@JAGU PUBLICATIONS

Water Resources Research

RESEARCH ARTICLE

10.1002/2016WR018696

Key Points:

« Wavelet decomposition identifies the
frequency/period of the climate
signal in which the variabilities with
time are significant

« Application of block K-NN simulation
technique on the significant wavelet
signals of climate indices is skillful

« The conditional simulation of
streamflow based on teleconnecting
climate indices such as sea surface
temperature is skillful

Supporting Information:
« Supporting Information S1

Correspondence to:
S. T. Erkyihun,
solomon.erkyihun@colorado.edu

Citation:

Erkyihun, S. T., B. Rajagopalan,

E. Zagona, U. Lall, and K. Nowak (2016),
Wavelet-based time series bootstrap
model for multidecadal streamflow
simulation using climate indicators,
Water Resour. Res., 52, 4061-4077,
doi:10.1002/2016WR018696.

Received 4 FEB 2016

Accepted 4 MAY 2016

Accepted article online 6 MAY 2016
Published online 26 MAY 2016

© 2016. American Geophysical Union.
All Rights Reserved.

Wavelet-based time series bootstrap model for multidecadal
streamflow simulation using climate indicators

Solomon Tassew Erkyihun'-2, Balaji Rajagopalan’-3, Edith Zagona'-2, Upmanu Lall4, and
Kenneth Nowak>

'Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, Colorado, USA, 2Center for Advanced
Decision Support for Water and Environmental Systems, University of Colorado, Boulder, Colorado, USA, 3Cooperative
Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA, “Earth and
Environmental Engineering, Columbia University, New York, New York, USA, *Bureau of Reclamation, Lower Colorado
Region, Boulder City, Nevada, USA

Abstract A model to generate stochastic streamflow projections conditioned on quasi-oscillatory climate
indices such as Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO) is presented.
Recognizing that each climate index has underlying band-limited components that contribute most of the
energy of the signals, we first pursue a wavelet decomposition of the signals to identify and reconstruct
these features from annually resolved historical data and proxy based paleoreconstructions of each climate
index covering the period from 1650 to 2012. A K-Nearest Neighbor block bootstrap approach is then devel-
oped to simulate the total signal of each of these climate index series while preserving its time-frequency
structure and marginal distributions. Finally, given the simulated climate signal time series, a K-Nearest
Neighbor bootstrap is used to simulate annual streamflow series conditional on the joint state space
defined by the simulated climate index for each year. We demonstrate this method by applying it to simula-
tion of streamflow at Lees Ferry gauge on the Colorado River using indices of two large scale climate forc-
ings: Pacific Decadal Oscillation (PDO) and Atlantic Multi-decadal Oscillation (AMO), which are known to
modulate the Colorado River Basin (CRB) hydrology at multidecadal time scales. Skill in stochastic simulation
of multidecadal projections of flow using this approach is demonstrated.

1. Introduction

Understanding streamflow variability and the ability to generate realistic scenarios at multidecadal time
scales is important for robust water resources planning and management in any river basin, especially in
semiarid basins such as the CRB. It is increasingly evident that large-scale climate forcings such as El Nino
Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO)
modulate the hydroclimatology of the western United States at multidecadal time scales [Tootle et al., 2005,
Timilsena et al., 2009; Enfield et al., 2001; McCabe and Dettinger, 1999, McCabe et al., 2007; Hidalgo, 2004;
Nowak et al., 2012]. The influence of ENSO on the variability of precipitation and flows in western United
States has been well documented [Redmond and Koch. 1991; Timilsena et al., 2009; Dracup and Kahya, 1994;
Thomson et al., 2003]. The subtropical jet stream that funnels storms to this region during winter, which is
the major source of moisture, is intensified over the southwestern U.S. during El Nino events, bringing more
rain and snow to this region while drying the northwestern U.S. and vice-versa during La Nina events. This
causes significant interannual variability in precipitation and stream flow. However, its direct impact on the
Colorado Basin is weaker [e.g., Regonda et al., 2006, Grantz et al., 2005]. The PDO is a decadal phenomenon
[McCabe et al., 2004, 2007, 2008] that has been shown to influence western United States hydroclimatology
along with ENSO over interannual and multidecadal time scales [Gershunov and Barnett, 1998, Rajagopalan
et al., 2000]. The positive phase of PDO with increased sea surface temperatures over the northern Pacific is
generally associated with increased flow in the central and western United States, and the negative phase
with decreased flow [Tootle et al., 2005; Hidalgo, 2004; Timilsena et al., 2009]. Recent research indicates
strong connections between AMO and hydroclimatolgy over the United States. The warm phase of Atlantic
Multidecadal Oscillation (AMO) is known to be associated with decreased flow conditions over most of the
United States [Enfield et al., 2001; Tootle et al., 2005; Timilsena et al., 2009]. AMO is also known to modulate
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the decadal to multidecadal variability of flow in the upper Colorado River Basin [McCabe and Dettinger,
1999, McCabe et al., 2007; Hidalgo, 2004; Nowak et al., 2012]. While ENSO, AMO, and PDO drive western
United States hydroclimatology as evidenced by many researchers, AMO and PDO are the dominant drivers
of flows in the Upper Colorado River Basin at interannual and decadal time scales as recently demonstrated
by Nowak et al. [2012] and Bracken et al. [2014]. Lower Colorado Basin flows are also modulated by these cli-
mate forcings [Thomas, 20071.

