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Abstract Real-time forecasted ice information for large lakes, such as the Great Lakes, is critical for
essential operations, such as ice breaking, commercial navigation, search and rescue, and oil spill response.
Existing forecast products for large lake ice conditions are not available for medium-range time horizons (5—
16 days out), yet they could provide important information for decision making, particularly for ice breaking and
spill responses. In addition, ice forecasts for Earth's largest lakes at these timescales could be important for
Medium-Range Weather (MRW) forecasting. However, the skill of existing operational products in predicting
ice conditions at MRW timescales has not been studied. This work aims to determine how well ice forecasts
from a coupled large lake hydrodynamic-ice model perform for MRW forecast horizons. Simulations were
carried out for the 2022 Great Lakes ice season, using 8 different 16-day forecast periods. Forecast results were
compared to observations of meteorology and ice conditions from the U.S. National Ice Center. Results show
the MRW ice forecasts in the Great Lakes outperform persistence-based forecasts. These findings could inform
the development or extension of lake operational ice forecasting and the potential of coupling between
atmospheric and large lake models at medium-range forecast time scales.

Plain Language Summary Ice information for large lakes is critical for essential operations, such as
ice breaking, commercial navigation, search and rescue, and oil spill response. Ice forecasts are currently not
available in the medium-range (5-16 days out) time scale, yet they could provide valuable information for
decision making. This information could also be important for medium-range weather forecasts. The skill of
existing Great Lakes ice forecast products at medium-range time scales is currently unknown. Our work aims to
determine how well ice forecasts from an atmosphere-lake model perform for medium-range time scales.
Simulations were carried out for the 2022 Great Lakes ice season, using 8 different 16-day forecast periods. The
modeled forecasts were compared to observations from the National Ice Center and observed meteorological
conditions. Results show that the modeled forecasts outperform persistence forecasts. These findings could
inform the development or extension of ice forecasting and the potential of an atmosphere-lake model at
medium-range time scales.

1. Introduction

The physical environment of lakes is a critical component to overall lake ecosystem function. Specifically, the
hydrodynamic and ice environment of lakes are particularly important to ecosystem services like recreation,
drinking water supply, and commercial use (Brammer et al., 2015; Hori et al., 2018; Hoyer et al., 2015). In recent
years, most studies of lake ice have focused on ice phenology, or the dates of ice-on and -off, including the
analysis of observed changes in global lake ice and projected conditions over the next century (Brown &
Duguay, 2010; Huang et al., 2022; Magnuson et al., 2000; Sharma et al., 2019, 2021, 2022). However, in large
lakes, which hold approximately 84% of Earth's surface freshwater (Anderson et al., 2021), the hydrodynamic-ice
environment can be much more dynamic than in smaller lakes. While ice-on and -off dates remain important in
large lakes, the daily variability in ice concentration and thickness introduces a different dimension in terms of
stakeholder use and water management. Modeling these ice processes for historic simulation or forecasting
purposes generally requires complex three-dimensional approaches, which have been studied in many applica-
tions in the Laurentian Great Lakes (e.g., Anderson et al., 2018).
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The Laurentian Great Lakes, hereafter the Great Lakes, contain five of the
largest lakes on Earth that hold approximately 21% of the planet's surface
freshwater supply, support more than $8.8 billion in wages in the maritime
economic sector alone, and exhibit complex hydrodynamic processes
including dynamic ice coverage in the winter season (NOAA; Figure 1). The
entire basin spans the international border between the United States (US) and
Canada, supporting several major cities, in which the US region alone has a
gross domestic product of $3.1 trillion and employs more than 25 million
people (NOAA). To support regional stakeholders in the protection of life and
property, Great Lakes forecasting has been of interest for several decades.
The earliest predictive models in routine operation for the Great Lakes were
implemented by the National Oceanic and Atmospheric Administration

84:W (NOAA) National Weather Service (NWS) and provided the public with
Longitude forecasts of dangerous water levels (Platzman, 1965; Schwab, 1978) and
wind-waves (Schwab et al., 1984).

Figure 1. MODIS satellite image of the Laurentian Great Lakes under partial

ice cover with coastal meteorological stations shown in filled red circles.

