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Abstract 25 

As flood events become increasingly prevalent in coastal regions with sea level rise, multiple 26 

communities have deployed water level monitoring networks across estuaries in addition to existing tide 27 

gauges located primarily at immediate coasts. Due to the spatially-distributed nature of sensor 28 

deployments, however, water level data are only available at specific sensor locations during the time of 29 

monitoring. As a result, an information gap on water levels exists along estuarine channels outside of 30 

active monitoring locations. To fill such a gap, this study presents a physics-based empirical modeling 31 

approach to assimilate coastal water levels using observations from hyper-local water level sensors. We 32 

implement an Objective Analysis (OA) procedure for sensor observation datasets obtained from the Smart 33 

Sea Level Sensors project along the U.S. Georgia coasts, based on spatial covariance structures of water 34 

levels that are extracted from high-resolution coastal-ocean hydrodynamic simulations. The approach is 35 

validated using simulated water levels, which provide basis functions for spatial covariance information. 36 

Additionally, the implementation is validated using actual water levels from active monitoring stations. 37 

The assimilated results of water levels are compared to those obtained by the same OA procedure but 38 

with a commonly-used Gaussian covariance function, which lacks prior knowledge of spatial covariance 39 

structures. To demonstrate the capability of the assimilation approach, we extend its application to a 40 

hurricane event, during which other dynamic processes may be relevant to variability in coastal water 41 

levels. Overall, the presented approach provides an accurate and efficient estimation of estuarine water 42 

levels along channels, which can support community officials to promptly identify localized flood threats 43 

to critical infrastructure systems in coastal regions. 44 

 45 
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1. Introduction 49 

Flooding is a growing threat to both populations and infrastructure in coastal regions (Hallegatte et al., 50 

2013; National Academies, 2014; Allen et al., 2018). Primarily produced by a tropical storm or hurricane, 51 

a storm surge can cause catastrophic flooding and subsequent damages along coastlines, including human 52 

causalities and property losses (Grinsted et al., 2019). In addition, sea level rise due to climate change 53 

further exposes a greater number of coastal communities to an increased risk of flooding during high tides 54 

(Muis et al., 2016; Sweet et al., 2022). Over the last several decades, for example, the average number of 55 

high tide flood days per year has been steadily increasing in major cities and towns along the U.S. coasts, 56 

more than doubling particularly along the Southeast Atlantic coasts (Sweet et al., 2018; Moore and 57 

Obradovich, 2020). Recurrent flooding leads to public inconvenience and mental distress by repeatedly 58 

disrupting local transportation and business in low-lying urban areas (Moftakhari et al., 2015). Moreover, 59 

high tide flooding poses a significant risk to infrastructure systems in coastal regions, such as bridges, 60 

marinas, and stormwater drainages (Tahvildari and Castrucci, 2021; Gold et al., 2022). These structures 61 

could temporarily fail to function and even permanently lose structural integrity due to inundation by 62 

saline floodwater (Allen et al., 2018). Unfortunately, coastal infrastructure has limited adaptive capacity 63 

to cope with sea level rise and consequent flood impact due to restricted relocation options. Therefore, 64 

obtaining reliable information on water levels along major channels becomes crucial, not only for 65 

monitoring imminent flood threats but also for facilitating long-term planning to enhance flood resilience. 66 

In many coastal regions, public and emergency management officials rely on real-time tide 67 

observations at a sparse network of NOAA stations, even though monitoring points of interest may be 68 

several kilometers away from the nearest station. In estuaries, however, water levels result from rising and 69 

falling tides and interactions with a range of channels from rivers to tributaries, landscapes, and local 70 

meteorological disturbance, which generate a complex pattern along coastlines (Gallien et al., 2011; 71 

Marsooli et al., 2016; Bilskie et al., 2021). Although advances in coastal-ocean modeling techniques have 72 

facilitated extreme water level predictions associated with hurricane-induced storm surges, operational 73 

forecasts using high-resolution models can incur high computational costs (Kerr et al., 2013; Bilskie et al., 74 

2020). Moreover, multiple sources of uncertainties originating from input topobathymetry and boundary-75 

forcing conditions cause gaps between model predictions and actual observations (Muñoz et al., 2022), 76 

which persist and propagate over simulation periods. Without leveraging gauge-based observations 77 

through model calibration or data assimilation, physics-based model predictions remain limited to 78 

assisting community officials in identifying immediate flood threats in coastal regions. 79 

Recently, several coastal communities have been deploying affordable water level sensors in an 80 

urgent effort to obtain real-time water level information and better understand the hyper-local impacts of 81 

rising sea levels. As summarized in Table 1, multiple monitoring networks have been established along 82 
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the U.S. coasts, using low-cost water level sensors by local researchers and communities. The sensor 83 

devices can measure water levels based on pressure, radar, and ultrasonic techniques and transmit 84 

measured data via long-range radio, cellular, or satellite communication. In the City of Norfolk, U.S. 85 

Virginia, for example, the StormSense project (Loftis et al., 2018) has deployed more than 50 water level 86 

sensors, either radar- or ultrasonic-type, to spatially complement the existing NOAA tide gauges and 87 

support predictive flood modeling. Another example is the Smart Sea Level Sensors (SSLS) project, 88 

which has installed more than 60 ultrasonic water level sensors along the U.S. Georgia coasts to augment 89 

hyper-local water level monitoring, with high priority to locations of critical infrastructure systems, such 90 

as bridges and boat ramps. These monitoring networks allow public and emergency management 91 

professionals to access hyper-local water level conditions and take prompt actions in response to potential 92 

flood risks. However, available monitoring locations are still confined by finite sensor installations (Tien 93 

et al., 2023). Furthermore, the observation availability is influenced by sensor operation that is subject to 94 

power supply or weather conditions for wireless communications. For example, sensors may cease to 95 

function due to power loss or faulty instruments, resulting in a lack of access to vital water level data, 96 

particularly during precarious events such as spring tides. Given these constraints, real-time assimilation 97 

of water level observations becomes crucial as it can facilitate extensive support for expanding sensor 98 

networks by estimating water levels at inactive sensor locations and in geographic areas beyond the 99 

immediate vicinity of sensor installations. 100 

Table 1 101 

Water level monitoring networks using low-cost, power-efficient sensors along the U.S. coasts. 102 

Project Location Number of 

Sensors 

Sensor 

Type 

Primary Network 

Communication 

Observation 

Availability* 

Observation 

Cycle 

Reference 

StormSense Norfolk, 

Virginia 

50 + Ultrasonic 

and Radar 

Cellular and 

RoLaWAN 

2016 to 

Present 

6-minute Loftis et al. (2018) 

Smart Sea Level 

Sensors (SSLS) 

Georgia 60 + Ultrasonic RoLaWAN 2019 to 

Present 

6-minute https://www.sealevelsensors.org/ 

Hohonu U.S. East Coast, 

Hawaii, and 

Alaska 

90 + Ultrasonic Cellular 2017 to 

Present 

6-minute https://www.hohonu.io/ 

SenseStream 

(I-SENSE) 

Florida and 

South Carolina 

50 + Ultrasonic Cellular 2018 to 

Present 

5-minute https://www.sensestream.org/ 

Sensing Storm 

Surge 

Maine 20 + Pressure Not capable 2017 to 2020 2-minute Spicer et al. (2021) 

* Observation availability varies depending on the deployment and operation of individual water level sensors. 

