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ABSTRACT
Structured demographic models are among the most common and useful tools in
population biology. However, the introduction of integral projection models (IPMs) has caused a

profound shift in the way many demographic models are conceptualized. Some researchers have
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argued that IPMs, by explicitly representing demographic processes as continuous functions of
state variables such as size, are more statistically efficient, biologically realistic, and accurate
than classic matrix projection models, calling into question the usefulness of the many studies
based on matrix models. Here, we evaluate how IPMs and matrix models differ, as well as the
extent to which,these differences matter for estimation of key model outputs, including
population growth rates, sensitivity patterns, and life spans. First, we detail the steps in
constructingandusing each type of model. Second, we present a review of published
demographic models, concentrating on size-based studies, that shows significant overlap in the
way IPMs and matrix models are constructed and analyzed. Third, to assess the impact of
various modeling decisions on demographic predictions, we ran a series of simulations based on
size-based demographic data sets for five biologically diverse species. We found little evidence
that discrete vitalrate estimation is less accurate than continuous functions across a wide range
of sample sizes or size classes (equivalently bin numbers or mesh points). Most model outputs
quickly converged with modest class numbers (> 10), regardless of most other modeling
decisions. Amother surprising result was that the most commonly used method to discretize
growth rates'fordPM analyses can introduce substantial error into model outputs. Finally, we
show that' empirical sample sizes generally matter more than modeling approach for the accuracy
of demographic outputs. Based on these results, we provide specific recommendations to those
constructing and evaluating structured population models. Both our literature review and
simulations question the treatment of IPMs as a clearly distinct modeling approach or one that is
inherently more"accurate than classic matrix models. Importantly, this suggests that matrix
models, representing the vast majority of past demographic analyses available for comparative

and conservation work, continue to be useful and important sources of demographic information.

Key Words: Integral projection model, IPM, matrix projection model, demography, structured

population, lambda, elasticity, life span

INTRODUCTION
Demographic models have yielded profound insights in many areas of ecology and
evolution, including life history theory, population dynamics, resource management, and

conservation biology. Studies using demographic approaches include some of the most
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influential papers in ecology (e.g., Cole 1954, Gillespie 1977, Shaffer 1981, Lande 1982, Pulliam
1988). Primary reasons for this influence are the ability of demographic models to link short term
individual performance to both lifetime fitness and population growth. In addition, these models
facilitate broad comparisons that can highlight trade-offs and limitations that structure diverse
life history patterns (Stearns 1992). Standardized metrics from demographic models have spurred
the development/of general classification frameworks, such as the fast-slow continuum or the
survival-growth=fecundity triangle (Silvertown et al. 1993, Franco and Silvertown 1996, Sxther
and Bakke 2000;"Gamelon et al. 2014, Salguero-Gomez et al. 2016b). Demographic modeling
has also transformed approaches to conservation by allowing more quantitative assessments of
population rsksand potential management strategies (Schemske et al. 1994, Carroll et al. 1996,
Biek et al. 2002¢Morris and Doak 2002, Jongejans et al. 2008, Doak et al. 2015). Some of the
most influential management plans for threatened, invasive, or economically important species
have used demographic models to target specific life-history stages (Crouse et al. 1987, McEvoy
and Coombs,1999) or to quantify the risk of extinction (Shaffer 1983, Lande 1988). Thus,
demographicmodels are a cornerstone of both population biology and conservation management
(Shea 1998, Caswell 2001, Morris and Doak 2002).

While demographic analyses need not involve distinctions between different types of
individualsgthe majority of such studies, even of annual species, fall within the realm of
“structured” population models. These models are structured in the sense that individuals are
classified by one or more “state variables,” traits that are used to distinguish between individuals
that are believedito have different demographic fates. State variables typically include age or
size, but can‘also include many other predictors of fate, including life history stage, sex,
microhabitat, or even symbiotic relationships or pathogen load (e.g., Palmer et al. 2010, Wilber
et al. 2017).

While the underlying approach of demographic modeling has remained largely the same
since the work of Leslie (1945) and Lefkovitch (1965), over the last two decades there has been a
slow revolutiefi in how many demographic models are conceptualized, symbolically presented,
fit, and, to a'lesser extent, interpreted. This is particularly true when species are described by one
or more continuously varying state variables, many of which are descriptors of individual size. In
these cases, integral projection models (IPMs), which describe populations according to a

continuous state variable (Easterling et al. 2000), have begun to replace classic matrix models
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that begin by explicitly dividing populations into discrete categories corresponding to ranges of
state variable values (Caswell 2001). The acknowledgement and understanding that discretizing
continuous measures of size or other descriptors of state is a simplifying assumption of
convenience goes,back to the first uses of size-based demography in ecology (Vandermeer 1978,
Moloney 1986), but the IPM literature has revived discussion of this simplification and
suggested itis of paramount importance. The development and widespread adoption of IPMs has
been motivatedin part by arguments that a continuous approach is more biologically realistic and
statistically“efficient, particularly when applied to limited data sets (Easterling et al. 2000, Ellner
and Rees 2006, Zuidema et al. 2010, Ozgul et al. 2012). Correspondingly, matrix models have
been increagingly, criticized as artificial, statistically inefficient, and prone to bias (Ramula et al.
2009, Salguero-Gomez and Plotkin 2010, Picard and Liang 2014).

In the last'few years, several reviews have emphasized the superiority of IPMs (Merow et
al. 2014, Rees et al. 2014); these claims have not, however, been critically or thoroughly
evaluated. Previous tests of the relative accuracy of IPMs have been limited to comparisons that
have ignored*the multiple aspects of model estimation and development that can be used to
formulate demographic models, and have also compared IPMs only with matrix models built
with extremely few classes (Ramula et al. 2009). Further, most claims for the superior
representation of the biology of species, due to the avoidance of artificial stage classes, ignore
that in their actual implementation virtually all IPMs are analyzed as moderate- to high-
dimension matrix models (Ellner and Rees 2006, Merow et al. 2014a). This means that their
structure differs'more quantitatively than qualitatively from traditional matrix models. Finally,
there are potentially important biological simplifications inherent in the IPM approach that have
not been carefully examined in the ecological literature, in particular the limitations imposed by
representing vitalrates as fairly simple continuous functions of the state variable.

An umportant consequence of the discussion surrounding the accuracy of IPMs and
classic matrix.models is that past studies using older methods could be perceived as
providing little'to no useful demographic information. Traditionally fit matrix models represent
the vast majority of demographic data available for comparative studies (e.g., those in the
COMPADRE and COMADRE databases; Salguero-Goémez et al. 2015, Salguero-Gomez et al.
2016a) or with which to assess the viability and management of species of conservation concern.

Indeed, even as the accuracy of matrix models has been questioned, many synthetic reviews that
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reanalyze matrix models have recently appeared in the literature (Katz 2016, Csergo et al. 2017,
Yokomizo et al. 2017). Thus, it is important to more carefully evaluate whether and when matrix
models accurately capture population dynamics, and under what circumstances IPMs may do so
with less bias and more precision. Finally, some of us (Doak, Morris, Garcia pers. obs.) have
seen an increasing tendency of reviewers and editors to dichotomize these two approaches,
considering matrix models as out of fashion and failing to recognize the considerable grey zone
between thetwo model types as well as some of the subtler advantages and disadvantages of
each.

Our goals'in this paper are to 1) explain the ways that matrix models and IPMs do and do
not differ intheigimplementation, ii) articulate the potential pitfalls and advantages of each
approach, and iii) use simulations based on real data sets to critically assess which model fitting
decisions do and do not matter for common demographic outputs. To accomplish these ends, we
start with an outline of the main steps in fitting matrix models and IPMs, highlighting the
similarities and differences between these two approaches. Second, we review the demographic
literature tosdoeument how population biologists fit these different models in practice, with the
goal of evaluating how distinct they really are. Third, we present results from an extensive set of
simulationssbased on five real demographic data sets. We use these simulations to compare the
relative aceuracy of matrix models and IPMs across a range of sample sizes, model-fitting
strategies, and matrix dimensions that reflect the diverse approaches used by biologists. We
conclude with a discussion of the merits and potential limitations of different demographic

modeling strategies and recommendations for future demographic work.

TWO APPROACHES TO FITTING DEMOGRAPHIC MODELS

Both mattix models and IPMs seek to represent demographic heterogeneity within a
population due to.variation in individual state variables, such as age or size, that influence
performance. Matrix models have traditionally been approached with the assumption that
individuals can'reasonably be divided into classes (also called categories, stages, or bins; we use
“classes” in the,subsequent text). These classes are based on subdivisions of the state variable,
even when there is clear understanding that the underlying state variable is continuous
(Hartshorn 1975, Vandermeer 1978, Moloney 1986). In contrast, IPMs explicitly seek to treat

state variables as continuous.
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In this section, we describe the four steps in formulating either kind of model: 1)
characterizing individual states, ii) estimating fates, iii) assembling these estimates of fates into a
full demographic model, and iv) generating outputs from these models to assess individual
fitness or population behavior. In Figure 1, we diagram these basic model-fitting procedures for
“classic” matrix,models and IPMs, illustrating the steps they share and those that differ between
these approaches. We also use this diagram and discussion to highlight differences in the
terminology used in both modeling strategies, as well as the similarities that can be disguised by
these notational'differences. Following sections on the four steps in demographic analysis, we
discuss in more detail some of the features that most separate [IPM and matrix models, and also
some of thedessobvious issues with using either approach.

Characterizing individual states

Both methods require the same basic demographic data: individual-level survival,
growth, and reproduction rates, recruitment data, and one or more state variables that capture
heterogeneity in these rates; these are called demographic or vital rates (Caswell 2001, Morris
and Doak 20025 Franco and Silvertown 2004; note that some authors use vital rates to refer only
to survival and réproduction). State variables may be chosen a priori based on feasibility or
natural histery, or selected from multiple variables by comparing regressions of vital rates on
alternatiyesstate variables to find the ones with the highest predictive power (Morris and Doak
2002). In a matrix model, a state variable is either already discrete (e.g., age classes for a sharply
seasonally-breeding species or the discrete life-history stages of many arthropods) or is divided
into discretes€ategories of a continuous state variable (e.g., size classes). In the latter case, there
are several algorithms for choosing the number and boundaries of classes (Vandermeer 1978,
Moloney 1986), although in practice the structure of most matrix models has been decided based
on natural history,and data exploration (e.g., looking for sharp changes in vital rates; Caswell
2001, Ramula.et.al. 2020). In an IPM, the primary state variable is regarded as continuous,
although additional discrete state variables such as age, sex, seedling state, dormancy state,
breeding status, or others can also be included (Ellner and Rees 2006, Rees et al. 2006, Williams
2009, Jacquemyn et al. 2010). We note that age is commonly treated both as continuous and
discrete in demographic models. This depends on data availability and whether reproduction
occurs during well-defined time periods, generating discrete cohorts (i.e., birth-pulse), or

offspring are produced more continuously throughout the year. However, state variables that
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reflect some aspect of size are most often used in IPMs (Figure 5) and can give rise to the largest
differences in IPM and matrix model treatments, so we concentrate on these throughout the rest
of the paper.