With the improvement of computational resources, predictive circulation
models were developed for the Great Lakes and other coastal areas in a
second wave of operational implementation. The first of its kind was the Great Lakes Forecast System (later, the
Great Lakes Coastal Forecasting System), which combined a circulation model with sufficient meteorological
observations in an operational framework that could support routine forecasts (Schwab & Bedford, 1994). These
models were transitioned to NOAA operations in the early 2000s by the National Ocean Service (NOS; Great
Lakes Operational Forecast System; Chu et al., 2007) and have since produced short-range forecasts of water
levels, currents, and temperatures for 2-day and eventually 5-day time horizons.

More recently, attention has been paid to couple the hydrodynamic forecast system with an ice prediction
capability in order to more thoroughly support stakeholder needs throughout the winter. Ice formation in the Great
Lakes starts in late November or December and generally extends into April or even May, with significant spatial
and interannual variation. In most years, Lakes Superior, Michigan, Huron, and Ontario do not completely freeze
over, and ice is generally bound to coastal areas, bays, and other shallow regions, with the extent of lake-wide
coverage driven by the intensity of the winter. Lake Erie is the exception, being the shallowest of the Great
Lakes, and has seen annual maximum ice concentrations greater than 80% in 39 out the last 51 years (https:/www.
glerl.noaa.gov/data/ice/#historical). However, climate change has driven increases in regional air temperatures,
solar radiation, and overwater wind speeds in recent decades (Anderson et al., 2021), all of which have led to
decreasing trends in Great Lakes ice (Ozersky et al., 2021; Wang et al., 2018).

Over time, the Great Lakes have experienced fewer days of ice coverage, later ice-on dates and earlier ice-off
dates, as well as decreased ice concentrations (Figure 2). Generally, these changes in ice conditions increase
the potential days for commercial shipping and Coast Guard ice breaking activities in support of maritime
transport. Furthermore, Great Lakes ice conditions can have a significant impact on regional weather forecasts
through modification of turbulent surface fluxes of heat and moisture. Under certain conditions, openings in the
ice can lead to extreme lake-effect precipitation events that can cause disruptions to ground transportation,

aviation, municipal operations, and even injury or death (Fujisaki-Manome

etal., 2017). For these reasons, accurate ice prediction has been identified as a

Junf > 10% critical requirement for Great Lakes stakeholders.
May= . ;%84:_ Although ice modeling efforts were made much earlier (Wake &
Apr - = - ] Rumer, 1979, p. 1983; Rumer et al., 1981), a coupled hydrodynamic-ice
Mag= é * j J ] forecast system for the Great Lakes was not introduced until 2010 (Wang
Feb/- = = = = B etal., 2010). As an update to the NOAA Great Lakes Coastal Forecast System
Jan - s N (GLCEFS), the Coupled Ice-Ocean Model (CIOM; Yao et al., 2000; Wang
Dec|~ . . ‘ . ] et al., 2010) was coupled with the underlying hydrodynamic model based on
1980 1990 2000 2010 2020 the Princeton Ocean Model (POM; Schwab & Bedford, 1994). Using this
configuration, 5-day forecasts were generated by initializing the ice fields
Figure 2. Historical Great Lakes basin wide ice concentration plotted for from satellite-derived concentrations from the U.S. National Ice Center and

days with values greater than 10%, 25%, and 50% from 1973-2023 (adapted

from Lenters et al., 2013).

atmospheric forcing was supplied by the NOAA National Digital Forecast

YEO ET AL.

2of 13


https://www.glerl.noaa.gov/data/ice/#historical
https://www.glerl.noaa.gov/data/ice/#historical

V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Water Resources Research 10.1029/2024WR037507

Database (NDFD) to simulate hourly predictions of ice concentration, thickness, and velocity. Environment and
Climate Change Canada (ECCC) also developed an ice prediction capability using the Nucleus for European
Modeling of the Ocean model (NEMO; Dupont et al., 2012) and Los Alamos Sea Ice model (CICE; Hunke
etal., 2017) as part of their Water Cycle Prediction System Coupled over the Great Lakes (WCPS-CGL; Dunford
et al., 2018), which produces twice daily 3.5-day forecasts of lake and ice conditions.

Most recently, the NOAA Great Lakes Coastal Forecast System (GLCFS) was updated using the Finite Volume
Community Ocean Model (FVCOM; Anderson et al., 2018; Chen et al., 2006). The FVCOM model includes an
internally coupled unstructured version of the Los Alamos Sea Ice Model (CICE), which has been adapted for
freshwater applications in the Great Lakes (Anderson et al., 2018; Bai et al., 2013, 2020; Cannon et al., 2024;
Fujisaki-Manome et al., 2020; Kayastha et al., 2023; Lin et al., 2022). Beyond the upgrade of the base modeling
system, the newest version of the GLCFS also began using weather forecast information from the NOAA High-
Resolution Rapid Refresh (HRRR; Benjamin et al., 2016). The HRRR is a 3-km data-assimilated implementation
of the Weather Research and Forecasting (WRF; Skamarock et al., 2008) model, which supplies the GLCFS with
hourly surface forcing out to 48 hr. In NOAA operations, the remainder of the forecast period (48-120 hr) is
driven by the NOAA National Digital Forecast Database (NDFD).