There is a rich history of traditional time series simulation techniques [Salas et al., 1980; Wei, 2006] that fit
linear models to the flow series. These models have done well when the hydrologic data did not exhibit
long memory or nonlinear dependence, or quasi-oscillatory dynamics, or was not easily transformed to a
Gaussian marginal distribution using the commonly used transforms. Nonparametric approaches were pro-
posed to improve upon these methods to better reproduce nonlinear and non-Gaussian features in a Mar-
kovian context [Lall, 1995; Lall and Sharma, 1996; Sharma et al., 1997]. A second approach that was
introduced at about the same time was the use of a moving block bootstrap [Vogel and Shallcross, 1996] to
address non-Markovian dependence. Subject to the choice of a block length, this method allows time series
simulation that incorporates some long memory characteristics. However, it does not lend itself to condi-
tioning on climate indices or other predictors of the time series of interest. Subsequently, wavelet-based
autoregressive moving average methods were introduced to address the modeling of quasi-oscillatory
dynamics Kwon et al. [2007]. Their approach was to decompose the time series into a small set of quasi-
periodic components [Torrence and Compo, 1998] and a residual time series. A traditional autoregressive
moving average model is then fit to each of the components, including the residual process. The compo-
nents are simulated and summed to obtain simulations of the original series. This method performed very
well in capturing the global spectral properties, but not the nonstationarity of the spectrum. Nowak et al.
[2011] enhanced this approach by scaling the components with their scale-averaged wavelet power, a time
varying variance of the components, before fitting the autoregressive models, and then rescaling the simu-
lated components with the same. This approach captured the nonstationarity in the spectrum very well.
Recently, Bracken et al. [2014] showed that regime-like behavior of the Colorado River flows are forced by
AMO and PDO, and used a nonhomogeneous hidden Markov model to simulate the flow properties using
these two climate forcings.

Given this background, we present a novel algorithm, WKNN that stands for Wavelet-K-Nearest Neighbor,
that integrates the recently developed wavelet and bootstrap features mentioned above. As in Kwon et al.
[2007], a wavelet projection is used to decompose each climate index into a small set of components,
each of which explains a statistically significant fraction of the variance of the time series and is limited to
a specific frequency band. Each component time series is then modeled using a K-Nearest Neighbor (K-
NN) block bootstrap method that is introduced. The goal of the method is to conditionally draw a block
from the component time series given a current state vector. The K-NNs of the current state vector are
used to provide samples of the conditioning distribution, from this a block of time series values that suc-
ceeds one of these K-NNs is then drawn at random, thus providing a conditional block bootstrap. A
repeated application of this procedure allows one to develop a full time series with the appropriate time-
frequency variability for the component time series. The component time series are then summed to pro-
vide a simulation of the climate index of interest. Once the climate index time series are available, annual
flows for each year are simulated using the K-NN bootstrap approach [Lall and Sharma, 1996], conditional
on the state space defined by that year’s simulated climate indices. Following this procedure, we are able
to maintain the time frequency structure of the climate indices and of the conditional distribution of
annual flows given the climate indices.