Characterizing individual fates

Both.matrix models and IPMs use state variables to capture variation in vital rates — the
fates of individuals, based on their state. While there are many ways to make such estimates, all
fall into two general approaches. The first is used in the construction of many matrix models,
where a separate‘estimate of each vital rate is required for each discrete class. These estimates
come from separately analyzing the subset of data falling within that class to calculate, for
example, meanssurvival or mean reproductive output. In other words, the vital rate for a given
class is estimated independently of the rates for other classes. This includes approaches that take
the observed transition frequencies for a given class as well as methods that fit statistical models
that treat class as a categorical variable (e.g., some mark-recapture analyses). The central
problem facing parameterization under this strategy is that more, narrower classes reduce the
amount of data"available for estimating each vital rate, whereas fewer, broader classes pool
together individuals that may have very different fates. This trade-off has long been recognized
(Vandermeer, 1978, Moloney 1986, Ramula and Lehtild 2005), and can mean that multiple
iterations.areneeded to find a model structure that balances sampling and estimation error.

The second approach to estimating fates is used in the construction of some matrix
models based on continuous state variables, as well as all IPMs. In this approach, demographers
use continuets fegression models of vital rates, fit to the entire data set, to estimate stage-
dependent vitalfate functions. Researchers generally use established functional forms for each
vital rate: generalized linear models with binomial errors are often used for vital rates that
inherently represent probabilities (i.e. survival, dormancy, or flowering) while those with
Poisson or negative binomial errors have frequently been used for offspring numbers; general
linear models.have typically been used for growth rates . In some cases, splines or generalized
additive models have been used to represent more complex relationships between vital rates and
state variables (Dahlgren et al. 2011). Functions may be chosen a priori, or model selection
methods, such as AIC, may be used to select from among several candidate models (e.g., linear
vs. quadratic functions of state). One key difference between this strategy and the direct use of

discretized data for vital rate estimation is the elegant way that size changes are treated
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(Easterling et al. 2000). First, a model is chosen to characterize the mean size at the end of a time
interval, given a starting size. Next, the squared residuals from this relationship are predicted in a
second model and then used to predict the variance in ending sizes (although both the mean and
variance can be fit simultaneously as well; Ellner and Rees 2006, Ellner et al. 2016).
Assembling a.projection model

When building matrix models, the matrix elements are constructed from the best vital rate
values for each'¢lass, either using the discrete vital rate estimates or an estimate for each size
class taken from'a continuous vital rate function (Batista et al. 1998, Morris and Doak 2002,
Gross et al. 2005). This is straightforward if the vital rate estimates are made discretely for each
class. If continuous functions have been estimated, different rules can be used to estimate the
average value of'a vital rate that is applied to a size class. Most commonly, the vital rate estimate
corresponding to the midpoint size in the class is used, but other approaches, such as the vital
rate of the mean or median size of individuals falling within a class, can also be employed
(Morris and \Doak 2002). In either case, the growth, survival, and reproductive rates estimated for
each class aré¢ombined to form the elements of the matrix, a;, which represent the average
number of individuals in class 7 at time t+1 that result from an individual of class j at time t.

In"TPMSs, most vital rates are estimated by fitting continuous functions of one or more
state variables. When building an IPM, these fitted functions are then combined into density
kernels. These are usually a survival/growth kernel that describes the distribution of an
individual’s state in the next time step, given survival and growth, and a reproduction kernel that
describes the'nimber and state distribution of an individual’s offspring. These kernels are then
combined intesan overall kernel that projects the number and distribution of individuals’ states
across a time step. In this kernel, &;; is identical in interpretation to the matrix element a;;, except
that the 1 and j states are assumed to apply to size classes for the matrix model and to point
values of the state variable for [IPMs. Proponents of IPMs emphasize that this regression-based
approach ayoidsaartificial binning together of individuals with differing states and, by including
all individualsiin the model fitting step, allows more efficient use of scarce data (Easterling et al.
2000, Ellner'and Rees 2006, Ramula et al. 2009, Zuidema et al. 2010, Merow et al. 2014b).

Beyond these common ways of building either type of model, several other complexities
and complications can arise. Most commonly, additional state variables (e.g., sex, age class,

widowing status; Miller and Inouye 2011, Bakker et al. 2018) or other covariates (e.g., climate,
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soil chemistry; Dahlgren and Ehrlén 2009, Doak and Morris 2010, Hunter et al. 2010, Diez et al.
2014, Merow et al. 2014b) may have important effects on individual fates and can be included in
either discrete or continuous approaches to vital rate estimation (e.g., through additional or
combined classes, or by inclusion in continuous vital rate functions). In addition, both matrix
models and IPMs can be either deterministic or stochastic, including the influence of
demographie.and environmental stochasticity on vital rates to estimate effects on fitness, growth
rates, or extinction risk. There are also increasingly sophisticated methods to incorporate model
and parameteruncertainty into the predictions of these models, which is an especially important
topic when'models are being used to address applied questions (Bakker et al. 2009, Elderd and
Miller 2016): Eimally, it is worth noting that there are many other subtle and not-so-subtle
decisions that must be made when formulating either a matrix model or an IPM (detailed in
Caswell 2001, Morris and Doak 2002, and Ellner et al. 2016), and numerous mistakes are
commonly made in model construction. For example, a recent review by Kendall et al. (2019)
found that a'substantial fraction of matrix models constructed for animals contained at least one
common errotiifi model structure. Among the most common of these mistakes are failing to
include survivalin reproductive rates, introducing incorrect delays into the life history, and
incorrectly*ealculating transition rates from stages with known duration (Kendall et al 2019).
Analysis_of Demographic Models

Once constructed, matrix models are used to compute multiple biologically important
outputs. Most commonly, these include one of several measures of population growth rate,
including asymptotic or transient measures of deterministic or stochastic population growth
(Caswell 2001)="Additional outputs include the stable stage distribution, damping ratio, life span
measures, and the sensitivity and elasticity of population growth or of other outputs (e.g., stable
stage distributions; Caswell 2001, Morris and Doak 2002, Haridas and Tuljapurkar 2005) to
either matrix.elements or vital rates. If models are built with continuous vital rate functions,
sensitivities.canalso be estimated for responses to changes in parameters of vital rate functions
(e.g., the intercept or slope of reproduction as a function of size) rather than to discrete class-
specific values (Griffith 2017). Caswell (2001) provides a thorough review of the many outputs
of matrix models, and multiple computing packages facilitate these analyses (e.g., popbio in R;

Stubben and Milligan 2007).
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How does one get comparable predictions from an IPM, which is not a matrix, but a
density kernel? IPMs are actually analyzed in the same way as matrix models, using discretized
matrices, although IPM nomenclature often obscures this fact. In practice, numerical integration
methods are used.to approximate an IPM kernel as a transition matrix, most often based on
discrete “mesh.points,” which are starting and ending values of the state variable. This analysis
method divides the state variable into many classes, centered on the mesh points, within a
biologically“plausible range and then uses the values of each of the different vital rate functions
at each mesh point to estimate the transition rate from each class to each other class. The result is
a moderately-sized to large matrix with many narrow, discrete classes and transition rates
estimated fremethe vital rate functions underlying the IPM kernel. It would be possible to analyze
IPMs without discretization, but it would be a far more formidable analytical challenge for
arbitrarily defined kernels (Ellner et al. 2016), while the methods of linear algebra make the
analysis of the approximating matrix straightforward.

Both.modeling approaches result in large to very large numbers of certain outputs, such
as sensitivity"and elasticity values to size specific vital rates or matrix elements. To deal with
these sometimes‘daunting numbers of values and to provide more succinct and biologically
informativestesults, for both types of models practitioners frequently condense results into mean
or summedsvalues for fewer categories (e.g., Zuidema et al. 2010, Silvertown et al 1993).
Comparing the two approaches

The IPM literature has emphasized two shortcomings of matrix models: 1) the statistical
inefficiency 0f Separately estimating vital rates for each class, and 2) the use of a small number
of classes to'represent inherently continuous state variation, a situation that can lead to
mischaracterization of the true values of individual fates. IPMs solve these problems by using all
individuals to estumate continuous vital rate functions and then by using many classes of small
width in the final.analysis phase. However, there are reasons to question whether matrix models
and IPMs are truly as different as they are usually portrayed. First, as noted above, demographers
have used continuous vital rate functions to characterize patterns in vital rates and to
parameterize'matrix models, even well before IPMs were developed (e.g., Siler 1977, Eberhardt
1985, Barlow and Boveng 1991,Batista et al. 1998, Bernal 1998, Zuidema 2000, Morris and
Doak 2002, Matsuda and Nichimori 2003, Gross et al. 2005, Rogers-Bennett and Rogers 2006,
Chien et al. 2008). Second, in practice IPMs are analyzed by discretizing the underlying kernel to
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parameterize a matrix model, although that matrix is usually moderately to very large (typically
many dozens to hundreds of classes). Thus, rather than describing matrix models and IPMs as
completely distinct methods, it is more accurate to view structured population models as varying
along at least two,axes: the method of parameter estimation (categorical vs. continuous
functions, blue.boxes in Figure 1) and the dimensionality of the resulting matrix (number of
classes or mesh points, green boxes in Figure 1). Whether these two frameworks are distinct or
not, the problems-that have been identified with discrete parameterization and with modeling
continuous 'staté variables with few classes can potentially have serious effects on model
predictions. In the rest of this section, we briefly review important considerations arising from
these two aspeets,of model-fitting, as well as several other potential issues.

Class‘number. IPM practitioners seek to reduce the effects of discretization by using
many narrow classes (Merow et al. 2014a). However, many classes make for larger matrices and
reduce computational efficiency, especially when there are multiple state variables (Ellner et al.
2016). There. is also little information about the number of classes necessary to approximate a
continuous deémographic process for real life histories. Several iterations may be required to
determine the number and range of classes needed to yield stable estimates (Ellner and Rees
2006, Zuidema et al. 2010) and avoid eviction (the removal of individuals from the range of
model sizes'due to esimates of growth or shrinkage outside this range; Williams et al. 2012). The
fact that most matrix models have far fewer classes than the large matrices used by IPMs has
been viewed as a key advantage of IPMs (Ramula et al. 2009, Zuidema et al. 2010, Merow et al.
2014a). However, in the few studies of which we are aware that test for class number effects in
IPMs, increasing classes beyond 10 to 20 has little effect on model results (e.g., Jacquemyn et al.
2010, Shriver et al. 2012, Dibner et al. 2019).