While short-range forecasts of lake and ice conditions have shown useful skill for many stakeholder needs
(Fujisaki-Manome et al., 2019), commercial navigational planning, ice cutting operations, and weather forecasts
all depend on conditions beyond the 5-day forecast horizon. However, the performance of large lake
hydrodynamic-ice forecast models beyond short-range time scales has not been assessed. In this study, we aim to
evaluate the potential of medium-range ice forecasts out to 16 days using operational products, and therefore we
have chosen to use the coupled three-dimensional hydrodynamic-ice model employed operationally in the
GLCEFS for the Great Lakes. Specifically, we evaluate the potential for ice prediction at these time horizons using
atmospheric forcing from the NOAA Global Forecast System (GFS; https://www.ncei.noaa.gov/products/
weather-climate-models/global-forecast) that is supplied to a research version of the GLCFS. Overall, the aim is
to assess the utility of medium-range ice forecasts for Earth's largest lakes using existing community models and
operational products, derive insight into the deficiencies of ice prediction at these time scales, and determine
where future effort should be spent to improve extended large lake ice forecasts.

2. Data and Methods
2.1. Atmospheric Modeling

In order to test medium-range ice forecast utility, atmospheric forcing data was acquired from the Global Forecast
System (GFS) for the simulation periods described in Section 2.4. The NOAA GFS is a real-time operational
forecast system that consists of coupled weather, ocean, land surface, and ice models that provide forecasted
atmospheric conditions for the entire planet out to 384 hr, or 16 days. The GFS is updated every 6 hr at 00, 06, 12,
and 18 UTC, producing hourly forecasts out to 120 hr, and 3-hourly forecasts from 120 to 384 hr. In the interest of
characterizing GFS skill over the Great Lakes region during the ice season, we chose to compare meteorological
observations (Section 2.3) to (a) GFS forecast data (hours 0 to 384, i.e. f000 to f384) and to (b) a baseline case
(hereafter, analysis). The latter of which is a concatenation of the forecast hour zeros (f000) from the 6-hourly
GFS cycles during each simulation period. The intent of the analysis case is to determine a best-case-scenario
accuracy of the GFS model configuration as a point of comparison for the forecasted GFS meteorology, and it
follows the common approach for creating a nowcast atmospheric forcing data set. It is reasonable to assume that
hour zero (f000) of the GFS forecast would have the greatest accuracy compared to the subsequent forecast hours
because it is closest in time to the initialization from observed data using the Global Data Assimilation Scheme
v16 (GDAS; Kleist et al., 2009). More information on the GDAS process and GFS initialization is available from
NOAA (https://www.ncei.noaa.gov/products/weather-climate-models/global-data-assimilation; https://www.
emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/ncep_data_assimilation.php). In both cases, anal-
ysis and forecast, parameters for meteorological skill assessment and hydrodynamic-ice model forcing were
acquired for the simulation periods described below, namely, zonal (east-west) and meridional (north-south) of
wind velocity at 10-m height, air temperature and dewpoint temperature at 2-m height, total cloud cover, mean
sea-level air pressure, specific humidity at 2-m height, and shortwave and longwave radiation.
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2.2. Hydrodynamic-Ice Modeling

The hydrodynamic-ice model employed in this study is a research version of the NOAA GLCFS (Anderson
et al., 2018). As described above, the GLCFS is based on coupled versions of FVCOM and CICE. FVCOM
version 4.3.1 is a three-dimensional hydrodynamic model that solves the governing equations on an unstructured,
terrain-following (sigma coordinate) grid and has been adapted for freshwater implementation. In its GLCFS
implementation, FVCOM is configured with the Smagorinsky horizontal diffusion parameterization and Mellor-
Yamada level 2.5 vertical turbulence closure schemes (Mellor & Yamada, 1982; Smagorinsky, 1963). Vertical
and horizontal Prandtl numbers are set to 1.0. Turbulent heat fluxes for water portions of model elements are
calculated using the wind-speed parameterization formulation of the Coupled Ocean-Atmosphere Response
Experiment algorithm (COARE; Fairall et al., 2003). For ice-covered elements, the CICE model within FVCOM
solves equations for ice thermodynamics and dynamics using an elastic-viscous-plastic (EVP) rheology to
generate fields of ice concentration (e.g., coverage) and thickness. CICE uses a five-category ice thickness
distribution (prescribed for the Great Lakes as 5, 25, 65, 125, and 205 cm) to handle ice growth, melting, and
deformation. Turbulent heat fluxes over the ice are computed using bulk formations for (a) sensible, F, and (b)
latent, F), heat flux components in the form,

