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ABSTRACT: Artificial intelligence (Al) is gaining popularity for severe weather forecasting. Recently, the authors devel-
oped an Al system using machine learning (ML) to produce probabilistic guidance for severe weather hazards, including
tornadoes, large hail, and severe winds, using the National Severe Storms Laboratory’s (NSSL) Warn-on-Forecast System
(WOFS) as input. Known as WoFS-ML-Severe, it performed well in retrospective cases, but its operational usefulness had
yet to be determined. To examine the potential usefulness of the ML guidance, we conducted a control and treatment
(experimental) group experiment during the 2022 NOAA Hazardous Weather Testbed Spring Forecasting Experiment
(HWT-SFE). The control group had full access to WoFS, while the experimental group had access to WoFS and ML prod-
ucts. Explainability graphics were also integrated into the WoFS web viewer. Both groups issued 1-h convective outlooks
for each hazard. After issuing their forecasts, we surveyed participants on their confidence, the number of products viewed,
and the usefulness of the ML guidance. We found the ML-based outlooks outperformed non-ML-based outlooks for multi-
ple verification metrics for all three hazards and were rated subjectively higher by the participants. However, the difference
in confidence between the two groups was not significant, and the experimental group self-reported viewing more products
than the control group. Participants had mixed sentiments toward explainability products as it improved their understand-
ing of the input/output relationships, but viewing them added to their workload. Although the experiment demonstrated
the usefulness of ML guidance for severe weather forecasting, there are avenues to improve upon the ML guidance, and
more training and exposure are needed to exploit its benefits fully.

SIGNIFICANCE STATEMENT: We developed an artificial intelligence (AI) system to predict tornadoes, large hail,
and damaging straight-line winds. The AI system was leveraged in real time during the 2022 NOAA Hazardous
Weather Testbed Spring Forecasting Experiment. This study reveals that forecasters using Al guidance produced more
reliable and spatially accurate outlooks than those without. While AI and complementary explainability products did
not reduce forecaster workload, both demonstrated great potential for improving severe weather forecasting. This re-
search also highlights the importance of user feedback in refining Al tools for severe weather forecasting.

KEYWORDS: Social Science; Severe storms; Forecast verification/skill; Short-range prediction; Machine learning;
Model interpretation and visualization

1. Introduction Lagerquist et al. 2020; Cintineo et al. 2020; Flora et al. 2021;
Hill et al. 2023; McGovern et al. 2023). For example, Storm
Prediction Center (SPC) forecasters leverage ML-generated
probabilistic guidance for the next day (24-36 h) time frame
(Loken et al. 2020) and extended ranges (days 3-8; Hill et al.
2020, 2023) while National Weather Service (NWS) forecast-
ers leverage ML-generated guidance for 0-1-h lead times
(“ProbSevere”; Cintineo et al. 2020). The NWS is eager to
adopt AI/ML guidance as it may accelerate the paradigm shift
from forecasters generating forecast output to providing more
weather decision support services (Roebber and Smith 2023).

Improved predictions of severe thunderstorm hazards can
reduce their impacts. A promising approach for improved se-
vere weather predictions is leveraging machine learning (ML)
methods, which analyze complex patterns from large datasets.
The use of ML in severe weather forecasting has grown in the
last few years (Lagerquist et al. 2017; Gagne et al. 2017, 2019;
Hill et al. 2020; Loken et al. 2020; Sobash et al. 2020;
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For example, translating ML guidance into usable information
supporting impact-based decision support services (IDSS) is a
top NWS goal (Roebber and Smith 2023).

A promising avenue for new forecast guidance devel-
opment is user-centered design, where the final product
matches the end user’s need because it is developed itera-
tively in collaboration with the end user (Abras et al. 2004;
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Argyle et al. 2017). For example, leveraging forecaster feedback
on the experimental Warn-on-Forecast System (WoFS) guidance
(Wilson et al. 2019b) inspired the development of the event-based
ML system discussed in this paper (Flora et al. 2019, 2021).

The authors have recently developed a novel ML system to
generate probabilistic predictions for tornadoes, severe straight-
line wind, and large hail using output from the experimental
WOoFS (Flora et al. 2021). Known as WoFS-ML-Severe, it was
shown to outperform a baseline system that uses surrogate se-
vere methods—which use a single convective-allowing model
variable proxy for severe weather—to predict each hazard. The
guidance helps to fill the watch-to-warning gap where numerical
guidance is limited, and its storm-based design can support
IDSS. To explore the operational utility of this novel ML guid-
ance, a forecasting activity was developed in the annual NOAA
Hazardous Weather Testbed Spring Forecasting Experiment
(HWT-SFE; Clark et al. 2023; Gallo et al. 2017, 2022). The
HWT-SFE brings together individuals from the operational and
research sectors to assess and evaluate experimental forecast
guidance.

In recent work exploring the impact of WoFS on issuing
probabilistic forecasts, Gallo et al. (2024) used an experiment
design with control and treatment (experimental) groups
where both groups had access to non-WoFS data while the ex-
perimental group also had access to WoFS data. This frame-
work can help determine new guidance’s unique value and
role in a data-rich environment. This study adopts a similar
design where the control and experimental groups had access
to the entire suite of WoFS products while the experimental
group also had access to the experimental ML guidance. This
framework also allows us to implicitly explore whether adding
the ML guidance impacts forecaster overload. We hypothe-
size that alongside the full WoFS suite, the ML guidance of-
fers concise information on severe weather hazard potential,
with the WoFS suite allowing for deeper interrogation and sit-
uational awareness of ongoing severe weather threats.

For this study, participants were tasked with issuing 1-h
probabilistic forecast outlooks valid for 2100-2200 UTC and
22002300 UTC for tornadoes, wind = 50 kt (1 kt ~ 0.51 ms™ 1),
and hail = 1 in. Since the relationship between input and output
is often unknown to ML users (McGovern et al. 2019), we also
introduced a novel, interactive ML explainability' feature on the
WOoFS web viewer (see section 2b). Introducing simple explain-
ability products is one step toward developing trustworthy Al,
which is becoming a growing focus in environmental sciences
(McGovern et al. 2022). We explored the following research
questions:

1) Are the probabilistic outlooks generated by the experi-
mental group (those with access to the WoFS-ML-Severe)
more accurate than the control group?

2) Does WoFS-ML-Severe provide useful guidance beyond
that already available on the WoFS web viewer?

! Explainability is the degree to which a person can understand
an ML model using post hoc methods; see https://www.ai2es.org/
products/education/glossary/explainability/.
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3) Did the ML guidance affect participant confidence or sig-
nificantly impact participants’ forecast process (e.g., did it
reduce forecaster workload)?

4) Were the explainability products useful, and did they im-
prove confidence in the ML products?

To evaluate question 1, the 1-h forecast outlooks generated
by participants were objectively and subjectively evaluated.
For objective verification, probabilities were evaluated against
storm reports. For subjective verification, HWT-SFE partici-
pants ranked the performance of the previous day’s forecast
on a scale of 1-5 using all available verification data (reports,
radar-estimated hail size, and warning polygons). Regarding
questions 2 and 3, automated guidance can reduce workloads
(Karstens et al. 2015). We hypothesized that the ML guidance
coupled with explainability products would improve forecast
confidence and limit the number of WoFS products viewed by
the experimental group compared to the control group. To
test this, we surveyed participants about their confidence in
their outlooks, the number of products they viewed, and their
opinion on the usefulness of the ML guidance. The next day,
participants who subjectively rated the outlooks were also
asked questions about their confidence in using WoFS and
the ML guidance in the future. Last, for question 4, we hy-
pothesized that the explainability products would improve
forecasters’ confidence in the ML products.