The K-NN bootstrap approach was proposed by Lall and Sharma [1996] and applied to monthly streamflow
simulation (i.e., lag-1 model). This method has been applied to multivariate stochastic weather generation
[Rajagopalan and Lall, 1999; Yates et al, 2003; Caraway et al., 2014], paleostreamflow reconstruction
[Gangopadhyay et al., 2009], water quality modeling [Towler et al., 2009], and others. The idea of resampling
blocks of B capitalizes on the fact that there is significant dependence in the climate signals of at least lag B
that needs to be captured. Typical literature on block bootstrapping as described by Efron and Tibishirani
[1993] is unconditional or without the feature vector and the neighbor selected as described above. Ran-
dom block size using a geometric distribution, more suitable for weakly dependent data, was proposed by
Politis and Romano [1994] and used recently to model dependency in paleo streamflow by Razavi et al.
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[2015]. For WKNN, we incorporated the feature vector to better capture nonstationarity. The modification
with block resampling combined with wavelet components is unique and the novel aspect of this research.

The paper is organized as follows. The data used in this research is presented first followed by the method-
ology and its components. Model validation is described and then the results. The summary of the results
and discussion conclude the paper.

2. Data

The historical and paleodata of annual Colorado River streamflow and annual climate indicators are
described below.

2.1. Colorado River Flow at Lees Ferry, AZ

The Lees Ferry flow gauge, through which 90% of the naturalized flow in the basin passes, divides the Colo-
rado River Basin into the upper and lower operational basins. Naturalized water year flows (sum of flows
during October-September) at this gauge for the period 1906-2012 are used in this study. Monthly natural-
ized flow is computed by removing anthropogenic effects such as regulation and diversions. It is updated
regularly by the United States Bureau of Reclamation [Prairie and Callejo, 2005] (http://www.usbr.gov/Ic/
region/g4000/NaturalFlow/current.html). The data have been used for planning studies in the basin [Recla-
mation, 2012] and in other research [Regonda et al., 2011; Nowak et al., 2011; Miller et al., 2012]. In addition,
tree ring reconstructed flows for the pre-1906 period covering 1490-1905 from Woodhouse et al. [2006] are
also used in this study. The reconstructed data are available here: http://treeflow.info/upco/coloradolees-
woodhouse.txt.

2.2. Climate Indices, AMO and PDO

The AMO index [Enfield et al., 2001] is computed as a monthly area-weighted average of North Atlantic
(0-70°N) sea surface temperatures (SST), which is subsequently detrended, based on 5° X 5° resolution
Kaplan SST [Kaplan et al.,, 1998]. Values were obtained from the NOAA Physical Sciences Division website
http://www.esrl.noaa.gov/psd/data/timeseries/AMO/ for the period 1856 to present. The paleoreconstruc-
tion of annual AMO for the period (1650-1990) is based on reconstructions of annual sea surface tempera-
ture anomalies (SSTA) for the North Atlantic Ocean (0-70°N) from tree rings [Gray et al., 2004] and was
obtained from the NOAA website ftp://ftp.ncdc.noaa.gov/pub/data/paleo/treering/reconstructions/amo-
gray2004.txt.

Monthly PDO anomalies from 1900 to present are available from the University of Washington (http:/jisao.
washington.edu/pdo/PDO.latest). The annual data were taken as the average of the monthly (averaged
over October-September, to be consistent with the flow) values in this analysis. The PDO is calculated as
the first principal component of the Northern Pacific SST [Zhang et al., 1997; Mantua et al., 1997]. Annual
PDO values for the period 993-1996, based on tree rings from Pinus flexilis in California and Alberta, Canada,
were generated by MacDonald and Case [2005] and are available from the NOAA website ftp://ftp.ncdc.
noaa.gov/pub/data/paleo/treering/reconstructions/pdo-macdonald2005.txt.

In summary, we use historical and paleoreconstructed records that cover a common period from 1650 to
2012 for the Colorado River flow at Lees Ferry, the AMO and the PDO. We refer the period 1650-2012 as
long historical and the period 1906-2012 as historical.

3. Proposed Methodology

The methodology we propose has three broad steps: (i) Decompose the large-scale climate indices to
obtain dominant signals in specific frequency bands that explain a statistically significant fraction of the sig-
nal’s variance [Torrence and Compo, 1998; Kwon et al., 2007]. (ii) Simulate these dominant signals independ-
ently using a new block K-NN bootstrap approach. We refer to these two steps as WKNN; and (i) Simulate
the streamflow using K-NN bootstrap conditioned on the simulated climate forcings [Lall and Sharma, 1996]
from the previous step. These steps are described below.
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3.1. WKNN: Wavelet Decomposition

The first step is to decompose the climate indices using wavelets into orthogonal quasi-periodic compo-
nents. For a detailed exposé on wavelet analysis for geophysical applications, we refer to Kumar and Fou-
foula-Georgiou [1994, 1997]. Here we follow the implementation procedures described in [Torrence and
Compo, 1998; Kwon et al., 2007; Nowak et al., 2011]. A brief description is provided here.

