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Abstract GPS velocities across the northeast trending Eastern Cordillera of Colombia show oblique
convergence at 8.8 ± 1.7mm/yr, consisting of 8.0 ± 1.7mm/yr of right-lateral strike-slip shear along the
mountain range and 3.7 ± 0.3mm/yr of northwest southeast shortening. Faster convergence occurs only at
the northeast end of the Cordillera, where its eastern edge trends northwest and the highest mountains lie.
The strike-slip shear corroborates geologic work suggesting such movement southwest and northeast of the
range. Given the ~200 km width of the Eastern Cordillera, the ~100–150 km of crustal shortening inferred
from balanced cross sections and implied by recent estimates of crustal thickness would require ~25–40 Myr
of shortening at ~4mm/yr. The present-day GPS measurements, therefore, are inconsistent with the
inference, based on paleobotanical observations that the entire Eastern Cordillera rose 1500–2500m since
3–6Ma and called for a different interpretation of those data.

1. Introduction

Many studies of fossil pollen from high terrain (>2500m) of the Eastern Cordillera of Colombia suggest
that between ~6 and ~3Ma, vegetation resembled what today characterizes the tropical lowland regions
adjacent to the Eastern Cordillera [e.g., Andriessen et al., 1993; Helmens and Van der Hammen, 1994;
Hooghiemstra, 1984; Hooghiemstra and Van der Hammen, 1998; Hooghiemstra et al., 2006; Kroonenberg
et al., 1990; van der Hammen et al., 1973; Wijninga, 1996; Wijninga and Kuhry, 1990]. This similarity, plus the
difference between plants living in lowlands and highlands today, led to the deduction that the Sabana de
Bogotá, and by extension the entire Eastern Cordillera (Figure 1) rose from low elevations, <1000m, to their
present-day heights since ~3Ma. Subsequent studies of cooling ages of exhumed rock along the eastern
flank of the Eastern Cordillera show an abrupt acceleration in cooling, suggesting rapid exhumation since
~3Ma and again with the inference that the Eastern Cordillera rose substantially since ~3Ma [Mora et al.,
2008, 2010a, 2010b, 2014]. These inferences of large, Pliocene or Quaternary surface uplift differ from most
such inferences elsewhere, because either global cooling since ~3Ma or accelerated erosion that might be
due to global cooling, such by increased glaciation in elevated terrain, offer explanations for the apparent
increases in surface elevations [e.g., Molnar and England, 1990; Zhang et al., 2001]. Climate changes in the
tropics since 3–5Ma, however, do not seem to have been large, and certainly not large enough (~9–12°C)
to account for the paleobotany-based 1500–2500m differences between present-day and inferred past
elevations. Thus, if the suggestion of recent surface uplift based on palynological and thermochronological
observations were correct and applied to the entire Eastern Cordillera, it would require that the Eastern
Cordillera has grown to its present dimensions in a remarkably short period of time. Recent work by
Anderson et al. [2015] using biomarkers and stable isotopes, however, suggests that changes in elevation
based on pollen spectra may be overestimated.

Two simply understood geodynamic processes can create high terrain. Horizontal shortening of crust in a
state of isostatic equilibrium, whereby excess mass of high terrain is compensated by a deficit of mass in a
crustal root (Airy isostasy), accounts for high terrain of most mountain belts. The time required for high terrain
to develop by this process obviously scales with the rate that crust is shortened horizontally. Alternatively,
many high plateaus are underlain by hot material in the upper mantle, as can occur if the mantle portion
of the lithosphere is removed, either by peeling away from the crust as delamination [Bird, 1978, 1979] or
by sinking as blobs of dense material during growth of convective instability [e.g., England and Houseman,
1989]. The speed with which such removal can occur remains controversial, but current ignorance allows
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for removal of mantle lithosphere in periods as short as a few Myr [e.g., Houseman et al., 1981; Houseman and
Molnar, 1997]. Amounts of surface uplift that might isostatically balance the replacement of coldmantle litho-
sphere by hot asthenosphere, however, probably do not exceed 1000–2000m.

