Version of Record: https://www.sciencedirect.com/science/article/pii/S0378383923001229
Manuscript_984968b5efafbe540be2e6d401b7casS3

1  Title
2 Data assimilation of hyper-local water level sensors for real-time monitoring of coastal inundation
3
4  Authors
5  Youngjun Son *", Emanuele Di Lorenzo *°, Kyungmin Park ¢, Spenser Wipperfurth *, and Jian Luo ¢
6
7  Affiliations
8  “ Program in Ocean Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
9 b Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA
10 “ Coastal Sciences Division, Pacific Northwest National Laboratory, Seattle, WA, USA
11 ?School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
12 " Corresponding Author
13 *  E-mail address: youngjun.son@ gatech.edu (Y. Son)
14 e Address: 311 Ferst Drive, Atlanta, GA, USA, 30332
15
16  Submitted to
17  Coastal Engineering
18
19  Highlights
20 * Objective Analysis is implemented to reconstruct water levels from sensor observations.
21 » Spatial covariance statistics are derived from coastal-ocean hydrodynamic model simulations.
22 *  Variability in water levels is better captured by combining spatial covariance information.
23 * Real-time assimilation can provide situational awareness of floods in coastal communities.
24

© 2023 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/


https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0378383923001229

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Abstract

As flood events become increasingly prevalent in coastal regions with sea level rise, multiple
communities have deployed water level monitoring networks across estuaries in addition to existing tide
gauges located primarily at immediate coasts. Due to the spatially-distributed nature of sensor
deployments, however, water level data are only available at specific sensor locations during the time of
monitoring. As a result, an information gap on water levels exists along estuarine channels outside of
active monitoring locations. To fill such a gap, this study presents a physics-based empirical modeling
approach to assimilate coastal water levels using observations from hyper-local water level sensors. We
implement an Objective Analysis (OA) procedure for sensor observation datasets obtained from the Smart
Sea Level Sensors project along the U.S. Georgia coasts, based on spatial covariance structures of water
levels that are extracted from high-resolution coastal-ocean hydrodynamic simulations. The approach is
validated using simulated water levels, which provide basis functions for spatial covariance information.
Additionally, the implementation is validated using actual water levels from active monitoring stations.
The assimilated results of water levels are compared to those obtained by the same OA procedure but
with a commonly-used Gaussian covariance function, which lacks prior knowledge of spatial covariance
structures. To demonstrate the capability of the assimilation approach, we extend its application to a
hurricane event, during which other dynamic processes may be relevant to variability in coastal water
levels. Overall, the presented approach provides an accurate and efficient estimation of estuarine water
levels along channels, which can support community officials to promptly identify localized flood threats

to critical infrastructure systems in coastal regions.
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1. Introduction
Flooding is a growing threat to both populations and infrastructure in coastal regions (Hallegatte et al.,
2013; National Academies, 2014; Allen et al., 2018). Primarily produced by a tropical storm or hurricane,
a storm surge can cause catastrophic flooding and subsequent damages along coastlines, including human
causalities and property losses (Grinsted et al., 2019). In addition, sea level rise due to climate change
further exposes a greater number of coastal communities to an increased risk of flooding during high tides
(Muis et al., 2016; Sweet et al., 2022). Over the last several decades, for example, the average number of
high tide flood days per year has been steadily increasing in major cities and towns along the U.S. coasts,
more than doubling particularly along the Southeast Atlantic coasts (Sweet et al., 2018; Moore and
Obradovich, 2020). Recurrent flooding leads to public inconvenience and mental distress by repeatedly
disrupting local transportation and business in low-lying urban areas (Moftakhari et al., 2015). Moreover,
high tide flooding poses a significant risk to infrastructure systems in coastal regions, such as bridges,
marinas, and stormwater drainages (Tahvildari and Castrucci, 2021; Gold et al., 2022). These structures
could temporarily fail to function and even permanently lose structural integrity due to inundation by
saline floodwater (Allen et al., 2018). Unfortunately, coastal infrastructure has limited adaptive capacity
to cope with sea level rise and consequent flood impact due to restricted relocation options. Therefore,
obtaining reliable information on water levels along major channels becomes crucial, not only for
monitoring imminent flood threats but also for facilitating long-term planning to enhance flood resilience.

In many coastal regions, public and emergency management officials rely on real-time tide
observations at a sparse network of NOAA stations, even though monitoring points of interest may be
several kilometers away from the nearest station. In estuaries, however, water levels result from rising and
falling tides and interactions with a range of channels from rivers to tributaries, landscapes, and local
meteorological disturbance, which generate a complex pattern along coastlines (Gallien et al., 2011;
Marsooli et al., 2016; Bilskie et al., 2021). Although advances in coastal-ocean modeling techniques have
facilitated extreme water level predictions associated with hurricane-induced storm surges, operational
forecasts using high-resolution models can incur high computational costs (Kerr et al., 2013; Bilskie et al.,
2020). Moreover, multiple sources of uncertainties originating from input topobathymetry and boundary-
forcing conditions cause gaps between model predictions and actual observations (Muifioz et al., 2022),
which persist and propagate over simulation periods. Without leveraging gauge-based observations
through model calibration or data assimilation, physics-based model predictions remain limited to
assisting community officials in identifying immediate flood threats in coastal regions.

Recently, several coastal communities have been deploying affordable water level sensors in an
urgent effort to obtain real-time water level information and better understand the hyper-local impacts of

rising sea levels. As summarized in Table 1, multiple monitoring networks have been established along



83  the U.S. coasts, using low-cost water level sensors by local researchers and communities. The sensor
84  devices can measure water levels based on pressure, radar, and ultrasonic techniques and transmit
85  measured data via long-range radio, cellular, or satellite communication. In the City of Norfolk, U.S.
86  Virginia, for example, the StormSense project (Loftis et al., 2018) has deployed more than 50 water level
87  sensors, either radar- or ultrasonic-type, to spatially complement the existing NOAA tide gauges and
88  support predictive flood modeling. Another example is the Smart Sea Level Sensors (SSLS) project,
89  which has installed more than 60 ultrasonic water level sensors along the U.S. Georgia coasts to augment
90  hyper-local water level monitoring, with high priority to locations of critical infrastructure systems, such
91  as bridges and boat ramps. These monitoring networks allow public and emergency management
92  professionals to access hyper-local water level conditions and take prompt actions in response to potential
93  flood risks. However, available monitoring locations are still confined by finite sensor installations (Tien
94  etal., 2023). Furthermore, the observation availability is influenced by sensor operation that is subject to
95  power supply or weather conditions for wireless communications. For example, sensors may cease to
96 function due to power loss or faulty instruments, resulting in a lack of access to vital water level data,
97  particularly during precarious events such as spring tides. Given these constraints, real-time assimilation
98  of water level observations becomes crucial as it can facilitate extensive support for expanding sensor
99  networks by estimating water levels at inactive sensor locations and in geographic areas beyond the
100 immediate vicinity of sensor installations.
101 Table 1
102 Water level monitoring networks using low-cost, power-efficient sensors along the U.S. coasts.
Project Location Number of  Sensor Primary Network  Observation = Observation Reference
Sensors Type Communication Availability*  Cycle
StormSense Norfolk, 50 + Ultrasonic  Cellular and 2016 to 6-minute Loftis et al. (2018)
Virginia and Radar RoLaWAN Present
Smart Sea Level ~ Georgia 60 + Ultrasonic  RoLaWAN 2019 to 6-minute https://www.sealevelsensors.org/
Sensors (SSLS) Present
Hohonu U.S. East Coast, 90 + Ultrasonic ~ Cellular 2017 to 6-minute https://www.hohonu.io/
Hawaii, and Present
Alaska
SenseStream Florida and 50 + Ultrasonic ~ Cellular 2018 to S-minute https://www.sensestream.org/
(I-SENSE) South Carolina Present
gensing Storm Maine 20 + Pressure Not capable 2017 t0 2020  2-minute Spicer et al. (2021)
urge