The continuous wavelet transform of a discrete time series for a period a and time n, is given by:

=

-1

Wn(a) _ )?jl/}* (awj)ei(')'n(S’ )

-
I
o

where X; is the discrete Fourier transform of the original time series; v (aay) is the Fourier transform of the
wavelet function, ; N is the number of data points in the original data; J; is the time factor or time step
(for annual data it is equal to 1); and w is the angular frequency.

The Morlet is chosen to be the preferred wavelet function for its boundary properties [Torrence and Compo,
1998] and its simplicity for time series applications. It is given by:

II/O(VI) — n71/4ei(nonefnz/2 )

where wg and 7 are the nondimensional frequency and time parameters, respectively [Torrence and Compo,
1998]. Since we use the Morlet wavelet, wg =5 is chosen [Kumar and Foufoula-Georgiou, 1997]. We com-
pared wavelet spectra and time series simulations from two other wavelets—DOG and Paul—and found
that the performance of the simulations were virtually identical. The wavelet choice does not seem to influ-
ence the time series simulation.

The wavelet spectrum represents the power at a period a and time t. In the wavelet literature, the period a
is referred to as the scale. We refer to this as the period in the context of the quasi-oscillatory modes of the
time series used in this research. Averaging this across time provides the global wavelet spectrum. Tests of
the statistical significance of the power at a given period are typically based on a null hypothesis of a white
or red noise process [Torrence and Compo, 1998]. Here we used white noise for the null hypothesis. The
global and nonstationary spectra of AMO and PDO are shown in Figures 1 and 2, respectively. Figures 1a
and 1b show the wavelet spectra of AMO for the observational and paleo periods, respectively. The white
noise based confidence levels are shown for the global spectrum. Significant power can be seen in the 32-
128 year period and longer for the paleorecord. For the PDO (Figure 2), the multidecadal band of 8-32 year
period is dominant in recent decades in the historical period and sustained throughout the long-historical
period. The variation of PDO over a broad range of timescales is consistent with Steinman et al., [2015]. For
the longer periods, the data are limited and thus, as indicated by the cone of influence, claims of signifi-
cance of the power are not supported.

A component signal representing a frequency band where statistically significant power is identified is
reconstructed as:

o 0”2 iR{Wn (a)} G)

" C&'»DO(O) = af1/2
where Cs and ¢; are reconstruction and scale factors, respectively. wO(O):n‘V“ is the factor that removes
the energy scaling for Morlet wavelet function; R denotes the real part of the wave; and g; is the scale. The
j1 and j, are the lower and upper limits of the frequency range over which the average is computed. For
example, in the case of PDO this would correspond to the 8 and 32 year periods, for j; and j,, respectively.
Similarly all other component signals are reconstructed representing the various significant frequency
bands. Together they represent the total signal component.

3.2. WKNN: Simulating the Climate Signal Using Block Bootstrap
The steps are described below for simulating a sequence of a component signal of a climate index:
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Figure 1. (a) Wavelet spectra of historical (1906-2012) AMO and (b) Wavelet spectra of the long historical (1650-2012) AMO. (left) Local power spectrum; the blue color demonstrates
the lower power spectra and the red color the higher, and the dotted line is the cone of influence. The right-hand side plot is the global power spectrum with 90% and 95% confidence
level from white noise. Index refers to the standardized AMO.
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Figure 2. (a) Wavelet spectra of historical (1906-2012) PDO and (b) Wavelet spectra of the long historical (1650-2012) PDO. (left) Local power spectrum; the blue color demonstrates the

lower power spectra and the red color the higher, and the dotted line is the cone of influence. The right-hand side plot is the global power spectrum with 90% and 95% confidence level
from white noise. Index refers to the standardized PDO.
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1. For each reconstructed component signal, the characteristic period, P, is identified, as: ﬁ:h%b where j;
and j, are upper and lower periods of the reconstructed signal. Then a block size, B, is computed which
is quarter of P.