Thus, the apparently recent surface uplift of the Eastern Cordillera inferred from paleobotanical observations
seems to offer a test of possible processes that can build mountain belts rapidly. If these inferences of rapid
uplift applied to the entire Eastern Cordillera, they would require that the current low rate of shortening apply
only to the past fewmillion years, and hence would indicate a remarkably abrupt recent change in rate. At the
same time, however, because most mountain ranges have not been built in such short periods, the apparent

Figure 1. Map of topography of the Eastern Cordillera and adjacent regions, showing seismograph stations and estimates
of crustal thickness from Poveda et al. [2015].
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youth of the Eastern Cordillera would make it exceptional among mountain ranges around the world.
Alternatively, such rapid surface uplift might refer only to the outer edges of the Cordillera where outward
growth is taking place.

2. Geological and Seismological Constraints on the Deep Structure of the
Eastern Cordillera

Abundant evidence shows that crustal shortening on the flanks of the Eastern Cordillera has occurred [e.g.,
Bayona et al., 2008; Cediel et al., 2003; Colletta et al., 1990; Cortés et al., 2006; Dengo and Covey, 1993; Egbue
and Kellogg, 2012; Mora et al., 2008, 2010a, 2010b, 2010c, 2014] and that therefore the high terrain is, at least
in part, the result of crustal thickening and isostatic balance. This crustal shortening has been built, at least
in part, on structures that initially developed during a Mesozoic stage of crustal extension when grabens
and normal faults formed [e.g., Cediel et al., 2003; Jimenez et al., 2013; Moreno et al., 2013; Roeder and
Chamberlain, 1995; Roure et al., 1997; Sarmiento-Rojas et al., 2006; Tesón et al., 2013]. Attempts to balance
cross sections across the entire Cordillera have led to differing results. For example, Colletta et al. [1990] esti-
mated more than 100 km of shortening, Bayona et al. [2008] estimated 110 km, Dengo and Covey [1993] sug-
gested 150 km, and Roeder and Chamberlain [1995] inferred 170 km, but Cooper et al. [1995] argued for only
68 km and Teixell et al. [2015] for 82 km. Additionally, Cortés et al. [2006] argued for 70 km, though in the
southern, relatively narrow part of the cordillera. For the eastern side of the Cordillera, Mora et al. [2008]
inferred 58 km of shortening. Tesón et al. [2013] estimated between 62 and 80 km for four cross sections,
and they concluded that shortening of the entire Eastern Cordillera must be less than 25%. Moreover,
Tesón et al. [2013] argued that because the normal faults have been reactivated in oblique crustal shortening,
amounts of shortening are less than the common values of 100–150 km assigned by others. We argue below
that the opposite should hold, given that crust was thinned during the Mesozoic phase of crustal shortening.

Estimates of crustal thickness can also be used to estimate amounts of crustal shortening. If a high mountain
range, of mean height h, is isostatically compensated by a crustal root of excess thickness ΔH, then crust
beneath the range is thicker by ΔH+h than the crust that has not undergone crustal shortening (Figure 2).
Suppose that crust of thickness H is shortened horizontally to build a range with crustal thickness ΔH+H+h,
over a width W. In a cross section, there is an excess crust given by W·(ΔH+h). That extra cross-sectional area
presumably was built by horizontal shortening of L, so that

L�H ¼ W� ΔHþ hð Þ
With ρc = 2.8 × 103 kg/m3 and ρc–ρm=0.4 ± 0.1 × 103 kg/m3, for ΔH= 15, 20, or 25 km, we would infer that
h= 2.1 ± 0.7 km, 2.9 ± 0.9 km, or 3.6 ± 1.2 km. With an observed mean height of ~2.7 km, clearly a crustal root
as thick as 15–25 km is plausible, as is a crustal thickness, ΔH+ h, thicker than that in surrounding regions by
18 to 28 km.