Due to a short history of hyper-local water level monitoring networks, no prior study exists to 103 

assimilate coastal water levels directly from the newly emerging observation datasets. At global- or 104 

regional-scales in oceanography, however, many studies have been conducted to reconstruct a large-scale 105 

map of oceanographic data based on observations with limited spatial coverage. Since the introduction 106 
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into oceanography by Bretherton et al. (1976), the Objective Analysis (OA) technique has been 107 

extensively used to interpolate spatial sampling data into a continuous field of ocean properties, including 108 

sea surface height (e.g., Ubelmann et al., 2015), temperature (e.g., Smith et al., 1996), and pressure (e.g., 109 

Kaplan et al., 2000). Smith et al. (1996) were the first to utilize Empirical Orthogonal Functions (EOFs) 110 

for spatial covariance statistics to fill spatial gaps in marine observations of sea surface temperature, using 111 

satellite-based datasets with extensive coverage. Similarly, Chambers et al. (2002) applied EOFs that 112 

were derived from satellite altimetry into historical tide gauge records to examine the effects of climate 113 

variability on global mean sea levels. To assess an emerging risk of floods in the context of a changing 114 

climate, the EOFs-based OA technique has been widely adopted in identifying global and regional 115 

variability in rising sea level trends (e.g., Church and White, 2006; Hamlington et al., 2012). The 116 

application has been further improved by reducing inherent uncertainties in observation datasets (e.g., 117 

Church et al., 2004; Church and White, 2006), by applying sophisticated basis functions, such as 118 

cyclostationary EOFs (e.g., Hamlington et al., 2011; Kim et al., 2015), or by combining with other 119 

climate variables (e.g., Hamlington et al., 2012; Kumar et al., 2020). Ocean circulation model simulations 120 

have also been used as an alternative to satellite altimetry datasets to derive the spatial patterns of 121 

physical ocean systems (e.g., Llovel et al., 2009; Meyssignac et al., 2011). Although the primary focus of 122 

these studies has been on estimating variability of sea level rise trends at large spatiotemporal scales, the 123 

application of the EOFs-based OA technique has enabled the reconstruction of water levels by combining 124 

spatial covariance structures with scattered observation datasets. 125 

In studies related to coastal floods, the EOF analysis has been frequently employed for 126 

dimensionality reduction within surrogate models, which are commonly referred to as metamodels. For 127 

coastal flood predictions, surrogate models build a functional connection between input parameters (e.g., 128 

hurricane intensity and track) and corresponding responses (e.g., maximum storm surge) based on 129 

numerical model simulation databases for historical or synthetic flood events (Jia and Taflanidis, 2013; Al 130 

Kajbaf and Bensi, 2020). To address the challenges posed by high-dimensional spatiotemporal outputs, 131 

the EOF analysis not only reduces the dimensionality of output responses but also facilitates the 132 

extraction of response covariance patterns (Jia and Taflanidis, 2013; Jia et al., 2015), as similarly applied 133 

within the EOFs-based OA technique. In addition, various statistical representations, including Gaussian 134 

Process Regression and Neural Networks, have been utilized in surrogate models to establish 135 

relationships between the weights of response covariance patterns and metocean input parameters (see a 136 

review in Al Kajbaf and Bensi, 2020). Specifically, surrogate models have been applied to different 137 

coastal flood drivers, such as storm surge (e.g., Jia et al., 2015; Bass and Bedient, 2018; Rohmer et al., 138 

2023; Kyprioti et al., 2023), storm waves (e.g., Jia and Taflanidis, 2013; Rohmer et al., 2023), and even 139 

tidal responses with elevated levees in estuaries (Li et al., 2020). On the other hand, the EOFs-based OA 140 
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technique directly leverages spatially-distributed response observations (i.e., water levels for coastal flood 141 

monitoring) to determine the weights of response covariance patterns. Within the EOFs-based OA 142 

technique, optimal interpolation (Daley, 1991; Kalnay, 2003) is a key component that generates the most 143 

likely spatial state representation by minimizing error variances at observation locations. Regarded as a 144 

specific suboptimal variant of the extended Kalman filter (Ide et al., 1997), optimal interpolation serves a 145 

fundamental role in both real-time assimilation and sequential updates of forecast models due to its 146 

relative simplicity (e.g., Madsen et al., 2015; Asher et al., 2019 to adjust storm surge model forecasts). As 147 

water level observation datasets newly emerge at hyper-local scales for coastal flood monitoring, it 148 

becomes increasingly relevant to explore their potential applications in data assimilation, especially with 149 

established traditional methods such as the OA technique. 150 

The objective of this study is to develop a physics-based empirical modeling approach to augment 151 

water level monitoring of a hyper-local sensor network. To achieve this objective, we apply the OA 152 

procedure to assimilate water levels in coastal regions, following a similar methodology used by 153 

Chambers et al. (2002) to reconstruct mean sea levels globally. Particularly, coastal-ocean hydrodynamic 154 

model simulations are performed to extract spatial covariance statistics of water levels which are then 155 

decomposed in EOFs. As a result, past and present water levels can be assimilated by combining the 156 

spatial covariance information with a time series of available sensor observations. Our study explores the 157 

feasibility of the empirical modeling approach for hyper-local sensor observations which integrates spatial 158 

covariance structures established from physics-based model simulations. In addition, we examine the 159 

applicability of the modeling approach using a range of scenarios, including both tides to storm events. 160 

As a computationally efficient and accessible option for real-time applications, the modeling approach 161 

allows community officials to access hyper-local water level conditions, even for temporarily inoperative 162 

sensor locations. Furthermore, the outcomes can provide valuable insights for optimizing the deployment 163 

of sensors that are constrained by limited resources. Ultimately, the assimilated water levels can benefit 164 

coastal-urban flood models that rely on accurate water level data along coastlines to predict flooding in 165 

urban systems (e.g., Smith et al., 2011; Karamouz et al., 2017; Son et al., 2023). 166 

The remainder of the paper is organized as follows. Section 2 describes the OA procedure that 167 

combines physics-based model simulations, along with the background information on the hyper-local 168 

water level monitoring network and the high-resolution coastal-ocean hydrodynamic model. In Section 3, 169 

we examine the physics-based empirical modeling approach by using the numerical simulation results to 170 

quantify the different sources of errors. Then, the applications are extended to assimilate water levels 171 

directly using actual observations from the hyper-local sensor networks, not only for the basis simulation 172 

periods but also for a hurricane event that occurred during the operational monitoring periods. 173 

Furthermore, our study demonstrates the real-time assimilation of water levels in a pilot web-based portal 174 
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for emergency management. We discuss the potential benefits and limitations of the model applications in 175 

Section 4. Finally, Section 5 provides a summary and conclusions of the present study. 176 

 177 

2. Methods 178 

2.1. Hyper-local water level sensor network: Smart Sea Level Sensors (SSLS) 179 

The SSLS project (https://www.sealevelsensors.org/) has installed more than 40 low-cost, power-efficient, 180 

Internet of Things (IoT)-enabled water level sensors (red and pink placemarks), across Chatham County, 181 

U.S. Georgia, as shown in Fig. 1. The hyper-local sensor network spans a wide range of estuarine 182 

channels, prioritizing monitoring of coastal infrastructure that is prone to flooding, such as bridges and 183 

marinas. Prior to the SSLS deployments, the NOAA station at Fort Pulaski (blue placemark), the only tide 184 

gauge on the entire Georgia coast, provided information on coastal water levels in Chatham County. 185 

While USGS also operates multiple monitoring locations, the observation availability remains limited 186 

with a small number of stream gauges (green placemarks) located upstream of the estuaries and 187 

temporary storm tide loggers (yellow placemarks) to collect water levels during extreme weather events, 188 

such as hurricanes. Consequently, the SSLS water level monitoring network provides instantaneous 189 

access for public and emergency officials (e.g., Chatham Emergency Management Agency) to identify 190 

localized flood threats to coastal communities. The sensor devices are designed to measure the distance to 191 

water surface elevation and transmit measurement data into a monitoring server through internet-192 

connected gateways, using ultrasonic sensors and Long Range Wide Area Network (LoRaWAN) 193 

technology. As part of the sensor deployments, two validation sensors are placed next to the NOAA tide 194 

gauge at Fort Pulaski (blue marker). A comparison of the validation sensors with the NOAA tide gauge 195 

indicated less than 0.3 cm differences for two years. Currently, the sensors operate with a power-saving 196 

protocol, which involves repeating one measurement cycle of collecting 18 samples for 3 seconds and 197 

transmitting the averaged signal every 6 minutes. 198 
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 199 

Fig. 1 Water level monitoring stations of NOAA, USGS, and SSLS with NHD Large Water Features of Chatham 200 