2. For a given time t, a ‘feature vector’ of length B is created as [x;, X¢—1, ... X;—g+1], where x; is the climate
signal at time t and K-NN of this feature vector based on Euclidean distance are identified in the full
record of the reconstructed component signal time series. Since AMO and PDO are block bootstrapped
separately, at a given time their joint vector is unlikely to be identical to any historical time. Hence the
current vector is considered in the simulation.

3. One of the K-Nearest Neighbors is randomly selected using a probability metric described in [Lall and
Sharma, 1996] as:

1
Wi==-:i=1,2,.K 4)
i Z,

Lall and Sharma [1996] proposed a heuristic choice for K as, K= /N where N is the number of data
points.

4. Suppose the neighbor j is selected which corresponds to a calendar time T. A sequence of time series val-
ues for a block of length B that follows, i.e., X741, X742, ..., X7r+g then constitutes the simulated values
for the succeeding B time steps T+ 1, T+ 2,..., T+ B.

5. The simulated block becomes the new feature vector and steps (ii) through (iv) are repeated to simulate
the signal for time stepst+B + 1,t+B + 2,...,t+ 2B

The above steps are repeated to generate a sequence of any desired length B time steps at a time.

The above steps are applied to simulate sequences of all the reconstructed component signals. These simu-
lated sequences of component signals are added to obtain the sequence of total signal. This is done for
each climate index separately, i.e., AMO and PDO, thus resulting in a sequence of simulated climate signal
vector for each time, Y; = [AMO,, PDO,,].

3.3. Streamflow Simulation: Conditioned on Climate Signals

For each year (or time t), conditioned on the simulated climate signal vector, the streamflow needs to be
simulated. This can be viewed as simulation from the conditional probability density function: f(flow,|Y;)
where the vector Y, = [AMO,, PDO,] is the vector of signals of climate indices at time t, as described in the
previous section. The K-NN of Y; are found from the historical reconstructed climate signal time series and
one of the neighbors (i.e., a historical year) is selected using the K-NN probability metric in equation (4). The
streamflow of the selected year becomes the simulated flow for time t. This is repeated for each year to
generate an ensemble of streamflow sequences.

4. Model Validation

We applied the methods of the previous section to simulate Lees Ferry streamflow using the two climate
indices, AMO and PDO. We tested the model in two modes: (i) ability to simulate the primary statistics of
the series and, (ii) the ability to simulate multi-decadal projections.

Since the climate indices are simulated based on low-frequency components, the block bootstrap has rela-
tively fewer blocks to select from when simulating for the historical period (1906-2012) using historical
data. To demonstrate that this is not an issue, we simulated one of the climate indices, PDO, using WKNN
with the longer historical period 1650-2012 and computed a suite of distributional and spectral statistics
for comparison.

Then we applied it to the historical naturalized streamflow, 1906-2012 (107 years), wherein WKNN was
applied to generate 500 ensembles of the two climate signals, each of length 107 years. For each simulated
climate signal vector, using K-NN resampling, streamflow values are generated. This validation approach is
typical of any stochastic time series model in that the models are fitted to the data and simulations are
made from them. A suite of distributional statistics of the simulated flow sequences is computed from the
simulations—mean, variance, lag-1 autocorrelation, probability density functions (PDFs), and wavelet spec-
tra—and compared with those of the historical record. The wavelet spectrum is computed for the median
flow of the simulations (i.e.,, median of ensemble of simulations at each time step) for comparison with the
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wavelet spectrum of the historical data. This demonstrates the ability of the method to capture the statistics
and nonstationarity in the variability of the time series.

5. Results

We first applied the WKNN approach directly to the Lees Ferry flows and generated simulations for the his-
torical period. In this, the component signals of the flows were generated using block bootstrap and subse-
quently the noise (or residual) component was simulated using a lag-1 K-NN bootstrap [Lall and Sharma,
1996] and added to obtain the complete flow variance. The simulations could not capture the nonstationar-
ity in the spectrum and did somewhat poorly on other statistics (figures not shown). This is mainly due to
the fact that the variance of the flow in the signal components was just ~45% and a substantial proportion
(~65%) in the noise. The noise component, simulated with no temporal structure, unlike the signal compo-
nents with block bootstrap, destroys the nonstationary features. However, simulating streamflow as a con-
sequence of simulations of teleconnecting large-scale climate forcings alleviates this problem and appears
to perform skillfully as described below.