Using receiver functions, Poveda et al. [2015] estimated crustal thicknesses of ~25–35 km beneath the low
area to the east of the Eastern Cordillera and thicknesses of 45–58 km beneath the high terrain of the
Cordillera (Figure 1). Thus, their receiver functions call for crust beneath the Eastern Cordillera 15–25 km
thicker than that beneath surrounding regions (if possibly by larger or smaller amounts in subregions).
Note that if the crustal thickness were initially 30 ± 5 km, and only 25% shortening had occurred, as Tesón
et al. [2013] inferred, the resulting thickening of 7.5 ± 1.25 km would account for only ~1 km to maybe
1.5 km of the current elevations. We presume that the balanced cross sections of Tesón et al. [2013] provide
only minimum estimates of the total shortening across the belt. Moreover, if the crust were initially thin, as
the evidence of Mesozoic graben formation implies [e.g., Roeder and Chamberlain, 1995], then for an initial
crustal thickness of 30 km now to be 45–58 km, 50% to nearly 100% shortening or 150–300 km would be
needed. This analysis shows that Airy isostatic compensation is a sensible assumption and that therefore
the crust beneath the Eastern Cordillera is not unusually thin. Thus, the possibility that mantle lithosphere
beneath the Eastern Cordillera was removed, with the high terrain resulting from isostatic compensation
by a hot, low-density uppermost mantle, can be eliminated.

As noted above, some authors, particularly palynologists and paleobotanists cited above, have deduced that
the Eastern Cordillera rose 1500–2500m since ~3–6Ma, and some others, relying on young cooling ages of
exhumed rock or evidence of more recent folding and faulting on the flanks of the Eastern Cordillera have
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inferred that Plio-Quaternary deformation has played a key role in the construction of the high terrain [e.g.,
Campbell and Bürgl, 1965; Gómez et al., 2003, 2005a; Horton et al., 2010;Mora et al., 2008, 2010a, 2010b]. Most,
however, suggest that crustal shortening responsible for the Eastern Cordillera began earlier. Some have con-
cluded that initiation of important shortening began in Middle Miocene time [e.g., Bayona et al., 2008; Colletta
et al., 1990; Cooper et al., 1995; Dengo and Covey, 1993; Gómez et al., 2005b; Hoorn, 1993; Hoorn et al., 1995;
Mora et al., 2014], but a consensus suggests that a nonnegligible amount of shortening occurred earlier in
Cenozoic time [e.g., Babault et al., 2013; Bande et al., 2012; Bayona et al., 2013; Caballero et al., 2013;
Campos and Mann, 2015; Cediel et al., 2003; Egbue and Kellogg, 2012; Gómez et al., 2003; Hoorn et al., 2010;
Horton et al., 2010; Martinez, 2006; Mora et al., 2010b, 2010c; Ochoa et al., 2012; Parra et al., 2009a, 2009b,
2012; Sánchez et al., 2012; Saylor et al., 2011, 2012; Villamil, 1999]. GPS velocities can be used to test whether
crustal thickening in 3–6 Myr could build the Eastern Cordillera, or a longer duration is needed.

3. GPS Analysis and Velocities

GPS data collected in Colombia were obtained from the Global Navigation Satellite Systems GeoRED Project
archive operated by the Colombian Geological Survey. Data were processed jointly by the Colombian
Geological Survey and the University of Colorado Boulder with GOA 6.3 [Bertiger et al., 2010; Zumberge
et al., 1997] using loosely constrained nonfiducial orbits and transformed into the IGS08 frame with orbit,
clock, and Xfile products obtained from Jet Propulsion Laboratory (version 2.1) to produce daily positions.
Tropospheric corrections were made with the Vienna mapping function products from the Vienna
University of Technology [Nilsson et al., 2013] and ocean loading corrections were obtained from the
Onsala Space Observatory. The South American frames are defined by methods of DeMets et al. [2010].
We estimate angular velocities and fixed velocities using methods described by DeMets et al. [1990]. Site
velocities from the daily positions are estimated using maximum likelihood estimation fitting functions
from Ward [1990] and Bos et al. [2013]. Annual and semiannual signals for the permanent stations with
greater than 2.5 years of data are estimated and removed using the spectral methods described by Bos
et al. [2013].