One, factor that is likely to influence the number of classes needed for accurate or stable
predictions is.the. way that continuous vital rate functions are discretized. The most common
approach in.IPMs is to use the “midpoint rule” to evaluate the vital rate functions across mesh
points, each.representing the midpoint of a class of the state variable, to obtain point estimates of
the survival'and fecundity rates that contribute to the k;; values in the discretized kernel. There
are two important variations on this method that directly relate to the number of mesh points (or,
analogously, classes) necessary for a reasonable approximation. First, it has been suggested that

it may be more accurate to characterize the vital rates of a class by using either the median or
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mean state value (Morris and Doak 2002) of the individuals in a dataset falling within a class,
rather than the midpoint. A similar approach is to estimate an empirical density function for
individual states to estimate mean or median values, which can provide estimates even for
classes in which no individuals were censused (Gross et al. 2005).

A secoend issue is the way that the transition probabilities between state values (e.g.,
growth and shrinkage probabilities for a size-based model) are discretized (Figure 2). The most
commonly-used approach in the IPM literature (Ellner and Rees 2006, Metcalf et al. 2013,
Merow et al. 20714a, Elderd and Miller 2016) approximates the probability density function
(PDF) describing state at the next time step, conditional on starting state, by evaluating the
probability density at each mesh point and then multiplying this value by the class width (Figure
2B). A moreraccurate method, but one that is not featured in most descriptions of IPMs or in the
software to run these models (e.g., [IPMpack; Metcalf et al. 2013) is to use the cumulative density
function (CDEF) to integrate the probability density across the entire class (Figure 2C). Although
these two methods will converge with infinitely many classes (Fig. 2D), the first may require
many more/€lasses to produce stable estimates, particularly if the variance in size is small
relative to the width of the classes for at least some starting sizes (Fig. 2E; Ellner et al. 2016).
Although the,second method has been used, including by the authors (e.g., Louthan et al. 2018,
Montero-Serfa et al. 2018), in both matrix and IPM models, the method of discretizing individual
changes in state (e.g., growth) is virtually never reported in the methods of published studies
(pers. obs.). We thus have no quantitative estimate of the relative frequency of these two
approachesdespite their potential to influence the accuracy of model predictions. We also note
that there is‘asthird option to discretize size transition data, the “bin-to-bin” method (sect. 6.8;
Ellner et al{ 2016), which uses the integral over both the starting and ending sizes included in a

transition to estimate total transition probability.

Vital.rate estimation. We next consider other aspects of using continuous vital rate
(CVR) functions/vs. discrete vital rate (DVR) estimates that may be less obvious, but are
important in.génerating accurate models. The statistical advantages of fitting continuous
functions aré'clear: using all individuals to fit a single function is more efficient than separately
estimating vital rates based on a subset of individuals within each of many classes. In particular,
it has been argued that this approach is more accurate than using discretely estimated rates in

matrix models, given small datasets (Ramula et al. 2009). Discrete estimation also means that
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outliers or other quirks in the finite data used may have undue influence on the model structure
and predictions (e.g., estimating zero or perfect survival for some classes).

On the other hand, there is also a potential cost of continuous vital rate function
estimation that has received less attention. The functions used to explain vital rate variation are
often quite simple, usually linear or perhaps quadratic functions of a single state variable (Merow
et al. 2014),.and thus can easily oversimplify or misrepresent how vital rates vary as a function
of the state Variable. In contrast, matrix models that separately estimate vital rates within each
category makeémo such distributional assumptions (Shimatani et al. 2007). For example, a matrix
model can estimate sharp discontinuities in survival probabilities between size classes or survival
rates that asymptote well below 1, whereas IPMs usually model survival as a smooth logistic
function of size with an asymptote of 1 (see Yau et al. 2014). Simple transformations of size
variables, such as\logging, may solve some, but not all, of these issues. For these reasons, some
have advocated using non-parametric methods (Ellner et al. 2016, section 10.1.5) or fitting more
complex functions, such as splines. However, these approaches can also be influenced by outliers
and/or low sample sizes at extreme state variable values (Shimatani et al. 2007, Dahlgren et al.
2011, Rees et al¥2014). A related issue when using either approach is how best to account for
estimationuncertainty and thus isolate process variance in vital rates.

Anether issue with vital rate estimation is the ubiquitous assumption in IPMs of normally
distributed growth rates on the scale of the state variable (Peterson et al. 2019). This assumption
means that growth is modeled as symmetric around an average size transition, whereas for many
species the distribution of growth is skewed. For example, high shrinkage may be more likely
than high growth due to die-back, breakage, or starvation (reviewed in Peterson et al. 2019); the
opposite pattern may occur in woody species measured using diameter at breast height
(Needham et al. 2018). More generally, the use of growth models with infinite tails, like normal
distributions, will. predict some chance of growth and shrinkage to sizes well outside the range of
reality, resultingdn the problem of eviction (Williams et al. 2012) as well as unrealistic changes
in state evenwithin the bounds of otherwise realistic sizes.

Thererare multiple statistical methods to account for any of the complexities just
discussed, but very few empirical demographic studies employ these. In addition, it is important
to note that the goal of model development is not to represent every nuance of reality, but instead

to get the important aspects right enough to yield useful representations of the patterns and
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dynamics of interest. But, as this perspective emphasizes, neither matrix model nor [IPM
approaches are a priori more compelling than the other. Both make some simplifications and
smooth over some patterns in the data, though they do so in different ways. It is not clear
whether and under what circumstances continuous functions will produce more accurate vital
rate estimates.compared to separately estimating vital rates within discrete classes, nor is it clear
when and why the use of many narrow classes will fundamentally change model predictions.
With thisfin'mind, we next turn to how the two modeling approaches have actually been used in

recent demographic studies.

HOW AREJPMS AND MATRIX MODELS USED IN PRACTICE?

As we argue above, IPMs and matrix models are not sharply distinct. Here we document
the range of methods used to fit these models in the literature, including different parameter
estimation approaches and matrix dimensions. We conducted a literature search on October 23,
2018 of studies included on Web of Science using the search terms “demograph*” and “matrix”
and either “‘eeology” or “conservation” for the period 2002-2018. We believe that these search
terms capture the vast majority of matrix models used for ecological or life history analyses. We
also included,Web of Science results that had cited any of the papers originally developing the
IPM approach, including Easterling et al. (2000), Ellner and Rees (2006), and Rees and Ellner
(2009); because terminology, and hence keywords, are less uniform for I[PMs, we felt that using
citations of'these founding articles would capture studies that would otherwise be missed. The
starting yearforiour review is somewhat arbitrary, but was chosen to include virtually the entire
period duringswhich IPMs have been conducted. We only included papers that fit new models to
demographic data, excluding strictly theoretical papers or review papers that relied on previously
published models; For each paper, we determined the state variable (age, size, stage, or other
[including size x.age models]), method of parameter estimation (categorical, continuous, or a
combination), the type of model as it was identified by the authors (matrix vs. IPM, stochastic vs.
deterministic)y’and the dimension of the resulting matrix (number of classes, bins, or mesh points
used to construct the matrix or discretized IPM kernels). For papers with multiple species, we
identified these criteria for each species separately. Ambiguous papers were reviewed by at least
two people. We identified 794 publications and 1271 demographic models across a range of

taxonomic groups (Table 1) that fit all of our criteria. Most of the demographic studies in our
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database examined plants and other autotrophs (N=698), followed by vertebrates (N=486) and
invertebrates (N=87). The full results of this literature review are available in Data S1: Literature
Review.

Matrix models represent the majority (~79%) of demographic models published between
2002-2018 (Table 1). Over this period, 57% of all studies were deterministic matrix models,
followed bysstochastic matrix models at 22%. 21% of demographic models were identified by
the authors'asTPMs (16% deterministic IPMs, 5% stochastic IPMs). Although IPMs are a
smaller fraction"of published demographic models, this proportion has increased over time
(Figure 3Aj logistic regression of proportion of models: year coefficient=0.31,Z=12.81,P <
0.001). Thissnerease can be attributed to the publication of several reviews of the method (Ellner
and Rees 2006, Rees and Ellner 2009, Merow et al. 2014a, Rees et al. 2014) as well as the
development of [PMpack, an R package for constructing IPMs (Metcalf et al. 2013, R Core
Development Team 2015).

Almest all IPMs are built for size-based models. 67% are only structured by size and an
additional 29%"use size in conjunction with one or more other state variables (e.g., birth date,
age, growth ratey'dormancy, developmental stage, etc.). 26% of IPMs use age as a state variable,
while only*2% use something other than age or size as the primary state variable (e.g., infection
load; Wilber'et al. 2017). In contrast to [PMs, matrix models are commonly used for stage and
age-based analyses as well as size-based models; 20% use a size-based state variable, 28% use
age, and 52% use a measure of stage (Appendix S1: Figure S1A,B). In addition, the great
majority of published IPMs have been for perennial plant studies, while a wider range of taxa
and life histories’have been the subjects of matrix models (Appendix S1: Figure S1C,D). Given
these differénces, in the rest of our review we concentrate on comparisons between matrix
models and.IPMs,that are based on size. The time trends of just these studies is similar to those
of all demographic models (Figure 3).

In general, size-based IPMs used higher dimension matrices in their final analyses than
matrix models(Figure 4; linear model of class number: t = 10.65, P < 0.001). However, IPM
papers reported,using an astonishingly wide range of classes, from 39 to 2400, to discretize their
projection kernel (mean = 242.5, median = 200, SD = 308.3, N = 83) whereas size-based matrix
models varied from 2—67 classes (mean = 7.3, median = 5.5, SD = 6.7, N = 194). However, only

43% of IPM studies reported the number of classes or mesh points used for the discretization of
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the kernel. This may reflect the philosophical view that IPMs should be conceptualized as
continuous, despite their ultimate discretization, or may simply be viewed as an unimportant
detail by those publishing results of these models. Regardless, we could not determine the
number of classes, for over half of published IPMs, although we note that the R package
IPMpack uses:50 classes as the default setting (Metcalf et al. 2013) and 10.3% of IPMs reviewed
that did not report the number of classes used [IPMpack. We were further unable to determine the
method usedto'discretize the IPM kernel for over a third (36%) of published IPMs. Of those that
reported thé diSeretization method, 96% used the midpoint rule and only 4% used an alternative
integration method (e.g., Simpson's Rule, Gauss-Legendre quadrature; Ureta et al. 2012, White
et al. 2016, Molewny-Horas et al. 2017). Given that the lack of discretization is frequently
discussed as'an advantage of IPMs, but that models are in fact analyzed with discretization, we
urge that discretization information should be included in the description of any IPM analysis,
since this is a key analysis step for these models.