* Observation availability varies depending on the deployment and operation of individual water level sensors.
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Due to a short history of hyper-local water level monitoring networks, no prior study exists to
assimilate coastal water levels directly from the newly emerging observation datasets. At global- or
regional-scales in oceanography, however, many studies have been conducted to reconstruct a large-scale

map of oceanographic data based on observations with limited spatial coverage. Since the introduction
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into oceanography by Bretherton et al. (1976), the Objective Analysis (OA) technique has been
extensively used to interpolate spatial sampling data into a continuous field of ocean properties, including
sea surface height (e.g., Ubelmann et al., 2015), temperature (e.g., Smith et al., 1996), and pressure (e.g.,
Kaplan et al., 2000). Smith et al. (1996) were the first to utilize Empirical Orthogonal Functions (EOFs)
for spatial covariance statistics to fill spatial gaps in marine observations of sea surface temperature, using
satellite-based datasets with extensive coverage. Similarly, Chambers et al. (2002) applied EOFs that
were derived from satellite altimetry into historical tide gauge records to examine the effects of climate
variability on global mean sea levels. To assess an emerging risk of floods in the context of a changing
climate, the EOFs-based OA technique has been widely adopted in identifying global and regional
variability in rising sea level trends (e.g., Church and White, 2006; Hamlington et al., 2012). The
application has been further improved by reducing inherent uncertainties in observation datasets (e.g.,
Church et al., 2004; Church and White, 2006), by applying sophisticated basis functions, such as
cyclostationary EOFs (e.g., Hamlington et al., 2011; Kim et al., 2015), or by combining with other
climate variables (e.g., Hamlington et al., 2012; Kumar et al., 2020). Ocean circulation model simulations
have also been used as an alternative to satellite altimetry datasets to derive the spatial patterns of
physical ocean systems (e.g., Llovel et al., 2009; Meyssignac et al., 2011). Although the primary focus of
these studies has been on estimating variability of sea level rise trends at large spatiotemporal scales, the
application of the EOFs-based OA technique has enabled the reconstruction of water levels by combining
spatial covariance structures with scattered observation datasets.

In studies related to coastal floods, the EOF analysis has been frequently employed for
dimensionality reduction within surrogate models, which are commonly referred to as metamodels. For
coastal flood predictions, surrogate models build a functional connection between input parameters (e.g.,
hurricane intensity and track) and corresponding responses (e.g., maximum storm surge) based on
numerical model simulation databases for historical or synthetic flood events (Jia and Taflanidis, 2013; Al
Kajbaf and Bensi, 2020). To address the challenges posed by high-dimensional spatiotemporal outputs,
the EOF analysis not only reduces the dimensionality of output responses but also facilitates the
extraction of response covariance patterns (Jia and Taflanidis, 2013; Jia et al., 2015), as similarly applied
within the EOFs-based OA technique. In addition, various statistical representations, including Gaussian
Process Regression and Neural Networks, have been utilized in surrogate models to establish
relationships between the weights of response covariance patterns and metocean input parameters (see a
review in Al Kajbaf and Bensi, 2020). Specifically, surrogate models have been applied to different
coastal flood drivers, such as storm surge (e.g., Jia et al., 2015; Bass and Bedient, 2018; Rohmer et al.,
2023; Kyprioti et al., 2023), storm waves (e.g., Jia and Taflanidis, 2013; Rohmer et al., 2023), and even
tidal responses with elevated levees in estuaries (Li et al., 2020). On the other hand, the EOFs-based OA



141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

technique directly leverages spatially-distributed response observations (i.e., water levels for coastal flood
monitoring) to determine the weights of response covariance patterns. Within the EOFs-based OA
technique, optimal interpolation (Daley, 1991; Kalnay, 2003) is a key component that generates the most
likely spatial state representation by minimizing error variances at observation locations. Regarded as a
specific suboptimal variant of the extended Kalman filter (Ide et al., 1997), optimal interpolation serves a
fundamental role in both real-time assimilation and sequential updates of forecast models due to its
relative simplicity (e.g., Madsen et al., 2015; Asher et al., 2019 to adjust storm surge model forecasts). As
water level observation datasets newly emerge at hyper-local scales for coastal flood monitoring, it
becomes increasingly relevant to explore their potential applications in data assimilation, especially with
established traditional methods such as the OA technique.

The objective of this study is to develop a physics-based empirical modeling approach to augment
water level monitoring of a hyper-local sensor network. To achieve this objective, we apply the OA
procedure to assimilate water levels in coastal regions, following a similar methodology used by
Chambers et al. (2002) to reconstruct mean sea levels globally. Particularly, coastal-ocean hydrodynamic
model simulations are performed to extract spatial covariance statistics of water levels which are then
decomposed in EOFs. As a result, past and present water levels can be assimilated by combining the
spatial covariance information with a time series of available sensor observations. Our study explores the
feasibility of the empirical modeling approach for hyper-local sensor observations which integrates spatial
covariance structures established from physics-based model simulations. In addition, we examine the
applicability of the modeling approach using a range of scenarios, including both tides to storm events.
As a computationally efficient and accessible option for real-time applications, the modeling approach
allows community officials to access hyper-local water level conditions, even for temporarily inoperative
sensor locations. Furthermore, the outcomes can provide valuable insights for optimizing the deployment
of sensors that are constrained by limited resources. Ultimately, the assimilated water levels can benefit
coastal-urban flood models that rely on accurate water level data along coastlines to predict flooding in
urban systems (e.g., Smith et al., 2011; Karamouz et al., 2017; Son et al., 2023).

The remainder of the paper is organized as follows. Section 2 describes the OA procedure that
combines physics-based model simulations, along with the background information on the hyper-local
water level monitoring network and the high-resolution coastal-ocean hydrodynamic model. In Section 3,
we examine the physics-based empirical modeling approach by using the numerical simulation results to
quantify the different sources of errors. Then, the applications are extended to assimilate water levels
directly using actual observations from the hyper-local sensor networks, not only for the basis simulation
periods but also for a hurricane event that occurred during the operational monitoring periods.

Furthermore, our study demonstrates the real-time assimilation of water levels in a pilot web-based portal
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for emergency management. We discuss the potential benefits and limitations of the model applications in

Section 4. Finally, Section 5 provides a summary and conclusions of the present study.

2. Methods

2.1. Hyper-local water level sensor network: Smart Sea Level Sensors (SSLS)

The SSLS project (https://www.sealevelsensors.org/) has installed more than 40 low-cost, power-efficient,
Internet of Things (IoT)-enabled water level sensors (red and pink placemarks), across Chatham County,
U.S. Georgia, as shown in Fig. 1. The hyper-local sensor network spans a wide range of estuarine
channels, prioritizing monitoring of coastal infrastructure that is prone to flooding, such as bridges and
marinas. Prior to the SSLS deployments, the NOAA station at Fort Pulaski (blue placemark), the only tide
gauge on the entire Georgia coast, provided information on coastal water levels in Chatham County.
While USGS also operates multiple monitoring locations, the observation availability remains limited
with a small number of stream gauges (green placemarks) located upstream of the estuaries and
temporary storm tide loggers (yellow placemarks) to collect water levels during extreme weather events,
such as hurricanes. Consequently, the SSLS water level monitoring network provides instantaneous
access for public and emergency officials (e.g., Chatham Emergency Management Agency) to identify
localized flood threats to coastal communities. The sensor devices are designed to measure the distance to
water surface elevation and transmit measurement data into a monitoring server through internet-
connected gateways, using ultrasonic sensors and Long Range Wide Area Network (LoRaWAN)
technology. As part of the sensor deployments, two validation sensors are placed next to the NOAA tide
gauge at Fort Pulaski (blue marker). A comparison of the validation sensors with the NOAA tide gauge
indicated less than 0.3 cm differences for two years. Currently, the sensors operate with a power-saving
protocol, which involves repeating one measurement cycle of collecting 18 samples for 3 seconds and

transmitting the averaged signal every 6 minutes.
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Fig. 1 Water level monitoring stations of NOAA, USGS, and SSLS with NHD Large Water Features of Chatham
County in GA, USA. Among SSLS locations, the red placemarks indicate those with elevation survey information
within NHD Large Water Features. The labeled locations (NOAA: N1, USGS: U1, SSLS: S1-7, and USGS Log: L1-
10) will serve as points of reference in our study.