2. Methods
a. Description of the Warn-on-Forecast System data

The WoFS is an experimental convection-allowing ensem-
ble analysis and forecast system that rapidly updates real-time
severe weather guidance by frequently assimilating ongoing
convection. It comprises 36 analysis members and 18 forecast
members with a 3-km grid spacing, using the Advanced
Research version of the Weather Research and Forecasting
(WRF-ARW; Skamarock et al. 2008) Model. It uses a lim-
ited-area domain whose location is updated daily according to
the area of interest, usually one with some risk of severe
weather. WoFS issues forecasts every 30 mins with 5-min out-
put for up to 6 h. Additional details on the WoFS configura-
tion have been covered in previous articles (Jones et al. 2016,
2020) and are omitted here for brevity.

For the 2022 HWT-SFE, the WoFS was run daily from 2 May
to 3 June 2022 (excluding weekends). The approximate location,
maximum SPC risk, and the number of Storm Data reports dur-
ing each date’s total forecast period (2100-2300 UTC) are pro-
vided in Fig. 1. Multiple regions of the CONUS were sampled.
The cases included days with multiple tornadoes (6, 11, 17, and
30 May), a mesoconvective vortex (11 May), a derecho event
(12 May), and a series of cases that primarily produced damag-
ing wind (3, 16, and 24 May). Damaging winds were the most
frequent hazard (815 reports), while tornadoes were the least
frequent (70 reports).

b. WoFS-ML-Severe method

A full description of the WoFS-ML-Severe products is pro-
vided in Flora et al. (2021), so we only give a brief account
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May/June 2022
Monday Tuesday Wednesday Thursday Friday
2 Southern | 3 Mid | 4 Southern | 5 South | 6 South
Great Atlantic Great East East
Plains Plains
Ny, Nh, N¢
=[7, 11, 6] [71, 6, 2] [5,12,1] [8,13, 0] [83, 37, 4]
9 Northern | 10 Southern | 11 Northern | 12 Northern | 13 Mid
Great Great Great Great West
Plains Plains Plains Plains
[3,18,1] [8, 8, 0] [14, 8, 4] [188, 23, 71| [5, 18, 3]
16 North | 17 Northern | 18 Mid | 19 Northern | 20 Mid
East Great West Great West
Plains Plains
[44, 20, 1] [4,9, 3] [26, 5, 1] [35, 64, 9] [3,5, 1]
23 Southern | 24 Southern | 25 Mid | 26 Mid | 27 Mid
Great Great West West Atlantic
Plains Plains
[27,12,1] [20, 32, 1] [32, 0, 0] [22, 2, 1] [16, 4, 4]
30 Northern | 31 Southern | 1 North | 2 Mid | 3 Southern
Great Great East Atlantic Great
Plains Plains Plains
[78, 16, 14] [8, 24, 5] [27, 10, 0] [68, 3, 0] [13, 6, 1]
NWI Nh ’ Nt

=[815, 366, 70]

FIG. 1. Calendar covering the 2022 HWT-SFE period. The dates
are color coded by the maximum categorical SPC risk issued within
the WoFS domain at 1630 UTC (red = moderate, orange = en-
hanced, and yellow = slight). For each date, we provide the num-
ber of wind reports N,,, hail reports N,, and tornado reports NN,
within the WoFS domain during the 2100-2300 UTC period. The
general location of the domain center is provided in the upper-
right-hand corner for each date. A final count of each hazard is
provided at the bottom of the figure.

here. A novel aspect of the guidance is that rather than produc-
ing spatial probabilities (predicting the likelihood that a given
location or neighborhood will experience severe weather), the
WoFS-ML-Severe guidance uses an object-based design that is-
sues event probabilities (forecasting the likelihood that a given
thunderstorm will produce severe weather; Flora et al. 2019).
For the event probability framework, ensemble forecasts of fu-
ture storm locations are aggregated over a 30-min period to pro-
duce “ensemble storm tracks” (an example is shown in Fig. 2a).
The ML dataset is derived from these storm tracks by extracting
ensemble statistics from intrastorm and environmental variables
(see Table 1 from Flora et al. 2021) from points within the tracks.
Additional variables characterizing the track morphology (e.g.,
area or major axis length) are also extracted. Environmental fea-
tures are computed as spatial averages of the ensemble mean
and standard deviation fields valid at the beginning of the storm
track’s forecast period (to mitigate sampling storm-modified en-
vironment fields). Intrastorm features consist of the spatial aver-
ages of the ensemble mean and standard deviation fields and the
ensemble mean and standard deviation of the 90th percentile of
each ensemble member (to capture storm intensity). The target
data were based on whether an ensemble storm track contained
a tornado, severe hail, or severe wind report, respectively.
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In Flora et al. (2021), three machine learning models per
hazard were trained: random forest, logistic regression, and
gradient-boosted trees [extreme gradient boosting (XGBoost);
Chen and Guestrin 2016]. For the HWT-SFE, we only used
logistic regression and random forest models due to technical
limitations with the XGBoost models. As described in Flora
et al. (2021), different models were trained for different lead
times. The original lead times were separated into two groups:
lead times ending at 60-90 min (first hour) and lead times be-
tween 90 and 150 min (second hour). However, for the HWT-
SFE, ML guidance was produced for up to 4 h of lead time.
Due to time constraints, we could not train additional models
for these later lead times and instead used the second hour
models for all times greater than 90 min. It is unknown if in-
troducing additional models for these lead times would have
produced more skillful guidance, but we defer this to future
work. However, for the lead times that participants were issu-
ing outlooks—<?2-3 h—they were not heavily relying on
forecasts > 2 h. To summarize the ML guidance, additional
time-composite products for 1- and 4-h time spans are pro-
duced on the web viewer (Figs. 2c,d).

Since ML models’ input/output relationship is often com-
plex or unknown, we introduced a novel interactive explain-
ability feature on the WoFS web viewer (see Fig. 2b). Participants
could click on a particular storm track, and a product like that
shown in Fig. 2b would appear. For a given hazard, the product
shows five predictors and where the value of a given predictor lies
within the training distribution of storms previously matched to a
report. Adding this context allows a user to quickly determine
how the input compares with previous severe storms. For consis-
tency, the same set of features for a given hazard was shown for
each track (and for both the logistic regression and the random
forest). The methods developed in Flora et al. (2024) determined
these top five predictors by combining multiple feature ranking
methods and manual selection based on subject-matter expertise.
However, we did ask participants whether they preferred a consis-
tent set of predictors (global explainability), predictors that were
specific to a given track (local explainability), or some combina-
tion of both (section 3e).