Population biologists followed a variety of workflow paths from data to final matrix
analysis (Figure's). Most demographic models used information on individuals’ stages to
estimate vital rates categorically and construct deterministic matrix models (Figure 5). However,
7% of all matrix models, and 25% that used size as their state variable, estimated at least one
vital rate usifig a continuous function of state. Interestingly, the proportion of matrix models
using continuous vital rate estimation appears to have peaked and then declined over time (Fig.
3B; logistic regression of proportion of models: year coefficient = 141.89, z = 3.69, P< 0.001,
year? coeffigient= -0.035, z = -3.69, P< 0.001). This could reflect an increased awareness of
continuous approaches to vital rate estimation following examples in Morris and Doak (2002)
and the initial development of [IPM methods (Easterling et al. 2000, Ellner and Rees 2006), with
a later decline as IPMs were increasingly adopted to model data sets suitable for continuous vital
rate estimation.. When comparing size-based matrix models, we found that models tended to use
more classes.when at least one vital rate was estimated using a continuous function (mean =
11.0, median="7, range = 3-67, N = 48) relative to models with discrete vital rate estimation
(mean = 6.1,"median = 5, range = 2-27, N = 146; linear model of class number: t = 4.65, P <
0.001). However, we found no relationship between class number and minimum sample size for
discrete size-based matrix models (r =0.17, P =0.16, N = 67; Appendix S1: Figure S2). Of all

demographic models using continuous vital rate estimation, 22% were matrix models. Thus, any
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advantages of continuous vital rate estimation have not been limited to IPMs in the demographic

literature.

ASSESSING THE CONSEQUENCES OF DIFFERENT MODEL-MAKING DECISIONS

Two key. characteristics of structured population models, the number of classes into
which the state variable is divided and the method of parameter estimation (continuous vital rate
functions(CVRS) vs discrete vital rate estimates (DVRs)), are often assumed to covary between
“pure” matfix v§:“‘pure” IPM approaches. But as we show in our literature review, they are not
necessarily logically connected and many published models combine relatively small class
numbers with €VR functions.

There‘are also three other decisions that require careful thought when turning data into a
structured demographic model, but are rarely discussed. First is the exact way that class
boundaries are delineated. For most IPMs, class boundaries are set at regular intervals, while for
matrix models, there are often decisions made regarding sample size issues and where size
breaks make'the'most biological sense. A second decision is how best to characterize the average
vital rate value'for a given class or, using IPM terminology, how to define the mesh points used
to evaluate'the CVRs to create a discretized matrix. Mesh points are most often chosen as the
midpoint.efa‘class, but alternative approaches could use the mean, median, or even distribution
of state values observed in each class. The third consideration, if using continuous functions, is
how the transition probabilities between states conditioned on survival (e.g., growth) are
discretized. Fhisus distinct from the discretization of other vital rates, such as survival or
fecundity, because an individual will have a distribution of possible states at the next time step
(vs. a pointestimate of survival probability or offspring number), and it is this continuous
probability density that must be discretized (Fig. 2A). One approach is to use the point estimate
of the probability.density evaluated at each mesh point, multiplied by the class width (Figure
2C). Alternatively, the probability density can be integrated across the entire range of states
within each elass, by taking the difference between cumulative distribution function (CDF)
values at the'upper- and lower-class boundaries (Figure 2A, B). Other approaches, including the
Ellner et al. (2016) “bin-to-bin”” method or direct parameterization of discretized growth

probabilities (Shriver et al. 2019) can also be used, but none of these alternatives have been
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commonly employed to date. All of these decisions have the potential to interact with the number
of classes and methods of estimating vital rates to shape model outputs.

To test how these different aspects of demographic modeling influence model predictions
we used large demographic data sets from five diverse organisms — a long-lived subtidal
Mediterraneansgorgonian coral (Paramuricea clavata, Plexauridae), a long-lived rupicolous
plant (Bordereachouardii, Dioscoreaceae), a moderately long-lived arctic/alpine geophytic plant
(Polygonum™viviparum, Polygonaceae), a short-lived epiphytic lichen (Vulpicida pinastri,
Parmeliaceae),"and a short-lived fish, the Trinidadian guppy (Poecilia reticulata, Poeciliidae).
While these species do not span the entire range of life histories seen in plants, animals, and
fungi, they do represent a broad array of key life history patterns. In all these data sets organism
size is used to structure the populations, but the species differ in multiple aspects of their ecology
and capture a range of size distributions (Figure 6).

In our analyses we varied five aspects of model construction. Most fundamentally, we
varied the method used to estimate vital rates (blue boxes, Figure 1) and the class number of the
resulting matfix(green boxes, Figure 1). Previous comparisons of matrix dimension and
parameterization'methods have only included matrix models with a few classes (4-6) and
discrete parameter estimation, and compared them to IPMs using continuous functions
discretizedsnto large matrices (100 classes; Ramula et al. 2009). In contrast, we varied parameter
estimation method independently from class number to ask how each affects model accuracy. In
addition, we tested the effects of the three other modeling decisions just mentioned: (i) use of
midpoint or€Stimated median individual sizes for CVR estimation of average vital rates per
class; (i1) evensot sample size-adjusted class boundaries; and (iii) the ways in which discretized
growth probabilities were estimated from CVR models (Figure 2). While other issues also
influence model structure and results (see Section 2, above), here we concentrate on this short
list of issues.that.will influence virtually all models.

We tested the effects of these decisions on three common demographic outputs: estimates
of individualdfitness or population growth (lambda, 1), estimated individual longevity (age at
which 1% ofindividuals starting in the smallest class are still alive), and damping ratio (the ratio
of the magnitudes of the dominant and subdominant eigenvalues), a measure of the strength and
duration of transient dynamics for populations not at a stable stage distribution (Caswell 2001).

While multiple other measures of longevity and also of the strength and length of transient
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dynamics exist, these measures have been widely used in the ecological literature. We also
present a more limited comparison of how sensitivities and elasticities vary as a result of
different modeling approaches. Finally, we test how data quantity interact with these alternative
modeling decisions, in particular asking if some modeling approaches are more robust when data
are scarce.

Study species and data sets

We ‘eompiled data used in published studies for each of our study species, supplemented
with some dnpublished information needed to employ flexible and automated model fitting
routines; all data were collected by the authors. While all of the original studies of our species
included effects'of temporal and/or spatial variation in demography, in our simulations we used
all transition"data at once to construct single deterministic models. This simplification allowed us
to use large numbers of observations to construct single models, as well as to rarify our data sets
over a wide range of sample sizes to check the effects of data quantity on the relative merits of
different modeling strategies.

We briefly outline the most relevant information about each species’ life history and
details abouttherdata and modeling protocols used here:

Polygonum viviparum, the alpine bistort (hereafter, bistort), is an arctic/alpine perennial
plant for which demographic data were collected annually from 2001-2011 at four populations
on Niwot Ridge in Colorado, USA (Doak and Morris 2010), for a total of 11,882 plant-
transitions of data. Size, reproduction, and survival data were recorded for all plants (see
methods in Poak.and Morris, 2010). Size is measured as the square root of estimated leaf area in
mm?; on an untransformed scale, sizes in the main data set (not including recruit sizes) range
from 4.39 to 3600, after truncating 5 large values that created a long sparse tail that created
problems for some of our analyses (similar truncation was done for all data sets besides
Borderea). Reproduction is exclusively via asexual bulbils that are produced on inflorescences,
and our measure/of reproduction is the size-dependent product of the probability of producing
one or more.inflorescences and the estimated number of bulbils produced if reproducing (derived
from a contunuous measurement of the length of the inforescence bearing bulbils). We pooled
data across all years and sites to yield one estimate of the number of new recruits (bulblings)
seen a year later per bulbil produced (0.00676). Bulbling sizes were also pooled and used to

characterize the size distribution of bulblings as normally distributed with a single mean (4.00)
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and SD (0.886) for CVR models, and were directly used to get frequencies of sizes for DVR
models.

Paramuricea clavata, the Mediterranean red gorgonian (henceforth, gorgonian), is a
slow-growing, long-lived arborescent octocoral that typically occurs from 15 to 60 m depth.
Demographic.data for individual colonies (the unit of demographic analysis) were collected
annually at three/Mediterranean sites for 2-4 years each from 1999-2004 (Linares et al. 2007,
Linares and'Doak 2010), for a total of 4,877 colony-transitions of data. Size is quantified as
colony height;'SiZes in the main data set range from 0.2 to 74.9 cm. Size-dependent reproduction
was estimated as the production of oocytes per colony, estimated from the relationship between
gonad numberand size derived from data in Coma et al. (1995; Table 5) and the estimated
average oocyte mumber resulting from a gonad (2.77774x10%). We estimated a common first
year survival of new recruits across all years and sites as 0.667, the mean of colony survival in
the smallest size class from Linares et al. (2007). Surviving recruits were assumed to have a
uniform size distribution ranging between 0.3 to 3.0 mm height.

Vulpiéida pinastri (henceforth, Vulpicida), is a relatively short-lived epiphytic lichen that
grows on several'species of trees and shrubs. Data on individual thalli were collected annually
from 2004-2009 in Kennicott Valley in Alaska, USA on individuals growing on A/nus stems in a
mixed spruce-alder forest, for a total of 1621 individual transitions of data. Size and survival data
were collected in each thallus, with the square root of thallus area in cm? used as the measure of
size (see Shriver et al. 2012 for methods); on an untransformed scale sizes in the data set range
from 0.15 tg47.61. Reproduction was estimated as proportional to the circumference of a thallus,
which bears‘thesmajority of asexual propagules. The number of recruits per mm of circumference
necessary t0 achieve a stable population was estimated as 0.047 in the original study of this
species (Shriver et al. 2012), and we used this estimate as a fixed value in our models. New thalli
sizes were estimated to have a uniform distribution ranging between 0.124 and 0.50, which
reflect the range.0f smallest thallus sizes encountered in the field.

Borderea chouardii (henceforth Borderea) is a rare, extremely long-lived rupicolous
plant that naturally inhabits a single population in Spain, where it grows in shaded crevices of
north-facing limestone walls and overhangs. Data were collected on individual plants from 1995
to 2002 at two sites in the Spanish Pyrenees, for a total of 2,682 plant-transitions of data. Size is

measured as the length of the largest leaf in mm; sizes in the main data set range from 2 to 10.8.
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Reproduction is quantified as the number of seeds produced per female plant. While the species
is dioecious, we use the mean seeds per plant of a given size, averaged across the sexes, as our
measure of reproduction (see Garcia 2003 for more details of sampling and life history).
Reproduction was quantified as the size-dependent product of the probability of producing one
or more inflorescences and the estimated number of seeds produced if reproducing. For CVR
models, observed seedling sizes were used to estimate a mean (4.66) and SD (0.46) and sizes
were asstinied to'be normally distributed, while the set of observed sizes were directly used to
get frequencies'of sizes for DVR models.