2.2. Water level simulations using a high-resolution coastal-ocean hydrodynamic model
Physics-based model simulations of coastal water levels are performed to establish spatial covariance
statistics in the OA procedure. In this study, the Semi-implicit Cross-scale Hydroscience Integrated
System Model (SCHISM) (Zhang and Baptista, 2008; Zhang et al., 2016) is implemented to simulate
water levels and inundations from the coasts to inland areas along the Georgia coasts. The SCHISM
model has been widely used to simulate coastal-ocean circulation processes with an emphasis on three-
dimensional baroclinic modes, including storm surge simulations (Zhang et al., 2020; Ye et al., 2020). As
shown in Fig. 2a, the model domain covers the entire U.S. Georgia coast with horizontal resolutions
ranging from 6 km (around the open boundary) to 3 m (along small rivers and creeks). The
topobathymetry for unstructured grid systems is interpolated from the NOAA Continuously Updated
Digital Elevation Model (CUDEM,; 3 to 100 m resolutions) with local refinements using other sources of

NOAA DEM (e.g., Sea Level Rise Viewer DEM; 3 to 5 m resolutions). The model setup integrates inland
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hydrologic input from the National Water Model (NOAA NWS, 2016). In the model setup, surface waves
are not considered due to their marginal impacts in the study areas, which are characterized by extensive
wetlands along geographically complex channels in estuarine settings (Muifioz et al., 2021). The initial
and boundary conditions are provided by oceanographic datasets from Archiving, Validation and
Interpretation of Satellite Oceanographic (AVISO) and Copernicus Marine Environment Monitoring
Service (CMEMS). A tide model of Finite Element Solution (FES) 2014 is used for the open boundary
condition and tidal potential in momentum equations, including eight major tidal constituents such as K1,
K2, M2, N2, O1, P1, Q1, and S2. The ECMWEF Reanalysis 5 (ERA 5) datasets are applied for
atmospheric forcing.

The SCHISM model simulations are performed for October 21 to December 30, 2021, including
the model spin-up phase. The simulated water levels for 30 days from November 25 to December 25 (Fig.
A.1) are utilized to calculate spatial covariance statistics in the OA procedure. Fig. 2b compares the
simulated water levels with the observations at the NOAA tide gauge (N1), USGS stream gauge (U1), and
SSLS sensors (S1-6). The comparisons indicate that the SCHISM model setup is capable of simulating
water levels accurately across estuaries, as shown for the multiple locations (N1, U1, S1, S2, and S4) in
Fig. 2b. In addition, our study includes a few locations to assess the capability of the developed OA
approach later in the current study: (S3), where the SSLS sensor was inactive during the simulation
periods, (S5), where discrepancies may exist during low tides due to the model representation of

topobathymetry, and (S6), where a slight phase lag may arise with the model uncertainty.
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Fig. 2 SCHISM model simulations: (a) model domain and topobathymetry. The red box corresponds to the map
extent in Fig. 1; (b) comparisons of simulated water levels with observations. The headings (N1, U1, and S1-6) on
the titles correspond to the labels of the station locations in Fig. 1. The model evaluations, including error statistics,
are listed in Appendix C.

2.3. Physics-based empirical modeling of coastal water levels

9
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In our study, as outlined in the flowchart in Fig. 3, the reconstruction of water levels is accomplished
through the OA procedure (Chambers et al., 2002) that combines the SSLS observation datasets (Section
2.1) with the spatial covariance statistics of the simulated water levels using the SCHISM model (Section
2.2). Prior to using the observation datasets, a preprocessing procedure is implemented due to different
measurement timings and abnormal signals within water level records. In the simulation results, water
levels in upland areas may experience wet and dry conditions, requiring a masking process for the
numerical model grids to prevent incomplete statistical analysis. The EOF analysis establishes the
statistical covariance structures of the simulated water levels for the masked grids. Using the OA
procedure, the Principal Components time series (PCs) are calculated from the observation datasets
available over a specific period of interest, which are subsequently applied to assimilate a spatial field of
water levels by combining with the established EOFs. The detailed implementations will be described in

the following subsections.

Smart Sea Level Sensor High-Resolution Coastal-Ocean
(SSLS) Observations Hydrodynamic Simulations
i Filtering (SCHISM)

Outlier Removal 1
Slope Thresholds in Time

v
Outlier Removal 2
Median Absolute Deviation
in Space and Time

2

Model Water Levels

l

Output Masking
NHD Large Water Features

l

Smoothing Filter
Savitzky-Golay Filter

_________________ l_ e ———— Empirical Orthogonal Function
(EOF) Analysis
Filtered SSLS
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Align Different Timings EOFS0p.(X) PCspopei(t)
into Regular Time Intervals
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Eq. (4.6) to Calculate PCsgg (t)

l Objective Analysis
"l  Eq. (4.4) to Reconstruct Zoalx)
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Process Terminal Output
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Fig. 3 Flowchart of physics-based empirical modeling of coastal water levels, using SSLS observation datasets.
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2.3.1. Preprocessing of SSLS observation datasets

In water level monitoring networks, the operations of sensor devices are often influenced by

environmental factors (e.g., animal or human activities) and various instrument conditions (e.g., power

supply or network connections) (Spicer et al., 2021). As a result, the SSLS observation datasets may

contain abnormal signals, such as sporadic fluctuations, spikes, and occasional outages. To address such

issues, a data-processing procedure is applied to filter the water level records, including outlier removals

and smoothing, with the following steps:

1.

Slope Thresholds in Time:
To identify local outliers in time series data for each sensor, the time rates of change in water
levels are calculated from consecutive data points within a specified timeframe to count a portion
of excessive or unreasonable changes in water levels. For example, if more than 10 % of
neighboring data points within a two-hour timeframe indicate unreasonable changes in water
levels (e.g., > 1 m/hour), the corresponding measurement is deemed unstable and discarded from
the analysis. The assessment of the rate of change is highly recommended by Integrated Ocean
Observing System (2021).
Median Absolute Deviation (MAD) in Space and Time:

MAD = median|z; — (z;)| (1)
To detect outliers in both space and time, the MAD of the time rate of change in water levels, z;,
is calculated by using more than five sensor measurements for cross-comparisons in space. Then,
if a measurement deviates more than three standard deviations from the calculated MAD, which
is equivalent to the Hampel filter (Pearson et al., 2016), it is identified as an outlier and
subsequently removed from the analysis. This step is particularly useful when nearby
observations are available, as suggested by Integrated Ocean Observing System (2021).
Savitzky-Golay Filter:
The Savitzky-Golay filter (Savitzky and Golay, 1964; Gorry, 1990) is applied to smooth time
series signals, which involves fitting a piecewise polynomial function to a set of measurements.
Specifically, our study uses a third-order polynomial function with a four-hour time window for

each measurement.