County in GA, USA. Among SSLS locations, the red placemarks indicate those with elevation survey information 201 

within NHD Large Water Features. The labeled locations (NOAA: N1, USGS: U1, SSLS: S1-7, and USGS Log: L1-202 

10) will serve as points of reference in our study. 203 

 204 

2.2. Water level simulations using a high-resolution coastal-ocean hydrodynamic model 205 

Physics-based model simulations of coastal water levels are performed to establish spatial covariance 206 

statistics in the OA procedure. In this study, the Semi-implicit Cross-scale Hydroscience Integrated 207 

System Model (SCHISM) (Zhang and Baptista, 2008; Zhang et al., 2016) is implemented to simulate 208 

water levels and inundations from the coasts to inland areas along the Georgia coasts. The SCHISM 209 

model has been widely used to simulate coastal-ocean circulation processes with an emphasis on three-210 

dimensional baroclinic modes, including storm surge simulations (Zhang et al., 2020; Ye et al., 2020). As 211 

shown in Fig. 2a, the model domain covers the entire U.S. Georgia coast with horizontal resolutions 212 

ranging from 6 km (around the open boundary) to 3 m (along small rivers and creeks). The 213 

topobathymetry for unstructured grid systems is interpolated from the NOAA Continuously Updated 214 

Digital Elevation Model (CUDEM; 3 to 100 m resolutions) with local refinements using other sources of 215 

NOAA DEM (e.g., Sea Level Rise Viewer DEM; 3 to 5 m resolutions). The model setup integrates inland 216 
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hydrologic input from the National Water Model (NOAA NWS, 2016). In the model setup, surface waves 217 

are not considered due to their marginal impacts in the study areas, which are characterized by extensive 218 

wetlands along geographically complex channels in estuarine settings (Muñoz et al., 2021). The initial 219 

and boundary conditions are provided by oceanographic datasets from Archiving, Validation and 220 

Interpretation of Satellite Oceanographic (AVISO) and Copernicus Marine Environment Monitoring 221 

Service (CMEMS). A tide model of Finite Element Solution (FES) 2014 is used for the open boundary 222 

condition and tidal potential in momentum equations, including eight major tidal constituents such as K1, 223 

K2, M2, N2, O1, P1, Q1, and S2. The ECMWF Reanalysis 5 (ERA 5) datasets are applied for 224 

atmospheric forcing. 225 

The SCHISM model simulations are performed for October 21 to December 30, 2021, including 226 

the model spin-up phase. The simulated water levels for 30 days from November 25 to December 25 (Fig. 227 

A.1) are utilized to calculate spatial covariance statistics in the OA procedure. Fig. 2b compares the 228 

simulated water levels with the observations at the NOAA tide gauge (N1), USGS stream gauge (U1), and 229 

SSLS sensors (S1-6). The comparisons indicate that the SCHISM model setup is capable of simulating 230 

water levels accurately across estuaries, as shown for the multiple locations (N1, U1, S1, S2, and S4) in 231 

Fig. 2b. In addition, our study includes a few locations to assess the capability of the developed OA 232 

approach later in the current study: (S3), where the SSLS sensor was inactive during the simulation 233 

periods, (S5), where discrepancies may exist during low tides due to the model representation of 234 

topobathymetry, and (S6), where a slight phase lag may arise with the model uncertainty. 235 

 236 

Fig. 2 SCHISM model simulations: (a) model domain and topobathymetry. The red box corresponds to the map 237 

extent in Fig. 1; (b) comparisons of simulated water levels with observations. The headings (N1, U1, and S1-6) on 238 

the titles correspond to the labels of the station locations in Fig. 1. The model evaluations, including error statistics, 239 

are listed in Appendix C. 240 

 241 

2.3. Physics-based empirical modeling of coastal water levels 242 
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In our study, as outlined in the flowchart in Fig. 3, the reconstruction of water levels is accomplished 243 

through the OA procedure (Chambers et al., 2002) that combines the SSLS observation datasets (Section 244 

2.1) with the spatial covariance statistics of the simulated water levels using the SCHISM model (Section 245 

2.2). Prior to using the observation datasets, a preprocessing procedure is implemented due to different 246 

measurement timings and abnormal signals within water level records. In the simulation results, water 247 

levels in upland areas may experience wet and dry conditions, requiring a masking process for the 248 

numerical model grids to prevent incomplete statistical analysis. The EOF analysis establishes the 249 

statistical covariance structures of the simulated water levels for the masked grids. Using the OA 250 

procedure, the Principal Components time series (PCs) are calculated from the observation datasets 251 

available over a specific period of interest, which are subsequently applied to assimilate a spatial field of 252 

water levels by combining with the established EOFs. The detailed implementations will be described in 253 

the following subsections. 254 

 255 

Fig. 3 Flowchart of physics-based empirical modeling of coastal water levels, using SSLS observation datasets. 256 

 257 
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2.3.1. Preprocessing of SSLS observation datasets 258 

In water level monitoring networks, the operations of sensor devices are often influenced by 259 

environmental factors (e.g., animal or human activities) and various instrument conditions (e.g., power 260 

supply or network connections) (Spicer et al., 2021). As a result, the SSLS observation datasets may 261 

contain abnormal signals, such as sporadic fluctuations, spikes, and occasional outages. To address such 262 

issues, a data-processing procedure is applied to filter the water level records, including outlier removals 263 

and smoothing, with the following steps: 264 

1. Slope Thresholds in Time: 265 

To identify local outliers in time series data for each sensor, the time rates of change in water 266 

levels are calculated from consecutive data points within a specified timeframe to count a portion 267 

of excessive or unreasonable changes in water levels. For example, if more than 10 % of 268 

neighboring data points within a two-hour timeframe indicate unreasonable changes in water 269 

levels (e.g., > 1 m/hour), the corresponding measurement is deemed unstable and discarded from 270 

the analysis. The assessment of the rate of change is highly recommended by Integrated Ocean 271 

Observing System (2021). 272 

2. Median Absolute Deviation (MAD) in Space and Time: 273 

 MAD = ����	
|�
 − 〈�
〉| (1) 

To detect outliers in both space and time, the MAD of the time rate of change in water levels, �
, 274 

is calculated by using more than five sensor measurements for cross-comparisons in space. Then, 275 

if a measurement deviates more than three standard deviations from the calculated MAD, which 276 

is equivalent to the Hampel filter (Pearson et al., 2016), it is identified as an outlier and 277 

subsequently removed from the analysis. This step is particularly useful when nearby 278 

observations are available, as suggested by Integrated Ocean Observing System (2021). 279 

3. Savitzky-Golay Filter: 280 

The Savitzky-Golay filter (Savitzky and Golay, 1964; Gorry, 1990) is applied to smooth time 281 

series signals, which involves fitting a piecewise polynomial function to a set of measurements. 282 

Specifically, our study uses a third-order polynomial function with a four-hour time window for 283 

each measurement. 284 

At the beginning of each step, our study excludes measurement points with fewer than four counts within 285 

two hours due to the limited representation of water level variations. As an example, Fig. 4 shows the 286 

step-by-step preprocessing results for SSLS observation datasets. 287 
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 288 

Fig. 4 Example results of step-by-step preprocessing for SSLS observation datasets: Steps 1 and 2 for outlier 289 

removals and Step 3 for smoothing. 290 

 291 

2.3.2. OA based on spatial covariance statistics 292 

Our study uses the same OA procedure of Chambers et al. (2002) that combines spatial covariance 293 

statistics to interpolate water levels from spatially-distributed observation datasets. The OA procedure 294 

consists of two main components: the first part applies the EOF analysis to physics-based model 295 

simulations of water levels to obtain spatial covariance structures as EOFs, and the second part 296 

determines the corresponding PCs for these EOFs based on available observation datasets to reconstruct 297 

water levels. 298 

The EOF analysis decomposes spatiotemporal variations of water levels into a linear combination 299 

of spatial modes (EOFs), multiplied by associated time-varying amplitudes (PCs). Through a singular 300 

value decomposition, water levels, � ∈ ����, which is a function of space, � ∈ ���� at � locations, 301 

and time, � ∈ ���� for 
 time steps, can be expressed as: 302 

 ���,  �� = �� ! (2) 

where � ∈ ���� is the spatial modes (EOFs), � ∈ ���� is the diagonal matrix with the eigenvalues of 303 