Fs = panM*Cg(®a - Tsf) (1)

Fl =Pa (Lvap + Lice) M*Cq (Qa - st) (2)

where p,, is air density, c,, is specific heat, u* is turbulent wind scale, ¢, and c,, are exchange coefficients, L, and
L, are latent heats of vapourization and fusion, @, is potential air temperature, 7,is surface temperature, Q,, is
the specific humidity, and Qs the surface saturation specific humidity. Heat fluxes over fractional ice-covered

ice

cells are weighted by the ice area fraction, a;, such that the flux, F, is computed by F' = a,F;., + (1—a)F,, e,

The GLCFS consists of four separate model domains that cover Lake Superior, Lake Erie, Lake Ontario, and a
combined Lake Michigan-Huron. The unstructured grids range in resolution from 30 m near the coastline, or other
topographically complex regions, to 3 km in offshore areas. All four models use a sigma vertical coordinate
system with 21 uniformly distributed layers. For simplicity, this study did not prescribe lateral boundary con-
ditions for river inflows or outflows. For each simulation period described in Section 2.4, lake conditions were
initialized from real-time nowcast output from the GLCFS operated by NOAA, which included lake levels, three-
dimensional currents and temperatures, ice conditions, and other parameters. It should be noted that the GLCFS
nowcasts are driven by HRRR atmospheric forcing, not the GFS, which contains its own bias. Therefore, in order
to independently assess the utility of GFS-driven medium-range forecasts and not include cumulative bias in the
GLCFS, we adjusted the initial (i.e., hour 00 UTC) model water temperatures and ice conditions for each
simulation using satellite-derived values of lake surface temperature and ice from the NOAA Great Lakes Surface
Environmental Analysis (GLSEA; Schwab et al., 1999) and the U.S. National Ice Center (NIC), described in
Section 2.3. In each case, the observed surface temperature from the GLSEA product was imparted on the model
over the depth of the mixed layer and the ice conditions were updated from the NIC. While the GLSEA and NIC
are daily products and not necessarily valid at hour 00 UTC (model start time), it provided the best approach for
reducing potential cumulative bias present in the operational output.

In all simulations, the atmospheric forcing variables were spatially interpolated from the native 0.25-degree GFS
to the FVCOM grids for each lake within the GLCFS. The required atmospheric forcing for FVCOM-CICE
includes 10-m wind, shortwave and longwave radiation, 2-m air and dewpoint temperatures, mean sea-level
pressure, and 2-m specific humidity. Analysis and forecast simulations in FVCOM-CICE had identical config-
urations with the exception of differences in time-interval between the analysis (f000; 6-hourly for 0-384 hr) and
forecast forcing (hourly for 0—120 hr, 3-hourly for 120-384 hr). In both cases, the atmospheric forcing was linear-
interpolated between time stamps, which is the default FVCOM methodology.

2.3. Ice and Meteorological Data

Daily charts of ice concentration in the Great Lakes were acquired through a collaboration between the U.S.
National Ice Center (US NIC) and the Canadian Ice Service (Figure 3). The ice data, hereafter referred to as the
NIC, are derived from available satellite remote sensing (e.g., MODIS, GOES, AVHRR, Radarsat-2, Envisat) and
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Figure 3. Example of US NIC ice chart data depicting spatial distribution of ice concentration categories for 3 March 2022.
Data is given in 10% increments with bins for the values of 0%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%.

provided on 1.8 km grid over the Great Lakes by the NOAA Coastwatch program (https://coastwatch.glerl.noaa.
gov/). Gridded concentrations are given in 10% increments from 0% to 100% coverage and while a valid date is
given for each day, the concentrations on a given day may be an amalgam of previous days' satellite observations
or other reports. Therefore, it is considered that the US NIC data provide a reasonable representation of ice
conditions and changes throughout the season but may not reflect the true state of the ice field for a particular day.
Nevertheless, the US NIC data are the best source for daily fields of ice concentration for the Great Lakes. In
addition to ice conditions, surface water temperatures for model initialization and validation were acquired from
the NOAA GLSEA (Schwab et al., 1999). The GLSEA provides gridded daily surface temperatures for all of the
Great Lakes based on observations from the Advanced Clear-sky Processor for Oceans L3S-LEO SST, which is
level 3 Super Collated data from various satellites (e.g., NPP, N20, MetOp A/B/C).