¢. SFE experiment design
1) PARTICIPANTS

Every spring, the NOAA HWT-SFE gathers professionals
from operational and research sectors to evaluate experimen-
tal forecast guidance (Gallo et al. 2017, 2022; Clark et al.
2023). Participants include NWS forecasters and individuals
from academia and the public and private sectors. During the
winter before HWT-SFE, participant solicitations are sent to
NWS Weather Forecast Offices (WFOs). Forecasters apply to
participate through these solicitations and are selected by
their respective regional Science Services Division (SSD)
chiefs. Information provided by forecasters includes name,
position, region, WFO, week of participation preference, and
an interest statement. Participation is considered a part of
their regular duties as federal employees. For the 2022 HWT-
SFE, the NWS forecasters came from 25 WFOs. The break-
down by NWS region is as follows: western (4), central (11),
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F1G. 2. Examples of the available ML products on the real-time WoFS web viewer. These include (a) 30-min
guidance, (b) the interactive ML explainability product, (c) 1-h guidance, and (d) the 4-h guidance. For the 30-min
guidance in (a), probabilities rounded to the nearest 5% are overlaid. The 1- and 4-h products are time-maximum
composites of the 30-min guidance. These graphics come from the cloud-based WoFS web page (https:/cbwofs.nssl.

noaa.gov/).

southern (5), and eastern (10). The participants’ experience
levels generally range from novice to decades of experience.
We did not explicitly collect the participants’ experience level
information. The HWT-SFE development team similarly
solicits non-NWS participants, and their respective funding
sources cover their compensation. Forecasters and other par-
ticipants eager to adopt cutting-edge guidance will likely ap-
ply to the SFE. This does limit the generalizability of the
results to all NWS forecasters. Most participants only attend
the HWT-SFE for a single week (Monday-Friday). In total,
the 2022 HWT-SFE had 260 participants. The HWT-SFE, in-
cluding this study, was approved under expedited review by
the University of Oklahoma’s Office of Human Research
Participant Protection Institutional Review Board under pro-
ject 13320.

2) PROCEDURE

For the HWT-SFE activity, we performed a two-group ex-
periment in which a control group had access to the standard
WOoFS product suite only, while the treatment (experimental)
group had access to the WoFS suite plus the ML guidance.
Each group was assigned two NWS forecasters (known as
“expert” forecasters) and 4-6 non-NWS participants (known
as “nonexpert” forecasters). Though nonexperts are not NWS
forecasters, many still have extensive knowledge of forecast-
ing and severe weather (e.g., researchers and model develop-
ers) and could still be considered experts in the field.
Participants were randomly assigned to a group and could not
opt into the experimental group. Throughout the week, par-
ticipants experienced both groups/conditions. For example, a
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participant may be in the control group Monday-Wednesday
and the experimental group Thursday and Friday. Though a
participant spent multiple days in the experimental group, the
period was short enough that the learning bias was minimal.
Due to COVID-19 restrictions, participants attended the 2022
HWT-SFE virtually. Participants in the control and experi-
mental groups were in separate Google Meet sessions, and
there was no communication between the two groups. The fa-
cilitators guided participants in the control and experimental
Google Meet sessions. The control and experimental groups
accessed the same web page; only the honor system was in
place for control group participants not to use the ML products.
Due to time constraints, we could not implement a method for
restricting specific users from accessing the ML guidance. Facili-
tators frequently reminded participants to avoid the ML guid-
ance if they were in the control group. Participants from both
groups could also access any other online weather information
(e.g., SPC mesoanalysis) at their discretion.

During the SFE, we rely on real-time weather conditions,
distinguishing it from other experiments where one preselects
past cases. Using real-time weather events eliminates poten-
tial bias from forecasters being familiar with historical events.
As for forecaster experience or familiarity with regional cli-
matology, we note that the WoFS domain shifts daily. For ex-
ample, domains were centered over at least three geographic
regions per week (Fig. 1). Though the control and experiment
groups were determined randomly, which should mitigate the im-
pact of experience and familiarity across both groups, we do ex-
plicitly control for regional familiarity in our experiment design.

Both groups generated hourly probabilistic outlooks for
tornadoes, wind, and hail, valid from 2100-2200 UTC and
2200-2300 UTC. Participants had access to the standard SPC
contours used for full-day convective outlook products,” with
other intermediate contours also available. The participants
drew initial outlooks between 1915 and 2015 UTC and then
generated final, updated outlooks between 2015 and 2115 UTC
based on updated WoFS output. Though the experiment is SPC-
centric, Forecasting a Continuum of Environmental Threats
(FACETs; Rothfusz et al. 2018) goals are such that there is a
seamless flow of probabilistic information across scales. This
forecasting experiment is in the watch-to-warning space and
tests one potential iteration or realization of that FACETs-
style guidance. WFO and SPC forecasters are not producing
1-h probabilistic outlooks, and this exploratory activity could
benefit both types of forecasters.

Given that the experimental group varied daily, facilitators
presented an overview of WoFS and the ML products at the
beginning of each experimental group session. Facilitators
also emphasized to both groups that the 1-h time window out-
looks should not be treated as the SPC convective outlooks,
valid over much longer periods. Given the short lead times,
the forecasts should, in theory, be more accurate and precise,
meaning highlighted areas should have higher probabilities

2 Standard contour levels for hail and wind are 5%, 15%, 30%,
45%, and 60% and for tornado includes an additional 2% and
10%.
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and cover smaller areas than SPC’s day 1 convective outlooks.
An example set of forecasts for 1 June 2022 is shown in Fig. 3.
All forecast outlooks generated during the 2022 HWT-SFE
are available at https://hwt.nssl.noaa.gov/sfe/2022/.

After completing their outlooks, participants were asked to
complete a survey (see Tables 1 and 2). Many questions were
answered using a Likert scale or forced choice, but some were
open ended. A Likert scale measures respondents’ attitudes
in questionnaires using various response options from one ex-
treme to another (Likert 1932). These questions asked partici-
pants about their confidence in their forecast, how useful they
found the ML guidance, and how useful the explainability
products were. The experimental group was asked additional
questions about the value of the ML guidance and the interac-
tive explainability products.

To subjectively evaluate the previous day’s forecasts, par-
ticipants used observed storm reports, radar-based maximum
estimated hail size (MESH; Witt et al. 1998), NWS warnings,
and practically perfect forecasts (Hitchens et al. 2013; exam-
ple shown in Fig. 3). The evaluation participants were often a
combination of those who did and did not help generate the
outlooks. Though this includes self-evaluation samples, the to-
tal sample size is primarily dominated by participants evaluat-
ing outlooks generated by other participants. This is not a
typical social science experiment design, but these subjective
evaluations provide useful information, especially when eval-
uating model guidance (Kain et al. 2003; Gallo et al. 2024).
Participants evaluated the outlooks generated by the NWS
forecasters (two outlooks) and a consensus outlook from the
non-NWS participants from both the control and experimen-
tal groups. The consensus outlooks were created by convert-
ing the non-NWS participants’ outlooks to continuous spatial
probabilities using a method developed at SPC (Karstens et al.
2019) and then averaging them together. If nonexpert fore-
casters drew a significant severe contour, indicating a greater
than 10% probability for significant severe weather, the con-
sensus significant contour was drawn around points where at
least half of the participants drew a significant severe contour.
We note that consensus outlooks smooth the intensity of con-
tours of the individual outlooks and tend to have less extreme
values than the expert forecasters’ outlooks.