We processed data from nine cGPS sites (Figure 3) and 20 campaign sites located in the Eastern Cordillera
with data obtained from 1996 to present. Velocities are shown in a frame of reference fixed to a stable
South American (Table 1 and Figure 4a). Components of velocity perpendicular to the regional N45°E trend
of the range represent shortening across it, and those parallel to the range (parallel to N45°E), indicate simple
shear (Figures 4b and 4c). We note that although velocities derived from campaign data, in general, support
the inferences drawn below, large residuals associated with annual signals limit their value. In addition, we
include the velocity at cGPS site BOGT, because it is consistent with other data, but note that it is contami-
nated by anthropogenic ground water signals and also compaction of the zone [Rudenko et al., 2013]. We cal-
culate, using cGPS data, horizontal shortening of 3.7 ± 0.3mm/yr (~4mm/yr) perpendicular to the range and
a right-lateral strike-slip component of 8.0 ± 1.7mm/yr. Spatial resolution of the cGPS stations prevents us
from assigning either the shortening or dextral motion to any localized zone. Some shortening, however,
is concentrated on the southeast margin, where geologic data show active faulting and localized conver-
gence at 2.1 ± 1.2 (2σ) mm/yr [Veloza et al., 2015].

Figure 2. Cartoon showing budget of crust.
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Figure 3. (a) Continuously recording GPS station time series of positions used in this study (Data truncated at 2009 in this
figure) in the IGS08 frame of reference. Blue line includes the spectrally estimated annual and semiannual signal, which is
removed when the velocity is estimated and the trend calculated. A single equipment-related offset at VPIJ in 2011 was
removed. (b) BOGT is displayed with a separate time scale due to the long time series.
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4. Discussion and Conclusions

Three aspects of the velocity field are noteworthy. First, relativemovement of the regions east and west of the
Eastern Cordillera includes a large fraction of right-lateral shear. Second, the convergence rate, the compo-
nent of velocities west of the Eastern Cordillera relative to those east of it and perpendicular to the trend
of the belt is only ~4mm/yr. Third, at the northeast end of the Eastern Cordillera, shortening is essentially per-
pendicular to the local trend of the belt, and the highest mountains lie in this region.

Regarding the third aspect, among cGPS sites only UWAS defines movement in the northeastern part of the
cordillera (Figure 4). The velocity of UWAS of 6.7 ± 0.7mm/yr toward N69°E is essentially perpendicular to the
trends of both the highest mountains of the Eastern Cordillera, the Sierra Nevada del Cocuy, and the bound-
ary of the Eastern Cordillera and Llanos Basin to the east. Obviously, the correspondence of the highest short-
ening rate across the Eastern Cordillera with the highest mountains, which surely result from convergence in
this area, makes sense.

Regarding the strike-slip component, although most discussions of the Eastern Cordillera have focused on
the shortening across the belt, Montes et al. [2005] showed geological evidence for substantial right-lateral
shear of the Eastern Cordillera. This evidence includes not only slip on strike-slip faults but also penetrative
strain of cobbles in conglomerate layers. Thus, the shear that they found is distributed, not localized on
one or a few major faults. This observation is consistent that the mapping of active faults in Colombia by
Veloza et al. [2012], although they show relatively rapid right-lateral shear farther south, they depict no active

Table 1. GPS Site Locations and Calculated Velocities in a South America Fixed Frame and the Rotated 45°E and Projected Into Range Parallel and
Perpendicular Components

PERM South America Frame All Distances Are Relative to LON 287.45 LAT 5.17 and Rotated 45°

LON LAT East North East Sig North Sig Corr Name NW-SE SW-NE Para Perp Para Sig Perp Sig Corr Name