Poecilia reticulata (henceforth, guppy) is a short-lived freshwater fish native to streams
and rivers innTrinidad. We used capture-mark-recapture data from monthly sampling of a site on
the Caigual River that spanned January 2009 to June 2011, for a total of 4880 unique individuals
over the entire study. At each sampling interval, a comprehensive capture of all fish within the
stream reach was attempted, with size (wet mass in g) and sex recorded for all individuals. Sizes
in the data set range from 0.042 to 0.904. While recapture rates are extremely high (Fitzpatrick et
al. 2016), theyare not perfect. To produce a simplified data set for our analyses, we therefore
considered a*fish'dead at the first census it was not captured, if it was not captured for at least
one subsequent sampling period (thus, we did not include data from the final two sampling
intervals)..We also linearly interpolated size for fish that were not sampled in a month, but were
sampled in the months bracketing the missing capture. We built a model for females only.
Reproduction was quantified as the size-dependent product of the probability of producing any
offspring timesthe number of daughters produced if there was reproduction. Offspring number
was estimated«from genetic data and is the estimated number of female offspring produced that
survived until the second census following birth (newborns were not large enough to reliably
catch until approximately 1-2 months of age; Fitzpatrick et al 2020). New offspring sizes were
pooled and used.to characterize an emprical distribution function for use in CVR models, and
were directly.used to get frequencies of sizes for DVR models. The survival rate of fish in each
of their firsttwio months was estimated as the mean survival estimated for newly observed fish,
based on a logistic regression of monthly survival vs size fit to all fish. We do not include in our
analyses data on the genetic origin or hybrid status of the fish (see Fitzpatrick et al. 2016 and
Fitzpatrick et al. 2020 for more details of the study). As the dataset only allowed estimates of

reproduction from months 5-14 of the study, we used demographic data only from these months,
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for a total of nine individual transitions of data and 2366 individual monthly transitions. In
keeping with the data collection and also the limited life span of the species, and unlike the
annual time steps used in the models for all other focal species, all data analysis and modeling
for guppies was done using a monthly time step.
Methods

We fit demographic models to the data from each species using combinations of the
following alternative approaches:

A Discrete vital rate estimation for each class vs. continuous functions for vital
rate estimation. When estimating continuous vital rate functions (CVRs), we fit
separate size-dependent models for survival, mean growth, variance in growth,
and the reproductive rates, described above for each species (see also Appendix
S1: Table S1). For each vital rate, we fit 2-3 models with alternative size-
dependent functions and used AICc to choose the best model. Specifically, we fit
models with linear vs quadratic size effects for all vital rates, and for mean growth
we also fit a power function, to potentially better capture different shapes of non-
quadratic, but non-linear shifts in growth with size. These functions are all
commonly used in analyses employing CVRs.

B Number of classes for model construction. For discrete vital rate estimation, the
number of classes directly influences the parameter estimation, while for
continuous vital rate functions it only influences the final construction of the
matrix for analysis. We made models with class numbers that ranged from 3 to
100 classes for most analyses, using 3, 4, 5, 6, 8, 10, 15, 25, 35...100 classes. With
discrete vital rate estimation, at the upper end of this range we rapidly reached
class numbers that resulted in low samples for at least one class; we did not make
models if the smallest class-specific sample size was < 3. While this is a very
lenient standard (we do not advocate making models based on such low sample
sizes per class), we used a low threshold in order to make DVR models with the
largest possible range of class numbers given the data we had. In our rarefaction
tests, described below, we also directly tested the effects of having very low class-
specific samples on DVR model outputs. Statistics on per class sample sizes for

each species are given in Appendix S1: Figures S13-17.
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C. Proportional vs. even size class delineation. We employed two approaches to

defining boundaries of size classes, which characterize two extreme approaches
seen in demographic studies. With even class divisions, all classes were the same
width on the scale of the size metric (see above for definition of the size scale
used for each species). For proportional class divisions, we used the classes
function in R package binr (Sergei 2015) to create class divisions that had as
nearly equal numbers of starting individuals as possible. This approach has the
general effect of creating many narrow classes of smaller or mid-sized individuals
and fewer wide classes for the larger and in some cases also small individuals,
depending on the size distribution of the data (see Figure 6). While in many
matrix models class boundaries are, and should be, made with more attention to
biological breakpoints, to automate the process of choosing class boundaries we

used only these two approaches.

._Discretizing CVRs. For most vital rates, a single point estimate is required for

each size class (e.g., survival probability, number of offspring/parent). We used
one of two approaches to estimate the representative vital rate value for each size
class when using the CVR approach. First, and most simply, we used the midpoint
size within a class (the mean of the two bounding values for the class). This
method is by far the most common one used when making large matrices to
numerically integrate IPM models, and is also used in many matrix models
employing CVRs. However, two of us have argued that it is more representative
to use a size that reflects the average individual within a class, not the midpoint of
the class boundaries (Morris and Doak 2002). This estimation can be
accomplished in several ways. Most simply, an estimate can come by taking a
simple median or mean starting value of all individuals within a class, or, when
data are scarce in some size ranges, by fitting an empirical density function to all
individuals in the population and then using this function to create a weighted
median size for each class—we used this latter approach in our simulations. We

refer to these two approaches as midpoint- or median-based CVRs, respectively.

. Discretizing continuous growth distributions. Lastly, we compared two

approaches to discretizing continuous distributions that summarize changes in
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size when using the CVR approach (Figure 2), using both simulated and real data
sets. First, we took the common approach employed in the IPM literature of using
the point estimates of the probability density for the midpoints of all of the size
classes, multiplied by the class width, to approximate the probability density
function (PDF) of size at the next time step conditioned on current size. We call
this the “mesh point method.” Second, we used the cumulative density function
(CDF) for growth to get the probability of reaching each size class at the next
time step conditioned on starting size. We call this the “CDF difference method.”
While other approaches have been proposed, in particular the Ellner et al. (2016)
“bin-to-bin” approach, we only tested these two most commonly used approaches
here. For either, there is a concern that some substantial fraction of the total
probability of growth will fall outside the upper and lower limits for size defined
in the model (the eviction problem; Williams et al. 2012). There are multiple
ways to correct the estimated growth probabilities so that, for any starting size (or
size class), they sum to one (Williams et al. 2012). We do so by renormalizing the
growth probabilities for a given starting size by the difference of the CDFs for the
minimum and maximum sizes used in the model (as in Williams et al. 2012).
While this correctly standardizes total growth rates for the CDF difference
method, it is a more error-prone exercise for the mesh point method, as we discuss
in Results.

Appendix, S1: Table S1 lists the vital rates fit for each species, including non-size-
dependent vitalrates used in all models. Appendix S1: Figures S3-7 show the best-supported
vital rate functions for each species. As these figures show, the species span a range of patterns
in growth, survival and reproduction. In particular, Borderea (Appendix S1: Fig. S4) and guppies
(Appendix Sl: Fig. S7) show a pattern of declining mean and variance in growth at larger sizes,
while the other.species show declining mean but increasing or relatively stable variance as size
increases.

For each,model constructed from each data set, we estimated A, damping ratio, and
longevity. We also explored the effects of class number and discrete vs. continuous vital rate
estimation on elasticity values, contrasting DVR models with 20 evenly-spaced size classes with

CVR models built with 80 classes and using median-based and CDF difference methods. 20
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class models are at the upper range possible to use for simple even class definitions for all our
data sets, while use of 80 classes is well within the range used by most IPM models (Figure 4).

Finally, we tested the effect of sample size on model results by rarifying each data set in
two different ways. First, we randomly sampled each dataset, with replacement, 200 times for the
full sample size, retaining Y4, Y, 1/8, down to 1/32% of the data, depending on species. We then
replicated the medel-fitting process for 20 class DVR and CVR models, employing median-
based and CDFdifference methods for discretization. For these models, we use a slight variant
on even classboundaries. To perform analyses on rarified data sets using even size classes for
DVR estimation, we had to use a stratified bootstrap approach, so that we retained some
individuals across sizes. This stratification regime also reflects the empirical sampling decisions
that many demographers make, with efforts to include individuals at the top and bottom of the
size distribution in the sample followed for data collection. To stratify the sampling, and also to
define class boundaries for the DVR, we used the top and bottom 5% of all individuals by
starting size\to define the smallest and largest classes. We then divided the remaining individuals
into 18 even'size class divisions. Bootstrapped samples were generated by resampling with
replacement'separately for each size class. Resampled data sets ranged from a sample equal to
the originaly(see Appendix S1: Figures S13-17 for per class sample sizes statistics), down to
between 1/81and 1/32 of the original sample size, reflecting quite small minimum sample sizes
of individuals in a given class: bistorts, 6; gorgonians, 5; Borderea and guppies, 3; Vulpicida, 2.
As supplementary tests, we also: 1) fit 80 class CVR models to each data set to see if higher class
numbers chafigéd the results, and 2) ran similar rarefactions, but using non-stratified bootstraps
and fitting preportional class boundary models using 20 classes for DVRs and 80 classes for
CVRs.

In addition to the rarefaction simulations just described, we also used a rarefaction
approach to.test whether DVR models that are fit with high class numbers — and hence low
sample sizes.perclass — perform worse than CVR models fit to the same resampled data. For
these analyses; we used the same 20 class stratified bootstrap described in the last paragraph to
generate 200%samples. For each species, we used one resampled data set size, between 1/4™" and
1/16% of the original sample size; these sample sizes allowed us to fit a range of class numbers
for each species but also resulted in small minimum sample sizes per class. We then fit models

using from 5 up to 50 size classes, defining the upper and lower classes using the 1/class number
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and 1 — I/class number quantiles and evenly divided class boundaries in between. We also fit
CVR models to the same data and class boundaries, and employing median-based and CDF
difference methods for discretization. We fit models to any data set that had at least 1 individual
in each class, and.also recorded the fraction of failed data sets for each size class number. We
show results for. class numbers for which <30% of samples failed for DVR models. We then
predicted lambda, damping ratio, and life span estimates for each model.

All analyses were conducting using R version 3.5.2 (R Core Team 2018). Example R
scripts and data*files showing the routines used in our analyses are included in Data S2.

Results

Use.of mesh points vs CDF differences to characterize growth rates. To restrict the range
of modeling'decisions considered in subsequent analyses, we began by addressing the last
modeling decision listed above (Discretizing continuous size distributions), asking if using mesh
points or CDF differences had substantial effects on growth rate estimation and hence on model
results. It is'clear that the mesh point approach will be inaccurate at smaller class numbers (Fig.
2E), as it isessentially a crude numerical integration, but how accurate it is with larger class
numbers underrealistic assumptions is less clear. We therefore started by running a simplified
simulation;mot tied to any of our real data sets, to illustrate how well the mesh point method
works to chatacterize growth when starting from a single size, and when the resulting sizes are
far from size boundaries (so “eviction” is not a problem). As noted in Ellner et al. (2016; sections
2.7.4 and 6.8), the mesh point approach performs worst when there is low variance, in which
case they suggest increasing the variance (if model predictions are unaffected), using sparse
matrix methodsswith many mesh points, or alternative integration approaches such as Gauss-
Legendre quadrature. To mimic this low-variance scenario, we simulated a realistically low SD
of 0.5 with a mean size that varied from 49-51 (e.g., Figure 7A with mean = 50). We used from
10 to 100 mesh.points spanning a range of sizes between 0 and 100 to discretize the resulting
probability density function (PDF).