At the beginning of each step, our study excludes measurement points with fewer than four counts within

two hours due to the limited representation of water level variations. As an example, Fig. 4 shows the

step-by-step preprocessing results for SSLS observation datasets.

11
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Fig. 4 Example results of step-by-step preprocessing for SSLS observation datasets: Steps 1 and 2 for outlier
removals and Step 3 for smoothing.

2.3.2. OA based on spatial covariance statistics
Our study uses the same OA procedure of Chambers et al. (2002) that combines spatial covariance
statistics to interpolate water levels from spatially-distributed observation datasets. The OA procedure
consists of two main components: the first part applies the EOF analysis to physics-based model
simulations of water levels to obtain spatial covariance structures as EOFs, and the second part
determines the corresponding PCs for these EOFs based on available observation datasets to reconstruct
water levels.

The EOF analysis decomposes spatiotemporal variations of water levels into a linear combination
of spatial modes (EOFs), multiplied by associated time-varying amplitudes (PCs). Through a singular

mXn_which is a function of space, x € R™*! at m locations,

value decomposition, water levels, Z € R
and time, t € R™1 for n time steps, can be expressed as:

Z(x, t) = UzZVT (2)
where U € R™*™ ig the spatial modes (EOFs), £ € R™ ™ is the diagonal matrix with the eigenvalues of
Z, and V € R™" is the temporal variations of the spatial modes. Hence, Eq. (2) can be rewritten by
simply replacing the latter terms with the time-varying amplitudes (PCs), a(t) € R™*™:

a(t) =xVT (3)
Z(x, t) = Ux)a(t) = Up () o (1) 4)

12
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The columns of U and rows of a correspond to the individual modes of EOFs and PCs, respectively, and
the subscript, k, denotes the number of the truncated modes. As a result, the EOF analysis enables
reducing the number of modes by selecting a few low-order EOFs and PCs that explain a significant
portion of variances in water levels. In addition, the leading-order EOFs and PCs may characterize
distinct spatial covariance patterns and related temporal variations of water levels.
Based on Kaplan et al. (2000), the PCs can be found through a least-squares estimation process
that minimizes the following objective function, S:
min S(ay) = (HUay — Z°)"R™I(HU o, — Z°) + ab AR ay, Q)
. = (U[H'RIHU, + AgY)  UTHTR™1Z° (©6)
where Z° € RP*" is water level observations at p locations, H € RP*™ is a sampling operator matrix to
consider observation availability, R € RP*P is the matrix for data error covariances due to instrumental,
sampling, and truncation errors, and A;, € R¥*¥ is the truncated diagonal matrix with the eigenvalues of
the covariance matrix. As an initial study to apply the OA procedure to assimilate water levels directly
from hyper-local sensor observations, our study implements the simplest approach by Chambers et al.
(2002) where the identity matrix is used for R and the latter term is omitted as follows:
minS(a;,) = (HU, o, — Z°)T (HU, a, — Z°) 7
a, = (UTHTHU,) " UTHTZ® ®)
Once the PCs are obtained from Eq. (8) for available observation datasets, a spatial field of water levels
can be reconstructed by combining PCs with the EOFs, as shown in Eq. (4).
In our study, the water levels simulated by the SCHISM model (over 53,000 grid points) serve as
a basis dataset for the EOF analysis. Prior to performing the EOF analysis, we remove the temporal
means of water levels over the simulation periods and apply the channel boundary based on the USGS
National Hydrography Dataset (NHD) Large Water Features for Chatham County to mask the water level
outputs along the coastal channels, as delineated in Fig. 1. This masking procedure enables us to reduce
the number of grid points involved in matrix computations, with an emphasis on estuarine channels.
Estuarine channels are of primary interest because the majority of SSLS have been deployed to monitor
bridges and marinas. Additionally, we exclude grid points where water levels exhibit little variations and
dry conditions to prevent using incomplete data for the EOF analysis. To align the different timings of the
SSLS measurements in calculating the PCs, the observation datasets are aggregated by averaging them

over a 15-minute interval.

2.3.3. OA using a Gaussian covariance function
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The OA procedure commonly employs an analytical covariance function to interpolate a limited set of
observations into a spatial field of interest. Based on the Gauss-Markov theorem, the least-square linear
estimator can be calculated by

7% = I¥ + C,,Co2 (Z° — 7°) ©)
where Z* € R™*™ is water levels at locations of interest, C,, € R™*P is the spatial covariances between
observations and locations of interest, and C,, € RP*? is the spatial covariances between all pairs of
observations. The ~ denotes the estimated mean water levels.

In the absence of spatial covariance information, it is often assumed that the covariances among
the observations themselves, as well as between observations and a spatial field of interest, depend solely
on the spatial distance between each pair of locations, regardless of the locations themselves. Among
various analytical forms, we use the Barnes Scheme (Barnes, 1964) that adopts a Gaussian function to
describe spatial covariances based on distance, which is expressed by:

C(xq, X)) = f(d) = e@/D)* (10)
where d and L denote the distance between two locations and the decorrelation scaling parameter,
respectively. Consistently with Section 2.3.2, we use the same SSLS measurements that are aggregated
over a 15-minute interval. The least-square fitting technique is applied to estimate the linear mean trends
of water levels. The decorrelation length scale of 5 km is used based on the preliminary implementation

by Tien et al. (2023).

3. Results and discussion

3.1. EOF analysis and sensitivity tests

Through a singular value decomposition, the EOFs and PCs are obtained from the SCHISM model
simulations of water levels from November 25 to December 25, 2021. Fig. 5 shows the first three spatial
modes of the EOFs, along with the associated variance explained by each mode. To facilitate comparison
across the different modes, the EOFs and PCs are normalized by multiplying the EOFs with the standard
deviations of PCs and dividing the PCs by the standard deviations, respectively. As a result, the
normalized EOFs represent the physical magnitudes of the spatial modes while retaining unit standard
deviations for the normalized PCs. The lowest EOF mode in Fig. 5a has the strongest signal characterized
by uniform water level patterns that can either rise or fall, primarily forced by astronomical tides. Fig. 5b
shows the second EOF mode, which exhibits a linear slope pattern in water levels with strong correlations
with the distance to open coasts. This linear pattern is likely driven by either flood or ebb tide flowing
along the channel landscapes. The third spatial pattern in Fig. 5c is similar to the previous mode but has
concentrated signals upstream in the complex channels of the estuaries. As plotted in Fig. 5d, the

explained variances significantly decrease as the EOF modes increase, accounting for more than 95 % of
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the total variances with these three lowest modes. Therefore, our study uses the three dominant EOF

modes for the reconstruction of water levels. The selection of these EOF modes implies that

spatiotemporal variations in water levels result from a combination of rising or falling water levels, their

flooding or receding phase, and adjustments related to upstream dynamics.
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Fig. 5 Normalized EOFs and associated variances explained: (a) — (c) three lowest spatial modes of water levels.
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The EOFs are normalized with the standard deviations of PCs to indicate physical magnitudes. The red circles
highlight SSLS that are located within the study boundaries and have sensor elevation survey information,
corresponding to the red placemarks in Fig. 1; (d) variances explained by different spatial modes.