The primary objective of this exercise was to quantify ML’s
value in the experimental outlooks by comparing those made
with and without ML guidance. Participants categorized each
outlook as “poor,” “below average,” “average,” “above average,”
or “excellent.” The previous categories were converted to a
1-5 rating scale to quantify the subjective forecast evaluations,
where five corresponds to excellent. Practically perfect forecasts
were tuned with a smaller standard deviation than is used for veri-
fying SPC outlooks to increase amplitudes over smaller areas,
and participants were reminded of this for each case. Then, the
average ratings were computed for each hazard and forecast type
(expert and nonexpert consensus) for both the control and experi-
mental groups (four ratings per hazard).

d. Objective verification methods

To evaluate the performance of the 1-h forecast outlooks,
we use the receiver operating characteristic (ROC; Metz 1978)
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WoFS NOML Consensus

20% 30% 45% 60%

Probability of Severe Wind
(Within 26 mi of a point)

FIG. 3. Forecast outlooks generated as part of the afternoon forecasting activity highlighting the probability of severe wind gusts during
2100-2200 UTC 1 Jun 2022. The control group (NOML) outlooks are shown on the top row with the experimental group (ML) outlooks
on the bottom row. The numbered forecasters are the NWS participants (“expert” forecasters). Observed wind reports are shown as blue
boxes and severe weather warnings as blue polygons. These figures are modified versions of the official graphics available at https://hwt.

nssl.noaa.gov/sfe/2022/.

diagram, the performance diagram (Roebber 2009), the reli-
ability diagram (Hsu and Murphy 1986), and the metrics com-
monly associated with those diagrams. The ROC diagram
measures the ability of the forecast probabilities to discrimi-
nate between events and nonevents. The probability of detec-
tion (POD) and the probability of false detection (POFD) are
computed at a series of probability thresholds to calculate the
ROC curve. We can summarize the ROC curve by measuring
the area under the curve (AUC) where AUC = 0.5 indicates
no skill, while AUC = 1.0 is a perfect discriminator. AUC, how-
ever, can be a misleading measure of discrimination since it val-
ues the correct prediction of events and nonevents equally.
Using the performance diagram, we can assess how our
forecast probabilities discriminate between hits, misses, and
false alarms. Instead of POD versus POFD, we can compare
POD versus success ratio (SR) for a series of probability

thresholds and similarly summarize the resulting curve by its
area [known as the area under the performance diagram
curve (AUPDC)]. Since the AUPDC is base rate sensitive
(Boyd et al. 2013; Flora et al. 2021), it is a more useful metric
for discrimination in the rare event case since it values correct
prediction of events while ignoring correct predictions of
nonevents.

Finally, we can assess how well the forecast probabilities
match the observed conditional event frequencies using the
reliability diagram (Hsu and Murphy 1986). For perfectly cali-
brated probabilities, the forecast probabilities should equal
the event frequencies for different probability ranges (e.g.,
[0%-10%], [10%-20%], [90%-100%]). The standard
metric associated with the reliability diagram is the Brier skill
score (BSS). Brier score is the mean squared error between
the forecast probabilities and the binary outcomes. The Brier
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TABLE 1. List of survey questions and their possible responses asked during the afternoon activity subjective evaluations
associated with the WoFS ML activity in the HWT-SFE. The first two questions were asked of both the control and experimental
group while the remaining questions were only asked of the experimental group.

Survey questions

Possible responses

How confident are you in your forecasts of the following hazards today (considering both
the 2100-2200 UTC and the 2200-2300 UTC time periods) for each hazard?
Approximately how many different WoFS products did you look at today when

formulating your forecasts?

How did the ML guidance affect your confidence in your forecasts today?
How useful was the ML guidance when creating forecasts of the following hazards today
(considering both the 2100-2200 UTC and the 2200-2300 UTC time periods) for each

hazard?
What did you like or dislike about the ML guidance?
Where did the ML products fit in your workflow?

(Optional) Please provide any additional comments that you have regarding the ML

guidance and visualization

How useful were the explainability graphics when creating forecasts of the following
hazards today (considering both the 2100-2200 UTC and the 2200-2300 UTC time

periods) for each hazard?

How did the explainability graphics impact your confidence in your forecast, if at all?

Not at all, slightly, moderately, very,
extremely
5 or less, 6-10, 11-15, 16+

Open ended
Not at all useful, a little useful,
somewhat useful, very useful

Open ended
Open ended
Open ended

Not at all useful, a little useful,
somewhat useful, very useful

Open ended

score of the forecast probabilities is compared against the per-
formance of a constant climatological prediction (the sample
climatology) to create a skill score. A positive BSS indicates
that the prediction is better than always predicting the clima-
tological frequency.

The forecast probabilities were verified with quality-controlled
storm reports from the National Centers for Environmental
Information (NCEI) Storm Data Publication. The reports for
this study include thunderstorm wind gusts = 50 kt, hail diam-
eter = 1 in. (1 in. = 2.54 cm), and any tornado. The observed
storm reports were gridded in the WoFS domains and dilated
to a radius of 39 km (corresponding to the SPC convective
outlook risk definition of severe weather within 25 miles
of a point). For brevity, the following verification metrics
show each hazard’s combined performance of the updated
2100-2200 UTC and 2200-2300 UTC outlooks. We should note,
however, that the next-day subjective evaluations were per-
formed with filtered, neighborhooded local storm reports avail-
able at the time of the evaluation and are subject to reporting
latency.

e. Qualitative analysis methods

An inductive thematic analysis was used to identify and in-
terpret patterns within the responses to the open-ended ques-
tions. An inductive approach is a method where themes or
patterns are derived directly and organically from the data
without any preexisting categories or frameworks (Braun and
Clarke 2006). The thematic analysis approach was primarily
based on the six-phase approach introduced in Braun and
Clarke (2006). After data familiarization, i.e., reading through
the responses, the individual responses are categorized in a
“coding” phase, and larger descriptive themes can be derived
from these codes. These “codes” are highly descriptive and
require little analysis by the researcher (King 2004). To help
with the initial codings, we used open-source Python packages
such as the Natural Language Toolkit (NLTK; Bird et al.
2009) and a word cloud generator (Mueller 2023). After view-
ing those data, we created codes for each participant’s re-
sponse. From these initial codes, the authors derived themes
and then vetted those themes against the individual responses

TABLE 2. As in Table 1, but for the next day activity.

Survey questions

Possible responses

After seeing the forecast verification, how confident would you be in using the WoFS while

issuing a future forecast?

After seeing the forecast verification, how confident would you be in using the WoFS ML

guidance while issuing a future forecast?

Please indicate the usefulness of WoFS for the following hazards today for each hazard.

Please add any additional comments about the WoFS, the WoFS ML guidance, utility in

Not at all, slightly, moderately,
extremely

Not at all, slightly, moderately,
extremely

Not at all, slightly, moderately,
extremely

Open ended

forecast issuance of WoFS or the WoFS ML guidance, or yesterday’s severe weather

evolution that you feel would be helpful to the WoF team.

Would you prefer consistent fields (explaining how the same set of predictors contributes to
the prediction regardless of the storm) or storm-specific fields (using different predictors

to contribute to each storm’s prediction)?

Storm-specific fields, consistent
fields, do not prefer one or
the other.
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to ensure the themes were consistent and representative. The
authors then crafted the final themes and descriptions.