To assess the accuracy of atmospheric forcing, meteorological observations were acquired for the Great Lakes
region using a subset of stations (n = 218) that lie near (or on) the water and that have historically been used for
lake analyses and hydrodynamic simulation (Schwab & Bedford, 1994; https://apps.glerl.noaa.gov/marobs/;
Figure 1). This network of stations consists of data from the NOAA Coastal-Marine Automated Network (C-
MAN), Automated Surface Observing System (ASOS), National Data Buoy Center (NDBC), and the Real-time
Coastal Observing Network (ReCON) from the NOAA Great Lakes Environmental Research Laboratory.
Observed parameters of wind speed, air temperature, dewpoint temperature, and cloud cover were compared to
the atmospheric model. Adjustments of the observed data were made to standard 10-m height for wind speed and
2-m height for air temperature and dewpoint temperature by accounting for atmospheric stability (Schwab &
Bedford, 1994). For each station, GFS data were filtered by a land/water mask (e.g., land points used for land
stations, water points for lighthouses/buoys) and interpolated to the station locations using a nearest neighbor
method. Atmospheric model skill was assessed using root-mean square error (RMSE) and bias for individual
stations (across the simulation period) and by forecast day (across all stations).

2.4. Forecast Scenarios and Validation

Simulations were carried out for 8 forecast periods in 2022, starting on the first and fifteenth of each month and
running for 16 days. The year 2022 (Figure 4) was chosen because it overlapped with available GFS v16 data and
is representative of long term average ice concentrations. For instance, the basin-wide average ice concentration
in 2022 was 56.1% as compared to the long term basin-wide average ice concentration of 52% (Data from NOAA:
https://www.glerl.noaa.gov/data/ice/glicd/AMIC.txt). The simulation periods are as follows: January 1-16,
January 15-30, February 1-16, February 15-March 3, March 1-16, March 15-30, April 1-16, and April 15-30.
Observations from the US NIC were compared to model simulations as driven by the GFS forecast and the
analysis scenarios. With 8 simulation periods, 4 model domains, and 2 forcings (forecast and analysis), there were
a total of 64 simulations carried out for this study. US NIC and modeled ice was also compared to an ice
persistence forecast, where day 1 ice conditions from the US NIC are kept constant over the 16-day period. Model
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Figure 4. Lake-average ice concentration time-series from US NIC for January—May 2022.

skill was assessed using RMSE and bias calculated for each day of the forecast period in each simulation and
RMSE plotted spatially over the FVCOM grid on each lake. Finally, while not a direct comparable to medium-
range prediction, archived ice forecasts from the short-range GLCFS were acquired and used to calculate a short-
range RMSE as a benchmark for comparison. Archives of short-range GLCEFES ice are only available out to day 3
of the forecast, and thus they were used to provide the benchmark RMSE.

3. Results and Discussion
3.1. GFS Baseline and Forecast Skill

Wind-speed, air temperature, dewpoint temperature, and cloud cover are the common atmospheric parameters
measured at the meteorological stations, available in the GFS, and supplied to the hydrodynamic-ice model. For
all matching timestamps, the GFS variables were compared to the available meteorological observations for the
entire simulation period (e.g., January through April 2022). Station-based comparisons of the analysis GFS
(forecast hour zero; f000) reveal notable bias across all four variables (Figure 5). In general, air temperature,
dewpoint temperature, and wind speed are low-biased at a majority of the stations (Figures 5a—5c and 5d).
Analysis cloud cover is high-biased at most stations (Figure 5b), which means a low-bias in solar radiation input
to the lakes. Analysis air temperatures show a north-south gradient in air temperature bias, with the greatest
negative bias found around Lake Superior and the smallest biases located at the southern ends of Lake Michigan
and Lake Erie. In all, baseline comparisons for the analysis suggest that at forecast hour zero the GFS atmospheric
forcing is prone to result in cold biased lake water temperatures and the potential for greater ice conditions than
would be observed.