To assess the stationarity of the EOFs with respect to simulation periods, we implement a 3-fold

test that involves extracting the EOFs from three separate chunks, each spanning 10 days of the

simulation periods. Then, the obtained EOFs are applied to solve Eq. (8) to derive the corresponding PCs

across the simulation periods. However, accurate water level observations will only be available at

locations where SSLS are installed and their elevations are surveyed, which is referred to as spatial

sampling in this study. The effects of spatial sampling due to the limited availability of observations are

taken into consideration in the 3-fold test. Thus, we use the simulated water levels only at 22 SSLS

locations within the study boundaries, which are highlighted with red circles in Fig. 5. As shown in Fig. 6,

the normalized PCs are obtained from the different EOFs based on the three separate chunks of the
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simulated water level time series. The comparisons of the PCs within each mode show that the leading-
order PCs are not significantly influenced by the selection of water level time series for the EOFs.
However, minor variations are identified in the third PC, particularly around the peaks and troughs of the
PC. Consequently, the EOFs and PCs marginally depend on simulation periods, even when applying the
simulated water levels through spatial sampling for the valid SSLS locations.

Normalized Principal Components Time Series (PCs)
Fold; Mode: 1 Fold, Folds

Fold, Mode: 2 Fold> Folds

PCs [-]

Mode: 3 Fold> Folds

O \ ) ) 1 Q) N
N il > Nl Nle > i
Time in 2021 [UTC]
—o— EOFcomplete —— EOFfoiqy  —— EOFfoii2  —— EOFFoid3

Fig. 6 Normalized PCs derived from the EOFcompiete (11/25 — 12/25), EOFroua1 (11/25 — 12/05), EOFrola2 (12/05 —
12/15), and EOFkgoia3 (12/15 — 12/25). The PCs are calculated from spatial sampling of the simulated water levels at
22 SSLS locations within the study boundaries (red circles in Fig. 5) and normalized by their standard deviations.

Regarding the characteristics of the PCs, the first two PCs exhibit similar periodic cycles, which
are highly correlated with astronomical tidal cycles. In addition, the peaks and troughs of the first PC
closely align with the zero-crossings of the second PC, implying out-of-phase differences between the
spatial patterns of the first and second EOF modes. The phase lag corresponds to flood or ebb tidal
currents that reach their maximum at the mean water level between low and high tides. The third PC
shows fluctuations with a higher frequency, suggesting potential adjustments in water levels as water
enters and exits the upstream estuarine channels. These PCs represent the magnitudes, timing, and

interplay between the three dominant EOF modes, assimilating the specific state of estuarine water levels.

3.2. Model verification with SCHISM model simulations
Prior to using the SSLS observation datasets, the simulated water levels from the SCHISM model are first
utilized to reconstruct water levels and identify modeling gaps in the OA procedure. Fig. 7 shows

example plots of water levels at a specific time during flood tides, comparing the SCHISM model
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simulations (Fig. 7a) with two types of reconstruction: one using all water levels within the study
boundaries (Fig. 7b) and another using water levels only at 22 SSLS locations (Fig. 7¢c). Despite being
confined to the study boundaries due to the masking procedure, the assimilated water levels are consistent
with the numerical simulation results. However, the spatial sampling leads to discrepancies in the
assimilation of water levels, particularly in the immediate coasts due to the limited sampling of water

level data in these areas.
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Fig. 7 Example plots of water levels at 12/16/2021 09:00 UTC during flood tide: (a) SCHISM model simulations; (b)
EOFs-based reconstruction with all the simulated water levels shown in (a); (¢) EOFs-based reconstruction with
spatial sampling at 22 SSLS locations within the study boundaries (red circles).

Error statistics are calculated for the 30-day simulation periods, employing multiple evaluation
metrics that are described in Appendix B. The SCHISM model simulations are regarded as a ground truth
as the simulated water levels are currently used to compute the PCs using Eq. (8). Consequently, the
evaluation metrics provide a means to assess the reconstruction capabilities of water levels, in comparison
with an ideal EOFs-based OA procedure without errors. Fig. 8 shows the normalized root-mean-square
errors (NRMSE) as defined in Eq. (B.2), using all information within the study boundaries (Fig. 8a) and
using spatial sampling limited to 22 SSLS locations (Fig. 8b). The first NRMSE in Fig. 8a represents
truncation errors resulting from using the three leading spatial modes of water levels, which remain below
0.05. However, it should be noted that some upstream channels have relatively higher NRMSE values,
indicating limitations in capturing the dynamics only with a few EOFs due to complex interactions
between water and estuarine landscapes. The second NRMSE in Fig. 8b corresponds to spatial sampling
errors arising from the limited availability of observations, in addition to the truncation errors. The
NRMSE values increase up to 0.1 for distant areas from the valid SSLS locations, particularly in
proximity to the immediate coasts. The difference between the two NRMSEs, as shown in Fig. 8c,
indicates the portion of the reconstruction errors originating solely from spatial sampling. The NRMSE
differences are generally less than 0.04 but become more pronounced towards the outer study boundaries.

This is because the majority of the SSLS deployments are centered around urban areas where coastal
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433  infrastructure is located. A similar discrepancy is also captured during flood tide, as observed in Fig. 7b
434  and Fig. 7c.
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436 Fig. 8 NRMSE calculations based on the SCHISM model simulations as a ground truth: EOFs-based reconstructions
437 (a) with the simulated water levels and (b) with spatial sampling at 22 SSLS locations within the study boundaries
438 (red circles); (¢c) NRMSE difference between (a) and (b).
439 Table 2 summarizes the median and quantile values of other evaluation metrics that are defined in
440  Appendix B. These metrics are applied to more than 53,000 SCHISM grid points within the study
441  boundaries. Since the grid points are distributed unevenly depending on channels, the median and quantile
442  values of the error statistics are selected to represent the relative trends in accuracy. The overall RMSE
443 slightly increases due to the spatial sampling for 22 SSLS locations, as identified particularly for the
444 lower quantile value from 0.039 m to 0.052 m. On the other hand, the MBE, R, and NSE show minor
445  changes within acceptable ranges.
446 Table 2
447 Error statistics of water level reconstructions using the simulated water levels from the SCHISM model as a ground
448 truth. For comparison, the median and quantile values are calculated from more than 53,000 SCHISM grid points.
Water level Spatial RMSE [m] MBE [m] RI[-] NSE [-]
availability COVATIANEE 5% 50%  15%  25% 0% 5%  25%  50% 15%  25% 50%  15%
All locations EOFs 0.037 0.055 0.088 0.000  0.000 0.000 0982 0994 0.999 0.963 0.988 0.997
22 SSLS locations  EOFs 0.050 0.064 0.083 0.000  0.000 0.000 0978 0993 0.997 0956 0987 0.994
Gaussian 0.209 0383 0.723 -0.223  -0.046 0.038 0.688 0.882  0.965 -1.426  0.551 0.899

“RMSE: root-mean-square errors, MBE: mean bias errors, R: correlation coefficients, and NSE: Nash-Sutcliffe efficiency.

449
450
451
452
453
454

Both Fig. 8 and Table 2 suggest that the current EOFs-based OA procedure has more prominent
errors due to the leading-order truncations compared to those attributed to the limited availability of
observations. Although adding higher-order EOF modes may lead to an improved representation of local
dynamics, the corresponding observations in those local regions should be followed to accurately estimate
the contributions through the PCs. With the error statistics, the accuracy and confidence maps can be

generated to guide the practical applications of the EOFs-based OA procedure. In addition, the evaluation
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metrics can serve as a useful indicator to identify potential locations for additional sensor deployments to
enhance the reconstruction capabilities of the OA procedure (Tien et al., 2023).

Based on a Gaussian covariance function, we perform similar reconstructions using the simulated
water levels at 22 SSLS locations. As shown in Fig. 9a, the OA approach reproduces the simulated water
levels for the utilized SSLS locations as expected. However, when excluding the sensor’s own location
for cross-validation (light blue dashed lines), the reconstructed water levels fluctuate with offsets and
phase lags (S4 and S6). Similarly, as demonstrated in Fig. 9b, the NRMSE rapidly exceeds 0.1 for areas
away from the valid SSLS locations. Table 2 also includes the error statistics of water level
reconstructions using a Gaussian covariance function. Compared to the EOFs-based OA procedure,
however, all evaluation metrics indicate inadequate performance, particularly with noticeable variations

in RMSE (upper quantile value of 0.723 m) and NSE (lower quantile value less than zero).
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Fig. 9 OA results based on a Gaussian covariance function: (a) reconstructions of water levels at SSLS locations.
The light blue dashed lines represent reconstructions with the sensor’s own location excluded; (b) a spatial map of
NRMSE.