3. Results
a. Objective verification of the 1-h forecast outlooks

ROC and performance diagrams are shown in Figs. 4 and 5,
respectively. This section will refer to the consensus and ex-
pert participants in the experimental group as CONS ML and
EXP ML and the control group participants as CONS NOML
and EXP NOML. The EXP ML group produced higher
AUPDC and AUC for all three hazards than the EXP
NOML group. The EXP ML group discriminated well for all
three hazards, producing an AUC of 0.91, 0.9, and 0.83 for se-
vere hail, severe wind, and tornado, respectively (Fig. 4). The
EXP ML AUPDC increased by >50% against the EXP
NOML for predicting tornadoes (Fig. 5¢), but with the limited
sample size, this should be interpreted cautiously. For both se-
vere wind and hail, the EXP ML had similar percent increases
(20%-25%) in AUPDC as compared to the EXP NOML
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FIG. 4. ROC diagrams for the (upper left) 1-h hail,
(upper right) wind, and (lower left) tornado. Statistics
are computed and combined for the 2100-2200 UTC
and 2200-2300 UTC forecasts. The ML guidance
groups are in red, while the control groups are in
black. The solid lines represent the expert forecasts,
while the dashed lines depict the consensus forecasts.
The blue contours indicate the Pierce skill score. The
dashed 1-to-1 line is the ROC curve of a random dis-
criminator (no skill). AUC values are shown in the
bottom right of each panel.

(Figs. 5a,b). Among the three hazards, severe wind demon-
strated the most pronounced discrepancy between EXP ML
and CONS NOML, as depicted in Fig. 5b. This aligns with
prior research indicating that ML guidance typically yields the
most marked enhancement for severe wind relative to other
hazards (Loken et al. 2020; Hill et al. 2020; Flora et al. 2021).
Wind diagnostics in convection-allowing models frequently
exhibit less proficiency than those for hail and tornadoes
(Jirak et al. 2014; Hepper et al. 2016), potentially providing
seasoned forecasters and ML with opportunities to add value.
However, severe wind reports are inconsistent in quality
(Trapp et al. 2006), particularly in densely forecasted regions
where even subsevere winds can cause tree damage. We hy-
pothesize that ML models might be more adept at detecting
these “near” severe winds as we assume they are easier to
predict. Consequently, ML-informed outlooks could better
align with wind reports but may not equate to enhanced accu-
racy in predicting genuine severe wind events.

For severe wind and hail forecasts (Figs. 5a,b), the maxi-
mum critical success index (CSI) for the different groups
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occurred with a frequency bias > 1, which is typical for rare
event problems (Baldwin and Kain 2006). Although EXP ML
performed better than the other groups for tornado forecasts,
the performance of all groups was much lower than for the
other hazards. This is unsurprising given that few tornadoes
occurred within the 21002300 UTC period during the SFE
(Fig. 1). CONS ML performed similarly to or better than
EXP NOML for all three hazards. We attribute the superior
forecasts of the ML groups to their ability to leverage the
explicit probabilities of severe weather hazards provided by the
ML guidance. With little training/exposure (2-3 days at most),
nonforecaster participants could leverage the novel guidance
consistent with past HWT-SFE studies (Karstens et al. 2015;
Gallo et al. 2024). If the EXP NOML group had more experi-
ence fully leveraging WoFS, they might have performed better
than the CONS ML group.

The hail and wind reliability curves were close to the one-
to-one line (Fig. 6). The wind probabilities, however, have an
underforecast bias, especially for probabilities > 40%. The
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FIG. 5. As in Fig. 4, but for the performance dia-
gram. The blue-colored contours indicate the CSI
value, while the dashed black lines emanating from
the origin are the frequency bias curves. The dots
with the number annotation along a given curve indi-
cate the probability threshold, while the “X” indi-
cates the location of the maximum CSI value. In the
upper-right-hand corner of each panel, the AUPDC
(APD) values are provided.

highest hail probabilities issued were around 50% (Fig. 6a)
while the highest tornado probabilities issued were around
20% (Fig. 6¢). The EXP ML group produced the most reli-
able forecasts and the highest BSS for all three hazards. Thus,
the EXP ML group successfully translated the event-based
ML probabilities into reliable spatial probabilities. We can
also see that CONS ML and EXP ML issued slightly fewer
probabilities in the bins between 20% and 50%, which im-
proved the resolution of the forecasts and helped explain the
somewhat higher BSS compared to the CONS NOML and
EXP NOML groups.

b. Comparing outlook areas between the ML and
NOML groups

To further distinguish the performance of the groups with
access to the ML guidance from those without, we evaluated
the comparative size of the outlook polygons produced by
EXP ML and EXP NOML (Fig. 7). We restricted our analysis
to severe wind and hail outlooks as the tornado outlooks
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were too infrequent to create a meaningful sample size.
Given that the hail and wind results are similar, we have
omitted the hail results for brevity. Our goal is to assess
whether the improvement in skill from using the ML guid-
ance arises from the participants issuing smaller contours
(i.e., honing in on the area of threat) or larger outlooks (i.e.,
reducing missed reports).

For wind probabilities > 5%, the EXP ML did produce
slightly larger area forecasts for many cases, but there is sig-
nificant variance. For example, on 3 May 2022, the EXP ML
area was nearly ten times larger than the EXP NOML, but
the expert forecasters vastly underestimated the event com-
pared to the ML groups (Fig. 8). The ML guidance high-
lighted not only the southern Ohio River valley but also
northwest Ohio, which had a weak, nonsevere wind signal in
the raw WOFS guidance (not shown). The northwest Ohio
area, as a result, is included in the EXP ML outlooks, which
does verify well (cf. Figs. 8 and 9). A similar situation oc-
curred for the 16 May 2022 case, in which the EXP ML area

better captured the event, and the NOML groups underesti-
mated the event (not shown).

However, in some cases, the ML outlooks were smaller
and more accurate. For example, on 26 May 2022, the EXP
NOML forecast area was six times larger than the EXP ML
area (Fig. 10). In this case, many participants had drawn rel-
atively large 5% regions, but one of the EXP ML forecasters
had drawn a highly focused threat area that compares well
with the observed wind reports. In the 12 May 2022 Derecho
case, though the WoFS generally captured the intense wind
event, the CONS ML and EXP ML contours were better
centered on the event, which was informed by the concise
ML guidance locations (not shown). These results suggest
that it is possible that with additional training, forecasters
could take advantage of the WoFS and ML guidance to is-
sue higher confidence forecasts over a smaller region. The
EXP ML guidance did not always correctly capture the
event, but when the EXP ML forecasts performed poorly,
the EXP NOML also performed poorly. In general, when
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FIG. 7. Comparison of severe wind probabilities area > 5% be-
tween EXP ML and EXP NOML for the combined 2100-2200 UTC
and 2200-2300 UTC periods. The area is in the number of
3 km X 3 km grid cells.

the EXP ML had a positive area bias compared to the EXP
NOML, the EXP NOML underpredicted or failed to cap-
ture the event. Moreover, for cases where the EXP ML had
smaller areas than the EXP NOML, the EXP ML forecasts
better highlighted specific threat regions.

c¢. Subjective verification of the 1-h forecast outlooks

The initial and final forecasts generated by the participants
were averaged to create the composite forecast ratings in Fig. 11.
Plots showing the results separated by the initial and final out-
looks and 21002200 UTC and 2200-2300 UTC periods are avail-
able in the 2022 HWT-SFE Preliminary Findings and Results
Report (Clark et al. 2023).