�, and  ∈ ���� is the temporal variations of the spatial modes. Hence, Eq. (2) can be rewritten by 304 

simply replacing the latter terms with the time-varying amplitudes (PCs), "��� ∈ ����: 305 

 "��� = � ! (3) 

 ���,  �� = ����"��� # �$���"$��� (4) 
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The columns of � and rows of " correspond to the individual modes of EOFs and PCs, respectively, and 306 

the subscript, %, denotes the number of the truncated modes. As a result, the EOF analysis enables 307 

reducing the number of modes by selecting a few low-order EOFs and PCs that explain a significant 308 

portion of variances in water levels. In addition, the leading-order EOFs and PCs may characterize 309 

distinct spatial covariance patterns and related temporal variations of water levels.  310 

 Based on Kaplan et al. (2000), the PCs can be found through a least-squares estimation process 311 

that minimizes the following objective function, S: 312 

 min S�"$� = �*�$"$ − �+�,-.��*�$"$ − �+� + 0$,1$.�"$ (5) 

 "$ = 2�$,*,-.�*�$ + 1$.�3.��$,*,-.��+ (6) 

where �+ ∈ �4�� is water level observations at 5 locations, * ∈ �4��  is a sampling operator matrix to 313 

consider observation availability, - ∈ �4�4 is the matrix for data error covariances due to instrumental, 314 

sampling, and truncation errors, and 1$ ∈ �$�$ is the truncated diagonal matrix with the eigenvalues of 315 

the covariance matrix. As an initial study to apply the OA procedure to assimilate water levels directly 316 

from hyper-local sensor observations, our study implements the simplest approach by Chambers et al. 317 

(2002) where the identity matrix is used for - and the latter term is omitted as follows: 318 

 min S�"$� = �*�$"$ − �+�,�*�$"$ − �+� (7) 

 "$ = 2�$,*,*�$3.��$,*,�+ (8) 

Once the PCs are obtained from Eq. (8) for available observation datasets, a spatial field of water levels 319 

can be reconstructed by combining PCs with the EOFs, as shown in Eq. (4). 320 

 In our study, the water levels simulated by the SCHISM model (over 53,000 grid points) serve as 321 

a basis dataset for the EOF analysis. Prior to performing the EOF analysis, we remove the temporal 322 

means of water levels over the simulation periods and apply the channel boundary based on the USGS 323 

National Hydrography Dataset (NHD) Large Water Features for Chatham County to mask the water level 324 

outputs along the coastal channels, as delineated in Fig. 1. This masking procedure enables us to reduce 325 

the number of grid points involved in matrix computations, with an emphasis on estuarine channels. 326 

Estuarine channels are of primary interest because the majority of SSLS have been deployed to monitor 327 

bridges and marinas. Additionally, we exclude grid points where water levels exhibit little variations and 328 

dry conditions to prevent using incomplete data for the EOF analysis. To align the different timings of the 329 

SSLS measurements in calculating the PCs, the observation datasets are aggregated by averaging them 330 

over a 15-minute interval. 331 

 332 

2.3.3. OA using a Gaussian covariance function 333 
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The OA procedure commonly employs an analytical covariance function to interpolate a limited set of 334 

observations into a spatial field of interest. Based on the Gauss-Markov theorem, the least-square linear 335 

estimator can be calculated by  336 

 �� = ��6 + 7�8988.:2�+ − �+63 (9) 

where �� ∈ ���� is water levels at locations of interest, 7�8 ∈ ���4 is the spatial covariances between 337 

observations and locations of interest, and 788 ∈ �4�4 is the spatial covariances between all pairs of 338 

observations. The    ;  denotes the estimated mean water levels. 339 

In the absence of spatial covariance information, it is often assumed that the covariances among 340 

the observations themselves, as well as between observations and a spatial field of interest, depend solely 341 

on the spatial distance between each pair of locations, regardless of the locations themselves. Among 342 

various analytical forms, we use the Barnes Scheme (Barnes, 1964) that adopts a Gaussian function to 343 

describe spatial covariances based on distance, which is expressed by: 344 

 C��:, �=� = >��� = ��? @⁄ �B
 (10) 

where � and C denote the distance between two locations and the decorrelation scaling parameter, 345 

respectively. Consistently with Section 2.3.2, we use the same SSLS measurements that are aggregated 346 

over a 15-minute interval. The least-square fitting technique is applied to estimate the linear mean trends 347 

of water levels. The decorrelation length scale of 5 km is used based on the preliminary implementation 348 

by Tien et al. (2023). 349 

 350 

3. Results and discussion 351 

3.1. EOF analysis and sensitivity tests 352 

Through a singular value decomposition, the EOFs and PCs are obtained from the SCHISM model 353 

simulations of water levels from November 25 to December 25, 2021. Fig. 5 shows the first three spatial 354 

modes of the EOFs, along with the associated variance explained by each mode. To facilitate comparison 355 

across the different modes, the EOFs and PCs are normalized by multiplying the EOFs with the standard 356 

deviations of PCs and dividing the PCs by the standard deviations, respectively. As a result, the 357 

normalized EOFs represent the physical magnitudes of the spatial modes while retaining unit standard 358 

deviations for the normalized PCs. The lowest EOF mode in Fig. 5a has the strongest signal characterized 359 

by uniform water level patterns that can either rise or fall, primarily forced by astronomical tides. Fig. 5b 360 

shows the second EOF mode, which exhibits a linear slope pattern in water levels with strong correlations 361 

with the distance to open coasts. This linear pattern is likely driven by either flood or ebb tide flowing 362 

along the channel landscapes. The third spatial pattern in Fig. 5c is similar to the previous mode but has 363 

concentrated signals upstream in the complex channels of the estuaries. As plotted in Fig. 5d, the 364 

explained variances significantly decrease as the EOF modes increase, accounting for more than 95 % of 365 
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the total variances with these three lowest modes. Therefore, our study uses the three dominant EOF 366 

modes for the reconstruction of water levels. The selection of these EOF modes implies that 367 

spatiotemporal variations in water levels result from a combination of rising or falling water levels, their 368 

flooding or receding phase, and adjustments related to upstream dynamics. 369 

 370 

Fig. 5 Normalized EOFs and associated variances explained: (a) – (c) three lowest spatial modes of water levels. 371 

The EOFs are normalized with the standard deviations of PCs to indicate physical magnitudes. The red circles 372 

highlight SSLS that are located within the study boundaries and have sensor elevation survey information, 373 

corresponding to the red placemarks in Fig. 1; (d) variances explained by different spatial modes.  374 

To assess the stationarity of the EOFs with respect to simulation periods, we implement a 3-fold 375 

test that involves extracting the EOFs from three separate chunks, each spanning 10 days of the 376 

simulation periods. Then, the obtained EOFs are applied to solve Eq. (8) to derive the corresponding PCs 377 

across the simulation periods. However, accurate water level observations will only be available at 378 

locations where SSLS are installed and their elevations are surveyed, which is referred to as spatial 379 

sampling in this study. The effects of spatial sampling due to the limited availability of observations are 380 

taken into consideration in the 3-fold test. Thus, we use the simulated water levels only at 22 SSLS 381 

locations within the study boundaries, which are highlighted with red circles in Fig. 5. As shown in Fig. 6, 382 

the normalized PCs are obtained from the different EOFs based on the three separate chunks of the 383 
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simulated water level time series. The comparisons of the PCs within each mode show that the leading-384 

order PCs are not significantly influenced by the selection of water level time series for the EOFs. 385 

However, minor variations are identified in the third PC, particularly around the peaks and troughs of the 386 

PC. Consequently, the EOFs and PCs marginally depend on simulation periods, even when applying the 387 

simulated water levels through spatial sampling for the valid SSLS locations. 388 