The analytical OA procedure could be improved by adjusting the decorrelation scaling parameter
or by incorporating a more refined analytical function to characterize spatial covariances (Verri et al.,
2017). However, the large reconstruction errors can be attributed to the simplified representation of a
Gaussian covariance function without physical information (Rong and San Liang, 2022), such as
hydrologic connections. Additionally, using a single value for the decorrelation length scale may not be

appropriate for representing the variable density of SSLS deployments across estuaries. Since the
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analytical OA procedure fails to accurately represent complex patterns of water levels in estuaries, we

exclude its further applications in this study.

3.3. Model applications with SSLS observations

3.3.1. Validation for basis simulation periods

Using the SSLS observation datasets, we apply the OA procedure integrating the established structures of
spatial covariance to assimilate water levels. It is important to note that the availability of SSLS
observations depends on the operational status of individual sensors at the time of monitoring.
Throughout the same simulation periods, a total of 12 SSLS devices were active although some sensors
were sporadically inoperative. Fig. 10 shows comparisons of the reconstructed water levels (orange lines)
with the SCHISM model simulations (black lines) and the available observation datasets (blue line for a
NOAA tide gauge, green line for a USGS stream gauge, and red lines for SSLS observations).
Additionally, cross-validation cases are included to evaluate the reconstruction sensitivity and robustness
when excluding the corresponding SSLS measurements (light blue dashed line). The EOFs-based OA
procedure enables providing access to water levels along estuarine channels even in the absence of direct
observations, as demonstrated throughout the S3 periods and later portions of S1 and S6 (discontinued
SSLS measurements after 12:00 on December 21). This capability to fill in missing measurements is
further supported by the effective reconstructions of water levels without the SSLS’s own observations. In
cases where discrepancies exist between the SSLS observations and physics-based model simulations (S5
and S6), the reconstructed water levels closely track the measurements of the SSLS monitoring network.
By minimizing error variances directly using actual SSLS observations, the EOFs-based OA procedure
realistically determines the weights of spatial covariance structures, identifying the most probable spatial
state of water levels. Therefore, the EOFs-based OA procedure has the advantage of leveraging empirical

observations that closely approximate the true conditions of water levels.
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Water Level Reconstructions with SSLS Observation Datasets for December 2021
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Fig. 10 Water level reconstructions using SSLS observation datasets for the basis simulation periods. The cross-
validation cases (light blue dashed lines) correspond to excluding the sensor’s own measurements for
reconstructions. The model evaluations, including error statistics, are listed in Appendix C.

3.3.2. Application for Hurricane Dorian in 2019

Based on the spatial covariance information derived in Section 3.1, the assimilation of water levels is
performed for Hurricane Dorian in 2019 to evaluate the capabilities of the OA procedure. Since the SSLS
deployments in 2019, Hurricane Dorian has been identified as the most impactful hurricane that closely
approached the Georgia coasts. As shown in Fig. 11, although the occurrence of the storm surge on
September 05 did not coincide with the astronomical tidal peaks, the hurricane generated wind gusts of
approximately 95 km/hour and induced a storm surge exceeding 1 m along the Georgia coasts (Avila et al.,
2020). Consequently, the combined effects of the storm surge and prevailing winds may cause variability
in water levels across the estuaries. The SSLS observation datasets are applied for the assimilation of
water levels during Hurricane Dorian. 17 SSLS devices measured hyper-local water levels when the
hurricane moved along the U.S. East Coast (September 02 to 06). In addition, numerical simulations are
independently conducted using the SCHISM model for 30 days from August 20 to September 19, 2019.
The model setup is the same as described in Section 2.2, except for using more refined atmospheric

forcing obtained from the NOAA High-Resolution Rapid Refresh (HRRR) datasets.
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Fig. 11 Hurricane Dorian in September 2019: (a) hurricane track with intensity and (b) water levels (blue) at the
NOAA Fort Pulaski tide gauge and daily precipitation (red) at the local rain gauge. Satellite image credit: MODIS
Land Rapid Response Team and NASA GSFC (2019).

For comparison, we employ the USGS storm tide records (yellow placemarks in Fig. 1) that were
collected during Hurricane Dorian, which include additional locations beyond the active SSLS positions.
In Fig. 12, the assimilated water levels (orange lines) are compared with the USGS storm tide records
(green lines), as well as the SCHISM model simulations (black lines). The USGS storm tide sensors
consist of two different types: radar-based rapid deployment gauges that continuously measure water
levels (L1-3) and pressure-based storm tide gauges that read water levels exceeding the sensor elevation
thresholds (L4-10). The assimilated water levels for the L1 to L3 locations show a good agreement with
the storm tidal cycles recorded by radar-based USGS sensors. Moreover, at the L4 to L10 locations, the
peaks of assimilated water levels closely capture the instances where water levels temporarily exceed the
sensor elevations, except for a slight overestimation at the L6 location. At the L8 and L10 locations where
no water hit the sensors, both the assimilated and simulated water levels consistently remain below the

sensor elevation thresholds.
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Fig. 12 Comparison of water levels at USGS storm tide monitoring locations during Hurricane Dorian in 2019. The
recorded data from radar-based sensors (L.1-3) have continuous measurements while those from pressure-based
sensors (L4-10) provide actual readings only when water levels reach the specific elevation thresholds. The headings
(L1-10) on the titles correspond to the labels in Fig. 1. The titles highlighted in red indicate the locations where the
SSLS measurements are available nearby.

The application of the EOFs-based OA procedure reveals several limitations. During the initial
comparison periods (09/02 02:00 to 08:00), no assimilation outputs are available due to the complete
unavailability of observation datasets from the SSLS monitoring network. Although water levels can be
directly assimilated based on at least one SSLS observation, there is currently a lack of information
regarding the minimum number of SSLS observations required at different locations to ensure accuracy.
In addition, it should be noted that the assimilated water levels are spatially confined to coastal channels
and temporally limited to historical and real-time applications, in comparison with the simulation results.
Nevertheless, the physics-based empirical modeling of water levels demonstrates its capability to
reconstruct water levels along coastal channels in an acceptable manner, even for extreme weather events

where various dynamic factors can influence water levels.
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3.3.3. Real-time application in a web-based portal for emergency management

By adopting spatial covariance statistics derived from numerical simulations, the physics-based empirical
modeling approach maintains computational efficiency, which enables real-time assimilation of coastal
water levels and subsequent applications for monitoring coastal inundation. As demonstrated in Fig. 13,
real-time visualizations of inundation depths are implemented within a pilot web-based portal for the
Chatham Emergency Management Agency (CEMA), along with simultaneous access to SSLS
observations. The operational platform uses the most recent 15-minute SSLS observations to calculate the
real-time state of water levels, leveraging the established spatial covariance structures. Then, the
corresponding inundation depths, which are of primary interest to public and emergency officials, are
determined by subtracting the topobathymetry data. In addition, the NRMSE statistics (Fig. 8) are
employed to extract areas with sufficient accuracy (e.g., NRMSE < 0.3). As a result, the spatial maps of
water levels can provide information even for inactive sensor locations (gray circles) and areas beyond
the immediate vicinity of sensor installations (in between circles). The expanded spatial coverages allow
community officials to promptly identify potential flood threats and take appropriate actions for effective
emergency management. Moreover, the increased access to real-time water levels contributes to

enhancing situational awareness of floods in coastal communities.