Overall, the EXP ML forecasts were rated higher than the
EXP NOML, with the most dramatic differences for wind,
which matches the objective verification. The differences be-
tween EXP NOML and EXP ML were statistically significant
(p < 0.05) for all three hazards. These results indicate that
ML can provide significant value on top of the raw WoFS
products. Furthermore, the average ratings for the CONS ML
were higher than CONS NOML, though none of the differ-
ences were statistically significant.

d. Analysis of the next day participant feedback

The following section evaluates the survey responses to the
afternoon activity questions in Table 2. Participants in the ex-
perimental (ML) and control (NOML) groups were asked
about their confidence in using WoFS and ML guidance in the
future and the usefulness of WoFS for each hazard after evalu-
ating the forecast outlooks (Fig. 12). Overall, participants from

1033

both groups were moderately to very confident in using WoFS
and ML guidance. Experimental group participants were not
significantly more confident on average but had more reports
of being “very” or “extremely” confident. Therefore, it is unclear
whether seeing the forecast verification of the ML-influenced
outlooks improved confidence. Confidence, however, is a varied
and complex notion, and building confidence requires multiple
exposures (Hoffman et al. 2017; Henderson et al. 2023; Cains
et al. 2023). Though not interchangeable, trust and confidence are
linked, and trust in guidance evolves with experience (Hoffman
et al. 2013). Cains et al. (2023) emphasized that forecasters need
personal, repeated experience with ML guidance to build trust.
This allows forecasters to interrogate the guidance and develop
mental bias corrections, which improves the forecaster’s trust and
confidence in the guidance.

As for usefulness, participants from both groups generally
found WoFS “moderately useful” and “very useful,” with
more very useful responses for hail and wind (Figs. 13b,c).
Though the participants using ML guidance reported WoFS
as very useful or “extremely useful” more often for all three
hazards, they found it significantly more useful for tornado
guidance after seeing the forecast verification (Fig. 13a).
Overall, the participants found the WoFS to be quite useful
for all hazards, again demonstrating the usefulness of the
WOoFS for short-term hazard forecasting (Gallo et al. 2022,
2024). This is largely not only due to WoFS filling a crucial
gap for watch-to-warning forecasting but also due to it fulfill-
ing topics discussed in Demuth et al. (2020) such as displaying
deterministic and probabilistic convection-allowing model
output and guidance for IDSS.

e. Analysis of the day-of participant feedback

The following section evaluates the survey responses to the
afternoon activity questions in Table 1. The experimental and
control groups answered questions about their confidence in
their outlooks and the number of products used, while the ex-
perimental group was asked additional questions regarding
the ML guidance. The 2022 HWT-SFE Preliminary Findings
and Results Report (Clark et al. 2023) contains a preliminary
version of these figures and analysis. Note that the questions
on participants’ confidence or perceived usefulness of the ML
guidance in Table 1 were asked before forecast verification of
a given case.

Participants were asked how confident they were in their
predictions for each hazard (Fig. 14). We hypothesize that the
more precise ML guidance (compared to the raw WoFS out-
put) will increase confidence when it aligns with the user’s ex-
pectations. Still, at other times, when the ML guidance defies
user expectations, it will likely decrease their overall confidence.
Overall, both groups had similar confidence in their forecasts.
While the differences were relatively small (p > 0.05), the ex-
perimental group responded more often as very or extremely
confident about their tornado and hail forecasts. For wind fore-
casts, the experimental group was more likely to say they were
“moderately” or very confident in their forecasts. On the con-
trary, the control group was more likely for all hazards to say
that they were “slightly” confident in their forecasts.
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FIG. 8. As in Fig. 3, but for severe wind for 21002200 UTC 3 May 2022.

Though participants from both groups had similar confi-
dence, we know from the objective and subjective verification
above that the experimental group’s outlooks outperformed
the control group’s outlooks. Most experimental group partic-
ipants stated that the ML guidance positively affected their
confidence. The largely positive sentiment is likely influenced
by knowing that the ML guidance tends to verify well, which
can positively impact trust (Nourani et al. 2020).

In terms of how the ML guidance impacted participant con-
fidence, we identified the following themes in their responses:

¢ Refinement tool: Participants often used the ML guidance
to refine and adjust their forecasts, i.e., adjusting contour
locations and magnitudes. This was the most common theme
among the participant responses.

Issuing higher confidence guidance when consistent with
other guidance: When WoFS and the ML guidance were
consistent with their expectations, many participants felt
confident to issue higher probabilities. However, when the

guidance was inconsistent with their expectations, it de-

creased their confidence.
¢ Hazard-specific benefits: The ML guidance primarily boosted
confidence for hail and wind probabilities with a more neu-
tral impact on tornado probabilities. The neural effect of the
ML guidance on the confidence of their tornado outlook was
often associated with the limited predictability of tornadoes.
Limited training/exposure: Some participants noted that
their inexperience with the product impacted their confi-
dence. For the few participants who viewed the ML guid-
ance for more than one day, it increased their confidence.

With access to the explicit ML guidance, participants had a
“ruler” against which to judge their outlooks. When the ML
guidance was consistent with their expectations, they felt con-
fident altering their outlooks and issuing higher probabilities,
especially for severe wind and hail. Since the participants had
limited training and exposure to ML guidance, they were re-
luctant to trust the ML guidance fully. These results are
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FIG. 9. WoFS-ML-Severe (logistic regression model) 1-h time-maximum composite of the
probability of a severe wind being associated with an ensemble storm track. The forecast is valid

for 2100-2200 UTC 3 May 2022.

consistent with Henderson et al. (2023) and Cains et al.
(2023). With repeated exposure and training, forecasters tend
to have increased trust in ML guidance (Cains et al. 2023).

The experimental group (ML) tended to self-report viewing
more WoFS products than the control group (NOML; p < 0.05;
Fig. 15). Specifically, while the control group frequently viewed
fewer than 5 or between 6 and 10 different products, the experi-
mental group often viewed between 11 and 15 or 16+ products
on the WoFS web viewer. This observation is counter to our
initial hypothesis. We had assumed that the WoFS ML guid-
ance, which ingests multiple WoFS fields, might lead users
to examine fewer products. However, to build confidence
in the ML guidance, participants in the experimental group
likely examined additional guidance. For example, if the
ML products spotlighted an unexpected area (e.g., NW
Ohio in Fig. 9), they were likely motivated to consult other
WOoFS products to improve their context. Among those who
specified how ML products fit into their workflow (N = 82
of 152), most participants mentioned leveraging it at the
start and the end of their forecast process, reinforcing the
refinement theme.

Given that the experimental group participants tended to
view more products, it may have contributed to the increased
performance of the ML-guided outlooks versus the control
group. However, viewing more guidance products does not

always correlate with increased forecaster performance (Stewart
et al. 1992). In a more thorough study of participants using
WOoFS, Wilson et al. (2021) did not find a significant relationship
between the number of products viewed and forecast quality.
We did not document the specific products viewed like Wilson
et al. (2021); therefore, it is unclear how the additional products
impacted either group. For example, without knowing the par-
ticular products viewed, participants may have self-reported
products of a similar type (e.g., updraft helicity at different neigh-
borhoods) as completely separate products.

Ultimately, as for viewing fewer products, Wilson et al.
(2023) found that forecasters learned how to prioritize a sub-
set of WoFS products over time, which helped reduce cogni-
tive workload. Thus, with more exposure and training, we
hypothesize that the ML guidance could alleviate cognitive
load coincidence with other studies (Karstens et al. 2018;
Calvo et al. 2022; Ehrmann et al. 2022) and increase fore-
caster confidence (Cains et al. 2023).

When the experimental group was asked about the useful-
ness of the ML guidance, the participants found the guidance to
be “somewhat useful” or very useful most of the time (Fig. 16).
The guidance was most helpful in assessing the wind threat,
where most participants rated it as very useful. Very useful was
also the most common answer for hail forecasts, whereas the
tornado guidance was often rated somewhat useful.
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FIG. 10. As in Fig. 3, but for severe wind for 21002200 UTC 26 May 2022.