5.1. Climate Index Simulation

The component signals of AMO are based on the period ranges of 23-27 years and 40-90 years (Figure 1);
while those of PDO are based on 20-27 years and 40-90 years (Figure 2). The higher period ranges are out-
side the cone of influence, more so during the historical period, but they are within for the most part during
the long historical period. Furthermore, the relationship between these indices and the Lees Ferry flow in
these general period bands has been shown by others [Nowak et al., 2011; Switanek and Troch, 2011]. The
spectral power of the climate indices shows temporal variability (Figures 1 and 2) as mentioned above,
indicative of nonstationarity which also induces quasi-periodicity. The nonstationarity in the flows will be
described later. Our objective here is to simulate the flow conditioned on these signals and, to the extent
they are significant, we exploit their quasi-periodic behavior and links to flow.

As mentioned, in order to test the performance of the WKNN model in simulating the climate indices, we
first demonstrated on the simulations of the climate index, PDO, for the long historical period (1650-2012
using both the paleo and observed data). Simulating the longer period allows for a rich variety of blocks to
be resampled. The component signals are simulated using the block bootstrap approach described in the
methodology section and the residuals are simulated using a lag-1 K-NN bootstrap [Lall and Sharma, 1996],
for consistency. However, a standard lag-1 auto regressive model (AR1) was also tested and the results were
quite similar. Thus simulated PDO sequences were used to compute a suite of statistics and compared with
the historical data. We show results from simulations of PDO; the performance of simulations from AMO is
similar. Figure 3 shows the boxplots of basic distributional statistics—mean, variance, skewness, and lag-1
autocorrelation of simulated PDO with the long historical values shown as red dots. It can be seen that the
simulations capture the observed statistics within the interquartile range, except for variance and lag-1
autocorrelation which are under simulated. However, the actual difference between the historical value and
the median of the simulations is quite small ~0.2 for variance and ~0.09 for lag-1 autocorrelation. Figure 4
shows the simulated and historical PDF, which also is seen to be captured quite well, with the simulated
PDF being more symmetric. The wavelet spectrum of the historical data and the median spectrum from the
simulations are shown in Figures 5a and 5b, the global spectra are on the side of these plots. It can be seen
that the local and global spectra are very well simulated. All four spectral peaks in the historical period
(Figure 5a) are captured well in the simulations (Figure 5b). Furthermore, the nonstationarity in the spec-
trum—the 32-64 year band being active during 1650-1750 and then during 1950-present (Figure 5a)—is
well captured in the simulations (Figure 5b). Similarly the 16-32 year band which is active during 1750-
1900 and weaker in recent decades is also well captured by the simulations. The variance of the PDO index
present in the signal components is ~51% and the noise component has ~49% of the total PDO variance.
A higher signal variance enables the WKNN to capture the distributional and spectral features better than
the application of WKNN directly on the flows as mentioned above. These results demonstrate the capabil-
ity of WKNN in simulating distribution and nonstationary features of the signal of climate indices—which
are important to generate sustained wet/dry sequences of the flows.
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Figure 3. Boxplots of basic distributional statistics from the long historical (1650-2012) PDO simulations, red dot is the corresponding value of the long historical period.

5.2. Lees Ferry Streamflow Conditional Simulations

We used the WKNN to simulate PDO and AMO for the historical period (1906-2012) and conditionally simu-
late the streamflow. Figure 6 shows the boxplots of distributional statistics from flow simulations along with
the historical values. It can be seen that the simulations reproduce very well the basic statistics—mean, var-
iance skew, and lag-1 autocorrelation. We note that the lag-1 correlation in the streamflow is entirely simu-
lated from the climate indices—considering this, the simulations are quite good. The boxplots of the PDF
(Figure 7) from the simulations also capture the historical PDF very well, indicating that the shape of the dis-
tribution and, consequently, the cumulative distribution function is also reproduced.
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Figure 4. Probability Density Functions of the long historical PDO simulation shown as boxplots, the blue line is the median PDF and the
red is from the historical data.
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Figure 5. (a) Power spectrum of long historical (1650-2012) PDO—Ilocal spectrum on the left and global on the right, (b) Same as Figure 5a but median spectrum of PDO from the
WKNN simulations.