288,38 4,27 0,09 1,19 0,32 0,63 �0,06 OCEL 2,12 129,18 0,91 0,78 0,49 0,51 �0,06 OCEL
285,68 4,85 6,81 5,10 0,36 0,62 �0,02 VROS �147,54 �102,29 8,42 �1,21 0,51 0,52 �0,02 VROS
287,61 6,45 6,21 2,41 0,42 0,60 0,09 UWAS 101,59 �79,02 6,10 �2,69 0,54 0,49 0,09 UWAS
285,92 4,64 5,07 4,77 0,24 0,66 �0,05 BOGT �145,42 �70,55 6,96 �0,21 0,48 0,50 �0,05 BOGT
286,14 5,53 8,80 4,93 0,47 0,68 0,02 VBUV �67,05 �117,81 9,71 �2,74 0,59 0,58 0,02 VBUV
287,57 5,35 2,75 0,71 0,50 0,64 0,01 CAPI 21,17 �4,23 2,45 �1,44 0,57 0,57 0,01 CAPI
286,05 4,40 8,24 9,04 2,32 1,35 0,00 AMAR �153,19 �44,45 12,22 0,57 1,89 1,90 0,00 AMAR
286,45 4,07 0,58 �0,12 0,52 0,73 �0,05 BAAP �148,25 7,06 0,33 �0,49 0,62 0,64 �0,05 BAAP
285,34 5,47 8,41 4,26 0,74 0,68 0,01 BAPA �127,77 �169,98 8,96 �2,93 0,71 0,71 0,01 BAPA
284,89 4,40 6,55 3,83 0,43 0,68 �0,05 VPIJ �235,13 �126,27 7,34 �1,92 0,56 0,58 �0,05 VPIJ

Perpendicular Gradient 3,71
Parallel Gradient 11,89

CAMPAIGN
287,72 4,82 �2,58 �2,64 1,73 0,82 0,00 MAN1 �5,65 43,76 �3,69 �0,04 1,36 1,35 0,00 MAN1
287,57 5,28 �0,02 4,88 1,05 2,52 0,00 VYOP 16,23 0,71 3,44 3,46 1,93 1,93 0,00 VYOP
287,45 5,17 0,87 �0,01 0,62 1,35 0,01 AZUL 0,00 0,00 0,61 �0,62 1,05 1,05 0,01 AZUL
288,11 5,88 �0,07 0,21 0,55 0,17 0,06 PAZA 96,65 �3,53 0,10 0,20 0,41 0,40 0,06 PAZA
287,23 6,16 1,98 �4,48 1,64 1,20 0,00 TUSA 54,33 �85,36 �1,77 �4,57 1,44 1,44 0,00 TUSA
286,67 6,18 8,60 �1,11 0,47 2,91 0,00 OIBA 16,23 �126,27 5,30 �6,87 2,09 2,08 0,00 OIBA
287,24 5,07 7,66 7,62 3,12 1,59 0,00 TAU1 �21,88 �7,76 10,80 �0,03 2,48 2,48 0,00 TAU1
286,33 5,90 6,37 6,13 2,18 1,88 0,00 PTNA �27,52 �130,50 8,84 �0,17 2,04 2,04 0,00 PTNA
286,57 5,57 6,23 1,70 9,99 1,36 0,00 MOTA �33,88 �90,30 5,61 �3,20 7,13 7,13 0,00 MOTA
286,65 5,65 6,33 5,99 3,05 2,61 0,00 ARCA �22,58 �90,30 8,71 �0,24 2,84 2,84 0,00 ARCA
286,13 5,25 8,50 3,86 1,17 0,63 0,01 SUTA �87,52 �98,77 8,74 �3,28 0,94 0,93 0,01 SUTA
286,01 5,02 6,17 8,97 1,06 1,63 0,00 VZIP �112,23 �91,01 10,71 1,98 1,38 1,37 0,00 VZIP
286,07 4,90 5,86 5,46 1,27 3,01 0,00 GINA �116,47 �78,31 8,00 �0,28 2,31 2,31 0,00 GINA
286,00 4,90 2,56 6,27 0,41 0,45 0,03 LANO �121,41 �83,25 6,24 2,62 0,44 0,43 0,03 LANO
285,79 4,70 9,04 6,00 0,92 3,24 0,00 TIBA �150,37 �83,95 10,63 �2,15 2,38 2,38 0,00 TIBA
286,04 4,40 4,20 5,67 2,47 3,27 0,00 CAQ1 �153,90 �45,16 6,98 1,04 2,90 2,90 0,00 CAQ1
286,12 4,31 9,78 9,66 2,15 2,13 0,00 QTME �154,60 �33,16 13,75 �0,08 2,14 2,14 0,00 QTME
284,95 5,15 3,90 3,71 2,14 1,84 0,00 FRE1 �177,91 �174,91 5,38 �0,13 2,00 2,00 0,00 FRE1
286,10 5,10 2,78 3,56 0,26 0,69 0,03 NEM1 �100,23 �90,30 4,48 0,55 0,52 0,51 0,03 NEM1
284,54 5,53 7,96 6,56 0,94 1,13 0,01 PACO �180,03 �230,59 10,27 �0,99 1,04 1,04 0,01 PACO