 389 

Fig. 6 Normalized PCs derived from the EOFComplete (11/25 – 12/25), EOFFold1 (11/25 – 12/05), EOFFold2 (12/05 – 390 

12/15), and EOFFold3 (12/15 – 12/25). The PCs are calculated from spatial sampling of the simulated water levels at 391 

22 SSLS locations within the study boundaries (red circles in Fig. 5) and normalized by their standard deviations. 392 

Regarding the characteristics of the PCs, the first two PCs exhibit similar periodic cycles, which 393 

are highly correlated with astronomical tidal cycles. In addition, the peaks and troughs of the first PC 394 

closely align with the zero-crossings of the second PC, implying out-of-phase differences between the 395 

spatial patterns of the first and second EOF modes. The phase lag corresponds to flood or ebb tidal 396 

currents that reach their maximum at the mean water level between low and high tides. The third PC 397 

shows fluctuations with a higher frequency, suggesting potential adjustments in water levels as water 398 

enters and exits the upstream estuarine channels. These PCs represent the magnitudes, timing, and 399 

interplay between the three dominant EOF modes, assimilating the specific state of estuarine water levels. 400 

 401 

3.2. Model verification with SCHISM model simulations 402 

Prior to using the SSLS observation datasets, the simulated water levels from the SCHISM model are first 403 

utilized to reconstruct water levels and identify modeling gaps in the OA procedure. Fig. 7 shows 404 

example plots of water levels at a specific time during flood tides, comparing the SCHISM model 405 
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simulations (Fig. 7a) with two types of reconstruction: one using all water levels within the study 406 

boundaries (Fig. 7b) and another using water levels only at 22 SSLS locations (Fig. 7c). Despite being 407 

confined to the study boundaries due to the masking procedure, the assimilated water levels are consistent 408 

with the numerical simulation results. However, the spatial sampling leads to discrepancies in the 409 

assimilation of water levels, particularly in the immediate coasts due to the limited sampling of water 410 

level data in these areas. 411 

 412 

Fig. 7 Example plots of water levels at 12/16/2021 09:00 UTC during flood tide: (a) SCHISM model simulations; (b) 413 

EOFs-based reconstruction with all the simulated water levels shown in (a); (c) EOFs-based reconstruction with 414 

spatial sampling at 22 SSLS locations within the study boundaries (red circles). 415 

 Error statistics are calculated for the 30-day simulation periods, employing multiple evaluation 416 

metrics that are described in Appendix B. The SCHISM model simulations are regarded as a ground truth 417 

as the simulated water levels are currently used to compute the PCs using Eq. (8). Consequently, the 418 

evaluation metrics provide a means to assess the reconstruction capabilities of water levels, in comparison 419 

with an ideal EOFs-based OA procedure without errors. Fig. 8 shows the normalized root-mean-square 420 

errors (NRMSE) as defined in Eq. (B.2), using all information within the study boundaries (Fig. 8a) and 421 

using spatial sampling limited to 22 SSLS locations (Fig. 8b). The first NRMSE in Fig. 8a represents 422 

truncation errors resulting from using the three leading spatial modes of water levels, which remain below 423 

0.05. However, it should be noted that some upstream channels have relatively higher NRMSE values, 424 

indicating limitations in capturing the dynamics only with a few EOFs due to complex interactions 425 

between water and estuarine landscapes. The second NRMSE in Fig. 8b corresponds to spatial sampling 426 

errors arising from the limited availability of observations, in addition to the truncation errors. The 427 

NRMSE values increase up to 0.1 for distant areas from the valid SSLS locations, particularly in 428 

proximity to the immediate coasts. The difference between the two NRMSEs, as shown in Fig. 8c, 429 

indicates the portion of the reconstruction errors originating solely from spatial sampling. The NRMSE 430 

differences are generally less than 0.04 but become more pronounced towards the outer study boundaries. 431 

This is because the majority of the SSLS deployments are centered around urban areas where coastal 432 
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infrastructure is located. A similar discrepancy is also captured during flood tide, as observed in Fig. 7b 433 

and Fig. 7c. 434 

 435 

Fig. 8 NRMSE calculations based on the SCHISM model simulations as a ground truth: EOFs-based reconstructions 436 

(a) with the simulated water levels and (b) with spatial sampling at 22 SSLS locations within the study boundaries 437 

(red circles); (c) NRMSE difference between (a) and (b). 438 

Table 2 summarizes the median and quantile values of other evaluation metrics that are defined in 439 

Appendix B. These metrics are applied to more than 53,000 SCHISM grid points within the study 440 

boundaries. Since the grid points are distributed unevenly depending on channels, the median and quantile 441 

values of the error statistics are selected to represent the relative trends in accuracy. The overall RMSE 442 

slightly increases due to the spatial sampling for 22 SSLS locations, as identified particularly for the 443 

lower quantile value from 0.039 m to 0.052 m. On the other hand, the MBE, R, and NSE show minor 444 

changes within acceptable ranges. 445 

Table 2 446 

Error statistics of water level reconstructions using the simulated water levels from the SCHISM model as a ground 447 

truth. For comparison, the median and quantile values are calculated from more than 53,000 SCHISM grid points. 448 

Water level 

availability 

Spatial 

covariance 

 RMSE [m]  MBE [m]  R [-]    NSE [-]   

 25% 50% 75%  25% 50% 75%  25% 50% 75%  25% 50% 75% 

All locations EOFs  0.037 0.055 0.088  0.000 0.000 0.000  0.982 0.994 0.999  0.963 0.988 0.997 

22 SSLS locations EOFs  0.050 0.064 0.083  0.000 0.000 0.000  0.978 0.993 0.997  0.956 0.987 0.994 

Gaussian   0.209 0.383 0.723  -0.223 -0.046 0.038  0.688 0.882 0.965  -1.426 0.551 0.899 

* RMSE: root-mean-square errors, MBE: mean bias errors, R: correlation coefficients, and NSE: Nash-Sutcliffe efficiency. 

Both Fig. 8 and Table 2 suggest that the current EOFs-based OA procedure has more prominent 449 

errors due to the leading-order truncations compared to those attributed to the limited availability of 450 

observations. Although adding higher-order EOF modes may lead to an improved representation of local 451 

dynamics, the corresponding observations in those local regions should be followed to accurately estimate 452 

the contributions through the PCs. With the error statistics, the accuracy and confidence maps can be 453 

generated to guide the practical applications of the EOFs-based OA procedure. In addition, the evaluation 454 
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metrics can serve as a useful indicator to identify potential locations for additional sensor deployments to 455 

enhance the reconstruction capabilities of the OA procedure (Tien et al., 2023).  456 

 Based on a Gaussian covariance function, we perform similar reconstructions using the simulated 457 

water levels at 22 SSLS locations. As shown in Fig. 9a, the OA approach reproduces the simulated water 458 

levels for the utilized SSLS locations as expected. However, when excluding the sensor’s own location 459 

for cross-validation (light blue dashed lines), the reconstructed water levels fluctuate with offsets and 460 

phase lags (S4 and S6). Similarly, as demonstrated in Fig. 9b, the NRMSE rapidly exceeds 0.1 for areas 461 

away from the valid SSLS locations. Table 2 also includes the error statistics of water level 462 

reconstructions using a Gaussian covariance function. Compared to the EOFs-based OA procedure, 463 

however, all evaluation metrics indicate inadequate performance, particularly with noticeable variations 464 

in RMSE (upper quantile value of 0.723 m) and NSE (lower quantile value less than zero). 465 

 466 

Fig. 9 OA results based on a Gaussian covariance function: (a) reconstructions of water levels at SSLS locations. 467 

The light blue dashed lines represent reconstructions with the sensor’s own location excluded; (b) a spatial map of 468 

NRMSE. 469 

The analytical OA procedure could be improved by adjusting the decorrelation scaling parameter 470 

or by incorporating a more refined analytical function to characterize spatial covariances (Verri et al., 471 

2017). However, the large reconstruction errors can be attributed to the simplified representation of a 472 