The most fundamental problem in approximating growth probabilities is if they do not
sum to one, as all surviving individuals should have a size at the next time step; values greater
than one implicitly boost survival when used in a full demographic model, while summed growth
rates below one implicitly reduce survival. In our simulations, models with from 20 to 100

classes estimate growth probabilities that sum to between 3.0x10- and 1.76; while there is a
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general trend to more accuracy with higher class number, both under-and over estimates still
occur as class number increases (Figure 7B). The summed growth probability is also highly
sensitive to small differences in the mean of the growth distribution relative to the mesh points,
with significant over- and under-estimation of total growth probability until high class numbers
are reached (near to 100). This is because the probability of growth into a given class is
estimated using.exact PDF values at mesh points, so that the exact placement of mesh points
relative to the'peak of the PDF creates erratic mis-estimation, particularly when there are few
mesh point§ relative to the growth variance. In contrast, the CDF difference approach always
estimates the summed growth probability as one.

The problems with the mesh point approach can also affect the construction and results of
full population models. To test the effects of mesh point mis-estimation on growth rate estimates
across starting sizes, we built CVR models for each of our five focal species, using each of the
two methods and both moderately high (50) and high (100) class numbers. For both methods, we
normalized the estimated growth rates for a starting size based on the difference in the CDF
between therminimum and maximum sizes used in the model. This test is the one proposed by
Williams et'al.(2012) to detect eviction. While it is the correct estimate of “true” eviction (i.e.,
growth outside the range of sizes in the model), and corrects all the transition probabilities for
the CDF différence method so that they sum to one, for the mesh point models it is not a perfect
test or correction, since the summed growth probabilities can deviate substantially from one,
even in the ‘absence of any meaningful eviction.

Use of mesh point methods leads to substantial over- or under-estimation of summed
growth rates'ferSsome small or large classes for four of our five species, and does so even with
models built with 50 or 100 classes (Figure 8). Mis-estimation tends to occur where variance in
growth is low (Appendix S1: Figures S3-7), and can occur for size classes that include abundant
individuals (e.g.,large Borderea and small gorgonians). We also tested for the effects of eviction
correction in.changing the estimated mean and variance in growth for different sizes. Not
surprisinglyeviction correction can substantially shift both mean and variance estimates
(Appendix ST Eigures S8-S12); while this is expected, it does suggest that alternative models for
growth rates that minimize the eviction problem need to be developed and more widely

employed (e.g., Peterson et al. 2019).
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To test the effects of mesh point mis-estimation of growth rates on lambda estimates, we
took the same approach just described, but building entire demographic models for a range of
class numbers for each focal species. The models used mean class values for estimation and even
size class boundaries. For all of our focal species, use of mesh points results in greater deviations
in lambda estimates and slower convergence on stable lambda values as class number increases
than do models built using CDF differences to estimate growth probabilities (Figure 9).

In'stm; the mesh point method can be highly inaccurate, and much of this inaccuracy will
also be undetected by the usual test employed for growth rate eviction. Given that the CDF
difference method is highly robust and extremely fast (only taking an additional 1.8 seconds than
the mesh point@approach in a test with 10,000 classes on a standard laptop), it is not clear that
there is any réason to continue to use the mesh point approach to estimate growth, especially as it
can generate artifacts and extreme class number dependence in the absence of any benefit. While
the problems_with the mesh point approach can be easily solved by using increasing class
numbers, this number can reach ridiculous levels (e.g., > 4,000; Zuidema et al. 2010, Needham et
al. 2018) and'tequire careful analysis to detect. In the simulations below, we always use the CDF
difference approach in our CVR models.

Effects of modeling decisions on population growth estimates. All four of the remaining

modeling. de€isions that we explored can also have substantial influence on estimated lambda
values. However, the strength and patterns of these effects are not necessarily what are usually
assumed by most population biologists. While we have no independent measure of the “right”
answer for theséweal data sets, most models based on the same data set converge on almost
exactly the same'lambda (1) estimates with moderate (for discrete parameter estimation) or high
(for continuous vital rate functions) class numbers, and we assume that these values are
reasonable approximations of reality.

Class.number and vital rate estimation method (DVR vs. CVR) show significant
interactions.in.their effects on A, but do not indicate any clear advantage for the use of CVRs
(Figure 10).Models using DVRs, corresponding to classic matrix models, converge on the same
lambda values as do models using CVRs, corresponding to [IPM models, especially when using
even class boundaries. A values also show convergence to a very narrow range of values (= 0.01)
by ~10-20 classes, depending on the species. While these are higher class numbers than are

typical in many matrix models, they are far below those generally used in IPMs (Figure 4).
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Neither estimation method gives consistently better results with small class numbers. DVRs
always mis-estimated A when used with very few classes, but the use of CVRs resulted in over or
under-estimation, often of greater magnitude, depending on the species and other aspects of
model construction. This suggests that the number of classes has a greater impact on model
performance.than the method of parameter estimation, but that the extremely large matrices used
in most [PMs are unnecessary to achieve model accuracy.

In'general, bistorts, Borderea, and guppies showed fastest convergence on the same
lambda valties'with increasing classes than did the other two species, and the first two species
also showed better correspondence between the predictions of median-based CVR and DVR
models. Unfortunately, there is not a simple difference in the life histories or size distributions of
the species that appears to correspond to these different results (see Figure 6, Appendix S1:
Figures S3-7 for size distributions and vital rates of the species).

Other components of model building also influenced A estimates. First, defining class
boundaries using even divisions generally yielded more consistent results across class numbers,
regardless of'other modeling decisions. This was most obvious for bistort, Borderea and
Vulpicida, for which even class models show convergence to the same lambda values at lower
class numbess than do models with proportional classes, which continued to show divergence out
to 100 classes. Second, use of estimated median sizes with CVR models to characterize average
vital rates often yielded more accurate A estimates, particularly at lower class numbers, than did
use of midpeint sizes. This was especially striking for Vulpicida, for which use of midpoint sizes
substantially‘altered A estimates even with 80—100 classes with proportional class sizes, with no
sign of convergence with the other estimates. The somewhat poorer performance of models with
either proportional classes or midpoints appears to be due to the same underlying cause:
mischaracterizing,average performance either by grouping together very different individuals
and/or by a,poorer approach to characterizing the average state of individuals within a class.

One striking aspect of these results is that the outputs of CVR-based models are more
dependent onsother decisions about model structure and estimation than seems to be the case for
discretely estimated vital rate models (Figure 10). This result contrasts with the common
assumption that use of CVRs will lead to more stable, and hence reliable, results. This finding

also suggests that, if models are made with moderate numbers of classes, discretely estimated
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matrix analyses are likely to provide estimates of growth rates that are just as robust as those
arising from IPMs.

Simulation results: Damping ratios, lifespans, and sensitivity analysis. Predictions of

lifespans and damping ratios mirrored those for population growth rates, although with greater
effects of several modeling decisions (Figures 11 and 12). First, models made with even class
widths show,weaker effects of other modeling decisions in their eventual convergence than
models madewith proportional class widths. Second, CVR models that used median sizes to
characterizé performance often yielded more stable values than did those that used the midpoint
of a class. This was most evident for life span estimates, for which midpoint models gave highly
divergent estimates for Vulpicida and, with proportional classes, Borderea as well. Third, using
discrete vitalrate estimation yielded the same results as did CVR models, and generally
converged upon stable values more quickly with increasing class number. Overall, these results
bolster the conclusion that discretely-estimated matrix models are no less representative of
demographie patterns than are IPMs fit with CVRs and evaluated at midpoints, with IPMs of
high (>80) classes and matrix models of quite moderate size (~10-20 classes) giving essentially
identical results:

Weralso examined the dependence of sensitivity analyses of lambda to matrix elements
on modeling“approach, contrasting the results of a DVR-based model of 20 even size classes and
a CVR model of 80 even classes, evaluated at midpoints. The contrasting models for each
species showed very similar results (Figure 13). The elasticity values of matrix elements were
strongly corrélated (r = 0.95-0.97) with no evidence of systematic bias and there was a similarly
close correspoendence in sensitivity values (r = 0.94-0.99; Appendix S1: Figure S18).

Simulation results: sample size effects. One assumed advantage of CVRs that has often

been advanced in.the demographic literature is that they perform better when data are sparse
(Easterling et.al..2000, Ellner and Rees 2006, Ramula et al. 2009, Zuidema et al. 2010, Merow et
al. 2014), so.we.compared model outputs for 20 class CVR models (fit with median values) vs.
20-class DVRimodels, each fit to 200 bootstrapped data sets across a range of sample sizes
(Figure 14). Regardless of the modeling approach used, the variance in lambda estimates
increased with smaller samples. However, to our surprise, there was little consistent advantage of
the CVR approach with increasingly rarified data. Even when using sample sizes in the low

hundreds, both discrete and continuous approaches to parameter estimation yielded similarly
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variable predictions. This finding does not support the generality that continuous functions will
better estimate vital rates and hence produce better model outputs with small sample sizes. This
result likely reflects in part the model-selection process inherent to fitting continuous vital rate
functions. With smaller sample sizes, different sets of data can yield support for alternative forms
of the vital rate.functions, such as linear vs. quadratic functions, thereby altering model
predictions, In addition, outliers can exert effects on entire vital rate functions when using the
CVR approach; again creating variance in predictions that appear to be equivalent in their effects
to the randomness generated in the estimates coming from the DVR approach. While this result
might change with even smaller sample sizes, our simulation results based on 300—400
individual transitions already show so much variation that the effects of the sampling variance in
the data overwhelm any advantage of one modeling approach over the other. We ran the same
comparisons using 80 class CVR models (Appendix S1: Figure S19) and also used non-stratified
bootstrapped data sets with proportional class boundaries (Appendix S1: Figure S20); in both
cases, we find qualitatively similar results to those seen in the main simulations. In the future, it
would be illuminating to estimate the relative contributions of different processes, such as model
selection, outliers, and size distributions, to the precision of both DVR and CVR model
predictionstand how these vary with sample size for each approach.

We-also conducted a different test of sample size effects, focused on the effects of low
sample sizes per class for DVR models. Here we are looking at the possibility that with higher
class numbers, DVR models will be increasing unreliable, since they will have at least some
classes withsvitahrates estimated from extremely small samples (down to n=1 in our
simulations)xUsing relatively low total sample sizes (see Methods) we fit models with a range of
class numbers and found surprisingly little evidence for an advantage of CVR over DVR models
or of a disadvantage of DVR models with higher class numbers (Figure 15 and Appendix S1:
Figures S21-25),.even when multiple classes have extremely low sample sizes (e.g., N< 6;
Appendix Sl: Figures S21-25). At the lowest sample sizes, for guppies and gorgonians we do see
that DVR medels generated a bimodal distribution of lambdas, but the second, erroneous peak in
estimates results from models that have one or more classes where individuals are immortal and
cannot leave, resulting in lambda =1. While erroneous, this is a pathology that is easy to
recognize and rectify when building a model for a particular species. The surprising lack of

advantage for CVR models also occurs for damping ratio and life span estimates (Appendix S1:

This article is protected by copyright. All rights reserved



984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

Figures S21-25), and does so even though we created models in which minimum sample sizes
per class spanned extremely low numbers.