102 Land & all waterways
Pooler ' Y

Wilmington
Island

2023-06-21 03:00 PM EDT
/ i sat | ot
Fig. 13 Real-time application in a pilot web-based portal for the Chatham Emergency Management Agency in U.S.
Georgia. The blue contour overlay depicts inundation depths, which represent water heights above topographic
elevations. The circles with color indicate active SSLS locations at the time of monitoring.
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4. Discussion

Our study demonstrates the implementation of the EOFs-based OA procedure to enhance hyper-local
water level monitoring in complex estuarine settings, informed by geospatial statistics from physics-based
numerical model simulations. The EOF analysis, which is applied to simulated water levels, enables the
extraction of water level patterns that represent the complex dynamics of water flows and interactions
within estuarine channel networks, as well as the substantial reduction of the output dimensionality into a
few principal modes. Once spatial covariance structures are established through the EOF analysis, the
integration with IoT-enabled sensor observations of water levels facilitates the generation of either a
retrospective or real-time map of assimilated water levels (Fig. 13).

The enhanced access to hyper-local water level conditions can benefit community officials by
providing reliable estimates of water levels beyond active sensor locations (e.g., blue or green circles in
Fig. 13), extending to coastal infrastructure with neither sensor installation nor observation (e.g., S3 in
Fig. 10 and gray circles in Fig. 13). By using a real-time map of assimilated water levels during uncertain
flood situations, for example, public and emergency management officials can anticipate potential
overtopping at different bridges and flooding at piers, docks, and boat ramps. Given the limited
adaptability of coastal infrastructure in response to rising sea levels, the continuous monitoring of
increased flood risks to coastal infrastructure is significant for coastal communities to develop strategies
for long-term flood resilience (Habel et al., 2020; Son et al., 2023).

While coastal-ocean hydrodynamic models are capable of effectively simulating water levels (Fig.
2), the operation of forecasting systems demands substantial computational resources (Kerr et al., 2013;
Bilskie et al., 2020), which may be prohibitive for coastal communities with limited access. Nonetheless,
the EOFs-based OA procedure can efficiently provide timely updates on real-time water level information.
This efficiency and utility are particularly evident during non-extreme flood events, when the
effectiveness of applying a coastal-ocean hydrodynamic model is in question. Moreover, it is important to
note that even calibrated numerical model simulations retain inherent uncertainties that persist throughout
the simulation periods (e.g., S5 and S6 in Fig. 2) (Mufioz et al., 2022). The empirical modeling
component of the EOFs-based OA procedure facilitates not only the emulation of available water level
observations (e.g., S5 and S6 in Fig. 10) but also the generation of the most likely spatial state
representation across estuaries. Furthermore, the differences between assimilated water levels and
operational predictions produced by coastal-ocean hydrodynamic models can be integrated to update the
initial or forcing conditions within operational forecasting system through additional assimilation steps
(e.g., Madsen et al., 2015; Asher et al., 2019), which can consistently reduce uncertainties in water level

predictions.
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The geospatial evaluations of modeling errors (Fig. 8) play an important role in informing model
accuracy and confidence across various areas and subsequently optimizing sensor deployments to
constrain modeling errors. If these modeling errors are linked to a specific EOF mode, its prominent
amplitudes and nodal structures can provide valuable insights into ideal locations for additional sensor
deployments to ensure high signal-to-noise ratios. In the current modeling framework, which lacks
weighting for different sensor locations (Egs. (5) and (7)), adding a few sensor locations into the existing
arrangement is less likely to reduce modeling errors noticeably. Therefore, rigorous optimization
techniques, such as the Monte Carlo simulation, can provide a systematic approach to configuring optimal
sensor deployments with different weighting. Furthermore, optimizing sensor deployments needs to take
into consideration various practical factors. For instance, although the immediate coastal regions currently
exhibit higher spatial sampling errors (Fig. 8c), most of these areas consist of extensive wetlands, which
are little relevant to real-time flood monitoring. Additionally, other practical factors, such as social
vulnerability priorities and potential flood impacts due to critical infrastructure failures, should be
incorporated into the optimization process to maximize the marginal benefits of additional sensor
deployments. For the SSLS monitoring network, Tien et al. (2023) applied a multi-objective optimization
approach based on these practical criteria, in addition to the modeling errors of the OA technique.

There are several limitations identified in the applications of the EOFs-based OA procedure,

which will be discussed in the subsections below.

4.1. Limitations

4.1.1. Hyper-local water level sensor observations

The EOFs-based OA procedure is inherently constrained by the limitations of hyper-local water level
sensor observations in monitoring networks. Currently, the community-driven monitoring networks
(Table 1) are designed to augment water level monitoring, primarily for high tides, storm surges, and
rising sea levels. To address the sparse availability of observations from the NOAA tide gauges and
USGS stream gauges in coastal communities, these monitoring networks deploy cost-effective, power-
efficient sensor instruments, which are engineered to measure water levels at an operational cycle of 2- to
6-minute intervals (Observation Cycle column in Table 1), similar to the NOAA (6-minute intervals) and
USGS (5-minute intervals) gauges. However, due to these observation cycles, the current sensor
observations and their data-processing (e.g., Fig. 4) do not adequately capture water level fluctuations
caused by certain flood drivers occurring at shorter timescales, including those associated with short and
infragravity waves. To accurately resolve shorter-period water level fluctuations in observations and

utilize observation datasets for reconstruction, it is necessary to implement a dedicated observation
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campaign and specialized operation protocols (e.g., Sweet et al., 2015), which differ from those of the

community-driven monitoring networks.

4.1.2. EQFs: spatial covariance statistics

Our study uses a month-long dataset of simulated water levels for the EOF analysis to derive spatial
covariance statistics (Fig. 5). The stationarity of the EOFs is evaluated with a 3-fold test, which compares
the time-varying amplitudes of the EOFs computed from the different chunks of the simulation time
series (Fig. 6). In our study, the EOFs-based OA procedure primarily aims to assimilate real-time water
levels for extensive flood monitoring, including both nuisance flooding (e.g., high tides with rising sea
levels) (Moftakhari et al., 2018; Li et al., 2021) and extreme flooding (e.g., storm surges). Consequently,
the EOF and stationarity analysis focuses on identifying robust spatial covariance statistics from water
level simulations over a longer period than typical flood timescales. This approach allows capturing
quasi-static responses of water levels that predominantly balance in estuarine systems by forcings and
facilitating real-time assimilation of water levels, rather than flood prediction under anticipated metocean
conditions (e.g., Rohmer et al., 2023 using a surrogate model with multivariate statistical analysis). While
our study can reproduce water level variations during a moderate storm surge event (e.g., Fig. 12 for
Hurricane Dorian in 2019) using the established EOFs, the stationarity of the EOFs may not hold under
different climates, seasons, and weather conditions. Therefore, future research should prioritize exploring
the applicable ranges of the EOFs-based OA procedure in these diverse conditions. In particular, it is
important to further understand the limitations of the modeling approach during various hurricane and
hydrologic runoff events, which are recognized as extreme flood drivers for coastal communities. Then,
researchers can identify specific conditions under which the modeling approach may perform less
accurately and work towards improving its robustness in such scenarios. As operational forecasts of
coastal-ocean hydrodynamic models become increasingly accessible across different climates, seasons,
and weather conditions, future research should aim to provide a more comprehensive assessment of
stationarity and improve representative spatial covariance statistics of water levels along estuarine
channels.