Gaussian covariance function without physical information (Rong and San Liang, 2022), such as 473 

hydrologic connections. Additionally, using a single value for the decorrelation length scale may not be 474 

appropriate for representing the variable density of SSLS deployments across estuaries. Since the 475 
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analytical OA procedure fails to accurately represent complex patterns of water levels in estuaries, we 476 

exclude its further applications in this study. 477 

 478 

3.3. Model applications with SSLS observations 479 

3.3.1. Validation for basis simulation periods 480 

Using the SSLS observation datasets, we apply the OA procedure integrating the established structures of 481 

spatial covariance to assimilate water levels. It is important to note that the availability of SSLS 482 

observations depends on the operational status of individual sensors at the time of monitoring. 483 

Throughout the same simulation periods, a total of 12 SSLS devices were active although some sensors 484 

were sporadically inoperative. Fig. 10 shows comparisons of the reconstructed water levels (orange lines) 485 

with the SCHISM model simulations (black lines) and the available observation datasets (blue line for a 486 

NOAA tide gauge, green line for a USGS stream gauge, and red lines for SSLS observations). 487 

Additionally, cross-validation cases are included to evaluate the reconstruction sensitivity and robustness 488 

when excluding the corresponding SSLS measurements (light blue dashed line). The EOFs-based OA 489 

procedure enables providing access to water levels along estuarine channels even in the absence of direct 490 

observations, as demonstrated throughout the S3 periods and later portions of S1 and S6 (discontinued 491 

SSLS measurements after 12:00 on December 21). This capability to fill in missing measurements is 492 

further supported by the effective reconstructions of water levels without the SSLS’s own observations. In 493 

cases where discrepancies exist between the SSLS observations and physics-based model simulations (S5 494 

and S6), the reconstructed water levels closely track the measurements of the SSLS monitoring network. 495 

By minimizing error variances directly using actual SSLS observations, the EOFs-based OA procedure 496 

realistically determines the weights of spatial covariance structures, identifying the most probable spatial 497 

state of water levels. Therefore, the EOFs-based OA procedure has the advantage of leveraging empirical 498 

observations that closely approximate the true conditions of water levels. 499 
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 500 

Fig. 10 Water level reconstructions using SSLS observation datasets for the basis simulation periods. The cross-501 

validation cases (light blue dashed lines) correspond to excluding the sensor’s own measurements for 502 

reconstructions. The model evaluations, including error statistics, are listed in Appendix C. 503 

 504 

3.3.2. Application for Hurricane Dorian in 2019 505 

Based on the spatial covariance information derived in Section 3.1, the assimilation of water levels is 506 

performed for Hurricane Dorian in 2019 to evaluate the capabilities of the OA procedure. Since the SSLS 507 

deployments in 2019, Hurricane Dorian has been identified as the most impactful hurricane that closely 508 

approached the Georgia coasts. As shown in Fig. 11, although the occurrence of the storm surge on 509 

September 05 did not coincide with the astronomical tidal peaks, the hurricane generated wind gusts of 510 

approximately 95 km/hour and induced a storm surge exceeding 1 m along the Georgia coasts (Avila et al., 511 

2020). Consequently, the combined effects of the storm surge and prevailing winds may cause variability 512 

in water levels across the estuaries. The SSLS observation datasets are applied for the assimilation of 513 

water levels during Hurricane Dorian. 17 SSLS devices measured hyper-local water levels when the 514 

hurricane moved along the U.S. East Coast (September 02 to 06). In addition, numerical simulations are 515 

independently conducted using the SCHISM model for 30 days from August 20 to September 19, 2019. 516 

The model setup is the same as described in Section 2.2, except for using more refined atmospheric 517 

forcing obtained from the NOAA High-Resolution Rapid Refresh (HRRR) datasets. 518 
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 519 

Fig. 11 Hurricane Dorian in September 2019: (a) hurricane track with intensity and (b) water levels (blue) at the 520 

NOAA Fort Pulaski tide gauge and daily precipitation (red) at the local rain gauge. Satellite image credit: MODIS 521 

Land Rapid Response Team and NASA GSFC (2019). 522 

For comparison, we employ the USGS storm tide records (yellow placemarks in Fig. 1) that were 523 

collected during Hurricane Dorian, which include additional locations beyond the active SSLS positions. 524 

In Fig. 12, the assimilated water levels (orange lines) are compared with the USGS storm tide records 525 

(green lines), as well as the SCHISM model simulations (black lines). The USGS storm tide sensors 526 

consist of two different types: radar-based rapid deployment gauges that continuously measure water 527 

levels (L1-3) and pressure-based storm tide gauges that read water levels exceeding the sensor elevation 528 

thresholds (L4-10). The assimilated water levels for the L1 to L3 locations show a good agreement with 529 

the storm tidal cycles recorded by radar-based USGS sensors. Moreover, at the L4 to L10 locations, the 530 

peaks of assimilated water levels closely capture the instances where water levels temporarily exceed the 531 

sensor elevations, except for a slight overestimation at the L6 location. At the L8 and L10 locations where 532 

no water hit the sensors, both the assimilated and simulated water levels consistently remain below the 533 

sensor elevation thresholds.  534 
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 535 

Fig. 12 Comparison of water levels at USGS storm tide monitoring locations during Hurricane Dorian in 2019. The 536 

recorded data from radar-based sensors (L1-3) have continuous measurements while those from pressure-based 537 

sensors (L4-10) provide actual readings only when water levels reach the specific elevation thresholds. The headings 538 

(L1-10) on the titles correspond to the labels in Fig. 1. The titles highlighted in red indicate the locations where the 539 

SSLS measurements are available nearby. 540 

The application of the EOFs-based OA procedure reveals several limitations. During the initial 541 

comparison periods (09/02 02:00 to 08:00), no assimilation outputs are available due to the complete 542 

unavailability of observation datasets from the SSLS monitoring network. Although water levels can be 543 

directly assimilated based on at least one SSLS observation, there is currently a lack of information 544 

regarding the minimum number of SSLS observations required at different locations to ensure accuracy. 545 

In addition, it should be noted that the assimilated water levels are spatially confined to coastal channels 546 

and temporally limited to historical and real-time applications, in comparison with the simulation results. 547 

Nevertheless, the physics-based empirical modeling of water levels demonstrates its capability to 548 

reconstruct water levels along coastal channels in an acceptable manner, even for extreme weather events 549 

where various dynamic factors can influence water levels. 550 

  551 



24 

 

3.3.3. Real-time application in a web-based portal for emergency management 552 

By adopting spatial covariance statistics derived from numerical simulations, the physics-based empirical 553 

modeling approach maintains computational efficiency, which enables real-time assimilation of coastal 554 

water levels and subsequent applications for monitoring coastal inundation. As demonstrated in Fig. 13, 555 

real-time visualizations of inundation depths are implemented within a pilot web-based portal for the 556 

Chatham Emergency Management Agency (CEMA), along with simultaneous access to SSLS 557 

observations. The operational platform uses the most recent 15-minute SSLS observations to calculate the 558 

real-time state of water levels, leveraging the established spatial covariance structures. Then, the 559 

corresponding inundation depths, which are of primary interest to public and emergency officials, are 560 

determined by subtracting the topobathymetry data. In addition, the NRMSE statistics (Fig. 8) are 561 

employed to extract areas with sufficient accuracy (e.g., NRMSE < 0.3). As a result, the spatial maps of 562 

water levels can provide information even for inactive sensor locations (gray circles) and areas beyond 563 

the immediate vicinity of sensor installations (in between circles). The expanded spatial coverages allow 564 

community officials to promptly identify potential flood threats and take appropriate actions for effective 565 

emergency management. Moreover, the increased access to real-time water levels contributes to 566 

enhancing situational awareness of floods in coastal communities. 567 

 568 
Fig. 13 Real-time application in a pilot web-based portal for the Chatham Emergency Management Agency in U.S. 569 

Georgia. The blue contour overlay depicts inundation depths, which represent water heights above topographic 570 

elevations. The circles with color indicate active SSLS locations at the time of monitoring. 571 
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 572 