The experimental group had access to explainability prod-
ucts during the forecasting exercise. These are graphics at-
tached to each ensemble track in the domain, and they
contain contextual information about a consistent set of
hazard-dependent top five predictors, i.e., those predictors
that are the most influential in the training dataset. However,
for one of the survey questions, participants were presented
with a static image (Fig. 17) of global (same predictors for all
storms) and local (storm-specific) explainability products and
asked which of them they preferred. Storm-specific fields
were most commonly chosen, followed by “Do not prefer one
or the other” (Fig. 17). The participants also had the option to
write a suggestion in the “other” response. Some participants
used this response to indicate that they wanted more training
with the product, to see the product demonstrated during an
event, or to see the product shown for an event with more
storms before making their selections. Others indicated a nu-
anced take, where different preferences would match differ-
ent scenarios. One participant said, “I would prefer the global

attributes if I were forecasting near the maximum in severe
wind. If I were forecasting in an area that does not see stron-
ger winds often, I may prefer the local variables.” Another
participant suggested incorporating 2-3 parameters from each
option into a single plot. This feedback is being used to im-
prove the explainability products and expand the utility of the
ML guidance.

The participants found slightly less utility in the supplemen-
tary explainability products than in the ML guidance (Fig. 18).
However, the explainability products were still valuable, and
most participants indicated they were at least somewhat useful
for all hazards. Participants may have required substantial
time to explore the explainability products since this was their
first use in the SFE. Some participants’ comments reflected
the need to understand the explainability products better, but
many participants commented that they liked the ideas behind
these products.

Participants were asked open-ended questions about whether
the explainability products affected their confidence (if at all).
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FIG. 11. Average subjective ratings for EXP ML, EXP NOML, CONS ML, and CONS NOML for all three hazards averaged for the
21002200 UTC and 2200-2300 UTC periods, combining the initial and final outlooks. The standard deviation is shown with a gray error
bar. The p values from Welch’s ¢ test comparing the EXP ML and EXP NOML outlooks are overlaid on the histogram bars for each haz-

ard. The sample size is provided for each rating.

The sentiment was mixed for those who reported using the ex-
plainability products (N = 104 of 122). Many felt neutral toward
the products and its impact on their confidence. We identified
the following themes in their responses:

e Lack of use: Many participants reported barely using the

explainability products (or not at all). The lack of use
was attributed to unfamiliarity with the products and un-
certainty about leveraging the information to alter their
outlooks.

Peering into the black box: For those participants who felt
explainability products positively affected the confidence in
their forecasts, they often attributed this sentiment to a bet-
ter understanding of the ML inputs.

Information overload: Some participants found viewing the
explainability products often contributed to information
overload.

Information overload is a theme that has been identified in
other explainable AI (XAI) user studies (Gunning et al. 2021;
Cains et al. 2023). Though not in the context of weather fore-
casting, Gunning et al. (2021) found examining explanations
can hinder user performance due to the increased cognitive
load. Gunning et al. (2021) also found that explanations were
not always helpful except when the Al output was incorrect
or in edge cases. Nevertheless, it is worth investigating whether

providing additional context with explainability products could
reduce the forecaster’s need to search for context in other prod-
ucts, thereby reducing workload.

Participants’ responses were mixed when asked what they
liked or disliked about the ML guidance. We identified the
following themes in their responses:

e Spatial precision: Participants found the ML guidance use-
ful for identifying smaller, targeted threat areas with higher
probabilities.

Explainability graphics: Many participants liked the accom-
panying explainability graphics and their visualization.
Concerns and limitations: Participants were concerned about
image segmentation, the use of monochromatic colorbars, and
disagreement of ML guidance with other WoFS products like
HAILCAST and 80-m wind speeds.

Learning curve: Many participants reported liking the visu-
alization and product design but recognized that additional
training and exposure were required to leverage the guid-
ance fully.

Participants found the ML guidance helpful in increasing
their confidence in wind and hail forecasts (consistent with
the hazard-specific benefits theme). Some users liked the ex-
plainability products and seeing guidance in an event-based
framework (e.g., being able to pinpoint areas of focus). However,
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FIG. 12. Participant responses to the questions, (a) “After see-
ing the forecast verification, how confident would you be in using
the WoFS while issuing a future forecast?” and (b) “After seeing
the forecast verification, how confident would you be in using the
WoFS ML guidance while issuing a future forecast?”. WoFS
NOML is the control group, while WoFS ML is the experimental

group.

some users found the storm objects occasionally too large or
were confused about interpreting probabilities in an event-
based framework. For example, some users had questions/
concerns about storm object size compared to other ensemble
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probabilities available on the WoFS web viewer. Participants
were concerned that the larger object size would be prohibitive
for warning-based guidance. These mixed results highlight a cru-
cial issue in developing new forecast technology: different end
users want different things, and creating a generalized system to
meet disparate goals is difficult (Nourani et al. 2020). For exam-
ple, there is an issue developing user-based guidance not only for
different forecasting centers (e.g., WFOs versus SPC) but also
for different users based on their expertise. Explainability is
more advantageous for the more advanced user (Bayer et al.
2022) while novices are more likely to overtrust ML guidance
(Nourani et al. 2020; Bayer et al. 2022). The end user may also
need to become reasonably familiar with a product before its use-
fulness or benefit can be determined. Therefore, we continue col-
laborating with NWS forecasters to incorporate their feedback
into improving training materials and ML products.

4. Summary

Al is revolutionizing severe weather forecasting for lead
times < 1 h out to multiple days. A novel Al system was re-
cently developed using machine learning (ML) within the
Warn-on-Forecast System (WoFS), a state-of-the-art convec-
tion-allowing ensemble forecast system. Termed the WoFS-
ML-Severe system, it was evaluated as part of the virtual 2022
NOAA Hazardous Weather Testbed Spring Forecasting Ex-
periment (HWT-SFE; Clark et al. 2023). We performed a
two-group experiment where the control group had access
to the full WoFS suite while an experimental group had ac-
cess to both the WoFS and the ML guidance. Participants
from both groups generated hourly outlooks for tornadoes,
hail, and wind. The outlooks were verified objectively against ob-
served reports and subjectively against all available verification

Hail Wind
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FIG. 13. Participant responses to the question, “Please indicate the usefulness of WoFS for the following hazards today.” Dotted bars are
from the group without access to ML guidance, while solid bars are from the group that had access to the ML guidance.
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FIG. 14. Participant responses to the question “How confident
are you in your forecasts of the following hazards today (consider-
ing both the 2100-2200 UTC and the 2200-2300 UTC periods)?”
Participants responded separately for the (a) tornado, (b) hail, and
(c) wind hazards.

datasets. Participants were asked questions after issuing
their outlooks and the following day after the subjective
evaluations.

Based on our analysis, we conclude the following:

e Participants, especially NWS forecasters, with access to the
ML guidance performed better than participants without
access to the ML guidance. ML-guided outlooks were the
most reliable and had the best discrimination. The most sig-
nificant improvement margin was for severe wind and the
least for tornadoes.
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FIG. 15. Participant responses to the question “Approximately
how many different WoFS products did you look at today when
formulating your forecasts?” Participants were given the response
options shown here, i.e., the number of products was prebinned in
the responses.

e The ML-guided outlooks often better captured the spatial
coverage of storm reports than the non-ML outlooks. This
includes being more spatially focused with higher confi-
dence for some cases or capturing being more diffuse in
other cases.