Prior to the EOF analysis, the masking process is applied to prevent incomplete statistical
analysis, which results in water level assimilations that are spatially confined to coastal channels. To
address the spatial confinement, additional mapping techniques, such as downscaling extrapolations (e.g.,
Rucker et al., 2021), can be integrated to extend assimilated water levels from coastal channels into inland
regions. Moreover, by imposing assimilated water levels as spatiotemporal boundary conditions, coastal-

urban flood models can simulate subsequent flooding within urban systems (e.g., Karamouz et al., 2017;
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Son et al., 2023). These integrations can enhance spatial coverages of assimilated water levels, thus

facilitating more comprehensive and efficient flood predictions beyond coastal channels.

5. Summary and conclusions

With a growing number of water level monitoring networks, coastal communities have more access to
real-time water level information at sensor deployment locations. These hyper-local water level
observations enable public and emergency management officials to identify and assess localized flood
threats to coastal infrastructure, particularly in areas that have limited capacity to adapt to sea level rise.
In line with these community-driven efforts, our study develops a physics-based empirical modeling
approach that can efficiently assimilate estuarine water levels from hyper-local sensor observations to
enhance water level monitoring capabilities.

Our approach uses the OA procedure that combines hyper-local sensor observations with spatial
covariance statistics of water levels in coastal regions. Prior to the OA procedure, outlier removal and
smoothing techniques are implemented to mitigate the impacts of anomalous signals, including occasional
spikes and fluctuations, in the hyper-local sensor observations (Fig. 4). The representative patterns for
spatial covariances are established through the EOF analysis on numerical simulations using the high-
resolution coastal-ocean hydrodynamic model, SCHISM. The significant spatiotemporal variations in
water levels are decomposed into a combination of rising or falling movements, transitional phases
between them, and adjustments in the upstream channel (Fig. 5), all of which interact within the complex
estuarine settings. Through the 3-fold cross-validations, we demonstrate minor sensitivity to the selection
of basis simulation periods for extracting the spatial mode patterns (Fig. 6). In addition, we investigate the
assimilation modeling errors associated with the leading-order truncations of the spatial mode patterns
and the limited availability of the SSLS observations. Although the truncation errors tend to be larger than
the spatial sampling errors, the overall modeling errors remain within acceptable ranges (Fig. 8). When
compared to the common OA procedure using a Gaussian covariance function, the EOFs-based OA
procedure shows enhanced performance and robustness in assimilating water levels. The improvement is
attributed to the inherent limitations of simplified distance-based analytical functions that inadequately
capture the complex dynamics of estuaries, including hydrologic connections. Using the actual SSLS
observations, the applications of the EOFs-based OA procedure successfully reproduce the temporal
patterns and peak magnitudes of water levels along coastal channels for both the basis simulation periods
(Fig. 10) and Hurricane Dorian (Fig. 12), demonstrating the capability of our approach to leverage the
empirical observations in combination with physics-based statistical information. The assimilation results

for Hurricane Dorian show promise in capturing water level states during unusual weather events.
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However, further validations are necessary to evaluate the extensibility of the modeling approach for
different storms with large forcing signals and significant impacts on water level variations.

With the established spatial covariance statistics, the real-time assimilation of water levels (Fig.
13) can provide community officials with a broader understanding of hyper-local water level conditions,
including temporarily inactive monitoring locations and areas that are not covered by sensors. Thus, the
assimilation data can serve as a supplementary tool for consistent monitoring of immediate flood risks to
coastal infrastructure systems, such as bridges and marinas. Ultimately, coastal communities can make
advanced use of water level monitoring networks by integrating the real-time assimilation framework to

develop adaptive strategies for flood resilience planning in response to rising sea levels.
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715  Appendix A
716  Simulated water levels for 30 days at Fort Pulaski, U.S. Georgia, for the EOF analysis

Water Levels at Fort Pulaski
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717
718 Fig. A.1 Simulated water levels for 30 days at Fort Pulaski, U.S. Georgia, for the EOF analysis and comparisons

719 with NOAA tide gauge observations and predictions. The model evaluations, including error statistics, are listed in
720  Appendix C.

721
722  Appendix B

723 Model evaluation metrics for error statistics

Root-mean-square error, RMSE = J%Z?’:l(st —0;)? (B.1)
Normalized RMSE, NRMSE = >~ (B.2)
Mean bias error, MBE = %Z’t\’zl(st —0) (B.3)

N _& =

Pearson’s correlation coefficient, R = Le=1(5e=9)(0:20)
N N — (B.4)

\/Zt=1(5t_5)2 Zt=1(0t_0)2
N _ 2

Nash-Sutcliffe efficiency, NSE = 1 — 2=16t=00) (B.5)

Z;:V=1(0t_5)2
724 where s is the model estimations, o is the actual values, such as observations, and N is the number of

725  samples. The ™ and o denote the mean and standard deviation, respectively.
726

727  Appendix C
728  Model evaluations with observations for Fig. 2b, Fig. 10, and Fig. A.1
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;gg ai)lal;g\.;luations with observations for Fig. 2b, Fig. 10, and Fig. A.1 (11/25 — 12/25 in 2021). The table index (N1,

731 Ul, and S1-6) corresponds to the labels of the station locations in Fig. 1.
Observation gCHISM Model Simulation Physics-based Empirical Modeling Approach (Fig. 10)
Location (Fig. 2b and Fig. A.1) Reconstructions by EOFs (SSLS) Cross-Validation excl. Own Sensor

RMSE [m] MBE [m] R][-] NSE [-] RMSE [m] MBE [m] R[] NSE [-] RMSE [m] MBE [m] R[] NSE [-]

NOAA: N1 0.142 -0.129 0.989 0.947 0.084 -0.057 0.995 0.979 - - - -
USGS: Ul 0.222 -0.104 0.963 0.907 0.116 -0.110 0.998 0.977 - - - -
SSLS: S1 0.312 -0.012 0914 0.829 0.096 0.030 0.993 0.984 0.091 0.023 0.990 0.979
SSLS: S2 0.197 0.136 0.984 0.928 0.208 0.178 0.989 0.920 0.228 0.217 0.982 0.877
SSLS: S3 0.359 0.002 0.801 0.642 0.188 0.184 0.998 0.902 0.187 0.187 0.998 0.898
SSLS: S4 0.287 0.016 0.934 0.871 0.048 0.026 0.999 0.996 0.057 0.014 0.997 0.992
SSLS: S5 0.384 0.095 0.851 0.672 0.228 0.205 0.994 0.884 0.297 0.260 0.977 0.751
SSLS: S6 0.539 0.059 0.646 0.407 0.209 0.196 0.995 0.911 0.193 0.181 0.991 0.914

*RMSE: root-mean-square errors, MBE: mean bias errors, R: correlation coefficients, and NSE: Nash-Sutcliffe efficiency.

732

31



733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

Data availability

The SSLS measurement data can be accessed publicly at https://www.sealevelsensors.org/. The DEM,
water level, oceanographic, and meteorological data are available through the following links:

- DEM data: NOAA Digital Coast (https://coast.noaa.gov/dataviewer/)

- Water level data: NOAA Tide & Currents (https://tidesandcurrents.noaa.gov/), USGS National Water
Dashboard (https://dashboard.waterdata.usgs.gov/), and USGS Flood Event Viewer
(https://stn.wim.usgs.gov/)

- Oceanographic data: AVISO (https://www.aviso.altimetry.fr/en/data/products.html) and CEMES
(https://data.marine.copernicus.eu/products)

- Meteorological data: ECMWF ERA 5 (https://www.ecmwf.int/en/forecasts/datasets) and NOAA HRRR
(https://rapidrefresh.noaa.gov/hrrr/)

The SCHISM simulation and Objective Analysis data can be provided upon request to the corresponding

author.
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