Forecasted atmospheric conditions from the GFS reveal a similar bias when compared to station observations
(Figure 6). When the GFS is evaluated across all eight of the 16-day forecast periods, a north-south gradient in air
temperature bias is apparent and similar to the baseline comparisons, with forecast temperatures near Lake Su-
perior have the most significant low-bias (Figure 6a). Like the analysis evaluation, cloud cover high-bias and
wind speed low-bias are prevalent at most stations (Figures 6b and d). Only in forecasted dewpoint temperatures
is there a notable change from the baseline analysis, where a similar number of stations across the Great Lakes
region reveal low- and high-biased values (Figure 6c). However, the high-biased station dewpoints tend to be
found along the southern coast of Lake Erie, eastern coast of Lake Michigan, and the south-eastern portion of
Lake Ontario. While each of these regions are generally downwind given the common weather patterns for the
area, the same gradients are not found for Lakes Superior and Huron. Again, however, the mean bias across all
stations for the GFS forecast suggest the potential for cold-biased lake temperatures or increased ice growth. Daily
mean bias across all stations for each forecast day reveal GFS forecasted conditions behave similarly to the
baseline conditions, with perhaps greater variability beyond day 7 (Figure 7). However, RMSE of the GFS
forecasted parameters over the forecast period reveals a significant divergence from the analysis values in air and
dewpoint temperatures after forecast day 10 and 16, respectively (Figures 7a and c).
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Figure 5. Mean bias between GFS analysis (forecast hour zero; f000) and meteorological observations for (a) air temperature,

(b) cloud cover, (c) dewpoint, and (d) wind speed during the period January through April 2022.
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Figure 6. Mean bias between GFS forecast and meteorological observations for (a) air temperature, (b) cloud cover,

(c) dewpoint, and (d) wind speed during the period January through April 2022.
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Figure 7. RMSE and mean bias of the GFS analysis (forecast hour zero; f000) on each day of simulation period (calculated
across all simulations), and RMSE and mean bias of the forecast simulations (calculated as a function of forecast day across
all simulations) across all stations for (a) air temperature, (b) cloud cover, (c¢) dewpoint, and (d) wind speed.

3.2. Lake Ice Skill

GLCEFS ice forecasts under the two atmospheric forcings (GFS forecast and analysis) were compared to US NIC
observations during eight time periods in 2022. Lake-averaged ice concentrations are plotted for NIC, model
forecast and analysis, and persistence scenarios (Figure 8). In January, US NIC observations show that the lakes
experience rapid ice growth, with Erie concentrations rising to 87% and the remaining lake concentrations ranging
from 25% to 50% by the end of the month. Aside from the Jan 1 simulation period, the persistence forecast in this
month significantly underpredicts ice concentrations. However, with the exception of Lake Superior, model
forecasted ice concentrations during January agree well with the US NIC data. The analysis (or baseline)
simulation, while generally following the observed and forecasted cases, overpredicts ice concentrations in the
Jan 15 period, particularly for Lake Ontario (Figure 8d), Lake Huron (Figure 8b), and Lake Erie (Figure 8a).

In February, which is peak ice season for all but Lake Superior, the observed ice concentrations from US NIC
reveal a high degree of variability over the 16-day periods. While the respective persistence forecasts are
somewhat characteristic of the mean concentration over the time period, compared to January, by definition they
cannot capture the large swings in observed concentrations. Forecast and analysis scenarios track the observed
variability well for Lakes Michigan, Huron, and Ontario, whereas Lake Erie is a mixed result. In the February 1
simulations for Lake Erie (Figure 8a), forecast and analysis models overpredict ice concentrations compared to
the observed concentrations and fail to resolve the fluctuations in ice around day-4 and -12. However, in the Feb
15 case, both simulations track the observed ice until day-8, at which the forecast simulation predicts an unre-
alistic drop in ice concentration, while the analysis continues to track the US NIC until at least day 12. Further
inspection of the meteorology reveals the forecast for Lake Erie has an extreme high bias air temperature (~10°C;
not shown) that is the driver behind the discrepancy.

In the receding limb of the ice season, the model forecast and analysis simulations generally capture the trend in
observed ice. As would be expected during the melting season, the persistence forecast overpredicts ice condi-
tions for most cases during this period except when there is very little change. While the forecast and analysis
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Ontario, and (e) Lake Superior.

track the receding ice fields during these months, there is a noticeable bias in Huron, Michigan, and Superior
during the Mar 15 simulation. While the meteorology is primarily responsible for these differences, day-1 bias
may in fact stem from the ice initialization used in the model. As observations only include ice concentration,
assumptions about ice thickness must be made for model initialization, which is also true for subsurface tem-
peratures but less significant in this case.