Simulation results: One more lesson. One lesson that we learned from constructing the

models used in our simulations may not be apparent to many demographers, but can have large
effects on model performance and especially the effects of varying class number: how the size
distribution of new recruits is treated. For most species, including those in our focal data sets,
there is a'wide€nough range of new recruit sizes, at least after their first year of life as a seedling
or equivalent néw recruit class, that they can grow into a meaningful range of sizes. While in
IPM models, the size distribution of new recruits is typically quantified (92% of IPMs in our
literature reviewsData S1: Literature Review), in matrix models new recruits are often deposited
into the smallest'size class and then can proceed through the other size classes of a model. In the
course of makingour simulations, we realized that making this simple assumption guarantees an
artificial dependency of model predictions on class number, because use of fewer, wider size
classes essentially increases the size of new recruits, while narrower classes essentially shrink
them. This pfoblem is avoidable if, instead, new recruits are explicitly modeled as having
probabilitiestofigrowing to a range of sizes. When testing effects of class number on model

outputs, attention to this potential artifact is important.

DISCUSSION

IPMs and traditional matrix models are often discussed as wholly distinct modeling
approaches with\JPMs representing a substantial improvement in demographic modeling by
dealing morewealistically with the continuous ranges of state variables and vital rates seen for
many organisms. While an argument can be made that conceptually the two methods really are
distinct, both our literature review and demographic analyses, based on data for five diverse
organisms, challenge the view that they are entirely distinct in practice or that one is clearly
superior. Instead; we find broad overlap in the way IPMs and matrix models are fit and
interpreted, Asquarter of size-based matrix models estimated at least one vital rate as a
continuous fungtion of size, and although these models used substantially fewer classes on
average than IPMs, the range of class numbers was very wide and overlapping across the two
approaches. Further, our simulations showed no substantive differences in outputs of models

using discrete vs. continuous approaches to estimating vital rates. Rather, both approaches
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performed similarly well when sample sizes and class numbers were sufficient and similarly
poorly when data were limiting or too few classes were used to capture an organism’s life
history. Further, we found little advantage to using more than 10-20 classes even for extremely
slow-growing and long-lived organisms, suggesting that continuous demographic processes can
be well approximated by matrices of moderate dimension. This range of size classes is at the
high end for.most size-based matrix models in the literature, but it is far lower than that used to
analyze virtually“all IPMs. Although these two aspects of demographic modeling - matrix
dimension and"diScrete vs. continuous vital rate estimation - have received the most attention in
the literature, our simulations also highlight the equal or greater importance of other modeling
decisions, suchras how classes are defined and continuous vital rate functions are discretized, as
well as the quality and quantity of the underlying demographic data. Together, these results
suggest that some model building decisions have been over-emphasized whereas data collection
methods and sample size effects have been under-emphasized in discussions of improving
demographie models and their predictions.

Onesofthe principal critiques of traditional matrix models is that they use too few classes
to accurately'represent what are inherently continuous demographic processes, and this idea has
been bolstered by analyses of [PMs that show that class numbers into the hundreds are often
necessary.to'Stabilize model outputs. Our simulations lend partial support to this idea, by
showing that demographic models with too few classes do indeed produce biased outputs.
Interestingly, however, our models were able to accurately capture the demography of long-lived
species withs§izes spanning up to 2.6 orders of magnitude with 10-20 classes — much less than
what is typically'used by IPMs. These results suggest that traditional matrix models for size-
based life-histories may indeed require more classes than are typically used, although many
models are built for species with smaller size ranges, more stage-based life histories, or shorter
life spans than.most of our focal species. For such species, there are likely to be smaller
differences between the fates of most individuals and also less steep changes in vital rates across
the sizes of most individuals. In such cases, fewer classes may well be sufficient, as we see with
our guppy example. In addition, studies focused on particular species often make careful,
biologically-based decisions about class boundaries which seem likely to yield better results than
our more standardized but mindless class divisions (but see Ramula et al. 2020). Our results also

suggest that the perceived need for extremely high class numbers with [PMs may be driven by
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the inefficiency of the midpoint method for estimating growth, or some other pathology in the
way the models are being constructed, rather than a more fundamental need for high class
number to capture biological patterns.

The_other.aspect of model fitting that has been emphasized in discussions of demographic
modeling has,been whether vital rates are estimated discretely for each class or by using the data
across all classes'to fit continuous vital rate functions (CVRs). The main arguments for CVRs are
that they"aré'more biologically realistic than discrete classes, are more accurate when data are
limiting, can allow easier incorporation and testing of demographic drivers, and can utilize
sophisticated statistical methods, such as mixed models or Bayesian approaches (Ramula et al.
2009, Merow etwal. 2014b, Ehrlén et al. 2016, Elderd and Miller 2016). In our simulations, we
found no eviden¢e for the first two arguments. There was no improvement when using CVRs for
a range of model outputs, including population growth, lifespan, damping ratio, or sensitivity and
elasticity patterns. In fact, we observed a general tendency in our simulations for CVR-based
model outputs to be more sensitive to other modeling decisions, such as whether classes are
equally spagedor proportional to sample sizes. We also saw no evidence that CVRs increase the
precision oraceuracy of estimates as sample sizes decrease. This is in contrast to results found
by Ramulavet,al. (2009), which compared 100-class IPMs with 4-6 class matrix models. This
discrepancy*may have been driven by the difference in class number rather than the method of
vital rate estimation. By separating these two components in our simulations, we find a large
effect of class number but little consistent effect of estimation method. Ramula et al. (2009) also
found a weak'correlation between matrix dimension and sample size for 63 plant matrix models,
suggesting thatsimatrix models with low sample sizes could also suffer from few classes.
However, we found no relationship between matrix dimension and sample size for size-based
matrix models in.our literature review (Appendix S1: Fig. S2).

Our,zesults lead us to conclude that neither the continuous nor discrete approaches to
estimating vital rates is inherently better. Instead, the choice of approach should depend on the
particular lifedhistory and analysis goals of a given study. Discrete vital rate estimation (DVR) is
arguably the'mest flexible approach if life history patterns are complex, because it is agnostic
about many aspects of vital rate patterns. For example, multiple state variables can be easily
combined into complex states representing combinations of size, age, or stage variables. DVR

can also easily accommodate sharp transitions or non-linearities in vital rates, cases where
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survival asymptotes at values less than 1, and cases that violate distributional assumptions about
state variables (e.g., normally distributed growth). Further, the explanatory power of different
model structures can be tested statistically to infer the number and placement of class divisions,
and there is some.evidence that this approach outperforms model structures informed by expert
opinion alone{Ramula et al. 2020). Alternatively, there are clear advantages of the statistical
framework of CVRs. By modeling vital rates in a regression-based framework, CVRs can easily
incorporate"the effects of covariates such as climate, can incorporate or correct for site or year
effects as random’ variables, and can account for individual effects using random effects to
account for repeated measures. CVRs can also provide a clear conceptual framework for
hypothesis testing and model selection, and also allow investigation of sensitivities with respect
to underlying functional forms or model parameters. However, it is worth noting that various
methods, including multi-state mark recapture models, can also allow model selection to be
applied to DVR estimation. Thus, CVR and DVR-based models may each be most appropriate
for different.datasets and analysis goals.

Onessurprising result to emerge from this work is the importance of other aspects of
model fitting that have received far less attention in the demographic literature. For example,
traditional'matrix models often define classes based in part on sample sizes, but our results
suggest that'dividing classes evenly — on the transformed or untransformed scale for which size
best relates to vital rates, depending on species -- generally gives more accurate results. We also
identified several ways to improve methods for discretizing continuous vital rate functions. First,
we show thattheymesh point method can badly misestimate growth probabilities when using
CVR functionsgbut that this is solved by using the CDF difference method. Second, our results
suggest that vital rates are better characterized by using the median rather than the midpoint of a
class, as long as the distribution of sampled individuals represents the size distribution in the
population..We expect that this distinction is behind the slower convergence of the Vulpicida
models with.increasing class numbers. This is the only data set we used where sampling was not
roughly comprehensive, but stratified over sizes, making the distribution of sampled individuals
a poor charaéterization of the population-wide size distribution.

Finally, the most overwhelming effect on model accuracy in our simulations was the
sample size of the underlying demographic data, which is an indicator of the sampling precision

of vital rates and their relationships with the state variable used. We found low precision in
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model outputs with sample sizes less than several hundred regardless of modeling approach, and,
in these cases, CVRs did not solve the problems caused by low sample sizes. The lowest sample
sizes we used (305-405) were typical of many published demographic studies, and considerably
larger than used in some studies (Appendix S1: Figures S2, S26). However, our simulations
pooled all demegraphic data to estimate a single transition matrix. This means that spatial and
temporal variation in individual fates will be at least somewhat larger in our samples than would
be expectedin'samples of a single population over a single transition, potentially inflating the
variance in'lambda estimates we see with small samples. Furthermore, in cases where data are
collected across multiple time periods or locations and sample sizes are limiting, CVRs may
enable a researcher to improve accuracy by fitting vital rate functions that borrow strength by
including allthe’data while appropriately modeling its structure. Statistical models can also be
used to estimate DVRs while accounting for random effects of site or time period (Altwegg et al.
2007, Morris et al. 2011, Ramula et al. 2020), and a mixed strategy of fitting CVRs with class-
specific random effects could also be useful in some cases.

There"ate several other important aspects of demographic model construction that we do
not considerthere, but that have recently been explored and shown to be of real importance.
Perhaps meost.critically, we do not address how the choice of state variable can influence model
results. Asdsouthan and Doak (2018) show, measured state variables that are not closely
correlated with an individual’s “true state” can yield misleading model results due to errors in
characterizing state. For example, perennial plant size is often characterized by measuring leaf or
stem size, whereas demographic rates may in fact be driven more by below-ground energy
stores. A second’concern that we do not address is the distributional assumptions that are often
made when modeling size transitions with CVRs. Most IPMs assume that growth is normally
distributed, but this can bias model outputs if growth is asymmetric such as when growth or
shrinkage is.more likely (Peterson et al. 2019). In general, choices regarding the form of vital
rate functions.ace likely to be just as important for inference as the issues investigated here.
Several auther§ have repeatedly emphasized that IPM practitioners should carefully evaluate the
goodness of'model fits for vital rate functions and their influence on IPM outputs (Easterling et
al. 2000, Rees et al. 2014, Ellner et al. 2016), and we echo those recommendations here.