Crossing or threshold exceedance and nonexceedance statistics are nonlinear and typically not expected to
be captured in the simulations as they are not explicit in the model. These are complementary statistics in
characterizing the flow sequences useful for planning. We calculated the excess and deficit statistics based
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Figure 6. Boxplots of basic distributional statistics from the Lees Ferry flow simulations, red dot is the corresponding value of the historical period (1906-2012).

on the median annual flow of the historical period (1906-2012), 14.52 million acre feet (MAF). Excess is
defined as the magnitude of flow in excess of the median and deficit as the magnitude less than the
median. We computed the total, maximum, and minimum magnitudes of the excess and deficit sequences
to assess the ability of the simulation in capturing these spell quantities. The boxplots of these statistics
from the simulations are shown in Figure 8 along with the corresponding values from the historical
sequence as red dots. It can be seen that the deficit and excess statistics are asymmetric with lower values
for the deficit and higher for the excess indicative of how well they are reproduced by the simulations.

n
-
o —— Simulation median
—— Observed
2
» =)
c - -
] o
(=]
>
=
3
0
3 ° 4
o o
i)
o
o
S
o

T I T e e e e T T eI e eI eI eI eI e I I T T eI I T I I I I T T T T T ITTTTTTI
434 612 7.7 9.28 11.25 13.42 1559 17.76 19.93 21.9 23.88

Flow (MaF)

Figure 7. Probability Density Functions of simulated Lees Ferry flow shown as boxplots, the blue line is the median PDF, and the red is
from the historical period.
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To further assess the performance of the simulations in capturing wet and dry sequences which are crucial
for water resources management, we computed storage statistics using the sequent peak algorithm [Loucks
and Van Beek, 2005]. In this, for a given flow sequence and a selected demand (or yield) to be met, the
required reservoir storage is computed. Thus, a storage-yield curve is obtained for several demand scenar-
ios. The effect of critical droughts is captured in this approach. Figure 9 shows the boxplots of storage for
different demand levels from the simulations along with that from the historical flow sequence. It can be
seen that the storage from the historical flow sequence (red dots) is very well captured within the boxes,
indicating that the simulations are able to reproduce the stretches of wet and dry sequences that are impor-
tant in the storage calculations and in facilitating robust long-term planning.
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Figure 9. Boxplots of required storage for several demand values calculated by the sequent peak algorithm, based on the flow simulations.
Storages from the historical data are shown as red dots.
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Figure 10. Power spectra of the Lees Ferry flow (a) from the median of the simulations (b) historical (1906-2012) flow—Ilocal spectrum on the left and global on the right.

The spectra of the median flows from the simulations and the historical flows are shown in Figure 10. The
nonstationarity in the spectrum—especially the power in the 8-16 year period in recent decades is very
well captured by the simulations. The global spectrum (figures on the right in both the plots), also, is simu-
lated well, although the amplitude of the median peaks is smaller. The fact that the nonstationarity in the
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Figure 11. Time series plots of the Projections. The box plots are the 20 year mean projections and red line is the 20 year mean historical
flow at Lees Ferry. The 20 year mean historical flow (red) stops in 1991 (which corresponds to 1991-2010 mean flow) and the 20 year
mean projections continue until 2010.

flow spectrum is captured purely from the climate indices is remarkable. We point out that the simulation
methodology is not designed to reproduce the spectrum or distributional properties of the flows as the
flows are simulated as a consequence from the climate indicators. The median of all the spectra for each
time and period was found to be similar to the spectrum of the median flows from the simulations
described in Figure 10.
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Figure 12. (a) Coherence plots of long historical (1650-2012) Lees Ferry flow with AMO; (b) is same as Figure 12a but the coherence of the Lees Ferry flow with PDO; (c) time series plot
of long historical Lees Ferry flow.
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The decadal (8-16 year period) variability, is not significant in the global spectra of the climate indices
(Figure 1a and Figure 2a), but in recent decades it is significant in the spectrum of PDO (Figure 2a). How-
ever, the coherence of Lees Ferry flow with AMO and PDO clearly show the multi-decadal (32-100 year)
association with AMO and PDO (Figure 12a and 12b) and association at the 8-16 year period in recent deca-
des with PDO (Figure 12b). This significant coherence of Lees Ferry flow with PDO in the 8-16 year period
as seen in Figure 12b in recent years suggests the modulating effect of PDO on the Colorado River flow at
decadal time scales.