Across most of the season, model predicted ice strays most from the US NIC data in Lake Superior. Generally, the
simulated ice follows the trend of ice growth or melting observed during each case, but the ice initialization in the
model also helps keep predictions close to realistic. In any case, even with the low-bias air temperatures identified
over Lake Superior (Figures 5 and 6), the overprediction of ice is consistent with a shallow mixed layer present in
the hydrodynamic-ice model, which has been identified previously (Kelley et al., 2022). The absence of a deeper
mixed layer results in artificially cooler surface temperatures than observed and also the rapid growth of ice,
which is present in most of the months. The deficiencies in the GFS forcing over Lake Superior are likely
exacerbating this error.

Root Mean Squared Error (RMSE) and bias % of ice cover were calculated to quantify the model skill. For each
lake, an overall RMSE value was calculated for each day of the forecast across all eight forecast periods. In all
lakes, RMSE increased over the length of the forecast horizon, most notably in Erie and Superior (Figure 9).
These RMSE values also align well with short-range ice forecasts on day 3 of the forecast period. In the simulated
cases, day-1 RMSE may be a function of both the initialization limitations and actual ice variability driven by the
GFS. In all lakes, the model forecast and analysis generally perform better than the persistence case. In Lakes
Michigan, Huron, and Ontario, the ice RMSE stays below 10% for the entire 16-day range. In Lakes Michigan and
Ontario, the persistence RMSE is roughly 5% higher than the modeled cases, though in Lake Huron, the
persistence is as much as 10% greater. In Lake Erie, the modeled RMSE stays below 10% until day-8. For days 8—
16, the analysis simulation stays below 20%, though the forecast RMSE jumps above 20% for day-10, likely due
to the meteorological deficiency pointed out earlier. In comparison, the persistence forecast for Lake Erie steadily
rises over the forecast duration to nearly 35% by day-16. In Lake Superior, each case sees a steady increase in
RMSE over the forecast length, though the peak RMSEs are near 20%. In all cases, the forecast and analysis
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simulations are generally similar. It is important to note that at some level the model RMSE is a function of the US
NIC data precision. The US NIC data is only given in 10% increments, whereas the model is continuous, and thus
the true model error is unclear at this resolution.
In addition to model skill across the forecast horizon, RMSE was also evaluated spatially across the lake surfaces,
allowing for the determination of geographic patterns in model skill at different forecast horizons. For all forecast
horizons, RMSE is generally higher in areas of high ice concentrations, which include bays, shallow regions, and
coastlines, and lower in offshore regions (Figure 10). But particularly high RMSE values seem to align with areas
that are both shallow and semi-enclosed. For example, Green Bay (approx. 87°W, 45°N) in Lake Michigan has an
RMSE greater than 40% over most of the bay on days 5, 10, and 16 of the
forecast period. However, we can see that this is not always the case, as Lake
Day 5 Erie RMSE on day-5 is below 10% for much of the central basin of Lake Erie,
492N' a //,/f,;; " even though ice concentrations are high and depths are less than 19 m, and
igom &4 y,%,u, ’ Saginaw Bay (approx. 83.5°W, 44.0°N) in Lake Huron, which is both shallow
46°NA o] ot ’é = and semi-enclosed, has an RMSE between 15% and 30%. Therefore, addi-
45°N 'ﬂ ‘ : \9% tional factors might play an important role for Green Bay, such as hydrologic
44°N &Y 1 [ i (river) inflows that could serve to enhance circulation and flush out the bay, or
43ZN P ) g the air temperature bias observed over the higher latitudes of the region. On
42°N e a forecast day 10, the patterns of RMSE are similar but tend to increase in
magnitude, with the exception of offshore Lake Michigan and Lake Huron
49°N and the majority of Lake Ontario (Figure 10b). Yet even on forecast day 16,
o jg:m RN1|OSOE (o/ °) with the exception of Lake Superior, patterns remain consistent but RMSE
'g 46°N —a 75 does not significantly increase (Figure 10c). In Lake Superior, most of the
= 45°N m 50 lake is between 30% and 60%, with no major distinctions between coastal and
S 44°N \ j <Ay offshore regions. It is reasonable to assume that both the low-bias air tem-
432N P 4 25 peratures in the GFS around Superior (Figure 6) and the general increase in air
42°N i 0 temperature RMSE after day 10 (Figure 7) contribute to this effect. Addi-
tionally, error could be exasperated by deficiencies in model physics. For
492N‘ example, insufficient mixing in deep lakes, such as Superior, or the lack of
jgom wave-ice interaction in lakes with large fetch could lead to overprediction of
46°N+ v ice concentration and thickness. In all the patterns, and even magnitude of
45°N - N RMSE, are similar to values reported in the literature (Anderson et al., 2018),
44°N+ ' . even at these medium-range forecast horizons. Although the usefulness of
43°N+ i v 4 these forecasts for stakeholders would vary depending on their specific needs,
42°N+ v/ o> . Lo . . .
| [ | ice concentration information was ranked as the second most important piece
90°W  85°W  80°W of information in decision-making for navigation and shipping sectors in the
Longitude Great Lakes (Fujisaki-Manome et al., 2019). The model skill demonstrated