¢ The experimental group outlooks received significantly higher
subjective ratings than the control group outlooks. The
wind outlooks received the highest ratings of the three
hazards.

e The experimental and control groups reported being mod-
erately confident in their outlooks (before verification).
Though the experimental group had more reports of being
very or extremely confident, the overall difference between
the groups was not significant.

e Using ML guidance did not reduce the forecaster workload
in this experiment. ML users tended to look at more WoFS
products on average than non-ML users in addition to the
explainability products. They were generally as confident as
users without access to the ML guidance. This is consistent
with Cains et al. (2023) as participants require personal, re-
peated experience with guidance before they can trust it
and gain confidence.

Although the responses were generally positive for the ex-

plainability products, some participants found them confus-
ing and occasionally unnecessary. More work must be done
to explore when operational explainability products are
necessary and what information should be shown. This is
especially true since recent research has suggested that in-
creased cognitive load used to interpret explanations can
hinder user performance (Gunning et al. 2021).
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FIG. 16. Participant responses to the question “How useful was the ML guidance when creating forecasts of the following hazards today
(considering both the 21002200 UTC and the 22002300 UTC periods)?”

In summary, the experimental group outlooks tended to
outperform the control group outlooks, but it may not be en-
tirely attributed to the ML guidance. For example, those ac-
cessing the ML guidance tended to self-report viewing more
products, which may partially explain their improved out-
looks. On the other hand, having more forecast information
available does not necessarily result in forecast improvement
(Stewart et al. 1992; Wilson et al. 2021). Also, given that the
SFE participants are eager to adopt novel guidance and have
a wide range of forecasting expertise, those in the experimen-
tal group may have overtrusted the ML guidance. Nourani
et al. (2020) found that novice users are likelier to adopt novel
guidance, especially if they are unaware of the errors and
biases. Our results are promising, but how they generalize to
all NWS forecasters is unclear.

Another limitation is that only the honor system was in
place for control group participants not to use the ML prod-
ucts. However, facilitators frequently reminded control group
participants to refrain from viewing the ML guidance, and
given the virtual attendance, the two groups were always sep-
arated from each other.

More work is also required to explore the role of explain-
ability and the ability of ML to reduce forecaster workload.
Our main goal was to capture first impressions from the par-
ticipants and use their feedback to guide ML development in
the future. Given the novelty of the guidance and the partici-
pants’ short “training” period, it is unsurprising that the ML
guidance did not necessarily make the forecasting process eas-
ier or faster in this experiment (Cains et al. 2023). We also did
not set out to evaluate the forecaster workload properly in
this study. Though participants could access data outside the
WOoFS webviewer, many of them were likely heavily relying
on WoFS due to the nature of the SFE. In an operational

setting, NWS forecasters have other duties and thus may dele-
gate less time to the WoFS and the ML guidance. It is unclear
what impacts these could have on the usefulness of the ML
guidance. Multiple studies have highlighted the need for more
forecaster education and training, especially with novel forms
of probabilistic guidance (Doswell 2004; Wilson et al. 2019a;
Roebber and Smith 2023).

Another major takeaway from the HWT-SFE activity is that
participants successfully took a product meant for one task (i.e.,
event-based prediction) and translated it into another (traditional
neighborhood-based prediction). The event-based framework
was developed because it reflected how NWS forecasters inter-
preted WoFS forecasts. It is designed to be closer to the warning
side of watch-to-warning (Flora et al. 2019; Wilson et al. 2019a).
SPC forecasters, however, operate on larger spatiotemporal
scales closer to the watch side of watch-to-warning. It is encour-
aging that a product meant for one end user appears useful to
another with different needs.

When product developers gain users’ feedback on their
products, they gain important insights into improving the
guidance for the end user (Demuth et al. 2020). Keeping the
end user in mind is crucial as care must be taken to introduce
new tools into the forecast process with minimal negative im-
pact (Stuart et al. 2006). We have identified several ways to
improve upon the WoFS-ML-Severe guidance:

¢ Improving the ensemble storm-track identification: Some users
have concerns about the ensemble storm-track area. The cur-
rent tracks show the full ensemble spread in storm location.
Detailing the full spread is not always useful; instead, we can
tailor the spread to display a complementary “focused” area.

Training on verification data other than human reports:
Human reports are biased in numerous ways (McGovern
et al. 2022), and instead, using remotely sensed data like
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FIG. 17. (a) Participant responses to the question “Would you prefer consistent fields (explain-
ing how the same set of predictors contribute to the prediction regardless of the storm) or storm-
specific fields (using a different set of predictors contributing to each storm’s prediction)?” An
other response with a write-in was also available. Responses in this category are discussed in the
text. (b) An example of (left) local and (right) global sets of predictors for the explainability
graphics. Local predictor fields would change depending on the storm object, while global pre-
dictor fields would remain the same between objects. Participants were shown this image before

answering which set of predictors they preferred.

radar-derived hail size or even NWS warning polygons alle-
viate many of those biases. However, these other data sour-
ces also introduce biases of their own.

Providing conditional intensity: Users have asked for a
complementary prediction of severe weather magnitude,
i.e., maximum expected wind speed or hail size.
Highlighting well-assimilated storms: Guerra et al. (2022)
found that WoFS accuracy improves with more data assimi-
lation cycles. Identifying ensemble storm tracks associated
with well-assimilated storms could improve forecasters’
trust in the guidance.

One limitation of the traditional HWT-SFE framework
is that outlooks are generated early in the day (e.g., valid

between 2000 and 2200 UTC), while the most hazardous con-
vection occurs later (e.g., 2300-0300 UTC). The WoFS system
has the advantage of becoming more accurate after several
data assimilation cycles following the initiation of storms
(Guerra et al. 2022; Gallo et al. 2022). Ongoing real-time col-
laboration with NWS forecasters helps us to evaluate the use-
fulness of the ML guidance at these later times.

One potential avenue for future research involves investi-
gating the use of spatial probabilities compared to storm-based
probabilities for forecasters throughout the watch-to-warning
decision-making process. The current approach in the Fore-
casting a Continuum of Environmental Threats (FACETs;
Rothfusz et al. 2018) program uses neighborhood-based
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FIG. 18. Participant responses to the question “How useful were the explainability graphic when creating forecasts of the following hazards
today (considering both the 2100-2200 UTC and the 2200-2300 UTC periods)?”

probabilities at all lead times. However, at shorter lead times,
forecasters are more accustomed to relying on storm-specific
guidance, such as the ProbSevere system (Cintineo et al.
2020). Especially as the WoFS transitions to operations, there
is an increasing need to couple complementary event-based
and grid-based guidance in the watch-to-warning space.

In ongoing work, we want to expand the types of WoFS-
ML-Severe and explainability products. The explainability
products will be modified to include additional context infor-
mation, and we plan to explore additional ways to provide
global and local explanations. Any-severe (matched to any
severe weather report) and any-significant-severe weather
[matched to any significant severe weather report (EF2+ tor-
nadoes, =2-in. hail, =60-kt wind)] products are also being de-
veloped to complement the existing WoFS-ML-Severe suite.
We will build on the findings of this experiment to improve
training materials and increase forecaster exposure to lever-
age the full benefits of WoFS and WoFS-ML-Severe.
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