5.3. Lees Ferry Streamflow Conditional Projections

The proposed simulation model described and validated in previous sections also has the potential for
applications to short-term ensemble projections. This section is intended to demonstrate this potential and
for detailed skill analysis and comparison with other methods we refer the readers to Erkyihun [2015]. We
generated ensembles of 20 year projections for each year starting from 1890 using the methodology as
described above. The ensembles of projected 20 year mean flows are shown as boxplots and the 20 year
mean flow from history is shown as solid line (Figure 11). It can be seen that the ensembles reproduce the
observed temporal characteristic of the 20 year mean flows very well. However, the high flows during the
early part of the record (1906-1920) are under simulated. This is due to the fact that the flow simulation is
based on bootstrapping past flows and, for this period, the flows are large relative to pre-1906 flows which
do not include a sustained period of very high flows. Another reason is that the high flow periods in the
past should coincide with the climate forcings, else the neighbors selected based on climate variables will
not correspond well with high flows for resampling. The sustained wet period of 1906-1920 has good
coherence with the AMO and PDO anomalies in the 64 year period band (Figure 12). The 20 year projections
of climate indices for the 1906-1920 epoch are resampled mostly from ~1840 (64 years back from 1906)
which is the nearest neighbor to the climate indices at the start of 1906. Thus, the flows are also simulated
largely from this period, which is relatively lower. The projections perform very well from 1920 to 1960,
where we do not have extreme wet periods sustained periods. The 1980s wet period is captured by the pro-
jections as well. This wet period is not sustained for longer period as in the early 1900s and resampling was
possible from the past paleodata as well as from the early 1900s wet period.

5.4. Limitation of the WKNN

The WKNN method relies on the strength of the teleconnections between large-scale climate forcings and
streamflow, as the streamflow is resampled conditioned on the climate forcing. The assumption is made
that the climate forcings are independent, which they are in this case, thus justifying simulating them inde-
pendently. If the forcings are correlated, then they have to be simulated jointly, which requires modification
of the methodology. If the length of the time series is short, then lower frequency signals cannot be simu-
lated with enough variety. For short-term projections, the flow is resampled from the past based on the
neighbors of the projected climate forcings. Thus, if the past does not include sustained wet or dry periods
corresponding to the projected climate forcings, then the flow projections will be lower or higher, respec-
tively. This was seen in the 1906-1920 projections above.

6. Summary and Discussion

As the anthropogenic climate change discussion has become mainstream, the climate sensitivity of hydro-
logic time series has evinced considerable interest. By and large, the dynamic range of hydroclimatic varia-
tion over the last millennium in places such as Colorado River Basin appears to be much larger than the
relatively modest, yet uncertain, projections from a chain of coupled models of the ocean-atmosphere and
hydrology [Switanek and Troch, 2011]. Specifically, the physics-based models do not adequately reproduce
the interannual, decadal, and multidecadal variations that are in evidence from tree rings, and the associ-
ated reconstructions of hydrology of the region. As a result, water managers seek methods by which stor-
age needed to meet demand and, correspondingly, the potential reliability and resilience of existing
projects relative to these climate variations, can be assessed. This is the context for the methods developed
and exemplified in this paper.

The causal framework for low frequency variations in regional streamflow suggests that these variations are
derived from like variations in large-scale climate phenomena such as the AMO and the PDO. Consequently,
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the need to develop long-term, stochastic simulations of those indices emerged as a first step in developing
an approach for low-frequency simulations of the streamflow, and led to the strategy presented here. The
WKNN method developed was applied in this manner and also directly to the 107 years of Colorado River
naturalized flows at Lees Ferry (figures not shown). The direct application led to performance considerably
poorer than the application following the climate causal framework, suggesting that using the paleoproxies
for the climate indices and then conditioning the streamflow on the simulated indices is superior to a direct
attempt to model low-frequency variability in the streamflow series. This is very interesting since the AMO,
PDO, ENSO, and North Atlantic Oscillation (NAO) have seen significant efforts at paleoreconstruction and
collectively influence hydrology over much of North America and parts of Europe and Asia. Developing a
library of the simulations of these indices may then allow local investigators the ability to use the appropri-
ate indices to conditionally simulate streamflow with the proper low frequency character. This model can
be combined with simulations of climate forcings from global climate models to exploit the teleconnections
at longer-time scales. In future work, we plan to explore the application to other settings, and to extend our
prior work on multivariate simulation [Lall et al., 2015] to this setting as well.
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