Taken together, our results suggest that [IPMs and matrix models are overly dichotomized

in the literature. We suggest that this distinction is neither useful nor representative of the range
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of modeling decisions that underlie every structured demographic model. Many models use some
combination of continuous and discrete vital rate estimation (e.g., when some individuals are
described by continuous state variables and others [juveniles, seeds, etc.] by stage). Although the
methods used to build these matrices will often be very similar, the language and notation used
to describe medels are often completely different based on whether authors decide to refer to a
model as an IPM or matrix model. In our experience, the terminology and integral notation used
to describe TPMS"can be intimidating to many new students and to non-specialist consumers of
demographicanalyses, such as conservation managers, when in fact the vital rate models and
discretization methods would be familiar if described differently. In addition, much of the
language used toypresent IPMs obscures the fact that the continuous vital rate functions are
discretized into projection matrices prior to analysis, making the actual model outputs or their
correspondence to matrix models difficult to understand. As we note above, many IPM studies in
our literature review do not report the discretization methods used at all.

We suggest that it is more informative to refer to both projection matrix models and IPMs
as Structured"Population Models more generally, in part to emphasize the need to break these
labels down interthe important details of vital rate estimation, the number of size classes, and the
methods used,to discretize CVRs. In particular, we emphasize that statements suggesting that
IPMs avoidddiscretization, are more biologically realistic, or perform better at small sample sizes,

are not supported by our findings.

SPECIFIC RECOMMENDATIONS
Below, we highlight several of the most important recommendations for constructing
demographic models that have emerged from this work.
1. When using an inherently continuous state variable, test the sensitivity of results to class
number (particularly when using few classes).
2. When.using continuous vital rate functions (CVRs), report methods for discretization by
including class number and integration method.
3. Whenwsing CVRs to model size transitions, use the CDF difference method or explicitly
show that the use of the standard mesh point method is accurate.
4. Especially when using smaller class numbers, use population size distributions to base

vital rate estimates on representative (mean or median) sizes.
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5. Both small sample sizes (indicative of low precision in vital rate estimates) or very few
classes can result in biased or imprecise model outputs, and this should be carefully
considered when interpreting or using published models (e.g., meta-analysis,
COMPADRE or COMADRE databases), especially as many matrix models have been
built with fewer classes than what we would recommend. A caveat to this conclusion is
that for short-lived species or species with a limited range of sizes, fewer classes may be

sufficient.

SUMMARY

In summary, we do not find support for several common generalities and assumptions
about demographic modeling methods, and we also expose some new considerations for the
construction of accurate structured population models. However, our results are generally
positive: widely repeated but untested assumptions about the dependence of demographic results
on modeling approaches were largely unsupported, meaning that we have a far wider range of
useful demegtaphic studies to learn from than would otherwise be the case. Looking forward,
this result also‘implies that the structure and parameterization of demographic models should
always be guided by careful consideration of the species and data being modeled and that, if this
is done, different approaches will generally reach the same ecological conclusions. With
sufficient sample sizes and enough classes to accurately represent the key life-history variation
of a given species, a range of model-fitting approaches will converge on the same answer.
Structured demographic models, one of the backbone methods of population biology, are
comprised of:arobust set of methods that can be usefully added to, but do not require

fundamental re-tooling.
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1475 TABLES

1476  Table 1: Summary of studies included in the literature review.

Deterministic Stochastic
Number Number prop. prop. prop. prop.
models species Matrix IPM Matrix IPM
Annual forbs 24 24 0.75 0.0 0.25 0
Perennial forbs 314 236 0.46 0.18 0.27 0.08
Woody plants 255 222 0.45 0.28 0.19 .08
Algae, lichen, & mosses 13 12 0.31 0 0.69 0
Other non-woody-plants* 92 64 0.39 0.40 0.12 0.09
Total autotrophs 698 558 0.46 0.24 0.22 0.08
Amphibians 20 19 0.55 0.15 0.30 0.0
Reptiles 29 24 0.69 0.03 0.24 0.03
Fishes 63 45 0.62 0.22 0.13 0.03
Birds 134 108 0.68 <0.01 0.31 <0.01
Mammals 240 175 0.78 0.03 0.18 0.01
Total vertebrates 486 371 0.71 0.06 0.22 0.01
Invertebrates 87 72 0.69 0.10 0.15 0.06
Total 1271 1001 0.57 0.16 0.22 0.05
1477  * Including ferns, graminoids, and Cactaceae
1478  FIGURE LEGENDS
1479  Figure 1: Diagram of the key steps and considerations in fitting either a matrix model or Integral
1480  Projection Medel (IPM). Both approaches begin and end with the same steps (yellow boxes) but
1481  may differ in their methods of parameter estimation (blue boxes) and resulting matrix
1482  dimensions (green boxes).
1483
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Figure 2. Comparison of methods used to calculate probabilities of growing from a given starting
size into a given size bin (x). A) The probability density of size at t+1 can be discretized into
classes (defined by black lines) with midpoint sizes (circles). B) The probability of growing into
a particular class is most often approximated by the midpoint method, by evaluating the
probability density at the midpoint and multiplying by the class width (h). C) Alternatively, the
probability of growing into a class is given exactly by the difference in the cumulative
probability function (CDF) values at the bin edges. The approximation in B is accurate with
many narrow bins relative to the variance in growth (D), but can be poor if classes are wide
relative to the variance in growth (E). The actual growth probabilities based on differences in the
cumulative density function or CDF (red dots) sum to 1, whereas the approximated growth
probabilities'based on point estimates from the PDF (blue dots) may be less than or greater than

I.

Figure 3: Changes in published demographic models over time. Circles are the proportion of A)
models thatare'described as IPMs vs. matrix models, and B) matrix models that use continuous
vital rate (CVR)sestimation published between 2002 and 2018, with fitted relationships over
time. Proportions are shown for all models (open circles, dashed lines) or only size-based models

(filled circles; solid lines). Circle size is proportional to the total number of models.

Figure 4. Histograms of the number of classes used in demographic models published between
2002 and 2018 "Histograms are shown for A) all models or B) models with size as the state
variable, divided between matrix models (solid black lines) and Integral Projection Models

(IPMs; dashed red lines). Histogram values are shown as points connected by a line.

Figure 5: The empirical work flow for demographic models published between 2002 and 2018.
Arrow and circle ' widths indicate the number of corresponding models. Note that all Integral

Projection Medel (IPM) parameter estimation is classified as continuous.
Figure 6. Size distributions of individuals included the example data sets used for demographic

simulations, shown on the scales used to construct the demographic models. Note that for all

species other than Borderea, before using the data in simulations we set a maximum size that
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1515  eliminated long, very sparse tails of larger sizes, as these created problems for the automated
1516  binning of data used in our simulations.

1517

1518  Figure 7. An illustration of the problems with standard mesh point growth estimation. A) A

1519  distribution of.ending size values, with mean 50 and SD 0.5, on a possible size range between 0
1520 and 100 andywith probabilities shown for classes of width 1. B) The summed probability of

1521  growing to ‘any'size, as estimated by the standard mesh point method. Results are shown for bin
1522  numbers between'10 and 100. Each line shows results for a different mean ending size between
1523 49 and 51. Any reasonable way to estimate growth rates should yield a summed probability of
1524  exactly one<Unless high mesh point numbers are used, the mesh point method yields values
1525  much larger'or smaller than one most of the time. With a narrower ending size distribution, far
1526  higher bin numbers are needed to yield reasonable results.

1527

1528  Figure 8. Even at high class numbers, the mesh point approach yields inaccurate growth rates for
1529  some starting"§iz€ classes. Results show the summed growth probabilities for each starting size
1530 for models builtswith 50 (green) or 100 (blue) classes for each of our focal species. For four of
1531  the five speeies, the mesh point method gives poor total growth estimates for some large or small
1532  size classesy€ven with 100 classes.

1533

1534  Figure 9. Estimates of lambda derived from continuous vital rate (CVR) models built with either
1535  the standardsmesh point approach to estimate growth or using the cumulative distribution

1536  function (CDE)ddifference approach, shown for each species. The mesh point approach yields
1537  much worsg estimates of lambda at low to moderate class numbers.

1538

1539  Figure 10. Lambda values with varying class number and modeling approaches for each focal
1540  species. Models.are built using class divisions that evenly divide the size range and have a

1541  constant width'(left) or that proportionally divide the size range to include similar sample sizes
1542  within each ¢lass (right). Within each panel, data are shown for models built with discrete vital
1543  rate estimation (DVR) or with continuous vital rate function using either midpoint (CVR —

1544  midpoint) or median (CVR — median) size estimates of class-specific vital rates. Note the

1545  different range of class numbers on the x-axis for guppies.
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Figure 11. Life span estimates for four species, with varying class number and modeling
approaches. Models are built using class divisions that evenly divide the size range and have a
constant width (left) or that proportionally divide the size range to include similar sample sizes
within each class (right). Within each panel, data are shown for models built with discrete vital
rate estimation (DVR) or with continuous vital rate function using either midpoint (CVR —

midpoint) ofmedian (CVR — median) size estimates of class-specific vital rates.

Figure 12. Damping ratios with varying class number and modeling decisions. Models are built
using class divisions that evenly divide the size range and have a constant width (left) or that
proportionally divide the size range to include similar sample sizes within each class (right).
Within each panel, data are shown for models built with discrete vital rate estimation (DVR) or
with continuous vital rate function using either midpoint (CVR — midpoint) or median (CVR —

median) size estimates of class-specific vital rates.

Figure 13. Close‘correspondence between elasticity values generated by a 20 class DVR and an
80 class continuous vital rate (CVR) model for each species. To condense values from the larger
model, wessimmed sets of elasticities in each column of the matrix that corresponded to a single,
broader category in the smaller model, and then took the average of these values across columns
corresponding to the categories in the smaller model. We only compare elasticities for non-zero
matrix elementsiPearson correlation coefficients are shown for each relationship, and lines give

the 1:1 slopemAppendix S1: Figure S18 shows a comparable figure for sensitivity values.

Figure 14. Distribution of lambda estimates with declining sample sizes. For each of 200 random
draws of data.with decreasing sample sizes, we fit a 20 bin continuous vital rate (CVR) based
model (gray).or.a 20 bin DVR-based model (black). CVR models were fit using median bin
characterization and all models used even size classes (see Methods for more description of the
size class boundaries). The horizontal line running through each distribution shows the mean.

See Figure S19 for a comparison of the 20 class DVR models with 80 class CVR models.

This article is protected by copyright. All rights reserved



1576
1577
1578
1579
1580
1581

Figure 15. Distribution of lambda estimates with increasing size classes. For each of 200 random
draws of data with a single decreased sample size, we fit a 20 class continuous vital rate (CVR)
based model (gray) or a 20 class DVR-based model (black). CVR models were fit using median
class characterization and all models used even size classes. The horizontal line running through
each distributien shows the mean. See Figures S21-25 for comparable results for damping ratios

and life spans and for summaries of size-class specific sample sizes.
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