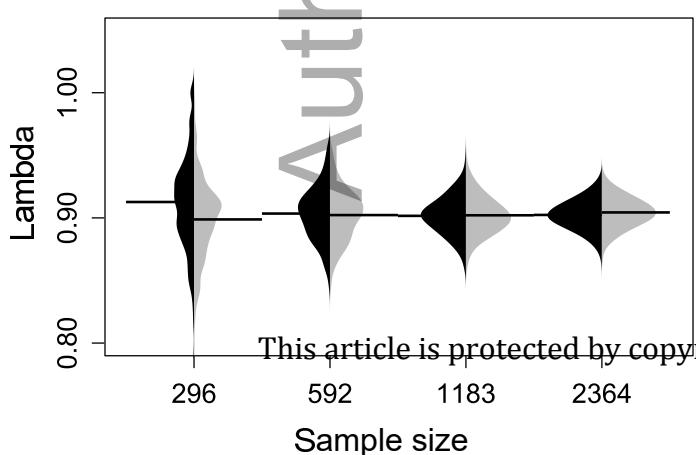
ecm_1447_f14.p

b) *Borderea*c) *Vulpicida*

d) Gorgonian



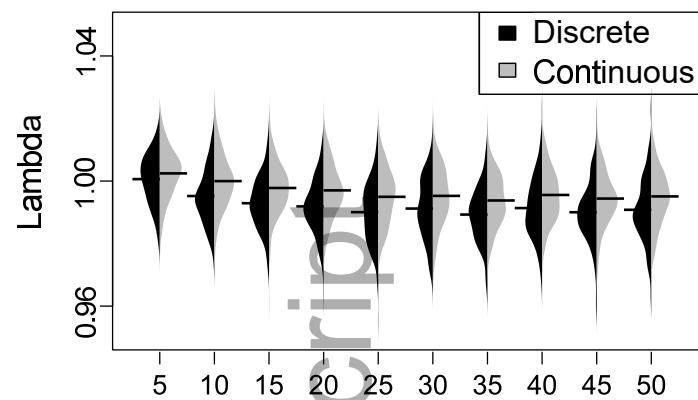
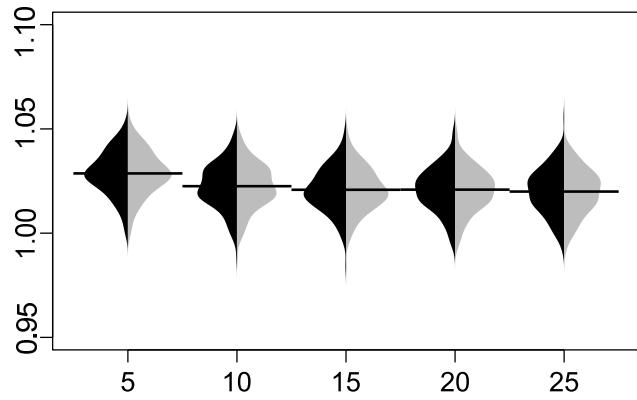
e) Guppy



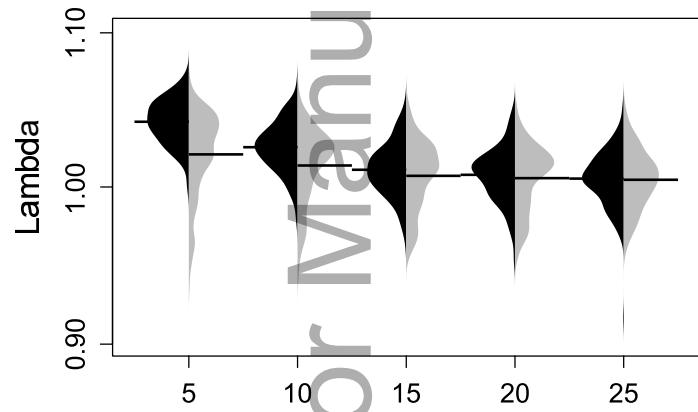
This article is protected by copyright. All rights reserved

a) Bistort

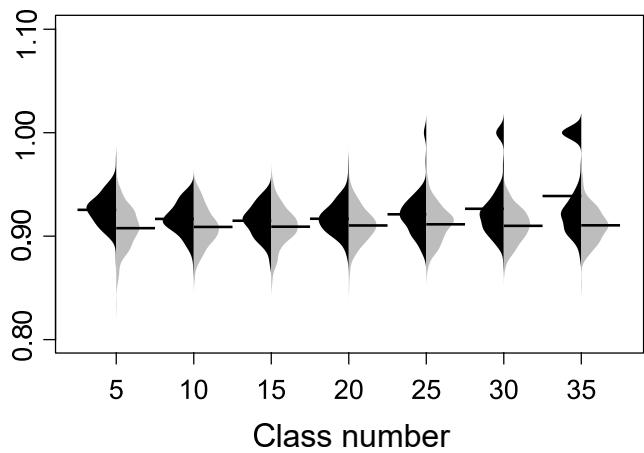
ecm_1447_f15.pdf Borderea



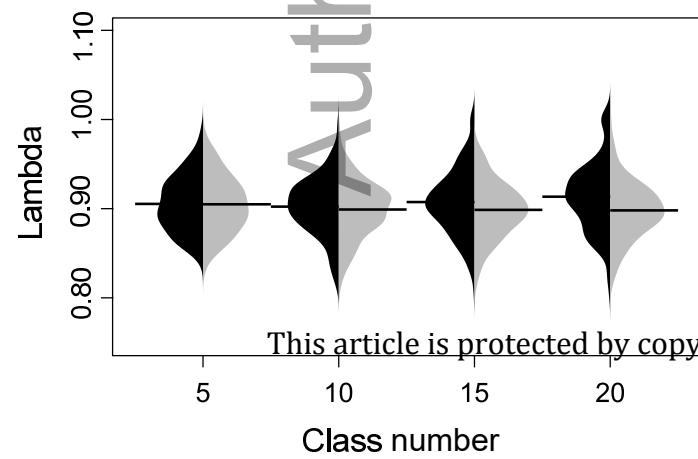
c) Vulpicida



d) Gorgonian



e) Guppy



This article is protected by copyright. All rights reserved