4. Discussion 573 

Our study demonstrates the implementation of the EOFs-based OA procedure to enhance hyper-local 574 

water level monitoring in complex estuarine settings, informed by geospatial statistics from physics-based 575 

numerical model simulations. The EOF analysis, which is applied to simulated water levels, enables the 576 

extraction of water level patterns that represent the complex dynamics of water flows and interactions 577 

within estuarine channel networks, as well as the substantial reduction of the output dimensionality into a 578 

few principal modes. Once spatial covariance structures are established through the EOF analysis, the 579 

integration with IoT-enabled sensor observations of water levels facilitates the generation of either a 580 

retrospective or real-time map of assimilated water levels (Fig. 13). 581 

The enhanced access to hyper-local water level conditions can benefit community officials by 582 

providing reliable estimates of water levels beyond active sensor locations (e.g., blue or green circles in 583 

Fig. 13), extending to coastal infrastructure with neither sensor installation nor observation (e.g., S3 in 584 

Fig. 10 and gray circles in Fig. 13). By using a real-time map of assimilated water levels during uncertain 585 

flood situations, for example, public and emergency management officials can anticipate potential 586 

overtopping at different bridges and flooding at piers, docks, and boat ramps. Given the limited 587 

adaptability of coastal infrastructure in response to rising sea levels, the continuous monitoring of 588 

increased flood risks to coastal infrastructure is significant for coastal communities to develop strategies 589 

for long-term flood resilience (Habel et al., 2020; Son et al., 2023). 590 

While coastal-ocean hydrodynamic models are capable of effectively simulating water levels (Fig. 591 

2), the operation of forecasting systems demands substantial computational resources (Kerr et al., 2013; 592 

Bilskie et al., 2020), which may be prohibitive for coastal communities with limited access. Nonetheless, 593 

the EOFs-based OA procedure can efficiently provide timely updates on real-time water level information. 594 

This efficiency and utility are particularly evident during non-extreme flood events, when the 595 

effectiveness of applying a coastal-ocean hydrodynamic model is in question. Moreover, it is important to 596 

note that even calibrated numerical model simulations retain inherent uncertainties that persist throughout 597 

the simulation periods (e.g., S5 and S6 in Fig. 2) (Muñoz et al., 2022). The empirical modeling 598 

component of the EOFs-based OA procedure facilitates not only the emulation of available water level 599 

observations (e.g., S5 and S6 in Fig. 10) but also the generation of the most likely spatial state 600 

representation across estuaries. Furthermore, the differences between assimilated water levels and 601 

operational predictions produced by coastal-ocean hydrodynamic models can be integrated to update the 602 

initial or forcing conditions within operational forecasting system through additional assimilation steps 603 

(e.g., Madsen et al., 2015; Asher et al., 2019), which can consistently reduce uncertainties in water level 604 

predictions. 605 
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The geospatial evaluations of modeling errors (Fig. 8) play an important role in informing model 606 

accuracy and confidence across various areas and subsequently optimizing sensor deployments to 607 

constrain modeling errors. If these modeling errors are linked to a specific EOF mode, its prominent 608 

amplitudes and nodal structures can provide valuable insights into ideal locations for additional sensor 609 

deployments to ensure high signal-to-noise ratios. In the current modeling framework, which lacks 610 

weighting for different sensor locations (Eqs. (5) and (7)), adding a few sensor locations into the existing 611 

arrangement is less likely to reduce modeling errors noticeably. Therefore, rigorous optimization 612 

techniques, such as the Monte Carlo simulation, can provide a systematic approach to configuring optimal 613 

sensor deployments with different weighting. Furthermore, optimizing sensor deployments needs to take 614 

into consideration various practical factors. For instance, although the immediate coastal regions currently 615 

exhibit higher spatial sampling errors (Fig. 8c), most of these areas consist of extensive wetlands, which 616 

are little relevant to real-time flood monitoring. Additionally, other practical factors, such as social 617 

vulnerability priorities and potential flood impacts due to critical infrastructure failures, should be 618 

incorporated into the optimization process to maximize the marginal benefits of additional sensor 619 

deployments. For the SSLS monitoring network, Tien et al. (2023) applied a multi-objective optimization 620 

approach based on these practical criteria, in addition to the modeling errors of the OA technique. 621 

There are several limitations identified in the applications of the EOFs-based OA procedure, 622 

which will be discussed in the subsections below. 623 

 624 

4.1. Limitations 625 

4.1.1. Hyper-local water level sensor observations 626 

The EOFs-based OA procedure is inherently constrained by the limitations of hyper-local water level 627 

sensor observations in monitoring networks. Currently, the community-driven monitoring networks 628 

(Table 1) are designed to augment water level monitoring, primarily for high tides, storm surges, and 629 

rising sea levels. To address the sparse availability of observations from the NOAA tide gauges and 630 

USGS stream gauges in coastal communities, these monitoring networks deploy cost-effective, power-631 

efficient sensor instruments, which are engineered to measure water levels at an operational cycle of 2- to 632 

6-minute intervals (Observation Cycle column in Table 1), similar to the NOAA (6-minute intervals) and 633 

USGS (5-minute intervals) gauges. However, due to these observation cycles, the current sensor 634 

observations and their data-processing (e.g., Fig. 4) do not adequately capture water level fluctuations 635 

caused by certain flood drivers occurring at shorter timescales, including those associated with short and 636 

infragravity waves. To accurately resolve shorter-period water level fluctuations in observations and 637 

utilize observation datasets for reconstruction, it is necessary to implement a dedicated observation 638 
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campaign and specialized operation protocols (e.g., Sweet et al., 2015), which differ from those of the 639 

community-driven monitoring networks. 640 

 641 

4.1.2. EOFs: spatial covariance statistics 642 

Our study uses a month-long dataset of simulated water levels for the EOF analysis to derive spatial 643 

covariance statistics (Fig. 5). The stationarity of the EOFs is evaluated with a 3-fold test, which compares 644 

the time-varying amplitudes of the EOFs computed from the different chunks of the simulation time 645 

series (Fig. 6). In our study, the EOFs-based OA procedure primarily aims to assimilate real-time water 646 

levels for extensive flood monitoring, including both nuisance flooding (e.g., high tides with rising sea 647 

levels) (Moftakhari et al., 2018; Li et al., 2021) and extreme flooding (e.g., storm surges). Consequently, 648 

the EOF and stationarity analysis focuses on identifying robust spatial covariance statistics from water 649 

level simulations over a longer period than typical flood timescales. This approach allows capturing 650 

quasi-static responses of water levels that predominantly balance in estuarine systems by forcings and 651 

facilitating real-time assimilation of water levels, rather than flood prediction under anticipated metocean 652 

conditions (e.g., Rohmer et al., 2023 using a surrogate model with multivariate statistical analysis). While 653 

our study can reproduce water level variations during a moderate storm surge event (e.g., Fig. 12 for 654 

Hurricane Dorian in 2019) using the established EOFs, the stationarity of the EOFs may not hold under 655 

different climates, seasons, and weather conditions. Therefore, future research should prioritize exploring 656 

the applicable ranges of the EOFs-based OA procedure in these diverse conditions. In particular, it is 657 

important to further understand the limitations of the modeling approach during various hurricane and 658 

hydrologic runoff events, which are recognized as extreme flood drivers for coastal communities. Then, 659 

researchers can identify specific conditions under which the modeling approach may perform less 660 

accurately and work towards improving its robustness in such scenarios. As operational forecasts of 661 

coastal-ocean hydrodynamic models become increasingly accessible across different climates, seasons, 662 

and weather conditions, future research should aim to provide a more comprehensive assessment of 663 

stationarity and improve representative spatial covariance statistics of water levels along estuarine 664 

channels. 665 

Prior to the EOF analysis, the masking process is applied to prevent incomplete statistical 666 

analysis, which results in water level assimilations that are spatially confined to coastal channels. To 667 

address the spatial confinement, additional mapping techniques, such as downscaling extrapolations (e.g., 668 