Perpendicular Gradient 10,33
Parallel Gradient 17,44
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Figure 4. cGPS and campaign station velocities in a South American frame of reference plotted with 1 sigma uncertainties. (a) Map showing velocities: blue are cGPS
and black are campaign sites.; (b) elevation profile along dashed line in Figure 4a; (c) components of velocity perpendicular to the range plotted against distance
from the southeast edge of the belt showing shortening across the range; (d) components of velocity parallel to the range plotted against distance from the
southeast edge of the belt showing right-lateral motion.
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strike-slip faults within the Eastern Cordillera in Colombia. Our GPS points are too few and too widely distrib-
uted to demonstrate localized strike slip.

Shortening across the Eastern Cordillera at only ~4mm/yr could not build the Eastern Cordillera since as
recently as 3–6Ma. For amounts of shortening of 100–150 km, discussed above, if the range were built as
recently as 3–6Ma, we would expect shortening rates of 17–50mm/yr, rates that the GPS data do not permit.
Conversely, an average rate of ~4mm/yr and 100–150km of shortening require a duration ~25–40 Myr. If con-
vergence had occurred at a constant rate, such rates would require an initiation of crustal shortening that pre-
dates middle Miocene time but are consistent with Eocene or Oligocene time, as many have suggested [e.g.,
Babault et al., 2013; Bande et al., 2012; Cediel et al., 2003; Egbue and Kellogg, 2012; Gómez et al., 2003; Horton
et al., 2010; Martinez, 2006; Mora et al., 2010b, 2010c; Ochoa et al., 2012; Parra et al., 2009a, 2009b, 2012;
Sánchez et al., 2012; Saylor et al., 2011, 2012; Villamil, 1999]. Note too that if most of the ~70–150 km of short-
ening occurred since only 12Ma, as some suggest, the average rate of 5–12mm/yr would require that the rate
have slowed since that accelerated deformation began.

Thus, we should reconsider the implications of paleobotanical observations, which include (1) that vegetation
currently living at high elevations of 2500–4000m differs from that inferred from fossil plant organs at 3–6Ma
and (2) that 4–6 Ma fossil plant organs resemble those of plants currently living below ~1500± 500m [e.g.,
Hooghiemstra et al., 2006]. First, the recent work by Anderson et al. [2015] suggests that the rise of the
Sabana de Bogotá may have been slower than that inferred from fossil pollen. As important, the paleobota-
nical evidence comes from only a small part of the Eastern Cordillera. Thus, changes in elevations of that
region ought not be generalized to the entire Cordillera. In particular, the oldest site of paleobotanical finds,
Tequendama, with an age between ~6 and ~15Ma [Wijninga, 1996], lies along the southwest end of the
Eastern Cordillera, and it could have risen to its present-day elevation as the southwest margin of the
Cordillera rose, without any concurrent surface uplift of the rest of the range. Finally, many of the plants that
dominate high elevations today are immigrants from North America since ~3Ma: Myrica at ~3Ma, Juglans
(walnut) at ~2.4Ma, Alnus (alder) at ~1Ma, and Quercus (oak) at ~400 ka [Andriessen et al., 1993; Torres
et al., 2013; van der Hammen and Cleef, 1983; Van der Hammen and Hooghiemstra, 1997]. Perhaps we ought
not to ignore the possibility that the differences in present-day floral assemblages from fossil assemblages
are due less to recent uplift and more to invasive species from North America, which entered Colombia since
3–6Ma, out-competed plants that had lived at high elevations and limited their habitats to lowlands.
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