Figure 10. Spatial representation of RMSE for modeled forecast ice
concentration on (a) day 5, (b) day 10, and (c) day 16, calculated across all

simulations.

here would offer additional planning and decision-making information to
stakeholders beyond the 5-day time horizon.
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4. Conclusions

Ice forecasting in Earth's large lakes is relatively new compared to the long history of lake numerical modeling
and operational prediction. While short-range predictions, which are typically 3 or 5 days forecast horizons, have
been available for the Laurentian Great Lakes since 2010, no attempt has been made to assess the skill of medium-
range ice forecasts in these large lakes. In this study, we use existing operational models to assess the utility of
medium-range ice forecasts out to 16 days. This work shows that even with deficiencies in forecasted meteo-
rological conditions at these time scales, medium-range ice prediction in the Great Lakes may have accuracy that
meets stakeholder requirements for shipping, spill response, and ice cutting operations. In all cases, the model
forecasts perform better than the persistence forecast. The success of this approach hinges upon reasonable
starting conditions for the lake temperature and ice field. While existing nowcast operations have known bias in
both of these respects, there have been advancements to better integrate remote sensing and data assimilation
techniques into operational lake prediction. For medium-range forecasts such as those presented here, it is
imperative that hydrodynamic-ice bias is minimized before initiating medium-range forecast simulation.

This work also reveals the potential for improvement to medium-range ice forecasts by improving the underlying
operational lake and weather forecast models. For example, the shallow mixed layer present in the Great Lakes
models inhibits vertical mixing, which in the winter time means that the surface artificially cools instead of
bringing up relatively warm water from below. The result of this insufficient mixing is overgrowth of ice con-
centration and thickness that increases seasonal RMSE and inhibits melting in the spring season. However, other
processes may also contribute to the overproduction of ice, including the lack of wave-ice interaction physics in
the operational configuration.

In addition, while the GFS is a coarse-scale (0.25°) global weather model, the forecasted values in the Great Lakes
region can yield useful ice predictions at medium-range time scales when the lake model is properly initialized.
However, it is clear from the bias calculated for the analysis case that the assimilation scheme used to generate the
hour-0 meteorology can be improved. It is reasonable to assume any reduction in atmospheric bias present in the
air temperature, cloud cover, and wind, as reported here, would lead directly to improved medium-range ice
prediction.

Overall, this work demonstrates the skill of medium-range ice prediction in the Great Lakes using existing
operational and community models. While RMSE increases with increasing forecast horizon, the skill of ice
prediction out to 10 days, and maybe further, can still be useful to many stakeholders and ecosystem services
surrounding ice-covered large lakes. Though not explored here, the coupling of large lake models with weather
forecast models over medium-range time scales may have the potential to improve synoptic weather forecasts in
the Great Lakes region while also increasing ice forecast accuracy.

Data Availability Statement

All data used in this study are publicly available. The atmospheric data used from the GFS are available from
https://www.ncei.noaa.gov/products/weather-climate-models/global-forecast, the FVCOM-CICE model is
available from https://www.fvcom.org/, and the GLCFS data/configuration is available from https://www.ncei.
noaa.gov/thredds/catalog/model/model.html. Surface temperature data used for model initialization are available
from NOAA CoastWatch: https://coastwatch.glerl.noaa.gov/statistics/average-surface-water-temperature-glsea/.
Great Lakes ice data are available from https://usicecenter.gov/. Meteorological data used for assessment of the
GFS are available from NOAA: https://apps.glerl.noaa.gov/marobs/.
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