Rucker et al., 2021), can be integrated to extend assimilated water levels from coastal channels into inland 669 

regions. Moreover, by imposing assimilated water levels as spatiotemporal boundary conditions, coastal-670 

urban flood models can simulate subsequent flooding within urban systems (e.g., Karamouz et al., 2017; 671 
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Son et al., 2023). These integrations can enhance spatial coverages of assimilated water levels, thus 672 

facilitating more comprehensive and efficient flood predictions beyond coastal channels. 673 

 674 

5. Summary and conclusions 675 

With a growing number of water level monitoring networks, coastal communities have more access to 676 

real-time water level information at sensor deployment locations. These hyper-local water level 677 

observations enable public and emergency management officials to identify and assess localized flood 678 

threats to coastal infrastructure, particularly in areas that have limited capacity to adapt to sea level rise. 679 

In line with these community-driven efforts, our study develops a physics-based empirical modeling 680 

approach that can efficiently assimilate estuarine water levels from hyper-local sensor observations to 681 

enhance water level monitoring capabilities. 682 

 Our approach uses the OA procedure that combines hyper-local sensor observations with spatial 683 

covariance statistics of water levels in coastal regions. Prior to the OA procedure, outlier removal and 684 

smoothing techniques are implemented to mitigate the impacts of anomalous signals, including occasional 685 

spikes and fluctuations, in the hyper-local sensor observations (Fig. 4). The representative patterns for 686 

spatial covariances are established through the EOF analysis on numerical simulations using the high-687 

resolution coastal-ocean hydrodynamic model, SCHISM. The significant spatiotemporal variations in 688 

water levels are decomposed into a combination of rising or falling movements, transitional phases 689 

between them, and adjustments in the upstream channel (Fig. 5), all of which interact within the complex 690 

estuarine settings. Through the 3-fold cross-validations, we demonstrate minor sensitivity to the selection 691 

of basis simulation periods for extracting the spatial mode patterns (Fig. 6). In addition, we investigate the 692 

assimilation modeling errors associated with the leading-order truncations of the spatial mode patterns 693 

and the limited availability of the SSLS observations. Although the truncation errors tend to be larger than 694 

the spatial sampling errors, the overall modeling errors remain within acceptable ranges (Fig. 8). When 695 

compared to the common OA procedure using a Gaussian covariance function, the EOFs-based OA 696 

procedure shows enhanced performance and robustness in assimilating water levels. The improvement is 697 

attributed to the inherent limitations of simplified distance-based analytical functions that inadequately 698 

capture the complex dynamics of estuaries, including hydrologic connections. Using the actual SSLS 699 

observations, the applications of the EOFs-based OA procedure successfully reproduce the temporal 700 

patterns and peak magnitudes of water levels along coastal channels for both the basis simulation periods 701 

(Fig. 10) and Hurricane Dorian (Fig. 12), demonstrating the capability of our approach to leverage the 702 

empirical observations in combination with physics-based statistical information. The assimilation results 703 

for Hurricane Dorian show promise in capturing water level states during unusual weather events. 704 
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However, further validations are necessary to evaluate the extensibility of the modeling approach for 705 

different storms with large forcing signals and significant impacts on water level variations. 706 

With the established spatial covariance statistics, the real-time assimilation of water levels (Fig. 707 

13) can provide community officials with a broader understanding of hyper-local water level conditions, 708 

including temporarily inactive monitoring locations and areas that are not covered by sensors. Thus, the 709 

assimilation data can serve as a supplementary tool for consistent monitoring of immediate flood risks to 710 

coastal infrastructure systems, such as bridges and marinas. Ultimately, coastal communities can make 711 

advanced use of water level monitoring networks by integrating the real-time assimilation framework to 712 

develop adaptive strategies for flood resilience planning in response to rising sea levels. 713 

  714 
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Appendix A 715 

Simulated water levels for 30 days at Fort Pulaski, U.S. Georgia, for the EOF analysis 716 

 717 

Fig. A.1 Simulated water levels for 30 days at Fort Pulaski, U.S. Georgia, for the EOF analysis and comparisons 718 

with NOAA tide gauge observations and predictions. The model evaluations, including error statistics, are listed in 719 

Appendix C. 720 

 721 

Appendix B 722 

Model evaluation metrics for error statistics 723 

 Root-mean-square error, RMSE = F�
G ∑ �I
 − J
�KG
L�  (B.1) 

 Normalized RMSE, NRMSE = NOPQ
RS  (B.2) 

 Mean bias error, MBE =  �
G ∑ �I
 − J
�G
L�  (B.3) 

 Pearson’s correlation coefficient, R = ∑ �UV.U̅��XV.XY�ZV[\
F∑ �UV.U̅�BZV[\ ∑ �XV.XY�BZV[\

 (B.4) 

 Nash-Sutcliffe efficiency, NSE = 1 − ∑ �UV.XV�BZV[\
∑ �XV.XY�BZV[\

 (B.5) 

where I is the model estimations, J is the actual values, such as observations, and ^ is the number of 724 

samples. The   ̅ and _ denote the mean and standard deviation, respectively. 725 

 726 

Appendix C 727 

Model evaluations with observations for Fig. 2b, Fig. 10, and Fig. A.1 728 
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Table C.1  729 

Model evaluations with observations for Fig. 2b, Fig. 10, and Fig. A.1 (11/25 – 12/25 in 2021). The table index (N1, 730 

U1, and S1-6) corresponds to the labels of the station locations in Fig. 1. 731 

Observation 

Location 

 SCHISM Model Simulation 

(Fig. 2b and Fig. A.1) 

 Physics-based Empirical Modeling Approach (Fig. 10) 

  Reconstructions by EOFs (SSLS)  Cross-Validation excl. Own Sensor 

 RMSE [m] MBE [m] R [-] NSE [-]  RMSE [m] MBE [m] R [-] NSE [-]  RMSE [m] MBE [m] R [-] NSE [-] 

NOAA: N1  0.142 -0.129 0.989 0.947  0.084 -0.057 0.995 0.979  - - - - 

USGS: U1  0.222 -0.104 0.963 0.907  0.116 -0.110 0.998 0.977  - - - - 

SSLS: S1  0.312 -0.012 0.914 0.829  0.096 0.030 0.993 0.984  0.091 0.023 0.990 0.979 

SSLS: S2  0.197 0.136 0.984 0.928  0.208 0.178 0.989 0.920  0.228 0.217 0.982 0.877 

SSLS: S3  0.359 0.002 0.801 0.642  0.188 0.184 0.998 0.902  0.187 0.187 0.998 0.898 

SSLS: S4  0.287 0.016 0.934 0.871  0.048 0.026 0.999 0.996  0.057 0.014 0.997 0.992 

SSLS: S5  0.384 0.095 0.851 0.672  0.228 0.205 0.994 0.884  0.297 0.260 0.977 0.751 

SSLS: S6  0.539 0.059 0.646 0.407  0.209 0.196 0.995 0.911  0.193 0.181 0.991 0.914 

* RMSE: root-mean-square errors, MBE: mean bias errors, R: correlation coefficients, and NSE: Nash-Sutcliffe efficiency. 
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Data availability 733 

The SSLS measurement data can be accessed publicly at https://www.sealevelsensors.org/. The DEM, 734 

water level, oceanographic, and meteorological data are available through the following links: 735 

- DEM data: NOAA Digital Coast (https://coast.noaa.gov/dataviewer/) 736 

- Water level data: NOAA Tide & Currents (https://tidesandcurrents.noaa.gov/), USGS National Water 737 

Dashboard (https://dashboard.waterdata.usgs.gov/), and USGS Flood Event Viewer 738 

(https://stn.wim.usgs.gov/) 739 

- Oceanographic data: AVISO (https://www.aviso.altimetry.fr/en/data/products.html) and CEMES 740 

(https://data.marine.copernicus.eu/products) 741 

- Meteorological data: ECMWF ERA 5 (https://www.ecmwf.int/en/forecasts/datasets) and NOAA HRRR 742 

(https://rapidrefresh.noaa.gov/hrrr/) 743 

The SCHISM simulation and Objective Analysis data can be provided upon request to the corresponding 744 

author. 745 
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